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Abstract

We introduce a simple but general online learning framework in which a learner
plays against an adversary in a vector-valued game that changes every round.
Even though the learner’s objective is not convex-concave (and so the minimax
theorem does not apply), we give a simple algorithm that can compete with the
setting in which the adversary must announce their action first, with optimally
diminishing regret. We demonstrate the power of our framework by using it to
(re)derive optimal bounds and efficient algorithms across a variety of domains,
ranging from multicalibration to a large set of no regret algorithms, to a variant
of Blackwell’s approachability theorem for polytopes with fast convergence rates.
As a new application, we show how to “(multi)calibeat” an arbitrary collection of
forecasters — achieving an exponentially improved dependence on the number of
models we are competing against, compared to prior work.

1 Introduction

We introduce and study a simple but powerful framework for online adversarial multiobjective
minimax optimization. At each round t, an adaptive adversary chooses an environment for the learner
to play in, defined by a convex compact action set X t for the learner, a convex compact action set Yt
for the adversary, and a d-dimensional continuous loss function `t : X t×Yt → [−1, 1]d that, in each
coordinate, is convex in the learner’s action and concave in the adversary’s action. The learner then
chooses an action, or distribution over actions, xt, and the adversary responds with an action yt. This
results in a loss vector `t(xt, yt), which accumulates over time. The learner’s goal is to minimize the
maximum accumulated loss over each of the d dimensions: maxj∈[d]

(∑T
t=1 `

t
j(x

t, yt)
)

.

One may view the environment chosen at each round t as defining a zero-sum game in which the
learner wishes to minimize the maximum coordinate of the resulting loss vector. The objective of the
learner in the stage game in isolation can be written as:1

wtL = inf
xt∈X t

max
yt∈Yt

(
max
j∈[d]

`tj(x
t, yt)

)
.

Unfortunately, although `tj is convex-concave in each coordinate, the maximum over coordinates
does not preserve concavity for the adversary. Thus the minimax theorem does not hold, and the
value of the game in which the learner moves first (defined above) is larger than the value of the game
in which the adversary moves first— that is, wtL > wTA, where wtA is defined as:

1 A brief aside about the “inf max max” structure of wt
L: since each `tj is continuous, so is maxj `

t
j , and

hence maxy(maxj `
t
j) is attained on the compact set Yt. However, maxy(maxj `

t
j) may not be a continuous

function of x and therefore the infimum over X t need not be attained.
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wtA = sup
yt∈Yt

min
xt∈X t

(
max
j∈[d]

`tj(x
t, yt)

)
.

Nevertheless, fixing a series of T environments chosen by the adversary, this defines in hindsight an
aspirational quantity WT

A =
∑T
t=1 w

t
A, summing the adversary-moves-first value of the constituent

zero sum games. Despite the fact that these values are not individually obtainable in the stage games,
we show that they are approachable on average over a sequence of rounds, i.e., there is an algorithm
for the learner that guarantees that against any adversary,

max
j∈[d]

(
1
T

T∑
t=1

`tj(x
t, yt)

)
≤ 1

TW
T
A + 4

√
2 ln d
T .

Our derivation is elementary and based on a minimax argument, and is a development of a game-
theoretic argument from the calibration literature due to Hart [2020] and Fudenberg and Levine
[1999].2 The generic algorithm plays actions at every round t according to a minimax equilibrium
strategy in a surrogate game that is derived both from the environment chosen by the adversary at
round t, as well as from the history of play so far on previous rounds t′ < t. The loss in the surrogate
game is convex-concave (and so we may apply minimax arguments), and can be used to upper bound
the loss in the original games.

We then show that this simple framework can be instantiated to derive a wide array of optimal bounds,
and that the corresponding algorithms can be derived in closed form by solving for the minimax
equilibrium of the corresponding surrogate game. Despite its simplicity, our framework has a number
of applications to online learning— we sketch these below.

“Multi-Calibeating”: Foster and Hart [2021] recently introduced the notion of “calibeating” an
arbitrary online forecaster: making online calibrated predictions about an adversarially chosen
sequence of inputs that are guaranteed to have lower squared error than an arbitrary predictor f ,
where the improvement in error approaches f ’s calibration error in hindsight. Foster and Hart give
two methods for calibeating an arbitrary collection of predictors F simultaneously, but these methods
have an exponential and polynomial dependence in their convergence bounds on |F|, respectively.

Using our framework, we can derive optimal online bounds for online multicalibration [Hébert-
Johnson et al., 2018, Gupta et al., 2022], and as an application, obtain bounds for calibeating arbitrary
collection of models with only a logarithmic dependence on |F|. Our algorithm naturally extends
to the more general problem of online “multi-calibeating” — i.e. combining the goals of online
multicalibration and calibeating. Namely, we give an algorithm for making real-valued predictions
given contexts from some space Θ. The algorithm is parameterized by (i) a collection G ⊆ 2Θ of
(arbitrary, potentially intersecting) subsets of Θ that we might envision to represent e.g. different
demographic groups in a setting in which we are making predictions about people; and (ii) an
arbitrary collection of predictors F . We promise that our predictions are calibrated not just overall,
but simultaneously within each group g ∈ G — and moreover, that we calibeat each predictor f ∈ F
not just overall, but simultaneously within each group g ∈ G. We do this by proving an online
analogue of what Hébert-Johnson et al. [2018] call a “do no harm” property in the batch setting using
a similar technique: multicalibrating with respect to the level sets of the predictors.

