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ABSTRACT

Multimodal large language models (MLLMs) achieve remarkable success in the
vision-language tasks but remain prone to hallucination, often attributed to abnor-
mal attention behaviors. A recurring phenomenon is the emergence of attention
sinks—tokens that absorb large amounts of attention despite limited semantic con-
tent. While previously regarded as artifacts that exacerbate hallucination, we show
that in MLLM s certain tokens within system prompts act as stable, system-level at-
tention sinks. Through causal interventions including masking and content substi-
tution, we find these tokens serve critical functions: anchoring attention to ensure
computational stability, influencing outputs, and implicitly tracking the model’s
state. Building on this, we propose the Attention-Budget Hypothesis, which re-
frames modality bias as a trade-off in attention allocation. Guided by this per-
spective, we design SPEAR (Sink-PrEserving Attention Reallocation), an inter-
vention that boosts visual attention while preserving sink functions, achieving ef-
fective hallucination mitigation without degrading reasoning. Our work provides
the first systematic characterization of system-level attention sinks in MLLMs and
highlights their functional role in both model stability and multimodal reasoning.

1 INTRODUCTION

The remarkable success of Multimodal Large Language Models (MLLMs) in vision-language tasks
has transformed how we approach multimodal understanding, from visual question answering to
complex reasoning about images. However, this success has been accompanied by persistent chal-
lenges, particularly the phenomenon of hallucination, where models generate plausible but factually
incorrect descriptions of visual content. Understanding the internal mechanisms that drive these
behaviors is crucial for building more reliable and interpretable multimodal systems.

Recent research has identified attention mechanisms as a key window into MLLM behavior, re-
vealing that these models exhibit complex attention patterns that evolve across layers. Of particu-
lar interest is the emergence of “attention sinks,” tokens that consistently absorb disproportionate
amounts of attention despite carrying minimal semantic content. While previous work has exten-
sively studied attention sinks in pure language models, their manifestation and role in multimodal
contexts remain poorly understood.

Existing investigations of attention sinks in MLLMs have primarily focused on visual tokens, user
instructions, or generated outputs, often framing them as problematic artifacts that contribute to
hallucination. However, this perspective may be incomplete. In language models, attention sinks
have been shown to serve important functional roles, acting as computational anchors that stabilize
model behavior. This raises a fundamental question: do attention sinks in MLLMs serve similar
stabilizing functions, or are they indeed the attention “errors” that current mitigation strategies
assume them to be?

In this work, we shift focus to a previously overlooked but ubiquitous component of MLLM inputs:
the system prompt. We discover that certain tokens within system prompts consistently emerge
as powerful attention sinks across multiple model architectures, absorbing attention from queries
throughout the sequence. Unlike the unstable attention sinks observed in other segments, these
system-level sinks exhibit remarkable consistency across layers and contexts, suggesting they may
serve fundamental computational roles.
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To understand their function, we conduct systematic causal interventions, including attention mask-
ing, value zeroing, and content substitution experiments. Our findings reveal that these tokens serve
multiple critical roles: they act as attention anchors that prevent computational instability, carry se-
mantic information that influences model outputs, and govern multi-step reasoning and termination
behaviors.

These discoveries prompt us to reconsider the prevailing explanation for modality bias in MLLMs.
The commonly observed attention shift away from visual tokens in deeper layers has been inter-
preted as evidence that models abandon visual processing in favor of text-based reasoning. How-
ever, we argue this interpretation is confounded by the presence of attention sinks, which should not
be conflated with ordinary text tokens. When we separate sink tokens as their own category, we find
that attention between visual and textual content remains more balanced than previously thought.

Building on this insight, we propose the
Attention-Budget Hypothesis: attention
reallocation in MLLMs involves inherent
trade-offs, where gains in one modality
necessarily come at costs to others. This Vv
perspective explains why many hallucina- Projector#
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capabilities.

We validate these insights through T @ ;
SPEAR  (Sink-PrEserving  Attention ["' Al PR }
Reallocation), a novel intervention that
reallocates attention to visual tokens
while preserving the critical functions
of system-level attention sinks. SPEAR
achieves competitive hallucination miti-
gation performance while maintaining model stability and reasoning capabilities, demonstrating the
practical value of understanding attention sink functions.

Figure 1: Architecture of SPEAR. We separates the
sink token from the suppressed set.

