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ABSTRACT

Thompson sampling is one of the most popular learning algorithms for online
sequential decision-making problems and has rich real-world applications. How-
ever, current Thompson sampling algorithms are limited by the assumption that the
rewards received are uncorrupted, which may not be true in real-world applications
where adversarial reward poisoning exists. To make Thompson sampling more
reliable, we want to make it robust against adversarial reward poisoning. The main
challenge is that one can no longer compute the actual posteriors for the true reward,
as the agent can only observe the rewards after corruption. In this work, we solve
this problem by computing pseudo-posteriors that are less likely to be manipulated
by the attack. Particularly, we focus on two popular settings: stochastic bandits
and contextual linear bandits with priors as Gaussian distributions. We propose
robust algorithms based on Thompson sampling for the popular stochastic and
contextual linear bandit settings in both cases where the agent is aware or unaware
of the budget of the attacker. We theoretically show that our algorithms guarantee
near-optimal regret under any attack strategy.

1 INTRODUCTION

The multi-armed bandit (MAB) setting is a popular learning paradigm for solving sequential decision-
making problems (Slivkins et al., 2019). The stochastic and linear contextual MAB settings are
the most fundamental and representative of the different bandit settings. Due to their simplicity,
many industrial applications such as recommendation systems frame their problems as stochastic or
contextual linear MAB (Brodén et al., 2018; Chu et al., 2011). As one of the most famous stochastic
bandit algorithms, Thompson sampling has been widely applied in these applications and achieves
excellent performance both empirically (Chapelle & Li, 2011; Scott, 2010) and theoretically (Agrawal
& Goyal, 2013; 2017). Compared to another popular exploration strategy known as optimality in the
face of uncertainty (OFUL/UCB), Thompson sampling has several advantages:

• Utilizing prior information: By design, Thompson sampling algorithms utilize and benefit from
the prior information about the arms.

• Easy to implement: While the regret of a UCB algorithm depends critically on the specific choice
of upper-confidence bound, Thompson sampling depends only on the best possible choice. This
becomes an advantage when there are complicated dependencies among actions, as designing and
computing with appropriate upper confidence bounds present significant challenges Russo et al.
(2018). In practice, Thompson sampling is usually easier to implement Chapelle & Li (2011).

• Stochastic exploration: Thompson sampling is a random exploration strategy, which could be
more resilient under some bandit settings Lancewicki et al. (2021).

Despite the success, Thompson sampling faces the problem of low efficacy under adversarial reward
poisoning attacks Jun et al. (2018); Xu et al. (2021); Liu & Shroff (2019). Existing algorithms
assume that the reward signals corresponding to selecting an arm are drawn stochastically from
a fixed distribution depending on the arm. However, this assumption does not always hold in the
real world. For example, a malicious user can provide an adversarial signal for an article from
a recommendation system. Even under small corruption, Thompson sampling algorithms suffer
from significant regret under attacks. While robust versions of the learning algorithms following
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other fundamental exploration strategies such as optimality in the face of uncertainty (OFUL) and
ϵ-greedy were developed Lykouris et al. (2018); Neu & Olkhovskaya (2020); Ding et al. (2022); He
et al. (2022); Xu et al. (2023), there has been no prior investigation of robust Thompson sampling
algorithms. The main challenge is that under the reward poisoning attacks, it becomes impossible
to compute the actual posteriors based on the true reward, which is essentially required by the
algorithm. Naively computing the posteriors based on the corrupted reward causes the algorithm to
be manipulated by the attacker arbitrarily (Xu et al., 2021).

This work. We are the first to show the feasibility of making Thompson sampling algorithms robust
against adversarial reward poisoning. We focus on two popular bandit settings: stochastic bandits and
contextual linear Gaussian bandits, and the prior distributions of each arm are Gaussian distributions.
Our main contribution is developing robust Thompson sampling algorithms for the two bandit
settings. We consider both cases where the corruption budget of the attack is known or unknown to
the learning agent. The regrets induced by our algorithms under the attack are near-optimal with
theoretical guarantees. We adopt two ideas to achieve robustness against reward poisoning attacks
in the two MAB settings. The first idea is ‘optimality in the face of corruption,’ a general idea
similar to the popular exploration strategy, ‘optimality in the face of uncertainty.’ In “optimality
in the face of uncertainty,” the agent optimistically estimates the best possible reward for an arm
considering the uncertainty in its evaluation. Similarly, in "optimality in the face of corruption", the
agent optimistically estimates the best possible reward for an arm considering the uncertainty and
the influence of data corruption on its estimation. In the stochastic MAB setting, we show that the
Thompson sampling algorithm can maintain sufficient explorations on arms and identify the optimal
arm by relying on optimistic posteriors considering potential attacks. The second idea is to adopt
a weighted estimator He et al. (2023) that is less susceptible to the attack. In the linear contextual
MAB setting, we show that with such an estimator, the influence of the attack on the estimation
of the posteriors is limited, and the Thompson sampling algorithm can almost always identify the
optimal arm at each round with a high probability. We empirically demonstrate the training process
of our algorithms under the attacks and show that our algorithms are much more robust than other
fundamental bandit algorithms, such as UCB, in practice. Compared to the state-of-the-art robust
algorithm CW-OFUL He et al. (2022) for linear contextual bandit setting, our algorithm is as efficient,
and in addition, it inherits the advantages from using Thompson sampling exploration strategy as
aforementioned.

2 RELATED WORK

Thompson Sampling Algorithms: Algorithms based on the Thompson sampling exploration strategy
have been widely applied in online sequential decision-making problems Agrawal et al. (2017);
Bouneffouf et al. (2014); Ouyang et al. (2017), including MAB settings with different constraints and
reinforcement learning. Agrawal & Goyal (2013; 2017) develop insightful theoretical understandings
of the learning efficiency of Thompson sampling. In the stochastic MAB and linear contextual MAB
settings, algorithms based on Thompson sampling achieve near-optimal performance in that the upper
bounds on regret match the lower bound of the setting Agrawal & Goyal (2012; 2013). However,
these algorithms are designed for a setting without poisoning attacks, which may not be true in
real-world scenarios.

Reward Poisoning Attack against Bandits: Reward poisoning attacks against bandits have been
considered a practical threat against MAB algorithms Lykouris et al. (2018). A majority of studies on
poisoning attacks adopt a strong attack model where the attacker decides its attack strategy after the
agent takes an arm at each timestep Jun et al. (2018); Liu & Shroff (2019); Garcelon et al. (2020).
This attack scenario is argued to be more practical Zhang et al. (2021). Jun et al. (2018) proposes
attack strategies that can work for specific learning algorithms. It has been well understood that the
most famous bandit algorithms are vulnerable to poisoning attacks. The other attack model is called
weak attack, where the attacker decides its attack strategy before the agent takes an arm Lykouris
et al. (2018). Xu et al. (2021) shows that a family of algorithms, including the most famous ones, are
vulnerable even under weak attacks.

Robust Bandit Algorithms: Finding bandit algorithms robust against poisoning attacks is a popular
topic. Robust algorithms against weak or strong attack models have been developed in both stochastic
bandit and linear contextual bandit settings Lykouris et al. (2018); Neu & Olkhovskaya (2020); Ding
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et al. (2022); He et al. (2022). Recently, Wei et al. (2022) shows that with an algorithm robust against
the strong attack model, one can extend it to a robust algorithm against the weak attack model. Our
work focuses on robustness against the strong attack model as (1) the strong attack model is more
practical, and (2) one can develop robust algorithms against weak attacks based on our algorithms.
We compare the theoretical guarantees of our robust algorithms and current state-of-the-art robust
algorithms in Table 5.

Differentially Private Bandits: Differentially-private bandit setting is closely related to the poisoning
attack (Mishra & Thakurta, 2015; Hu et al., 2021), and efficient learning algorithms have been
achieved through Thompson sampling (Hu & Hegde, 2022). The differentially private setting can
be considered a different robustness against poisoning attack setting. Here, the attacker can modify
a certain number of data points, and a differentially private algorithm must ensure its behavior is
similar under any possible attacks. However, there are two main differences between the two settings:
1. The constraint on the attack. In our reward poisoning setting, the attacker can poison as much
data as wanted, as long as the total amount of perturbation is limited. In contrast, in the differentially
private setting, the attacker can only poison a limited number of data points. 2. The goal of the
learning algorithm is different. In the reward poisoning setting, the agent only needs to guarantee that
the total regret is limited under the corruption. In contrast, in the differentially private setting, the
agent should behave almost identically when some data are corrupted. As a result, a differentially
private algorithm is not necessarily a robust algorithm against reward poisoning attacks. Even under a
limited corruption budget, the observed data can completely differ from the original data at every data
point during training. So, the guarantees on differential privacy cannot directly lead to guarantees on
a tight bound of regret under the reward poisoning attack.