Fast Polytope Blackwell Approachability: We give a variant of Blackwell’s Approachability
Theorem [Blackwell, 1956] for approaching a polytope. Standard methods approach a set in Euclidean
distance, at a rate polynomial in the payoff dimension. In contrast, we give a dimension-independent
approachability guarantee: we approximately satisfy all halfspace constraints defining the polytope,
after logarithmically many rounds in the number of constraints, a significant improvement over a
polynomial dimensional dependence in many settings. It is equivalent to the results of Perchet [2015],
which show that the negative orthant Rd≤0 is approachable in the `∞ metric with a log(d) dependence
in the convergence rate. This result follows immediately from a specialization of our framework
that does not require changing the environment at each round, highlighting the connection between
our framework and approachability. We remark that approachability has been extended in a number
of ways in recent years [Mannor et al., 2014a,b, Perchet and Mannor, 2013]. However most of our
other applications take advantage of the flexibility of our framework to play a different game at each

2This argument was extended in Gupta et al. [2022] to obtain fast rates and explicit algorithms for multicali-
bration and multivalidity.
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round (which can be defined by context) with potentially different action sets, and so do not directly
follow from Blackwell approachability. Therefore, while many of our regret bounds could be derived
from approachability to the negative orthant by enlarging the action space exponentially to simulate
aspects of our framework, this approach would not easily lead to efficient algorithms.

Recovering Expert Learning Bounds: Algorithms and optimal bounds for various expert learning
problems fall naturally out of our framework as corollaries. This includes external regret [Vovk,
1990, Littlestone and Warmuth, 1994], internal and swap regret [Foster and Vohra, 1998, Hart and
Mas-Colell, 2000, Blum and Mansour, 2007], adaptive regret [Littlestone and Warmuth, 1994, Hazan
and Seshadhri, 2009, Adamskiy et al., 2012], sleeping experts [Freund et al., 1997, Blum, 1997, Blum
and Mansour, 2007, Kleinberg et al., 2010], and the recently introduced multi-group regret [Blum
and Lykouris, 2020, Rothblum and Yona, 2021]. Multi-group regret refers to a contextual prediction
problem in which the learner gets contexts from Θ before each round. It is parameterized by a
collection of groups G ⊆ 2Θ: e.g., if the predictions concern people, G may represent an arbitrary,
intersecting set of demographic groups. Here the “experts” are different models that make predictions
on each instance; the goal is to attain no-regret not just overall, but also on the subset of rounds
corresponding to contexts from each g ∈ G. Multi-group regret, like multicalibration, is one of
the few solution concepts in the algorithmic fairness literature known not to involve tradeoffs with
overall accuracy [Globus-Harris et al., 2022]. Blum and Lykouris [2020] derived their algorithm for
online multigroup regret via a reduction to sleeping experts, and Gupta et al. [2022] derived their
algorithm for online multicalibration via a direct argument. Here we derive online algorithms for
both multicalibration and multigroup regret as corollaries of the same fundamental framework.

2 General Framework

2.1 The Setting

A Learner (she) plays against an Adversary (he) over rounds t ∈ [T ] := {1, . . . , T}. Over these
rounds, she accumulates a d-dimensional loss vector (d ≥ 1), where each round’s loss vector lies in
[−C,C]d for some C > 0. At each round t, the Learner and the Adversary interact as follows:

1. Before round t, the Adversary selects and reveals to the Learner an environment comprising:

(a) The Learner’s and Adversary’s respective convex compact action setsX t, Yt embedded
into a finite-dimensional Euclidean space;

(b) A continuous vector loss function `t(·, ·) : X t × Yt → [−C,C]d, with each `tj(·, ·) :

X t × Yt → [−C,C] (for j ∈ [d]) convex in the 1st and concave in the 2nd argument.

2. The Learner selects some xt ∈ X t.

3. The Adversary observes the Learner’s selection xt, and responds with some yt ∈ Yt.

4. The Learner suffers (and observes) the loss vector `t(xt, yt).

The Learner’s objective is to minimize the value of the maximum dimension of the accumulated loss
vector after T rounds—in other words, to minimize: maxj∈[d]

∑
t∈[T ] `

t
j(x

t, yt).

To benchmark the Learner’s performance, we consider the following quantity at each round t:

Definition 2.1 (The Adversary-Moves-First (AMF) Value at Round t). The Adversary-Moves-First
value of the game defined by the environment (X t,Yt, `t) at round t is:

wtA := sup
yt∈Yt

min
xt∈X t

(
max
j∈[d]

`tj(x
t, yt)

)
.

If the Adversary had to reveal yt first and the Learner could best respond, wtA would be the smallest
value of the maximum coordinate of `t she could guarantee. However, the function maxj∈[d] `

t
j(x

t, yt)
is not convex-concave (as the max does not preserve concavity); hence the minimax theorem does
not apply, making this value unobtainable for the Learner, who is in fact obligated to reveal xt first.
However, we can define regret to a benchmark given by the cumulative AMF values of the games:
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Definition 2.2 (Adversary-Moves-First (AMF) Regret). On transcript πt={(X s,Ys, `s), xs, ys}ts=1,
we define the Learner’s Adversary Moves First (AMF) Regret for the jth dimension at time t to be:

Rtj(π
t) :=

t∑
s=1

`sj(x
s, ys)−

t∑
s=1

wsA.

