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ABSTRACT

Multimodal large language models (MLLMs) achieve remarkable success in the
vision-language tasks but remain prone to hallucination, often attributed to abnor-
mal attention behaviors. A recurring phenomenon is the emergence of attention
sinks—tokens that absorb large amounts of attention despite limited semantic con-
tent. While previously regarded as artifacts that exacerbate hallucination, we show
that in MLLMs certain tokens within system prompts act as stable, system-level at-
tention sinks. Through causal interventions including masking and content substi-
tution, we find these tokens serve critical functions: anchoring attention to ensure
computational stability, influencing outputs, and implicitly tracking the model’s
state. Building on this, we propose the Attention-Budget Hypothesis, which re-
frames modality bias as a trade-off in attention allocation. Guided by this per-
spective, we design SPEAR (Sink-PrEserving Attention Reallocation), an inter-
vention that boosts visual attention while preserving sink functions, achieving ef-
fective hallucination mitigation without degrading reasoning. Our work provides
the first systematic characterization of system-level attention sinks in MLLMs and
highlights their functional role in both model stability and multimodal reasoning.

1 INTRODUCTION

The remarkable success of Multimodal Large Language Models (MLLMs) in vision-language tasks
has transformed how we approach multimodal understanding, from visual question answering to
complex reasoning about images. However, this success has been accompanied by persistent chal-
lenges, particularly the phenomenon of hallucination, where models generate plausible but factually
incorrect descriptions of visual content. Understanding the internal mechanisms that drive these
behaviors is crucial for building more reliable and interpretable multimodal systems.

Recent research has identified attention mechanisms as a key window into MLLM behavior, re-
vealing that these models exhibit complex attention patterns that evolve across layers. Of particu-
lar interest is the emergence of ”attention sinks,” tokens that consistently absorb disproportionate
amounts of attention despite carrying minimal semantic content. While previous work has exten-
sively studied attention sinks in pure language models, their manifestation and role in multimodal
contexts remain poorly understood.

Existing investigations of attention sinks in MLLMs have primarily focused on visual tokens, user
instructions, or generated outputs, often framing them as problematic artifacts that contribute to
hallucination. However, this perspective may be incomplete. In language models, attention sinks
have been shown to serve important functional roles, acting as computational anchors that stabilize
model behavior. This raises a fundamental question: do attention sinks in MLLMs serve similar
stabilizing functions, or are they indeed the attention ”errors” that current mitigation strategies
assume them to be?

In this work, we shift focus to a previously overlooked but ubiquitous component of MLLM inputs:
the system prompt. We discover that certain tokens within system prompts consistently emerge
as powerful attention sinks across multiple model architectures, absorbing attention from queries
throughout the sequence. Unlike the unstable attention sinks observed in other segments, these
system-level sinks exhibit remarkable consistency across layers and contexts, suggesting they may
serve fundamental computational roles.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To understand their function, we conduct systematic causal interventions, including attention mask-
ing, value zeroing, and content substitution experiments. Our findings reveal that these tokens serve
multiple critical roles: they act as attention anchors that prevent computational instability, carry se-
mantic information that influences model outputs, and govern multi-step reasoning and termination
behaviors.

These discoveries prompt us to reconsider the prevailing explanation for modality bias in MLLMs.
The commonly observed attention shift away from visual tokens in deeper layers has been inter-
preted as evidence that models abandon visual processing in favor of text-based reasoning. How-
ever, we argue this interpretation is confounded by the presence of attention sinks, which should not
be conflated with ordinary text tokens. When we separate sink tokens as their own category, we find
that attention between visual and textual content remains more balanced than previously thought.

Figure 1: Architecture of SPEAR. We separates the
sink token from the suppressed set.

Building on this insight, we propose the
Attention-Budget Hypothesis: attention
reallocation in MLLMs involves inherent
trade-offs, where gains in one modality
necessarily come at costs to others. This
perspective explains why many hallucina-
tion mitigation strategies that boost visual
attention can be effective, while also pre-
dicting that the source of reallocated at-
tention matters critically for maintaining
model stability and higher-order reasoning
capabilities.

We validate these insights through
SPEAR (Sink-PrEserving Attention
Reallocation), a novel intervention that
reallocates attention to visual tokens
while preserving the critical functions
of system-level attention sinks. SPEAR
achieves competitive hallucination miti-
gation performance while maintaining model stability and reasoning capabilities, demonstrating the
practical value of understanding attention sink functions.

