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Multimodal Relation Extraction via a Mixture of Hierarchical
Visual Context Learners

Anonymous Author(s)∗

ABSTRACT
Multimodal relation extraction is a fundamental task of multimodal
information extraction. Recent studies have shown promising re-
sults by integrating hierarchical visual features from local regions,
like image patches, to the broader global regions that form the entire
image. However, research to date has largely ignored the under-
standing of how hierarchical visual semantics are represented and
the characteristics that can benefit relation extraction. To bridge
this gap, we propose a novel two-stage hierarchical visual context
fusion transformer incorporating the mixture of multimodal ex-
perts framework to effectively represent and integrate hierarchical
visual features into textual semantic representations. In addition,
we introduce the concept of hierarchical tracking maps to facilitate
the understanding of the intrinsic mechanisms of image informa-
tion processing involved in multimodal models. We thoroughly
investigate the implications of hierarchical visual contexts through
four dimensions: performance evaluation, the nature of auxiliary
visual information, the patterns observed in the image encoding
hierarchy, and the significance of various visual encoding levels.
Empirical studies show that our approach achieves new state-of-
the-art performance on the MNRE dataset.1

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; • Computing methodologies→ Information extrac-
tion.
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1 INTRODUCTION
Relation extraction (RE) [24, 41] aims at identifying the semantic
relationships between entities in the text. This area has gained
traction in research due to its role as a core subtask in many web
applications that require relational understanding, including web
1The source code: https://anonymous.4open.science/r/HVFormer-9D85
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Figure 1: The multi-scaled image regions retain significant
context for extracting relations. The relative local image
regions are bounded by green boxes, while the image regions
with more global information are enclosed in blue boxes.

mining [18], question answering [17], and information retrieval [13].
Meanwhile, the rapid growth of social media platforms like Twitter
has resulted in an immense volume of user-generated content that
spans multiple modalities, including text and images. This has led
to a growing interest in multimodal relation extraction (MRE) [45]
as a critical research direction. The rationale behind this is that
while text might sometimes lack sufficient context information (e.g.,
instances of short texts), images may provide additional contextual
cues to aid in decoding the relation.

The main challenge of MRE is how to integrate image infor-
mation into the text representation learning process to improve
relation extraction. Previous work primarily leverages pre-trained
encoders for extracting visual features, broadly classified into two
categories: i) Graph alignment-based methods [39, 44] construct
textual and visual graphs from text-image pairs. These methods
then adopt graph alignment algorithms to map visual clues with tex-
tual content to learn multimodal representations. ii) Representation
learning-based methods [32, 43] directly map the semantics of texts
and images in vector spaces, and develop methods to combine text
and image representations to obtain multimodal representations.
Both methodologies use the learned multimodal representations to
extract relations. Representation-based methods have been shown
to deliver superior performance than graph alignment-based mod-
els in previous research [4, 5]. This discrepancy can be attributed
to the possibility of discarding some original image features during
visual graph construction.

Although previous representation-based methods have achieved
notable performance [4], these methods primarily focus on lever-
aging the high-level features obtained from the output of pre-
trained visual encoders such as ResNet [10] and Vision Transformer
(ViT) [8], neglecting the impact of utilizing the hierarchical visual
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context information. For example, in Figure 1a, we can recognize
the two people in the human region of the image as Prince Harry
andMeghan Markle. The relationship between them, the couple, can
be inferred from the local image region that depicts the linked arms.
Similar scenarios are depicted in Figure 1b and c. Hence, it is im-
perative to leverage the hierarchical visual contexts, ranging from
local image regions to global regions that make up the entire image,
to benefit multimodal RE. Recent models [4, 43] implicitly exploit
hierarchical visual features by applying modality alignments at
the same layer of unimodal encoders. Chen et al. [5] consider the
significance of different ResNet [10] blocks to fuse visual features.
Nevertheless, existing research has yet to comprehend how hier-
archical visual semantics are represented and what hierarchical
characteristics can benefit the MRE task.

Due to the recent success of vision transformers in computer
vision [8, 33] and multimodal information extraction [4, 35], the
fine-grained hierarchical visual features learned by ViT can be uti-
lized to enhance multimodal RE. Although each transformer block
in ViT follows the same procedure to aggregate the entire image in-
formation, recent research [14] suggests that visual attention heads
in earlier layers tend to focus on local and sparse regions, whilemost
heads in deeper layers globally attend to regions scattered across
the image. Consequently, different ViT layers can encode visual
context on different levels and directly using the high-level image
embeddings of the vision encoder as prior methods [12, 35, 38], may
be suboptimal for extracting relations. As illustrated in Figure 1b,
the visual information in the critical logo region may be diluted by
aggregating information from other areas of the image.

In this paper, our aim is to delve into the inherent mechanisms
of multimodal models that employ vision transformers as image
decoders for learning hierarchical visual contexts and to ascertain
their implications on the task of multimodal relation extraction. To
achieve this, we propose a novelHierarchicalVisual context Fusion
transformer (HVFormer), which incorporates the mixture of mul-
timodal experts (MoME) framework to adaptively represent and
integrate hierarchical visual features into textual semantic represen-
tations. In each vision transformer layer, a specific expert network
is implemented with the textual-guided visual attention block (TVA)
for the intra-level aggregation of token-aware visual semantic rep-
resentations. An expert router is utilized to predict the importance
coefficients of experts, facilitating the inter-level aggregation of
multimodal representations. To gain a deeper understanding of
the intrinsic mechanisms behind hierarchical context learning, we
introduce two types (patch-patch and patch-token) of hierarchical
tracking maps (HTM) to characterize the patterns associated with
different levels of image feature encoding. Patch-patch tracking
maps seek to capture the mapping relationship between the visual
context derived from the original image patches and the output
image embeddings of ViT. On the other hand, patch-token tracking
maps are employed to represent the mapping from original image
patches to textual tokens. Using the HVFormer as a foundation,
we empirically study the influence of hierarchical visual contexts
through four perspectives: performance evaluation, the nature of
auxiliary visual information, the patterns observed in the image
encoding hierarchy, and the significance of various visual encoding
levels. Extensive experiments performed on the MNRE benchmark
dataset [45] demonstrate the effectiveness of HVFormer.