3 PRELIMINARIES

3.1 STOCHASTIC BANDIT SETTING

For the stochastic multi-armed bandit setting, an environment consists of N arms with fixed support
in [0, 1] reward distributions centered at {µ1, . . . , µN}, and an agent interacts with the environment
for T rounds. At each round t, the agent selects an arm i(t) ∈ [N ] and receives reward rot drawn
from the reward distribution associated with the arm i(t). The performance of the bandit algorithm
is measured by its expected regret RT = E

[∑T
t=1

(
µi∗ − µi(t)

))]
, where i∗ is the best arm at

hindsight, i.e., i∗ = argmaxi∈[N ] µi. Without loss of generality, we assume arm i∗ = 1 is the
optimal arm. We denote ∆i = µ1 − µi as the gap between arm i and the optimal arm. The time
horizon T is predetermined, but the reward distribution of each arm is unknown to the agent. The
agent’s goal is to minimize its expected regret RT .

3.2 LINEAR CONTEXTUAL BANDIT SETTING

Next, we consider the linear contextual bandit setting. An environment consists of N arms and
a context space with d dimensions Rd, and an agent interacts with the environment for T rounds.
At each round t, N contexts {xi(t) ∈ Rd}, i = 1, . . . , N are revealed by the environment for
the N arms. We denote x(t) = (x1(t), . . . , xN (t)). The agent draws an arm i(t) and receives a
reward roi (t). The reward is drawn from a distribution dependent on the arm i(t) and the context
xi(t)(t). In the linear contextual bandit setting, the expectation of reward is a linear function
depending on the context: E[r(t)|xi(t)(t)] = xi(t)(t)

Tµ, where µ ∈ Rd is the reward parameter.
Without loss of generality, we assume that the contexts and the reward parameters are bounded
∥xi(t)∥2 ≤ 1, ∥µ∥2 ≤ 1. The regret to measure the performance of the agent in this case is defined as
RT =

∑T
t=1 xi∗(t)(t)

Tµ− xi(t)(t)
Tµ where i∗(t) = argmaxi xi(t)

Tµ is the optimal arm at time t.
The time horizon T is predetermined, but the agent’s reward parameter µ is unknown. The goal of
the agent is to minimize the regret.

To make the regret bounds scale-free, we adopt a standard assumption Agrawal & Goyal (2013) that
ϵt = ro(t)− xi(t)(t)

Tµ is conditionally σ-sub-Gaussian for a constant σ ≥ 0, i.e.,

∀λ ∈ R,E
[
eλϵt | {xi(t)}Ni=1 ,Ht−1

]
≤ exp

(
λ2σ2

2

)
,
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where Ht−1 =
{
i(s), r(s), xi(s)(s), s = 1, . . . , t− 1

}
.

3.3 STRONG REWARD POISONING ATTACK AGAINST BANDITS

This work considers the strong reward poisoning attack model Wei et al. (2022), where an attacker
sits between the environment and the agent. At each round t, the attacker observes the arm pulled by
the agent i(t), the reward ro(t), and additionally the context xi(t)(t) in the contextual bandit setting.
Then the attacker can inject a perturbation c(t) to the reward, and the agent will receive the corrupted
reward r(t) = ro(t) + c(t) in the end. The attacker has full knowledge of the environment and the
learner, including the algorithm it uses and the actions it takes each time. We denote C as the budget
of the attack C :

∑T
t=1 |c(t)| ≤ C, representing the maximum amount of total perturbation it can

apply during the training process. We also refer to it as ‘corruption level’ since it indicates the level
of corruption the learning agent faces.

The weak attack model has been considered in previous works Lykouris et al. (2018); Liu & Shroff
(2019). Unlike the strong attack model, the weak attack has to decide on the perturbation of the
reward before observing the actions taken by the agent. In this work, we only consider the strong
attack model for the following reasons: 1. in practice, the strong attack is more realistic. For example,
in a recommendation system, the attacker, which is a malicious user, observes the recommendation
first before deciding on the malicious feedback 2. Wei et al. (2022) shows that a robust algorithm
against strong attack can be used to construct robust algorithms against weak attacks. In section 4
and 5, we discuss the case where the corruption level or an upper bound on it is known or unknown
to the learning agent.

3.4 THOMPSON SAMPLING ALGORITHMS

Thompson sampling is a heuristic exploration strategy that belongs to the family of randomized
probability matching algorithms Thompson (1933). At each time step, a general Thompson sampling
algorithm takes an arm based on a randomly drawn belief about the rewards of the arms. More
specifically, the algorithm maintains a posterior distribution related to the expected reward of each
arm. At each time, the algorithm samples a parameter from each arm’s posterior to formulate a belief
on the reward of an arm, and then it takes the arm with the maximal reward belief. After observing
the reward of the taken arm, the algorithm updates the posteriors. The distribution of each arm’s prior
will influence the exact format of the algorithm.

In this work, we always assume that the priors for the rewards of the arms and the reward pa-
rameter are Gaussian distributions. This is a typical choice representative of Thompson sampling
algorithms Agrawal & Goyal (2013; 2017). Although our algorithms assume Gaussian priors, in
principle, it is not hard to extend them to other kinds of priors following the same idea, and many
of our theoretical results are not dependent on the format of priors. In the Appendix, we show the
Thompson sampling algorithms in Alg 3 and 4 for the stochastic and linear contextual MAB settings,
respectively, with Gaussian distributions as priors.

4 ROBUST THOMPSON SAMPLING FOR STOCHASTIC MULTI-ARMED BANDITS

In this section, we present our robust Thompson sampling algorithm for the stochastic MAB setting
and the theoretical guarantee of its learning efficiency. We discuss both cases, whether the corruption
level C is known or unknown to the learning agent. To understand why the original Thompson
sampling algorithm (Alg 3) is vulnerable under the poisoning attack, we note that the actual posteriors
of arms given the uncorrupted reward drawn from the environments can no longer be acquired. When
calculating the posterior as if the data are uncorrupted, the resulting posteriors can be biased to the
actual posteriors. Therefore, the attacker can make the learner underestimate the posteriors of the
optimal arms or overestimate that of the sub-optimal arms. As a result, the learner believes that the
optimal arm has a low reward and rarely selects it.

To make the algorithm robust against attack, we utilize the idea of optimism. Instead of computing the
posteriors as if the data are uncorrupted, the algorithm computes the optimistic posteriors with respect
to corruption for each of the arms. For each arm, the algorithm finds the posterior that maximizes the
expected reward for any possible true rewards before corruption. In the stochastic MAB settings with
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Gaussian priors, the mean in the posterior is
∑t−1

s=1,i(s)=i
r(s)

ki(t)+1 where ki(t) is the number of times arm i

be pulled before time t. Since the possible reward with the maximal sum is
∑t−1

s=1,i(s)=i r(s) + C,

the mean of the optimistic posterior is
∑t−1

s=1,i(s)=i
r(s)+C

ki(t)+1 .

The robustness against the bias of posteriors induced by the poisoning attack is achieved by optimism.
By using the optimistic posteriors for each arm, the algorithm never underestimates the posteriors
of any arm. Even if a sub-optimal arm becomes the empirically optimal arm, after being selected a
few times, its optimal posterior will be close to its actual posterior, which is inferior to the optimistic
posterior of the optimal arm. As a result, the optimal arm will eventually be selected. Together
with the Thompson sampling strategy to deal with the stochastic rewards from the environment, the
algorithm can be robust and efficient in the stochastic MAB setting under poisoning attacks.

The empirical post-attack mean µ̂i(t) for arm i at time t is defined by µ̂i(t) :=
∑t−1

s=1,i(s)=i
r(s)

ki(t)+1 (note
that µ̂i(t) = 0 when ki(t) = 0) and the empirical pre-attack mean µ̂o

i (t) for arm i at time t is

defined by µ̂o
i (t) :=

∑t−1
s=1,i(s)=i

ro(s)

ki(t)+1 (note that µ̂o
i (t) = 0 when ki(t) = 0). Let θi(t) denote a

sample generated independently for each arm i from the posterior distribution at time t. This is
generated from posterior distribution N

(
µ̂i(t) +

C
ki+1 ,

1
ki(t)+1

)
, where C is a hyper-parameter of

the algorithm for tuning robustness against different level of corruption. In Alg 5, we formally show
our robust Thompson sampling algorithm for the stochastic MAB setting.