Our contributions are threefold: (1) We provide the first systematic characterization of attention
sinks in system prompts of MLLMs, revealing their inheritance from underlying language model ar-
chitectures. (2) Through causal interventions, we demonstrate that these tokens serve essential com-
putational functions rather than representing attention errors. (3) We introduce a refined theoretical
framework for understanding modality bias and attention reallocation, with practical implications
for hallucination mitigation strategies.

2 RELATED WORK

2.1 ATTENTION SINK IN LLMS

The phenomenon of attention sink has been widely discussed in LLM research. Early work (Xiao
et al., 2023) coined the term, describing it as the offloading of surplus attention to specific tokens.
Follow-up studies provided different explanations: as artifacts of Transformer head(Vaswani et al.,
2017) design and residual updates (Bondarenko et al., 2023), as emergent behaviors not confined
to initial tokens (Yu et al., 2024b), or as fixed bias components with strong activations shaping
attention flow (Sun et al., 2024). Other studies further attribute it to head dormancy dynamics (Guo
et al., 2024) or the dependency structure introduced by SoftMax normalization (Gu et al., 2024).
Together, these works suggest that sink tokens are structural byproducts of pretraining, with mixed
impacts on downstream performance.
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2.2 ATTENTION SINK IN MLLMS

In MLLMs, attention sinks are closely tied to hallucinations and are often described as anchor or
trap tokens. Several studies focus on visual sink tokens, showing that suppressing them reallocates
attention to other image tokens and may reduce hallucinations (Kang et al., 2024; Che et al., 2025).
Others argue that their emergence relates to the alignment between visual encoder outputs and LLM
attention, thus amplifying redundant information and misleading the model (Gong et al., 2024; Chen
et al., 2025). Meanwhile, research on instruction sink tokens views them as knowledge aggregation
points, but also potential sources of hallucination due to over-concentration (Huang et al., 2024; Wei
& Zhang, 2024). More recently, spectrum-based analyses (Tang et al., 2024) show that over-reliance
on sink tokens can dominate decoding dynamics, calling for regularization of their propagation. The
majority of studies emphasize the detrimental impacts of sink tokens that are outside the system
prompt segment, while only limited work considers possible functional or aggregative roles.

2.3 HALLUCINATION MITIGATION PREDICATED ON MODALITY BIAS

A dominant line of work instead attributes hallucinations to modality bias—the model’s over-
reliance on language priors at the expense of vision. Typical solutions enhance or reallocate at-
tention toward visual tokens, e.g., by reinforcing vision-aware heads (He et al., 2025), amplifying
vision features during fusion (Yin et al., 2025), or directly reallocating attention budgets (Tu et al.,
2025). While effective, these methods implicitly attribute hallucinations to insufficient visual atten-
tion relative to sink and text tokens, an assumption we revisit in this work.

3 THE CHARACTERISTICS OF SINK TOKENS

3.1 PRELIMINARIES

Throughout this paper, we use the general term sink tokens to refer to tokens that disproportionately
absorb attention. For clarity, we distinguish them by their segment, e.g., system sink tokens (in
system prompts), visual sink tokens (in visual tokens), instruction sink tokens (in user instruction
tokens), and output sink tokens (in generated outputs). Unless otherwise noted, sink tokens in this
paper specifically refer to system sink tokens.

Terminology. We specifically focus on sink tokens that appear within the system-prompt segment,
denoting the set by Tsink ⊂ Tsys. Unless otherwise stated, Tsys\sink refers to the remaining system
prompt tokens.

This input sequence S of MLLMs is composed of four segments: (1) system prompts Tsys, (2) image
tokens Tvis, (3) user instructions Tuser, and (4) model outputs Tout. Formally,

S = [Tsys, Tvis, Tuser, Tout] ∈ Rn×dmodel . (1)

Here each T∗ denotes both the subsequence of embeddings and, by slight abuse of notation, the
index set of the corresponding tokens in S. Multi-head attention projects S into queries, keys, and
values:

Q = SWQ, K = SWK , V = SWV , (2)

with WQ,WK ,WV ∈ Rdmodel×d. The attention weights are

A = softmax
(

1√
d
QK⊤

)
, aij =

exp(zij)∑n
j′=1 exp(zij′)

. (3)

For any segment T ∈ {Tsys, Tvis, Tuser, Tout}, the attention mass from query i to T is

αi(T ) =
∑
j∈T

aij . (4)

The single-head attention output is then

Attn(S) = AV, hi =

n∑
j=1

aijvj . (5)
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3.2 ATTENTION PROFILE AND ACTIVATION