In summary, our main contributions are as follows:

• We propose a two-stage multimodal fusion model that first
captures text-relevant visual information at the same level
and subsequently leverages amixture of multimodal experts
to fuse visual features across different levels.

• We introduce the hierarchical tracking maps to character-
ize the patterns of visual semantics, spanning from local
to global levels, as learned by different multimodal model
layers, and we thoroughly analyze the implications of ex-
ploiting multi-level visual features for decoding relations.

• We conduct experiments on the multimodal relation extrac-
tion benchmark and compare them with state-of-the-art
(SOTA) baselines. Empirical studies confirm the effective-
ness of our proposed model.

2 RELATEDWORKS
2.1 Multimodal Learning
Multimodal learning (MML) has been of significant importance in
multimodal applications, dating back to some of the initial applica-
tions of audio-visual speech recognition in the 1980s. [40]. In recent
years, Transformers have become the general architecture for MML
tasks. Existing multimodal transformers can be summarized accord-
ing to their network structures: 1) Models with a single-stream
structure, including UNITER [6], VisualBERT [16], VL-BERT [27],
and Unified VLP [46], combine the input from different modalities
and feed them into the single model. 2) Models with multi-stream
structures, such as ViLBERT [20], LXMERT [3], and ActBERT [47],
separately process unimodal input in different streams with cross-
modality structures. Our work follows the two-stream multimodal
model, the most commonly adopted paradigm in multimodal infor-
mation extraction.

2.2 Multimodal Relation Extraction
As a crucial component of information extraction, traditional re-
lation extraction methods typically identify relationships in the
textual model. However, texts on social media are often short, am-
biguous, and lacking context. Zheng et al. [45] proposed that the
visual content of the posts can supplement semantics and developed
the first multimodal RE dataset. Previous work for MRE [32, 35, 44]
mainly considers learning multimodal representation based on the
final output of image encoders. The recent MKGformer [4] and
IFAformer [43] utilize dual-modal alignments at the same layer of
text and image encoders to implicitly exploit hierarchical visual
context. HVPNeT [5] extracts coarse-grained vision embeddings rel-
evant to text from each ResNet block and considers the importance
of different visual blocks. However, understanding the mechanisms
and characteristics of hierarchical context learning involved in mul-
timodal models remains a challenge that has yet to be addressed.

2.3 Mixture of Experts
A mixture of experts (MoE) combines the outputs of sub-models,
referred to as "experts," using a weighting function known as the
"router." MoE is first proposed as an ensemble procedure to assign
input cases to one or a few experts [11] that generate predictive
distributions. Eigen et al. [9] employ MoEs as basic building blocks

2
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at each layer in a multi-layer network to improve model perfor-
mance. Ma et al. [21] adapt MoE to multi-task learning by sharing
expert networks across tasks. Shazeer et al. [26] introduce Sparsely-
Gated MoE consisting of thousands of feed-forward sub-networks
for language modeling and machine translation. V-MoE [15] uti-
lizes MoE to achieve a sparsely activated vision transformer model.
LIMoE [22] is a recent application of MoE in multimodal learning,
in which all input text and image are assigned to partially activated
modality-agnostic MLP experts. Unlike LIMoE [22], we implement
each expert to fuse the text and visual semantics represented at a
specific level.

3 METHOD
3.1 Problem Formulation
Traditionally, the task of relation extraction is to predict the relation
𝑟 between a subject entity 𝑒𝑠 and an object entity 𝑒𝑜 in a sentence
𝑆 = {𝑤1, . . .𝑤𝑛}, where 𝑛 is the length of the sentence. In this paper,
we deal with the multimodal relation extraction problem, where an
image 𝐼 is paired with 𝑆 to provide additional context information
to determine the relation 𝑟 . Let Y = {𝑟1, 𝑟2, . . . , 𝑟𝑅} be a set of 𝑅
distinct relation types. An MRE model is expected to generate the
probability of 𝑃 (𝑟 |𝑆, 𝐼 , 𝑒𝑠 , 𝑒𝑜 ) for each 𝑟 ∈ Y, given the input text 𝑆
with entities 𝑒𝑠 , 𝑒𝑜 and image 𝐼 .

3.2 Textual Semantic Representation
We use pre-trained BERT [7], a commonly applied text encoder to
extract textual semantic representations from the text. To format
the BERT input sequence 𝑇𝑆 , we follow the same process as in
previous work [4, 44], tokenizing the sentence 𝑆 using the BERT
Wordpiece tokenizer [34] and adding special tokens ⟨𝑠⟩, ⟨/𝑠⟩, ⟨𝑜⟩,
⟨/𝑜⟩ to indicate the start and end of the subject and object entities.
Additionally, we align the tokenized sequence with the BERT en-
coding process by prepending the special token [𝐶𝐿𝑆] at the start
of the sequence and padding the end of the sequence to the max
sequence length using the special token [𝑃𝐴𝐷]. Accordingly, the
input sequence 𝑇𝑆 is formatted as follows:

𝑇𝑆 = {[𝐶𝐿𝑆], 𝑡1, . . . ⟨𝑠⟩ , 𝑡𝑒𝑠 , ⟨/𝑠⟩ , . . .
⟨𝑜⟩ , 𝑡𝑒𝑜 , ⟨/𝑜⟩ , . . . , [𝑃𝐴𝐷]}

(1)

where 𝑡𝑒𝑠 and 𝑡𝑒𝑜 are tokenized sub-sequences of the subject and
object entities, respectively. BERT then processes each token 𝑡𝑖 ∈ 𝑇𝑆
as a contextual vector representation. Formally, the textual semantic
representation for the input sequence 𝑇𝑆 can be expressed as:

𝑇 = BERT(𝑇𝑆 ) (2)

where 𝑇 ∈ R𝑛𝑇 ×𝑑𝑇 . 𝑛𝑇 is the sequence length and 𝑑𝑇 is the embed-
ding dimension.

