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ABSTRACT

In this work, we develop new optimization algorithms that use approximate second-
order information combined with the gradient regularization technique to achieve
fast global convergence rates for both convex and non-convex objectives. The key
innovation of our analysis is a novel notion called Gradient-Normalized Smooth-
ness, which characterizes the maximum radius of a ball around the current point that
yields a good relative approximation of the gradient field. Our theory establishes a
natural intrinsic connection between Hessian approximation and the linearization
of the gradient. Importantly, Gradient-Normalized Smoothness does not depend on
the specific problem class of the objective functions, while effectively translating
local information about the gradient field and Hessian approximation into the global
behavior of the method. This new concept equips approximate second-order algo-
rithms with universal global convergence guarantees, recovering state-of-the-art
rates for functions with Hölder-continuous Hessians and third derivatives, Quasi-
Self-Concordant functions, as well as smooth classes in first-order optimization.
These rates are achieved automatically and extend to broader classes, such as
generalized self-concordant functions. We demonstrate direct applications of our
results for global linear rates in logistic regression and softmax problems with
approximate Hessians, as well as in non-convex optimization using Fisher and
Gauss-Newton approximations.

1 INTRODUCTION

Motivation. Numerical optimization methods that use preconditioning or second-order information—
such as Newton-type methods—are extensively applied in machine learning, artificial intelligence,
and scientific computing. While gradient-based methods—such as Gradient Descent—form a solid
foundation for many large-scale applications due to their low per-iteration cost and well-established
convergence theory, second-order methods are known to significantly accelerate convergence by
taking into account the curvature information of the objective function. However, although the
modern theory of second-order optimization establishes strong complexity guarantees for the Newton
method with appropriate regularization techniques (Nesterov, 2018; Nesterov & Polyak, 2006; Cartis
et al., 2011a; Doikov et al., 2024a), the theory for inexact Hessians is usually much more limited,
suggesting that errors coming from the Hessian inexactness might drastically slow down convergence,
causing the method to converge as slowly as Gradient Descent (Agafonov et al., 2024; Chayti et al.,
2023). In this work, we aim to develop a new convergence theory for second-order methods with
approximate Hessians, that matches state-of-the-art rates for the exact Newton method and bridges
the geometry of the objective function with conditions on the Hessian approximation. The form of
our method is very simple. For unconstrained minimization of the function f , using the standard
Euclidean norm, we perform:

xk+1 = xk −
(
Hk + ∥∇f(xk)∥

γk
I
)−1

∇f(xk), k ≥ 0, (1)

where Hk ⪰ 0 is a Hessian approximation matrix, and γk > 0 is a (second-order) step-size. This
parametrization ensures that each step is bounded, ∥xk+1 − xk∥ ≤ γk, and for Hk = 0 we obtain
iterations of the normalized gradient descent (Nesterov, 2024). Moreover, in the case of the exact
Hessians, Hk = ∇2f(xk), the gradient regularization (1) was shown to achieve both very fast
quadratic local convergence, as for the classical Newton method (Polyak, 2007), and strong global
rates for a wide range of convex problem classes (Polyak, 2009; Doikov et al., 2024a; Doikov, 2023).
In this paper, we relax Hk ≈ ∇2f(xk) to be a Hessian approximation in (1). We consider the
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following condition for our method:

∥∇2f(xk)−Hk∥ ≤ C1 +C2∥∇f(xk)∥1−β , 0 ≤ β ≤ 1, (2)

for certain C1,C2 ≥ 0, and β is a fixed approximation degree. This condition appears to be
essentially satisfied by many natural approximations of the Hessian, such as Fisher or Gauss-Newton
approximations. For example, for the finite-sum structure of the objective f(x) =

∑n
i=1 fi(x), that

is popular in applications from machine learning and statistics, one can take the Fisher approximation,

Hk :=
∑n

i=1∇fi(xk)∇fi(xk)
⊤. (3)

For simplicity, we consider here all gradients computed at the same point xk, while in practice the
gradients can be taken from the past (Frantar et al., 2021) (see also (Martens, 2020) and (Kunstner
et al., 2019) for an in-depth analysis of the Natural Gradient Descent and its variants). It appears
that this approximation (3), e.g., for the logistic regression problem or softmax with linear models
(Examples 6, 8) satisfies (2) with β = 0, and C1 = f⋆ (the global optimum), which can be small or
even zero for the well-separable data.

As a direct consequence of our new theory, we show that method (1), using the approximate
Hessian (3), exhibits the global linear rate, as soon as f⋆ is sufficiently small. This stands in stark
contrast to classical gradient methods, which typically achieve only sublinear convergence rates,
unless additional assumptions—such as strong or uniform convexity—are imposed. Notably, our
method remains formally first-order, relying solely on access to the first-order oracle.

Other examples include nonconvex problems with nonlinear operators, which satisfy (2) even with
C1 = 0 and β = 0, where Hk is a specific combinations of Gauss-Newton and Fisher matrices
(see Examples 7, 8). We show that in these cases, when the degree β of Hessian approximation is
smaller than the degree of smoothness α (see the formal definition in Section 4), the errors coming
from Taylor’s approximation dominate the Hessian inexactness. In these situation (C1 ≈ 0, C2 > 0,
and α ≥ β), our method with inexact Hessians has the same global rate as the full Newton method
(C1 = C2 = 0), see Figure 1.
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Figure 1: Global Convergence Diagram for Algo-
rithm 1. We see that, for α ≥ β, the problem class
of f dominates the Hessian inexactness, and our method
achieves the same rate as full Newton.

Contributions. In this work, we develop a new frame-
work for describing the global behavior of second-order
methods using a universal (problem-class free) local char-
acterization of the objective’s gradient field and Hessian
approximation, called Gradient-Normalized Smoothness
(Section 2). We propose a unified treatment for the er-
rors coming from both Hessian inexactness and Taylor’s
approximation, thereby showing an intrinsic connection
between them. Our theory provides method (1) with a
universal step-size rule for γk, which adapts automatically
to the right problem class (which is described by the de-
gree of smoothness, 0 ≤ α ≤ 1, introduced in Section 4)
and the Hessian approximation error (2). See Table 1
for the summary of the complexity results covered by our
Gradient-Normalized Smoothness, for particular problem
classes.

(I) For the case of Exact Newton, Hk = ∇2f(xk), we ultimately recover the state-of-the-art rates
obtained in (Doikov et al., 2024a; Doikov, 2023) for functions with Hölder continuous Hessian
( 12 ≤ α ≤ 1), Hölder continuous third derivative ( 13 ≤ α ≤ 1

2 ), and Quasi-Self-Concordant functions
(α = 0). Our theory also extends to generalized Self-Concordant functions (Sun & Tran-Dinh, 2018),
which correspond to 0 ≤ α ≤ 1

2 , establishing novel global rates in this range. Beyond that, the
Gradient-Normalized Smoothness framework allows us to treat (L0, L1)-smooth functions (Zhang
et al., 2019; Xie et al., 2024) from both first-order and second-order optimization (see examples in
Section 2). Our convergence theory works both in convex and nonconvex cases (Theorems 1,2).

(II) For the Inexact Hessian, we use condition (2) to control the approximation errors, which is
automatically covered by our notion of Gradient-Normalized Smoothness and provides us with the
corresponding convergence rates. An interesting observation from our theory is that, in the regime
α ≥ β and C1 ≈ 0, the smoothness class of the objective dominates the Hessian approximation,
and we recover the same rates as for the exact Hessian (see Fig. 1). As a by-product, we establish
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Problem class Exact Case (C1 = C2 = 0) Inexact Hess. (ours)

Bounded Hess. variation O
(

M0D
2

ε

)
(Nesterov, 2018) O

(
(M0 +C2)D

2

ε + C1D
2

ε

)
Lip. Hess. O

(
M1/2D

3/2

ε1/2

)
(Nesterov & Polyak, 2006) O

(
(M1/2 +C2)D

3/2

ε1/2
+ C1D

2

ε

)
Lip. ∇3f O

(
M1/3D

4/3

ε1/3

)
(Doikov et al., 2024a) O

(
(M1/3 +C2)D

4/3

ε1/3
+ C1D

2

ε

)
Gen.-SC, 0 < α ≤ 1/2 O

(
M1−αD1+α

εα

)
(ours) O

(
(M1−α +C2)D

1+α

εα + C1D
2

ε

)
Quasi-SC, α = 0 Õ

(
M1D

)
(Doikov, 2023) Õ

(
(M1 +C2)D + C1D

2

ε

)
Table 1: Global complexities for our Algorithm 1 on different problem classes with convex objectives and using inexact Hessian. We
show the number of iterations K required to find ε-solution to our problem: f(xK) − f⋆ ≤ ε. Note that we recover state-of-the-art rates
for the exact Newton (C1 = C2 = 0) in all particular cases, and extend them to the inexact Hessians. The global rates for the Generalized
Self-Concordant (Gen.-SC) functions, introduced in (Sun & Tran-Dinh, 2018), are also novel in the exact case.

new global convergence rates for several practical problems (see Section 5) particularly when using
approximate Hessian information, such as Fisher and Gauss-Newton matrices, which are popular in
machine learning.

(III) Numerical experiments (Section 6 and Appendix B) illustrate our theory and confirm excellent
performance of method (2) with our step-size selection and Hessian approximations.

Related Work. Using a scalable approximation of the Hessian matrix in Newton’s method remains an
attractive and popular approach to addressing the ill-conditioning of the function by better capturing
the problem’s geometry. Various examples include: low-rank approximations of the Hessian or quasi-
Newton methods (Dennis & Moré, 1977; Jorge & Stephen, 2006; Rodomanov & Nesterov, 2021;
Rodomanov, 2022; Jin & Mokhtari, 2023), spectral preconditioning (Ma et al., 2023; Zhang et al.,
2023; Doikov et al., 2024b), first- and zeroth-order approximations (Cartis et al., 2012; Grapiglia et al.,
2022; Doikov & Grapiglia, 2025), the Fisher and Gauss-Newton approximations (Nesterov, 2007;
Kunstner et al., 2019; Arbel et al., 2023), stochastic subspaces or sketches (Cartis & Scheinberg, 2018;
Gower et al., 2019; Fuji et al., 2022; Zhao et al., 2025; Hanzely, 2025), and many others. Modern
techniques to globalize Newton’s method, include the cubic regularization (Griewank, 1981; Nesterov
& Polyak, 2006; Cartis et al., 2011a;b) and gradient regularization (Polyak, 2009; Mishchenko, 2023;
Doikov & Nesterov, 2023; Doikov et al., 2024a; Doikov, 2023), that constitute the main basis of our
work. Another popular approach consists in trust-region methods (Conn et al., 2000; Jiang et al.,
2023; Xie et al., 2024), the notion Hessian stability (Karimireddy et al., 2018), and quasi-Newton
methods with global convergence (Kamzolov et al., 2023; Scieur, 2024; Rodomanov, 2024; Jin et al.,
2024). In recent years, we have seen more and more interesting deviations from the classical picture
of complexity theory (Nemirovski & Yudin, 1983), with new important problem classes emerging
from modern applications. These include the notion of relative smoothness (Bauschke et al., 2017; Lu
et al., 2018), or (L0, L1)-smoothness (see (Zhang et al., 2019; Koloskova et al., 2023; Gorbunov et al.,
2024; Vankov et al., 2024) and references therein), especially motivated by empirical smoothness
properties of neural networks. While each of these new problem classes typically requires special
attention—designing a new method and establishing the corresponding convergence theory—it is
becoming increasingly evident that the most natural optimization schemes are universal, in the
sense that they can automatically adapt to the appropriate degree of smoothness without requiring
knowledge of any specific parameters (Nesterov, 2015; 2024).

Notation. Let us consider unconstrained minimization problem,
min
x∈Rn

f(x), (4)
where f : Rn → R is a differentiable function, that can be non-convex. Let f⋆ := infx∈Rn f(x),
which we assume to be finite: f⋆ > −∞. We denote by ∇f(x) ∈ Rn the gradient vector at point
x ∈ Rn and by ∇2f(x) ∈ Rn×n the Hessian, which is a symmetric matrix. The third derivative,
∇3f(x), is a tri-linear symmetric form. We denote by ∇3f(x)[h1,h2,h3] ∈ R its action onto
arbitrary directions h1,h2,h3 ∈ Rn. Let us fix a symmetric positive-definite matrix B ≻ 0, which
we use to define a pair of global Euclidean norms in our space:

∥h∥ := ⟨Bh,h⟩1/2, ∥s∥∗ := ⟨s,B−1s⟩1/2, h, s ∈ Rn,

which satisfy the Cauchy-Schwarz inequality: |⟨s,h⟩| ≤ ∥s∥∗∥h∥. We use the dual norm to measure
the size of the gradients. In the simplest case, we can set B := I (identity matrix), which gives the
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classical Euclidean norm, while, in some cases, the use of a specific B can significantly improve the
global geometry and convergence of our methods (see Section 5 for examples). Correspondingly, we
use the induced spectral norm for symmetric matrices and multi-linear forms, e.g.

∥∇2f(x)∥ := maxh:∥h∥≤1 |⟨∇f(x)h,h⟩|, ∥∇3f(x)∥ := maxh:∥h∥≤1∇3f(x)[h,h,h].

Along with the global norm in our space, we can also define the following local norm (Nesterov &
Nemirovski, 1994), which is induced by the Hessian of the objective, for any x ∈ Rn: ∥h∥2x :=
⟨∇2f(x)h,h⟩, h ∈ Rn. Note that we use this notion even for points where the Hessian is not
positive definite. However, ∥ · ∥x is a well-defined norm for x where∇2f(x) ≻ 0, which holds for
strictly convex functions.

2 GRADIENT-NORMALIZED SMOOTHNESS

Our aim is to characterize and approximate the behavior of the gradient field ∇f(·), induced by
our objective. Along with it, we denote by H(·) ∈ Rn×n, the matrix field which assigns to every
point x ∈ Rn a symmetric positive-semidefinite matrix which serves as our Hessian approximation,
H(x) ≈ ∇2f(x). We will use this matrix directly in our algorithms (see Section 3 and corresponding
examples). We would like to use it for the following linear approximation of the gradient field in a
neigbourhood of the current point:

∇f(x+ h) ≈ ∇f(x) +H(x)h. (5)

The examples include: H ≡ ∇2f , exact Hessian, which provides us with the Newton approximation
in (5), or H ≡ 0, zero matrix. The latter case corresponds to first-order methods.

Definitions. For a given γ > 0, we denote the ball Bγ :=
{
h : ∥h∥ ≤ γ

}
. Moreover, employing

the local norm, we define the following local region, at point x and for an arbitrary direction g ∈ Rn:

Ox,g :=
{
h : ∥h∥2x + ⟨g,h⟩ ≤ 0

}
. (6)

Note that for ∇2f(x) ≻ 0 this set is an ellipsoid centered around the Newton direction: Ox,g ={
h : ∥h+ 1

2∇2f(x)−1g∥2x ≤ 1
4∥g∥2x,∗ := 1

4 ⟨g,∇2f(x)−1g⟩
}

, and its geometry depends on the
properties of the objective. For non-convex functions, Ox,g can be unbounded. Nevertheless, we
always intersect it with the Euclidean ball Bγ , thus working solely with bounded directions. Using
our local regions, we introduce new characteristic, called the Gradient-Normalized Smoothness:

Definition 1. For any x ∈ Rn and direction g ∈ Rn, denote

γ(x, g) := max
{
γ ≥ 0 : ∥∇f(x+ h)−∇f(x)−H(x)h∥∗ ≤ ∥g∥∗∥h∥

γ , ∀h ∈ Bγ ∩ Ox,g

}
.

Thus, quantity γ(x, g) describes the maximal radius of the Euclidean ball around point x, within
which the error of linear approximation of the gradient field (5) is relatively small across all feasible
directions h. Note that the local region Ox,g only restricts the set of possible directions, and hence it
can only improve γ(x, g). It appears that including set Ox,g in the definition is crucial to make the
modulus of smoothness γ(·) large enough, for second-order problem classes that we present below.

0 2 4
0

2

4

γ

ρ

γ(x)

ρ(γ)

Figure 2: The plot of ρ(·) for
f(x) = ex. In this case, γ(x) ≡
(e − 2)−1 ≈ 1.39 for all x ∈ R.

In order to better understand the definition, let us introduce the fol-
lowing univariate function, at a given point x ∈ Rn: ρ(γ) :=
minh∈Bγ∩Ox,g

{
∥∇f(x+h)−∇f(x)−H(x)h∥−1

∗ ∥g∥∗∥h∥
}
, where

γ ≥ 0. Clearly, ρ(·) is monotonically decreasing, starting from some
large limit 1 value ρ(0). Its graph is shown in Fig. 2. Then, the value of
γ(x, g) is the intersection of ρ(·) with the main diagonal. These obser-
vations also demonstrate monotonicity in γ: if the inequality from the
definition holds for some γ ≥ 0, then it also holds for all 0 ≤ γ′ ≤ γ,
and, by definition, γ(x, g) is the maximal possible radius. Among all
possible directions at x, the most important is g = ∇f(x). For that, we
naturally define:

γ(x) := γ(x,∇f(x)).

1The limit always exists when f is sufficiently smooth at x.
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As we will see in Section 3, γ(x) provides us with the right step-size in our algorithm, that automati-
cally adjusts to the best problem class and the degree of the Hessian approximation∇2f(x) ≈ H(x)
at the current point. It is possible to generalize our results to Composite Optimization Problems
(Appendix C), which includes constrained optimization and non-smooth regularizers. In this case, we
need to use for g a perturbed gradient direction, that depends on the composite component.

Basic Properties. First, let us consider a stationary point x⋆ which is a strict local minimum, so
it holds: ∇f(x⋆) = 0 and ∇2f(x⋆) ≻ 0. Then, by our definition we have γ(x⋆) = +∞, which
means no regularization in our method. This implies that being in a neighborhood of the solution, the
algorithm will switch to pure Newton steps, which confirms the intuition that the classical Newton’s
method has the best local behavior. Note that for quadratic functions and setting H := ∇2f , the
linearization (5) is exact, and we also have γ ≡ +∞. At the same time, when γ(x) is small, it
indicates a need for regularization.

Now, we can state how the Gradient-Normalized Smoothness γ(·) changes under simple operations 2

1. Scale-invariance. Let γf (x) be the Gradient-Normalized Smoothness for function f and
let g := c · f for some c > 0. Accordingly, we set Hg := cHf . Then, γg(x) ≡ γf (x).

2. Affine substitution. Let g(x) := f(Ax+ b) for some invertible A ∈ Rn×n and b ∈ Rn.
Set Hg(x) := A⊤Hf (Ax+ b)A. Then, γg(x) ≥ γf (x) · ∥A∥−1.

3. Sum of functions. Let f :=
∑d

i=1 fi. Then, γf is bounded by the Harmonic mean:

γf (x, g) ≥
(∑d

i=1 γfi(x, g)
−1
)−1

, x, g ∈ Rn.

4. Hessian inexactness. Let γ1(x) be the Gradient-Normalized Smoothness of f when
using matrix field H1. Let H2 be such that ∥H1(x)−H2(x)∥ ≤ ∥∇f(x)∥ · γ12(x)−1,
for a certain function γ12. Then, the Gradient-Normalized Smoothness of f when using
H2 is bounded by the Harmonic mean: γ2(x) ≥ [γ1(x)

−1 + γ12(x)
−1]−1.

Examples. Let us study the behavior of γ(·) when using the exact Hessian matrix, H ≡ ∇2f , under
classical global second-order assumptions. Then, employing the known properties, we can translate it
to an arbitrary Hessian approximation.

Example 1 (Hölder Hessian). Assume that f has Hölder continuous Hessian of degree ν ∈ [0, 1]:
∥∇2f(x)−∇2f(y)∥ ≤ L2,ν∥x− y∥ν , for all x,y ∈ Rn. Then,

γ(x, g) ≥
(

1+ν
L2,ν
∥g∥∗

) 1
1+ν , x, g ∈ Rn. (7)

The most interesting are extreme cases: ν = 0 (functions with bounded variation of the Hessian) and
ν = 1 (functions with Lipschitz Hessian) that gives, correspondingly:

γ(x) ≡ γ(x,∇f(x)) ≥ ∥∇f(x)∥∗
L2,0

and γ(x) ≡ γ(x,∇f(x)) ≥
√

2∥∇f(x)∥∗
L2,1

.