Our observation covers several representative MLLMs (LLaVA series: LLaVA-1.5-7B, LLaVA-
1.5-13B(Liu et al., 2024a), LLaVA-Next-Mistral-7B(Liu et al., 2024b), LLaVA-Next-Llama3-8B(Li
et al., 2024); Qwen series: Qwen2-VL-7B(Wang et al., 2024), Qwen2.5-VL-7B(Bai et al., 2025);
InternVL series: InternVL2-8B(Chen et al., 2024), InternVL3-9B(Zhu et al., 2025), chosen to reflect
the diversity of their underlying LLMs. Sun et al. (2024) suggests that models built on the same
LLM tend to display highly similar sink token patterns. To meaningfully capture differences in such
patterns, we therefore select MLLMs grounded in distinct LLM architectures.

The identification of sink tokens is based solely on the criterion of high attention occupancy. In
this context, high attention occupancy does not signify receiving greater attention relative to adjacent
tokens or within a specific segment T ; rather, it denotes the allocation of a disproportionately large
share of attention across the entire token sequence S.

(a) LLaVA-1.5-7B (b) LLaVA-1.5-13B (c) Qwen2-VL-7B (d) Qwen2.5-VL-7B

Figure 2: Attention visualizations of models.

Among the screened models, LLaVA-1.5-7B, LLaVA-1.5-13B, Qwen2-VL-7B, and Qwen2.5-VL-
7B exhibit the strong sink token patterns, as illustrated in Fig.2 (a–d). The remaining models show
only weak or inconsistent patterns and thus are not considered to have strong sink tokens under our
identification criteria.

(a) LLaVA-1.5-7B (b) LLaVA-1.5-13B (c) Qwen2-VL (d) Qwen2.5-VL

Figure 3: Massive activation of models.

When further visualizing per-token activations across the sequence S in MLLMs, we observe that
sink tokens exhibit massive activations—up to thousands of times greater than ordinary tokens. The
observation is consistent with findings in LLM research (Sun et al., 2024). Specifically, the dimen-
sions of the massive activation of sink tokens are exactly the same as the dimensions of sink tokens
previously identified in the same LLM. Fig. 3 (a–d) visualizes the preceding tokens in S. By con-
trast, sink tokens in other segments (e.g., Tvis, Tuser, Tout) generally show only modest increases, with
activations just a few times higher than normal.

3.3 TEXTUAL CONTENT AND LOCATION

Based on attention patterns, we identified the ID of sink tokens in S, examined the layers where sink
tokens persist, and further decoded their corresponding textual content. As presented in Table 1,
several consistent observations can be drawn across models.

First, the initial token of the Tsys (which also is the first token of the S) typically functions as the
sink token. In addition, sink tokens can also be found at other locations within the Tsys. Second,
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Table 1: Locations of sink tokens of MLLMs.

Model Language Model Decoded Word Token ID Layers

LLaVA-1.5-7B Vicuna-7B ’<s>’ 0
3 ∼ 31

’.’ 12

LLaVA-1.5-13B Vicuna-13B ’<s>’ 0 5 ∼ 40

Qwen2-VL Qwen2-7B ’<im_start>’ 0 5 ∼ 28

Qwen2.5-VL Qwen2.5-7B ’\n’ 2 5 ∼ 28

Table 2: Impact of masking Sink Tokens on LLaVA-1.5-7B. For LLaVA-1.5-7B, only
masking both sink tokens causes collapse.

Experiment Setting POPE VQAT MM-Vet SQA MME
Performance Score

Baseline 86.9 58.2 31.7 69.4 1515
Mask Sink Tokens in Tvis 86.9 58.1 32.2 69.4 1505
Mask Tsink 0.0 0.0 0.9 0.0 0.0

Time Cost (hh:mm:ss)
Baseline 29:59 25:45 10:41 16:59 08:17
Mask Tsink 10:45:36 4:51:49 1:16:52 27:51:10 3:24:47

sink tokens are generally semantically vacuous elements, such as punctuation marks, conjunctions,
or structural tokens. Third, sink tokens begin to appear only after the shallow layers, and once they
emerge, they remain consistently stable across the subsequent deeper layers. These characteristics
suggest that sink tokens are more consistent with the sink tokens observed in LLMs (Gu et al., 2024;
Yu et al., 2024b), rather than with the sink tokens located in other segments (e.g., Tvis, Tuser, Tout) in
MLLMs. Those tokens typically exhibit unstable persistence across layers, frequently appearing or
disappearing as the layer depth changes (Kang et al., 2024; Wei & Zhang, 2024).