Algorithm 1 Robust Thompson Sampling for Stochastic Bandits

1: Params: robustness level C
2: For all i ∈ [N ], set ki = 0, µ̂i = 0
3: for t = 1, 2, . . ., do
4: For each arm i = 1, . . . , N , sample θi(t) from the N

(
µ̂i +

C
ki(t)+1 ,

1
ki(t)+1

)
distribution.

5: Play arm i(t) := argmaxi{θi(t)} and observe reward rt

6: Set µ̂i(t) :=
µ̂i(t)ki(t)+rt

ki(t)+1 , ki(t) := ki(t) + 1

7: end for

At each round t, Alg 5 samples a parameter θi(t) from a Gaussian distribution for arm i with the
compensation term C

ki(t)+1 to make it the optimistic posterior. This enables the algorithm to explore
the optimal arm even if the attack injects a negative bias. Notice that when C = 0, it degenerates into
original Thompson Sampling using Gaussian priors. The regret of the algorithm under the attack is
guaranteed in Theorem 4.1 as below.
Theorem 4.1. For the N -armed stochastic bandit problem under any reward poisoning attack with
corruption level C, the expected regret of the Robust Thompson Sampling Alg 5 with C ≥ C is
bounded by:

E[R(T )] ≤ O(
√
NT lnN +NC +N)

The big-Oh notation hides only absolute constants.

Proof Sketch: A detailed proof can be found in the Appendix. Our proof technique is based on a
previous study (Agrawal & Goyal, 2017). Here, we provide a sketch for the proof. First, we define
two good events:

Definition 4.2 (Good Events). For i ̸= 1, define Eµ
i (t) is the event µ̂i(t) ≤ µi +

∆i

3 , and Eθ
i (t) is

the event θi(t) ≤ µi − ∆i

3 .

Eµ
i (t) represents the case where the empirical means of sub-optimal arms are not much larger than

their true mean. Eθ
i (t) represents cases where the sampled rewards from sub-optimal arms’ posteriors

are less than their true mean. Next, we can prove that when both good events are true, the probability
that the agent selects the optimal arm is high, so the regret in this case is limited. Then, we can prove
that the probability of either or both good events being false is low, so even if the worst scenario
happens when the good events are false, the regret is still limited due to the low probability of this
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case. The key reason why both good events are true with a high probability is because of the bonus
term C

ki(t)s+1 we add for the posterior distributions of each arm compensates for the bias induced by
the attack in the worst case. As a result, the agent is very unlikely to underestimate the performance
of each arm under any poisoning attack within the budget limit. Therefore, the explorations of each
arm are likely to be sufficient. Finally, by combining all the cases, we can show that the total regret is
limited.

Corruption level C known to the learner: In this case, we simply set C = C in Alg 5. Then, the
dependency of regret on C is linear according to Theorem 4.1, which is near-optimal Gupta et al.
(2019).

Corruption level C unknown to the learner: In this case, we set C =
√

T lnN/N in Alg 5.
Theorem 4.1 shows that if C ≤

√
T lnN/N , the regret can be upper bounded by O(

√
NT lnN)

when T ≥ N , and if C >
√
T lnN/N the regret can be trivially bounded by O(T ). This upper

bound is near-optimal when C ≤
√
T lnN/N due to the lower bound in Theorem 1.4 from Agrawal

& Goyal (2017). And the multi-armed bandit case of Theorem 4.12 in He et al. (2023) shows it’s also
near-optimal when C >

√
T lnN/N .

5 ROBUST THOMPSON SAMPLING FOR CONTEXTUAL LINEAR BANDITS

In this section, we present our robust Thompson sampling algorithm for the contextual linear MAB
setting and the theoretical guarantee of its learning efficiency. The vulnerability of Thompson
sampling in the linear contextual bandit setting is similar to that in the stochastic bandit setting. The
posterior on the reward parameter based on the corrupted reward can be biased compared to the actual
posterior, resulting in poor decisions on action selection. Even worse, the bias induced by the reward
corruption is relatively large when computing the posterior parameters as in Alg 4. Consequently,
Zhao et al. (2021) follows the UCB exploration strategy using such an estimator, and the resulting
algorithm is still not robust enough under the poisoning attacks. Therefore, we are not using the
original estimator for our robust algorithm.

Inspired by He et al. (2023), we use a weighted ridge regression estimator as described in Alg 2 line
6 to compute the expectation of the Gaussian posterior. Such an estimator can effectively reduce the
bias induced by reward poisoning. The key is that it assigns less weight wt to the data with a ‘large’
context wt = min

{
1, γ/

∥∥xi(t)(t)
∥∥
B(t)−1

}
so that its estimation is less sensitive to data corruption

in these cases. We formally show the algorithm in Alg 2, where vt = σ
√
9d ln

(
t+1
δ

)
and γ > 0 is a

hyper-parameter representing the degree of robustness against different corruption.

Algorithm 2 Robust Thompson Sampling for Contextual Linear Bandits
1: Params: robustness level γ
2: Set B = Id, µ̂ = 0d, f = 0d.
3: for t = 1, 2, . . ., do
4: Sample µ̃(t) from distribution N

(
µ̂, v2tB(t)−1

)
.

5: Play arm i(t) := argmaxi xi(t)
T µ̃(t), and observe reward rt.

6: Set wt = min
{
1, γ/

∥∥xi(t)(t)
∥∥
B(t)−1

}
7: Update B(t+ 1) = B(t) + wtxi(t)(t)xi(t)(t)

T , f = f + wtxi(t)(t)rt, µ̂ = B(t)−1f .
8: end for

In general, Alg 2 is very similar to the original version in Alg 4 except for using the ridge regression
estimator. This change ensures that the posterior calculated in line 3 is not far from the actual posterior
under poisoning attacks. In Theorem 5.1, we provide a high probability bound on the regret for Alg 2.

Theorem 5.1. For the stochastic contextual bandit problem with linear payoff functions, with
probability 1− δ, the total regret in time T for Robust Thompson Sampling for Contextual Linear

6
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Bandits (Algorithm 2) is bounded by

O

(
de

(1+Cγ√
d
)2

√
dT lnT ln

(
T

δ

)
+ Cγe

(1+Cγ√
d
)2
√
dT lnT

+
d2e

(1+Cγ√
d
)2

γ
lnT

√
ln

(
T

δ

)
+ Cde

(1+Cγ√
d
)2
lnT

)

Proof Sketch: Here we provide a proof sketch for Theorem 5.1. The full proof can be found in the
Appendix. Similar to the proof for Theorem 4.1, first, we define two good events:
Definition 5.2 (Good Events). Define Eµ(t) as the event

∀i :
∣∣xi(t)

T µ̂(t)− xi(t)
Tµ
∣∣ ≤ (σ√d ln

(
t3

δ

)
+ 1 + Cγ

)
∥xi(t)∥B(t)−1

Define Eθ(t) as the event that

∀i :
∣∣θi(t)− xi(t)

T µ̂(t)
∣∣ ≤√4d ln(t)vt∥xi(t)∥B(t)−1 .

Eµ(t) represents the case where the mean of the posterior of each arm is close to its actual reward
parameter. Eθ(t) represents the case where the sampled reward for each arm is close to its expected
value. Next, we prove that both good events hold with a high probability. The key reason is that
the posterior distribution computed by the weighted estimator is less sensitive to any change in the
rewards. Therefore, the agent is more robust against data corruption. Therefore, the evaluation for
each arm is more likely to be accurate, and the exploration will be sufficient correspondingly. For
each arm that is sub-optimal at a round, we define an arm as saturated if it has been selected more than
a specific number of times. The value for this particular number is also limited due to the weighted
estimator. Next, we prove that if an arm is saturated and both good events are true, then it is very
unlikely for the algorithm to select the arm. In other words, for a sub-optimal arm at a round, if it has
already been selected a limited number of times, then it is very unlikely to be chosen furthermore
unless the good events are false, which happens with a low probability. Therefore, the cumulative
times that a sub-optimal arm is selected at a time is limited, so the regret of the algorithm is bounded.

Corruption level C known to the learner: In this case, we set γ =
√
d/C. By Theorem 5.1, the

regret is upper bounded by

R(T ) = O

(
d

√
dT lnT ln

(
T

δ

)
+ Cd

√
d lnT

√
ln

(
T

δ

))
= Õ(d

√
dT + d

√
dC)

.

The dependency of regret on the corruption level C is near-optimal Bogunovic et al. (2021), and the
algorithm becomes the same as the LinUCB algorithm when there is no corruption C = 0.