The overall AMF Regret is then defined as follows: Rt(πt) = maxj∈[d]R
t
j .

3

Again, the game played at each round is not convex-concave, so we cannot get RT ≤ 0. Instead, we
will aim to obtain sublinear AMF regret, worst-case over adaptive adversaries: RT = o(T ).

2.2 General Algorithm

Our algorithmic framework will be based on a natural idea: instead of directly grappling with the
maximum coordinate of the cumulative vector valued loss, we upper bound the AMF regret with a
one-dimensional “soft-max” surrogate loss function, which the algorithm will then aim to minimize.
Definition 2.3 (Surrogate loss). Fixing a parameter η ∈ (0, 1), we define our surrogate loss function
(that implicitly depends on the transcript πt through the respective round t) as:

Lt :=
∑
j∈[d]

exp
(
ηRtj

)
for t ∈ [T ], and L0 := d.

This surrogate loss tightly bounds the AMF regret RT = maxj∈[d]R
T
j :

Lemma 2.1. The Learner’s AMF Regret is upper bounded using the surrogate loss as: RT ≤ lnLT

η .

Next we observe a simple but important bound on the per-round increase in the surrogate loss.
Lemma 2.2. For any t, any transcript through round t, and any η ≤ 1

2C , it holds that:

Lt ≤
(
4η2C2 + 1

)
Lt−1 + η

∑
j∈[d]

exp
(
ηRt−1

j

)
·
(
`tj
(
xt, yt

)
− wtA

)
.

The proof is very simple (see Appendix B.1): we write out the quantity Lt − Lt−1, use the definition
of AMF regret Rt, and then bound Lt − Lt−1 via the inequality ex ≤ 1 + x+ x2 for |x| ≤ 1.

We now exploit Lemma 2.2 to bound the final surrogate loss LT and obtain a game-theoretic algorithm
for the Learner that attains this bound. While the above steps should remind the reader of a standard
derivation of the celebrated Exponential Weights algorithm via bounding a log-sum-exp potential
function, the next lemma is the novel ingredient that makes our framework significantly more general
by relying on Sion’s powerful generalization of the Minimax Theorem to convex-concave games.
Lemma 2.3. For any η ≤ 1

2C , the Learner can ensure that the final surrogate loss is bounded as:

LT ≤ d
(
4η2C2 + 1

)T
.

Proof sketch; see Appendix B.1. Define, for t ∈ [T ], continuous convex-concave functions ut :
X t × Yt → R by: ut(x, y) :=

∑
j∈[d] exp

(
ηRt−1

j

) (
`tj(x, y)− wtA

)
. If the Learner can ensure

ut(xt, yt) ≤ 0 on all rounds t ∈ [T ] regardless of the Adversary’s play, then Lemma 2.2 implies Lt ≤(
4η2C2 + 1

)
Lt−1 for all t ∈ [T ], leading to the desired bound on LT . Due to the continuous convex-

concave nature of each ut (inherited from the loss coordinates `tj), we can apply Sion’s Minimax
Theorem to conclude that: minxt∈X t maxyt∈Yt u

t (xt, yt) = maxyt∈Yt minxt∈X t u
t (xt, yt) .

In words, the Learner has a so-called minimax-optimal strategy xt, that achieves (worst-case over
all yt ∈ Yt) value ut(xt, yt) as low as if the Adversary moved first and the Learner could best-
respond. But in the latter counterfactual scenario, using the definitions of ut and the Adversary-
moves-first value wtA, we can easily see that by best-responding to the Adversary, the Learner
would always guarantee herself value ≤ 0: that is, maxyt∈Yt minxt∈X t u

t (xt, yt) ≤ 0. Thus,
minxt∈X t maxyt∈Yt u

t (xt, yt), and so by playing minimax-optimally at every round t ∈ [T ], the
Learner will guarantee ut (xt, yt) ≤ 0 for all t, leading to the desired regret bound.

3We will generally elide the dependence on the transcript and simply write Rt
j and Rt.
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In fact, via a simple algebraic transformation (see Appendix B.1) taking advantage of the values wtA
being independent of the actions xt, yt, we can explicitly express the Learner’s minimax optimal strate-

gies at all rounds as: argmin
x∈X t

max
y∈Yt

ut(x, y) = argmin
x∈X t

max
y∈Yt

∑
j∈[d]

exp(η
∑t−1
s=1 `

s
j(x

s,ys))∑
i∈[d]

exp(η
∑t−1
s=1 `

s
i (x

s,ys))
`tj(x, y).

Together with the proof of Lemma 2.3, this immediately gives the following algorithm for the Learner
that achieves the desired bound on LT (and thus, as we will show, on the AMF regret RT ).

Algorithm 1: General Algorithm for the Learner that Achieves Sublinear AMF Regret
for rounds t = 1, . . . , T do

Learn adversarially chosen X t,Yt, and loss function `t(·, ·).