4 CAUSAL INTERVENTIONS ON SINK TOKENS

4.1 ISOLATING THE ROLE OF ATTENTION: MASKING INTERVENTION

Motivation. Section 3 shows that, although sink tokens carry little semantic content, they consis-
tently attract a disproportionately large share of attention. This appears to be a kind of misallocation
of attention that requires correcting.

Experiment. We design an intervention experiment where the attention flowing into sink tokens
is masked. In this setting, the masking is applied with queries defined as Tuser and Tout, and keys
restricted to the sink tokens. Experiments were conducted on five benchmark datasets: POPE (Li
et al., 2023), TextVQA (Singh et al., 2019), MM-Vet (Yu et al., 2024a), SQA (Lu et al., 2022), and
MME (Fu et al., 2024).

Results. As shown in the Table 2, applying the masking operation severely destabilizes the model
outputs, leading the model to collapse. In this state, it scores 0 on all benchmarks and exhibits
an abnormally large computational overhead, ranging from several dozen to nearly a hundred times
greater. More specifically, this collapse manifests as the model endlessly generating tokens unrelated
to the input. This is consistent with phenomena previously observed in LLMs (Sun et al., 2024). In
contrast, masking all sink tokens in Tvis had no noticeable impact on model performance.

Takeaway. Although semantically empty, the sink token is not a meaningless placeholder that
merely occupies attention. The sink token must remain “online” and “reachable”, serving as a
critical node within the attention information interaction network.
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Table 3: Results of zeroing Vsink on the MME. Perc.FG = Fine-Grained Recognition, Perc.CG =
Coarse-Grained Recognition, CSR = Commonsense Reasoning, NC = Numerical Calculation, Trans.
= Text Translation, CodeR = Code Reasoning.

Model Perc.CG Perc.FG OCR CSR NC Trans. CodeR Overall

LLaVA-1.5-7B 648 727 140 111 70 108 60 1864
+Vsink = 0 366 491 55 58 50 58 50 1128

LLaVA-1.5-13B 643 761 125 128 43 78 48 1826
+Vsink = 0 570 592 73 101 40 93 53 1522

Qwen2-VL 680 827 133 152 125 200 160 2277
+Vsink = 0 650 735 95 143 73 170 108 1974

Qwen2.5-VL 693 813 193 141 133 185 155 2313
+Vsink = 0 506 485 155 72 115 80 88 1501

4.2 TESTING INFORMATION FLOW: ZEROING THE VALUE

Motivation. Subsection 4.1, we showed that cutting off the information flow to the sink token
destabilizes the model. However, attention encompasses both the allocation of focus (through the
attention weights A) and the propagation of information (through the value vectors Vsink). This
motivates an investigation into whether the model can retain only the attention interactions of the
sink token.

Experiment. To explore this, we design an intervention in which the attention weights A remain
unchanged, but the value vectors of sink tokens Vsink are set to zero. In this way, sink tokens can
still participate in the attention mechanism as receivers (allowing other tokens to see the sink to-
ken), while ensuring that no information is propagated from them to other tokens. To demonstrate
performance across multiple tasks, experiments were conducted on MME (Fu et al., 2024).

Results. The results in Table 3 show a moderate decline in performance across nearly all tasks.
While the models remain capable of generating grammatically coherent outputs, the overall quality
and accuracy are diminished. Nevertheless, the models did not collapse on any task, unlike in the
masking-attention setting.

Takeaway. The sink token serves a dual role: it functions both as an attention anchor and as
an information carrier. First, the result indicates that retaining the accessibility of sink tokens
in the attention computation contributes to stability, serving a function analogous to a reference
point. Second, the observed performance degradation shows that its value vector Vsink encodes
useful information, and removing this information undermines the model’s performance.

4.3 REPLACING INFORMATION CONTENT: MEAN-VALUE SUBSTITUTION

Motivation. Subsection 4.2 shows that sink tokens not only serve as attention anchors but also
carry information. The causal factor in the value representation of sink tokens remains unclear: their
functionality may arise either from merely carrying some value mass or from encoding idiosyncratic,
task-specific content.

Experiment. To disentangle these possibilities while keeping attention and positions unchanged,
we introduce a content-neutralization intervention. Instead of zeroing, we erase idiosyncrasy by
replacing each sink token value Vsink with a population mean computed from non-sink tokens in the
S. We build a tiny dataset consisting of three tasks to evaluate this intervention: (1) simple image
caption, (2) adversarial question, and (3) multi-step reasoning.

