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ABSTRACT

We study the treatment effect estimation problem for continuous and multi-
dimensional treatments, in the setting with unobserved confounders, but high-
dimension proxy variables for unobserved confounders are available. Existing
methods either directly adjust the relationship between observed covariates and
treatments or recover the hidden confounders by probabilistic models. However,
they either rely on a correctly specified treatment assignment model or require
strong prior of the unobserved confounder distribution. To relax these require-
ments, we propose a Contrastive regularizer (Cr) to learn the proxy representation
that contains all the relevant information in unobserved confounders. Based on the
Cr, we propose a novel Rank weighting method (Rw) to de-bias the treatment as-
signment. Combining Cr and Rw, we propose a neural network framework named
CRNet to estimate the effects of multiple continuous treatments under unobserved
confounders, evaluated by the Average Dose-Response Function. Empirically, we
demonstrate that CRNet achieves state-of-the-art performance on both synthetic
and semi-synthetic datasets.

1 INTRODUCTION
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Figure 1: (a) Causal Structure of Raw Data, i.e., Y ⊥
T | U; (b) Target Relationship from proxy representa-
tion, i.e., Y (T) ⊥ U | E(X).

Causal inference is widely applied for
explanatory analysis and decision mak-
ing, e.g., Precision Medicine (Raita
et al., 2021), Advertisement (Lada et al.,
2019), Education (Johansson et al.,
2016) and Digital Economy (Nazarov,
2020). With accessible observation
data, many existing algorithms accu-
rately estimate the effect of binary treat-
ment by adjusting the confounders (i.e.,
the common causes of treatments and
outcomes) which rely on unconfounded-
ness assumption that all confounders are observed. However, continuous and multi-dimensional
treatments and unmeasured confounders are common in practice. For instance, practitioners seek
to develop precise medicine by studying the response of multiple drug dosages (i.e., treatment) on
patient health state (i.e., outcome) (Shi et al., 2020). Besides, due to technique and manipulation
issues, some key variables, associated with the treatments and outcomes, like patient’s immunity
maybe missing in the historical data, which are referred to as unmeasured confounders. To detect
and adjust unmeasured confounders, practitioners would record some proxy variables (noised unob-
served confounders, e.g., antibodies) which don’t have a direct effect on treatments and outcome of
interest but has a spurious association through shared common confounders (Fig. 1(a)).

In continuous treatments setting, under unconfoundedness assumption, recent works discretize the
continuous treatment into multi-valued treatment (Hill, 2011; Wager & Athey, 2018) to traditional
models, or develop generalize balancing methods for continuous scenario (Hirano & Imbens, 2004;
Vegetabile et al., 2021; Huling et al., 2021). Among them, state-of-the-art works (Wu & Fukumizu,
2021; Schwab et al., 2020; Nie et al., 2021) learn a low-dimensional representation for raw data and
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balance it using minimizing mutual information, which discard the imbalance part of raw data and
lose most information for predictive task in practice. In fact, the technique implements a trade-off
decreasing the estimator variance at the price of increasing the bias. Furthermore, with unobserved
confounders, if we control the proxy rather than unobserved variables, the effect estimation will
induce additional bias, referred as recovery bias. To deal with this bias, instead of balancing rep-
resentations and discarding information to block the relationship between observed covariates and
treatments, we propose a novel Contrastive regularizer (Cr) to learn a proxy representation for cap-
turing all the relevant information in unobserved confounders with contrastive learning (He et al.,
2020; Chen et al., 2020; Grill et al., 2020) which regularize representation space by positive and
negative pairs. In Cr, we define the positive pair is the pair of treatments and proxies from the same
sample, and the negative pair is the pair of treatment from one sample and proxies from different
samples. And with an ideally representation for confounders, we would adopt a balancing methods
to eliminate confounding bias, such as generalized propensity score (Hirano & Imbens, 2004).

However, one limitation is that the covariate balancing methods rely on the correct specified mod-
els. If we don’t have any prior for the models of propensity score, i.e., the conditional distribution
of treatment conditioning on the covariates, the effect estimation would still be biased, especially
for high-dimensional data and continuous treatment. Besides, balancing methods still suffer from
extreme values problem. Although recent methods (Fong et al., 2018; Vegetabile et al., 2021; Hul-
ing et al., 2021) propose to clip the score value or optimize balancing weights directly, they still fail
in complex data, especially, under multi-continuous treatment setting. So a balancing method that
have no extreme values and adapted to unobserved confounders is urgently needed. Therefore, to
control for bias from treatment assignment, we propose to rank the weights obtained from inverse
propensity score for more effective balancing weighting. Based on the proxy representation learned
above, we sort the propensity score based weights in descending order and record their rank (the
order in sorted data) as rank weights (Rw), which is an effective and robust weights for treatment
effect estimation, theoretically.