The following problem class was initially attributed to the third-order tensor methods (Birgin et al.,
2017; Cartis et al., 2019; Nesterov, 2021a; Agafonov et al., 2024). Later on, as it was shown
in (Nesterov, 2021b; Grapiglia & Nesterov, 2021; Doikov et al., 2024a), it appears to be appropriate
for second-order optimization.

Example 2 (Hölder Third Derivative). Assume that f is convex and its third derivative is Hölder
of degree ν ∈ [0, 1]: ∥∇3f(x)−∇3f(y)∥ ≤ L3,ν∥x− y∥ν , for all x,y ∈ Rn. Then,

γ(x, g) ≥
(

1+ν
21+νL3,ν

∥g∥∗
) 1

2+ν , x, g ∈ Rn.

Example 3 (Quasi-Self-Concordance). Assume that f is Quasi-Self-Concordant with parameter
M ≥ 0: ⟨∇3f(x)h,h,u⟩ ≤M∥h∥2x∥u∥, for all x,h,u ∈ Rn. Then,

γ(x) ≥ 1
M .

2Missing proofs are provided in the appendix.
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The following examples of (L0, L1)-smooth functions are popular in the context of studying smooth-
ness properties of neural networks, gradient clipping, and trust-region methods (Zhang et al., 2019;
Koloskova et al., 2023; Xie et al., 2024).

Example 4 ((L0, L1)-smooth functions (Zhang et al., 2019)). Assume that ∥∇2f(x)∥ ≤ L0 +
L1∥∇f(x)∥∗, for all x ∈ Rn. Then,

γ(x, g) ≥ ∥g∥∗
L0+L1∥∇f(x)∥∗

·
(
1 + exp

( ∥g∥∗
∥∇f(x)∥∗

) )−1
, x, g ∈ Rn.

Example 5 (Second-order (M0,M1)-smooth functions (Xie et al., 2024)). Assume that
∥∇2f(x)−∇2f(y)∥ ≤ (M0 +M1∥∇f(x)∥∗)∥x− y∥, for all x,y ∈ Rn. Then,

γ(x, g) ≥
( 2∥g∥∗

L0+L1∥∇f(x)∥∗

)1/2
, x, g ∈ Rn.

In practice, the objective function can belong to several of problem classes simultaneously, and
optimal parameters can vary with x. Therefore, it is important that the definition of γ(·) is local, just
adjusting universally to the best of these cases. This allows the method to achieve the fastest rate.

3 ALGORITHM
The method is very simple.

Algorithm 1 Gradient-Regularized Newton with Approximate Hessians

Initialization: x0 ∈ Rn.
1: for k ≥ 0 do
2: Choose H(xk) ⪰ 0 and γk > 0. ▷ In practice, use adaptive search for γk (Alg. 3).

3: Perform update: xk+1 ← xk −
(
H(xk) +

∥∇f(xk)∥∗
γk

B
)−1

∇f(xk).
4: end for

In this algorithm, H(xk) = H(xk)
⊤ ⪰ 0 could be the Hessian or its approximation, and γk > 0 is a

second-order step-size. Our theory suggests to set γk = γ(xk) which takes into account both the
right problem class and the level of Hessian approximation. We can also use an adaptive search to
choose the parameter γk automatically, that we describe in Appendix D.

For simplicity of presentation, we assume that at each iteration k ≥ 0 we solve the linear system
exactly, which can be done easily in case the matrix H(xk) has a simple structure, e.g. a low-rank
decomposition. We present several practical examples in Section 5. In general, using a linear system
solver such as the conjugate gradient method, it will require only to compute matrix-vector products
of the form H(xk)h, for an arbitrary h ∈ Rn. Such linear solver will typically have a linear rate
of convergence due to strong convexity of the objective, and therefore it will require only a few
matrix-vector products each iteration.

Using the first power of gradient norm as a normalizing constant is very natural due to several reasons:

• This ensures: ∥xk+1−xk∥ ≤ γk, so the steps are normalized to be bounded in the Euclidean
ball of a fixed radius γk, as in trust-region methods (Conn et al., 2000).

• When H ≡ ∇2f , the first power of the gradient norm ensures local quadratic convergence,
as for classical Newton’s method, and we are interested to choose γk as large as possible
(locally, being close to a solution, we admit γk := +∞, no regularization).

• When H ≡ 0, we obtain the normalized gradient method with a fixed preconditioning B:
xk+1 = xk − γk

∥∇f(xk)∥∗
B−1∇f(xk)

In this case, our theory recovers the standard rates of the first-order smooth optimization.

Global Progress. With Definition 1, we prove the progress for each iteration of Algorithm 1:

Lemma 1. Let 0 ≤ γk ≤ γ(xk). Then

f(xk)− f(xk+1) ≥ γk

8 ·
∥∇f(xk+1)∥2

∗
∥∇f(xk)∥∗

. (8)
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Inequality (8) does not depend on the structure of γ(xk), showing that Algorithm 1 converges for
an arbitrary well-defined γk. It is also important that this method converges for any problem class
and for any Hessian approximation, as we did not specify them yet. Notably, for a specific problem
class and for a specific H, we can lower bound γ(·) globally as in the previous section, which yields
state-of-the-art global convergence rates. Let us present a direct consequence of (8), which is a
convergence for our algorithm in a general non-convex case.

Theorem 1 (Non-Convex Functions). Let K ≥ 1 be a fixed number of iterations and let (8) hold
for every step. Assume that min

1≤i≤K
∥∇f(xi)∥∗ ≥ ε and let γ⋆ := min

1≤i≤K
γi > 0. Then,

K ≤ 8F0

γ⋆ε
+ log ∥∇f(x0)∥∗

ε , where F0 := f(x0)− f⋆. (9)

Note that up to now we did not say anything about smoothness assumptions on our objective, thus the
result (9) is very general. Let us assume that H(xk) ≡ ∇2f(xk) ⪰ 0, and that the Hessian is Hölder
continuous of degree ν ∈ [0, 1], which according to (7) ensures that γ⋆ ≥ [(1 + ν)εL−1

2,ν ]
1/(1+ν).

Plugging this bound immediately provides us with the complexity of O(1/ε(2+ν)/(1+ν)) iterations to
find a point such that ∥∇f(x̄)∥∗ ≤ ε. For ν = 1, it gives O(1/ε3/2), which corresponds to the rate
of the cubically regularized Newton method (Nesterov & Polyak, 2006), and for every 0 < ν ≤ 1,
this complexity is strictly better than O(1/ε2) of the gradient descent (Nesterov, 2018). In the next
sections we show the advanced convergence rates for our methods, under structural assumption on
γ(·), that will recover state-of-the-art rates in all particular cases and allow for inexact Hessians.

4 GLOBAL CONVERGENCE THEORY
Structural Assumption on γ(x). Let us assume that the Gradient-Normalized Smoothness γ(·)
from Definition 1 admits the following structural lower bound, which is the harmonic mean of
monomials of the gradient norm.

For all i, there exist fixed degrees 0 ≤ αi ≤ 1 and nonnegative coefficients {M1−α}0≤α≤1, such
that:

γ(x) ≥ π(∥∇f(x)∥∗) :=
( d∑
i=1

M1−αi

∥∇f(x)∥αi
∗

)−1

≥ 1
d min

1≤i≤d

∥∇f(x)∥αi
∗

M1−αi
. (10)

Here, the coefficients {M1−α}0≤α≤1 serve as the main complexity parameters. Note that all our
Examples from Section 2 satisfy this assumption. In Examples 1, 2, 3, π(∥∇f(x)∥∗) = ∥∇f(x)∥α∗ ·
M−1

1−α, for α ∈ [0, 1], is a simple monomial, and the structure in (10) is preserved under all
basic operations with functions, such as summation. In what follows, we show that the lowest of the
degrees of π(·) characterizes the class of smoothness, while additional exponents contribute to inexact
Hessian (see basic properties in Section 2 and examples in Section 5). Defining the coefficients of
π(∥∇f(x)∥∗) from the set of {M−1

1−α : 0 ≤ α ≤ 1}, where M1−α corresponds to the smoothness
constant of some problem class, we automatically set the state-of-the-art convergence rates for many
partial (see Table 1).

Corollary 1 (Non-Convex Functions). Let us choose γk = γ(xk) in Algorithm 1, or by perform-
ing an adaptive search. Under assumption (10), we can bound γ⋆ ≥ π(ε). Therefore, to ensure
min

1≤i≤K
∥∇f(xi)∥∗ ≤ ε it is enough to perform a number of iterations of

K =
⌈
8dF0 · max

1≤i≤d

M1−αi

ε1+αi
+ log ∥∇f(x0)∥∗

ε

⌉
.

Convex Minimization. Let us define α := min1≤i≤d αi and introduce the following complexity

C(ε) := d
α max

1≤i≤d

(
M1−αi

Dαi+1

εαi−α

)(
1
εα − 1

Fα
0

)
for α > 0, (11)

and for α → 0, we have the limit C(ε) := dmax1≤i≤d

(M1−αi
Dαi+1

εαi−α

)
log
(
F0

ε

)
. For the particular

cases H ≡ ∇2f and H ≡ 0, thus performing the full Newton method or performing the gradient
descent, we denote the corresponding complexity by CNEWTON(ε) and by CGD(ε). Note that our
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theory covers these two important cases as well. We show that complexity C(ε) is the number of
iteration required by Algorithm 1 to find the global solution, reflecting dynamics of Algorithm 1 and
its ability to adapt to the right problem class. We denote by D := {sup ∥x− x⋆∥ : f(x) ≤ f(x0)}
the diameter of the initial sublevel set, which we assume to be bounded. We establish the main result.

Theorem 2 (Convex Functions). Let us choose γk = γ(xk) in Algorithm 1, or by using an
adaptive search. Let f be convex. Then, for any ε > 0, to ensure f(xK)− f⋆ ≤ ε, it is enough
to perform a number of iterations of

K =
⌈
C(ε) + 2 log ∥∇f(x0)∥∗D

ε

⌉
.

We can extend this result for more general classes of gradient-dominated functions, that include
strongly convex objectives and functions satisfying PL-condition, as well as improved rates for the
gradient norm minimization, which we include in Appendix F.

Recovering Rates for Particular Problem Classes with γ(x). To highlight the power of our
result, let us consider a simple monomial γ(x) ≥ π(∥∇f(x)∥∗) = ∥∇f(x)∥α∗M−1

1−α, for some
0 ≤ α ≤ 1 and M1−α > 0. For simplicity, we always assume K ≥ 2 log ∥∇f(x0)∥∗D

ε . Then, in
view of Theorem 2 and (11), we have the complexity of O(1/εα), for α > 0, that corresponds
to the convergence rate inherent to problem classes from Examples 1, 2, 3. In case α = 0, the
complexity K = Õ(M1D) yields the rate of the Newton method with the Gradient Regularization on
Quasi-Self-Concordant functions (Doikov, 2023). As we see, Theorem 2 allows us to obtain a variety
of convergence rates by plugging an appropriate global lower bound for γ(xk). In Appendix G we
show how the lower bound π(∥∇f(x)∥) varies with the problem class. Corollary 7, shows how
state-of-the-art rates for different problem classes are unified by our choice of γ(xk) in Algorithm 1.

5 EFFECTIVE HESSIAN APPROXIMATIONS

Our theory automatically covers a setup with inexact Hessian. From Corollary 7 we see what
happens to the rate when γ(x) is lower bounded by a simple monomial. However, the case where
π(∥∇f(x)∥∗) is not a monomial is also interpretable with our theory. Corresponding convergence
rate aligns with that of a second-order method with approximate Hessian, where the approximation
error is bounded by some polynomial of ∥∇f(x)∥∗. Theorem 2 already covers this case with the
complexity of (11) for γ(x) being bounded as in (10). However, some important practical cases of
Hessian approximations can be described with a much simpler condition

∥∇2f(x)−H(x)∥∗ ≤ C1 +C2∥∇f(x)∥1−β
∗ , 0 ≤ β ≤ 1. (12)

We provide examples of such H(x) that are particularly useful for machine learning applications.
See extended examples in Appendix H.

Example 6 (Separable Optimization). Let f(x) =
∑n

i=1 fi(x), where fi(x) := ℓ (⟨ai,x⟩ − bi),
for a convex nonnegative loss function. Consider logistic regression, ℓ(t) := log(1 + exp(t). Set
B :=

∑n
i=1 aia

⊤
i . Then, for the following Hessian approximation

H(x) :=
n∑

i=1

∇fi(x)∇fi(x)⊤ =
n∑

i=1

(
ℓ′(⟨ai,x⟩ − bi)

)2
aia

⊤
i ⪰ 0,

we have ∥∇2f(x)−H(x)∥ ≤ f(x) ≤ D∥∇f(x)∥+ f⋆, for x ∈ F0.

Example 7 (Nonlinear Equations). Let u : Rn → Rd be a nonlinear operator, and set f(x) :=
1
p∥u(x)∥p ≡ 1

p ⟨Gu(x),u(x)⟩ p2 , for some G = G⊤ ≻ 0 and p ≥ 2. For this objective, we use:

H(x) := ∥u(x)∥p−2∇u(x)⊤G∇u(x) + p−2
∥u(x)∥p∇f(x)∇f(x)⊤ ⪰ 0. (13)

Assuming∇u(x)B−1∇u(x)⊤ ⪰ µG−1 and ∥∇2u(x)∥ ≤ ξ1, for some µ, ξ1 > 0, we have:

∥∇2f(x)−H(x)∥ ≤ ξ1∥u(x)∥p−1 ≤ ξ1√
µ∥∇f(x)∥∗. (14)
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Example 8 (Soft Maximum). In applications with multiclass classification, graph problems,
and matrix games, we use f(x) := s(u(x)), where u : Rn → Rd is an operator (e.g. a
linear or nonlinear model), and s(y) := log

∑d
i=1 e

yi is the LogSumExp loss. Note that s(·) is
Quasi-Self-Concordant (Ex. 3), and [∇s(y)]i = eyi∑d

j=1 eyj
is softmax. For this objective, we can

use the following approximation of the Hessian in our algorithm:

H(x) := ∇u(x)⊤∇2s(u(x))∇u(x) ⪰ 0.

Assuming that∇u(x)B−1∇u(x)⊤ ⪰ µI and ∥∇2u(x)∥ ≤ ξ1, for some µ, ξ1 > 0, we have:

∥∇2f(x)−H(x)∥ ≤ ξ1∥∇s(u(x))∥ ≤ ξ1√
µ∥∇f(x)∥∗.

Connection between Gradient-Normalized Smoothness and the Hessian bound 12. According to
the “Hessian inexactness” property of γ(·), assuming 12, the Gradient Normalized Smoothness is
bounded as: γ(x) ≥ (γ1(x)

−1 + C1

∥∇f(x)∥ + C2

∥∇f(x)∥β )
−1, where γ1(x) is the Gradient Normalized

Smoothness for the exact Hessian. In other words, if we know the lower bound π(·) for the exact
Hessian (e.g. any of the problem classes above), then π(·) for the method with inexact Hessian can
be computed in a form that satisfies the structural assumption 10. And we immediately obtain the
complexity result for the method with inexact Hessian (Corollaries 2 and 3). We see that the total
complexity of the method becomes the sum of the complexity for the exact case plus two additional
terms that depend on C1, C2, and the degree of approximation β. Fig. 1 shows the interaction of the
minimal degree of the monomial in π(·) and β from Equation (12). And Corollary 2 finalizes Table 1.

Corollary 2 (Inexact Hessian: Convex Functions). Assume that condition (12) holds. Then, for
any ε > 0, to ensure f(xK)− f⋆ ≤ ε, it is enough to perform a number of iterations of

K = Õ
(
CNEWTON(ε) +

C1D
2

ε + C2D
1+β

εβ

)
, where Õ(·) hides logarithmic factors.

Corollary 3 (Inexact Hessian: Non-Convex Functions). Assume that condition (12) holds.
Therefore, to ensure min

1≤i≤K
∥∇f(xi)∥∗ ≤ ε it is enough to perform a number of iterations of

K =
⌈
8F0 ·

(
d max
1≤i≤d

M1−αi

ε1+αi
+ C1

ε2 + C2

ε1+β

)
+ log ∥∇f(x0)∥∗

ε

⌉
.

6 EXPERIMENTS

Let us present illustrative numerical experiments that validate our theoretical findings. Extra experi-
ments are in Appendix B, and the code is available at: grad-norm-smooth-1D57.

Exact Hessian. In Figure 3 (a), we show convergence of Algorithm 1 with exact Hessian on
the Softmax problem (LogSumExp) with linear models. We compare our adaptive search rule
γk = γ(xk) (see Lemma 1) with the strategies from Doikov et al. (2024a). We see that our theory
predicts the best value of γk, which also serves an upper bound on empirical values of other adaptive
search procedures (b). In (c), we compare our method with the gradient descent on the problem
from Example 7. Our adaptive search denoted by “Func. Search”. As a Hessian approximation for
LogSumExp, we use Equation (19).

Inexact Hessian. Our theory is compatible with different Hessian approximations we present in Ta-
ble 2. In Appendix H we prove the bounds of ∥∇f(x)−H(x)∥∗ for these approximations. Notably,
condition 12 does not necessarily hold for all approximations considered; however, Theorem 2 allows
us to derive the right convergence rate. We extensively evaluate our methods on both convex and
non-convex problems, including extensions of the Rosenbrock function Rosenbrock (1960)—known
as the benchmarking problem for optimization algorithms—and we are the first to experimentally
study (smooth) Chebyshev polynomials Gürbüzbalaban & Overton (2012); Cartis et al. (2013) with
inexact Hessians. In Appendix B we also examine adaptive search, convergence, wall-clock time,
and the numerical stability of our method with inexact Hessian on all problems from Table 2.
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Figure 3: Convergence of our methods. We see that the second-order methods show outstanding performance, confirming our choice of the
step-size γk .

Table 2: Hessian approximations aligned with our theory, evaluated on convex and non-convex problems. Importantly, when u(x) is a
linear operator, the “Inexact Hessian” turns out to be the full Hessian. Thus, we use the “Fisher Term of H.” in that case.

Problem Naming Approximation

LogSumExp 15 Weighted Gauss-Newton 19 1
µA

⊤ Diag (softmax (A,x))A

Equations with linear operator Fisher Term of H 21 p−2
∥u(x)∥p∇f(x)∇f(x)⊤

Nonlinear Equations & Rosenbrock 23 Inexact Hessian (Example 7) ∥u(x)∥p−2∇u(x)⊤G∇u(x) + p−2
∥u(x)∥p∇f(x)∇f(x)⊤

Nonlinear Equations & Chebyshev polynomials 24 Inexact Hessian (Example 7) ∥u(x)∥p−2∇u(x)⊤G∇u(x) + p−2
∥u(x)∥p∇f(x)∇f(x)⊤

7 DISCUSSION

Let us discuss the results we obtained in our paper in the context of some machine learning applica-
tions. We demonstrated that the notion of Gradient-Normalized Smoothness, γ(x), allows us to treat
the level of smoothness of the objective and the Hessian approximation error in a unified manner,
leading to fast global convergence rates for both convex and non-convex problems, and recovering
various smoothness assumptions such as functions with Hölder continuous Hessian or Quasi-Self-
Concordant objectives. It is interesting to note that, in the case where the Hessian approximation
satisfies the bound (12) with β = 0 and C1 ≈ 0, the convergence rate of the method with an inexact
Hessian is the same as that one of the full Newton method.

An instructive example is the logistic regression problem with the Fisher approximation of the Hessian
(Example 6). Using our theory, we are able to establish the global linear rate of convergence in the
case where the data is well-separable (f⋆ ≈ 0), complementing previously known results for gradient
descent methods (Axiotis & Sviridenko, 2023) and for Newton-type methods (Karimireddy et al.,
2018; Carmon et al., 2020; Doikov, 2023). Moreover, our theory extends beyond this setting to soft
maximum problems and the case of non-linear models.

