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Abstract

Instruction tuning demonstrates impressive performance in adapting Multimodal
Large Language Models (MLLMs) to follow task instructions and improve gen-
eralization ability. By extending tuning across diverse tasks, MLLMs can further
enhance their understanding of world knowledge and instruction intent. However,
continual instruction tuning has been largely overlooked and there are no public
benchmarks available. In this paper, we present CoIN, a comprehensive benchmark
tailored for assessing the behavior of existing MLLMs under continual instruction
tuning. CoIN comprises 10 meticulously crafted datasets spanning 8 tasks, ensuring
diversity and serving as a robust evaluation framework to assess crucial aspects of
continual instruction tuning, such as task order, instruction diversity and volume.
Additionally, apart from traditional evaluation, we design another LLM-based
metric to assess the knowledge preserved within MLLMs for reasoning. Following
an in-depth evaluation of several MLLMs, we demonstrate that they still suffer
catastrophic forgetting, and the failure in instruction alignment assumes the main
responsibility, instead of reasoning knowledge forgetting. To this end, we introduce
MoELoRA which is effective in retaining the previous instruction alignment. Codes
and datasets are publicly available https://github.com/zackschen/CoIN.
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Figure 1: Different behavior of MLLMs when sequentially tuned on CoIN. Blue represents the
accuracy for each task evaluated when just tuned on the corresponding task, and Red represents
the accuracy evaluated after the models have been sequentially tuned on all tasks. LLaVA [35] and
Qwen-VL [3] suffer from catastrophic forgetting while MiniGPT-v2 [9] does not. The sequential
training starts clockwise from ScienceQA and ends with OCR-VQA.
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Figure 2: An overview of CoIN benchmark. A selected MLLM is sequentially fine-tuned on 8
instruction datasets spanning diverse tasks. Then, it is evaluated from two perspectives: Truth
Alignment and Reasoning Capability, which assess the alignment with ground truth and knowledge
preserved for reasoning, respectively. The evaluation example at the bottom presents the results of
the model tested on classification after fine-tuning on each task.

1 Introduction

Recently, Multimodal Large Language Models (MLLMs) [8, 11, 35, 34, 70, 57, 40] have garnered
significant attention for their remarkable capabilities of vision-language understanding and generation.
These MLLMs commonly adopt two stages to learn extensive knowledge and align with different
task instructions. In the initial stage, various pre-train strategies are employed to establish vision-
language alignment. Subsequently, to enhance the capacity to follow task instructions and improve
performance, the aligned MLLMs are fine-tuned on meticulously constructed instruction data.

Given the impressive performance of instruction tuning, researchers can further enhance the capacity
of MLLMs to align with various task instructions and learn more world knowledge, by tuning across
diverse tasks. However, the performance of previous tasks after sequential updating on different
tasks has been largely overlooked. Recent years, continual learning (CL) [52, 2, 7] is proposed to
investigate the behavior of artificial intelligence on sequential fine-tuning. Some research has delved
into continual instruction tuning for Large Language Models (LLMs) [68, 61, 42, 31]. However, the
exploration of continual instruction tuning for MLLMs has been overlooked. EMT [67] investigates
the catastrophic forgetting of MLLMs, yet only focusing on classification problems, limiting the
exploration of the diverse capabilities of powerful MLLMs. He et al. [21] propose a benchmark to
explore whether multi-task joint instruction tuning enhances a model’s continual learning ability.
However, this setting limits the exploration of MLLMs in practical scenarios.

Therefore, to comprehensively investigate the behavior of MLLMs in continual instruction tuning,
we introduce a novel benchmark: Continual Instruction tuNing (CoIN). In CoIN, we construct a
varied set of instructions by utilizing commonly used vision-language datasets to ensure accessibility
and diversity, including general visual question answering, knowledge-grounded image question
answering, OCR image question answering tasks, etc. However, the instructions constructed with
these tasks mainly consist of question-answering tasks, lacking diversity. So, we additionally add
grounding and classification tasks in our CoIN. Then, following common instruction templates
[34, 35], we transform the selected datasets into a data format of instruction tuning.

Then, following an in-depth evaluation of popular MLLMs, we reveal that some of them still suffer
from catastrophic forgetting (as showing in Fig. 1), similar to traditional continual CNN [22, 30]
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or VIT [13, 38] models. However, different from these models which learn representations and
use a final layer to make predictions with a fixed output style, MLLMs work in a generative way.
This motivates us to inquire whether MLLMs forget the knowledge required for reasoning or if the
issue lies in their inability to follow instructions. Because instruction tuning primarily focuses on
learning to align with task instructions [69, 35, 34], we hypothesize that the model mainly loses the
capability of instruction following, rather than the maintained knowledge. To validate this hypothesis,
in addition to checking the outputs with the ground truth, called Truth Alignment, we employ powerful
LLM assistant for evaluating the reasoning knowledge, called Reasoning Capability, as shown in Fig.
2.

After analyzing the results of these two evaluations, we reveal that the failure in instruction following
assumes the main responsibility, instead of reasoning knowledge forgetting. Recently, Mixture-of-
Experts (MoE) framework [54] leverages multiple distinct experts to acquire different knowledge and
incorporates a gate function to modulate their contributions. We observe that this method resembles
the architecture-based methods in traditional continual learning, providing the model with the ability
to learn different instruction following from distinct experts. Therefore, we try to bring it into CoIN
to mitigate the forgetting of alignments. Experimental results consistently demonstrate improvement
after integrating with more experts.

In summary, the contributions of this paper are as follows:

• A novel benchmark for MLLMs in continual instruction tuning is proposed, namely CoIN, which
consists of 10 datasets spanning 8 different tasks for comprehensive and diverse evaluation.

• A novel evaluation approach is introduced to assess the model’s ability from two aspects: Truth
Alignment and Reasoning Capability. Furthermore, we reveal that the catastrophic forgetting in
MLLMs is primarily due to the decline in instruction following rather than reasoning knowledge.

• Multiple state-of-the-art MLLMs are chosen for evaluation on CoIN. Additionally, we introduce
MoELoRA which is effective in mitigating forgetting owing to its use of distinct experts.

2 Preliminaries

In the multimodal continual instruction tuning, an MLLM has been pre-trained with abundant vision-
language data to align the gap of vision and language, indicated by trainable parameters θ. We further
train it to adapt to novel S tasks in a sequential manner. Each task is denoted by a task descriptor
τ ∈ {1, 2, ..., S}, and owns an independent dataset Dτ = {(Ximg

τ,j , Xins
τ,j , X

ans
τ,j )

Nτ

j=1
} with Nτ data

pairs, where X img, X ins and X ans indicate the input image tokens, instruction tokens and answer
tokens, respectively. For a sample pair with an answer in length L, we compute the probability of the
whole target answers X ans in an auto-regressive manner as follows:

p(Xans|Ximg, Xins) =
∏L

i=1pθ(X
ans
i |Ximg, Xins, Xans

<i ), (1)

where Xans
<i indicates all answer tokens before the index i and Xans

i indicates the i-th answer token.
We optimize the network with the following function:

L = −
L∑

i=1

log pθ(X
ans
i |Ximg, Xins, Xans

<i ). (2)

3 CoIN: A Benchmark for MLLMs

3.1 How to Compose A Comprehensive Benchmark for MLLMs?

3.1.1 Data Integration.

A comprehensive evaluation relies on extensive data. To ensure the accessibility and diversity of
the instruction tuning samples, we collect various publicly available and commonly used vision-
language datasets. These datasets cover a wide range of tasks, including general image question
answering, visual reasoning, knowledge-grounded image question answering, etc. Specifically, the
selected datasets include VQAv2 [17], VizWiz [20], ScienceQA [41], TextVQA [55], GQA [26] and
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Table 1: The statistic of collected datasets and instructions in CoIN benchmark.