Combining Contrastive regularizer (Cr) and Rank weighting (Rw) methods, we propose a neural
network framework CRNet to alleviate the outcome approximate bias in estimating the Average
Dose-Response Function (ADRF). CRNet can accurately estimate the effects of multiple continuous
treatments with high-dimension proxy variables. Empirically, we demonstrate that CRNet achieves
state-of-the-art performance on both synthetic and semi-synthetic datasets.

2 RELATED WORK

Causal effect identification with proxy methods Proxy (Guo et al., 2020) assumes that the unob-
served confounders can be recovered from the observed covariates. CEVAE (Louizos et al., 2017),
intact-VAE (Wu & Fukumizu, 2021) recover unobserved confounders with VAE (Kingma et al.,
2019) constraint. Negative controls (Lipsitch et al., 2010) assume that there exist two negative con-
trol variables: one is related to treatments and confounders, and another is related to outcomes and
confounders. DFPV (Xu et al., 2021) introduces neural networks to model the bridge function (Miao
et al., 2018) for estimating the causal effect. The setting of this paper is similar to the proxy. But
our method need no data distribution prior and outperforms others in performance.

Estimation methods for continuous treatments For estimating the continuous treatment effect,
a branch of methods include spline (Imai & Van Dyk, 2004), kernel methods (Flores et al., 2012),
ensemble methods (Hill, 2011; Wager & Athey, 2018), representation-based methods (Schwab et al.,
2020; Nie et al., 2021; Bica et al., 2020) model the relationship between treatments and outcomes.
There is also a branch of methods (Hirano & Imbens, 2004; Imai & Van Dyk, 2004; Robins et al.,
2000; Vegetabile et al., 2021; Arbour et al., 2021; Huling et al., 2021) aim at balancing the covariates
shifts. Few previous works take into account of unobserved variables with continuous treatment
assignment bias. In this paper, we propose the contrastive regularizer to gain the balancing methods
with the presence of unobserved confounders. Also, we propose a new rank weighting method
which have no extreme values and is not much sensitive to model misspecified. Combining Cr and
Rw, we design a framework CRNet to estimate continuous treatment with proxy.
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3 PRELIMINARIES

Notation For self-consistency, we use uppercase for random variables (e.g., A) and lowercase for
their realization (e.g., a). We suggest bold the character A as a vector, otherwise a scalar. Given
a variable Ap

i , superscript p represents the dimension of A, and subscript i denotes the i-th sample
of A. DA refers to the total number of dimensions of A. NA means the total number of samples
of A. Besides, a real valued sample {Xp

i ,T
q
i ,U

r
i , Yi} ∈ Rp+q+r+1 denotes a random sample with

observed covariates Xi ∈ Rp,treatments Ti ∈ Rq , unobserved confounders Ui ∈ Rr and outcome
Yi ∈ R. And {Xi,Ti,Ui, Yi}ni=1 refers to a set of {Xi,Ti,Ui, Yi} with n samples. E is denoted
as expectation and P represents density distribution function. A calligraphic letter H is denoted as a
hypothesis space.

3.1 PROBLEM SETUP

As Fig. 1(a) shown, in this paper, we focus on the treatment effect estimation problem for
Continuous and multi-dimensional Treatments, in the setting with unobserved confounders, but
high-dimension Proxy variables for unobserved confounders are available (Briefly, CTP problem).
Specifically, we formalize proxy as:

Definition 1 (Proxy) The observed covariate and the noise view of unobserved confounder. For-
mally, X = f∗(U, ϵ1), where the noise item ϵ1 ⊥ {T,U} and f∗ means the true function.

Without loss of generality, we focus on estimating the Average Dose-Response Function (ADRF)
curve in this paper. We denote ADRF ∗ as the true ADRF and define that

Definition 2 (ADRF) The potential outcome of continuous treatments over the population:
ADRF ∗ = E[Yi(Ti = t)] = E[ϕ∗(U, do(t))], (1)

where do(t) means the do operation on treatment that do(t) ⊥ {U}.