Results. We observe a very interesting result among the models, as illustrated in Figure 4. The
models remain capable of handling simple image captioning tasks. For adversarial questions, they
still produce coherent responses and terminate in time, though with a high degree of hallucination.
On multi-step reasoning tasks, however, the models collapse again. They have lost the ability for
multi-step reasoning, fail to follow instructions, keep producing progressively degraded image de-
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Figure 4: Effect of content substitution on Sink Tokens on different tasks.

scriptions, and are unable to generate a termination token. The negative impact far exceeds that of
setting the value vector Vsink to zero.

Takeaway. Vsink is crucial for procedural tasks, as it is deeply involved in higher-order cognitive
functions such as executing multi-step instructions, tracking reasoning states, and controlling re-
sponse termination.

Crucially, not all interventions affect this mechanism equally. Setting Vsink = 0 amounts to silence,
which weakens, but does not actively mislead it. In contrast, replacing it with Vmean injects wrong
information. This false signal contaminates the computational flow and leads to cascading errors.

The resulting degradation is not cliff-like but rather hierarchical. Once core state-tracking functions
are compromised, the model first abandons complex reasoning tasks and reverts to simpler behav-
iors (e.g., image captioning) that are strongly anchored in pretraining. Ultimately, this breakdown
manifests as non-terminating failures, where the model struggles to track progress and fails to emit
termination tokens.

5 REVISITING THE ROOTS OF HALLUCINATION: MODALITY BIAS

5.1 BEYOND THE CONVENTIONAL MODALITY BIAS VIEW: A SEPARATED-SINK VIEW

A prevailing view holds that MLLMs exhibit modality bias: after shallow layers, the attention allo-
cated to visual tokens is much lower than that to tokens conventionally categorized as text. This is
often taken to imply that visual information is no longer utilized and the model reverts to text-only
interactions, a conclusion typically drawn from aggregate attention statistics over S. However, this
measurement scheme conflates sink tokens with text tokens, introducing an aggregation bias. As
shown in the Figure. 5, sink tokens occupy a disproportionately large attention share after shallow
layers, and differ fundamentally from ordinary text tokens in characteristics and function. Treating
them as text tokens inflates the text side and distorts the true allocation between text and vision.

Figure 5: Attention of Tsys\sink, Tsys, Tvis, and Tuser across layers and proportion of vision and text in
the 12th layer of Qwen2VL-7B
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To remove this bias, we separate sink tokens as their own category and report a three-way partition
{ Tvis, Ttext, Tsink }. Across multiple models, once sink tokens are isolated, mid-layer attention shows
near-balanced shares between vision and ordinary text (Fig. 5). The apparent text dominance largely
vanishes.

Similarly, interpreting the attention shift as the termination of visual processing is misleading. In the
mid layers, attention from multiple sources (vision, system, user instruction) converges onto the sink
token (Fig. 5). It is not a one-way exit from the visual pathway. We argue this convergence reflects
a stage transition, from early evidence intake to mid-layer internal processing and integration.
During this transition, ordinary tokens don’t need to retain large attention shares. Concentration on
the sink token primarily serves control and stabilization rather than signaling the abandonment of
visual (or other) information. This view is consistent with prior work (Yin et al., 2025) showing that
cross-modal interaction peaks in mid layers.

5.2 THE ATTENTION-BUDGET HYPOTHESIS

Given that prior theories do not hold, how can we explain the effectiveness of a series of strategies
that boost visual attention to mitigate hallucinations? We propose a new hypothesis, the Attention-
Budget Hypothesis. For each query i, the attention budget over the token subsets T satisfies∑

T
αi(T ) = 1,

∑
T

∆αi(T ) = 0. (6)

Here, ∆αi(T ) denotes the change in the share allocated to the subset T . Any intervention is thus a
local reallocation. Therefore, for vision-oriented tasks, reallocating a portion of attention from other
parts (e.g., Tsys\sink, Tuser, Tout, or Tsink) to Tvis is equivalent to forcing the model to consider visual
evidence more, thereby improving performance on such tasks.

However, the source of this reallocated budget matters. Allocating the budget from Tsink could
potentially compromise system stability and undermine high-level control. If the budget is drawn
from Tsys\sink, Tuser and Tout, the model may lose its role awareness, weaken instruction-following,
or impair the coherence of the generated text, respectively. In summary, any reallocation entails
inherent costs—gains for vision tasks are invariably accompanied by trade-offs. Finally, because the
natural distribution varies across models, the same reallocation strategy may help in one model but
hurt in another.