Task Dataset Instruction Train
Number

Test
Number

Grounding
RefCOCO
RefCOCO+
RefCOCOg

Please provide the bounding
box coordinate of the region

this sentence describes: <description>
55k 31k

Classification ImageNet
What is the object in the image?

Answer the question using a
single word or phrase

129k 5k

Image Question Answering (IQA) VQAv2 Answer the question using a
single word or phrase 82k 107k

Knowledge Grounded IQA ScienceQA Answer with the option’s letter
from the given choices directly 12k 4k

Reading Comprehension IQA TextVQA Answer the question using a
single word or phrase 34k 5k

Visual Reasoning IQA GQA Answer the question using a
single word or phrase 72k 1k

Blind People IQA VizWiz Answer the question using a
single word or phrase 20k 8k

OCR IQA OCR-VQA Answer the question using a
single word or phrase 165k 100k

OCR-VQA [45]. However, we observe that these datasets are limited to traditional QA tasks in the
vision-language community, lacking task diversity. To overcome this limitation, we introduce the
classification task and region-level grounding task into CoIN with ImageNet [12], RefCOCO [28],
RefCOCO+ [44] and RefCOCOg [44].

With a substantial collection of instruction data, the next step involves transforming these samples
into a unified instruction tuning format. Nowadays, several works [34, 35, 11, 70] have resorted
to different ways to construct the instructions. For example, LLaVA [35] leverages ChatGPT [46]
and GPT-4 [47] to create GPT-assisted visual instruction based on COCO [33]. SPHINX [34] adapt
different templates to transform a wide range of multi-modal tasks into instructions. Drawing on
insights from prior research, we utilize commonly employed instruction templates to formulate our
instructions, as illustrated in Tab. 1. The final benchmark encompasses 10 datasets spanning 8 task
categories. (Some examples of our CoIN are presented in the Appendix).

3.1.2 Training

Low-rank Adaptation (LoRA) [25] has demonstrated effectiveness and efficiency in the fine-tuning
of pre-trained language models. Additionally, a previous study [61] observed that parameter-efficient
methods are more susceptible to forgetting in LLMs. Therefore, CoIN specifically explores the
behavior of parameter-efficient fine-tuning of MLLMs, focusing on LoRA. Specifically, during
fine-tuning on CoIN, only the low-rank matrices are updated, while the parameters of the base LLMs
and vision encoder are frozen.

3.1.3 Performance Evaluation.

Different from traditional continual learning which only compares the predicted results with the
ground truth in a word-for-word manner, i.e. Truth Alignment, we argue that the outputs of MLLMs
are influenced by Reasoning Capability. Therefore, the evaluation of MLLMs needs to consider the
two aspects respectively.

Truth Alignment. The ability to generate the correct result in the desired format to follow task instruc-
tion is the basic requirement for instruction tuning. To evaluate the ability of overall performance of
MLLMs on CoIN, we adopt the traditional evaluation method that we directly compare the outputs
of MLLMs with ground truths. These metrics for each task slightly vary since different tasks have
different forms of outputs (Comparison details can be found in the Appendix).

Reasoning Capability. The performance of MLLMs depends not only on the instruction following
but also on the knowledge maintained in MLLMs. For example, MLLMs may correctly answer
the question logically as "Two apples" while the ground truth is "Two". The evaluation of the truth
alignment will directly discriminate this sample as negative. To tackle this issue and further analyze
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Table 2: The results evaluating the Truth Alignment ability are presented below. The first line of
Sequential Finetune are the results for each task evaluated when just tuned on the corresponding
task, and the second line displays the final results of each task after fine-tuning on the last task.

MLLM Method Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

LLaVA

Multi-task 56.77 49.35 95.55 56.65 53.90 30.09 59.50 55.65 57.18 -
Zero-shot 49.91 2.88 0.33 2.08 0.90 0.00 0.68 0.17 7.12 -

Sequential
Finetune

82.45 49.99 96.05 56.40 55.45 31.27 62.20 57.08
32.97 -32.62

21.26 28.74 10.25 36.78 32.45 0.83 42.50 57.08

Qwen-VL

Multi-task 25.70 60.88 17.05 56.77 35.58 6.78 68.67 63.50 41.87 -
Zero-shot 64.56 48.15 11.82 44.50 9.57 0.00 64.10 27.50 33.78 -

Sequential
Finetune

67.69 66.36 53.70 59.30 36.38 63.10 71.00 47.80
43.35 -16.94

31.05 42.45 29.57 55.57 15.30 40.33 67.75 47.80

MiniGPT-v2

Multi-task 43.55 19.24 10.57 28.43 41.62 0.00 27.12 1.45 21.50 -
Zero-shot 32.16 6.83 0.07 11.58 35.20 0.00 12.20 0.03 12.26 -

Sequential
Finetune

28.81 10.40 7.25 31.55 41.35 0.00 36.10 6.15
25.45 6.04

44.35 29.89 11.90 36.95 42.58 0.00 38.10 6.15

MLLMs, we propose reasoning capability which refers to the knowledge contained in MLLMs to
comprehend different modalities and make the reasoning. Motivated by previous works [15, 18], we
adopt another LLM to grade the output. With designed prompts, the LLM will disregard the structure
of the outputs and solely evaluate the key information within it to obtain a score from 0 to 10.

Roughly speaking, for an MLLM to generate a desired output, it must have the ability to make
reasoning and transfer the reasoned output into a structure that aligns with task instructions. The
Truth Alignment evaluates the overall performance of the model, while the Reasoning Capability
specifically investigates the model’s reasoning ability. The remaining aspect is the capability of
Instruction Following. Therefore, the correlation of the above evaluations are following:

Truth Alignment = Reasoning Capability + Instruction Following

With the novel evaluations described above, we present the overall performance calculation in CoIN
here. Adhering to traditional continual learning metrics, we employ Backward Transfer (BWT) to
measure the degree of suffering catastrophic forgetting. Additionally, unlike traditional continual
learning where the model gradually forgets learned knowledge, sharp fluctuations occur in instruction
tuning influenced by the gap between different tasks. Hence, we incorporate an additional metric,
Mean Average Accuracy [48], to measure the performance throughout the training process.

(1) Mean Average Accuracy (MAA): MAA = 1
T

∑T
j=1(

1
j

∑j
i=1 Aj,i), where Aj,i is the performance

on i-th task after training the task j. A high MAA corresponds to a continual learning model that
consistently maintains a high accuracy throughout the training process.

(2) Backward Transfer (BWT): BWT = 1
T

∑T
i=1(AT,i −Ai,i), where Ai,i is the performance on

i-th task after training on i-th task.