Another interesting situation involves problems with the power loss function, f(x) = 1
p∥x∥p. As we

show in Section G, this objective belongs to both the class of generalized self-concordant functions
and the class of uniformly convex functions. These advanced properties ensure a global linear rate of
Newton’s method for all p ≥ 2, thus demonstrating that an automatic renormalization of the problem
occurs within our algorithms.

While in this work we discuss only basic versions of the method, it is known in Convex Optimization
that algorithms can be accelerated, achieving optimal convergence rates (Nesterov, 2018). Developing
accelerated versions of our methods that automatically adapt to the problem’s smoothness, as
in (Carmon et al., 2022), while simultaneously adjusting to the potential inexactness in the Hessian,
is an interesting direction that we leave for future research.

It is also interesting to compare our results with several recently proposed general problem classes
and algorithms, such as gradient methods for anisotropic smoothness (Laude & Patrinos, 2025),
ℓ-smoothness (Li et al., 2023; Tyurin, 2024), and recent advances on global convergence rates for the
damped Newton method (Hanzely et al., 2024). We leave these comparisons for further investigation.
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the first accelerated quasi-Newton method with a global convergence rate of O(kˆ-2) for convex
functions. arXiv preprint arXiv:2302.04987, 2023.

Sai Praneeth Karimireddy, Sebastian U Stich, and Martin Jaggi. Global linear convergence of New-
ton’s method without strong-convexity or Lipschitz gradients. arXiv preprint arXiv:1806.00413,
2018.

Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping:
Stochastic bias and tight convergence guarantees. In International Conference on Machine
Learning, pp. 17343–17363. PMLR, 2023.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-
imation for natural gradient descent. Advances in neural information processing systems, 32,
2019.

Emanuel Laude and Panagiotis Patrinos. Anisotropic proximal gradient. Mathematical Programming,
pp. 1–45, 2025.

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. Advances in Neural Information Processing Systems,
36:40238–40271, 2023.

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by
first-order methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

Cong Ma, Xingyu Xu, Tian Tong, and Yuejie Chi. Provably accelerating ill-conditioned low-
rank estimation via scaled gradient descent, even with overparameterization. arXiv preprint
arXiv:2310.06159, 2023.

13

https://www.sciencedirect.com/science/article/pii/S0362546X1100544X
https://www.sciencedirect.com/science/article/pii/S0362546X1100544X
https://arxiv.org/abs/2503.04577


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

A Woodbury Max. Inverting modified matrices. In Memorandum Rept. 42, Statistical Research
Group, pp. 4. Princeton Univ., 1950.

Konstantin Mishchenko. Regularized Newton method with global O(1/k2) convergence. SIAM
Journal on Optimization, 33(3):1440–1462, 2023.

Aaron Mishkin, Ahmed Khaled, Yuanhao Wang, Aaron Defazio, and Robert M. Gower. Directional
smoothness and gradient methods: Convergence and adaptivity. Advances in Neural Information
Processing Systems, 2025. URL https://arxiv.org/abs/2403.04081.

Arkadi Nemirovski and David Yudin. Problem complexity and method efficiency in optimization.
1983.

Yurii Nesterov. Modified Gauss–Newton scheme with worst case guarantees for global performance.
Optimisation methods and software, 22(3):469–483, 2007.

Yurii Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 152(1):381–404, 2015.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Yurii Nesterov. Implementable tensor methods in unconstrained convex optimization. Mathematical
Programming, 186:157–183, 2021a.

Yurii Nesterov. Superfast second-order methods for unconstrained convex optimization. Journal of
Optimization Theory and Applications, 191:1–30, 2021b.

Yurii Nesterov. Primal subgradient methods with predefined step sizes. Journal of Optimization
Theory and Applications, pp. 1–33, 2024.

Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in convex programming.
SIAM, 1994.

Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global performance.
Mathematical programming, 108(1):177–205, 2006.

Boris T Polyak. Newton’s method and its use in optimization. European Journal of Operational
Research, 181(3):1086–1096, 2007.

Roman A Polyak. Regularized Newton method for unconstrained convex optimization. Mathematical
programming, 120:125–145, 2009.

Anton Rodomanov. Quasi-Newton methods with provable efficiency guarantees. PhD thesis, PhD
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A EXTENDED RELATED WORK

Connections and differences with other methods with gradient regularization.

We propose Algorithm 1 with the only one hyperparameter—second-order step-size γk. Importantly,
this step-size has an immediate natural interpretation of the radius of the ball within which we can rely
on our approximate model, similarly in spirit to trust-region methods (Conn et al., 2000). However,
instead of directly adding the ball constraints into minimization of the model, we apply the gradient
regularization technique, considered in (Polyak, 2009; Ueda & Yamashita, 2009; Mishchenko, 2023;
Doikov & Nesterov, 2024). This technique simplifies every step of the method, requiring to solve
only one linear system per iteration. As compared to these previous works, we do not require to
use an exact Hessian. We show that the inexactness condition on the matrix aligns well with the
smoothness condition of the problem class, and our method works in a universal manner among the
widest possible range of smoothness conditions.

In (Doikov et al., 2024a), it was shown that the Newton method with gradient regularization and
adaptive search automatically adjusts to the problem classes with Hölder second or third derivative,
and in (Doikov, 2023), the global linear rate of convergence on Quasi-Self-Concordant functions
was proven for a similar method. In contrast to these works, we prove universal global rates for a
method with inexact Hessian, both unifying analysis from (Doikov et al., 2024a; Doikov, 2023) and
extending it beyond to the generalized Self-Concordant functions (Sun & Tran-Dinh, 2018). To the
best of our knowledge, our global rates for generalized self-concordant functions are new.

An interesting insight from our analysis is that for different smoothness classes of the objective, we
can allow different degrees of Hessian inexactness. Moreover, for popular choices of the Hessian
approximations, such as the Fisher or Gauss-Newton approximations, the resulting methods perform
as well as for the method with the exact Hessian. Using such approximations ultimately allows us to
extend the gradient regularization technique for non-convex problems.

For the choice of the second-order step-size γk, we consider three possible strategies:

• The theoretical choice γk = γ(xk, F
′(xk)), which is the best local value at xk following

our Definition 1.
• The constant choice, γk ≡ γ⋆ for a certain value of γ⋆ > 0 (see Section D.1). Our value of
γ⋆ is defined for a wide range of classes. However, despite seemingly too conservative, this
rule recovers all state-of-the-art rates for the Newton method with gradient regularization,
including those from (Doikov et al., 2024a; Doikov, 2023). To the best of our knowledge,
this constant choice is new.

• Adaptive search to ensure the progress from Lemma 1. We discuss this strategy deeply
in Appendix D.2. Importantly, our Algorithm 1 with adaptive search is equivalent to the
Super-Universal Newton Method from (Doikov et al., 2024a). However, we use a different
stopping condition in the adaptive search: we follow the condition based on the function
value, while Doikov et al. (2024a) ensures a different inequality (17). Thus, our stopping
condition is also suitable for non-convex problems.

From the theoretical perspective, equipped with the notion of Gradient-Normalized Smoothness, we
cover the complexity results of the Super-Universal method, and extend the analysis to the Quasi-
Self-Concordant functions (Doikov, 2023) and furthermore, to the generalized Self-Concordant func-
tions (Sun & Tran-Dinh, 2018). Thus, even for the exact Hessians, we cover all results from (Doikov
et al., 2024a; Doikov, 2023), and enhance them with the undiscovered rates for the generalized
Self-Concordant class. Our framework also covers recently popular for the first-order methods (L0,
L1)-functions (Zhang et al., 2019), and beyond. The breadth of rates for second-order methods
covered by our framework (see Table 1) is unmatched in the existing literature.

First state-of-the-art rates for inexact Hessians.

The main power of our framework is the ability to automatically obtain the best rates for inexact
Hessians. Moreover, thanks to Gradient-Normalized Smoothness and the structural assumption (10),
we derive these results for convex (Theorem 2) and non-convex (Corollary 1) objectives for free. We
additionally use condition (12) that connects the error coming from the Hessian inexactness with the
gradient norm. We find such a condition very appealing for some practical Hessian approximations
on fundamental problems such as logistic regression and softmax. Condition (12) allows us to write
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complexity results with inexact Hessian in a compact and feasible manner. Combining both γk and
Eq. (12), we study the interplay between the smoothness class and the Hessian approximation—
Figure 1—also a new result.

Discussions of other types of smoothness.

Since we are introducing a new notion for characterizing smoothness of the objective, we should
mention previously established relative (Lu et al., 2018) and anisotropic (Laude & Patrinos, 2025)
smoothness. While being theoretically appealing, these concepts are designed specifically for the
first-order methods. Indeed, given a function that is anisotropic smooth or relative smooth (w.r.t. some
reference function), and adding a quadratic function to this, will generally change the smoothness
parameter of the objective. However, our Definition 1 is insensitive to such perturbations because
of the second-order formulation. We also would like to highlight a very recently proposed, for the
first-order, methods Glocal (Fox et al., 2025) and directional (Mishkin et al., 2025) smoothness. While
we define Gradient-Normalized smoothness independently of the problem class in the way to use the
local information to judge on the global behaviour of the method, the authors of Glocal smoothness
are inspired by a similar plot. With their framework, it occurs that near the solution the curvature
is much milder and line search or adaptive step-sizes can take advantage of that by increasing the
steps, yielding faster progress in that region. Glocal smoothness allows a fair comparison between
complexity results of many gradient-based methods, and the authors obtain better iteration-complexity
bounds compared to using global smoothness only. The authors also claim that Gradient Method
with line search can beat the accelerated gradient. These studies are worth further investigation.

B EXPERIMENTS

In this section, we explore two main aspects:

• how our adaptive search approach aligns with theoretical findings and with the previously established
adaptive search variant (Doikov et al., 2024a) (see Appendix B.1 for experimental details); and

• the convergence behavior of Algorithm 1 for inexact and true Hessians3 (see Appendices B.2, B.3,
B.4).

We open-source our code at: https://anonymous.4open.science/r/grad-norm-smooth-1D57.

Setup. We consider two well-adopted problems: LogSumExp and Nonlinear Equations. We use a
very simple setup for both. We define the LogSumExp problem as:

f(x) = µ log
∑d

i=1 exp
(

⟨ai,x⟩−bi
µ

)
, (15)

here ai denotes the i-th row of the design matrix A, and µ is a smoothing parameter varied across
experiments (see Figure 6). The Nonlinear Equations problem is:

f(x) = 1
p∥u(x)∥p,

where the choice of the operator u(x) ranges from the linear model (Appendix B.3), to non-convex
problems — Rosenbrock function, Chebyshev polynomials (Appendix B.4).

For the basic examples in the main part and in Appendix B.3 that can be run on real datasets, we utilize
the linear operator u(x) = Ax− b. The design matrix A and the vector of labels b may represent a
real or synthetic dataset. If we randomly generate both A and b, we do this by sampling their entries
independently from a uniform distribution U [−1, 1]. In all experiments, our method is run with an
adaptive search procedure (see Appendix D), which ensures the inequality (8) and thus selects the
best value of γk. Furthermore, the values of γk obtained through this adaptive scheme also serve as
upper bounds for the empirical values obtained by the alternative adaptive search strategy studied
in (Doikov et al., 2024a). In particular, we see that Algorithm 1 with inexact Hessians performs
similarly to the method with true Hessian on the LogSumExp problem, which also highlights the
power of our theoretical result: Indeed, the functions we consider in our experiments correspond to
Examples 7 and 8, and in both cases, this aligns with the C1 = 0 scenario in Table 1.

3We emphasize that there is no need for an extensive comparison between Algorithm 1 and variants of the
Newton Method with alternative adaptive search procedures, as the practical improvement primarily lies in
obtaining a better constant within the adaptive scheme, while the overall convergence pattern remains unchanged.
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We use the following naming throughout the experiments:

1. Exact Hess., Func. Search or Exact Newton: stands for the partial case of Algorithm 1
using our adaptive search procedure (16), and H(x) ≡ ∇2f(x).

2. Inexact Hess., Func. Search or Weighted Gauss-Newton: refers to the variant of Algo-
rithm 1 with Hessian approximation of the form (13) or (19), combined with our adaptive
search (16).

3. Exact Hess., Grad. Search, γk = 1
Mk

: denotes the Gradient-Regularized Newton Method
with adaptive search as in (Doikov et al., 2024a), using γk := 1

Mk
and Mk is chosen to

satisfy the condition (17).

4. Exact Hess., Grad. Search, γk = ∥∇f(xk)∥∗
Mk

: denotes the Gradient-Regularized Newton

Method with adaptive search as in (Doikov et al., 2024a), using γk := ∥∇f(xk)∥∗
Mk

and Mk is
chosen to satisfy the condition (17).

5. Gradient Method: is a partial case of Algorithm 1 where H(x) ≡ 0 and B ≡ I, using our
adaptive search strategy (16).

6. Gauss-Newton: the Gradient Method with a preconditioning matrix B ≡ A⊤A, also
combined with our adaptive search (16).

To demonstrate that our theoretical findings are reflected in practice, we validate the effects observed
in (Fig. 3 (a, b, c)) on additional standard classification problems from libsvm (Chang & Lin, 2011).

We elaborate further on the connection between our theory and experiments in the following sections.

B.1 COMPARISON OF ADAPTIVE SEARCH APPROACHES

First, we compare two different adaptive search procedures. Our approach, that is described in
Appendix D, and uses a condition based on the function value:

f(xk)− f(xk+1) ≥ γk

8
∥∇f(xk+1)∥2

∗
∥∇f(xk)∥∗

. (16)

And the adaptive search strategy from (Doikov et al., 2024a), where the sequence Mk is selected in
order to ensure the following condition

⟨∇f(xk+1),xk − xk+1⟩ ≥ ∥∇f(xk+1)∥2
∗

4Mk∥∇f(xk)∥l
∗
, where l ∈

[
2
3 , 1
]
. (17)

Importantly, our theory covers this adaptive search scheme as a special case. Specifically, by selecting
γk as a simple monomial π (∥∇f(x)∥∗) = 1

Mk
∥∇f(x)∥1−α

∗ , we recover the behavior of the method
from (Doikov et al., 2024a). This connection is formally established in Section 4.

From our experiments, we observe a nice property of γk: it tends to remain nearly constant throughout
the iterations of our method (1). Moreover, our value of γk is typically larger than the one obtained
by the alternative adaptive search procedure proposed in (Doikov et al., 2024a). For representing
(Fig. 3 (a)), we use a randomly generated matrix A ∈ R1000×500 and set a large factor µ = 1,
which simplifies the problem and yields a more numerically stable and smooth approximation of the
maximum function. By varying both µ and the data size, we present in Figures 4 and 5 a comparison
of convergence behavior and the Gradient-Normalized Smoothness values measured throughout
training. These results further support our theoretical findings by illustrating how γk, computed via
our adaptive search procedure, either increases over time or remains a sufficiently large constant. In
both cases, it provides an upper bound for the corresponding γk values observed under other variants
of the Newton Method and the Gradient Method (i.e., when H(x) ≡ 0).

B.2 INEXACT HESSIAN: LOGSUMEXP

We see that our theory correctly predicts the behavior of the Gradient-Normalized Smoothness
across various practical problems. Now, let us focus on the performance of our Algorithm 1 with
inexact Hessian. Our goal is to show that our method with inexact Hessian achieves the rate of the
full Newton Method and, thus, significantly outperforms the Gradient Method. It is known, that
preconditioning the gradient descent direction with an informative matrix substantially improves the
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convergence of first-order methods. For instance, one may consider using a method with the inverse
curvature matrix B−1 or a family of polynomials (Doikov & Rodomanov, 2023) as preconditioner
in xk+1 = xk − γkB−1 ∇f(xk)

∥∇f(xk)∥∗
, instead of the standard Gradient Method that does not take into

account the physics of the problem and uses B ≡ I. Building on this insight, we outline the method
we call the Gauss-Newton as our algorithm with

H(x) := A⊤A. (18)

Note that the Newton Method with matrix (18) corresponds to the classical Gauss-Newton method for
linear models, where the Jacobian is simply A. In Figures 6 and 7, we show that the Gauss-Newton
algorithm significantly outperforms the plain Gradient Method with B := I.

However, our theory suggests that Algorithm 1 with Hessian approximation that satisfies condition
(2) with C1 ≈ 0 should achieve the same convergence rate as the full Newton and outperform both
the Gradient and Gauss-Newton methods on the LogSumExp problem. For that, we consider the
following approximation that we call the Weighted Gauss-Newton:

H(x) := 1
µA

⊤ Diag (smax (A,x))A, [smax (A,x)]k :=
exp[ 1µ (⟨ak,x⟩−bk)]

d∑
j=1

exp[ 1µ (⟨aj ,x⟩−bj)]

. (19)

In other words, Equation (19) corresponds to Equation (18) with entries of A, weighted by smax (·) ∈
Rd. Since the Hessian of the LogSumExp objective (15) is given by

∇2f(x) = 1
µA

⊤
(
Diag (smax (A,x))− smax (A,x) smax (A,x)

⊤
)
A

= H(x)− 1
µA

⊤
(
smax (A,x) smax (A,x)

⊤
)
A = H(x)− 1

µ∇f(x)∇f(x)⊤,

we see that with such approximation H(x) we can perfectly match the condition (2) (refer to
Appendix H for more details). This is one of the main examples of approximations that are covered
by our analysis.

We show that the Newton Method with Hessian approximation (19) and with γ selected by an adaptive
search (Algorithm 3), performs comparably to the Newton Method with the exact Hessian and the
same adaptive search procedure, see Figure 6. Moreover, as our theory suggests, the LogSumExp
objective corresponds to the case C1 = 0 with C2 > 0 being some constant (see Example 8). Thus,
according to the results in Table 1, which are also visualized in Figure 1, it places us in the regime
where the smoothness of the objective dominates the Hessian inexactness, i.e., we should observe the
rate of the full Newton Method for our Algorithm 1 with approximation (19). We actually see this
behavior in further examples as well.
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Figure 4: LogSumExp objective. Convergence (left) and the Gradient-Normalized Smoothness (right). An interesting effect we observe in
the figure is that, e.g., on the a9a dataset, ever since Algorithm 1 exhibits a sharper convergence on the log-scaled plot, its corresponding γk

values start increasing more rapidly than those produced by other adaptive search procedures. Additionally, for a9a, we observe an almost
perfect match between the exact Hessian and its approximation, likely due to the simplicity of the problem (the Newton Method need only
8 iterations to converge). Notably, we also observe a predictable, rapid decrease in γk for the Gradient Method on a relatively hard problem
(∼ 30 iterations of the Newton Method to converge).
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Figure 5: LogSumExp objective. Convergence (left) and the Gradient-Normalized Smoothness (right). In the left figure, we may observe
almost identical performance of Gradient Method and Gauss-Newton on a sufficiently hard task (∼ 150 iterations of Newton Method to
converge). However, we see that the empirical values of Gradient-Normalized Smoothness for Gauss-Newton decrease significantly more
slowly than those for Gradient Method. For our future experiments, this indicates a particular power of Gradient Method with Gauss-Newton
preconditioner that adapts better to the physics of the problem.
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Figure 6: LogSumExp objective. Our method with approximation noticeably outperforms both Gradient Method and its Gauss-Newton
preconditioned variant. According to our theoretical results, this problem falls into a regime where the convergence rate matches that of the
full Newton method. Indeed, we observe consistent convergence behavior between the Exact and Inexact variants of our method across a wide
range of examples.
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B.3 NONLINEAR EQUATIONS: STUDYING THE DEGREE OF SMOOTHNESS

Let us consider a setup with the Nonlinear Equations objective defined in Example 7:

f(x) := 1
p∥u(x)∥p ≡ 1

p ⟨Gu(x),u(x)⟩ p2 , G = G⊤ ≻ 0, p ≥ 2.