Corruption level C unknown to the learner: In this case, we set γ =
√
d/

√
T in Alg 2. From

Theorem 5.1 and the results in the known C case above, the algorithm’s regret is upper bounded by
Õ(d

√
dT ) when C ≤

√
T , else it is trivially bounded by O(

√
T ). According to Hamidi & Bayati

(2020), the worst-case lower bound for Thompson Sampling is Ω(d
√
dT ). Therefore, our upper

bound is near-optimal when C ≤
√
T , and from Theorem 4.12 in He et al. (2022) we know that it’s

also optimal when C >
√
T .

In Table 5, we compare the theoretical guarantees between our robust Thompson sampling (RTS)
algorithms and other state-of-the-art robust algorithms in different bandit settings.

6 SIMULATION RESULTS

In this section, we show the simulation results of running our algorithm on general bandit environ-
ments under typical attacks commonly used in other literature. We notice that the constant term in
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Bandit Setting Algorithm C Adversary Regret
Stochastic RTS Known Strong Õ(

√
NT +NC)

Stochastic RTS Unknown Strong Õ(
√
NT ), C ≤

√
T lnN/N

Õ(T ), C >
√

T lnN/N

Stochastic MAAER Unknown Weak Õ(
√
NT +N

√
CT )

Stochastic BARBAR Unknown Weak Õ(
√
NT +NC)

Contextual RTS Known Strong Õ(d
√
dT + d

√
dC)

Contextual CW-OFUL Known Strong Õ(d
√
T + dC)

Contextual RTS Unknown Strong Õ(d
√
dT ), C ≤

√
T

Õ(T ), C >
√
T

Contextual CW-OFUL Unknown Strong Õ(d
√
T ), C ≤

√
T

Õ(T ), C >
√
T

Table 1: Comparison between different robust bandit algorithms. RTS is our robust Thompson
sampling algorithm; MAAER is the multi-layer active arm elimination race algorithm from Lykouris
et al. (2018); BARBAR is the robust algorithm from Gupta et al. (2019). CW-OFUL is the robust
algorithms from He et al. (2022).

Figure 1: In the stochastic bandit setting, the cumulative regret of different learning algorithms during
training under different attacks.

our regret analysis is large, so we want to show that the constant term is low in practice and verify
that the regret is indeed linearly dependent on the corruption budget. We also want to use empirical
results to intuitively show how our robust algorithms perform under the poisoning attack.

6.1 STOCHASTIC MAB SETTING

Experiment setup: We consider a stochastic MAB environment consisting of N = 5 arms and a
total number of timesteps of T = 5000. We adopt two attack strategies: (1) Junsun’s attack proposed
by Jun et al. (2018). (2) oracle MAB attack, which is also used in Jun et al. (2018). The choice for
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Figure 2: In the stochastic bandit setting, the total regret of different algorithms under attacks at
different corruption level.

Figure 3: In the linear contextual bandit setting, the cumulative regret of different learning algorithms
during training under different attacks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

corruption level varies in our experiments, which will be specified in the experimental results. Each
experiment is repeated for 10 times, and we show the empirical mean and standard deviation in the
experimental results.

Cumulative regret during training under attack: Here, we intuitively show the behavior of our
robust Thompson sampling algorithms under the attack. For comparison, we choose the UCB and
Thompson sampling algorithms to represent the behavior of an efficient but not robust algorithm. The
corruption level for the attack is set as C = 25. Such a corruption level is high enough to show the
vulnerability of a vulnerable attack and lower than the threshold to induce high regret on a robust
algorithm when C is unknown. We will show the results of higher corruption levels later.

In Figure 1, we show the cases of corruption level C known and unknown to the learning agent.
The bars in the plots are the variance of the data. For any non-robust algorithm, the regret rapidly
increases with time, indicating that they rarely take the optimal arm during the whole learning process.
We notice that the regret of the two vulnerable algorithms under the attack are almost identical. The
reason is that the attacker highlights a target arm. For the vulnerable algorithms, they will believe
that the target arm is optimal and almost always take that arm during training. So, their behavior
and regret are very similar under the attack. The difference between the regrets of the two robust
algorithms is subtle. After the first few timesteps, the regret increases slowly with time. This suggests
that after some explorations, the robust algorithms successfully identify the optimal arm and take it
for most of the time.

Robustness evaluation and comparison under different corruption level:

Here, we show the total regret of our algorithm under attacks at different corruption levels. For the
baseline robust algorithm, we extend the standard UCB algorithm to its robust version, which we call
‘Robust UCB (RUCB).’ Due to the reward poisoning attacks with corruption level C, the half-width of
arm i’s high probability confidence interval is increased by C/ki(t) where ki(t) is the number of times
arm i has been selected by t. The algorithm is parameterized by a robustness coefficient C̄. When the
corruption level C is known to the agent, the agent can set C̄ = C and use

√
2 log T/ki(t)+C/ki(t)

as the exploration bonus to each arm. When the corruption level is unknown, the agent can set
C̄ = β ·

√
T log T/N where β is a constant, and use

√
log T/ki(t) + C̄/ki(t) as the exploration

bonus. This idea has also been mentioned in Lykouris et al. (2018). We show the RUCB algorithm in
detail in the appendix. For both attack strategies we test with, the results in Figure 2 show that for
the algorithms that are not robust, the regret becomes large quickly as the corruption level increases,
indicating that these algorithms cannot find the optimal arm with even a low corruption level.

In the known corruption level case, the regret almost increases linearly with the corruption level for
our robust algorithm, which agrees with our theoretical result. In the unknown corruption level case,
we observe a threshold in the corruption level such that the regret of our algorithm increases rapidly
with the corruption level, which is also aligned with our theoretical analysis. We notice that when
the corruption level is small, the regret of our algorithm decreases slightly as the corruption level
increases. The reason is that the attacker tries to highlight a randomly chosen target arm, and the arm
is not the one with the lowest reward. Therefore, when the corruption level is not high enough to
mislead the agent, the agent will only take sub-optimal arms for a limited number of rounds, and it
tends to take the target arm more often instead of the worse arms, making the total regret slightly
lower. The results also show that the performance of our robust Thompson sampling is similar to that
of the robust UCB algorithm.

6.2 CONTEXTUAL LINEAR BANDIT SETTING

Experiment setup: We consider a linear contextual bandit environment with N = 5 arms and
T = 5000 timesteps. The dimension of the context space is d = 5. For the baseline algorithms, we
choose two standard algorithms, LinUCB and LinTS, to represent the vulnerable algorithms. They
are the extensions of the UCB and Thompson sampling algorithm to the linear contextual case. We
adopt two attack strategies: (1) Garcelon’s attack proposed in Garcelon et al. (2020); (2) oracle MAB
attack, which is also adopted in Garcelon et al. (2020).

Cumulative regret during training under attack: Here, we show the behavior of different learning
algorithms under different attacks during the learning process. The corruption level for the attack is
set as C = 300. In Figure 3, we show the cases of corruption level C known and unknown to the
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learning agent. Similar to the stochastic bandit case, the regret of the vulnerable algorithms rapidly
increases with time, suggesting that they almost can never find the optimal arm. For our robust
algorithms, after the first few timesteps, it learns to estimate the reward parameter accurately and can
almost always find the optimal arm.

Figure 4: In the linear contextual bandit setting, the total regret of different algorithms under attacks
at different corruption level.

Robustness evaluation and comparison under different corruption level: Here, we show the
regret of different learning algorithms under attacks at different corruption levels. For comparison
of robustness, We choose the state-of-the-art CW-OFUL algorithm He et al. (2022) as the robust
baseline. For both attack strategies we test with, the results in Fig 4 show that for the vulnerable
algorithms, the regret increases quickly as the corruption level increases and converges to a large
value in the end, indicating that these algorithms can no longer find the optimal arm for even a
relatively low corruption level.

For our robust algorithm, when C is known to the agent, the regret increases linearly with the
corruption level; when C is unknown to the agent, there exists a threshold in the corruption level
such that at one point, the regret rapidly increases with the corruption level. This observation agrees
with our theoretical result. Figure 3 and 4 also show that our algorithm is as robust as the CW-OFUL
algorithm. In our setup, our algorithm performs slightly worse in the known corruption level C case
and significantly better in the unknown C case, especially when C is large. Our robust algorithms not
only inherit the idea of Thompson sampling exploration but also achieve state-of-the-art performance
in practice.