4 Experiments

Setup LLaVA [35], Qwen-VL [3] and MiniGPT-v2 [9] that have achieved remarkable performance
on numerous benchmarks, are selected as the models for fine-tuning on the proposed CoIN benchmark.
In addition, we choose two baselines for comparison: Multi-task which fine-tunes on all instructions
instead of sequential training, and Zero-shot which involves assessing each task based on pre-trained
MLLMs. For the fine-tuning sequence in CoIN, we adopt a random order, resulting in the following
sequence: ScienceQA, TextVQA, ImageNet, GQA, VizWiz, Grounding, VQAv2, and OCR-VQA.
For reasoning capability evaluation, we select Qwen-1.5-32B, a state-of-the-art model on many
benchmarks, as the powerful LLM to evaluate the outputs from our trained model.
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Table 3: The evaluation results of Reasoning Capability are presented below.

MLLM Method Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

LLaVA

Multi-task 80 75 97 72 42 86 73 79 75.50 -
Zero-shot 93 83 69 64 48 35 64 66 65.25 -

Sequential
Finetune

92 75 97 72 42 58 75 78
71.28 -10.88

82 74 55 56 47 52 58 78

Qwen-VL

Multi-task 98 82 68 77 50 51 82 88 74.50 -
Zero-shot 97 81 78 74 54 58 81 74 74.63 -

Sequential
Finetune

96 83 86 78 51 82 82 75
80.97 -3.25

95 78 77 77 47 76 82 75

MiniGPT-v2

Multi-task 96 76 58 62 44 89 63 59 68.38 -
Zero-shot 98 72 48 63 48 80 64 61 66.75 -

Sequential
Finetune

97 71 55 61 44 91 63 52
75.05 0.00

89 73 59 60 44 94 63 52

4.1 How Do Existing MLLMs Perform in CoIN?

To comprehensively investigate the performance of the chosen MLLMs, we conduct experiments on
our CoIN. Quantitative results about the ability of Truth Alignment and Reasoning Capability are
shown in Tab. 2 and Tab. 3, respectively.

For the results of truth alignment of Tab. 2, we have the following observations: Firstly, unlike
traditional continual learning, where the multi-task model often serves as the upper bound, in CoIN,
the performance of the multi-task model is not the best due to the influence of task gaps. Secondly,
even though pre-trained MLLMs retain substantial knowledge, the performance of zero-shot on
specific tasks remains unsatisfactory, resulting in an accuracy of 7.12, 33.78 and 12.26. This validates
the importance of instruction tuning for MLLMs in achieving task alignment. Thirdly, sequential
finetune even performs better on fine-tuning tasks than multi-task (i.e. the first line in Sequential
Finetune), except for some tasks in MiniGPT-v2. The possible reason may be that the model tends
to focus on one task, diminishing the impact of diverse instructions from other tasks. However, due
to the absence of techniques to regulate learning, these models suffer from forgetting, resulting in
-32.62 of LLaVA and -16.94 of Qwen-VL in terms of BWT. Finally, MiniGPT-v2 demonstrates an
incredible ability to mitigate forgetting. However, compared to LLaVA and Qwen-VL, it behaves
underfitting on some tasks during fine-tuning. As training progresses, the performance on each task
gradually improves. We believe this may be due to fewer training samples and iterations compared to
its official instruction tuning.

In addition, comparing the results of Truth Alignment with those of Reasoning Capability in Tab. 3, it
is evident that the forgetting of reasoning knowledge is much smaller than that of truth alignment. For
example, the Reasoning Capability of LLaVA for grounding only drops from 58% to 52%, whereas
the Truth Alignment drops from 31.27% to 0.00%. This comparison supports the hypothesis that
the model primarily loses the capability to align with task instruction, rather than the maintained
knowledge. Furthermore, on the one hand, compared with the slight decrease observed in LLaVA
and Qwen-VL, MiniGPT-v2 performs robustly in retaining reasoning knowledge. On the other hand,
compared to the truth alignment of MiniGPT-v2, it is noticeable that the overall performance increase
of MiniGPT-v2 is primarily owing to the learning of instruction following. This coincides with the
purpose of instruction tuning, which is to learn to align with task instruction. Finally, since the
Reasoning Capability is robust to forgetting, we will just record the results of Truth Alignment in the
following experiments (More results about Reasoning Capability are in Appendix).

4.2 Whether is Qwen a good evaluator?

We select Qwen to evaluate the Reasoning Capability, but is it a reliable evaluator? To assess its
effectiveness, we conduct experiments to compare with another powerful closed-source large language
model, along with a user study. The comparison results are presented below. Firstly, many works
[18, 37] have commonly employed GPT-4 to evaluate the quality of generated samples. Following
this approach, we also use GPT-4 to assess outputs using the same prompts. The comparison with
Qwen reveals that the overall trends in evaluating Reasoning Capability are consistent. Secondly, we
randomly sample model outputs for each task and gather feedback from AI researchers, asking them
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to score the outputs by using the same prompts with both GPT-4 and Qwen-32B. The results from the
user study align closely with those of Qwen-32B, confirming its validity as a reliable evaluator. In
summary, Qwen is effective in assessing the retention and forgetting of Reasoning Capability.

Table 4: The comparison of Qwen with GPT-4 and user study as a evaluator are presented below.

Type Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

Qwen-32B
92 75 97 72 42 58 75 78

71.28 -10.88
82 74 55 56 47 52 58 78

GPT-4
94 83 96 83 79 71 81 69

73.62 -11.50
80 83 65 67 62 70 68 69

User Study
96 82 98 85 80 65 86 70

74.35 -8.13
85 80 85 71 76 57 73 70

4.3 What factors affect the performance?

Table 5: The results of LLaVA about different task orders are presented below.

Order Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

Random
82.45 49.99 96.05 56.40 55.45 31.27 62.20 57.08

32.97 -32.62
21.26 28.74 10.25 36.78 32.45 0.83 42.50 57.08

GQA Grounding ImageNet OCR-VQA ScienceQA TextVQA VizWiz VQAV2 MAA BWT

Alphabet
62.68 37.73 97.30 62.00 59.98 50.98 60.10 67.28

31.08 -25.90
53.92 0.00 8.57 37.75 44.37 53.37 25.27 67.28

Impact of Task order To explore the impact of different sequence order, we conduct an additional
experiment using a different order of CoIN tasks, arranged alphabetically: GQA, Grounding, Ima-
geNet, OCR-VQA, ScienceQA, TextVQA, VizWiz, and VQAV2. From the comparison results of
LLaVA presented in Tab. 5, we observe that altering the task order inevitably influences the outcomes
of each task. This effect occurs because the knowledge acquired from previous tasks can either benefit
or hinder subsequent training. Furthermore, the final performance is also affected by the training
sequence. Although the BWT of the alphabetic order is better than that of a random order, the overall
result is still inferior to that achieved with a random order. After examining the overall performance
throughout the training process, we observe that the results on the Grounding and ImageNet tasks are
consistently inferior, thereby negatively impacting the overall performance.

Table 6: The results of LLaVA about different instruction templates are presented below.