Let χtj :=
exp

(
η
∑t−1
s=1 `

s
j(x

s, ys)
)

∑
i∈[d] exp

(
η
∑t−1
s=1 `

s
i (x

s, ys)
) for j ∈ [d].

Play xt ∈ argmin
x∈X t

max
y∈Yt

∑
j∈[d]

χtj · `tj(x, y).

Observe the Adversary’s selection of yt ∈ Yt.

Theorem 2.1 (AMF Regret guarantee of Algorithm 1). For any T ≥ ln d, Algorithm 1 with learning

rate η =
√

ln d
4TC2 obtains, against any Adversary, AMF regret bounded by: RT ≤ 4C

√
T ln d.

Indeed, using Lemma 2.1, then Lemma 2.3, then 1 + x ≤ ex, and finally settingη =
√

ln d
4TC2 , we get:

RT ≤ lnLT

η ≤
ln
(
d(4η2C2+1)

T
)

η ≤ ln(d exp(4Tη2C2))
η = ln d

η + 4TC2η = 4C
√
T ln d.

Remark 2.1. Our framework is easy to adapt to the setting where the Learner randomizes, at each
round, amongst a finite set of actions At (i.e. X t = ∆At), and wishes to obtain in-expectation
and high-probability AMF regret bounds. This is useful in all our applications below. Additionally,
our AMF regret bounds are robust to the Learner playing only an approximate (rather than exact)
minimax strategy at each round: we use this to derive our simple multicalibration algorithm below.
See Appendix B.2 for both these extensions.

3 Deriving No-X-Regret Algorithms from Our Framework

The core of our framework — the Adversary-Moves-First regret — is strictly more general than a very
large variety of known regret notions including: external, internal, swap, adaptive, sleeping-experts,
multigroup, and wide-range (Φ) regret. Specifically, in Appendix C, we use our framework to derive
simple O(

√
T )-regret algorithms for what we call subsequence regret, which encapsulates all these

regret forms. In each of these cases, our generic algorithm is efficient, and often specializes (by
computing a minimax equilibrium strategy in closed form) to simple combinatorial algorithms that
had been derived from first principles in prior work. We note that in any problem that involves context
or changing action spaces (as the sleeping experts problem does), we are taking advantage of the
flexibility of our framework to present a different environment at every round, which distinguishes
our framework from more standard Blackwell approachability arguments. In fact, as we will see in
Section 5 below, our framework recovers fast Blackwell approachability as a special case.

For our general subsequence regret algorithms, please see Appendix C. Now, as a warm-up application
of our framework, we directly instantiate it for the simplest case of obtaining O(

√
T ) external regret.

Simple Learning From Expert Advice: External Regret In the classical experts learning setting
Littlestone and Warmuth [1994], the Learner has a set of pure actions (“experts”) A. At the outset
of each round t ∈ [T ], the Learner chooses a distribution over experts xt ∈ ∆A. The Adversary
then comes up with a vector of losses rt = (rta)a∈A ∈ [0, 1]A corresponding to each expert. Next,
the Learner samples at ∼ xt, and experiences loss corresponding to the expert she chose: rtat .
The Learner also gets to observe the entire vector of losses rt for that round. The goal of the
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Learner is to achieve sublinear external regret — that is, to ensure that the difference between
her cumulative loss and the loss of the best fixed expert in hindsight grows sublinearly with T :
RText(π

T ) :=
∑
t∈[T ] r

t
at −minj∈A

∑
t∈[T ] r

t
j = o(T ).

Theorem 3.1. Fix a finite pure action setA for the Learner and a time horizon T ≥ ln |A|. Then, an
instantiation of our framework’s Algorithm B.1 lets the Learner achieve the following regret bounds:

EπT
[
RText

(
πT
)]
≤ 4
√
T ln |A|, and RText

(
πT
)
≤ 8

√
T ln |A|δ with prob. 1− δ.

Proof. We instantiate (the probabilistic version of) our framework (see Section B.2.1).

At all rounds, the Learner’s pure action set is A, and the Adversary’s strategy space is the convex
and compact set [0, 1]|A|, from which each round’s collection (rta)a∈A of all actions’ losses is
selected. Next, we define a |A|-dimensional loss function `t = (`tj)j∈A, where each coordinate loss
`tj expresses the regret of the Learner’s chosen action a relative to action j ∈ A:

`tj(a, r
t) = rta − rtj , for a ∈ A, rt ∈ [0, 1]|A|.

By Theorem B.1, E
[
maxj∈A

∑
t∈[T ] `

t
j(a

t, rt)−
∑
t∈[T ] w

t
A

]
≤ 4

√
T ln |A|, where wtA is the

AMF value at round t. Using this AMF regret bound, we can bound the Learner’s external regret as:

E
[
RText

]
= E

[
max
j∈A

∑
t∈[T ]

rtat − rtj
]

= E
[
max
j∈A

∑
t∈[T ]

`tj(a
t, rt)

]
≤ 4
√
T ln |A|+

∑
t∈[T ]

wtA.