7 CONCLUSION AND LIMITATION

In this work, we propose two robust Thompson sampling algorithms for stochastic and linear
contextual MAB settings, with a theoretical guarantee of near-optimal regret. However, we mainly
focus on the case where the posteriors of the arms are Gaussian distributions, though the theoretical
analysis can be applied to other posterior settings. Our ideas for building robust Thompson sampling
have been used in the two most popular bandit settings, and we do not cover settings like MDP. In the
future, we aim to extend our techniques to other online learning settings.
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8 REPRODUCIBILITY

We clearly explain the bandit settings and threat models we work on. The proofs for any Theorems
and Lemmas can be found in the appendix. The codes we use for the simulations are included in the
supplementary materials.
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A PROOF FOR SECTION 4

A.1 PROOF OF THEOREM 4.1

To begin with, it’s easy to see that we only need to prove the case where C = C in Alg 5. Suppose we
have set C = C. Following the proof in Agrawal & Goyal (2017), first, we define two good events
such that the agent is likely to pull the optimal arm when the events are true.

Definition A.1 (Good Events). For i ̸= 1, define Eµ
i (t) is the event µ̂i(t) ≤ µi +

∆i

3 , and Eθ
i (t) is

the event θi(t) ≤ µi − ∆i

3 . µi, ∆i are defined in Section 3.1.

Eµ
i (t) holds mean that the empirical post-attack mean of any sub-optimal arm is not much greater

than its true mean, and Eθ
i (t) holds means that the sampled value of any sub-optimal arm is not much

greater than its true mean. Intuitively, under such situations, the regret should be low.

Next, we define a random variable pi,t determined by Ht−1. pi,t represents that for a history Ht−1,
the probability of the sample from the optimal arm’s distribution being much higher than the means
of other arms.

Definition A.2. Define, pi,t as the probability pi,t := Pr
(
θ1(t) > µ1 − ∆i

3 | Ht−1

)
.

We decompose the regret into different cases based on whether the good events are true or not. The
following lemma bounds the expected number of arm pulls for arm i when both the good events are
true.

Lemma A.3.
T∑

t=1

Pr
(
i(t) = i, Eµ

i (t), E
θ
i (t)

)
≤ 72

(
e64 + 4

) ln (T∆2
i

)
∆2

i

+
4

∆2
i

Sampling from the optimistic posterior, the reward belief of the optimal arm is likely to be large even
under poisoning attacks. Therefore, the value of pi,t is more likely to be large, and the probability of
pulling any sub-optimal arm i in this case will be small. We notice that the constant term here is a big
value. In Section 6 we empirically show that in practice the constant term is small.

Next, we consider the case when only Eµ
i (t) is true. The key insight is that for a sub-optimal arm i,

when the empirical post-attack mean µ̂i is close to the true mean µi and the arm has already been
pulled many times, the probability that sampled θi(t) is large is low. As a result, the total number of
times when the sub-optimal arm is pulled in this case is limited. The formal result is shown in A.4

Lemma A.4.
T∑

t=1

Pr
(
i(t) = i, Eθ

i (t), E
µ
i (t)

)
≤

T∑
t=1

Pr
(
i(t) = i, Eθ

i (t), Eµ
i (t), ki(t) ≤ max{

32 ln
(
T∆2

i

)
∆2

i

,
12C

∆i
}

)
+

1

∆2
i

At last, we consider the case when neither good event is true. The key insight is that when a sub-
optimal arm i has already been pulled many times, the probability that the empirical post-attack mean
µ̂i is far from the true mean µi is low, and the total number of times it being pulled in this case is
limited as shown in Lemma A.5.

Lemma A.5. For i ̸= 1,

T∑
t=1

Pr
(
i(t) = i, Eµ

i (t)
)
≤

T∑
t=1

Pr
(
i(t) = i, Eµ

i (t), ki(t) ≤ max{
32 ln

(
T∆2

i

)
∆2

i

,
12C

∆i
}

)
+ 1 +

8

∆2
i

Next, we can prove Theorem 4.1 by combining the lemmas.
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Proof of Theorem 4.1. We decompose the expected number of plays of a suboptimal arm i ̸= 1
depending on whether the good events hold or not.

E [ki(T )] =

T∑
t=1

Pr(i(t) = i) =

T∑
t=1

Pr
(
i(t) = i, Eµ

i (t), E
θ
i (t)

)
+

T∑
t=1

Pr
(
i(t) = i, Eµ

i (t), E
θ
i (t)

)
+

T∑
t=1

Pr
(
i(t) = i, Eµ

i (t)
)
.

For each sub-optimal arm i, combine the bounds from Lemmas A.3 to A.5, we obtain

E [ki(T )] ≤ 72
(
e64 + 4

) ln (T∆2
i

)
∆2

i

+max{12C
∆i

,
32 ln

(
T∆2

i

)
∆2

i

}+ 13

∆2
i

+ 1

⇒ The total regret can be upper bouded by:

E[R(T )] =

N∑
i=1

∆iE [ki(T )] ≤
N∑
i=1

[72
(
e64 + 5

) ln (T∆2
i

)
∆i

+ 12C +
13

∆i
+∆i]

Then for every arm i with ∆i ≥ e
√

N lnN
T , the expected regret is bounded by

O
(√

NT lnN +NC +N
)

. And for arms with ∆i ≤ e
√

N lnN
T , the total regret is bounded

by O(
√
NT lnN +NC). By combining these results we prove the Theorem 4.1.

A.2 PROOF OF LEMMA A.3

Lemma A.6 (Lemma 2.8 in Agrawal & Goyal (2017)). For all t, i ̸= 1 and all instantiations Ht−1

of Ht−1 we have

Pr
(
i(t) = i, Eµ

i (t), E
θ
i (t) | Ht−1

)
≤ (1− pi,t)

pi,t
Pr
(
i(t) = 1, Eµ

i (t), E
θ
i (t) | Ht−1

)
From the proof of Lemma 2.8 in Agrawal & Goyal (2017), it’s not hard to find that it is the event
Eθ

i (t) that holds the above inequality. Therefore, although the distribution of θi has been changed to
make the algorithm robust against adversarial attack, their proof can still be applied directly to the
lemma A.6.
Lemma A.7. Let sj denote the time of the jth play of the first arm. Then,

E
[

1

pi,sj+1
− 1

]
≤

{
e64 + 5

4
T∆2

i
j >

72 ln(T∆2
i )

∆2
i

Proof. Given Hsj , let Θj denote a random variable sampled from N
(
µ̂1 (sj + 1) + C

j+1 ,
1

j+1

)
, and

Θo
j denote a random variable sampled from N

(
µ̂o
1 (sj + 1) , 1

j+1

)
. We abbreviate µ̂1 (sj + 1) to µ̂1

and µ̂o
1 (sj + 1) to µ̂o

1 in the following. Let Gj and Go
j be the geometric random variable denoting the

number of consecutive independent trials until a sample of Θj or Θo
j becomes greater than µ1 − ∆i

3 ,
respectively. Notice that µ̂1 (sj + 1) + C

j+1 ≥ µ̂o
1 (sj + 1), then we have

pi,sj+1 = Pr

(
Θj > µ1 −

∆i

3
| Hsj

)
≥ Pr

(
Θo

j > µ1 −
∆i

3
| Hsj

)
⇒

E
[

1

pi,sj+1
− 1

]
≤ E

[
1

Pr
(
Θo

j > µ1 − ∆i

3 | Hsj

) − 1

]
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From the result in Agrawal & Goyal (2017),

E

[
1

Pr
(
Θo

j > µ1 − ∆i

3 | Hsj

) − 1

]
≤

{
e64 + 5

4
T∆2

i
j >

72 ln(T∆2
i )

∆2
i

Combining the above two inequalities, we derive the needed result.

Proof. Let sk denote the time at which arm i is pulled k times. Set s0 = 0. Now applying Lemma
A.6 and Lemma A.7, we have

T∑
t=1

Pr
(
i(t) = i, Eµ

i (t), E
θ
i (t)

)
=

T∑
t=1

E
[
Pr
(
i(t) = i, Eµ

i (t), E
θ
i (t) | Ht−1

)]
≤

T∑
t=1

E
[
(1− pi,t)

pi,t
Pr
(
i(t) = 1, Eθ

i (t), E
µ
i (t) | Ht−1

)]

=

T∑
t=1

E
[
E
[
(1− pi,t)

pi,t
I
(
i(t) = 1, Eθ

i (t), E
µ
i (t)

)
| Ht−1

]]

=

T∑
t=1

E
[
(1− pi,t)

pi,t
I
(
i(t) = 1, Eθ

i (t), E
µ
i (t)

)]

=

T−1∑
k=0

E

[
(1− pi,sk+1)

pi,sk+1

sk+1∑
t=sk+1

I
(
i(t) = 1, Eθ

i (t), E
µ
i (t)

)]

≤
T−1∑
k=0

E
[
(1− pi,sk+1)

pi,sk+1

]

≤ 72
(
e64 + 4)

) ln (T∆2
i

)
∆2

i

+
4

∆2
i

Then we obtain the bound in Lemma A.3.