3.3 Visual Semantic Representation
Multimodal information extraction models typically acquire visual
features from images by directly adopting pre-trained computer
vision approaches [4, 5, 38]. CNN-based image encoders such as
Faster R-CNN [25], ResNet [10], and transformer-based methods
such as ViT [8] have been used in previous work [35, 38, 39]. Due to
the recent success of ViT in multimodal information extraction [4,
35], we choose ViT as the visual backbone. The input image 𝐼 is

first rescaled to a specific dimension and then divided into non-
overlapping 2D patches 𝑉𝑆 = {𝑖1, 𝑖2, . . . , 𝑖𝑛𝑉 }. A special class patch
[𝐶𝐿𝑆] is prepended to the sequence 𝑉𝑆 to represent the image 𝐼 .
Each patch is then mapped to a one-dimensional embedding to
generate the patch embedding matrix 𝑉 0 ∈ R𝑛𝑉 ×𝑑𝑉 , where 𝑑𝑉
is the embedding dimension. ViT processes the patch embedding
matrix𝑉 0 throughmultiple pre-trained transformer layers to obtain
the visual semantic representation:

𝑉 𝑙 = ViT(𝑉 𝑙−1), 𝑙 ∈ {1, 2, . . . , 𝐿} (3)

where the 𝑉 𝑙 ∈ R𝑛𝑉 ×𝑑𝑉 denotes the output embedding matrix of
the 𝑙-th layer ViT and 𝐿 is the maximum layer.

3.4 Hierarchical Visual Context Fusion
Transformer

Here, we develop a two-stage hierarchical visual context fusion
transformer for MRE. Our model, depicted in Figure 2, comprises in-
dependent expert networks dedicated to the intra-level aggregation
of token-aware visual semantic representations, and a shared expert
router to facilitate the inter-level aggregation of multimodal repre-
sentations preserving hierarchical visual features. In the following
sections, we provide details of our approach.

3.4.1 Visual Context Learner. Our method employs textual-guided
visual attention blocks (TVA) to learn complementary image fea-
tures encoded at a specific level 𝑙 . The approach is inspired by
co-attentional transformer blocks, a common technique used inmul-
timodal learning and multimodal information extraction [27, 36, 38]
to combine the features from different modalities. The block uses
the textual semantic representation 𝑇 ∈ R𝑛𝑇 ×𝑑𝑇 as queries and the
visual semantic representation 𝑉 𝑙 ∈ R𝑛𝑉 ×𝑑𝑉 extracted from the
ViT layer 𝑙 as key-value pairs, thus allowing the block to learn token-
aware visual representations. Formally, the cross-modal attention
block operates as follows:

𝐴
(𝑙,𝑚)
𝐶

= Softmax

(
[𝑇𝑊𝑚

𝑞 ] [𝑉 𝑙𝑊𝑚
𝑘
]𝑇√︁

𝑑/𝑀

)
ℎ𝑒𝑎𝑑𝑚 = 𝐴

(𝑙,𝑚)
𝐶

[𝑉 𝑙𝑊𝑚
𝑣 ]

𝑉𝑙 = [ℎ𝑒𝑎𝑑1;ℎ𝑒𝑎𝑑2; . . . ;ℎ𝑒𝑎𝑑𝑀 ]𝑊𝑎𝑡𝑡

(4)

where {𝑊𝑚
𝑞 ,𝑊

𝑚
𝑘
,𝑊𝑚

𝑣 } ∈ R𝑑×𝑑/𝑀 are the weight matrices specific
to ℎ𝑒𝑎𝑑𝑖 for generating key, query and value vectors. In our im-
plementation, we let token embeddings have the same dimension
as patch embeddings, so we use 𝑑 to represent the hidden dimen-
sion size of the unified dimension. 𝐴(𝑙,𝑚)

𝐶
∈ R𝑛𝑇 ×𝑛𝑉 denotes the

cross-modal attention map.𝑊𝑎𝑡𝑡 is the weight matrix for𝑀 atten-
tion heads. Our cross-modal attention block then incorporates the
technique of layer normalization [1]:

�̃�𝑙 = LayerNorm(𝑉𝑙 ) (5)

To fuse textual and visual representations, we modify the fully
connected feed-forward network in vanilla Transformer [31]. The
multimodal representations 𝐶𝑙 ∈ R𝑛𝑇 ×𝑑 are calculated as:

𝐶𝑙 = 𝐹𝐹𝑁𝑙 ( [𝑇 ; �̃�𝑙 ]) +𝑇

= ℎ( [𝑇 ; �̃�𝑙 ]𝑊 𝑙
1 + 𝑏1)𝑊 𝑙

2 + 𝑏𝑙2 +𝑇
(6)
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Figure 2: The macro-structure of our method for multimodal relation extraction.

where𝑊1 ∈ R2𝑑×𝑑 ,𝑊2 ∈ R𝑑×𝑑 are the transformation matrices
and ℎ(·) is the activation function used in BERT.

3.4.2 Mixture of Multimodal Experts. We then introduce a mixture
of multimodal experts (MoME) to explore whether distinct textual
tokens may favor image information encoded at different levels.
A mixture of experts combines the outputs of sub-models known
as "experts" via a weighting function known as the "router" in an
input-dependent way. The proposed mixture of multimodal experts
is formulated as follows.