Type Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

Original
82.45 49.99 96.05 56.40 55.45 31.27 62.20 57.08

32.97 -32.62
21.26 28.74 10.25 36.78 32.45 0.83 42.50 57.08

Diverse
82.45 50.14 96.03 55.65 51.42 34.00 59.17 52.92

32.92 -33.67
26.00 25.38 8.40 33.07 26.52 0.10 40.00 52.92

10Type
81.65 51.99 97.00 61.30 54.10 39.20 68.15 64.65

38.37 -31.75
54.84 35.46 9.80 38.70 12.95 0.82 46.80 64.65

Impact of Instruction diversity Furthermore, we note that some tasks in the CoIN dataset share
similar instructions. This raises a pivotal question: does the type of instruction template impact the
efficacy of continual instruction tuning? To investigate this issue, we devise two additional variants:
1) Diverse: Distinct instruction templates tailored to different tasks. 2) 10Type: Randomly chosen
from 10 distinct instruction templates. (Details can be found in the Appendix.) Tab. 6 presents
the performance of task solving on these variants with LLaVA. Our comparative analysis reveals
that merely changing to diverse templates has minimal impact on overall performance. However,
randomly choosing from multiple distinct templates significantly enhances performance. The possible
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reason is that with different templates, the model learns the true instructional intention within each
task. Our findings suggest that instruction diversity can better mitigate the degeneration of instruction
following, owing to increased robustness to varying instructions.

Table 7: The results of LLaVA about different data volumes are presented below.

Volume Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

0.1
70.00 42.88 93.45 36.93 43.7 3.73 40.48 45.62

30.27 -16.17
53.71 32.62 5.38 33.50 36.98 2.85 36.77 45.62

0.2
69.86 46.86 94.38 44.98 44.15 4.81 32.55 52.10

30.33 -19.89
41.12 33.25 5.53 33.80 25.85 1.77 37.10 45.62

0.4
75.33 47.06 94.95 52.95 50.77 10.25 56.73 55.33

33.18 -24.85
49.96 23.60 7.22 36.12 33.05 0.09 39.20 55.33

0.6
78.09 47.65 95.85 55.93 53.08 10.00 59.17 46.33

31.47 -32.57
27.42 19.54 7.03 33.52 13.15 0.05 38.48 46.33

0.8
80.02 48.13 95.45 54.00 49.85 28.33 58.35 56.67

30.00 -33.60
11.74 16.94 8.85 32.62 35.50 0.00 39.67 56.67

1.0
82.45 49.99 96.05 56.40 55.45 31.27 62.20 57.08

32.97 -32.62
21.26 28.74 10.25 36.78 32.45 0.83 42.50 57.08

Impact of data volume While there is ample knowledge retained in MLLMs, they require sub-
stantial instruction data for fine-tuning to enhance their ability to produce desired results. However,
in practice, collecting high-quality data is costly. Several works [19, 51] have begun to study the
impact of varying training data sizes on overall performance. In this work, to further explore the
influence of the volume of instructions on continual instruction tuning, we conduct experiments to
delve deeper into this investigation. To generate datasets of different volumes, we randomly select
samples of each dataset from our benchmark, resulting in varying training data sizes, including 10%,
20%, 40%, 60%, and 80%. The experimental results of LLaVA are shown in Tab. 7. Overall, the
performance exhibits an initial growth followed by a subsequent decline. This is possibly due to
the fact that the model acquires more instruction following knowledge with the increase in size, as
evidenced by the results of fine-tuning on each task growing with the volume increasing. However,
the expansion in volume leads to the overriding of old knowledge by newly acquired knowledge,
disrupting the balance between stability and plasticity and resulting in increased forgetting.

4.4 Example Analysis

4. ImageNet

User: What is the object in the 

image? Answer the question using 

a single word or phrase.

Assistant: Car.

Ground_truth: Pickup

Truth Alignment : False

Reasoning Capability : 8

User: What is the name of the colony 

shown? A. Maryland B. New 

Hampshire C. Rhode Island D. 

Vermont. Answer with the option's 

letter from the given choices directly.

Assistant: New Hampshire

Ground_truth: B

Truth Alignment : False

Reasoning Capability : 10

2. ScienceQA

User: What animals are on the dirt? 

Answer the question using a single 

word or phrase.

Assistant: Elephants

Ground_truth: Elephants

Truth Alignment : True

Reasoning Capability : 10

3. GQA

User: What is written on the front of 

that building? Reference OCR 

token:M,AVAL,LOOCKYARD,BOCK,

ESTA,1735,.2,LION,GATE,djakoebs. 

Answer the question using a single 

word or phrase.

Assistant: Sunscreen

Ground_truth: lion gate

Truth Alignment: False

Reasoning Capability: 0

1. TextVQA

Figure 3: The illustration of test examples from LLaVA after training on the last task, i.e. OCR-VQA.
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To further understand the difference between Truth Alignment and Reasoning Capability, we provide
some examples after training on OCR-VQA in Fig. 3. In the first example, the model struggles to
comprehend the content and produces an unrelated answer. Consequently, both Truth Alignment and
Reasoning Capability evaluations result in a score of 0. In the second example from ScienceQA,
the model comprehends the instruction and image, providing the correct answer "New Hampshire"
instead of the intended instruction "B". Consequently, the outcome regarding Truth Alignment for
this sample is incorrect. However, in reality, the output from the model encompasses all the reasoning
knowledge necessary to solve this problem, earning a score of 10. As for the third example of
the GQA, the output aligns with both the instruction intent and general knowledge, achieving the
best result. The last example displays a result from ImageNet after training on OCR-VQA. We
observed that after training on the last dataset, the model tends to give an answer "Car". While this
response is considered incorrect since the ground truth answer is "Pickup", it is evident that the model
has captured some knowledge contained in this sample pair. Fortunately, LLMs have analyzed the
retained knowledge and output a suitable answer to indicate the degree of knowledge: 8.

5 Mixture-of-Experts benifits Continual Instruction Tuning

The Mixture-of-Experts (MoE) employs distinct experts to acquire various types of knowledge,
akin to the expansion category of continual learning methods. Therefore, we bring the prevalent
MoELoRA [36, 14] into CoIN to utilize experts to acquire distinct knowledge for different tasks to
mitigate forgetting (Details are in Appendix). To validate the ability of MoELoRA to learn diverse
knowledge and mitigate catastrophic forgetting, we conduct experiments with LLaVA by setting
different expert numbers N to the values of {2, 4, 8}, and report the quantitative results in Tab. 8
(Results of General Knowledge and other MLLMs are in Appendix). It is worth noting that the 1
expert in the MoELoRA method is equivalent to the vanilla LoRA fine-tuning method. Notably, the
results demonstrate a consistent improvement across all metrics when the low-rank matrices of LoRA
are divided into a greater number of experts. This trend can be attributed to the fact that enhanced
specialization is achieved with more experts. Therefore, each distinct expert is capable of focusing
on diverse instruction intent associated with specific tasks, effectively reducing interference.

Table 8: The results of LLaVA about different numbers of experts are presented below.