A.3 PROOF OF LEMMA A.4

Proof. We have

T∑
t=1

Pr
(
i(t) = i, Eθ

i (t), E
µ
i (t)

)
=

T∑
t=1

Pr

(
i(t) = i, ki(t) ≤ max{

32 ln
(
T∆2

i

)
∆2

i

,
12C

∆i
}, Eθ

i (t), E
µ
i (t)

)
+

T∑
t=1

Pr

(
i(t) = i, ki(t) > max{

32 ln
(
T∆2

i

)
∆2

i

,
12C

∆i
}, Eθ

i (t), E
µ
i (t)

)
Next, we prove that the probability that the event Eθ

i (t) is violated is small when ki(t) is large enough
and Eµ

i (t) holds. Notice that

T∑
t=1

Pr

(
i(t) = i, ki(t) > max{

32 ln
(
T∆2

i

)
∆2

i

,
12C

∆i
}, Eθ

i (t), E
µ
i (t)

)

≤ E
[ T∑

t=1

Pr

(
i(t) = i, Eθ

i (t) | ki(t) > max{
32 ln

(
T∆2

i

)
∆2

i

,
12C

∆i
}, Eµ

i (t),Ht−1

)]

≤ E
[ T∑

t=1

Pr

(
θi(t) > µ1 −

∆i

3
| ki(t) > max{

32 ln
(
T∆2

i

)
∆2

i

,
12C

∆i
}, Eµ

i (t),Ht−1

)]
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Recall that θi(t) is sampled from N
(
µ̂i(t) +

C
ki(t)+1 ,

1
ki(t)+1

)
. Since µ̂i(t) ≤ µi +

∆i

3 , we have

Pr

(
θi(t) > µ1 −

∆i

3
| ki(t) > max{

32 ln
(
T∆2

i

)
∆2

i

,
12C

∆i
}, µ̂i(t) ≤ µi +

∆i

3
,Ht−1

)

≤ Pr

(
N
(
µi +

∆i

3
+

C

ki(t) + 1
,

1

ki(t) + 1

)
> µ1 −

∆i

3
| Ht−1, ki(t) > max{

32 ln
(
T∆2

i

)
∆2

i

,
12C

∆i
}

)

Since ki(t) > max{ 32 ln(T∆2
i )

∆2
i

, 12C
∆i

}, from the property of Gaussian distribution we obtain that

Pr

(
N
(
µi +

∆i

3
+

C

ki(t) + 1
,

1

ki(t) + 1

)
> µ1 −

∆i

3

)
≤ 1

2
e−

(ki(t)+1)
(

∆i
3

− C
ki(t)+1

)2

2

≤ 1

2
e−

(ki(t)+1)(∆i
3 )

2

2

≤ 1

T∆2
i

the second inequality holds because ki(t) ≥ 12C
∆i

and the last inequality holds because ki(t) ≥
32 ln(T∆2

i )
(∆i)

2 . Therefore,

Pr

(
θi(t) > µ1 −

∆i

3
− ∆i

12
| ki(t) > max{

32 ln
(
T∆2

i

)
∆2

i

,
12C

∆i
}, µ̂i(t) ≤ µi +

∆i

3
,Ht−1

)
≤ 1

T∆2
i

⇒
T∑

t=1

Pr

(
i(t) = i, ki(t) > max{

32 ln
(
T∆2

i

)
∆2

i

,
12C

∆i
}, Eθ

i (t), E
µ
i (t)

)
≤ 1

∆2
i

Then we finish the proof.

A.4 PROOF OF LEMMA A.5

Proof. Let sk denote the time at which arm i is pulled k times. Set s0 = 0. We have
T∑

t=1

Pr
(
i(t) = i, Eµ

i (t)
)
≤

T∑
t=1

Pr

(
i(t) = i, Eµ

i (t), ki(t) ≤ max{
32 ln

(
T∆2

i

)
∆2

i

,
12C

∆i
}

)
+

T−1∑
k>max{

32 ln(T∆2
i )

∆2
i

, 12C∆i
}

Pr
(
Eµ

i (sk+1)
)

At time sk+1 for k ≥ 1, we have µ̂i (sk+1) =
∑sk+1

t=1,i(t)=i
ri(t)

k+1 ≤
∑sk+1

t=1,i(t)=i
roi (t)

k+1 + C
k+1 . By

Chernoff-Hoeffding inequality, when k > max{ 32 ln(T∆2
i )

∆2
i

, 12C
∆i

},

Pr

(
µ̂i (sk+1) > µi +

∆i

3

)
≤ Pr

(∑sk+1

t=1,i(t)=i r
o
i (t)

k + 1
+

C

k + 1
> µi +

∆i

3

)
≤ e−2(k+1)(∆i

3 − C
k+1 )

2

≤ e
−(k+1)∆2

i
8

we then obtain that
T−1∑

k>max{
32 ln(T∆2

i )
∆2

i

, 12C∆i
}

Pr
(
Eµ

i (sk+1)
)
=

T−1∑
k>max{

32 ln(T∆2
i )

∆2
i

, 12C∆i
}

Pr

(
µ̂i (sk+1) > µi +

∆i

3

)

≤ 1 +

T−1∑
k=1

exp

(
− (k + 1)∆2

i

8

)
≤ 1 +

8

∆2
i

Combining the above results we finish the proof.
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B PROOF FROM SECTION 5

B.1 PROOF OF THEOREM 5.1

Follow the proof of Agrawal & Goyal (2013), to prove Theorem 5.1, we begin with some basic
definitions. The sample µ̃(t) from the posterior is a belief in the reward parameter. Therefore, we
denote the actual sample for the belief in the reward of an arm as θi(t) := xi(t)

T µ̃(t). By definition
of µ̃(t) in Algorithm 2, marginal distribution of each θi(t) is Gaussian with mean xi(t)

T µ̂(t) and
standard deviation vt∥xi(t)∥B(t)−1 . Similar to before, we denote ∆i(t) := xi∗(t)(t)

Tµ− xi(t)
Tµ as

the gap between the mean reward of optimal arm and arm i at time t, and we define two good events
as Definition 5.2

Next, we define a notion called saturated arm to indicate whether an arm has been taken for enough
time such that the variance in its reward estimation is less than the gap in reward compared to the
optimal arm at a timestep.

Definition B.1 (Saturated Arm). Denote gt =
√
4d ln(t)vt + σ

√
d ln

(
t3

δ

)
+ 1 + Cγ. An arm i is

called saturated at time t if ∆i(t) > gt∥xi(t)∥B(t)−1 , and unsaturated otherwise. Let C(t) ne the set
of saturated arms at time t.

First, in Lemma B.2 we show that good events hold with a high probability at each round. The reason
why Lemma B.2 holds is because of the weighted ridge estimator we use for computing the posteriors.
With such an estimator, the attack has less influence on the estimations, and therefore the difference
between the estimation and the true value can be bounded.
Lemma B.2. For all t, 0 < δ < 1,Pr (Eµ(t)) ≥ 1 − δ

t2 . For all possible filtrations
Ht−1,Pr

(
Eθ(t) | Ht−1

)
≥ 1− 1

t2 .

Next, Lemma B.3 shows that when the good events are true, with a high probability, the sampled
reward for the optimal arm at a timestep is likely to be larger than its actual expected reward.
Lemma B.3. Denote p = 1

4e
(1+

Cγ√
d

)2√
π

. For any filtration Ht−1 such that Eµ(t) is true,

Pr
(
θi∗(t)(t) > xi∗(t)(t)

Tµ | Ht−1

)
≥ p

Lemma B.3 suggests that the algorithm is unlikely to underestimate the reward of the optimal arm.

Based on Lemma B.2 and Lemma B.3, we can further show that when the good events are true, since
the optimal arm and the unsaturated arm will be pulled with at least a certain probability, the algorithm
can perform effective exploration. Therefore, the regret will be upper bounded with a high probability.
We establish a super-martingale process that will form the basis of our proof of the high-probability
regret bound. This result shows that expected regret will be O( gtp ∗

∑
t ∥xi(t)(t)∥B(t)−1).

Definition B.4. Recall that regret (t) was defined as, regret (t) = ∆i(t)(t) = xi∗(t)(t)
Tµ−

xi(t)(t)
Tµ. Define regret ′(t) = regret(t) · I (Eµ(t)).