𝑀𝑜𝑀𝐸 (𝑉 ,𝑇 ) =
𝐸∑︁
𝑒=1

𝑔(𝑉 ,𝑇 )𝑒 · 𝑓𝑒 (𝑉 ,𝑇 ) (7)

where 𝑓𝑒 (·) denotes the 𝑒-th expert function and 𝑔(·) is the routing
function that prescribes the weights for the 𝐸 experts.

The visual context learner described in Section 3.4.1 is formally
defined as the expert network 𝑓𝑒 (·). We apply expert networks
{𝑓0 (𝑉 0,𝑇 ), 𝑓1 (𝑉 1,𝑇 ), 𝑓2 (𝑉 2,𝑇 ), . . . , 𝑓𝐿 (𝑉 𝐿,𝑇 )} to different ViT lay-
ers, thus generating a hierarchical visual features set �̃�𝐻 and a
multimodal representations set 𝐶𝐻 :

�̃�𝐻 = {�̃�0, �̃�1, �̃�2, . . . , �̃�𝐿}
𝐶𝐻 = {𝐶0,𝐶1,𝐶2, . . . ,𝐶𝐿}

(8)

All visual embeddings in �̃� are concatenated and then fed into
the expert router, which is a linear transformation of the input
followed by a softmax layer:

𝐺 = 𝑔(�̃�𝐻 ,𝑇 ) = Softmax( [𝑇 ; �̃�0; �̃�𝑙 ; . . . ; �̃�𝐿]𝑊𝑔) (9)

where𝑊𝑔 ∈ R( (𝐿+2)×𝑑 )×𝐸 is the trainable projection matrix and
the output 𝐺 ∈ R𝑛𝑇 ×𝐸 preserves the predicted expert weights for
diversed textual tokens.

Some previous studies [28, 38] onmultimodal information extrac-
tion have highlighted the potential issue of noise within images. To

handle the possible misalignment between text and visual data, we
incorporate a specialized expert, 𝑓𝑡𝑒𝑥𝑡 (𝑇 ) = 𝑇 , to provide text-only
information. The introduction of 𝑓𝑡𝑒𝑥𝑡 (·) serves to examine the
necessity of integrating image semantics into the MRE task. There-
fore, the number of experts 𝐸 equals 𝐿 + 2. The final cross-modal
semantic representations are calculated as follows:

𝐶 =

𝐿∑︁
𝑙=0

𝑔(�̃�𝐻 ,𝑇 )𝑙 ·𝐶𝑙 + 𝑔(�̃�𝐻 ,𝑇 )𝑡𝑒𝑥𝑡 · 𝑓𝑡𝑒𝑥𝑡 (𝑇 )

=

𝐿∑︁
𝑙=0

𝐺 [:, 𝑙+1] ·𝐶𝑙 +𝐺 [:, 0] ·𝑇

(10)

3.4.3 Decoder. We send the cross-modal representations to a linear
projection layer with the softmax function to compute the predicted
relation probability:

𝑃𝑟 = Softmax( [𝐶 [<𝑠>] ;𝐶 [<𝑜>] ]𝑊𝐶
𝑟 ) (11)

where𝑊𝐶
𝑟 ∈ R2𝑑×𝑅 is the trainable projection matrix. 𝐶 [<𝑠>] and

𝐶 [<𝑜>] are the representations of special tokens ⟨𝑠⟩ and ⟨𝑜⟩. The
model parameters are optimized by minimizing the cross-entropy
error between 𝑃𝑟 and the ground truth distribution:

L𝑟𝑒 = −
∑︁
𝑟 ∈Y𝑟

𝑦𝑟 · log(𝑝 (𝑟 )) (12)

3.5 Hierarchical Pattern Tracking Maps
To gain a reasonable understanding of the manner in hierarchical
visual contexts are represented and aggregated, it is imperative to
analyze the intrinsic mechanisms of image information processing
within the multimodal model. In this paper, we propose hierarchical
tracking maps (HTM) to characterize patterns associated with dif-
ferent image feature encoding levels. Given the input with 𝑛𝑇 text
tokens and 𝑛𝑉 image patches, two types of multidimensional arrays
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are calculated: the patch-patch tracking maps𝐻𝑉 ∈ R𝐿×𝑛𝑉 ×𝑛𝑉 and
the patch-token tracking maps 𝐻𝐶 ∈ R𝐿×𝑀×𝑛𝑇 ×𝑛𝑉 . 𝐻𝑉 is lever-
aged to capture the mapping relationship between visual informa-
tion derived from original image patches and image embeddings
generated by ViT. 𝐻𝐶 is employed to represent the mapping from
the initial image patches to the textual tokens. Figure 3 illustrates
the computation process.

(a)
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Figure 3: (a) The process of calculating hierarchical patch-
patch tracking maps 𝐻 𝑙

𝑉
. (b) Inferring tracking maps 𝐻 𝑙

𝐶
be-

tween input image patches and textual tokens.

The element𝑤𝑙
𝑖𝑝

in 𝐻 𝑙
𝑉

∈ R𝑛𝑉 ×𝑛𝑉 denotes the estimated impor-
tance weight of visual semantics from the original image patch 𝑝 in
generating the image embedding of patch 𝑖 after 𝑙 ViT layers. 𝐻0

𝑉
signifies the initial tracking maps before any transformer blocks
are applied, which is an identity matrix 𝐼 indicating that each patch
exclusively accumulates information from its own context:

𝐻 𝑙𝑉 =


𝑤𝑙11 𝑤𝑙12 · · · 𝑤𝑙1𝑛𝑉
𝑤𝑙21 𝑤𝑙22 · · · 𝑤𝑙2𝑛𝑉
.
.
.

.

.

.
. . .

.

.

.