The Exact Case. First, we study the case of the linear operator u(·). We elaborate the nonlinear
case in Appendix B.4. Here, the Hessian approximation H(x) suggested by our theory is equal to
the true Hessian if the operator u(x) is linear. Indeed, from Example 7 and taking into account that
u(x) = Ax− b and ∇2u(x) = 0, we have

∇2f(x) = ∥u(x)∥p−2A⊤GA+ p−2
∥u(x)∥p∇f(x)∇f(x)⊤ ≡ H(x). (20)

Thus, we demonstrate the comparison of the exact Newton Method with the Gradient Method and the
Gauss-Newton. Importantly, if p = 2, H(x) appears to be the scaled Gauss-Newton matrix, while
for any p > 2 we also have an additional rank-one term. As increasing p complicates our problem, in
this experiment we vary the power p, starting with a simple quadratic problem, p = 2, and extending
up to p = 5. Our results show that, for all values p considered, the Gradient Method preconditioned
with the curvature matrix B ≡ A⊤A performs comparably to, or even outperforms, the variant of
our algorithm that uses the full Hessian∇2f(x) ≡ H(x). This observation highlights a significant
consequence of our theoretical analysis, particularly in relation to Example 7.

Towards Inexact Hessians for Linear Operators. Nevertheless the Hessian approximation H(x)
suggested in Example 7 is equivalent to the exact Hessian when the operator u(·) is linear, one still
can treat this matrix as a sum of two: a rank-one term p−2

∥u(x)∥p∇f(x)∇f(x)⊤, and the summand with
Jacobians ∥u(x)∥p−2A⊤BA. The latter term can be viewed as the Gauss-Newton preconditioner
scaled by ∥u(x)∥p−2, while the last term corresponds to the Fisher approximation up to a multiplica-
tive factor p−2

∥u(x)∥p . Hence, we can consider those chunks of the Hessian H(x) from Example 7 as
a potential approximations. While usage of the scaled Gauss-Newton term of H(x) resembles the
Gauss-Newton method from our previous experiments, the Fisher term of H(x) arouses interest.
Therefore, in this part of our experimental validations, we consider the Exact Newton Method,
Gradient Method and the following algorithm

xk+1 = xk −
(

p−2
∥u(x)∥p∇f(xk)∇f(xk)

⊤ + ∥∇f(xk)∥∗
γk

A⊤A
)−1

∇f(xk). (21)

I.e., the derived update corresponds to the Gauss-Newton method with rank-one correction. In
experiments, we call this method — Fisher Term of H.

We run the comparison of methods on the same the Nonlinear Equations problem on MNIST and
a small, randomly generated dataset. Note, that for the random dataset, we chose exactly the same
runs of the Exact Newton and the Gradient Method as in Figure 7. Results for this experiment are
in Figures 8 and 9. Importantly, our version of Algorithm 1 with Fisher approximation not only
achieves the comparable convergence as the Exact Newton, but also a way more faster in terms
of the wall-clock time. In Figure 8, we show that our method with the Fisher-type approximation
consistently outperforms the Gradient Method and, in some cases, even the Exact Newton Method,
while having almost as cheap per-iteration cost as the Gradient Method, especially if the problem is a
small dimensional.

We pose that, in practice, the most time-consuming part of computations for Algorithm 1 with
approximation from (21) are in the inverting of the A⊤A, however the overall computational time
can be significantly accelerated via the usage of the Woodbury-Sherman-Morrison formula (Max,
1950) to exactly compute the invert in Equation (21). We do this in practice and achieve almost the
same speed on small-scale problems, while having an insignificant slowdown on large-scale ones.

Besides the results in Figure 8, we also investigate the behavior of our method with Fisher-like ap-
proximation on the Nonlinear Equations problem varying the power p. Throughout those experiments
with modifications of p, we observe a consistent improvement of our method with approximation
over the Gradient Method and the comparable performance of it compared to the Exact Newton
Method. We summarize our experimental observations in Figure 9. This result suggests that one of
the approximations suggested by our theory (see Appendix H) not only resembles the converge of the
full Newton, but also is very cheap in per-iteration costs (compared to the Gradient Method), which
makes it a powerful tool for such a problems and verifies our theoretical findings.
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Figure 7: Objective with Linear Operator. In this setting, our method is identical when using either the exact or inexact Hessian given
by (20). Notably, the Gauss-Newton preconditioning enables the Gradient Method to achieve performance comparable to the Newton Method.
In contrast, the Gradient Method with our adaptive search exhibits significantly slower convergence for large values of p.
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Figure 8: Objective with Linear Operator. Our method with the inexact Hessian of a Fisher-type form (21) performs comparably to the
Exact Newton Method. In this experiment, we compare method (21) with the Exact Newton Method with the Hessian of (20) and the Gradient
Method. We utilize objective from Example 7 with large values of p = 2, which complicates the problem. As our theory suggests, one can
consider instead of the full Hessian (20) only its rank-one Fisher-type term p−2

∥u(x)∥p ∇f(x)∇f(x)⊤. If additionally we set B := A⊤A in
Algorithm 1 with the approximation above, then we get a matrix that is can be inverted fast with by the Woodbury-Sherman-Morrison formula.
Moreover, it appears that such a method performs relatively similar to the Exact Newton. Indeed, in all cases with large p, both exact and inexact
algorithm significantly outperform the Gradient Method, as well as for the moderate powers p in Figure 9. At the same time, Algorithm 1 with
the Fisher-type approximation works much faster than the Exact Newton in the wall-clock time comparisons. Interestingly, that we also can
observe how the difference in the wall-clock time performance for the Inexact Newton and the Gradient Method increases with dimensionality of
the problem (MNIST versus small synthetic dataset). We see that this difference diminishes when the problem is small-dimensional, since the
inversion in (21) happens much faster.
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Figure 9: Objective with Linear Operator. Our method with the inexact Hessian of a Fisher-type form (21) performs comparably to the
Exact Newton Method. In this experiment, we show that problem in Example 7 with linear operator u(x) = Ax − b can also be considered
via the inexact Hessians perspective. Indeed, the update rule for the Exact Newton Method with (20), in this case, resembles a combination of
the Gauss-Newton term and the rank-one Fisher update. However, if one would use the matrix B := A⊤A in Algorithm 1, then it is possible
to get rid of the Gauss-Newton term and use only rank-one correction as in (21). Thus, the most computationally expensive part in the algorithm
is inversion of A⊤A. But, with the Woodbury-Sherman-Morrison formula this inversion becomes a particularly cheap operation and can be
done relatively fast. As we see, our algorithm with the inexact Hessian not only remains the convergence of the Exact Newton in this case, but
also works almost as fast as the Gradient Method in the wall-clock time comparison.
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B.4 NON-CONVEX OBJECTIVES

Let us also delve into numerical experiments on non-convex functions. In this part, we consider a
simple yet widespread problem of the optimization of the Rosenbrock function (Rosenbrock, 1960).
And the the Nonlinear Equations problem with the operator being from a family of Chebyshev
polynomials. The latter example is particularly novel for the experiments and, to the best of our
knowledge, has been investigated in practice in the non-smooth case in (Kabgani & Ahookhosh, 2025;
Gürbüzbalaban & Overton, 2012) (a so-called Chebyshev oscillator problem), and in the smooth case
in (Cartis et al., 2013). We extend all prior experimental results on these objectives to the Nonlinear
Equations problem with different powers p and usage of the inexact Hessian.

Two-Dimensional Rosenbrock Function. We utilize a non-convex smooth objective of the following
form

f(x) = (1− x1)2 + 100
(
x2 − x21

)2
, where x := (x1, x2)

⊤ ∈ R2. (22)

Note that (22) can be seen as a smooth variant of the Nesterov-Chebyshev-Rosenbrock function
(Gürbüzbalaban & Overton, 2012). In scientific computing, this function is used as a benchmarking
problem for optimization algorithms. It has a unique global minimizer (1, 1), where f⋆ = 0. This
global minimum is inside a parabolic-shaped valley (Figure 12) that is easy to find, but, for the
Gradient Method, it takes thousands of iterations to approach the vicinity of the solution (Figure 10).

Nonlinear Equations with the Rosenbrock Function. To follow our theoretical justifications, we
not only investigate the convergence of Algorithm 1 on the plain Rosenbrock function, but also
introduce a new objective that relates to our previous finding and to Example 7. We formalize it as

f(x) = 1
p∥u(x)∥p, where u(x) :=

(
1− x1, 10(x2 − x21)

)⊤
. (23)

We call such an operator u(x) — vector of the Rosenbrock residuals and refer to the problem of
minimizing (23) as Nonlinear Equations & Rosenbrock. For the case p = 2, the objective (23)
resembles (22) up to a constant factor 1

2 , thus both problems have the same optimum and are similar
(see Figure 10). However, reformulation (23) allows us to introduce the notion of Hessian inexactness
that we cover in our theoretical analysis. Thus, using our approximation from Example 7, we can
approach problem (23) with Algorithm 1 using an inexact Hessian. As theory suggests, our method
should achieve the same convergence rate as the full Newton, which we observe in Figure 10 (b) and
in Figure 11 when varying the power p, making the problem harder for the Gradient Method.

Furthermore, we see that the Gradient Method and our algorithm with exact and inexact Hessian
follow the same optimization direction through this narrow parabolic-shaped valley of the Rosenbrock
function — Figure 12. However, our method accelerates much when finds a sweet spot in this valley.

As an advantage of using the Hessian approximation in this setup, we pose the fact that the Newton
Method with an exact Hessian fails to converge given some inappropriate starting point which can
actually be close to the optimum – Figure 13. Which happens due to the inability to invert the
regularized Hessian of the objective at the beginning of the run. At the same time, Algorithm 1 with
an inexact Hessian succeeds for any starting points we have tried.

Inexact Hessian and the Chebyshev Polynomials. We illustrate our theoretical finding on a new,
particularly interesting problem — Nonlinear Equations with Chebyshev polynomials. We formulate
our objective as follows

f(x) = 1
p∥u(x)∥p; where u(x) = (u1(x), . . . , ud(x))

⊤
, such that

u1(x) =
1
2 (1− x1), ui(x) = xi − p2(xi−1), p2(τ) = 2τ2 − 1.

(24)

Where p2 is the Chebyshev polynomial of degree two. Clearly, for the case p = 2, our objective (24)
resembles the smooth Nesterov-Chebyshev-Rosenbrock function studied in (Jarre, 2011; Cartis et al.,
2013) up to a constant factor 1

2 . Indeed,

∥u(x)∥2 = 1
4 (1− x1)

2
+

d−1∑
i=1

(
xi+1 − 2x2i + 1

)2
.

As for the plain Rosenbrock function (22) and our adaptation of it to the Nonlinear Equations problem
(23), the only stationary point (1, . . . , 1) of the Nesterov-Chebyshev-Rosenbrock objective is the
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global minimizer. Although this function is very difficult for numerical methods in both its smooth
(Jarre, 2011) and non-smooth (Gürbüzbalaban & Overton, 2012) variants.

In our experiments, we extend the Nesterov-Chebyshev-Rosenbrock function to (24). Thus, we are
able to use the approximation of Example 7 in our method. We demonstrate the convergence of
the full Newton, Algorithm 1 with the inexact Hessian and the Gradient Method. And show how it
depends on the effects that come from the increase in the dimensionality of the vector function u(·)
and the increase of power p in our objective (24). We notice that our method with approximation
performs remarkably well in all settings we have tried, as depicted in Figures 14 and 15. In particular,
both exact and inexact variants of Algorithm 1 perform significantly better than the Gradient Method
when p is small enough (Figure 14), but when increasing p (Figure 15), we observe that the Gradient
Method also starts to perform better.
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Figure 10: Optimization of the Rosenbrock function (a), and the Nonlinear Equation problem for p = 2 with Rosenbrock residuals (b),
looks quite similar. For the second problem we can use the Hessian approximation suggested by our theory (see Example 7). With such an
approximation our method is in the regime where it has the same convergence as the Newton Method with the full Hessian. However, by using
an inexact Hessian, we obtain a more numerically stable algorithm with respect to the choice of the starting iterate, as depicted in Figure 13.
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Figure 11: Varying the power p in the Nonlinear Equations problem (23) we complicate the convergence for the Gradient Method. However,
our method with an approximation and the Newton Method works quite similarly even for different values of p. Here, ”Inexact Hessian” stands
for the approximation suggested by our theory in Example 7.
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Figure 12: Contour plot of the Nonlinear Equations problem with the Rosenbrock residuals in the two-dimensional case. In a similar
way that the authors of (Kabgani & Ahookhosh, 2025; Gürbüzbalaban & Overton, 2012) do for the problems they consider, we plot the
level contours for the objective f(x) = 1

2∥u(x)∥2 with operator u(x) :=
(
1 − x1, 10(x2 − x2

1)
)⊤ being a vector-function of

two Rosenbrock residuals as in Equation (23). The contour we obtain for this objective also similar to that of the non-smooth variant of
the Nesterov-Chebyshev-Rosenbrock function from (Gürbüzbalaban & Overton, 2012). However, our objective (23) remains a non-convex
smooth function, thus, serves as a good example complementing our theory. Points connected by line segments show the iterates generated by
Algorithm 1 with exact Hessian, Algorithm 1 with approximation described in Example 7, and the Gradient Method. The markers for Exact and
Inexact methods are of the same color because the optimization trajectory of both algorithms is quite similar and their consecutive iterates lie
relatively close to each other. For all methods we utilize our adaptive search procedure (see Equation (16) and Appendix D). The comparison run
of exactly those methods in terms of the functional residual is depicted in Figure 10 (b) and the starting point is (−2, 2). In our contour plot, we
see that all three methods, when initialized outside the parabolic valley of the objective, firstly tend to find this valley as soon as possible, and
then follow down to the global minimizer (1, 1). However, both Exact and Inexact methods move significantly faster once they found the valley.
Indeed, we see that the first iterate returned by the Gradient Method is closer to the valley, but then, 15-th iterate of Algorithm 1 variations is
ahead of 500-th iterate of the Gradient Method.
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Figure 13: Region of Starting Points Where Method Fails to Converge. In this experiment, we consider Algorithm 1 with an exact Hessian
and the same method with approximation described in Example 7. We employ our adaptive search procedure (see Equation (16) and Appendix D),
and run both methods on the Nonlinear Equations problems with the Rosenbrock residuals in the two-dimensional case. We chose the starting
point x0 from a grid in the range (−2, 2) for both its coordinates. Interestingly, the method with the full Hessian fails to converge given certain
starting points that are relatively close to the global minimizer. This happens due to the ill-conditioning issues with the exact Hessian matrix
during the inversion. Fixing those issues with another choice of regularization or update rule means changing the algorithm, therefore we did not
perform those changes. However, our algorithm with inexact Hessian works remarkably well without for any staring iterate given from the range
we considered. Therefore, our experimental validations suggests that Algorithm 1 with inexact Hessian not only performs similarly to the full
Newton if the approximation is in accordance with our theory, but also serves as more numerically stable method.
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Figure 14: Algorithm 1 with the inexact Hessian noticeably outperforms both the full Newton and the Gradient Method on the Nonlinear
Equations problem with the Chebyshev polynomial objective. For this experiment, we utilize the objective (24), where d stands for the
dimension of the vector-function u(·). Importantly, ∥u(x)∥2 correspond to the smooth variant of the Nesterov-Chebyshev-Rosenbrock
function which is known as a hard problem for numerical methods. Throughout this experiment, we vary both p and d to complicate the
optimization of our objective. Noticeably, in all these cases Algorithm 1 with approximation outperforms the full Newton.
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Figure 15: When increasing the power p, we see that the gap between Algorithm 1 and the Gradient Method narrows. We run three
methods on objective (24) and, in the same way as in Figure 14, we increase both p and the dimension of u(·). Clearly, we observe a dynamics
that the gain of Algorithm 1 with and without approximation becomes less significant when the p is large.
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B.5 COMPARISON WITH ADAPTIVE AND UNIVERSAL METHODS

In this section, we elaborate more on comparisons of our framework with other adaptive and universal
methods. We experimentally study the Cubic Newton method (Nesterov & Polyak, 2006) and
two more algorithms, namely—Affine-Invariant Cubic Newton AICN (Hanzely et al., 2022) and
Gradient-Regulated Line Search (GRLS) (Hanzely et al., 2024). Both AICN and GRLS are instances
of the Damped Newton method, but with different adaptive rules for the step-size selection. While
for the Exact Newton method with gradient regularization and its version with the inexact Hessian,
we use the adaptive search for parameter γ(·), which controls the regularization term in line 3
of Algorithm 1. We also compare their performance with the Fast Gradient Method (Nesterov, 2018)
to observe the advantage from using (an approximate) second-order information. As problems for
this comparison visualized in Figure 16, we choose: LogSumExp (a), Nonlinear Equations (b) on
the a9a dataset, and Chebyshev polynomials (c). Their descriptions match those from prior sections.
Subsequently, we employ the Weighted Gauss-Newton approximation (Eq. 19) for LogSumExp,
Fisher Term of H (Eq. 21) for Nonlinear Equations, and the approximation from Example 7 for
Chebyshev polynomials.
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(c) Chebyshev & approx. from Example 7.

Figure 16: Comparison with Cubic Newton and versions of the Damped Newton method with adaptive step-size. In all figures, we
demonstrate a clear improvement of second-order methods and Algorithm 1 with inexact Hessians and adaptive search over first-order methods
on both convex ((a,b)) and non-convex (c) objectives, for important problems, corresponding to Examples 8 and 7. Runs in (a), follow the recipe
from Appendix B.2, where we used the Weighted Gauss-Newton approximation (Eq. 19), theoretical bounds for this kind of approximation are
proven in Example 11. The only difference with a setup from the prior section, is that we study more methods here: Cubic Newton, accelerated
gradient method, and two versions of the Damped Newton with adaptive step-sizes—GRLS and AICN. In (b), we replicate our experiments
from Appendix B.3, utilizing the Fisher Term of H approximation (Eq. 21). The main difference here, except for the methods, is a new a9a
dataset that is not presented in Figures 7, 8, 9. See proofs for the bounds on the approximation in Example 12. Finally, in (c), we show results for
the non-convex smooth Chebyshev polynomials problem, studied in Appendix B.4. When the operator is nonlinear, H(x) from Example 7 does
not resemble the full Hessian and we can explicitly use this equation. For this case, extended bounds are also proven in Example 12.
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C COMPOSITE OPTIMIZATION PROBLEMS

Let us consider a more general formulation of the Composite Optimization Problem (Nesterov, 2018):

min
x∈Q

{
F (x) := f(x) + ψ(x)

}
, (25)

where f : Q→ R is a differentiable function, which can be non-convex, and ψ : Q→ R is a simple
closed convex function with Q := domψ. This setup covers optimization problems with simple
constraints, in which case ψ is {0,+∞}-indicator of a given closed convex set Q ⊂ Rn.

We denote F ⋆ := inf
x∈Q

F (x) > −∞ which we assume to be bounded.

C.1 COMPOSITE NEWTON STEP WITH HESSIAN APPROXIMATION

In case of the presence of the composite component ψ, we have to modify our method accordingly.
Now, begin at point x ∈ Q and for a certain vector F ′(x) := ∇f(x)+ψ′(x), where ψ′(x) ∈ ∂ψ(x),
we compute the next iterate x+ as the solution to the following subproblem:

x+ = argmin
y∈Q

{
⟨∇f(x),y − x⟩+ 1

2 ⟨H(x)(y − x),y − x⟩+ ∥F ′(x)∥∗
2γ ∥y − x∥2 + ψ(y)

}
, (26)

where H(x) = H(x)⊤ ⪰ 0 is a positive semidefinite approximation of the Hessian of the smooth
part, and γ > 0 is our step-size parameter. Note that the subproblem in (26) is strongly convex, and
in case ψ ≡ 0 it corresponds to one iteration of Algorithm 1.

In general, the solution to (26) satisfies the following optimality condition (Nesterov, 2018):

⟨F ′(x) +
(
H(x) + ∥F ′(x)∥∗

γ B
)
(x+ − x),x+ − x⟩+ ψ(y) ≥ ψ(x+), ∀y ∈ Q, (27)

or, in other words, the vector

ψ′(x+) := −∇f(x)−H(x)(x+ − x)− ∥F ′(x)∥∗
γ B(x+ − x) (28)

belongs to the subdifferential of ψ at new point: ψ′(x+) ∈ ∂ψ(x+).