Definition B.5. Let

Xt = regret′(t)−min{3gt
p

∥xi(t)(t)∥B(t)−1 +
2gt
pt2

, 1}

Yt =

t∑
w=1

Xw.

Lemma B.6. (Yt; t = 0, . . . , T ) is a super-martingale process with respect to filtration Ht.

Proof of Theorem 5.1. Note that Xt is bounded, |Xt| ≤ 1+ 3
pgt +

2
pt2 gt ≤

6
pgt. Thus, we can apply

the Azuma-Hoeffding inequality, to obtain that with probability 1− δ
2 ,

T∑
t=1

regret′(t) ≤
T∑

t=1

min{3gt
p

sa(t)(t), 1}+
T∑

t=1

2gt
pt2

+

√√√√2

(∑
t

36g2t
p2

)
ln

(
2

δ

)
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Note that p is a constant. Also, by definition, gt ≤ gT . Therefore, from above equation, with
probability 1− δ

2 ,

T∑
t=1

regret′(t) ≤
T∑

t=1

min{3gt
p

si(t)(t), 1}+
2gT
p

T∑
t=1

1

t2
+

6gT
p

√
2T ln

(
2

δ

)
Now, we have

T∑
t=1

min{1, 3gk
p

st,i(t)}

=
∑

k:wk=1

min

(
1,

3gt
p

√
xi(k)(k)⊤B

−1
i(k)xi(k)(k)

)
︸ ︷︷ ︸

I1

+
∑

k:wk<1

min

(
1,

3gk
p

√
xi(k)(k)⊤B

−1
i(k)xi(k)(k)

)
︸ ︷︷ ︸

I2

,

For the term I1, we consider all rounds k ∈ [T ] with wk = 1 and we assume these rounds can be
listed as {k1, · · · , km} for simplicity. With this notation, for each i ≤ m, we can construct the
auxiliary covariance matrix Ai = λI+

∑i−1
j=1 xi(kj)(kj)xi(kj)(kj)

⊤. Due to the definition of original
covariance matrix Bk in Algorithm, we have

Bki
≥ λI +

i−1∑
j=1

wkj
xi(kj)(kj)xi(kj)(kj)

⊤ = Ai

It further implies that for vector xki
, we have

xi(k)(k)
⊤B−1

i(k)xi(k)(k) ≤ xi(k)(k)
⊤A−1

i xi(k)(k)

The term I1 can be bounded by

I1 =
∑

k:wk=1

min

(
1,

3gt
p

√
xi(k)(k)⊤B

−1
i(k)xi(k)(k)

)

≤
m∑
i=1

3gt
p

min

(
1,
√
xi(ki)(ki)

⊤A−1
i xi(ki)(ki)

)

≤ 3gt
p

√√√√ m∑
i=1

1×
m∑
i=1

min
(
1, xi(ki)(ki)

⊤A−1
i xi(ki)(ki)

)
≤ 3gt

p

√
2dT ln (1 + T ),

For the second term I2, according to the definition for weight wk < 1 in Algorithm 1 , we have

wk = γ/
√
xi(k)(k)⊤B

−1
k xi(k)(k), which implies that

I2 =
∑

k:wk<1

min

(
1,

3gt
p

√
xi(k)(k)⊤B

−1
i(k)xi(k)(k)

)

=
∑

k:wk<1

min

(
1,

3gt
p

wkxi(k)(k)
⊤B−1

i(k)xi(k)(k)/γ

)

≤
∑

k:wk<1

min

(
(1 +

3gt
pγ

), (1 +
3gt
pγ

)wkxi(k)(k)
⊤B−1

i(k)xi(k)(k)

)
=

∑
k:wk<1

(1 +
3gt
pγ

)min
(
1, wkxi(k)(k)

⊤B−1
i(k)xi(k)(k)

)
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where the first equation holds due to the definition of weight wk. Now, we assume the rounds with
weight wk < 1 can be listed as {k1, · · · , km} for simplicity. In addition, we introduce the auxiliary
vector x′

i as x′
i =

√
wki

xi(ki)(ki) and matrix B′
i as

B′
i = λI +

i−1∑
j=1

wkjxi(kj)(kj)xi(kj)(kj)
⊤ = λI +

i−1∑
j=1

x′
j

(
x′
j

)⊤
.

We have (B′
i)

−1 ⪰ B−1
i . Therefore, for each i ∈ [m], we have

xi(ki)(ki)
⊤ (B′

i)
−1

xi(ki)(ki) ≥ xi(ki)(ki)
⊤B−1

i xi(ki)(ki)

Now we have
m∑
i=1

min
(
1, wkixi(ki)(ki)

⊤B−1
i(ki)

xi(ki)(ki)
)

≤
m∑
i=1

min
(
1, wki

xi(ki)(ki)
⊤(B′

i)
−1xi(ki)(ki)

)
=

m∑
i=1

min
(
1, (x′

i)
⊤
(B′

i)
−1

x′
i

)
≤ 2d ln (1 + T ) ,

Then we have

I2 ≤
∑

k:wk<1

(2 +
3gt
pγ

)min
(
1, wkxi(ki)(ki)

⊤B−1
i(ki)

xi(ki)(ki)
)

≤ 2d(1 +
3gt
pγ

) ln (1 + T ) .

Recalling the definitions of p and gT , by definition gT = O
(
d
√

ln
(
T
δ

)
+ Cγ

)
. Substituting the

above, we get
T∑

t=1

regret′(t)

= O

(
e
(1+Cγ√

d
)2

(
d

√
ln

(
T

δ

)
+ Cγ

)
·
√
dT lnT + e

(1+Cγ√
d
)2

(
d

√
ln

(
T

δ

)
+ Cγ

)
d

γ
lnT + 2d lnT

)

= O

(
de

(1+Cγ√
d
)2

√
dT lnT ln

(
T

δ

)
+ Cγe

(1+Cγ√
d
)2
√
dT lnT +

d2e
(1+Cγ√

d
)2

γ
lnT

√
ln

(
T

δ

)
+

Cde
(1+Cγ√

d
)2
lnT

)
Also, because Eµ(t) holds for all t with probability at least 1 − δ

2 (see Lemma B.2), regret′(t) =
regret(t) for all t with probability at least 1− δ

2 . Hence, with probability 1− δ,

R(T ) =

T∑
t=1

regret(t) =

T∑
t=1

regret′(t)

= O

(
de

(1+Cγ√
d
)2

√
dT lnT ln

(
T

δ

)
+ Cγe

(1+Cγ√
d
)2
√
dT lnT +

d2e
(1+Cγ√

d
)2

γ
lnT

√
ln

(
T

δ

)
+Cde

(1+Cγ√
d
)2
lnT

)
.

Choose γ =
√
d/C, its regret can be upper bounded by R(T ) =

O
(
d
√
dT lnT ln

(
T
δ

)
+ Cd

√
d lnT

√
ln
(
T
δ

))
.
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B.2 PROOF OF LEMMA B.2

Proof. First, the probability bound for Eµ(t) can be directly obtained from Lemma 1 in Agrawal &
Goyal (2013).

Now we bound the probability of event Eµ(t). We use Lemma C.3 with mt =
√
wtxi(t)(t), ϵt =√

wt(r
0
i(t)(t)− xi(t)(t)

Tµ),H′
t = (a(s+ 1),ms+1, ϵs : s ≤ t). By the definition of H′

t,mt is H′
t−1-

measurable, and ϵt is H′
t-measurable. ϵt is conditionally σ-sub-Gaussian due to

√
wt ≤ 1 and the

problem setting, and is a martingale difference process:

E
[√

wtϵt | H′
t−1

]
= E

[√
wtr

0
i(t)(t) | xi(t)(t), i(t)

]
−

√
wtxi(t)(t)

Tµ = 0

We denote

Mt = Id +

t∑
s=1

msm
T
s = Id +

t∑
s=1

wtxi(s)(s)xi(s)(s)
T

ξt =

t∑
s=1

msϵs =

t∑
s=1

wtxi(s)(s)
(
r0i(s) − xi(s)(s)

Tµ
)

Note that B(t) = Mt−1, and µ̂(t) − µ = M−1
t−1

(
ξt−1 − µ+

∑t
s=1 wsxi(s)(s)c(s)

)
. Let for any

vector y ∈ R and matrix A ∈ Rd×d, ∥y∥A denote
√
yTAy. Then, for all i,

∣∣xi(t)
T µ̂(t)− xi(t)

Tµ
∣∣ = ∣∣∣∣∣xi(t)