Number Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

Multi-task(1) 56.77 49.35 95.55 56.65 53.90 30.09 59.50 55.65 57.18 -

1
82.45 49.99 96.05 56.40 55.45 31.27 62.20 57.08

32.97 -32.62
21.26 28.74 10.25 36.78 32.45 0.83 42.50 57.08

2
79.93 51.37 95.92 59.60 55.33 32.29 63.15 54.15

35.75 -28.03
47.77 31.67 10.75 37.10 40.98 1.44 43.65 54.15

4
80.35 52.21 96.25 59.62 58.05 34.47 64.40 62.73

40.24 -26.57
65.36 40.28 11.10 37.20 34.77 0.49 43.60 62.73

8
75.78 51.73 96.70 59.42 58.88 37.50 64.22 60.08

42.76 -25.91
63.09 38.63 10.50 37.38 43.62 0.59 43.15 60.08

Comparison with Continual Methods To further investigate the effectiveness of our proposed
method, we conduct experiments with other continual learning methods, including LwF and EWC.
For EWC, we compute the Fisher matrix by randomly selecting 1,000 samples from each task and set
the hyperparameter lambda to 0.1. For LwF, we choose to save 100 logits for each task to compute
the distillation loss, the hyperparameter lambda is also set to 0.1. Further, since the experiments
presented in Tab. 7 demonstrate that LLaVA achieves superior performance with a 40% data volume,
we conduct the following experiments based on this setting and selected this model as the baseline.
The experimental results based on LLaVA are illustrated in Tab. 9.

From the quantitative results shown below, we have several observations: (1). Our method con-
sistently achieves the best final result, with improvements of 7.87% in MAA and 2.35% in BWT,
respectively. (2). Our comparative analysis indicates that all approaches mitigate catastrophic
forgetting. Notably, these methods primarily preserve knowledge in question-answering tasks but
still experience forgetting on ImageNet and Grounding. Since EWC and LwF do not perform well
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Table 9: The comparison with other continual learning methods based on LLaVA is presented below.

Method Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

Baseline
75.33 47.06 94.95 52.95 50.77 10.25 56.73 55.33

33.18 -24.85
49.96 23.60 7.22 36.12 33.05 0.09 39.20 55.33

LwF
75.33 48.18 96.90 48.58 44.12 6.60 38.58 62.35

35.89 -19.27
63.14 39.60 8.90 34.83 14.53 2.48 40.67 62.35

EWC
75.28 48.37 96.83 42.77 44.25 8.65 60.27 61.02

40.36 -17.94
67.41 40.41 8.18 35.05 37.88 2.67 41.27 61.02

MoELoRA
75.85 49.05 93.95 56.53 48.70 25.57 61.9 55.35

41.05 -22.50
58.92 38.59 8.85 37.10 44.25 2.45 41.40 55.35

on the Grounding task, the forgetting in this task is less pronounced. (3). It is worth noting that
under the 40% data volume setting, our method exhibits slightly more forgetting compared to other
continual learning approaches. Upon further investigation, we find that this is due to an enhancement
in learning ability, as evidenced by improved performance on most tasks, particularly a 25.57%
improvement on Grounding compared to other approaches. Consequently, our approach achieves
better plasticity, achieving the best overall results. (4). The distributed training of large language
models complicates the integration of EWC and LwF compared to our approach, which is designed
based on the architecture and training paradigm of MLLMs. This poses a significant challenge that
hinders the practical application of traditional continual learning approaches.

6 Limitations

Despite the positive contributions of this study, we acknowledge the following limitations: 1)
Model Size and Training Constraints: This study only presents MLLMs ranging from 7 to 9
billion parameters. Due to computational limitations, we have not investigated larger models or
employed a full fine-tuning strategy on our CoIN. 2) Model Type: Most MLLMs utilize LLaMA
[57] as their language model, limiting the exploration of different model architectures. 3) Task
Diversity: Currently, mainstream instruction tuning primarily focuses on image question answering
tasks. Although we have incorporated classification and grounding tasks, it is crucial to explore the
influence of a broader range of tasks.

7 Conclusion

This paper introduces a novel benchmark, Continual Instruction tuNing (CoIN), utilizing widely
used vision-language datasets to investigate the behavior of Multimodal Large Language Models
(MLLMs) on continual instruction tuning. CoIN encompasses 10 datasets spanning 8 tasks and
transforms the data into an instruction-tuning format. Additionally, CoIN evaluates the MLLMs from
truth alignment and reasoning capability. Experiments on CoIN explore the performance of MLLMs
under different training orders, instruction types and data volumes. The results of these experiments
show that the general knowledge maintained in MLLMs is robust for catastrophic forgetting, rather
than instruction following. Based on this observation, we bring the MoELoRA into MLLMs to utilize
different experts to learn the different tasks, effectively reducing catastrophic forgetting in MLLMs.
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Appendix

A Datasheet

A.1 Motivation

Q: For what purpose was the dataset created? This dataset is designed as a test-bed to investigate
the behavior of Multimodal Large Language Models in continual instruction tuning. It specifically
aims to address the lack of appropriate and diverse tasks for the instruction tuning of MLLMs.

Q: Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? The dataset was created by the authors, who are affiliated
with the Center for Future Media Lab (CFM) located in the Computer Science and Engineering
department at the University of Electronic Science and Technology of China (UESTC).

Q: Who funded the creation of the dataset? This work is supported by grants from the National
Key Research and Development Program of China (2022YFC2009903/2022YFC2009900) and
the National Natural Science Foundation of China (Grant No. 62122018, No. 62020106008, No.
61772116, No. 61872064).

Q: Any other comments? No.

A.2 Composition

Q: What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Each instance represents a dialog between a human and an assistant, where the human
asks a question based on the image, and the assistant answers the question based on its knowledge.

Q: How many instances are there in total (of each type, if appropriate)? As shown in Table 1,
the dataset statistics are as follows:

• Grounding Task: 111,770 samples for training, 21,616 samples for testing.

• Classification Task: 117,715 samples for training, 4,600 samples for testing.

• VQAv2: 82,783 samples for training, 44,793 samples for testing.

• ScienceQA: 12,726 samples for training, 4,241 samples for testing.

• TextVQA: 34,602 samples for training, 5,000 samples for testing.

• GQA: 72,140 samples for training, 12,578 samples for testing.

• VizWiz: 20,523 samples for training, 8,000 samples for testing.

• OCR-VQA: 166,043 samples for training, 20,797 samples for testing.

Q: Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? Most tuning datasets use the complete data from the original datasets,
except for grounding and ImageNet. For grounding, we use only one annotation per image. For
ImageNet, we randomly select 100 categories from the total 1000.

Q: What data does each instance consist of? Each instance consists of an image, an identifier,
and a conversation list that includes instructions from the user and responses from the assistant.

Q: Is there a label or target associated with each instance? Each instance includes a value from
the assistant that describes the ground truth of the output.

Q: Is any information missing from individual instances? No.

Q: Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? No.
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Q: Are there recommended data splits (e.g., training, development/validation, testing)? Yes,
we have constructed the training and testing data. For validation, you can partition the training data
as desired.

Q: Are there any errors, sources of noise, or redundancies in the dataset? No.

Q: Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? Since we construct the instruction from commonly used vision-
language datasets, you need to download the images within these datasets, including GQA, TextVQA
train,TextVQA test, ScienceQA, VizWiz train, VizWiz val, VizWiz test, OCR-VQA,ImageNet, COCO
and the annotations for grounding RefCOCO,RefCOCO+,RefCOCOg.

Q: Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the content
of individuals’ non-public communications)? No.

Q: Does the dataset contain data that, if viewed directly, might be offensive, insulting, threaten-
ing, or might otherwise cause anxiety? No.

Q: Does the dataset relate to people? No.

A.3 Collection Process

Q: How was the data associated with each instance acquired? Our datasets are derived from
publicly available and widely used vision-language datasets, which we transform into an instruction
style using commonly employed templates.