Our contributions are threefold: (1) We provide the first systematic characterization of attention
sinks in system prompts of MLLMs, revealing their inheritance from underlying language model ar-
chitectures. (2) Through causal interventions, we demonstrate that these tokens serve essential com-
putational functions rather than representing attention errors. (3) We introduce a refined theoretical
framework for understanding modality bias and attention reallocation, with practical implications
for hallucination mitigation strategies.

2 RELATED WORK

2.1 ATTENTION SINK IN LLMSs

The phenomenon of attention sink has been widely discussed in LLM research. Early work (Xiao
et al., 2023) coined the term, describing it as the offloading of surplus attention to specific tokens.
Follow-up studies provided different explanations: as artifacts of Transformer head(Vaswani et al.,
2017) design and residual updates (Bondarenko et al.l 2023), as emergent behaviors not confined
to initial tokens (Yu et al., 2024b), or as fixed bias components with strong activations shaping
attention flow (Sun et al.| 2024). Other studies further attribute it to head dormancy dynamics (Guo
et al.| [2024) or the dependency structure introduced by SoftMax normalization (Gu et al.| [2024).
Together, these works suggest that sink tokens are structural byproducts of pretraining, with mixed
impacts on downstream performance.
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2.2 ATTENTION SINK IN MLLMs

In MLLMs, attention sinks are closely tied to hallucinations and are often described as anchor or
trap tokens. Several studies focus on visual sink tokens, showing that suppressing them reallocates
attention to other image tokens and may reduce hallucinations (Kang et al., [2024; Che et al., [2025).
Others argue that their emergence relates to the alignment between visual encoder outputs and LLM
attention, thus amplifying redundant information and misleading the model (Gong et al.,[2024; |Chen
et al.| 2025)). Meanwhile, research on instruction sink tokens views them as knowledge aggregation
points, but also potential sources of hallucination due to over-concentration (Huang et al., [2024} Wei
& Zhang| [2024). More recently, spectrum-based analyses (Tang et al.,[2024) show that over-reliance
on sink tokens can dominate decoding dynamics, calling for regularization of their propagation. The
majority of studies emphasize the detrimental impacts of sink tokens that are outside the system
prompt segment, while only limited work considers possible functional or aggregative roles.

2.3 HALLUCINATION MITIGATION PREDICATED ON MODALITY BIAS

A dominant line of work instead attributes hallucinations to modality bias—the model’s over-
reliance on language priors at the expense of vision. Typical solutions enhance or reallocate at-
tention toward visual tokens, e.g., by reinforcing vision-aware heads (He et al., 2025), amplifying
vision features during fusion (Yin et al., 20235)), or directly reallocating attention budgets (Tu et al.,
20235). While effective, these methods implicitly attribute hallucinations to insufficient visual atten-
tion relative to sink and text tokens, an assumption we revisit in this work.

3 THE CHARACTERISTICS OF SINK TOKENS

3.1 PRELIMINARIES

Throughout this paper, we use the general term sink tokens to refer to tokens that disproportionately
absorb attention. For clarity, we distinguish them by their segment, e.g., system sink tokens (in
system prompts), visual sink tokens (in visual tokens), instruction sink tokens (in user instruction
tokens), and output sink tokens (in generated outputs). Unless otherwise noted, sink tokens in this
paper specifically refer to system sink tokens.

Terminology. We specifically focus on sink tokens that appear within the system-prompt segment,
denoting the set by Tgnk C Tsys. Unless otherwise stated, Ty gink Tefers to the remaining system
prompt tokens.

This input sequence S of MLLM:s is composed of four segments: (1) system prompts 7Ty, (2) image
tokens Tyis, (3) user instructions 7Ty, and (4) model outputs 7,y. Formally,

S= [7;ysa Teiss Tusers 7:)ut] € R7X ot (1)

Here each T denotes both the subsequence of embeddings and, by slight abuse of notation, the
index set of the corresponding tokens in S. Multi-head attention projects S into queries, keys, and
values:

Q=8SW?, K=Sw¥, 6 v=swY, )

with W@ WK WV ¢ Rdmexd The attention weights are
exp(zi;)

n—. 3
Zj’:l exp(zi;1) ®

A= softmax(ﬁ QKT) .=

For any segment 7 € {7gys, Tvis, Tuser> Tout }» the attention mass from query i to 7 is
a(T) =) ai. “)
JET
The single-head attention output is then