3.2 MOTIVATION

To analyse the complex CTP problem, we simplify the ADRF estimation considering an additive
regression model ϕ(Xi|t) given the observed t with no sample selection bias following Imai et al.
(2008):

ϕ(Xi|t) = ϕ̂(Ui|t) + ĥ(ϵ1i|t) (2)

And the the estimated ˆADRF of ϕ(Xi|t) can be formulated as
ˆADRF = E[ϕ(Xi|t)], (3)

where t means the observed treatment that t ̸⊥ {U}.

We set ˆADRF as baseline and define the estimation error as
∆ = E[ϕ∗(U, do(t))− ϕ∗(U|t)] + E[ϕ∗(U|t)− ϕ̂(Ui|t)]− E[ĥ(ϵ1i|t)] (4)

Given the Eq.(4) (the detailed derivation process is in the Appendix), we denote the first error term
∆T = E[ϕ∗(U, do(t)) − ϕ∗(U|t)] as the bias from treatment assignment, the second term ∆Y =

E[ϕ∗(U|t)−ϕ̂(Ui|t)] as the bias from outcome approximate and the third term ∆ϵ1 = −E[ĥ(ϵ1i|t)]
as the bias from the recovery of U. Thus, we decompose the estimation error ∆ into

∆ = ∆ϵ1 +∆T +∆Y (5)

Then we the divide ADRF estimation with multi-continuous treatments and proxy problem into three
component: 1. Reduce the bias of recovery error ∆ϵ1 on ADRF estimation. 2. Reduce the bias ∆T

from treatment assignment of T on U. 3. Reduce the bias ∆Y from the outcome approximation.

3.3 ASSUMPTIONS

Throughout this paper, we assume the two common assumptions Assumption 1 Stable Unit Treat-
ment Value Assumption, SUTVA and Assumption 2 Overlap/Positivity assumption (Imbens & Rubin,
2015) are satisfied. Moreover, we assume the following assumptions.
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Assumption 3 (Latent unconfoundedness) The potential outcome is independent of treatment as-
signment given the unobserved confounders. Formally, Y (t) ⊥ T|U.

Assumption 4 (Proxy assumption) The proxy is independent of treatment and outcome given un-
observed confoudner. Formally, X ⊥ {T, Y }|U.

To eliminate the recovery error ∆ϵ1 , following Louizos et al. (2017), we consider it as
a self-supervised representation learning problem: Recovering latent representation U from
P(t,X, y), which means estimating P(U|t,X, y), and we formulate this problem as P(y|t,X) =∫
U
P(y|t,X,U)P(U|X, t)dU =

∫
U
P(y|t,U)P(U|X, t)dU. (For the discussion of proxy identi-

fication, see Appendix). Then we make assumptions that

Assumption 5 (Recoverability) The density P(U, t, y) of the latent confounders U can be approx-
imately recovered solely from the observations {X, t, y}.

Assumption 6 (Proxy representation) With proxies X, there exists some representations E(X|t)
(briefly, E(X)) such that E(X) ∼ P (U), which means Y (t) ⊥ U | E(X) for a potential outcome
with the specific treatments t.

4 ESTIMATION

4.1 CONTRASTIVE REGULARIZER

Based on Assumption 6, the latent representation U will be obtained when approximating the repre-
sentation E(X). Existing methods (Louizos et al., 2017; Bica et al., 2020) address this problem by
VAE (Kingma et al., 2019), GAN (Goodfellow et al., 2020) etc. They all rely on strong prior of the
density form of U. In this paper, inspired by Eq.(5), we propose a novel contrastive learning model
to preserve U and eliminate ∆ϵ1 from data without explicit distribution prior.

Contrastive Learning There exists two functions f ∈ F and g ∈ G, which encode X representa-
tions f(X, ϵ1) and g(T, ϵ2), satisfying s(f(Xi, ϵ1), g(Ti, ϵ2)) >> s(f(Xj , ϵ1), g(Ti, ϵ2)), where
i ̸= j. s(·, ·) is a function that measures the similarity between representations.

Contrastive learning approximates the latent representations by constructing contrastive samples
(similar and dissimilar instances), by which similar instances are closer in the projection space,
while dissimilar instances are further away in the projection space to maximize the lower bound of
the mutual information.