It thus remains to show that the AMF value wtA ≤ 0 for all t. This holds, since if the Learner knew
the Adversary’s choice of losses (rta)a∈A before round t, then picking the action a ∈ A with the
smallest loss rta would get her 0 regret in that round. 4 This gives the in-expectation regret bound; the
high-probability bound follows in the same way from Theorem B.2.

A bound of
√
T ln |A| is optimal for external regret in the experts learning setting, and so serves to

witness the optimality of our framework’s general AMF regret bound in Theorem 2.1.

In fact, the above instantiation of Algorithm B.1 yields the classical Exponential Weights algorithm
Littlestone and Warmuth [1994]: at each round t, the action at is sampled with Pr[at = j] ∼
exp

(
−η
∑t−1
s=1 r

s
j

)
, for j ∈ A. We denote this distribution by EWη(πt−1) ∈ ∆(A).

Indeed, given the above defined loss `t, the Learner solves the following problem at each round:

xt ∈ argmin
x∈∆A

max
rt∈[0,1]|A|

∑
j∈A

χtj E
a∼x

[rta − rtj ],

where χtj =
exp(η

∑t−1
s=1(rsas−r

s
j ))∑

i∈A exp(η
∑t−1
s=1(rs

as
−rsi ))

=
exp(−η

∑t−1
s=1 r

s
j)∑

i∈A exp(−η
∑t−1
s=1 r

s
i )

. That is, the per-coordinate weights

(χtj)j∈A themselves form the Exponential Weights distribution with rate η.

For any choice of rt by the Adversary, the quantity inside the expectation, `tj(a, r
t) = rta − rtj ,

is antisymmetric in a and j: that is, `tj(a, r
t) = −`ta(j, rt). Due to this antisymmetry, no mat-

ter which rt gets selected by the Adversary, by playing a ∼ EWη(πt−1) the Learner obtains
Ea,j∼EWη(πt−1)

[
rta − rtj

]
= 0, thus achieving the value of the game. It is also easy to see that

xt = EWη(πt−1) is the unique choice of xt that guarantees nonnegative value, hence Algorithm B.1,
when specialized to the external regret setting, is equivalent to the Exponential Weights Algorithm C.1.

4Formally, for any vector of actions’ losses rt, define a∗rt := argmina∈A r
t
a, and notice that

min
a∈A

max
j∈A

`tj(a, r
t) ≤ max

j∈A
`tj

(
a∗rt , r

t) = max
j∈A

(
rta∗
rt
− rtj

)
= min

a∈A
rta −min

j∈A
rtj = 0.

Hence, the AMF value is indeed nonpositive at each round: wt
A = sup

rt∈[0,1]|A|
min
a∈A

maxj∈A `
t
j(a, r

t) ≤ 0.
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4 Multicalibration and Multicalibeating

We now apply our framework to derive an online contextual prediction algorithm which simulta-
neously satisfies a (potentially very large) family of strong adversarial accuracy and calibration
conditions. Namely, given an arbitrarily complex family G of subsets of the context space (we call
them “groups”, a term from the fairness literature), the predictor will be both calibrated and accurate
on each group g ∈ G (that is, over those online rounds when the context belongs to g).

The accuracy benchmark that we aim to satisfy was recently proposed by Foster and Hart [2021],
who called it calibeating: given any collection F of online forecasters, the goal is (intuitively) to
“beat” the (squared) error of each f ∈ F by at least the calibration score of f .

In Section 4.1, we use our framework to rederive the online multigroup calibration (known as
multicalibration) algorithm of Gupta et al. [2022]. In Section 4.2, we show that by appropriately
augmenting the original collection of groups G, this algorithm will, in addition to multicalibration,
calibeat any family of predictors f ∈ F on every group g ∈ G, which we call multicalibeating.

4.1 Multicalibration

Setting There is a feature (or context) space Θ encoding the set of possible feature vectors repre-
senting individuals θ ∈ Θ. There is also a label space [0, 1]. At every round t ∈ [T ]:

1. The Adversary announces a particular individual θt ∈ Θ, whose label is to be predicted;
2. The Learner predicts a label distribution xt over [0, 1];
3. The Adversary observes xt, and fixes the true label distribution yt over [0, 1];
4. The (pure) guessed label at ∼ xt and the (pure) true label bt ∼ yt are sampled.

Objective: Multicalibration The Learner is initially given an arbitrary collection G ⊆ 2Θ of
protected population groups. Her goal, multicalibration, is empirical calibration not just marginally
over the whole population, but also conditionally on individual membership in each g ∈ G. Formally,
for any n ≥ 1 we let the n-bucketing of the label interval [0, 1] be its partition into subintervals
[0, 1/n), . . . , [1− 2/n, 1− 1/n), [1− 1/n, 1]. The ith of these intervals (buckets) is denoted Bin.
Definition 4.1 ((α, n)-Multicalibration with respect to G). Fix a real α > 0 and an integer n ≥ 1.
Given the transcript of the interaction {(at, bt)}t∈[T ], the Learner’s sequence of guessed labels
{at}t∈[T ] is (α, n)-multicalibrated with respect to the collection of groups G if:

1

T

∣∣∣∣∣
T∑
t=1

1θt∈g · 1at∈Bin · (b
t − at)

∣∣∣∣∣ ≤ α, for every group g ∈ G and every bucket Bin (for i ∈ [n]).