Let us derive useful inequalities for one step of the composite method. Note that for any stationary
point x⋆ to problem (25), setting x := x⋆ we have x+ = x⋆, as it satisfies the optimality
condition (27). Therefore, without loss of generality we can always assume that x ̸= x⋆.

Lemma 2. Let ψ′(x) ∈ ∂ψ(x) be an arbitrary subgradient and denote F ′(x) := ∇f(x) +
ψ′(x) ̸= 0. Then, for any γ > 0, it holds

⟨F ′(x),x− x+⟩ > 0, (29)

∥x+ − x∥ ≤ γ, (30)
and

∥x+ − x∥2x := ⟨∇2f(x)(x+ − x),x+ − x⟩ ≤ ⟨F ′(x),x− x+⟩

+ ∥x+ − x∥ ·
(
∥(∇2f(x)−H(x))(x+ − x)∥∗ − ∥F ′(x)∥∗∥x+−x∥

γ

)
.

(31)

Proof. Indeed, multiplying (28) by x+ − x and using convexity of ψ, we have

⟨H(x)(x+ − x),x+ − x⟩+ ∥F ′(x)∥∗
γ ∥x+ − x∥2 = ⟨∇f(x) + ψ′(x+),x− x+⟩

≤ ⟨F ′(x),x− x+⟩.
Therefore, taking into account that H(x) ⪰ 0, we conclude that

0 < ∥F ′(x)∥∗
γ ∥x+ − x∥2 ≤ ⟨F ′(x),x− x+⟩,
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which proves (29). Applying Cauchy-Schwartz inequality also gives (30). Now, to establish (31),
we notice that

⟨∇2f(x)(x+ − x),x+ − x⟩

= ⟨H(x)(x+ − x),x+ − x⟩+ ⟨(∇2f(x)−H(x))(x+ − x),x+ − x⟩

≤ ⟨F ′(x),x− x+⟩ − ∥F ′(x)∥∗
γ ∥x+ − x∥2 + ∥(∇2f(x)−H(x))(x+ − x)∥∗∥x+ − x∥,

which completes the proof.

We see that according to our definition (26), we ensure that every step remains bounded (30) by our
parameter γ > 0. Let us recall our Definition 1 of the Gradient-Normalized Smoothness from the
main part, for any x ∈ Q and g ∈ Rn:

γ(x, g) := max
{
γ ≥ 0 : ∥∇f(x+ h)−∇f(x)−H(x)h∥∗ ≤ ∥g∥∗∥h∥

γ , ∀h ∈ Bγ ∩ Ox,g

}
,

where Bγ := {h : ∥h∥ ≤ γ} is the Euclidean ball, and Ox,g := {∥h∥2x + ⟨g,h⟩ ≤ 0} is the local
region. Note that this definition measures the local level of smoothness for our differentiable part
f , and it does not take into account the composite component ψ. However, as we will see, in the
composite case we change the direction g in our algorithm to define the step-size, by taking the
perturbed gradient: g := ∇f(x) + ψ′(x).

First, let us derive simple consequences of the definition of γ(x, g).

Lemma 3. Let 0 < γ ≤ γ(x, g). Then, for any h ∈ Bγ ∩ Ox,g , it holds

|f(x+ h)− f(x)− ⟨∇f(x),h⟩ − 1
2 ⟨H(x)h,h⟩| ≤ ∥g∥∗∥h∥2

2γ . (32)

Proof. Indeed, we have

|f(x+ h)− f(x)− ⟨∇f(x),h⟩ − 1
2 ⟨H(x)h,h⟩|

=

∣∣∣∣ 1∫
0

⟨∇f(x+ τh)−∇f(x)− τH(x)h,h⟩dτ
∣∣∣∣

≤
1∫
0

∥∇f(x+ τh)−∇f(x)− τH(x)h∥∗dτ · ∥h∥

≤ ∥g∥∗∥h∥2

2γ ,

where we used the definition of γ(x, g) in the last inequality.

Lemma 4. Let 0 < γ ≤ γ(x, g). Then, for any s ∈ Rn s.t. ∥s∥ = 1 and ⟨g, s⟩ < 0 we have

∥(∇2f(x)−H(x))s∥∗ ≤ ∥g∥∗
γ . (33)

Proof. Let us take h := τs, where 0 < τ ≤ γ ≤ γ(x, g). Clearly, h ∈ Bγ . Moreover,

∥h∥2x + ⟨g,h⟩ = τ
(
τ⟨∇2f(x)s, s⟩+ ⟨g, s⟩

)
≤ 0,

for sufficiently small τ > 0. Hence, for sufficiently small τ , we have:∥∥∥ 1
τ (∇f(x+ τs)−∇f(x))−H(x)s

∥∥∥
∗
≤ ∥g∥∗

γ .

Taking the limit τ → +0 completes the proof.
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Note that according to Lemma 2, normalized direction of our method, s := x+−x
∥x+−x∥ satisfies

⟨g, s⟩ < 0 for g := F ′(x) (inequality 29). Therefore, we obtain the following direct result.

Corollary 4. Let 0 < γ ≤ γ(x, F ′(x)). Then, one composite step (26) satisfies

∥x+ − x∥2x ≤ ⟨F ′(x),x− x+⟩. (34)

Thus,
x+ − x ∈ Bγ ∩ Ox,F ′(x). (35)

Due to inclusion (35), we show the following one step progress for our method. Note that Lemma 1
is a simple direct consequence of this result, using ψ ≡ 0.

Lemma 5. Let 0 < γ ≤ γ(x, F ′(x)). Then,

F (x)− F (x+) ≥ γ
8
∥F ′(x+)∥2

∗
∥F ′(x)∥∗

(36)

Proof. Substituting the optimality condition (27) into global bound on the function progress (32),
we get

f(x+) ≤ f(x)− 1
2 ⟨H(x)(x+ − x),x+ − x⟩ − ∥F ′(x)∥∗∥x+−x∥2

2γ + ⟨ψ′(x+),x− x+⟩

≤ F (x)− 1
2 ⟨H(x)(x+ − x),x+ − x⟩ − ∥F ′(x)∥∗∥x+−x∥2

2γ − ψ(x+),

which gives
F (x)− F (x+) ≥ ∥F ′(x)∥∗∥x+−x∥2

2γ . (37)

At the same time,

∥F ′(x+) + ∥F ′(x)∥∗
γ B(x+ − x)∥∗ = ∥∇f(x+)−∇f(x)−H(x+ − x)∥∗

≤ ∥F ′(x)∥∗∥x+−x∥
γ ,

where we used the definition of γ(x, F ′(x)) ≥ γ in the last inequality. Hence, applying triangle
inequality, we obtain:

∥F ′(x+)∥∗ ≤ 2∥F ′(x)∥∗∥x+−x∥
γ .

Combining this inequality with (37) gives the required bound.

C.2 THE ALGORITHM FOR COMPOSITE OPTIMIZATION

We are ready to formalize our method for the general composite case, as follows.

Algorithm 2 Composite Gradient-Regularized Newton with Approximate Hessians

Initialization: x0 ∈ Q and ψ′(x0) ∈ ∂ψ(x0). Set F ′(x0)← ∇f(x0) + ψ′(x0).
1: for k ≥ 0 do
2: Choose H(xk) ⪰ 0 and γk > 0.
3: Compute

xk+1 ← argmin
y∈Q

{
⟨∇f(xk),y − xk⟩+ 1

2 ⟨H(xk)(y − xk),y − xk⟩

+∥F ′(xk)∥∗
2γk

∥y − xk∥2 + ψ(y)
}
.

4: Set ψ′(xk+1)← −∇f(xk)−H(xk) (xk+1 − xk)− ∥F ′(xk)∥∗
γk

B (xk+1 − xk).
5: Set F ′(xk+1)← ∇f(xk+1) + ψ′(xk+1).
6: end for

In the case ψ ≡ 0, this method is the same as Algorithm 1.
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D THE CHOICE OF THE REGULARIZATION PARAMETER

Note that the only parameter of Algorithm 2 is a (second-order) step-size γk > 0 that describes
the radius of the ball where the iteration belongs to: ∥xk+1 − xk∥ ≤ γk, similarly to trust-region
approach (Conn et al., 2000).

Our theory suggests that the right choice of this parameter is provided by the Gradient-Normalized
Smoothness (Definition 1), that is, in the general composite case:

γk := γ(xk, F
′(xk)).

Then, according to Lemma 5, we ensure the following progress of each step:

F (xk)− F (xk+1) ≥ γk

8
∥F ′(xk+1)∥2

∗
∥F ′(xk)∥∗

. (38)

Therefore, γk ≈ γ(xk) is the best value of a step-size that we can use. However, in practice, it can
be difficult to compute the exact value of the Gradient-Normalized Smoothness. In this section, we
show two different strategies that can work for a practical implementation of our method.

The first choice (Section D.1) is the constant rule for selecting γk:

γk ≡ γ⋆, ∀k ≥ 0,

where γ⋆ > 0 is a certain value, fixed once for all iterations of the method. Hence, since this is
just one hyperparameter, one can perform a simple grid search for choosing γ⋆, in a similar spirit to
step-size tuning for the stochastic gradient descent (SGD). However, we noticed in our experiments,
that the value γ⋆ ≈ 1 is always a good guess for second-order methods, which also ensures local
quadratic convergence of the method with exact Hessian, as for the classical Newton’s method.

The second choice (Section D.2) that we will present is the use of adaptive search to estimate γk
at each iteration, which is a standard and cheap procedure, which also equips the method with fast
global rates, without the need to know the exact value of γ(x) or γ⋆.

In this section, for simplicity we focus on convex optimization problems, while our results can be
generalized to other classes of problems. We consider non-convex optimization in Section E and the
gradient-dominated objectives in Section F.

D.1 THE CONSTANT RULE

Let us assume that the desired accuracy ε > 0 is fixed. This assumption is not very restrictive.
Additionally, it allows to have a stopping condition for the method. Then, we denote the following
set of function suboptimality:

Fε :=
{
x ∈ Q : F (x)− F ⋆ ≥ ε

}
,

and, for a fixed initialization x0 ∈ Fε, we denote the sublevel set by

F0 :=
{
x ∈ Q : F (x) ≤ F (x0)

}
,

which we assume to be bounded, i.e., D := diam(F0) < +∞. Note that by convexity, we obtain, for
any subgradient F ′(x) ∈ ∂F (x), with x ∈ Fε ∩ F0:

∥F ′(x)∥∗ ≥ F (x)−F⋆

D ≥ δ := ε
D . (39)

We are ready to formulate our main result, for the constant selection of γk in our algorithm.
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Theorem 3. Let ε > 0 be fixed, and assume that there exists γ⋆ > 0 satisfying

γ⋆ ≤ inf
{
γ(x, F ′(x)) : x ∈ Fε ∩ F0, F

′(x) ∈ ∂F (x)
}
. (40)

Consider K ≥ 1 iterations of Algorithm 2 with

γk ≡ γ⋆, (41)

and assume that xk ∈ Fε, for all 0 ≤ k ≤ K. Then,

K ≤ 8D
γ⋆

ln F (x0)−F⋆

ε + 2 ln ∥F ′(x0)∥∗D
ε

(42)

Proof. Indeed, by Lemma 5, our constant choice of γk ensure the following progress of every
iteration, denoting Fk := F (xk)− F ⋆ and gk := ∥F ′(xk)∥∗:

Fk − Fk+1 ≥ γ⋆

8

g2
k+1

gk
= γ⋆

8

(
gk+1

gk

)2
gk

(39)

≥ γ⋆

8D

(
gk+1

gk

)2
Fk. (43)

Then, using concavity of the logarithm, we have

ln Fk

Fk+1
≥ Fk−Fk+1

Fk

(43)

≥ γ⋆

8D

(
gk+1

gk

)2
. (44)

Telescoping this bound for the first K iterations of the method, and using the inequality between
arithmetic and geometric means, we obtain

ln F0

ε ≥ ln F0

FK

(43)

≥ γ⋆K
8D · 1

K

K−1∑
k=0

(
gi+1

gi

)2
≥ γ⋆K

8D ·
(

gK
g0

) 2
K

(39)

≥ γ⋆K
8D ·

(
ε

g0D

) 2
K

= γ⋆K
8D · exp

[
2
K ln ε

g0D

]
≥ γ⋆K

8D ·
[
1 + 2

K ln ε
g0D

]
.

Rearranging the terms proves the required bound.

Note that the result of Theorem 3 is very general, as it does not assume any particular smoothness
conditions, except separation from zero of the Gradient-Normalized Smoothness γ(·) on the bounded
set Fε ∩ F0: γ⋆ > 0. Under this condition, we show that our method with a constant rule γk ≡ γ⋆
needs

K = Õ
(
γ−1
⋆ D

)
(45)

iterations to solve the problem, up to logarithmic terms.

Despite the constant rule (41) seems too conservative, it appears that it recovers the correct rates in
all particular cases. For example, for the functions with L2-Lipschitz Hessian, we have

γ(x, F ′(x)) ≥
√

2
L2
∥F ′(x)∥∗ (39)

√
2ε

L2D
≡ γ⋆.

Substituting this value of γ⋆ into (45) gives the complexity of Õ
(√

L2D3

ε

)
, which matches the

complexity of the Cubic Newton Nesterov & Polyak (2006) on convex functions, up to a logarithmic
factor.

In Section F, we develop a more refined analysis that covers convex functions as a particular case,
and allows us to avoid a logarithmic factor in some particular cases.

D.2 THE METHOD WITH ADAPTIVE SEARCH

In this section, we provide another practical choice for γk, which is to adaptively ensure inequal-
ity (38). We present this strategy in the following algorithmic form. This method needs a parameter
δ > 0, which is a desired accuracy in terms of the gradient norm. It is used for the stopping condition.

This is the same method as Algorithm 2, but with a specific adaptive procedure to choose parameter
γk > 0. It is clear that the method is well defined, as for a sufficiently large tk ≥ 0 we can ensure
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Algorithm 3 Adaptive Method with Approximate Hessians

Initialization: x0 ∈ Q, ψ′(x0) ∈ ∂ψ(x0), γ0 > 0, and δ > 0. Set F ′(x0)← ∇f(x0) + ψ′(x0).
1: for k ≥ 0 do
2: If ∥F ′(xk)∥∗ ≤ δ then stop and return xk.
3: Choose H(xk) ⪰ 0.
4: Find the smallest integer tk ≥ 0 such that for γ := 2−tk · γk and T(γ), g(γ) computed as

T(γ) ← argmin
y∈Q

{
⟨∇f(xk),y − xk⟩+ 1

2 ⟨H(xk)(y − xk),y − xk⟩

+∥F ′(xk)∥∗
2γ ∥y − xk∥2 + ψ(y)

}
,

and

g(γ) ← ∇f(T(γ))−∇f(xk)−H(xk)(T(γ)− xk)− ∥F ′(xk)∥∗
γ B(T(γ)− xk)

it holds
F (xk)− F (T(γ)) ≥ γ

8
∥g(γ)∥2

∗
∥F ′(xk)∥∗

or ∥g(γ)∥∗ ≤ δ.
5: Set xk+1 ← T(2−tk · γk) and F ′(xk+1)← g(2−tk · γk).
6: Set γk+1 ← 2−tk+1 · γk.
7: end for

that 2−tk · γk ≤ γ(xk, F
′(xk)) and therefore the condition of the adaptive search will be satisfied.

At the same time, the total number NK of oracle calls during K ≥ 0 iterations is bounded as

NK :=
K−1∑
k=0

(1 + tk) = 2K +
K−1∑
k=0

log2
γk

γk+1
= 2K + log2

γ0

γK−1
≤ 2K + log2

γ0

γ̄K
, (46)

where γ̄K := min0≤k≤K−1 γk.

Note also that Algorithm 3 with H(xk) ≡ ∇2f(xk) (exact Hessian) is equivalent to the Super-
Universal Newton Method from (Doikov et al., 2024a), using a different stopping condition in the
adaptive search. Even in the exact case, out theory enhances the complexity results from (Doikov
et al., 2024a) to the broader classes of generalized Self-Concordant functions (Sun & Tran-Dinh,
2018) and beyond, including problems with (L0, L1)-functions (Zhang et al., 2019).

Moreover, our results allow us to use an arbitrary positive semidefinite approximation H(xk) ≈
∇2f(xk) of the Hessian in our methods, and all our algorithms are applicable to possibly non-convex
problems as well, while the method in (Doikov et al., 2024a) works primarily for convex optimization,
using the exact Hessian.

We establish the following result about this algorithm.

Theorem 4. Let ε > 0 be fixed, and assume that there exists γ⋆ > 0 satisfying

γ⋆ ≤ inf
{
γ(x, F ′(x)) : x ∈ Fε ∩ F0, F

′(x) ∈ ∂F (x)
}
.

Let δ := ε
D . Assume that Algorithm 3 does not stop for the first K ≥ 1 iterations, and that

xk ∈ Fε for all 0 ≤ k ≤ K. Then,

K ≤ 16D
min{γ0,γ⋆} ln

F (x0)−F⋆

ε + 2 ln ∥F ′(x0)∥∗D
ε

(47)

and the total number of oracle calls during these iterations is bounded as

NK ≤ 2K + log2
γ0

γ⋆
.

Proof. First, we note that the method is well-defined. Indeed, by our assumption, there exists a global
value of γ⋆ such that the first stopping condition of the adaptive search will be satisfied at least for
tk ≥ 0 such that 2−tk · γk ≤ γ⋆, unless ∥F ′(xk)∥∗ ≤ δ. The last inequality implies that we solved
the problem with the desired accuracy and we stop the algorithm.
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Therefore, by induction we have the following lower bound on values of our step-sizes:
γk ≥ min

{
γ0, γ⋆

}
, 0 ≤ k ≤ K. (48)

Hence, for every iteration k ≥ 0 of the method, we ensure

F (xk)− F (xk+1) ≥ γk+1

16
∥F ′(xk+1)∥2

∗
∥F ′(xk)∥∗

(48)

≥ min{γ⋆,γ0}
16

∥F ′(xk+1)∥2
∗

∥F ′(xk)∥∗
.

Now, repeating the reasoning from the proof of Theorem 3 we establish (47), and using (46) we
immediately obtain the bound on the total number of oracle calls,

E CONVERGENCE FOR NON-CONVEX FUNCTIONS

First, let us formulate Theorem 1 for more general composite optimization problems (25). Then,
Theorem 1 is a direct consequence of this result for ψ ≡ 0.

Theorem 5. Let K ≥ 1 be a fixed number of iterations of Algorithm 2 and let (5) hold for every
step. Assume that min1≤i≤K ∥F ′(xi)∥∗ ≥ ε and let γ⋆ = min

1≤i≤K
γi > 0. Then,

K ≤ 8F0

γ⋆ε
+ log ∥F ′(x0)∥∗

ε , where F0 := F (x0)− F ⋆. (49)

Proof. According to (5), we have for every iteration of the method,

F (xk)− F (xk+1) ≥ γk

8
∥F ′(xk+1)∥2

∗
∥F ′(xk)∥∗

≥ γ⋆ε
8

∥F ′(xk+1)∥∗
∥F ′(xk)∥∗

.

Telescoping this bound and using the inequality between arithmetic and geometric means, we get

F (x0)− F ⋆ ≥ F (x0)− F (xk) ≥ kγ⋆ε
8

1
k

k∑
i=1

∥F ′(xi)∥∗
∥F ′(xi−1)∥∗

≥ kγ⋆ε
8

[
∥F ′(xk)∥∗
∥F ′(x0)∥∗

]1/k
≥ kγ⋆ε

8

[
ε

∥F ′(x0)∥∗

]1/k
= kγ⋆ε

8 exp
[
1
k log ε

∥F ′(x0)∥∗

]
≥ kγ⋆ε

8

[
1 + 1

k log ε
∥F ′(x0)∥∗

]
.

Rearranging the terms proves the required complexity bound.