AttH(S) = AV, hi = Zaijvj. (5)

j=1
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3.2 ATTENTION PROFILE AND ACTIVATION

Our observation covers several representative MLLMs (LLaVA series: LLaVA-1.5-7B, LLaVA-
1.5-13B(Liu et al.} 2024a), LLaVA-Next-Mistral-7B(Liu et al., 2024b), LLaVA-Next-Llama3-8B (L1
et al., 2024); Qwen series: Qwen2-VL-7B(Wang et al.| [2024), Qwen2.5-VL-7B(Bai et al.| [2025);
InternVL series: InternVL2-8B(Chen et al.,[2024)), InternVL3-9B(Zhu et al.,[2025)), chosen to reflect
the diversity of their underlying LLMs. [Sun et al.| (2024) suggests that models built on the same
LLM tend to display highly similar sink token patterns. To meaningfully capture differences in such
patterns, we therefore select MLLMs grounded in distinct LLLM architectures.

The identification of sink tokens is based solely on the criterion of high attention occupancy. In
this context, high attention occupancy does not signify receiving greater attention relative to adjacent
tokens or within a specific segment 7 ; rather, it denotes the allocation of a disproportionately large
share of attention across the entire token sequence S.

HEN

(a) LLaVA-1.5-7B (b) LLaVA-1.5-13B (c) Qwen2-VL-7B (d) Qwen2.5-VL-7B

Figure 2: Attention visualizations of models.

Among the screened models, LLaVA-1.5-7B, LLaVA-1.5-13B, Qwen2-VL-7B, and Qwen2.5-VL-
7B exhibit the strong sink token patterns, as illustrated in Fig[2] (aHd). The remaining models show
only weak or inconsistent patterns and thus are not considered to have strong sink tokens under our
identification criteria.
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(a) LLaVA-1.5-7B (b) LLaVA-1.5-13B (c) Qwen2-VL (d) Qwen2.5-VL

Figure 3: Massive activation of models.

When further visualizing per-token activations across the sequence S in MLLMs, we observe that
sink tokens exhibit massive activations—up to thousands of times greater than ordinary tokens. The
observation is consistent with findings in LLM research (Sun et al.,[2024)). Specifically, the dimen-
sions of the massive activation of sink tokens are exactly the same as the dimensions of sink tokens
previously identified in the same LLM. Fig. [3| (aHd) visualizes the preceding tokens in S. By con-
trast, sink tokens in other segments (e.g., 7yis, Tuser, Tout) generally show only modest increases, with
activations just a few times higher than normal.

3.3 TEXTUAL CONTENT AND LOCATION

Based on attention patterns, we identified the ID of sink fokens in S, examined the layers where sink
tokens persist, and further decoded their corresponding textual content. As presented in Table [T}
several consistent observations can be drawn across models.

First, the initial token of the 7y, (which also is the first token of the S) typically functions as the
sink token. In addition, sink tokens can also be found at other locations within the 7gy,. Second,
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Table 1: Locations of sink tokens of MLLM:s.

Model Language Model Decoded Word Token ID  Layers
LLaVA-1.5-7B  Vicuna-7B L8>t 102 3~ 31
LLaVA-1.5-13B  Vicuna-13B I <>’ 0 5~ 40
Qwen2-VL Qwen2-7B f<im_start>’ 0 5~ 28
Qwen2.5-VL Qwen2.5-7B "\n’ 2 5~ 28

Table 2: Impact of masking Sink Tokens on LLaVA-1.5-7B. For LLaVA-1.5-7B, only
masking both sink tokens causes collapse.

Experiment Setting \ POPE VQAT  MM-Vet SQA MME
Performance Score
Baseline 86.9 58.2 31.7 69.4 1515
Mask Sink Tokens in 7Ty;s 86.9 58.1 32.2 69.4 1505
Mask Tgink 0.0 0.0 0.9 0.0 0.0
Time Cost (hh:mm:ss)

Baseline 29:59 25:45 10:41 16:59 08:17
Mask Tgink 10:45:36  4:51:49  1:16:52 27:51:10 3:24:47

sink tokens are generally semantically vacuous elements, such as punctuation marks, conjunctions,
or structural tokens. Third, sink fokens begin to appear only after the shallow layers, and once they
emerge, they remain consistently stable across the subsequent deeper layers. These characteristics
suggest that sink tokens are more consistent with the sink tokens observed in LLMs (Gu et al.,|2024;
Yu et al.| 2024b)), rather than with the sink tokens located in other segments (e.g., Tyis, Tusers Tout) 1N
MLLMs. Those tokens typically exhibit unstable persistence across layers, frequently appearing or
disappearing as the layer depth changes (Kang et al.l 2024} We1 & Zhang|, 2024).