Using our framework, we now derive the guarantee on α that matches that of Gupta et al. [2022].
Theorem 4.1 (Multicalibration). Fix a family of groups G, a time horizon T ≥ ln(2|G|n), and any
natural n, r ≥ 1. Then, our framework’s Algorithm B.1 can be instantiated as Algorithm D.1 to
produce (α, n)-multicalibrated predictions w.r.t. G, where α satisfies (over transcript randomness):

E[α] ≤ 1
rn + 4

√
ln(2|G|n)

T and Pr
[
α ≤ 1

rn + 8

√
1
T ln

(
2|G|n
δ

)]
≥ 1− δ ∀ δ ∈ (0, 1).

Proof sketch; see Appendix D for details. The adversary’s strategy space will be Y = [0, 1]. The
learner will randomize over Ar = {0, 1/(rn), 2/(rn), . . . , 1} for an integer r ≥ 1 (to ensure
continuity of the loss functions that we are about to define), i.e., her strategy space is X = ∆Ar.
Loss functions: The definition of multicalibration consists of 2|G|n constraints (one for each ±
sign, group g, and bucket i) of the following form: ± 1

T

∑T
t=1 1θt∈g · 1at∈Bin · (b

t − at) ≤ α.
Thus, we define (for each t ∈ [T ], σ = ±1, g, and i) a loss function over (at, bt) ∈ Ar × Y as:
`ti,g,σ(at, bt) := σ · 1θt∈g · 1at∈Bin · (b

t − at).

Now, defining a 2|G|n dimensional loss vector `t :=
(
`ti,g,σ

)
i∈[n],g∈G,σ∈{−1,1}

for each t ∈ [T ] recasts multicalibration in our framework as requiring that
maxi∈[n],g∈G,σ∈{−1,1}

∑T
t=1 `

t
i,g,σ(at, bt) ≤ αT.
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Bounding the AMF regret: To bound the Adversary-Moves-First value with these loss functions,
suppose the Adversary announces bt ∈ [0, 1]. Then, we easily see that by (deterministically)
responding with at = argmina∈Ar |b

t − a|, for all σ, g, i, `ti,g,σ(at, bt) ≤ 1
2rn . Hence,

wtA = sup
bt∈[0,1]

min
xt∈∆Ar

max
i∈[n],g∈G,σ∈{−1,1}

E
at∼xt

[
`ti,g,σ

(
at, bt

)]
≤ 1

2rn for every t ∈ [T ].

Now, for T ≥ ln(2|G|n), the AMF regret RT = maxi∈[n],g∈G,σ∈{−1,1}
∑T
t=1 `

t
i,g,σ(at, bt) −∑T

t=1 w
t
A, by our framework’s guarantees, satisfies E[RT ] ≤ 4

√
T ln(2|G|n) over the Learner’s

randomness. Since
∑T
t=1 w

t
A ≤ T

2rn , we get E[maxi∈[n],g∈G,σ∈{−1,1}
∑T
t=1 `

t
i,g,σ(at, bt)] ≤

T
2rn + 4

√
T ln(2|G|n).

This gives (α, n)-multicalibration with E[α] ≤ 1
T

(
T

2rn + 4
√
T ln(2|G|n)

)
= 1

2rn + 4
√

ln(2|G|n)
T .

The high-probability bound on α is obtained similarly.

Simplifying Learner’s algorithm: To attain the AMF value wtA = 1
2rn at each round, our framework

has the Learner solve a linear program (that encodes her minimax strategy). However, she can
obtain the almost optimal value 1

rn without solving an LP: this observation gives Algorithm D.1 (see
Appendix D). The guarantees on α only differ from optimal ones by replacing 1

2rn →
1
rn .

4.2 Multicalibeating

We now give an approach to “beating” arbitrary collections of online forecasters via online mul-
ticalibration. The goal, called calibeating by Foster and Hart [2021] who introduce the problem,
is to make calibrated forecasts that are more accurate than each of an arbitrary set of forecasters,
by exactly the calibration error in hindsight of that forecaster. They achieve optimal calibeating
bounds for a single forecaster, but their extension to calibeating multiple forecasters incurs at least a
polynomial dependence on the number of forecasters. We achieve a logarithmic dependence on the
number of forecasters. Additionally, we are able to simultaneously calibeat forecasters on all (big
enough) subgroups in some set G, with still only a logarithmic dependence on |G| and the number
of forecasters in the group-wise convergence bound. We call this multicalibeating. We now give an
overview of our setting, results, and techniques. For full details, see Appendix E.

Setting The Learner (predictor a = {at}t∈[T ]) and the Adversary (true labels b = {bt}t∈[T ])
interact in the same way as in Section 4.1, but the Adversary additionally reveals to the Learner
a finite set of forecasters F , where each f ∈ F is a function f : Θ → Df . Here Df ⊂ [0, 1] is
assumed to be a finite set of all possible forecasts that f makes: it will characterize the level sets of f .
We often suppress the dependence on the transcript, denoting f t ∈ Df the forecast at time t.

The Learner’s goal is to “improve on” the forecasts of all f ∈ F , for some suitable scoring of
the predictions. We measure the Learner’s and the forecasters’ accuracy via the squared error,
alternatively known as the Brier score.
Definition 4.2 (Brier Score). The Brier score of a forecaster f over all rounds t ∈ [T ] is defined as:
Bf (πT ) := 1

T

∑
t∈[T ](f

t − bt)2.