We see that this result is very general: we did not specify anything about the problem class our
function belongs to. Theorem 5 shows that for general composite objectives, with possibly non-
convex smooth part, our method will have a global convergence to a stationary point. To quantify the
convergence rate further, we need to impose some structural assumption on the Gradient-Normalized
Smoothness γ(·) of the function. Following our assumption 10 from the main part, let us assume that
γ(·) is lower bounded by the harmonic mean of monomials of (sub)gradient norms:

γ(x, F ′(x)) ≥ π(∥F ′(x)∥∗) :=
( d∑
i=1

M1−αi

∥F ′(x)∥αi
∗

)−1

≥ 1
d min

1≤i≤d

∥F ′(x)∥αi
∗

M1−αi
, (50)

where for all i, 0 ≤ αi ≤ 1 are fixed degrees and {M1−α}0≤α≤1 are non-negative coefficients
describing the complexity of the problem. Note that this assumption holds for all particular examples
of problem classes that we consider (see Section 2). Substituting this bound into Theorem 5, we
immediately obtain the following corollary.

Corollary 5. Let us choose γk = γ(xk) in Algorithm 2, or by performing an adaptive
search. Under assumptions of Theorem 5, we can bound γ⋆ ≥ π(ε). Therefore, to ensure
min

1≤i≤K
∥F ′(xi)∥∗ ≤ ε it is enough to perform a number of iterations of

K =
⌈
8dF0 · max

1≤i≤d

M1−αi

ε1+αi
+ log ∥F ′(x0)∥∗

ε

⌉
.
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E.1 CONVERGENCE FOR INEXACT HÖLDER HESSIAN

Let us consider a particular important consequence of our result. For simplicity, we set ψ ≡ 0
(unconstrained minimization). We assume that the Hessian of f is Hölder continuous of a certain
degree 0 ≤ ν ≤ 1 (Example 1). Then, according to 7, the Gradient-Normalized Smoothness
γNEWTON(·) using the exact Hessian, is bounded by

γNEWTON(x) ≥
(

1+ν
L2,ν
∥∇f(x)∥∗

) 1
1+ν

. (51)

At the same time, in out method we use inexact Hessian matrix, with the following general guarantee
(see Section 5):

∥∇2f(x)−H(x)∥∗ ≤ C1 +C2∥∇f(x)∥1−β
∗ , (52)

for a certain 0 ≤ β ≤ 1. Then, according to the basic properties, we can lower bound the Gradient-
Normalized Smoothness γ(·) for our problem and with inexact Hessian, as follows:

γ(x) ≥
[
γNEWTON(x)

−1 + C1

∥∇f(x)∥∗
+ C2

∥∇f(x)∥β
∗

]−1

. (53)

Therefore, substituting our condition 51, we obtain the following lower bound for the Gradient-
Normalized Smoothness, that matches the structure of (50):

γ(x) ≥
[(

L2,ν

(1+ν)∥∇f(x)∥∗

) 1
1+ν

+ C1

∥∇f(x)∥∗
+ C2

∥∇f(x)∥β
∗

]−1

.

Therefore, out theory immediately provides us with the following complexity result.

Corollary 6. Let us choose γk = γ(xk) in Algorithm 2, or by performing an adaptive search,
using an inexact Hessian that satisfies (52). Then, to ensure min1≤i≤K ∥∇f(xi)∥∗ ≤ ε it is
enough to perform a number of iterations of

K = O

(
F0 ·

[ (
L2,ν

ε2+ν

) 1
1+ν

+ C1

ε2 + C2

ε1+β

]
+ log ∥∇f(x0)∥∗

ε

)
.

For example, for ν = 1 (Lipschitz continuous Hessian), we obtain the complexity of

F0 ·O
(√

L2,1

ε3/2
+ C1

ε2 + C2

ε1+β

)
,

up to an additive logarithmic term. Note that the first term corresponds to the state-of-the-art rate
of the Cubically regularized Newton method (Nesterov & Polyak, 2006; Cartis et al., 2011a). We
see that when C1 ≈ 0 and β ≤ 1/2, which corresponds to our examples, Algorithm 1 with inexact
Hessian has the same complexity as the exact Newton method. In the following section, we show
how to improve these complexity bounds further, under additional assumptions on our objective, such
as convexity.

F IMPROVED RATES FOR GRADIENT-DOMINATED FUNCTIONS

In this section, let us assume additionally that the objective function F satisfies the following
inequality, for a certain 0 ≤ c ≤ 1 and constant Dc > 0 (see (Nesterov & Polyak, 2006; Fatkhullin
et al., 2022; Doikov et al., 2024a)):

∥F ′(xk)∥1+c
∗ Dc ≥ Fk := F (xk)− F ⋆, k ≥ 0. (54)

Let us denote by F0 the initial level set of the function

F0 :=
{
x ∈ Q : F (x) ≤ F (x0)

}
.

Note that due to Lemma 5, all iterations of our method belong to this set: {xk}k≥0 ⊂ F0. Then, we
denote by D0 the diameter of this set, which we assume to be bounded:

D0 := sup
x,y∈F0

∥x− y∥ < +∞.
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• Convex Functions. Assume that F is convex. Then,

F (xk)− F ⋆ ≤ ⟨F ′(xk),xk − x⋆⟩ ≤ ∥F ′(xk)∥∗∥xk − x⋆∥ ≤ ∥F ′(xk)∥∗D0.

Therefore, inequality (54) is satisfied with c := 0.

• Uniformly Convex Functions. Assume that F satisfies the following inequality, for a
certain p ≥ 2 and σp > 0 (see (Nesterov, 2018)):

F (y) ≥ F (x) + ⟨F ′(x),y − x⟩+ σp

p ∥y − x∥p. (55)

Then (54) is satisfied with

c := 1
p−1 and Dc := p−1

p

(
1
σp

) 1
p−1 .

• Strongly Convex Functions correspond to the previous case, when p = 2.

We are ready to establish improved global convergence rates for our method under condition (54) of
gradient-dominance. Then, Theorem 2 from the main part is a direct consequence of this result for
ψ ≡ 0 and c = 0 (Convex Unconstrained Minimization).

Theorem 6. Let us choose γk = γ(xk) in Algorithm 2 or by performing an adaptive search. Let
the Gradient-Normalized Smoothness γ(·) satisfies our structural assumption (50), and denote
α := min1≤i≤d αi. Assume that F is gradient-dominated (54) of degree

c ≤ α. (56)

Then, for ε > 0, to ensure F (xK)− F ⋆ ≤ ε, it is enough to perform a number of iterations of

K =
⌈
C(ε) + 2 log ∥F ′(x0)∥∗D0

ε

⌉
,

where

C(ε) := 8d
η max

1≤i≤d

(
M1−αi

[
D

1+αi
c

εαi−α

] 1
1+c

)(
1
εη − 1

Fη
0

)
, for η := α−c

1+c > 0,

and, for η = 0, we have the limit:

C(ε) := 8d max
1≤i≤d

(
M1−αi

[
D

1+αi
c

εαi−α

] 1
1+c

)
log F0

ε . (57)

Proof. Let us fix some k ≥ 0 and assume that Fk := F (xk)− F ⋆ ≥ ε. Let gk := ∥F ′(xk)∥∗. By
assumption (50), we have

gk ≥
(

Fk

Dc

) 1
1+c

. (58)

Then, from Lemma 5, we obtain

Fk − Fk+1 ≥ γk

8

(
gk+1

gk

)2
· gk

(50)

≥ 1
8d

(
gk+1

gk

)2
· min
1≤i≤d

(
g
1+αi
k

M1−αi

)
(54)

≥ 1
8d

(
gk+1

gk

)2
· min
1≤i≤d

(
1

M1−αi

[
Fk

Dc

] 1+αi
1+c

)
.

(59)

Recall that α := min
1≤i≤d

αi. Denote η := α−c
1+c

(56)

≥ 0. Applying the Mean Value Theorem for

y(x) = xη we get

bη − aη ≥ η
b1−η (b− a), b ≥ a ≥ 0. (60)
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Thus, we have, assuming that η > 0:

1
η

(
1

Fη
k+1
− 1

Fη
k

)
=

Fη
k −Fη

k+1

η·Fη
k Fη

k+1

(60)

≥ Fk−Fk+1

FkF
η
k+1

(59)

≥ 1
8d

(
gk+1

gk

)2(
Fk

Fk+1

)η
min
1≤i≤d

(
1

M1−αi

[
F

αi−α

k

D
1+αi
c

] 1
1+c

)

≥ A(ε) ·
(

gk+1

gk

)2(
Fk

Fk+1

)η
,

where

A(ε) := 1
8d min

1≤i≤d

(
1

M1−αi

[
εαi−α

D
1+αi
c

] 1
1+c

)
.

Telescoping this bound and using the inequality between arithmetic and geometric means, we obtain

1
η

(
1
Fη

k
− 1

Fη
0

)
≥ A(ε) ·

k−1∑
i=1

(
gi+1

gi

)2(
Fi

Fi+1

)η
≥ kA(ε) ·

(
g2
kF

η
0

g2
0F

η
k

) 1
k

≥ kA(ε) ·
(

Fη
0 ε2−η

g2
0D

2
0

) 1
k ≥ kA(ε) ·

(
ε

g0D0

) 2
k

= kA(ε) · exp
(
− 2

k log g0D0

ε

)
≥ kA(ε) ·

(
1− 2

k log g0D0

ε

)
.

Rearranging the terms, we get

k ≤ 1
ηA(ε)

(
1
εη − 1

Fη
0

)
+ 2 log g0D0

ε .

Note that for η = 0, we can use the following limit

lim
η→0

1
η

(
1
aη − 1

bη

)
= log a

b , a, b > 0.

Therefore, in this case, we obtain

k ≤ 1
A(ε) log

F0

ε + 2 log g0D0

ε ,

which completes the proof.

Let us consider an important particular case of convex functions (c = 0), and for specific assump-
tions on smoothness. In these cases and for the exact Hessian, we have that γ(xk, F

′(xk)) ≥
π(∥F ′(xk)∥∗) = ∥F ′(xk)∥α∗M−1

1−α, thus π(·) is a simple monomial of degree 0 ≤ α ≤ 1.

Corollary 7 (Convex Function). Consider exact Newton method: H(xk) := ∇2f(xk).
• Let the Hessian have bounded variation (Ex. 1, ν = 0), then α = 1, M0 = L2,0 and we get:

K = O
(

M0D
2
0

ε

)
= O

(
L2,0D

2
0

ε

)
.

• Let the Hessian be Lipschitz continuous (Ex. 1, ν = 1), then α = 1/2, M1/2 =
√
L2,1, and

our method has the same rate as the Cubic Newton (Nesterov & Polyak, 2006):

K = O
(

M1/2D
3/2
0

ε1/2

)
= O

(√
L2,1D3

0

ε

)
.

• Let the third derivative be Lipschitz continuous (Ex. 2, ν = 1), then α = 1/3, M2/3 = L
1/3
3,1 ,

and we obtain the rate as that of the third-order tensor method (Nesterov, 2021a):

K = O
(

M2/3D
4/3
0

ε1/3

)
= O

([
L3,1D

4
0

ε

]1/3)
.

• Let f be Quasi-Self-Concordant (Ex. 3), then α = 0, and we obtain the global liner rate (Doikov,
2023):

K = O
(
M1D0 log

F0

ε

)
.
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We see that our theory covers all the known state-of-the-art global convergence rates of the Newton
method in a unified manner.

Now, assume that we use an inexact Hessian, H(xk) ≈ ∇2f(xk), that satisfies condition (52). Then,
the corresponding Gradient-Normalized Smoothness γ(·) will be changed accordingly (53) and
Theorem 6 leads us to the following result. We assume ψ ≡ 0 (unconstrained minimization).

Corollary 8 (Inexact Hessian). Let us choose γk = γ(xk) in Algorithm 1, or by performing an
adaptive search, using an inexact Hessian that satisfies (52). Assume that c ≤ β. Then, to ensure
f(xK)− f⋆ ≤ ε it is enough to perform a number of iterations of

K = Õ
(
CNEWTON(ε) +C1

[
D2

c

ε1−c

] 1
1+c

+C2

[
D1+β

c

εβ−c

] 1
1+c
)
, (61)

where CNEWTON(ε) is the complexity of the method with exact Hessian.

According to (61), we see that a large degree c ≥ 0 of gradient dominance helps to accelerate the
method. Thus, for c := 0 (convex functions), we obtain

K = Õ
(
CNEWTON(ε) +C1

D2
0

ε +C2
D1+β

0

εβ

)
.

At the same time, for c := 1/2 (e.g., uniformly convex functions of degree 3), we already obtain a
complexity of

K = Õ
(
CNEWTON(ε) +C1

D
4/3

1/2

ε1/3
+C2

[
D1+β

1/2

εβ−1/2

] 2
3
)
,

which is much better in terms of dependence on ε, etc. It is important that all these rates correspond to
the same algorithm, with a universal step-size selection. Therefore, the method is able to automatically
adapt to the best degree of smoothness and gradient dominance.

Combining Corollary 8 with Corollary 7, we obtain the following classification of complexities, for
Convex Unconstrained Minimization (c = 0, ψ ≡ 0), with inexact Hessians.

Corollary 9 (Inexact Hessian: Convex Functions). Consider inexact Hessians (52).
• Let the Hessian have bounded variation, and α = β = 1, Then,

K = O
(

(M0+C2)D0

ε +
C1D

2
0

ε

)
.

• Let the Hessian be Lipschitz continuous, and α = β = 1/2. Then,

K = O

(
(M1/2+C2)D3/2

0

ε1/2
+

C1D
2
0

ε

)
.

• Let the third derivative be Lipschitz continuous, and α = β = 1/3. Then

K = O

(
(M2/3+C2)D4/3

0

ε1/3
+

C1D
2
0

ε

)
.

• Let f be Quasi-Self-Concordant, and α = β = 0. Then

K = O
([

(M1 +C2)D0 +
C1D

2
0

ε

]
log F0

ε

)
.

G APPLICATIONS

In this section, we provide concrete examples of problems that satisfy our assumptions of smoothness
and Hessian approximation, and that offer direct, practical applications of our theory.

Let us study the case of the exact Hessian: H(x) ≡ ∇2f(x), and consider some standard assumptions
on the smoothness of our objective. We demonstrate that any such global assumption can be effectively
translated into appropriate bounds on our Gradient-Normalized Smoothness γ(·). As a consequence,
by Theorems 5 and 6, we immediately obtain global convergence guarantees for our algorithms.
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For simplicity of our presentation, we always assume that K ≥ 2 log ∥∇f(x0)∥∗
ε in our complexity

bounds, to omit an additive logarithmic term.

G.1 FUNCTIONS WITH HÖLDER HESSIAN

Let us assume that the Hessian of f is Hölder continuous of degree ν ∈ [0, 1], with some constant
L2,ν > 0:

∥∇2f(x)−∇2f(y)∥ ≤ L2,ν∥x− y∥ν , x,y ∈ Rn. (62)
Therefore, by direct integration, we obtain the following bound, for any h ∈ Rn:

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥ ≤ L2,ν

1+ν ∥h∥1+ν . (63)

Now, let us choose γ :=
(

1+ν
L2,ν
∥g∥∗

) 1
1+ν

, for an arbitrary fixed g ∈ Rn and consider h ∈ Bγ :=

{h ∈ Rn : ∥h∥ ≤ γ}. We have

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥
(63)

≤ L2,νγ
ν

1+ν ∥h∥ = ∥g∥∗∥h∥
γ , (64)

where the last equation holds due to our choice of γ. By our definition γ(x, g) is the maximal such
value that (64) holds. Hence, we obtain the following bound.

Proposition 1. Let f satisfy (62) for some ν ∈ [0, 1] and L2,ν > 0. Then,

γf (x, g) ≥
(

1+ν
L2,ν
∥g∥∗

) 1
1+ν

.

Plugging this estimate into Theorem 5 we obtain the complexity to find ∥F ′(xk)∥∗ ≤ ε of order

K = O
(

F0L
1/(1+ν)
2,ν

ε(2+ν)/(1+ν)

)
for our algorithms, up to an additive logarithmic terms. For ν = 1, this corresponds to the complexity
of the Cubic Newton method (Nesterov & Polyak, 2006), and for ν = 0, this is the same rate as
for the Gradient Descent on general non-convex problems (Nesterov, 2018). At the same time, for
convex problems (Theorem 6, c = 0), we get the complexity to find global solution in terms of the
functional residual, F (xK)− F ⋆ ≤ ε of order

K = O
([

L2,νD
2+ν
0

ε

] 1
1+ν
)
.

G.2 CONVEX FUNCTIONS WITH HÖLDER THIRD DERIVATIVE

Now, we assume that function f is convex and its third derivative is Hölder continuous of degree
ν ∈ [0, 1], with constant L3,ν > 0:

∥∇3f(y)−∇3f(x)∥ ≤ L3,ν∥x− y∥ν , x,y ∈ Rn. (65)

Following (Nesterov, 2021a; Doikov et al., 2024a), we can integrate this inequality and, using
convexity, obtain, for an arbitrary directions v ∈ Rn and u ∈ Rn:

0 ≤ ⟨∇2f(x+ v)h,h⟩ ≤ ⟨∇2f(x)h,h⟩+∇3f(x)[h,h,v] +
L3,ν

1+ν ∥h∥2 · ∥v∥1+ν .

Now, substituting v = ±τu, for some τ > 0 and u ∈ Rn, we get

|∇3f(x)[h,h,u]| ≤ 1
τ ⟨∇2f(x)h,h⟩+ τν · L3,ν

1+ν ∥h∥2 · ∥u∥1+ν .

Balancing the right hand side, we can choose τ :=
(

(1+ν)⟨∇2f(x)h,h⟩
L3,ν∥h∥2∥u∥1+ν

) 1
1+ν

, which gives:

|∇3f(x)[h,h,u]| ≤ 2 ·
(

L3,ν

1+ν

) 1
1+ν ⟨∇2f(x)h,h⟩ ν

1+ν · ∥h∥ 2
1+ν · ∥u∥

= 2 ·
(

L3,ν

1+ν

) 1
1+ν ∥h∥

2ν
1+ν
x · ∥h∥ 2

1+ν · ∥u∥, h,u ∈ Rn.

(66)
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Then, using Taylor’s formula for the gradient approximation, we obtain

∥∇f(x+ h)−∇f(x)−∇2f(x)h− 1
2∇3f(x)[h,h]∥∗

(65)

≤ L3,ν

(1+ν)(2+ν)∥h∥2+ν .

Hence, applying the triangle inequality and our bound (66), we conclude that

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥∗

≤ L3,ν

(1+ν)(2+ν)∥h∥2+ν +
(

L3,ν

1+ν

) 1
1+ν ∥h∥

2ν
1+ν
x · ∥h∥ 2

1+ν .

(67)

Now, for an arbitrary g ∈ Rn and a fixed γ > 0, we consider only the directions h ∈ Bγ ∩ Ox,g , i.e.
it holds:

∥h∥ ≤ γ and ∥h∥2x ≤ −⟨g,h⟩ ≤ ∥g∥∗∥h∥.
For such directions, we can continue our bound, as follows:

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥∗ ≤ L3,νγ
1+ν

(1+ν)(2+ν)∥h∥+
(

L3,ν

1+ν

) 1
1+ν

γ
1

1+ν ∥g∥
ν

1+ν
∗ ∥h∥.

Now, we notice that to ensure

L3,νγ
1+ν

(1+ν)(2+ν) +
(

L3,ν

1+ν

) 1
1+ν

γ
1

1+ν ∥g∥
ν

1+ν
∗ ≤ ∥g∥∗

γ ,

it is sufficient to choose

γ :=
(

1+ν
21+νL3,ν

∥g∥∗
) 1

2+ν

.

Therefore, we finally conclude the following bound.

Proposition 2. Let f be convex and satisfy (65) for some ν ∈ [0, 1] and L3,ν > 0. Then,

γf (x, g) ≥
(

1+ν
21+νL3,ν

∥g∥∗
) 1

2+ν

.

Using this estimate with Theorem 6, for convex problems (c = 0), we get the complexity to find
global solution in terms of the functional residual, F (xK)− F ⋆ ≤ ε of order

K = O
([

L3,νD
3+ν
0

ε

] 1
2+ν
)

(68)

for our algorithm. For ν = 1, this gives O
(
[1/ε]

1
3

)
. This result recovers fast rates for the Super-

Universal Newton method from (Doikov et al., 2024a). Note that our algorithms and theory generalize
these rate to the case of inexact Hessian (see Corollaries 8 and 9).