TM−1
t−1

(
ξt−1 − µ+

t∑
s=1

wsxi(s)(s)c(s)

)∣∣∣∣∣
≤ ∥xi(t)∥M−1

t−1
||ξt−1 − µ+

t∑
s=1

wsxi(s)(s)c(s)∥M−1
t−1

≤ (∥ξt−1 − µ∥M−1
t−1

+

t∑
s=1

|ws||c(s)|∥xi(s)(s)∥B(t)−1)

∥xi(t)∥B(t)−1

The inequality holds because M−1
t−1 is a positive definite matrix. Using Lemma C.3 , for any

δ′ > 0, t ≥ 1, with probability at least 1− δ′,

∥ξt−1∥M−1
t−1

≤ σ

√
d ln

(
t

δ′

)
Therefore, ∥ξt−1 − µ∥M−1

t−1
≤ R

√
d ln

(
t
δ′

)
+ ∥µ∥M−1

t−1
≤ R

√
d ln

(
t
δ′

)
+ 1. By the definition of

wk, we also note that
∑t

s=1 |ws||c(s)|∥xi(s)(s)∥B−1
t

≤ γ
∑t

s=1 |c(s)| ≤ Cγ. Substituting δ′ = δ
t2 ,

we get that with probability 1− δ
t2 , for all i,

∣∣xi(t)
T µ̂(t)− xi(t)

Tµ
∣∣ ≤∥xi(t)∥B(t)−1 ·

(
R

√
d ln

(
t

δ′

)
+ 1 + Cγ

)

≤∥xi(t)∥B(t)−1 ·

(
R

√
d ln (t3) ln

(
1

δ

)
+ 1 + Cγ

)
=ℓ(t)si(t).

This proves the bound on the probability of Eµ(t).

B.3 PROOF OF LEMMA B.3

Proof. Given event Eµ(t),
∣∣xi∗(t)(t)

T µ̂(t)− xi∗(t)(t)
Tµ
∣∣ ≤ ℓtst,i∗(t)(t). And, since Gaussian ran-

dom variable θi∗(t)(t) has mean xi∗(t)(t)
T µ̂(t) and standard deviation vtsi∗(t)(t), using Lemma
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C.1,
Pr
(
θi∗(t)(t) ≥ xi∗(t)(t)

Tµ | Ht−1

)
=Pr

(
θi∗(t)(t)− xi∗(t)(t)

T µ̂(t)

vtst,i∗(t)
≥

xi∗(t)(t)
Tµ− xi∗(t)(t)

T µ̂(t)

vtst,i∗(t)
| Ht−1

)

≥ 1

4
√
π
e−Z2

t

where

|Zt| =

∣∣∣∣∣xi∗(t)(t)
Tµ− xi∗(t)(t)

T µ̂(t)

vtsi∗(t)(t)

∣∣∣∣∣
≤

ℓtsi∗(t)(t)

vtsi∗(t)(t)

=

(
σ
√
d ln

(
t3

δ

)
+ 1 + Cγ

)
σ
√

9d ln
(
t
δ

)
≤ 1 +

Cγ√
d

Therefore

Pr
(
θi∗(t)(t) ≥ xi∗(t)(t)

Tµ | Ht−1

)
≥ 1

4e
(1+Cγ√

d
)2√

π

B.4 PROOF OF LEMMA B.6

Lemma B.7. For any filtration Ht−1 such that Eµ(t) is true,

Pr (i(t) /∈ C(t) | Ht−1) ≥ p− 1

t2
.

This Lemma is from Lemma 4 in Agrawal & Goyal (2013). By using the Lemma B.2, we get that
when both events Eµ(t) and Eθ(t) hold, for all j ∈ C(t), θj(t) ≤ bj(t)

Tµ+gtst,j . Also, by Lemma
B.3, we have that if Eµ(t) is true,Pr

(
θi∗(t)(t) > xi∗(t)(t)

Tµ | Ht−1

)
≥ p. Then directly following

the proof of Lemma 3 in Agrawal & Goyal (2013) we can obtain our result.

Lemma B.8. For any filtration Ht−1 such that Eµ(t) is true,

E
[
∆i(t)(t) | Ht−1

]
≤ min{3gt

p
E
[
si(t)(t) | Ht−1

]
+

2gt
pt2

, 1}

This Lemma is from Lemma 4 in Agrawal & Goyal (2013). Using Lemma B.7, for any Ht−1 such
that Eµ(t) is true, we have Pr (i(t) /∈ C(t) | Ht−1) ≥ p− 1

t2 = 1

4e
(1+

Cγ√
d

)2√
π

− 1
t2 . Also, by Lemma

B.2 we have that on the events Eµ(t) and Eθ(t), θi(t) ≤ xi(t)
Tµ+ gt∥xi(t)∥B(t)−1 . Using these

two facts, by directly following the proof in Lemma 4 of Agrawal & Goyal (2013) we immediately
obtain our needed result.

Proof. We need to prove that for all t ∈ [1, T ], and any Ht−1,E [Yt − Yt−1 | Ht−1] ≤ 0, i.e.

E [regret′(t) | Ht−1] ≤ min{3gt
p

E
[
si(t)(t) | Ht−1

]
+

2gt
pt2

, 1}

Note that whether Eµ(t) is true or not is completely determined by Ht−1. If Ht−1 is such that Eµ(t)
is not true, then regret′(t) = regret(t) · I (Eµ(t)) = 0, and the above inequality holds trivially. And,
for Ht−1 such that Eµ(t) holds, the inequality follows from Lemma B.8.
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C INEQUALITIES

Lemma C.1. For a Gaussian distributed random variable Z with mean m and variance σ2, for any
z ≥ 1,

1

2
√
πz

e−z2/2 ≤ Pr(|Z −m| > zσ) ≤ 1√
πz

e−z2/2.

Lemma C.2 (Azuma-Hoeffding inequality). If a super-martingale (Yt; t ≥ 0), corresponding to
filtration Ht, satisfies |Yt − Yt−1| ≤ Ct for some constant Ct, for all t = 1, . . . , T , then for any
a ≥ 0,

Pr (YT − Y0 ≥ a) ≤ e
− a2

2
∑T

t=1 C2
t

Lemma C.3 (Abbasi-Yadkori et al. (2011)). Let (H′
t; t ≥ 0) be a filtration, (mt; t ≥ 1) be an Rd-

valued stochastic process such that mt is
(
H′

t−1

)
-measurable, (ηt; t ≥ 1) be a real-valued martingale

difference process such that ηt is (H′
t)-measurable. For t ≥ 0, define ξt =

∑t
τ=1 mτητ and

Mt = Id +
∑t

τ=1 mτm
T
τ , where Id is the d-dimensional identity matrix. Assume ηt is conditionally

R-sub-Gaussian. Then, for any δ′ > 0, t ≥ 0, with probability at least 1− δ′,

∥ξt∥M−1
t

≤ R

√
d ln

(
t+ 1

δ′

)
,

where ∥ξt∥M−1
t

=
√
ξTt M

−1
t ξt.

D ALGORITHMS

Algorithm 3 Thompson Sampling for Stochastic Bandits
1: For each arm i = 1, . . . , N set ki = 0, µ̂i = 0
2: for t = 1, 2, . . ., do
3: For each arm i = 1, . . . , N , sample θi(t) from the N

(
µ̂i,

1
ki+1

)
distribution.

4: Play arm i(t) := argmaxi{θi(t)} and observe reward rt

5: Set µ̂i(t) :=
µ̂i(t)ki(t)+rt

ki(t)+1 , ki(t) := ki(t) + 1

6: end for

Algorithm 4 Thompson Sampling for Linear Contextual Bandits
1: Set B(1) = Id, µ̂ = 0d, f = 0d.
2: for t = 1, 2, . . ., do
3: Sample µ̃(t) from distribution N

(
µ̂, B(t)−1

)
.

4: Play arm i(t) := argmaxi xi(t)
T µ̃(t), and observe reward rt.

5: Update B(t+ 1) = B(t) + xi(t)xi(t)
T , f = f + xi(t)rt, µ̂ = B(t)−1f .

6: end for

Algorithm 5 Robust UCB
1: Params: Robustness parameter C̄
2: Init: Select each arm i = 1, . . . , N for once, observe reward ri, set ki = 1, µ̂i = ri
3: for t = N + 1, . . . , T , do
4: Play arm i(t) = argmaxi µ̂i +

√
2 log t
ki(t)

+ C̄
ki(t)

5: Set µ̂i(t) :=
µ̂i(t)ki(t)+rt

ki(t)+1 , ki(t) := ki(t) + 1

6: end for
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