Under CTP setting, even if we can control the observed proxies X, the spurious association derived
from U still can not be completely eliminated based on traditional representation algorithms. There-
fore, we no longer rely on the representation balancing algorithm to cut off the relationship between
Xand T (even if we do, we cannot guarantee accurate estimation). Instead, we propose to strengthen
the association between X and T using contrastive learning (Jaiswal et al., 2020) to model proxy
representation E(X) with neural network E(·) to represent the information from U.

The essential part for the contrastive approach is the contrastive pairs for modeling representations.
Inspired by Arbour et al. (2021); Li et al. (2020), we construct contrastive pairs with no need of dis-
cretizing the treatments in causal inference: X and T in original sample as positive pairs {(Xi,Ti)}
and X and T in permuted sample (shuffle X and T of data to obtain the permuted data) as negative
pairs {Xj ,Ti}. Then, as Fig. 2 shown, we set E(X|t) = s(f(X), g(t)) and adopt the NLL (Nega-
tive Log-Likelihood) loss (Chen et al., 2020) to design a novel contrastive loss to model P(U|t,X):

ℓCr(f(X), g(t)) = − log
e(s(f(Xi),g(t)))∑N
j=1 e

(s(f(Xj),g(t)))
, (6)

where s(f(X), g(t)) denotes the cosine similarity f(X)·g(t)
∥f(X)∥∥g(t)∥ . In contrastive aspect, representa-

tions {g(T)} are queries and representations {f(X)} are keys. For a query g(Ti), the positive key
is f(Xi) of the sample i and the cosine similarity s(f(Xi), g(Ti)) value in the numerator in Eq.
(6) is high. In contrast, the representation f(Xj) is the negative key of g(Ti) where i ̸= j and the
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Figure 2: Contrastive regularizer. The covariates X are transformed to f(X) via MLPs F . In
practice (Chen et al., 2020), the representation f(X) is not directly constrained by contrastive loss.
f(X) transforms to pX through projection head PX . The treatments T are operated in a similar way.
pT and pX are constrained by ℓCr(f(X), g(T)). For the sake of brevity, we use f(X) and g(T) in
the context to represent pX and pT.

cosine similarity s(f(Xj), g(Ti)) value in the denominator of Eq. (6) is low. Constrained by ℓCr,
we capture the proxy representations {f(X), g(T)} from the data {X,T}.

In this section, we propose to strengthen association between treatments T and covariates X to
recover unmeasured common causes U using ℓCr, which has two responsibilities: (1) strengthen
the association between X and T in the same sample, (2) constrain the representation space using
X and T in the permuted samples. Benefiting from contrastive learning, these two responsibilities
complete each other. With contrastive learning constraints, learned representation E(X) refuse the
information of ϵ1 and maintain the information of U, which means we eliminate the error item ∆ϵ1
in Eq.(5). Next, we consider the error term ∆T in Eq.(5).

4.2 RANK WEIGHTING

4.2.1 MULTIPLE TREATMENT SCORE WEIGHT

Estimating ADRF given proxy representation, existing methods usually apply the balancing methods
1 to approximate the density P(T|U) for balancing score weights. That is, adopting the inverse of
the approximated P̂(T|U) as the sample weights: Wi =

1
P̂(Ti|Ui)

. However, P̂(T|U) is sensitive to
correct specified and nearly can not be estimated accurately, especially for high-dimensional U and
multi-dimensional continuous T.

To approximate the P(T|U) under CTP setting, we adopt a mixture density network (MDN, which
uses neural network to learn the Gaussian mixture model, (Bishop, 1994)) to model P̂(T|U) =∏Q

q=1 P̂ (tq | U). As the Fig. 3 shown, we apply MDN to approximate P̂(T|U) and obtain the
sample weight Wi as

Wi =
1

P̂(Ti|Ui)
, P̂(Ti|U) =

K∑
k=1

αkN
(
Ti | µk,Σ

2
k

)
(7)

1Given that both matching and stratification methods can be considered as special cases of weighted meth-
ods, and that the first two methods require discretization of T when it is continuous values, this paper focuses
on weighting methods.
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The loss function of Rw is:

lRw = − 1

n

n∑
i=1

log

{
K∑

k=1

αkN
(
Ti | µk,Σ

2
k

)}
. (8)

where K is the number of sub-Gaussian models N (·) in the Gaussian mixture model, (µk,Σk) is
the mean vector and covariance matrix of the kth sub-Gaussian model, and αk is the probability that
the observation belongs to the kth sub-Gaussian model.
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Figure 3: Rank weighting. The proxy representation E(X) are transformed to Gaussian mixture
distribution with K Gaussian submodels N (αk, µk,Σ

2
k) via MLPs MDN. Then we infer the esti-

mated density P̂(t|U) and sort it in descending order to get the rank weight Rw.