𝑤𝑙
𝑛𝑉 1 𝑤𝑙

𝑛𝑉 2 · · · 𝑤𝑙𝑛𝑉𝑛𝑉


, 𝐻0
𝑉
=


1 0 · · · 0
0 1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 1


(13)

To infer the tracking maps𝐻𝑉 , it is essential to examine the com-
putational structures within ViT. The self-attention maps computed
in each ViT layer can serve as empirical evidence to indicate how
patch embeddings are aggregated to produce new visual representa-
tions. Assuming that there are 𝐾 heads in the 𝑙-th ViT layer, we can
extract the visual self-attention maps 𝐴𝑙

𝑉
∈ R𝐾×𝑛𝑉 ×𝑛𝑉 . The vector

𝛼𝑖 ∈ R1×𝑛𝑉 in the 𝑖-th row of the attention map 𝐴(𝑙,𝑘 )
𝑉

∈ R𝑛𝑉 ×𝑛𝑉

denotes the attention weights for the image patch 𝑖 in head 𝑘 . These
weights signify the importance coefficients of patch embeddings
𝑉 𝑙−1 from the (𝑙 − 1)-th ViT layer to obtain a new visual represen-
tation for patch 𝑖 .

𝐴
(𝑙,𝑘 )
𝑉

=


𝛼11 𝛼12 · · · 𝛼1𝑛𝑉
𝛼21 𝛼22 · · · 𝛼2𝑛𝑉
.
.
.

.

.

.
. . .

.

.

.

𝛼𝑛𝑉 1 𝛼𝑛𝑉 2 · · · 𝛼𝑛𝑉𝑛𝑉


,

𝑛𝑉∑︁
𝑗=1

𝛼𝑖 𝑗 = 1 (14)

Given that the image embeddings 𝑉 𝑙−1 have already retained
the original visual information, the hierarchical mapping matrix of
(𝑙 − 1)-th layer is 𝐻 𝑙−1

𝑉
. We can approximate the significance of the

visual context of the original image patch 𝑝 in the creation of the
patch embedding 𝑖 as follows:

𝑤𝑙𝑖𝑝 = 𝛼𝑖1𝑤
𝑙−1
1𝑝 + 𝛼𝑖2𝑤𝑙−1

2𝑝 + · · · + 𝛼𝑖𝑛𝑉𝑤𝑙−1
𝑛𝑉 𝑝

=

𝑛𝑉∑︁
𝑗=1

𝛼𝑖 𝑗𝑤
𝑙−1
𝑗𝑝 (15)

We further take into account the influence of residual connection
operation implemented in self-attention blocks:

𝑤𝑙𝑖𝑝 = 𝑤𝑙−1
𝑖𝑝 +

𝑛𝑉∑︁
𝑗=1

𝛼𝑖 𝑗𝑤
𝑙−1
𝑗𝑝 (16)

As there are𝐾 distinct attention heads in each ViT layer, we proceed
to perform iterative multiplication between𝐻𝑉 and𝐴(𝑙,𝑘 )

𝑉
, followed

by summation and normalization to yield the evaluated matrix 𝐻 𝑙
𝑉
.

The corresponding matrix formulation can be expressed as:

𝐻 𝑙𝑉 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐻 𝑙−1
𝑉 + 1

𝐾

𝐾∑︁
𝑘

𝐴
(𝑙,𝑘 )
𝑉

𝐻 𝑙−1
𝑉 ) (17)

We iteratively apply the Equation 17 from 𝑙 = 1 to 𝑙 = 𝐿 to obtain
the complete maps 𝐻𝑉 .

Since image embeddings from ViT layers (𝑙 ≥ 1) have preserved
the information from all image patches, the cross-modal attention
maps 𝐴𝑙

𝐶
are not suitable for accurately estimating how visual

features from raw image patches is exploited to supplement addi-
tional context for text tokens. To this end, we infer the hierarchical
patch-token tracking map 𝐻 (𝑙,𝑚)

𝐶
∈ R𝑛𝑇 ×𝑛𝑉 for each cross-modal

attention head. This matrix maintains the estimated importance
weights of the original visual features of input image patches, con-
tributing to the provision of relevant contexts for textual semantic
representations. By combining the cross-modal attention 𝐴𝑙

𝐶
and

hierarchical patch-patch tracking maps 𝐻 𝑙
𝑉
, we get the maps 𝐻 𝑙

𝐶
:

𝐻 𝑙𝐶 = [𝐻 (𝑙,1)
𝐶

, 𝐻
(𝑙,2)
𝐶

, . . . , 𝐻
(𝑙,𝑀 )
𝐶

]

𝐻
(𝑙,𝑚)
𝐶

= 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐴(𝑙,𝑚)
𝐶

𝐻 𝑙𝑉 )
(18)

Then 𝐻 𝑙
𝐶
is calculated for all ViT layers and concatenated to obtain

the final hierarchical patch-token tracking maps 𝐻𝐶 .

4 EXPERIMENTS AND RESULTS
4.1 Experimental Settings
4.1.1 Dataset. To evaluate the performance of our approach for
the MRE task, we adopt the most widely used multimodal neural
relationship extraction dataset (MNRE) [45]. The statistics of MNRE
are shown in Table 1. Each sample in MNRE includes the textual
content of a post and its corresponding image crawled from Twitter.
Given an image, we follow [42] and adopt the visual grounding
toolkit [37] to obtain visual objects with the highest 𝑡 salience.

4.1.2 Implementation Details. We conduct experiments using ViT-
B/32 as the visual backbone and pre-trained BERT-base as the tex-
tual encoder. Both models have a similar architecture, with a hidden
dimension of 768, 12 attention heads and 12 layers. We practically
find that applying individual expert networks for all ViT layers
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leads to numerous trainable parameters and results in inadequate
training of model parameters. Considering that the difference in
visual contexts learned by adjacent layers may not be significant,
we extract image patch representations from ViT layers 0, 6, and
12 to represent the visual information encoded at the lowest, inter-
mediate and highest levels. We ran all the experiments three times
with random seeds. More details are presented in the Appendix A.1.