Q: What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses
or sensors, manual human curation, software programs, software APIs)? We use a Python
script for auto-labeling to generate instruction-style data.

Q: If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? Most tuning datasets use the complete data
from the original datasets, except for grounding and ImageNet. For grounding, we use only one
annotation per image. For ImageNet, we randomly select 100 categories from the total 1000.

Q: Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? No crowdworkers
were involved in the curation of the dataset. Open-source researchers and developers enabled its
creation for no payment.

Q: Over what timeframe was the data collected? The whole instruction tuning data was generated
in 2023.

Q: Were any ethical review processes conducted (e.g., by an institutional review board)? The
source data of each task was collected through ethical review processes.

A.4 Preprocessing/cleaning/labeling

Q: Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? We utilize an auto-labeling preprocessing script to generate the instruction
labels for the dataset. Apart from this, no additional preprocessing or labeling is performed.

Q: Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? Yes, we need to download the original images from the
datasets upon which ours is based. The URLs for these datasets have been provided above.
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Q: Is the software that was used to preprocess/clean/label the data available? Yes, we construct
the tuning data by scripts.

A.5 Uses

Q: Has the dataset been used for any tasks already? No.

Q: Is there a repository that links to any or all papers or systems that use the dataset? No.

Q: What (other) tasks could the dataset be used for? Although this dataset is created for continual
instruction tuning, we can utilize the entire dataset for training a powerful assistant.

Q: Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? No.

Q: Are there tasks for which the dataset should not be used? This dataset should not be used for
commercial.

A.6 Distribution

Q: Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes, the dataset will be open-source.

Q: How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The data is
available through https://huggingface.co/datasets/Zacks-Chen/CoIN.

Q: Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? CC-4.0.

Q: Have any third parties imposed IP-based or other restrictions on the data associated with
the instances? No.

Q: Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No.

A.7 Maintenance

Q: Who will be supporting/hosting/maintaining the dataset? We will be hosting the dataset on
huggingface.

Q: How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The
authors can be contacted via their emails mentioned in the paper. Issues can also be opened on our
public GitHub repo.

Q: Is there an erratum? Not to the best of our knowledge.

Q: Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Maybe, we will add more diverse task into the CoIN.

Q: Will older versions of the dataset continue to be supported/hosted/maintained? Yes.

Q: If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so? Not officially, but our benchmark code is open source and pull requests are
welcome.
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B Dataset details

The curated datasets are kept in JSON-files with the following keys:

• id: Identification for each instruction tuning sample.
• image: Image path.
• conversation: List of instructions and the answers from user and assistant.

– from: Role of the instruction, human or gpt.
– value: Instruction or answer details.

The constructed instruction training samples for each task are placed in Instruc-
tion/Task_Name/train.json, and testing samples are placed in Instruction/Task_Name/test.json.
All code is accessible via the repository at https://github.com/zackschen/CoIN. In addition,
all the training and testing instruction samples can be download from https://huggingface.co/
datasets/Zacks-Chen/CoIN.

C Additional Experiments

Impact of Backbone Size To evaluate the influence of different model sizes of backbone, we add a
larger architecture to evaluate performance across different model sizes. We choose LLaVA-13B as
the new backbone to conduct experiments on our proposed benchmark. The comparison of Truth
Alignment and Reasoning Capability between the 13B and 7B models is presented in the table below.

Table 10: The results evaluating the Truth Alignment of LLaVA about different model size are
presented below.

Size Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

7B
82.45 49.99 96.05 56.40 55.45 31.27 62.20 57.08

32.97 -32.62
21.26 28.74 10.25 36.78 32.45 0.83 42.50 57.08

13B
82.95 54.25 97.28 52.45 59.40 40.35 68.10 61.00

39.43 -28.79
60.03 41.19 10.62 31.03 32.67 2.60 46.33 61.00

Table 11: The results evaluating the Reasoning Capability of LLaVA about different model size are
presented below.

Size Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

7B
92 75 97 72 42 58 75 78

71.28 -10.88
82 74 55 56 47 52 58 78

13B
94 77 98 77 46 76 80 79

75.98 -11.00
89 77 58 59 53 62 62 79

From these tables, we have the following observations: The learning ability increases with model size,
evident in both Truth Alignment and Reasoning Capability, resulting in 39.43% and 75.98% in terms
of MAA, respectively. In addition, the increase in model size mitigates catastrophic forgetting in
Truth Alignment, resulting in a 3.83% improvement in terms of BWT. We believe this occurs because,
with the increase in size, the model maintains a larger optimization space to learn new knowledge,
allowing it to avoid overlapping with old knowledge. Finally, the observed decrease in forgetting for
Truth Alignment and the increase in forgetting for Reasoning Capability suggest that the forgetting
of Instruction Following is mitigating. This phenomenon indicates that increasing the architecture’s
size effectively mitigates the forgetting of the Instruction Following ability, which is valuable for the
practical applications of MLLMs.

Impact of rank of LoRA The text knowledge always exists when the parameters of the base LLM
are frozen, which is consistent with our training setting (Section 3.1.2 in the paper). Therefore, any
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forgetting primarily occurs in the multimodal knowledge acquired through the additional parameters
introduced by LoRA which is very small compared with LLM. To examine this hypothesis further,
we conduct additional experiments by increasing the rank of LoRA from 128 to 256. All experiments
were conducted with a 40% data volume, as the experiments presented in Table 6 demonstrate that
LLaVA achieves superior performance under this setting. The results are shown in the table below.

From Tab. 12, we first observe that performance improves as the rank increases, confirming that
a higher number of trainable parameters enhances the model’s ability to acquire new multimodal
knowledge. Moreover, it is worth noting that knowledge forgetting is also reduced. This is likely
because the additional parameters provide the model with sufficient optimization space to learn new
multimodal information without overwriting previously utilized space.

Table 12: The results of LLaVA about different rank of LoRA are presented below.

Rank Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

128
75.33 47.06 94.95 52.95 50.77 10.25 56.73 55.33

33.18 -24.85
49.96 23.60 7.22 36.12 33.05 0.09 39.2 55.33

192
76.30 49.52 97.17 53.87 50.05 7.72 62.90 61.08

38.31 -21.15
68.82 40.63 8.72 35.70 30.45 2.95 41.08 61.08

256
76.42 49.21 96.85 51.32 45.75 7.28 63.00 59.02

38.30 -19.8
69.13 38.51 7.58 36.1 33.83 3.85 41.42 59.02

D Examples of CoIN

User: What is the object in the 

image? Answer the question 

using a single word or phrase.

Assistant: Stupa.

User: Context: The diagram below is a 

model of two solutions. Each blue ball 

represents one particle of solute. Which 

solution has a higher concentration of blue 

particles? A. neither; their concentrations are 

the same. B. Solution B. C. Solution A. 

Answer with the option's letter from the 

given choices directly.

Assistant: A

User: How many stars are on the wall? Answer 

the question using a single word or phrase.

Assistant: 4

User: What is this person holding?

Assistant: tennis racket

ClassificationScienceQA VQAv2

User: Does this table look brown? 

Answer the question using a single word or phrase.

Assistant: No

User: Is the striped couch on the left side?

Assistant: No

GQA

User: Please provide the bounding box 

coordinate of the region this sentence 

describes: man in blue on left.