6 UTILIZE THE PATTERNS OF SINK TOKENS TO MITIGATE HALLUCINATION

6.1 EXPERIMENTAL SETUP

We use the training-free method, Visual Amplification Fusion (VAF) (Yin et al., 2025) as our base-
line. The intuition of VAF is that suppressing text tokens while amplifying vision tokens can alleviate
hallucination. Formally, the pre-softmax attention score matrix Z is modified as

Z̃ij =


β · Zij , j ∈ S,

α · Zij , j ∈ Timg,

Zij , otherwise,

(7)

where α > 1 is the enhancement coefficient and β < 1 is the suppression coefficient, and S de-
notes the set of tokens regarded as text to suppress.

For the baseline VAF, we define SVAF = Tsys, treating sink tokens as part of the text burden. In
contrast, our proposed variant of VAF, SPEAR, is grounded in the insight that sink tokens play
indispensable functional roles in models. Therefore, SPEAR separates them from the suppressed
set, instead applies SSPEAR = Tsys\sink ∪ Tuser ∪ Tout, and preserves the original scores of Tsink while
still reallocating the attention budget to vision tokens. To ensure fair comparison, both methods are
applied on the same heads and layer ranges, and all models are evaluated with greedy decoding.
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Table 4: Results on POPE subsets (Random / Popular / Adversarial) of models.

Method Subset LLaVA-1.5-7B LLaVA-1.5-13B Qwen2-VL Qwen2.5-VL
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Baseline

Rand 87.3 88.2 87.1 88.1 87.4 88.6 87.1 88.5
Pop 86.1 87.3 86.2 87.6 86.5 87.7 86.4 87.7
Adv 84.2 85.2 84.5 85.6 85.1 86.3 85.4 86.7
Avg 85.9 86.9 85.9 87.1 86.3 87.5 86.3 87.6

VAF

Rand 88.7 89.1 88.8 89.3 88.5 90.3 87.2 88.6
Pop 87.0 87.6 87.7 88.5 88.2 88.9 86.5 87.8
Adv 84.4 84.7 85.3 85.8 86.7 87.3 85.2 86.4
Avg 86.7 87.1 87.3 87.9 87.8 88.8 86.3 87.6

SPEAR

Rand 88.9 89.2 89.2 89.6 89.8 90.4 87.4 88.7
Pop 87.2 87.8 88.0 88.7 88.4 89.0 86.6 87.9
Adv 84.5 84.7 85.5 85.9 86.6 87.0 85.5 86.6
Avg 86.9 87.2 87.6 88.1 88.3 88.8 86.5 87.7

Table 5: Results on the hallucination subset and perception of MME of models.

Model Method Existence Count Position Color Sum Perception

LLaVA-1.5-7B
Baseline 190 155 133.3 170 648.3 1515.3
+VAF 190 150 123.3 165 628.3 1479.3
+SPEAR 190 140 128.3 165 623.3 (↓ 5.0) 1480.1 (↑ 0.8)

LLaVA-1.5-13B
Baseline 185 155 133.3 170 643.3 1528.8
+VAF 190 155 133.3 165 643.3 1510.8
+SPEAR 190 155 133.3 165 643.3 (↑ 0.0) 1513.1 (↑ 2.3)

Qwen2-VL
Baseline 190 160 155 175 680.0 1639.1
+VAF 195 153.3 145 180 673.3 1623.0
+SPEAR 200 148.3 158.3 185 691.6 (↑ 18.3) 1663.3 (↑ 40.3)

Qwen2.5-VL
Baseline 185 165 158.3 185 693.3 1691.8
+VAF 190 145 145 190 670.0 1649.8
+SPEAR 190 155 150 190 685.0 (↑ 15.0) 1660.2 (↑ 10.4)

6.2 MAIN RESULTS

Table 4 and Table 5 report the results on POPE and MME, respectively. On hallucination miti-
gation, our method consistently outperforms the VAF across all models on POPE. On hallucination
subset of MME, our approach achieves comparable or superior results, with the only exception be-
ing LLaVA-1.5-7B. Another key observation is that VAF generally reduces the overall perception
score compared to the model’s baseline. This provides strong evidence for our Attention Budget
Hypothesis: any gain obtained by increasing attention to the vision part must be offset by a cost
elsewhere. By contrast, our method consistently outperforms VAF in perception scores and even
surpasses the baseline on Qwen2-VL. These results collectively suggest that while enhancing atten-
tion to the vision part can indeed alleviate hallucinations, drawing the budget from sink tokens is not
a good choice.