#Ent. #Rel. #Train #Valid #Test
30,970 23 12,247 1,624 1,614
Table 1: The statistics of MNRE dataset.

4.1.3 Baselines. We compare our approach with current competi-
tive approaches to demonstrate the superiority of our method. First,
we choose conventional text-based models, including PCNN [41],
MTB [2], and BERT [7]. We then compare our method with pre-
vious multimodal approaches as follows: 1) VisualBERT [16] is a
pre-trained visual-language model with a single-stream structure.
2) BERT+SG [44] concatenates the textual representations of BERT
and the visual features generated by the scene graph tool [29]. 3)
MEGA [44] employs the graph alignment algorithm to match the
textual entities and visual objects detected by the scene graph gen-
eration tool [29]. 4) Xu et al. [35] propose a data discriminator
that divides social media posts into a multimodal and a unimodal
set. 5) MKGformer [4] is a new SOTA method that proposes a
hybrid transformer to integrate visual and text representations.
6) IFAformer [43] aligns multimodal features between texts and
images by utilizing textual and visual prefix-based attention. MKG-
former and IFAformer implicitly harness hierarchical visual con-
texts by fusing visual and textual representations at the same layers
of BERT and ViT. Our HVFormer also utilizes BERT and ViT as the
encoders, while we explicitly incorporate multi-level visual features
acquired from various ViT layers into the textual representations.
7) HVPNeT [5] utilizes multi-scaled visual features derived from
4 ResNet blocks to create informative multimodal representations.
HVPNet extracts fixed hierarchical visual representations for all
textual tokens and focuses on inter-level aggregation. In contrast,
our method additionally incorporates intra-level aggregation to
learn more refined token-aware hierarchical visual representations.

4.2 Performance Comparison
4.2.1 Main Results. We report the precision (P), recall (R), and F1
score (F1) achieved by each compared method on the MNRE. Ta-
ble 2 summarizes the experimental results of the baselines and our
proposed method. We present the average results and the standard
deviations. Our approach outperforms all baselines, demonstrating
its overall superior performance. Specifically, compared to the re-
cent SOTAmodel MKGformer, which has the same text encoder and
image encoder as our method, our model achieves relative increases
of 1.75% F1 score, 1.72% recall score, and 1.77% precision score. Fur-
thermore, our HVFormer exhibits superior performance compared
to HVPNeT that also explicitly exploits visual features learned by
different image encoder blocks, highlighting the effectiveness of
our model in learning fine-grained hierarchical visual contexts.

Modal Methods P R F1

Text
PCNN 62.85 49.69 55.49
MTB 64.46 57.81 60.86
BERT 61.89 66.09 63.86

Text
+

Image

VisualBERT 57.15 59.48 58.30
BERT+SG 62.95 62.65 62.8
MEGA 64.51 68.44 66.41
Xu et al. 66.83 65.47 66.14

MKGformer 82.67 81.25 81.95
IFAformer 82.59 80.78 81.67
HVPNeT 83.64 80.78 81.85
Ours 84.14±.49 82.65±.33 83.39±.23

w/o HVF 82.58±.53 82.22±.41 82.40±.65
w/o TVA 81.81±1.8 76.35±3.4 78.95±2.3
w/o MoME 83.49±.59 81.66±.53 82.56±.54

Table 2: Performance comparison of previous SOTA baseline
models for multimodal RE on MNRE dataset.

4.2.2 Model Ablation. To investigate the effectiveness of key com-
ponents in our model, we conduct an ablation study using the
following model variants: 1) w/o HVF indicates that only the final
output visual representations of the ViT are utilized for MRE. 2) w/o
TVA refers to the model removing the cross-modal attention block.
We simply leverage the [𝐶𝐿𝑆] patch embeddings from different
ViT layers as learned hierarchical visual features. 3) w/o MoME
indicates that we concatenate 𝑇 , 𝐶𝐻 and feed them into a general
feed-forward network for fusion. As shown in Table 2, removing
hierarchical visual features (w/o HVF) leads to a degradation in
model performance, demonstrating that just exploiting the final
visual representations is sub-optimal for MRE. w/o TVA drops 4.44
F1 score, indicating that cross-modal attention blocks are crucial
in capturing fine-grained visual features. The model without the
mixture of multimodal experts (w/oMoME) drops 0.83 F1 score, sug-
gesting that estimating the importance of different levels of image
encoding helps to learn more effective multimodal representations.

4.3 Analysis and Discussion
RQ1: How does performance vary when leveraging visual semantics
from distinct encoding levels?

A: We evaluate the performance of model variants that solely
implement one specific expert network 𝑓𝑙 (·). As depicted in Figure 4,
leveraging the initial patch embeddings𝑉 0 to gain contextual visual
cues leads to the lowest F1 score. The result suggests that stacking
ViT encoding layers can improve the acquisition of complementary
visual information. In addition, Figure 4 reveals that the use of high-
level visual representations (𝑙 = 11, 12) can result in a performance
decline to some extent while exploiting image embeddings derived
from intermediate layers of ViT (𝑙 = 5 − 7) yields the optimal
performance. We conjecture that this is primarily due to patch
embeddings in high-level layers of ViT being generated by more
aggregation operations, which makes it challenging to precisely
identify relevant visual information.
RQ2: What are the characteristics of the complementary visual con-
texts obtained from different layers of ViT?
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Figure 4: Performance of model variants that solely imple-
ment one specific expert network 𝑓𝑙 (·).

A: We analyze the cross-modal attention distributions to in-
vestigate the characteristics of visual semantics captured from
distinct ViT layers. We calculate the overall cross-modal atten-
tion scores of subject and object tokens (⟨𝑠⟩,⟨𝑜⟩) across all MNRE
training samples. Figure 5a only depicts the average attention map
𝐴𝑙
𝐶

= 1
𝑀

∑𝑀
𝑚 𝐴

(𝑙,𝑚)
𝐶

over all heads 𝐴(𝑙,𝑚)
𝐶

for space reason. For a
comprehensive view of the 𝐴𝑙

𝐶
, please refer to the Appendix A.3.