4 CAUSAL INTERVENTIONS ON SINK TOKENS

4.1 ISOLATING THE ROLE OF ATTENTION: MASKING INTERVENTION

Motivation. Section 3 shows that, although sink tokens carry little semantic content, they consis-
tently attract a disproportionately large share of attention. This appears to be a kind of misallocation
of attention that requires correcting.

Experiment. We design an intervention experiment where the attention flowing into sink tokens
is masked. In this setting, the masking is applied with queries defined as 7ys; and 7oy, and keys
restricted to the sink tokens. Experiments were conducted on five benchmark datasets: POPE (L1
et al.} 2023), TextVQA (Singh et al.| 2019), MM-Vet (Yu et al.,[2024a), SQA (Lu et al.; 2022), and
MME (Fu et al., 2024).

Results. As shown in the Table 2] applying the masking operation severely destabilizes the model
outputs, leading the model to collapse. In this state, it scores 0 on all benchmarks and exhibits
an abnormally large computational overhead, ranging from several dozen to nearly a hundred times
greater. More specifically, this collapse manifests as the model endlessly generating tokens unrelated
to the input. This is consistent with phenomena previously observed in LLMs (Sun et al.,[2024). In
contrast, masking all sink tokens in 7y;; had no noticeable impact on model performance.

Takeaway. Although semantically empty, the sink token is not a meaningless placeholder that
merely occupies attention. The sink token must remain ‘“online”” and “reachable’, serving as a
critical node within the attention information interaction network.
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Table 3: Results of zeroing Vi, on the MME. Perc.F'¢ = Fine-Grained Recognition, Perc.¢¢ =
Coarse-Grained Recognition, CSR = Commonsense Reasoning, NC = Numerical Calculation, Trans.
= Text Translation, CodeR = Code Reasoning.

Model Perc.C  Percf¢ OCR CSR NC Trans. CodeR Overall
LLaVA-1.5-7B 648 727 140 111 70 108 60 1864
+Viink =0 366 491 55 58 50 58 50 1128
LLaVA-1.5-13B 643 761 125 128 43 78 48 1826
+Veink =0 570 592 73 101 40 93 53 1522
Qwen2-VL 680 827 133 152 125 200 160 2277
+Veink =0 650 735 95 143 73 170 108 1974
Qwen2.5-VL 693 813 193 141 133 185 155 2313
+Viink =0 506 485 155 72 115 80 88 1501

4.2 TESTING INFORMATION FLOW: ZEROING THE VALUE

Motivation. Subsection 4.1, we showed that cutting off the information flow to the sink token
destabilizes the model. However, attention encompasses both the allocation of focus (through the
attention weights A) and the propagation of information (through the value vectors Vgnx). This
motivates an investigation into whether the model can retain only the attention interactions of the
sink token.

Experiment. To explore this, we design an intervention in which the attention weights A remain
unchanged, but the value vectors of sink rokens Vi, are set to zero. In this way, sink tokens can
still participate in the attention mechanism as receivers (allowing other tokens to see the sink to-
ken), while ensuring that no information is propagated from them to other tokens. To demonstrate
performance across multiple tasks, experiments were conducted on MME (Fu et al., [2024)).

Results. The results in Table [3] show a moderate decline in performance across nearly all tasks.
While the models remain capable of generating grammatically coherent outputs, the overall quality
and accuracy are diminished. Nevertheless, the models did not collapse on any task, unlike in the
masking-attention setting.

Takeaway. The sink token serves a dual role: it functions both as an attention anchor and as
an information carrier. First, the result indicates that retaining the accessibility of sink tokens
in the attention computation contributes to stability, serving a function analogous to a reference
point. Second, the observed performance degradation shows that its value vector Vi, encodes
useful information, and removing this information undermines the model’s performance.

4.3 REPLACING INFORMATION CONTENT: MEAN-VALUE SUBSTITUTION

Motivation. Subsection 4.2 shows that sink tokens not only serve as attention anchors but also
carry information. The causal factor in the value representation of sink rokens remains unclear: their
functionality may arise either from merely carrying some value mass or from encoding idiosyncratic,
task-specific content.