4.2.2 RANK WEIGHT

However, the sample weight W from P̂(T|U) still suffers from extreme values problem. Although
recent methods (Fong et al., 2018; Vegetabile et al., 2021; Huling et al., 2021) propose to clip the
score value or optimize balance weights directly, they still face a dilemma when the data gets more
complex, especially, under multi-continuous treatment setting. So a balancing method that have no
extreme values and adapted to unobserved confounders is urgently needed. Therefore, based on the
proxy representation learned above, the core contribution of this paper is the rank weights for more
effective balancing weighting.

Motivated by the balancing score problem, we normalize the IPW weights obtained from Eq. (7)
{Wi}ni=1 ∈ [0, 1] and sort them in descending order. We record their rank (the order in sorted
data) as Ri ∈ N and the difference between adjacent W as stride δ ∈ R. We define the IPW as
ξ(R, δ) = 1

P̂(t|U)
. It’s clear that when sample size n is limited, the large δ causes extreme values

and when n→ ∞, δ → 0, so we define the form of rank weight as ξ̃(R) and propose

Proposition 1 There exists some rank weight ξ̃(R) that when n → ∞, e−ξ̃(R)

Z → 1
P(t|U) , where

Z =
∫
e−ξ̃(R) is the normalizing constant of ξ̃(R).

The Proposition 1 shows that the causal effect estimation with rank weight approximate to the un-
biased estimation of causal effect. We detail the definition and proposition in Appendix. When n is
limited, to eliminate the stride, we set it to a constant δ = 1

n , and obtain the rank weight

ˆξ(Ri) ≈ Ri. (9)

The Eq. (9) shows that Rw method is adapted to Cr and can be applied to data of any dimension
because it only depends on the rank information of weights. when n → ∞, the rank weight ap-
proximates to 1

P(t|U) . With limited data samples, the rank weight don’t rely on specified models and
address extreme values problem.

Fig. 3 shows the process of rank weighting: After training of MDN 2, we inference P̂(T|U) =∑K
k=1 αkN

(
T | µk, σ

2
k

)
. Then we sort P̂(T|U) in descending order and get the rank weightRwi =

ξ̃(Ri). Then the ∆T of Eq.(5) can be eliminated by weighted regression with rank weight.

2Note that the rank weight is not only adapted to MDN, it can be applied to any balancing weights.
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4.3 CRNET

Combining the Contrastive regularizer and Rank weight, we propose a neural network framework
CRNet to estimate ADRF under CTP setting to eliminate ∆Y . As Fig. 4 shown, the overall CRNet
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Paris
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𝑙&'

𝑙()
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Figure 4: CRNet. For training procedure, the proxy representation E(X|t) = {f(X), g(t)} con-
strained by contrastive loss lCr(X, t) are concatenated and input to MLPs H and MDN D to obtain
the estimated outcome Ŷ and the rank weights Rw. The final objective is to minimize the weighted
loss in Eq. 10. For inference procedure, the estimated ADRF is obtained by h(f(X), g(t)).

architecture contains three components: (1) a contrastive regularizer, which contains two MLPs
heads that encode proxy and the observed treatments into representations {f(X), g(T)}. (2) A
sample weight learner named tank weighting. This module optimizes the rank weights on ℓRw in
Eq.(8) using the representations {f(X), g(T)}. (3) A base MLPs encoderH that concatenates f(X)

and g(T) and transforms them as the estimated Ŷ to approximate the observed Y by the weighted
regression loss ℓfinal(W,X,T, Y ).

Combining ℓCr(X,T) and ℓRw(W ), the final loss is defined as:

ℓfinal =

N∑
i=1

Rwi ∗ (Yi − Ŷi)
2 + α ∗ ℓEr(X,T) + β ∗ ℓRw(W ), (10)

where Rwi is the rank weight optimized by ℓRw(W ). α and β are the hyperparameters of Cr and
Rw, respectively.