We find that the kurtosis of cross-modal attention distribution
is increased as image patches are processed by more vision trans-
former layers. Kurtosis is a statistical measure used to describe the
"tailedness" of a probability distribution, which is computed as:

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝑃) = 𝜇4
𝜎4 − 3 (19)

where 𝜇4 is the central fourth moment and 𝜎 denotes the standard
deviation. The distribution with a high kurtosis typically has a
heavy tail. The kurtosis of 𝐴𝑙

𝐶
is calculated as the sum of the kurto-

sis values of all attention heads. As shown in Figure 5b, the 𝐴12
𝐶

has
a much higher kurtosis (48.5) than 𝐴1

𝐶
(11.4). These results suggest

that when leveraging visual embeddings learned by deeper ViT
layers, the model generally concentrates on fewer patch embed-
dings to obtain complementary visual contexts. We speculate that
a limited set of high-level patch embeddings may supply sufficient
global visual information for relation identification.
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Figure 5: Average cross-modal attention distribution 𝐴𝑙
𝐶
of

subject and object tokens on MNRE train set.

RQ3: Can the hierarchical tracking maps be considered a reliable indi-
cator for understanding the intrinsic mechanisms of image processing
in multimodal models?

A: We calculate the patch-patch trackingmaps𝐻 𝑙
𝑉
for all training

samples, and Figure 6 presents the average results. It is observed that

𝐻 𝑙
𝑉
of the earlier layer exhibits high scores on diagonal elements,

suggesting that the queried image patches predominantly attend to
their own local visual features. As layers go deeper, the significance
of these local visual features gradually diminishes, and there is a
shift towards focusingmore on global information from other image
patches. 𝐻 𝑙

𝑉
of intermediate ViT layers shows a unique pattern

that balances weights on both local and global information. These
observations provide insights into why optimal performance is
achieved via utilizing mid-level patch embeddings to attain visual
information, as reported in Figure 4.
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Figure 6: Average hierarchical patch-patch tracking maps𝐻 𝑙
𝑉

calculated by Equation 17. Best view in color.

Moreover, it is noteworthy that the dynamic patterns of repre-
senting hierarchical visual context can affect the variation in the
abilities of cross-modal attention heads to capture complementary
visual contexts from input image patches. We compute the patch-
token tracking maps 𝐻 𝑙

𝐶
for tokens ⟨𝑠⟩,⟨𝑜⟩ in all training text posts

and Figure 7a, b show visualizations of 𝐻1
𝐶
and 𝐻12

𝐶
, respectively.

To inspect the variation among patch-token matrix corresponding
to different heads, we measure the KL-divergence between each
𝐻

(𝑙,𝑚)
𝐶

and the averaged tracking matrix:

𝐷𝐾𝐿 (𝐻 𝑙𝐶 | |𝐻
𝑙
𝐶 ) =

𝑀∑︁
𝑚=1

𝑛𝑉∑︁
𝑖=1

𝑀
(𝑙,𝑚)
𝑖

𝑙𝑜𝑔(
𝑀

(𝑙,𝑚)
𝑖

�̄�𝑙
𝑖

)

𝐻 𝑙𝐶 =
1
𝑀

𝑀∑︁
𝑚=1

𝐻
(𝑙,𝑚)
𝐶

(20)

A high value of 𝐷𝐾𝐿 (𝐻 𝑙𝐶 | |𝐻
𝑙
𝐶
) suggests large disparities among the

distributions of 𝐻 (𝑙,𝑚)
𝐶

. As illustrated in Figure 7c, the 𝐷𝐾𝐿 value
is reduced as the number of ViT layers increases. This observa-
tion can be attributed to high-level patch embeddings retaining
more global visual information, consequently representing more
consistent visual semantics.

Prior experiments predominantly utilize visual self-attention
maps to probe the underlying mechanisms of learning hierarchical
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Figure 7: Average hierarchical tracking maps 𝐻 𝑙
𝐶
between

input image patches and textual tokens (⟨𝑠⟩, ⟨𝑜⟩).

visual contexts, which may raise concerns regarding the oversight
of the effect of other structures in vision transformers (e.g., layer
normalization, feed-forward network). To validate the analysis re-
sults above, we conduct a case study to visualize the contextual
image features represented at different levels. We extract the out-
put hidden patch representations of each ViT layer and employ t-
SNE [30] to project these patch embeddings into a two-dimensional
space, as shown in Figrue 8a. It is observed that as the layers go
deeper, the spatial distance between the initial image embeddings
(𝑙 = 0) and the hierarchical visual embeddings (𝑙 ≥ 1) increases.
The discrepancy between the visual representations of the entire
image and those of the object sub-images generated by the same
ViT layer gradually decreases. These phenomena further strengthen
and align with our conclusions, as outlined above.

Whole Image Object Sub-images

Initial Patch Embeddings (Layer 0)
Layer 1 Layer 2 Layer 3 Layer 4
Layer 5 Layer 6 Layer 7 Layer 8
Layer 9 Layer 10 Layer 11 Layer 12

(a)

Layer 0-4
Layer 5-9
Layer 10-12

Whole Image Patches
Whole Image Patches
Whole Image Patches

Objects Patches
Objects Patches
Objects Patches

(b)

Figure 8: (a) Visualization of all hierarchical visual represen-
tations. (b) Patch representations from the original whole im-
age are marked in blue, while those from object sub-images
are highlighted in red.

RQ4: What is the significance of different levels of vision encoding
when using multiple-level visual features simultaneously?