7 CONCLUSION

In this work, we systematically investigate the phenomenon of attention sink in system prompts
of MLLMs. Through probing and causal interventions, we show that sink tokens plays a role in
influencing the multi-step reasoning progression and termination of the model. We further reinter-
pret modality bias by introducing a more consistent explanation, the separated-sink view and the
attention-budget hypothesis. To validate this hypothesis, we propose SPEAR, which achieves com-
petitive performance, successfully confirming our claims. Our study provides a perspective on how
understanding attention sinks of multimodal systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL Technical Report, Febru-
ary 2025.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable Transformers: Remov-
ing Outliers by Helping Attention Heads Do Nothing. In Thirty-Seventh Conference on Neural
Information Processing Systems, November 2023.

Liwei Che, Tony Qingze Liu, Jing Jia, Weiyi Qin, Ruixiang Tang, and Vladimir Pavlovic. EAZY:
Eliminating Hallucinations in LVLMs by Zeroing out Hallucinatory Image Tokens, March 2025.

Beitao Chen, Xinyu Lyu, Lianli Gao, Jingkuan Song, and Heng Tao Shen. Attention Hijackers:
Detect and Disentangle Attention Hijacking in LVLMs for Hallucination Mitigation, March 2025.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. MME: A Comprehensive Evaluation
Benchmark for Multimodal Large Language Models, March 2024. Comment: Project page:
https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.

Xuan Gong, Tianshi Ming, Xinpeng Wang, and Zhihua Wei. DAMRO: Dive into the Attention
Mechanism of LVLM to Reduce Object Hallucination, October 2024. Comment: Accepted by
EMNLP2024 (Main Conference).

Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and Min
Lin. When Attention Sink Emerges in Language Models: An Empirical View. In The Thirteenth
International Conference on Learning Representations, October 2024.

Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I. Jordan, and Song Mei. Active-Dormant
Attention Heads: Mechanistically Demystifying Extreme-Token Phenomena in LLMs, November
2024.

Jinghan He, Kuan Zhu, Haiyun Guo, Junfeng Fang, Zhenglin Hua, Yuheng Jia, Ming Tang, Tat-
Seng Chua, and Jinqiao Wang. Cracking the Code of Hallucination in LVLMs with Vision-aware
Head Divergence. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3488–3501, Vienna, Austria, July 2025. Association for
Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.175.

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
Zhang, and Nenghai Yu. OPERA: Alleviating Hallucination in Multi-Modal Large Language
Models via Over-Trust Penalty and Retrospection-Allocation. In 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 13418–13427, June 2024. doi: 10.1109/
CVPR52733.2024.01274.

Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See What You Are Told: Visual
Attention Sink in Large Multimodal Models. In The Thirteenth International Conference on
Learning Representations, October 2024.

Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan Zhang,
Ziwei Liu, and Chunyuan Li. Llava-next: Stronger llms supercharge multimodal ca-
pabilities in the wild, May 2024. URL https://llava-vl.github.io/blog/
2024-05-10-llava-next-stronger-llms/.

10

https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. Evaluating Object
Hallucination in Large Vision-Language Models. In The 2023 Conference on Empirical Methods
in Natural Language Processing, December 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved Baselines with Visual In-
struction Tuning. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 26286–26296, June 2024a. doi: 10.1109/CVPR52733.2024.02484.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to Explain: Multimodal Reasoning via Thought Chains
for Science Question Answering. In Advances in Neural Information Processing Systems, October
2022.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards VQA Models That Can Read. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 8309–8318, June 2019. doi: 10.1109/
CVPR.2019.00851.

Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive Activations in Large Language
Models. In First Conference on Language Modeling, August 2024.

Feilong Tang, Zile Huang, Chengzhi Liu, Qiang Sun, Harry Yang, and Ser-Nam Lim. Intervening
Anchor Token: Decoding Strategy in Alleviating Hallucinations for MLLMs. In The Thirteenth
International Conference on Learning Representations, October 2024.

Chongjun Tu, Peng Ye, Dongzhan Zhou, Lei Bai, Gang Yu, Tao Chen, and Wanli Ouyang. Attention
Reallocation: Towards Zero-cost and Controllable Hallucination Mitigation of MLLMs, March
2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural In-
formation Processing Systems, volume 30. Curran Associates, Inc., 2017.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-VL: Enhancing Vision-Language
Model’s Perception of the World at Any Resolution, October 2024. Comment: Code is available at
https://github.com/QwenLM/Qwen2-VL. arXiv admin note: text overlap with arXiv:2408.15262
by other authors.