Experiment. To disentangle these possibilities while keeping attention and positions unchanged,
we introduce a content-neutralization intervention. Instead of zeroing, we erase idiosyncrasy by
replacing each sink token value Vi, with a population mean computed from non-sink tokens in the
S. We build a tiny dataset consisting of three tasks to evaluate this intervention: (1) simple image
caption, (2) adversarial question, and (3) multi-step reasoning.

Results. We observe a very interesting result among the models, as illustrated in Figure 4] The
models remain capable of handling simple image captioning tasks. For adversarial questions, they
still produce coherent responses and terminate in time, though with a high degree of hallucination.
On multi-step reasoning tasks, however, the models collapse again. They have lost the ability for
multi-step reasoning, fail to follow instructions, keep producing progressively degraded image de-
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ex Image Caption ? Adversarial Question > Multi-step Reasoning
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e
% @ fl
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s Describe the elephant ) Count men and women. State
R InEDImEgER? standing on the desk. = which group is larger.
The image shows a = The image shows a view The background features...
single apple. of an elephant standing The image is taken...
on a desk. The image is taken...
Correct! X Hallucination © Endless loop

Figure 4: Effect of content substitution on Sink Tokens on different tasks.

scriptions, and are unable to generate a termination token. The negative impact far exceeds that of
setting the value vector Vg to zero.

Takeaway. Vi is crucial for procedural tasks, as it is deeply involved in higher-order cognitive
functions such as executing multi-step instructions, tracking reasoning states, and controlling re-
sponse termination.

Crucially, not all interventions affect this mechanism equally. Setting Vinx = 0 amounts to silence,
which weakens, but does not actively mislead it. In contrast, replacing it with Vje., injects wrong
information. This false signal contaminates the computational flow and leads to cascading errors.

The resulting degradation is not cliff-like but rather hierarchical. Once core state-tracking functions
are compromised, the model first abandons complex reasoning tasks and reverts to simpler behav-
iors (e.g., image captioning) that are strongly anchored in pretraining. Ultimately, this breakdown
manifests as non-terminating failures, where the model struggles to track progress and fails to emit
termination tokens.

5 REVISITING THE ROOTS OF HALLUCINATION: MODALITY BIAS

5.1 BEYOND THE CONVENTIONAL MODALITY BIAS VIEW: A SEPARATED-SINK VIEW

A prevailing view holds that MLLMs exhibit modality bias: after shallow layers, the attention allo-
cated to visual tokens is much lower than that to tokens conventionally categorized as text. This is
often taken to imply that visual information is no longer utilized and the model reverts to text-only
interactions, a conclusion typically drawn from aggregate attention statistics over S. However, this
measurement scheme conflates sink tokens with text tokens, introducing an aggregation bias. As
shown in the Figure. | sink tokens occupy a disproportionately large attention share after shallow
layers, and differ fundamentally from ordinary text tokens in characteristics and function. Treating
them as text tokens inflates the text side and distorts the true allocation between text and vision.

System
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Figure 5: Attention of Tgy\sink»> Tsys> Tvis» and Tyser across layers and proportion of vision and text in
the 12th layer of Qwen2VL-7B
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To remove this bias, we separate sink tokens as their own category and report a three-way partition
{ Tuiss Texts; Tsink }- Across multiple models, once sink tokens are isolated, mid-layer attention shows
near-balanced shares between vision and ordinary text (Fig.[5). The apparent text dominance largely
vanishes.

Similarly, interpreting the attention shift as the termination of visual processing is misleading. In the
mid layers, attention from multiple sources (vision, system, user instruction) converges onto the sink
token (Fig.[5). It is not a one-way exit from the visual pathway. We argue this convergence reflects
a stage transition, from early evidence intake to mid-layer internal processing and integration.
During this transition, ordinary tokens don’t need to retain large attention shares. Concentration on
the sink token primarily serves control and stabilization rather than signaling the abandonment of
visual (or other) information. This view is consistent with prior work (Yin et al.,[2025) showing that
cross-modal interaction peaks in mid layers.