The Brier score can be decomposed into so-called calibration and refinement parts. The former
quantifies the extent to which the predictor is calibrated, while the latter expresses the average amount
of variance in predictions within every calibration bucket.

To define this decomposition, we need some extra notation. We denote by Si the subsequence of
days on which the Learner’s prediction is in bucket i.5 Similarly, Sd(f) (eliding (f) when clear from
context) denotes days on which forecaster f predicts d. We let Sdi (f) = Si ∩ Sd(f). Finally, we use
bars to indicate average predictions over given subsequences. For instance, ā(S) is the Learner’s
average prediction over a given subsequence S.
Definition 4.3 (Calibration and Refinement). The calibration score K and refinement scoreR of a
forecaster f over the full transcript πT are defined as:

Kf (πT ) :=
1

T

∑
d∈Df

|Sd|(d− b̄(Sd))2, Rf (πT ) :=
1

T

∑
d∈Df

∑
t∈Sd

(bt − b̄(Sd))2.

5Note that Si depends implicitly on the bucketing parameter n and the transcript πT .
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Fact 1 (Calibration-Refinement Decomposition of Brier Score [DeGroot and Fienberg, 1983]).
Bf (πT ) = Kf (πT ) +Rf (πT ).

The goal of calibeating is to beat the forecaster’s Brier score by an amount equal to its calibration
score. Or equivalently, to attain a Brier score (almost) equal to the refinement score of the forecaster.
Definition 4.4 (Calibeating). The Learner’s predictor a is said to τ -calibeat a forecaster f if:
Ba(πT ) ≤ Rf (πT ) + τ.

We will now extend the definition of calibeating simultaneously along two natural directions. First,
we will want to calibeat multiple forecasters at once. The second extension is that we will want to
calibeat the forecasters not just overall, but also on each of the subsequences corresponding to each
“population group” g ∈ G in a given family of subpopulations G ⊆ 2Θ.
Definition 4.5 (Multicalibeating). Given a family of forecasters F , groups G ⊆ 2Θ, and a mapping
β : F × G → R≥0, the Learner’s predictor a is an (F ,G, β)-multicalibeater if for every g ∈ G:
Ba(πT |{t:θt∈g}) ≤ minf∈F

{
Rf (πT |{t:θt∈g}) + β(f, g)

}
Note that ({f}, {Θ}, β(f,Θ) := τ)-multicalibeating is equivalent to τ -calibeating a forecaster f .

We first show how to calibeat a single forecaster (Definition 4.4). The modularity of multicalibration
will then let us easily extend this result to multiple forecasters and population subgroups.

The idea is to show that if our predictor is multicalibrated with respect to the level sets of f , then
we achieve calibeating. Hébert-Johnson et al. [2018] give a similar bound in the batch setting. We
denote the collection of level sets of f as: S(f) := {θ ∈ Θ : f(θ) = d}d∈Df .

Theorem 4.2 (Calibeating One Forecaster). Suppose that the Learner’s predictions a are (α, n)-
multicalibrated on the collection of groups S(f) ∪ {Θ}. Then the Learner is (α, n)-calibrated on Θ,
and she (αn(|Df |+ 2) + 2

n )-calibeats forecaster f .

Proof sketch. We show that a has small calibration score, and refinement score close to that of f .

Step 1: Replace Ba with a surrogate Brier score Ban. Consider a (pseudo-)predictor ã given by
ãt = ā(Siat ) for t ∈ [T ] (where iat is the bucket of at). That is, whenever at ∈ Bin, ãt predicts
the average of a over all such rounds s ∈ [T ] that as ∈ Bin. This is a pseudo-predictor, as the
bucket averages of a are unknown until after round T . Thus, ã has precisely n level sets, unlike a.
Now, we define Ban,Kan,Ran to be the Brier, calibration, and refinement scores of ã. We can show
Ba ≤ Ban + 1/n, allowing us to switch to bounding the more manageable Brier loss Ban = Kan +Ran.

Step 2: Bound the surrogate calibration score Kan. Since the Learner is (α, n)-calibrated on the
domain Θ, the calibration error per level set is at most α. There are n level sets, so Kan ≤ αn.

Step 3: Bound the surrogate refinement score Ran. We connect Rf and Ran via a joint refinement
score: Rf×a, which measures the average variance of the partition generated by all intersections of the
level sets of a and f . The finer the partition, the smaller the refinement score, soRf ≥ Rf×a. Next,
informally, multicalibration ensures that a has already “captured” most of the variance explained
by f . Therefore, refining a’s level sets by f does little to reduce variance. More precisely, we
show that Ran ≤ Rf×a + αn(|Df | + 1) + 1

n . Combining with our previous inequality, we have:
Ran ≤ Rf + αn(|Df |+ 1) + 1

n .

Combining the above, we get: Ba ≤ Ran +Kan + 1
n ≤ (Rf + αn(|Df |+ 1) + 1

n ) + αn+ 1
n .