Jinfeng Wei and Xiaofeng Zhang. DOPRA: Decoding Over-accumulation Penalization and Re-
allocation in Specific Weighting Layer. In Proceedings of the 32nd ACM International Conference
on Multimedia, MM ’24, pp. 7065–7074, New York, NY, USA, October 2024. Association for
Computing Machinery. ISBN 979-8-4007-0686-8. doi: 10.1145/3664647.3681076.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient Streaming
Language Models with Attention Sinks. In The Twelfth International Conference on Learning
Representations, October 2023.

Hao Yin, Guangzong Si, and Zilei Wang. ClearSight: Visual Signal Enhancement for Object Hallu-
cination Mitigation in Multimodal Large language Models, March 2025.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities. In
Forty-First International Conference on Machine Learning, June 2024a.

Zhongzhi Yu, Zheng Wang, Yonggan Fu, Huihong Shi, Khalid Shaikh, and Yingyan Celine Lin.
Unveiling and Harnessing Hidden Attention Sinks: Enhancing Large Language Models with-
out Training through Attention Calibration. In Forty-First International Conference on Machine
Learning, June 2024b.

11

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen
Deng, Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi,
Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong
Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min
Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang.
InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal
Models, April 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 CHAIR RESULTS

A.2 ATTENTION ACROSS LAYERS OF ALL MODELS

(a) llava7b (b) llava13b

(c) qwen2vl (d) qwen2.5vl

A.3 VAF, VAF-FIXED, AND SPEAR RESULTS

A.4 OPERA, VCD, MEMVR, AND SPEAR RESULTS

A.5 FAILURE CASE AND CURVE OF VAF AND SPEAR

Figure 7: The curves of VAF and SPEAR under different suppression-coefficient settings
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Table 6: CHAIR metrics on GQA testdev (lower CHAIRs/i is better, higher Recall is better). Best
results in bold.

Model Method Max new tokens: 64

CHAIRs ↓ CHAIRi ↓ Recall ↑

Qwen2-VL-7B
Baseline 14.8 5.4 53.9
VAF 14.6 5.3 54.4
SPEAR 14.6 5.3 55.3

Table 7: POPE hallucination evaluation. Higher Accuracy and F1-score are better. Best result per
model in bold.

Model Method Random Popular Adversarial Average

Acc F1 Acc F1 Acc F1 Acc F1

LLaVA-1.5-7B
“VAF-Fixed” 89.2 88.7 87.6 86.9 84.7 84.4 87.2 86.7
VAF 89.1 88.7 87.6 87.0 84.7 84.4 87.1 86.7
SPEAR 89.2 88.9 87.8 87.2 84.7 84.5 87.2 86.9

LLaVA-1.5-13B
“VAF-Fixed” 89.4 88.9 88.5 87.8 85.9 85.4 87.9 87.4
VAF 89.3 88.8 88.5 87.7 85.8 85.3 87.9 87.3
SPEAR 89.6 89.2 88.7 88.0 85.9 85.5 88.1 87.6

Qwen-VL-2-8B
“VAF-Fixed” 90.0 89.1 88.7 87.9 86.9 86.3 88.5 87.8
VAF 90.3 88.5 88.9 88.2 87.3 86.7 88.8 87.8
SPEAR 90.4 89.8 89.0 88.4 87.3 86.7 88.8 88.3

Qwen-VL-2.5-8B
“VAF-Fixed” 88.3 86.9 87.6 86.3 86.5 85.2 87.5 86.1
VAF 88.6 87.2 87.8 86.5 86.4 85.2 87.6 86.3
SPEAR 88.7 87.4 87.9 86.6 86.6 85.5 87.7 86.5

Table 8: Comparison with prior hallucination mitigation methods on POPE. Higher Accuracy and
F1-score are better. Best overall results in bold. Our method (SPEAR) achieves the highest scores
across nearly all settings.

Method Random Popular Adversarial Average

Acc F1 Acc F1 Acc F1 Acc F1

LLaVA-1.5-7B 83.49 82.28 79.98 79.34 76.03 76.26 79.83 79.29
OPERA 87.53 86.45 84.21 83.50 80.88 80.69 84.21 83.55
ICD 84.87 83.27 82.93 81.45 81.07 79.96 82.96 81.56
VCD 86.84 86.83 82.65 83.27 77.31 79.28 82.27 83.16
MemVR 88.50 87.34 87.10 86.01 85.20 84.28 86.93 85.88
VAF 89.1 88.7 87.6 87.0 84.7 84.4 87.1 86.7
SPEAR (Ours) 89.2 88.9 87.8 87.2 84.7 84.5 87.2 86.9
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