G.3 QUASI-SELF-CONCORDANT FUNCTIONS

Important in applications with softmax problems, logistic and exponential regressions, matrix balanc-
ing and matrix scaling problems, are convex objectives that satisfy the following condition (Bach,
2010; Sun & Tran-Dinh, 2018; Karimireddy et al., 2018; Carmon et al., 2020; Doikov, 2023), with
some parameter M1 ≥ 0:

⟨∇3f(x)h,h,u⟩ ≤ M1∥h∥2x∥u∥, x,h,u ∈ Rn. (69)

By integrating this inequality, we obtain (see, e.g., Lemma 2.7 in (Doikov, 2023)), for any x,h ∈ Rn:

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥∗ ≤ M1∥h∥2xφ(M1∥h∥), (70)

where φ(t) := et−t−1
t2 ≥ 0 is a convex and monotone function. Now, let us assume that h ∈

Bγ ∩ Ox,g , for an arbitrary γ > 0 and g ∈ Rn:

∥h∥ ≤ γ and ∥h∥2x ≤ −⟨g,h⟩ ≤ ∥g∥∗∥h∥. (71)

Substituting these bounds into (70), we get

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥∗ ≤ M1∥g∥∗∥h∥ · φ(γM1),
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and for γ := 1
M1

we ensure M1φ(γM1) ≤ 1
γ . Hence, we have established the following result.

Proposition 3. Let f be Quasi-Self-Concordant (69) for some M1 > 0. Then,

γf (x, g) ≥ 1
M1
.

Using this bound on Gradient-Normalized Smoothness in our Theorem 6 for convex functions
(c = 0) immediately gives the global linear rate of convergence for our method, and to achieve
F (xK)− F ⋆ ≤ ε, it is enough to perform

K = O
(
M1D0 · log F0

ε

)
iterations of the algorithm.

Note that this is the same rate established in (Doikov, 2023) for the Newton method with gradient
regularization. This result shows that the Newton method can achieve a global linear rate of conver-
gence without any additional assumptions of uniform or strong convexity on the objective. In contrast,
first-order methods can attain only sublinear rates on these problems unless additional regularization
is applied.

In this work, we generalize this result to methods with an inexact Hessian. It appears that, as soon as
C1 ≈ 0 and β = 0 in condition (12), the method with an inexact Hessian has the same fast global
rate as the full Newton method. Remarkably, as we show, this holds—for example—for the logistic
regression problem (Example 6), where the Fisher approximation of the Hessian yields C1 = f⋆ (the
global optimum), which can be close to zero in well-separable case.

G.4 GENERALIZED SELF-CONCORDANT FUNCTIONS

Combining the previous two examples, let us consider the following class of convex Generalized
Self-Concordant functions (Sun & Tran-Dinh, 2018), for some degree 0 ≤ q < 2 and Gq ≥ 0:

∇3f(x)[h,h,u] ≤ Gq∥h∥qx∥h∥2−q∥u∥, x,h,u ∈ Rn. (72)

Note that q = 2 corresponds to Quasi-Self-Concordant functions (69), and for the convex functions
with Hölder continuous third derivative (66) of degree ν ∈ [0, 1], we have q = 2ν

1+ν . Let us present
the following example that provides us with all intermediate powers 0 ≤ q < 2.

Example 9. For p ≥ 2, consider

f(x) = 1
p∥x∥p.

Then, (72) is satisfied with q := 2(p−3)
p−2 and Gq := (p− 1)(p− 2).

Proof. Indeed, for arbitrary h,u ∈ Rn, we have:

⟨∇f(x),h⟩ = ∥x∥p−2⟨Bx,h⟩

⟨∇2f(x)h,h⟩ = (p− 2)∥x∥p−4⟨Bx,h⟩2 + ∥x∥p−2∥h∥2 ≥ ∥x∥p−2∥h∥2,

∇3f(x)[h,h,u] = 2(p− 2)∥x∥p−4⟨Bx,h⟩⟨Bu,h⟩

+ (p− 2)(p− 4)∥x∥p−6⟨Bx,u⟩⟨Bx,h⟩2

+ (p− 2)∥x∥p−4∥h∥2⟨Bxu⟩

≤ (p− 1)(p− 2)∥x∥p−3∥h∥2∥u∥

≤ (p− 1)(p− 2)∥h∥
2(p−3)
p−2

x ∥h∥ 2
p−2 ∥u∥,

which is the required bound.
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Using direct computation, we also immediately obtain the following simple proposition.

Proposition 4 (Affine Substitution). Let f satisfy (72) for some 0 ≤ q < 2 and Gq > 0. Then,
g(x) := f(Ax − b) satisfy (72) with the same degree q and constant Gq, by correcting the
global norm accordingly: B′ := A⊤BA.

Now, let us fix a point x ∈ Rn. For arbitrary given directions u,h ∈ Rn, we denote the following
univariate function

φ(τ) := 2
2−q ⟨∇2f(x+ τu)h,h⟩ 2−q

2 .

Then,

|φ′(τ)| =
∣∣∣∇3f(x+τu)[h,h,u]

∇2f(x+τu)h,h⟩
q
2

∣∣∣ (72)

≤ Gq∥h∥2−q∥u∥. (73)

Hence, for arbitrary x,y,h ∈ Rn, setting u := y − x, we have

∥h∥2−q
y − ∥h∥2−q

x = 2−q
2

(
φ(1)− φ(0)

) (73)

≤ 2−q
2 Gq∥h∥2−q∥y − x∥. (74)

Therefore, for an arbitrary h ∈ Rn and u ∈ Rn such that ∥u∥ = 1 we have

⟨∇f(x+ h)−∇f(x)−∇2f(x)h,u⟩ =
1∫
0

(1− τ)∇3f(x+ τh)[h,h,u]dτ

(72)

≤ Gq∥h∥2−q
1∫
0

(1− τ)∥h∥qx+τhdτ

(74)

≤ Gq∥h∥2−q
1∫
0

(1− τ)
(
∥h∥2−q

x + 2−q
2 Gq∥h∥3−qτ

) q
2−q

dτ

≤ 2
q

2−qGq∥h∥2−q ·
[
∥h∥qx

1∫
0

(1− τ)dτ +
(

2−q
2 Gq

) q
2−q ∥h∥

q(3−q)
2−q

1∫
0

(1− τ)τ q
2−q dτ

]

= 2
2(q+1)
2−q Gq∥h∥2−q∥h∥qx + (2−q)

4−q
2−q

2·(4−q) G
2

2−q
q ∥h∥ 4−q

2−q .

Therefore, we have proved the following bound.

Proposition 5. Let f satisfy (72) for some 0 ≤ q < 2 and Gq > 0. Then,

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥∗ ≤ c1 ·Gq∥h∥2−q∥h∥qx + c2 ·G
2

2−q
q ∥h∥ 4−q

2−q , (75)

with c1 := 2
2(q+1)
2−q and c2 := (2−q)

4−q
2−q

2·(4−q) .

Note that in view of (66), this inequality recovers up to numerical constants the bound (67) for the
convex functions with Hölder third derivative, which correspond to q := 2ν

1+ν , Gq := L
1/(1+ν)
3,ν and

0 ≤ ν ≤ 1 covers the interval 0 ≤ q ≤ 1.

It remains to establish the bound for the Gradient Normalized Smoothness γ(·). We fix an arbitrary
g ∈ Rn and γ > 0, and consider the directions h ∈ Bγ ∩ Ox,g , i.e.

∥h∥ ≤ γ and ∥h∥2x ≤ −⟨g,h⟩ ≤ ∥g∥∗∥h∥.
For such h, our bound (75) leads to

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥∗ ≤ c1Gq · γ
2−q
2 · ∥g∥

q
2
∗ · ∥h∥+ c2G

2
2−q
q · γ 2

2−q · ∥h∥.
We notice that to ensure

c1Gq · γ
2−q
2 · ∥g∥

q
2
∗ + c2G

2
2−q
q · γ 2

2−q ≤ ∥g∥∗
γ ,

it is sufficient to choose

γ :=
[
1
2

] 8+2q
(2−q)(4−q) ·

[
∥g∥2−q

∗
G2

q

] 1
4−q

,
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and thus we establish the following result.

Proposition 6. Let f satisfy (72) for some 0 ≤ q < 2 and Gq > 0. Then,

γf (x, g) ≥
[
1
2

] 8+2q
(2−q)(4−q) ·

[
∥g∥2−q

∗
G2

q

] 1
4−q

.

This bound generalizes that one from Proposition 2 as a particular case 0 ≤ q ≤ 1. We also see that,
ignoring the numerical constant and substituting formally q := 2 provides us with the right power
that corresponds to the Quasi-Self-Concordant functions from Proposition 3.

Using this bound in our Theorem 6 with α := 2−q
4−q for convex functions (c = 0) immediately gives

us the following complexity to find F (xK)− F ⋆ ≤ ε of order

K = O
([

G
2

2−q
q D

6−2q
2−q

0

ε

] 2−q
4−q
)

(76)

for our algorithm, minimizing Generalized Quasi-Self-Concordant functions (72) of degree 0 ≤
q < 2. To the best of our knowledge, this global complexity is completely new and has not been
covered in the prior literature. This result recovers complexity (68) as a particular case and naturally
interpolates the complexities for convex functions with Hölder continuous third derivative and
Quasi-Self-Concordant functions (see also Table 1).

To illustrate the power of our results, we return to Example (9) to examine the direct consequences
of our theory.

Example 10. Let f(x) = 1
p∥Ax− b∥p2, for some p ≥ 2, and ∥ · ∥2 is the standard Euclidean

norm. Let us choose the norm in our space with B := A⊤A, assuming B ≻ 0. Then, according
to our previous observations, function f belongs to class (72) with

q := 2(p−3)
p−2 , and Gq := (p− 1)(p− 2).

According to Proposition 6, the Gradient-Normalized Smoothness for this function is bounded as

γf (x) ≥ ∥∇f(x)∥α
∗

M1−α
,

with α := 2−q
4−q = 1

p−1 and M1−α :=
[
(p− 1)(p− 2)23p−7

] p−2
p−1 . At the same time, this objective

is uniformly convex (55) of degree p with constant σp = 22−p (Doikov & Nesterov, 2021). Hence,
the gradient-dominance condition (54) is satisfied with

c := 1
p−1 and Dc := p−1

p · 2
p−2
p−1 .

Therefore, since α ≡ c, by Theorem 6, our algorithm has the global linear rate, and the number
of iterations to achieve f(xK)− f⋆ ≤ ε is bounded as

K = 8M1−αDc log
f(x0)−f⋆

ε = O
(
log f(x0)−f⋆

ε

)
,

where O(·) hides a numerical constant that depends only on p.

G.5 (L0, L1)-SMOOTH FUNCTIONS

Let us assume that f satisfies the following inequality (Zhang et al., 2019):

∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥∗, x ∈ Rn. (77)
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Then, for such functions, we have the following bound (see Lemma 2.5 in (Vankov et al., 2024)), for
any x,h ∈ Rn:

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥∗ ≤ ∥∇f(x+ h)−∇f(x)∥∗ + ∥∇2f(x)∥ · ∥h∥

≤
(
L0 + L1∥∇f(x)∥∗

)
·
[
∥h∥+ eL1∥h∥−1

L1

]
≤

(
L0 + L1∥∇f(x)∥∗

)
· ∥h∥ ·

(
1 + eL1∥h∥).

We fix γ > 0, g ∈ Rn, and consider h ∈ Bγ . Then, we have an upper bound

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥∗ ≤ ∥g∥∗∥h∥
γ ,

as soon as (
L0 + L1∥∇f(x)∥∗

)
·
(
1 + eL1γ

)
≤ ∥g∥∗

γ .

It it easy to check that it is satisfied for γ := 1
1+exp(∥g∥∗/∥∇f(x)∥∗)

· ∥g∥∗
L0+L1∥∇f(x)∥∗

. Therefore, we
have established the following lower bound.

Proposition 7. Let f satisfy (77) for some L0, L1 > 0. Then,

γf (x, g) ≥ ∥g∥∗
L0+L1∥∇f(x)∥∗

·
(
1 + exp

( ∥g∥∗
∥∇f(x)∥∗

))−1

,

and for g := ∇f(x), we obtain

γf (x) ≥ ∥∇f(x)∥∗
ρ(L0+L1∥∇f(x)∥∗)

,

where ρ := 1 + e ≈ 3.718.

Using these bounds directly in our Theorems 1 and 2, we obtain the following complexity results:

• For unconstrained minimization of a non-convex function f(·), to achieve ∥∇f(xK)∥∗ ≤ ε
it is enough to perform

K = F0 ·O
(

L0

ε2 + L1

ε

)
iterations of our algorithm.

• For unconstrained minimization of a convex function f(·), to achieve f(xK)− f⋆ ≤ ε, it is
enough to perform

K = O
([

L0D
2
0

ε + L1D0

]
log F0

ε

)
iterations of our algorithm.

Therefore, we see that our method has a global convergence guarantee, at least as strong as that of
first-order methods on (L0, L1)-smooth functions. Moreover, these convergence rates are achieved
automatically, and the actual speed of the method will be the best within these problem classes.

G.6 SECOND-ORDER (M0,M1)-SMOOTH FUNCTIONS

Following (Xie et al., 2024; Gratton et al., 2025), let us assume that f satisfies the following inequality:

∥∇2f(x)−∇2f(y)∥ ≤ (M0 +M1∥∇f(x)∥∗)∥x− y∥, x,y ∈ Rn, (78)

for some constants M0,M1 ≥ 0. Then, we have the bound, for all h ∈ Rn

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥∗ ≤ M0+M1∥∇f(x)∥∗
2 ∥h∥2.

Restricting our direction onto a ball, h ∈ Bγ , we have that

∥∇f(x+ h)−∇f(x)−∇2f(x)h∥∗ ≤ γ · M0+M1∥∇f(x)∥∗
2 ∥h∥ = ∥g∥∗∥h∥

γ ,

where the last equation holds for the particular choice γ :=
√

2∥g∥∗
M0+M1∥∇f(x)∥∗

. Therefore, we obtain
the following statement.
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Proposition 8. Let f satisfy (78) for some M0,M1 > 0. Then,

γf (x, g) ≥
(

2∥g∥∗
M0+M1∥∇f(x)∥∗

)1/2
.

Using this bound in our Theorems 1 and 2, we obtain:

• For unconstrained minimization, in the non-convex case, to achieve ∥∇f(xK)∥∗ ≤ ε it is
enough to perform

K = F0 ·O
(

M
1/2
0

ε3/2
+

M
1/2
1

ε

)
iterations of our algorithm.

• For unconstrained minimization, in the convex case, to achieve f(xK) − f⋆ ≤ ε, it is
enough to perform

K = O
([(M0D

3
0

ε

)1/2
+M

1/2
1 D0

]
log F0

ε

)
iterations of our algorithm.

We see that a stronger second-order (M0,M1)-smoothness condition allows for improved complexity
results compared to first-order (L0, L1)-smooth functions. It is important that all these problem
classes are covered by our framework, which also allows for inexact Hessians.

H BOUNDS ON EFFECTIVE HESSIAN APPROXIMATIONS

H.1 SOFT MAXIMUM

Example 11 (Soft Maximum: Extended). In applications with multiclass classification, graph
problems, and matrix games, we have

f(x) := s(u(x)),

where u : Rn → Rd is an operator (e.g. a linear or nonlinear model), and s(y) := log
∑d

i=1 e
yi

is the LogSumExp loss. Note that s(·) is Quasi-Self-Concordant (Section G.3), and its gradient is
the softmax: [∇s(y)]i = eyi ·

(∑d
j=1 e

yj
)−1

. Assume that

∥∇u(x)∥ ≤ ξ0, ∥∇2u(x)∥ ≤ ξ1, x ∈ Rn,

for some ξ0, ξ1 ≥ 0, and that operator u(·) is non-degenerate 4, for some µ > 0:

∇u(x)B−1∇u(x)⊤ ⪰ µId, x ∈ Rn. (79)

We introduce the following approximations and derive corresponding bounds:

• If H(x) := ∇u(x)⊤∇2s (u(x))∇u(x) ⪰ 0, we have

∥∇2f(x)−H(x)∥ ≤ ξ1√
µ∥∇f(x)∥∗.

• If H(x) := ∇u(x)⊤∇u(x) ⪰ 0 (Gauss-Newton), we have

∥∇2f(x)−H(x)∥ ≤ ξ20 +
(
ξ0 +

ξ1√
µ

)
∥∇f(x)∥∗.

• If H(x) := ∇u(x)⊤ Diag (∇s (u(x)))∇u(x) ⪰ 0 (Weighted Gauss-Newton), we have

∥∇2f(x)−H(x)∥ ≤
(
ξ0 +

ξ1√
µ

)
∥∇f(x)∥∗.

4This assumption can be relaxed. It holds, for example, when the model is overparametrized (i.e. n ≫ d).
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Proof. Note that
∇f(x) = ∇u(x)⊤∇s (u(x)) ,

where∇u(x) ∈ Rd×n denotes the Jacobian of mapping u, and

∇2f(x) = ∇u(x)⊤∇2s (u(x))∇u(x) +
d∑

i=1

[∇s (u(x))]i∇2ui(x)

= ∇u(x)⊤
(
Diag (∇s (u(x)))−∇s (u(x))∇s (u(x))⊤

)
∇u(x)

+
d∑

i=1

[∇s (u(x))]i∇2ui(x),

where∇2u(x) is the tensor of second derivatives or u, which we assume to be bounded.

1. Consider the approximation

H(x) := ∇u(x)⊤∇2(s (u(x))∇u(x) ⪰ 0.

Note that when operator u(·) is linear, H(x) is the exact Hessian. In general non-linear case, we can
bound

∥∇2f(x)−H(x)∥ =

∥∥∥∥ d∑
i=1

[∇s (u(x))]i∇2ui(x)

∥∥∥∥
≤ ξ1∥∇s(u(x))∥.

On the other hand,

∥∇f(x)∥2∗ := ⟨∇f(x),B−1∇f(x)⟩ = ⟨∇u(x)B−1∇u(x)⊤∇s (u(x)) ,∇s (u(x))⟩

≥ µ∥∇s(u(x))∥2,
where in the last inequality we used the non-degeneracy condition and the standard Euclidean norm
in Rd. Thus, we have the following bound ∥∇s(u(x))∥ ≤ 1√

µ∥∇f(x)∥∗, that yields

∥∇2f(x)−H(x)∥ ≤ ξ1√
µ∥∇f(x)∥∗.

2. Consider the approximation

H(x) := ∇u(x)⊤∇u(x) ⪰ 0.

Then, as in the previous case, we have:

∥∇2f(x)−H(x)∥ =

∥∥∥∥∇u(x)⊤ (∇2s (u(x))− Id
)
∇u(x) +

d∑
i=1

[∇s (u(x))]i∇2ui(x)

∥∥∥∥
≤

∥∥∇u(x)⊤ (∇2s(u(x))− Id
)
∇u(x)

∥∥+ ξ1√
µ∥∇f(x)∥∗,

and it remains to bound the following term:

∥∇u(x)⊤
(
∇2s(u(x))− Id

)
∇u(x)∥

=
∥∥∥∇u(x)⊤[Diag (∇s(u(x)))− Id

]
∇u(x)−∇u(x)⊤∇s (u(x))∇s (u(x))⊤∇u(x)

∥∥∥
≤
∥∥∥∇u(x)⊤[Diag (∇s(u(x)))− Id

]
∇u(x)

∥∥∥ +
∥∥∥∇f(x)⊤∇f(x)∥∥∥.

The first term can be bounded as follows:

∥∇u(x)⊤
[
Diag (∇s(u(x)))− Id

]
∇u(x)∥ ≤ ∥∇u(x)∥2∥Diag (∇s (u(x)))− Id∥ ≤ ξ20 ,

where we used the fact that max
1≤i≤d

| [∇s (u(x))]i − 1| ≤ 1 and our assumption regarding the bound-

edness of ∥∇u(x)∥. For the second term, we notice that

∥∇f(x)∥∗ ≤ ∥∇u(x)∥ · ∥∇s(u(x))∥ ≤ ξ0,
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since ∇s(u(x)) is from the simplex. Hence,
∥∇f(x)⊤∇f(x)∥ = ∥∇f(x)∥2∗ ≤ ξ0∥∇f(x)∥∗,

and we finally obtain the following bound:

∥∇2f(x)−H(x)∥ ≤ ξ20 +
(
ξ0 +

ξ1√
µ

)
∥∇f(x)∥∗.