5.2 THE ATTENTION-BUDGET HYPOTHESIS

Given that prior theories do not hold, how can we explain the effectiveness of a series of strategies
that boost visual attention to mitigate hallucinations? We propose a new hypothesis, the Attention-
Budget Hypothesis. For each query 4, the attention budget over the token subsets 7 satisfies

Y ai(T)=1, Y Ax(T)=0. (6)
T T

Here, Aa;(T) denotes the change in the share allocated to the subset 7. Any intervention is thus a
local reallocation. Therefore, for vision-oriented tasks, reallocating a portion of attention from other
parts (e.2., Toys\sink» Tuser» Tout» O Tsink) t0 Tyis is equivalent to forcing the model to consider visual
evidence more, thereby improving performance on such tasks.

However, the source of this reallocated budget matters. Allocating the budget from Ty could
potentially compromise system stability and undermine high-level control. If the budget is drawn
from Tyo\sink» Tuser and Toue, the model may lose its role awareness, weaken instruction-following,
or impair the coherence of the generated text, respectively. In summary, any reallocation entails
inherent costs—gains for vision tasks are invariably accompanied by trade-offs. Finally, because the
natural distribution varies across models, the same reallocation strategy may help in one model but
hurt in another.

6 UTILIZE THE PATTERNS OF SINK TOKENS TO MITIGATE HALLUCINATION

6.1 EXPERIMENTAL SETUP

We use the training-free method, Visual Amplification Fusion (VAF) (Yin et al.| 2025)) as our base-
line. The intuition of VAF is that suppressing text tokens while amplifying vision tokens can alleviate
hallucination. Formally, the pre-softmax attention score matrix Z is modified as

Zij=Ra Zij, j€ Timg, (7N
Zij, otherwise,

where o > 1 is the enhancement coefficient and 5 < 1 is the suppression coefficient, and S de-
notes the set of tokens regarded as text to suppress.

For the baseline VAF, we define Syarp = 7sys, treating sink tokens as part of the text burden. In
contrast, our proposed variant of VAF, SPEAR, is grounded in the insight that sink tokens play
indispensable functional roles in models. Therefore, SPEAR separates them from the suppressed
set, instead applies Sspear = Tsys\sink U Tuser U Tout» and preserves the original scores of Tyinx while
still reallocating the attention budget to vision tokens. To ensure fair comparison, both methods are
applied on the same heads and layer ranges, and all models are evaluated with greedy decoding.
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Table 4: Results on POPE subsets (Random / Popular / Adversarial) of models.

Method Subset LLaVA-1.5-7B LLaVA-1.5-13B Qwen2-VL Qwen2.5-VL
F1 Acc. F1 Acc. F1 Acc. Fl Acc.

Rand 87.3 88.2 87.1 88.1 87.4 88.6 87.1 88.5
Baseline Pop 86.1 87.3 86.2 87.6 86.5 87.7 864 87.7
Adv 84.2 85.2 84.5 85.6 85.1 86.3 854 86.7

Avg 85.9 86.9 85.9 87.1 86.3 875 863 876

Rand 88.7 89.1 88.8 89.3 88.5 903 872 88.6

VAF Pop 87.0 87.6 87.7 88.5 88.2 889 865 878
Adv 84.4 84.7 85.3 85.8 86.7 873 852 864

Avg 86.7 87.1 87.3 87.9 87.8 888 863 876

Rand 88.9 89.2 89.2 89.6 89.8 904 874 88.7

SPEAR Pop 87.2 87.8 88.0 88.7 884 89.0 866 879
Adv 84.5 84.7 85.5 85.9 86.6 87.0 855 86.6

Avg 86.9 87.2 87.6 88.1 88.3 888 86.5 87.7

Table 5: Results on the hallucination subset and perception of MME of models.

Model Method  Existence Count Position Color Sum Perception
Baseline 190 155 133.3 170 648.3 1515.3
LLaVA-1.5-7B  +VAF 190 150 123.3 165 628.3 14793
+SPEAR 190 140 128.3 165 6233430 1480.1 (109
Baseline 185 155 133.3 170 643.3 1528.8
LLaVA-1.5-13B  +VAF 190 155 133.3 165 643.3 1510.8
+SPEAR 190 155 133.3 165 6433100 15131123
Baseline 190 160 155 175 680.0 1639.1
Qwen2-VL +VAF 195 153.3 145 180 673.3 1623.0
+SPEAR 200 1483 1583 185 6916 T183  1663.3 (1403
Baseline 185 165 158.3 185 693.3 1691.8
Qwen2.5-VL +VAF 190 145 145 190 670.0 1649.8
+SPEAR 190 155 150 190  685.0 7150 1660.2 (T 104