A: Expert weights reflect the significance of semantics derived
from different visual encoding levels. Figure 9a reports the average
expert weights for tokens ⟨𝑠⟩ and ⟨𝑜⟩ during the training process.

It can be seen that the weight of the text-only expert gradually
decreases to zero, and the importance weights are mainly concen-
trated in experts fusing visual features from ViT layers 6 and 12.
Figure 9b presents the overall distribution of expert weights when
the model reaches convergence. These findings suggest that images
provide critical contexts for decoding relations.
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(a) Optimization process.
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(b) Overall expert weights.

Figure 9: The estimated importance weights for multimodal
experts on MNRE train set.

We summarize the expert weight distributions of subject and
object tokens for different relations. Figure 10 presents the statistical
distributions of expert weights for 4 relations on the MNRE test
set. We observe that tokens with the same relation tend to rely on
a primary expert, and classifying different relations may attend to
visual features at different levels. For instance, the performance
of predicting relation /member_of relies on information from ViT
layer 6, while inferring relation /part_of focuses on visual context
from layer 12. The results reveal that text-image pairs related to
distinct relations may exhibit specific relational patterns in utilizing
visual information at different levels.
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Figure 10: Expert weights of four relations: /per/per/peer,
/per/org/member_of, /misc/misc/part_of and /None.

5 CONCLUSION
In this paper, we present a hierarchical visual context fusion trans-
former for multimodal relation extraction. Our approach utilizes
independent expert networks at each vision transformer layer to
capture supporting visual cues from distinct image encoding levels.
The textual and corresponding text-aware visual representations are
then adaptively aggregated using importance weights predicted by
an expert router. Hierarchical tracking maps are introduced to char-
acterize the underlying patterns of image information processing
within multimodal models. Extensive experiments are conducted
to study how hierarchical visual contexts affect relation extraction.
Our experimental results demonstrate that the proposed method
outperforms existing state-of-the-art approaches.
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A APPENDIX
A.1 Implementation Details
We conduct experiments using ViT-B/32 as the visual backbone
and pre-trained BERT-base as the textual encoder. Both pre-trained
BERT and ViT are obtained from the HuggingFace Transformer
repository.2 Both models have a similar architecture, with a hidden
dimension of 768, 12 attention heads, and 12 layers. The textual-
guided cross-modal attention block is implemented with 𝑀 = 12
heads.

We optimize the model using AdamW [19] with an initial learn-
ing rate of 𝑙𝑟 = 1 × 10−5 over 20 epochs. We implement our code
using the PyTorch deep learning framework [23] and run all exper-
iments on NVIDIA Tesla V100 GPU. It takes nearly 6 hours to train
the model in our experimental environment. To reduce random
bias, we run all experiments three times and report the average
results as well as the standard deviations. The source code of our
model will be made publicly available after the review process if
accepted.

Applying individual expert networks for all image encoding
levels leads to numerous trainable parameters. We practically find
that such an implementation can result in inadequate training of
expert-specific parameters. Considering that the difference in visual
context learned by adjacent layers may not be significant, we extract
image patch representations fromViT layers 0, 6, and 12 to represent
the visual information encoded in the lowest, intermediate, and
highest levels. To this end, the total number of parameters in our
model is 250.8M.

2https://github.com/huggingface/transformers
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A.2 Self-attention Maps of ViT
Figure 11 shows the average visual attention map of ViT on the
MNRE train set. It can be observed that attention heads in earlier
layers (e.g., 𝐴1

𝑉
) yield high activation scores on diagonal elements,

meaning that query image patches focus on local information from
themselves. As layer depth increases, certain attention heads exhibit
varied patterns where scores are distributed over a wide range of
image patches rather than being concentrated in diagonal elements.
This observation aligns with findings from prior research [14]. Such
inherent characteristics of ViT in image information encoding sug-
gest that the output visual embeddings from deeper ViT layers are
generated by preserving more global visual features.
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Figure 12: (a) An example of heads acquiring global visual
information from all input image patches. (b) An example
of heads attending to [𝐶𝐿𝑆] patch that represents the entire
image. (c) 𝐴(7,9)

𝑉
aggregates global visual information from

both sides.

We further notice that global visual information can be obtained
in different ways. Figure 12a presents an example of heads aggre-
gating visual features from all image patches. Note that since both
the original complete images and their corresponding object sub-
images are input to the vision encoder, 𝐴(12,2)

𝑉
is partitioned into

four blocks with distinct patterns. Queries from the original image
have different association patterns regarding patches from the orig-
inal image and those from object images. Figure 12b shows that
the head 𝐴(3,1)

𝑉
employs an alternative approach to capture global

visual information. All queries in head 𝐴(3,1)
𝑉

have exceptionally
high activation scores to the special class patch [𝐶𝐿𝑆] that repre-
sents the semantics of the entire image. Actually, more attention
heads gather visual information from both two sides, as illustrated
in Figure 12c.

A.3 Cross-modal Attention Maps
To study the impact of visual encoding hierarchy in offering text-
relevant context, we present the average cross-modal attention
distributions 𝐴𝑙

𝐶
for subject and object tokens in MNRE training

samples, as illustrated in Figure 13. It is evident that distinct atten-
tion heads within the same layer 𝑙 can have distinctive distribution
patterns. Some heads tend to assign uniform weights across all
image patches (e.g., 𝐴(10,12)

𝐶
), whereas others may display more

concentrated distributions (e.g., 𝐴(10,1)
𝐶

). Overall, as we exploit im-
age embeddings produced by deeper ViT layers, the kurtosis of
cross-modal attention distribution tends to rise, as demonstrated

in Figure 4b. Obviously, most attention heads of 𝐴11
𝐶

and 𝐴12
𝐶

have
heavy tails and are concentrated around several image patches,
which means that the model can acquire enough global image in-
formation from a limited set of high-level visual representations.
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𝐶

on MNRE train set.
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