Assistant: [0.22,0.25,0.4,0.72]

User: Please provide the bounding box 

coordinate of the region this sentence 

describes: man on left of kid.

Assistant: [0.22,0.25,0.4,0.72]

Grounding

Figure 1: Examples of instruction tuning data in our proposed CoIN, which contains diverse visual
understanding and perception tasks, such as classification, referring expression comprehension and
image question answering.

To better show the constructed instruction data, we plot some examples with different tasks, as shown
in Fig. 1. Blue text represents the instruction templates. We aim for the model to learn the capability
of instruction following through these templates.

E Truth Alignment Comparison details

For the Image Question Answering task (including VQAv2, ScientQA, TextVQA, GQA, VizWiz,
and OCR-VQA), we calculate the accuracy of predicting answers against ground truth, as in LLaVA
[35]. In the classification task, the metric is computed by comparing predicted labels with real ones.
For the referring expression comprehension task, we employ the widely used Intersection over Union
(IoU) as the evaluation criterion to determine the success of the model’s predictions. If the IoU of
the predicted bounding box and the ground-truth bounding box is greater than 0.5, we consider the
prediction to be correct.
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F Experiments details

We conduct the experiments on LLaVA and Qwen-VL based on their official code. Following their
official hyperparameters, we use the Adam optimizer with no weight decay and a cosine learning
rate with a warmup ratio of 3%. During finetuning, gradient checkpointing is used to save GPU
memory, and offloading is not used. BF16 and TF32 are enabled to achieve a balance between speed
and precision. For MiniGPT-v2, we adapt the official code into transformer training to utilize the
deepspeed for offloading frozen parameters to the CPU. In addition, we train all models with 8×
3090s with one epoch.

G More results about Reasoning Capability

Table 13: The results of LLaVA about different task orders are presented below.

Order Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

Random
92 75 97 72 42 58 75 78

71.28 -10.88
82 74 55 56 47 52 58 78

GQA Grounding ImageNet OCR-VQA ScienceQA TextVQA VizWiz VQAV2 MAA BWT

Alphabet
77 75 98 81 80 75 48 79

68.88 -3.00
71 94 63 71 90 77 44 79

Tab. 13 presents the results regarding the Reasoning Capability of different task orders. From
these comparison results, we observe that the Reasoning Capability follows a similar trend to Truth
Alignment, with the performance of Random being better than Alphabet. Additionally, the forgetting
of Alphabet is also milder compared to Random order, resulting in a -3.00% decrease in terms of
BWT, indicating that task order impacts Reasoning Capability.

Table 14: The results of LLaVA about different instruction templates are presented below.

Type Accuracy on Each Task Overall Results
ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAV2 OCR-VQA MAA BWT

Original
92 75 97 72 42 58 75 78

71.28 -10.88
82 74 55 56 47 52 58 78

Diverse
92 76 97 71 47 61 71 80

72.54 -9.62
80 74 53 54 46 73 58 80

10Type
92 76 98 76 41 74 79 83

74.21 -10.00
88 77 59 58 45 67 62 83

Tab. 14 reveals the performance of Reasoning Capability on different instruction templates. These
comparisons also reveal that the impact of templates on Reasoning Capability mirrors that on Truth
Alignment: simply switching to different templates has minimal effect on overall performance, but
increased diversity in templates enhances the robustness of the model.

H Instruction diversity detail

We devise two additional instruction templates to investigate the impact of varying templates. The
details of these templates are shown in Tab. 15.

I MoELoRA details

The Mixture-of-Experts (MoE) aims to activate a subset of parameters for each input, enabling a
significant increase in model parameters without a corresponding increase in computational efforts.
In commonly used transformer-based models, MoE typically transforms the feed-forward layer of
each transformer block into an MoE layer [14, 36, 16]. This MoE layer comprises two modules:
experts and gate function. The experts are several identical and independent feed-forward neural
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Table 15: The list of instructions template for each task.
Task Original Diverse 10Type

ScienceQA
Answer with the option’s

letter from the given
choices directly

Answer with the option’s
letter from the given

choices directly

Answer with the option’s letter from the given choices directly
Select the correct answer from the given choices and respond with the letter of the chosen option
Determine the correct option from the provided choices and reply with its corresponding letter
Pick the correct answer from the listed options and provide the letter of the selected option
Identify the correct choice from the options below and respond with the letter of the correct option
From the given choices, choose the correct answer and respond with the letter of that choice
Choose the right answer from the options and respond with its letter
Select the correct answer from the provided options and reply with the letter associated with it
From the given choices, select the correct answer and reply with the letter of the chosen option
Identify the correct option from the choices provided and respond with the letter of the correct option
From the given choices, pick the correct answer and respond by indicating the letter of the correct option

Grounding
Please provide the bounding
box coordinate of the region

this sentence describes

Please provide the bounding
box coordinate of the region

this sentence describes

Identify and provide the bounding box coordinates that match the description given in this sentence
Extract and provide the bounding box coordinates based on the region described in the sentence
Please provide the bounding box coordinate of the region this sentence describes
Find and provide the bounding box coordinates for the region mentioned in the sentence
Provide the coordinates of the bounding box that correspond to the region described in the sentence
Give the bounding box coordinates as described in the sentence
Determine and provide the bounding box coordinates based on the description in the sentence
Identify and provide the coordinates of the bounding box described in the sentence
Provide the coordinates for the bounding box based on the region described in the sentence
Extract and provide the coordinates for the bounding box described in the sentence
Identify and give the coordinates of the bounding box as described by the sentence

GQA
Answer the question

using a single
word or phrase

Respond to the question
briefly, using only one

word or a phrase

Respond to the question with a single word or a short phrase
Respond to the question using only one word or a concise phrase
Answer the question with a single word or a brief phrase
Respond with one word or a short phrase
Provide your answer in the form of a single word or a concise phrase
Respond to the question with just one word or a brief phrase
Answer the question using a single word or a concise phrase
Provide your response using only one word or a short phrase
Respond to the question with a single word or a brief phrase
Respond to the question using just one word or a concise phrase
Answer the question with one word or a short phrase

ImageNet
Answer the question

using a single
word or phrase

Express your answer in
a single word or a

short, descriptive phrase

Express your answer in a single word or a short, descriptive phrase
Provide your answer using a single word or a brief phrase
Describe the content of the image using one word or a concise phrase
Respond to the question with a single word or a short, descriptive phrase
Classify the image content using only one word or a brief phrase
Give your answer in the form of a single word or a concise phrase
Use a single word or a short phrase to categorize the image content
Express your answer with one word or a short, descriptive phrase
Identify the type of content in the image using one word or a concise phrase
Summarize your response in a single word or a brief phrase
Use one word or a short phrase to classify the content of the image

OCR-VQA
Answer the question

using a single
word or phrase

Condense your answer for
each question into a single

word or concise phrase

Answer with the option’s letter from the given choices directly
Select the correct answer from the given choices and respond with the letter of the chosen option
Determine the correct option from the provided choices and reply with its corresponding letter
Pick the correct answer from the listed options and provide the letter of the selected option
Identify the correct choice from the options below and respond with the letter of the correct option
From the given choices, choose the correct answer and respond with the letter of that choice
Choose the right answer from the options and respond with its letter
Select the correct answer from the provided options and reply with the letter associated with it
From the given choices, select the correct answer and reply with the letter of the chosen option
Identify the correct option from the choices provided and respond with the letter of the correct option
From the given choices, pick the correct answer and respond by indicating the letter of the correct option