6.2 MAIN RESULTS

Table [ and Table [5]report the results on POPE and MME, respectively. On hallucination miti-
gation, our method consistently outperforms the VAF across all models on POPE. On hallucination
subset of MME, our approach achieves comparable or superior results, with the only exception be-
ing LLaVA-1.5-7B. Another key observation is that VAF generally reduces the overall perception
score compared to the model’s baseline. This provides strong evidence for our Attention Budget
Hypothesis: any gain obtained by increasing attention to the vision part must be offset by a cost
elsewhere. By contrast, our method consistently outperforms VAF in perception scores and even
surpasses the baseline on Qwen2-VL. These results collectively suggest that while enhancing atten-
tion to the vision part can indeed alleviate hallucinations, drawing the budget from sink tokens is not
a good choice.

7 CONCLUSION

In this work, we systematically investigate the phenomenon of attention sink in system prompts
of MLLMs. Through probing and causal interventions, we show that sink fokens plays a role in
influencing the multi-step reasoning progression and termination of the model. We further reinter-
pret modality bias by introducing a more consistent explanation, the separated-sink view and the
attention-budget hypothesis. To validate this hypothesis, we propose SPEAR, which achieves com-
petitive performance, successfully confirming our claims. Our study provides a perspective on how
understanding attention sinks of multimodal systems.
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A APPENDIX

A.1 CHAIR RESULTS

A.2 ATTENTION ACROSS LAYERS OF ALL MODELS
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A.3 VAF, VAF-FIXED, AND SPEAR RESULTS
A.4 OPERA, VCD, MEMVR, AND SPEAR RESULTS

A.5 FAILURE CASE AND CURVE OF VAF AND SPEAR
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Figure 7: The curves of VAF and SPEAR under different suppression-coefficient settings
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Table 6: CHAIR metrics on GQA testdev (lower CHAIRS/i is better, higher Recall is better). Best
results in bold.

Max new tokens: 64

Model Method
CHAIR, | CHAIR;] Recallt
Baseline 14.8 5.4 53.9
Qwen2-VL-7B  VAF 14.6 53 54.4
SPEAR 14.6 53 55.3

Table 7: POPE hallucination evaluation. Higher Accuracy and Fl-score are better. Best result per
model in bold.

Random Popular Adversarial Average
Acc Fl1 Acc F1 Acc F1 Acc F1
“VAF-Fixed” 89.2 887 87.6 869 847 844 872 86.7

Model Method

LLaVA-1.5-7B VAF 89.1 887 87.6 87.0 847 844 871 86.7
SPEAR 89.2 889 878 872 847 845 872 869
“VAF-Fixed” 894 889 885 878 859 854 879 874
LLaVA-1.5-13B VAF 89.3 888 885 877 858 853 879 873
SPEAR 89.6 89.2 887 88.0 859 855 881 87.6
“VAF-Fixed” 90.0 89.1 887 879 869 863 885 878
Qwen-VL-2-8B VAF 90.3 885 889 882 873 867 88.8 878
SPEAR 904 898 89.0 884 873 86.7 88.8 88.3
“VAF-Fixed” 883 869 87.6 863 865 852 875 86.1
Qwen-VL-2.5-8B  VAF 88.6 872 878 865 864 852 876 863
SPEAR 88.7 874 879 866 866 855 87.7 86.5

Table 8: Comparison with prior hallucination mitigation methods on POPE. Higher Accuracy and
F1-score are better. Best overall results in bold. Our method (SPEAR) achieves the highest scores
across nearly all settings.

Random Popular Adversarial Average
Acc F1 Acc F1 Acc F1 Acc F1
LLaVA-1.5-7B  83.49 8228 7998 7934 76.03 7626 79.83 79.29

Method

OPERA 87.53 8645 8421 8350 80.88 80.69 8421 83.55
ICD 84.87 83.27 8293 8145 81.07 7996 8296 81.56
VCD 86.84 86.83 82.65 8327 7731 7928 8227 83.16
MemVR 88.50 87.34 87.10 86.01 8520 84.28 86.93 85.88
VAF 89.1 88.7 87.6 87.0 84.7 84.4 87.1 86.7

SPEAR (Ours) 89.2 889 878 872 84.7 84.5 87.2 86.9
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