Calibeating many forecasters Generalizing the above construction, we can easily calibeat any
collection of forecasters F on the entire context space Θ: it suffices to ask for multicalibration with
respect to the level sets of all forecasters, i.e.

(⋃
f∈F S(f)

)
∪ {Θ}. Theorem 4.2 applies separately

to each f ; the only degradation in the guarantees will come in the form of a larger α, since we are
asking for multicalibration with respect to more groups than before. But this effect will be small,
since α depends on the number of required groups |G′| as O(

√
ln |G′|). See Corollary E.2.

However, to fully satisfy Definition 4.5 of multicalibeating, we need to calibeat all f ∈ F on all
groups g ∈ G in a given collection G ⊆ 2Θ. For that, we simply extend the above construction by
requiring multicalibration with respect to all pairwise intersections of the forecasters’ level sets with
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the groups g ∈ G. By further augmenting this collection with the protected groups G themselves, we
finally achieve our ultimate goal: simultaneous multicalibeating and multicalibration.

Theorem 4.3 (Multicalibeating + Multicalibration). Let G ⊆ 2Θ, and F some set of forecasters
f : Θ→ Df . The multicalibration algorithm on G′ :=

(⋃
f∈F{g ∩ S : (g, S) ∈ G × S(f)}

)
∪ G

with parameters r, n ≥ 1, after T rounds, attains expected (F ,G, β)-multicalibeating, where: 6

E[β(f, g)] ≤ 2
n +

|Df |+2
r·|S(g)|/T + 4n(|Df |+ 2)

√
1

|S(g)|2/T ln
(

2n|G|(1 +
∑
f |Df |)

)
∀ f ∈ F , g ∈ G,

while maintaining (α, n)-multicalibration on G, with: E[α] ≤ 1
rn+4

√
1
T ln

(
2n|G|(1 +

∑
f |Df |)

)
.

In particular, for any group g occurring more than T−1/2 of the time, we asymptotically converge to
1
n -calibeating as T →∞, thus combining the goals of online multicalibration and multigroup regret.

5 Polytope Blackwell Approachability

Consider a setting where the Learner and the Adversary are playing a repeated game with vector-
valued payoffs, in which the Learner always goes first and aims to force the average payoff over
the entire interaction to approach a given convex set. Blackwell’s Theorem [1956] states that a
convex set is approachable if and only if it is response-satisfiable (roughly, for any choice of the
Adversary, the Learner has a response forcing the one-round payoff inside the convex set). The rate
of approachability typically depends on the dimension of the payoff vectors.

This is a specialization of our framework to the case of a fixed environment across rounds. Thus our
framework can be used to obtain a dimension-independent rate bound in the fundamental case where
the approachable set is a convex polytope. Our bound is only logarithmic in the polytope’s number of
facets, and is achievable via an efficient convex-programming based algorithm.

Let us formalize our setting. In rounds t = 1, 2, . . ., the Learner and the Adversary play a repeated
game. Their respective pure strategy sets are A and Y , where A is a finite set and Y ⊆ Rm (for
some integer m ≥ 1) is convex and compact. The game’s utility function is λ-dimensional (for some
integer λ ≥ 1), continuous, concave in the second argument, and is denoted by u : A× Y → Rλ.
At each round t, the Learner plays a mixed strategy xt ∈ ∆A, the Adversary responds with some
yt ∈ Y , and the Learner then samples a pure action at ∼ xt. This gives rise to the utility vector
u(at, yt). The average play up to any round t ≥ 1 is then defined as ūt = 1

t

∑t
s=1 u(as, ys).

The target convex set that the Learner wants to approach is a polytope P(H) ⊆ Rλ, defined as the
intersection of a finite collection of halfspacesH = (hα,β), where for any given α ∈ Rλ, β ∈ R we
denote hα,β = {x ∈ Rλ : 〈α, x〉 − β ≤ 0}. Finally, by way of normalization, consider any two dual
norms || · ||p and || · ||q.We require, first, that ||α||p ≤ 1 and |β| ≤ 1 for each halfspace hα,β ∈ H;
and second, that the payoffs be in the || · ||q-unit ball: ||u(a, y)||q ≤ 1 for a ∈ A, y ∈ Y .

Theorem 5.1 (Polytope Blackwell Approachability). Suppose the target convex polytope P(H) is
response-satisfiable, in the sense that for any Adversary’s action y ∈ Y , the Learner has a mixed
response x ∈ ∆A that places the expected payoff inside P(H): that is, Ea∼x[u(a, y)] ∈ P(H).

Then, P(H) is approachable, both in expectation and with high probability with respect to the
transcript of the interaction. Namely, the Learner has an efficient convex programming based
algorithm which simultaneously offers both following guarantees (see Appendix F for the proof):

1. For any margin ε > 0, the average play ūt up to any round t ≥ 64 ln |H|
ε2 will satisfy

E
[
maxhα,β∈H (〈α, ūt〉 − β)

]
≤ ε.

2. For any δ ∈ (0, 1), the average play ūt up to any round t ≥ ln |H| will satisfy

maxhα,β∈H (〈α, ūt〉 − β) ≤ 16

√
1
T ln

(
|H|
δ

)
with probability at least 1− δ.

6S(g) denotes the subsequence of days on which a group g occurs, suppressing dependence on transcript.
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