TextVQA
Answer the question

using a single
word or phrase

Capture the essence of your
response in a single word

or a concise phrase

Answer the question with just one word or a brief phrase
Use one word or a concise phrase to respond to the question
Answer using only one word or a short, descriptive phrase
Provide your answer in the form of a single word or a brief phrase
Use a single word or a short phrase to respond to the question
Summarize your response in one word or a concise phrase
Respond to the question using a single word or a brief phrase
Provide your answer in one word or a short, descriptive phrase
Answer the question with a single word or a brief, descriptive phrase
Capture the essence of your response in one word or a short phrase
Capture the essence of your response in a single word or a concise phrase

VizWiz
Answer the question

using a single
word or phrase

Provide a succinct
response with a single

word or phrase

Answer the question using only one word or a concise phrase
Respond to the question using only one word or a concise phrase
Respond to the question with a single word or a brief phrase
Provide your answer using just one word or a short phrase
Respond with one word or a concise phrase
Answer the question with just one word or a brief phrase
Use a single word or a short phrase to answer the question
Provide your answer in the form of one word or a brief phrase
Reply to the question using one word or a concise phrase
Answer with a single word or a short phrase
Use one word or a brief phrase to answer the question

VQAv2
Answer the question

using a single
word or phrase

Answer the question
using a single
word or phrase

Answer the question using a single word or phrase
Answer the question with a single word or a brief phrase
Use one word or a short phrase to respond to the question
Answer the question using just one word or a concise phrase
Provide your answer to the question using only one word or a brief phrase
Respond to the question with a single word or a short phrase Use a single word or phrase to answer the question
Provide an answer using only one word or a brief phrase
Answer the question succinctly with one word or a brief phrase
Answer the question with just one word or a short phrase
Respond to the question using a single word or a concise phrase

networks, and the gate function models the probability distribution to govern the weights of outputs
from these expert networks. Specifically, for an intermediate representation x from the previous
attention layer in models, the output of the MoE layer can be mathematically represented as follows:

h =
∑N

i=1Ei(x)G(x)i, (3)

where the Ei(·) and G(·)i denote i-th expert and the gate function. In addition, the gate function can
be written as follows:

G(h) = Softmax(hWg), (4)

where Wg is the trainable weight within gate function G().

21



Our goal is to tackle the challenge of catastrophic forgetting in the continual instruction tuning
of MLLMs. We are inspired by MoE, which employs distinct experts to acquire various types of
knowledge, akin to the expansion category of continual learning methods. Therefore, we bring the
prevalent method MoELoRA [36, 14] in CoIN to utilize experts to acquire distinct knowledge for
different tasks to mitigate forgetting.

The MLLMs in CoIN are fine-tuned in a parameter-effective way, i.e Low-rank Adaptation (LoRA)
[25]. LoRA uses two low-rank matrices with rank r to update the knowledge and avoids changing the
parameter of the learned model. Specifically, a certain transform feed-forward layer is parameterized
with W ∈ Rdin×dout , where din and dout are the dimension of input and output, respectively.
Two low-rank matrix A ∈ Rdin×r and B ∈ Rr×dout are used to learn extra knowledge with:
h = Wx+ α

rBAx, where x ∈ Rdin and h ∈ Rdout denote the input and output vector, respectively.
The rank r controls the number of trainable matrices. In addition, the constant hyper-parameter α
facilitates the tuning of rank r [25].

To achieve the learning of diverse knowledge from different tasks, MoeLoRA proposes a set of
experts to replace the LoRA matrices, denoted as {Ei}Ni=1, where N denotes the number of experts.
Therefore, the original computation will change to:

h = Wx+
α

r

N∑
i=1

GiEi(x) = Wx+
α

r

N∑
i=1

GiBiAix, (5)

where Gi represents the gate function, which we will detail in the following paragraph. The matrices
Ai ∈ Rdin× r

N and Bi ∈ R r
N ×dout represent the i-th expert of two low-rank matrices, each with a

lower rank of r
N . With multiple experts in MoELoRA, the model can learn diverse task knowledge

from different experts. Additionally, MoELoRA has the same number of trainable parameters as
LoRA, indicating high efficiency.

Since there are many experts in each MoELoRA layer, the key is to create a suitable distribution of
each expert to solve each task. As previously emphasized, to mitigate forgetting, the contribution
of each expert should be tailored to specific tasks. Therefore, to regulate these contributions, a
gate function is introduced. The gate function receives an input similar to the experts and outputs
a contribution to choose suitable experts to solve the tasks. This computation is captured by the
following equation:

G(x) = Softmax(xWg), (6)
where Wg is the trainable weight within gate function G(·). To balance the scale of the output
distribution, a softmax operation is applied to normalize the contribution weights. This output
distribution is utilized to incorporate the varying percentage contributions of each expert, as outlined
in Eq. 5. Ultimately, all the outputs are concatenated to form the final output for the next layer.

J Related Work

J.1 Continual Learning

Recently, numerous methods have been proposed to mitigate catastrophic forgetting in the continual
learning paradigm. These methods can be broadly categorized into three groups: regularization-based,
memory-based, and architecture-based methods.

Regularization-based methods [52, 66, 1, 32, 7] focus on curing a continual learning network of its
catastrophic forgetting by introducing an extra regularization term in the loss function. e.g, EWC[52]
penalizes the changes of importance parameters when learning new tasks.

Memory-based methods [5, 49, 4, 39, 6] store previous samples or generate samples for replaying
while learning a new task. Some methods [5, 49, 4, 4] use replayed samples from previous tasks to
constrain the update of parameters when learning the new task. During training on a new task of EEC
[2], reconstructed images from encoded episodes were replayed to avoid catastrophic forgetting.

Architecture-based methods [65, 27, 29, 43, 53] design new architecture modules to each task to
prevent any possible forgetting. PNN [50] adds a network to each task and lateral connections to
the network of the previous task while freezing previous task parameters. MNTDP [58] provides a
learning algorithm to search the modules to combine with, where these modules represent atomic
skills that can be composed to perform a certain task.
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J.2 Instruction Tuning

Instruction tuning is a promising approach to enable the pre-trained model to follow natural language
instructions and improve their generalization performance to unseen tasks. Some methods [64, 10,
59, 63, 11, 34] use the existing vision-language datasets to create instruction tuning data by different
templates. At the same time, some methods [35, 60, 24, 62, 56] use the existing vision datasets to
generate instructions based on powerful LLMs (e.g GPT-4 [47]). LLaMA [57] observes that a very
small amount of instructions improves the performance on MMLU [23], and further improves the
ability of the model to follow instructions. LLaVA [35] leverages ChatGPT [46] and GPT-4 [47]
for multimodal instruction-following data collection, based on the widely existing image-pair data.
InstructBLIP [11] transforms 26 datasets into the instruction tuning format and groups them into 11
task categories for fine-tuning. To further enhance the instruction-following capacity, SPHINX [34]
collects instruction data from a wide range of multi-modal tasks, and jointly fine-tune the model to
learn a vision generalist, instead of a specialist for specific scenarios.
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