3. Consider the approximation
H(x) := ∇u(x)⊤ Diag (∇s (u(x)))∇u(x) ⪰ 0.

Repeating the reasoning from the previous case, it follows immediately that

∥∇2f(x)−H(x)∥ ≤
(
ξ0 +

ξ1√
µ

)
∥∇f(x)∥∗,

which is the required bound.

H.2 NONLINEAR EQUATIONS

Example 12 (Nonlinear Equations: Extended). Let u : Rn → Rd be a nonlinear operator, and
set

f(x) := 1
p∥u(x)∥p = 1

p ⟨Gu(x),u(x)⟩ p2 ,
for some G = G⊤ ≻ 0, and p ≥ 2. Note that 1

p∥ · ∥p is a generalized self-concordant loss
function (Section G.4). As in the previous example, we assume that

∥∇u(x)∥ ≤ ξ0, ∥∇2u(x)∥ ≤ ξ1, x ∈ Rn,

for some ξ0, ξ1 ≥ 0, and that the operator is non-degenerate, for some µ > 0:

∇u(x)B−1∇u(x)⊤ ⪰ µG−1, x ∈ Rn. (80)

We introduce the following approximations and derive corresponding bounds:

• If H(x) := ∥u(x)∥p−2∇u(x)⊤G∇u(x) + p−2
∥u(x)∥p∇f(x)∇f(x)⊤ ⪰ 0, we have

∥∇2f(x)−H(x)∥ ≤ ξ1√
µ∥∇f(x)∥∗.

• If H(x) := ∥u(x)∥p−2∇u(x)⊤G∇u(x) ⪰ 0, we have

∥∇2f(x)−H(x)∥ ≤ (p− 2)ξ
p

p−1

0 ∥∇f(x)∥
p−2
p−1
∗ + ξ1√

µ∥∇f(x)∥∗.

• If H(x) := p−2
∥u(x)∥p∇f(x)∇f(x)⊤ ⪰ 0 (Fisher-type), we have

∥∇2f(x)−H(x)∥ ≤ ξ20µ
2−p

2(p−1) ∥∇f(x)∥
p−2
p−1
∗ + ξ1√

µ∥∇f(x)∥∗.

Proof. Note that
∇f(x) = ∥u(x)∥p−2∇u(x)⊤Gu(x),

where ∇u(x) ∈ Rd×n denotes the Jacobian matrix of mapping u, and, for any direction h ∈ Rn,
we have
⟨∇2f(x)h,h⟩ = ∥u(x)∥p−2⟨G∇u(x)h,∇u(x)h⟩+ ∥u(x)∥p−2⟨Gu(x),∇2u(x)[h,h]⟩

+ (p− 2)∥u(x)∥p−4⟨Gu(x),∇u(x)h⟩2,
where∇2u(x) is the tensor of second derivatives of u, which we assume to be bounded.

1. Consider the approximation

H(x) := ∥u(x)∥p−2∇u(x)⊤G∇u(x) + p−2
∥u(x)∥p∇f(x)∇f(x)⊤ ⪰ 0. (81)
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Note that it resembles a combination of the Gauss-Newton and Fisher approximation matrices, and
for p = 2 it gives the classic Gauss-Newton approximation. Moreover, when the operator u is linear,
the problem is convex, and ξ1 = 0. Thus (81) gives us exact Hessian in this case. Let us consider∣∣⟨∇2f(x)h,h⟩ − ⟨H(x)h,h⟩

∣∣ = ∥u(x)∥p−2
∣∣⟨Gu(x),∇2u(x) [h,h]⟩

∣∣
≤ ∥u(x)∥p−2∥u(x)∥∥∇2u(x)∥∥h∥2,

therefore
∥∇2f(x)−H(x)∥ := max

h:∥h∥=1

∣∣〈(∇2f(x)−H(x)
)
h,h

〉∣∣
≤ ξ1∥u(x)∥p−1 = ξ1 (pf(x))

p−1
p .

Using our non-degeneracy condition, we can further bound

∥∇f(x)∥2∗ = ∥u(x)∥2(p−2)∥∇u(x)⊤Gu(x)∥2∗

= ∥u(x)∥2(p−2)
〈
Gu(x),∇u(x)B−1∇u(x)⊤Gu(x)

〉
(80)

≥ µ∥u(x)∥2(p−1).

Thus, we have ∥u(x)∥p−1 ≤ 1√
µ∥∇f(x)∥∗, which gives us the following bound on the approxima-

tion error:
∥∇2f(x)−H(x)∥ ≤ ξ1√

µ∥∇f(x)∥∗.

2. Consider the approximation

H(x) := ∥u(x)∥p−2∇u(x)⊤G∇u(x) ⪰ 0.

Using observations from the previous step,

∥∇2f(x)−H(x)∥ := max
h:∥h∥=1

∣∣〈(∇2f(x)−H(x)
)
h,h

〉∣∣
≤ (p− 2)∥u(x)∥p−4 max

h:∥h∥=1
⟨Gu(x),∇u(x)h⟩2

+ ∥u(x)∥p−2 max
h:∥h∥=1

∣∣⟨Gu(x),∇2u(x) [h,h]⟩
∣∣

≤ (p− 2)∥u(x)∥p−4 max
h:∥h∥=1

⟨Gu(x),∇u(x)h⟩2 + ξ1√
µ∥∇f(x)∥∗.

It remains to notice that, for ∥h∥ = 1, we have:

∥u(x)∥p−4⟨Gu(x),∇u(x)h⟩2 = ∥u(x)∥p−4|⟨Gu(x),∇u(x)h⟩| p
p−1 |⟨Gu(x),∇u(x)h⟩| p−2

p−1

= 1

∥u(x)∥
p

p−1
|⟨Gu(x),∇u(x)h⟩| p

p−1 |⟨∇f(x),h⟩| p−2
p−1

≤ ξ
p

p−1

0 ∥∇f(x)∥
p−2
p−1
∗ ,

which gives the desired bound.

3. Consider the approximation

H(x) := p−2
∥u(x)∥p∇f(x)∇f(x)⊤ ⪰ 0.

Note this matrix can be equivalently represented as

H(x) = (p− 2)∥u(x)∥p−4∇u(x)⊤Gu(x)u(x)⊤G∇u(x).

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Therefore, we have

∥∇2f(x)−H(x)∥ ≤ max
h:∥h∥=1

∥u(x)∥p−2⟨G∇u(x)h,∇u(x)h⟩+ ξ1√
µ∥∇f(x)∥∗

≤ ξ20∥u(x)∥p−2 + ξ1√
µ∥∇f(x)∥∗

≤ ξ20µ
2−p

2(p−1) ∥∇f(x)∥
p−2
p−1
∗ + ξ1√

µ∥∇f(x)∥∗.

H.3 SEPARABLE OPTIMIZATION

Example 13 (Separable Optimization: Extended). Consider the following structure of the
objective,

f(x) :=
d∑

i=1

fi(x),

where fi(x) := ℓ (ui(x)), for a convex nonnegative loss function ℓ and mappings ui : Rn → R.
Consider logistic regression, ℓ(t) := log(1 + exp(t), and the following Fisher-type Hessian
approximation:

H(x) :=
d∑

i=1

∇fi(x)∇fi(x)⊤ ⪰ 0,

• Let each ui be a nonlinear mapping, and f be a gradient-dominated (54) function. Assume
that, for some ξ0, ξ1 ≥ 0: ∥∇ui(x)∥ ≤ ξ0, ∥∇2ui(x)∥ ≤ ξ1, ∀1 ≤ i ≤ d. Then, we have

∥∇2f(x)−H(x)∥ ≤
(
ξ20 + ξ1

) (
f⋆ +Dc∥∇f(x)∥1+c

∗
)
.

• If the mappings ui(x) := ⟨ai,x⟩− bi are linear models, then, by setting B :=
∑n

i=1 aia
⊤
i , we

have
∥∇2f(x)−H(x)∥ ≤ f(x) ≤ f⋆ +D∥∇f(x)∥,

for x ∈ F0.

Proof. Note that

∇f(x) =
d∑

i=1

∇fi(x) =
d∑

i=1

ℓ′ (ui(x))∇ui(x),

and

∇2f(x) =
d∑

i=1

[
ℓ′′ (ui(x))∇ui(x)∇ui(x)⊤ + ℓ′ (ui(x))∇2ui(x)

]
.

Consider approximation

H(x) :=
d∑

i=1

∇fi(x)∇fi(x)⊤ =
d∑

i=1

ℓ′ (ui(x))
2∇ui(x)∇ui(x)⊤ ⪰ 0.

Then, we have

∥∇2f(x)−H(x)∥

=
∥∥∥ d∑

i=1

[(
ℓ′′ (ui(x))− ℓ′ (ui(x))2

)
∇ui(x)∇ui(x)⊤ + ℓ′ (ui(x))∇2ui(x)

]∥∥∥
=
∥∥∥ d∑

i=1

[
ℓ′ (ui(x)) (1− 2ℓ′ (ui(x)))∇ui(x)∇ui(x)⊤ + ℓ′ (ui(x))∇2ui(x)

]∥∥∥
≤

d∑
i=1

[
ℓ′ (ui(x)) |1− 2ℓ′ (ui(x))| ∥∇ui(x)∥2

]
+

d∑
i=1

ℓ′ (ui(x)) ∥∇2ui(x)∥,
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where we used that ℓ′′(t) = ℓ′(t) · (1− ℓ′(t)) and ∥∇ui(x)∇ui(x)⊤∥ = ∥∇ui(x)∥2.

Applying our bounds on ∥∇ui(x)∥ and ∥∇2ui(x)∥ for any i, and using the fact that |1−2ℓ′ (t) | < 1
for any t, we have

∥∇2f(x)−H(x)∥ ≤
(
ξ20 + ξ1

) d∑
i=1

ℓ′ (ui(x)) ≤
(
ξ20 + ξ1

)
f(x),

where in the last inequality we used that ℓ′ (t) < ℓ(t) for all t. Now, consider two important cases.

1. Let ui(x) be non-linear mappings and let f(x) be gradient-dominated, i.e., condition
(54) holds. Then, we have the bound:

∥∇2f(x)−H(x)∥ ≤
(
ξ20 + ξ1

)
f(x) ≤

(
ξ20 + ξ1

) [
f⋆ +Dc∥∇f(x)∥1+c

∗
]
, 0 ≤ c ≤ 1.

2. Another important case is when ui := ⟨ai,x⟩ − bi are linear models, where {ai, bi}di=1 are given
data. Note that in this case, the Gauss-Newton matrix is constant, and we can set

B :=
d∑

i=1

∇ui(x)∇ui(x)⊤ =
d∑

i=1

aia
⊤
i ⪰ 0,

and it is natural to use it as our choice of the Euclidean norm. At the same time, our Fisher
approximation becomes

H(x) :=
d∑

i=1

∇fi(x)∇fi(x)⊤ =
d∑

i=1

ℓ′(ui(x))
2aia

⊤
i ⪰ 0.

Therefore, we result in bound

∥∇2f(x)−H(x)∥ = ∥
d∑

i=1

(ℓ′′ (ui(x))− ℓ′ (ui(x)))aia
⊤
i ∥

≤
d∑

i=1

ℓ′ (ui(x)) |1− 2ℓ′ (ui(x)) | ≤
d∑

i=1

ℓ′ (ui(x)) ≤ f(x),

which corresponds to the previous case with ξ0 = 1 and ξ1 = 0. Due to convexity of f , we have

∥∇2f(x)−H(x)∥ ≤ f(x) ≤ f⋆ +D0∥∇f(x)∥∗,
for all points from the initial sublevel set: x ∈ F0, where all iterates of our algorithm belong to.

H.4 RECOVERING COMPLEXITIES FOR PRACTICAL APPROXIMATIONS

Contribution of the Degrees of π. As we saw, the general form of our lower bound is given by
structural assumption (10), for all problem cases, it appears to be the harmonic mean of simple
monomials: π(t)−1 =

∑d
i=1M1−αit

−αi , where αi ∈ [0, 1] are some degrees that depend on
the problem class and on the level of Hessian approximation β. For example, let us assume that
π(t) is the harmonic mean of two monomials (as, e.g. for (L0, L1)-functions (77)): π(t) =

(M1t
−α1 +M2t

−α2)
−1, for some M1,M2 > 0 and 0 ≤ α1, α2 ≤ 1. Then, for the non-convex case,

the global complexity of the method is (Corollary 1): K = O
(
F0 ·

[
M1

ε1+α1
+ M2

ε1+α2

])
iterations to

solve the problem, where ε > 0 is the target accuracy for the gradient norm. We show that the fastest
possible rate corresponds to the smallest degree, α := min

1≤i≤d
αi, while the other exponents correspond

to additional slow terms. Notably, our proof is based on first selecting the smallest α, to establish the
progress, which highlights its importance.

The definition of π(·). This paragraph is an extended version of a short note in Section 5. The notion
of π (10) is a structural assumption on the global behavior of the Gradient-Normalized Smoothness
γ(·). It is needed to translate our knowledge of a problem class to the complexity bounds in their
standard form. Formally there could be many choices for π, while γ(·) is defined in a unique way.
However, it is important that our method does not need to know the particular problem class or the
particular π, and by implementing a simple adaptive search (Algorithm 3) the method becomes
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parameter-free. Let us consider several important examples of known structures of the lower bound
π.

• Function with L-Lipschitz Hessian (Example 1 with ν = 1). Then, γ(x) ≥ ( 2
L∥∇f(x)∥)1/2.

Hence, π(t) = ( 2
L t)

1/2, and the corresponding global complexity in the convex case (Theorem 2) is

O

(√
LD3

ε

)
,

where ε > 0 is the target accuracy for the functional residual, and D is the diameter of the initial
sublevel set.

• Convex functions with L-Lipschitz Third Derivative (Example 2 with ν = 1). Then,
γ(x) ≥ ( 1

2L∥∇f(x)∥)1/3. Hence, π(t) = ( 1
2L t)

1/3. The corresponding complexity of the method
(Theorem 2) is

O

([LD4

ε

]1/3)
.

• Quasi-Self-Concordant functions (Example 3). Then, γ(x) ≥ 1
M . Hence, π(t) ≡ 1

M ,
and the corresponding complexity (Theorem 2) is

O

(
MD log

1

ε

)
(global linear rate of convergence).

• (L0, L1)-smooth functions (Example 4). Then, γ(x) ≥ 1
1+e

∥∇f(x)∥
L0+L1∥nablaf(x)∥ . Hence,

π(t) = 1
1+e

[
L0

t + L1

]−1

. Note that this expression also matches the structural assumption on π in
(10). And the corresponding complexity of the method becomes (Theorem 2):

O

(
(L1D +

L0D
2

ε
) log

1

ε

)
.

We see that we recover the right complexities in all known special cases. Every particular problem
class leads to the specific structure of the lower bound π(·). However, the power of our result is that
we do not need to know and fix the problem class in the method, adapting to the best possible bound.
One interesting example follows from the basic properties of γ under simple operations (Section 2).
Let us assume that our objective is represented as a finite sum of functions: f(x) = 1

n

∑n
i=1 fi(x).

Every function in the sum might belong to a different problem class, and therefore, every function
fi might have a different lower bound πi(t) (e.g. as in the above examples). In this case, the whole
objective does not belong to any ’standard’ problem class, and therefore, simple assumptions such as
Lipschitzness of the Hessian are not applicable in this case. However, the lower bound π(·) for the
whole objective can be computed as the Harmonic mean of the lower bounds for the components:

π(t) ≥
( n∑
i=1

πi(t)
)−1

The effect of inexact Hessian. This paragraph is also an extension of Section 5, designed to
show how we derive complexities for a method with inexact Hessian using condition (12). If we
assume (12), then the Gradient-Normalized Smoothness, when using the Hessian approximation, is
bounded according to our rules, as:

γ(x) ≥ (γ1(x)
−1 + C1

∥∇f(x)∥ + C2

∥∇f(x)∥β )
−1,

where γ1(x) is the Gradient-Normalized Smoothness for the exact Hessian. In other words, if we
know the lower bound π(·) for the exact Hessian (e.g. any of the problem classes above), then π(·) for
the method with inexact Hessian can be computed in a form that satisfies the structural assumption 10:

π(t) =
(

1
π1(t)

+ C1

t + C2

tβ

)−1

.
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And we immediately obtain the complexity result for the method with inexact Hessian (Corollaries 2
and 3). We see that the total complexity of the method becomes the sum of the complexity for the
exact case plus two additional terms that depend on C1, C2, and the degree of approximation β.

One important consequence of our theory is that when C1 ≈ 0 is very small or zero, and β < α,
where α is the minimal degree of the monomial in the expression for π, then the rate of convergence
is not affected by the Hessian inexactness (see also Figure 1). We see that these conditions hold, e.g.,
for the Fisher and Gauss-Newton approximations in several applications (Examples 6, 7, 8), where
we have β = 0. Therefore, in these applications, the use of the inexact Hessian will give us the same
global rate as the exact Newton method, while computation of every step is much more efficient.

Let us consider the concrete example with the logistic regression problem and the Fisher approxima-
tion matrix (3). The logistic regression is Quasi-Self-Concordant, and hence π1(t) ≡ 1

M (Example 3),
where π1(t) is the bound for the Gradient-Normalized Smoothness with exact Hessian. When using
the Fisher approximation, we have (12) satisfied with C1 = f⋆, C2 = D, and β = 0 (Example 6).
Therefore, the Gradient-Normalized Smoothness for the Fisher approximation is bounded as:

γ(x) ≥ π (∥∇f(x)∥) , with π(t) =
(
M +D + f⋆

t

)−1

,

and the corresponding complexity becomes:

O
([
MD +D2 + f⋆D2

ε

]
· log 1

ε

)
.

If f⋆ ≈ 0 (well separated data), this gives a very fast global linear rate. To the best of our knowledge,
we are the first to establish such a rate for the inexact Newton method with the Fisher approximation
matrix. Similar reasoning also work for applications with Nonlinear Equations (Example 7) and Soft
Maximum (LogSumExp) (Example 8) with Gauss-Newton approximations.

Below, we present a formal statement, serving as a good example of the practical applicability of our
notion. In Proposition 9, we show that our method (1) achieves a global linear rate of convergence on
the logistic regression problem.

Proposition 9 (A global linear rate of convergence for the inexact Hessian.). Consider the logistic
regression objective f(x) =

∑n
i=1 fi(x), where fi(x) := log (1 + exp (⟨ai,x⟩ − bi)). Then,

for Algorithm 1 with

H(x) :=
n∑

i=1

∇fi(x)∇fi(x)⊤ ⪰ 0, (Fisher approximation matrix)

the corresponding complexity is

O
([
MD +D2 + f⋆D2

ε

]
· log 1

ε

)
.

If the data is well separated (f⋆ ≈ 0), this gives a global linear rate.

Proof. Assuming (12), the Gradient-Normalized Smoothness when using the inexact Hessian is
bounded as

γ(x) ≥ (γ1(x)
−1 + C1

∥∇f(x)∥ + C2

∥∇f(x)∥β )
−1, (The “Hessian inexactness” property)

where γ1(x) is the Gradient-Normalized Smoothness for the exact Hessian. Since f(x) is Quasi-Self-
Concordant, γ1(x) ≥ 1

M . According to Example 6, H(x) satisfies condition (12) with C1 = f⋆,
C2 = D, and β = 0. Then, we result in the following bound:

γ(x) ≥
(
M +D + f⋆

∥∇f(x)∥

)−1

.

According to Corollary 2, complexity for the method with inexact Hessian becomes:

K = O
([
MD +D2 + f⋆D2

ε

]
· log 1

ε

)
.

Here, the term MD · log 1
ε corresponds to the previously established complexity for the method with

exact Hessian (see Table 1). When the optimal value f⋆ ≈ 0, we result in the global linear rate of
converge.
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