5 EXPERIMENTS

To evaluate the performance of CRNet for CTP problem, we compare 6 statistical methods and 5
deep-based methods as baselines in ten simulation data and four semi-synthesis data from IHDP &
News. All experiments are implemented using PyTorch (Paszke et al., 2019) on Intel(R) Xeon(R)
Gold 6240 CPU @ 2.60GHz.

Baselines We compare our model with following baselines: For statistical methods, we use (1)
CausalForest (Wager & Athey, 2018), a random forest algorithm for causal inference. (2)
Bart (Hill, 2011; Chipman et al., 2010), Bayesian Additive Regression Trees for causal infer-
ence. (3) GPS (Hirano & Imbens, 2004), a generalized propensity score for continuous treat-
ments. (4)CBGPS (Fong et al., 2018), a generalized covariate balancing propensity score (Imai &
Ratkovic, 2014) for continuous treatments. (5)EB, a continuous treatment version of entropy bal-
ancing method (Hainmueller, 2012). (6)DCOWS (Huling et al., 2021), a balancing method based
on the distance covariance (Székely & Rizzo, 2009). For representation based methods, we apply
(7) NN, a neural network with fully MLPs. (8) MDN (Bishop, 1994), a mixture density network
for modelling the density. (9) DRNet (Schwab et al., 2020), a multi-head deep model stratified
according to T, we use a modified version (Nie et al., 2021) for estimating ADRF. (10) VCNet
(Nie et al., 2021), a deep model which considers T as a varying coefficient. (11) CEVAE (Louizos
et al., 2017), a VAE-based model to constrain the representation of covariates.

Datasets We evaluate the performance of CRNet in ten simulation data and four semi-synthesis
data. For simulation experiments, we design 10 simulation datasets and named five of them
DataX DT DX (e.g., DataX 1 5 means a simulation with 1 treatment, 5 covariates and no unob-
served confounders). We name the other 5 of them DataU DT DX with unobserved confounders.
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We also conduct 4 semi-synthetic experiments on 2 real-world datasets: IHDP3 and News4. IHDP
contains 747 observations on 25 covariates. Following Schwab et al. (2020), we sample 5000
samples with 2870 covariates from News. The semi-synthetic experiment on IHDP is named as
IHDP DT. The other 3 semi-synthetic experiments on News are named as News DT. For detailed
descriptions of datasets, models, and hyperparameters, see Appendix.

Metrics For all experiments, we perform 30 replications (E = 30) to report the average mean
squared error (MSE) and the standard deviations (SD) of the average dose-response function esti-
mation. For correlation measurement, we adopt distance correlation (dCor) to evaluate the quality of
the proxy representation E(X). dCor(X,Y ) = dCov(X,Y )√

dVar(X) dVar(Y )
with Var(X) = dCov(X,X),

dCov(X,T) := 1
n2

∑n
i=1

∑n
j=1 Ai,jBi,j ,where Ai,j := ai,j−āi.−ā.j+ā.., ai,j = ∥Xi −Xj∥2,

āi· =
1
n

∑n
j=1 ai,j , ā·j = 1

n

∑n
j=1 ai,j , ā.. = 1

n2

∑n
i,j=1 ai,j . And the form of Bi,j is similar.

Experimental results on simulation datasets To assess the performance of CRNet, we conduct
simulation experiments increasing the dimensions of treatments and proxies. As Table 1 shown,
all methods except GPS perform well in the low-dimensional DataU 1 5. All baselines fails when
treatments are multiple in DataU 2 200 and DataU 5 200. Increasing the dimension of treatments
asDataU 2 200 andDataU 5 200, we found that CEVAE, which performs well in low dimensions,
fails in convergence, which has also been demonstrated in Rissanen & Marttinen (2021). The per-
formance of CRNet outperforms others across different settings. We further verify the effectiveness
of Cr module in CRNet below.

Table 1: Results (MSE±SD) on simulation DataU DT DX

E=30 DataU 1 5 DataU 1 50 DataU 1 200 DataU 2 200 DataU 5 200

Causal Forest 3.962± 0.9519 12.22± 15.530 76.56± 79.527 82.30± 82.395 96.89± 89.262
Bart 3.905± 0.9021 9.445± 11.109 129.9± 83.055 127.8± 54.624 154.3± 66.021
GPS 42.25± 3.0993 65.67± 53.597 1030.± 119.94 1110.± 140.00 1112.± 140.51
NN 1.914± 0.5765 2.542± 2.8093 22.78± 11.503 26.71± 9.8489 22.87± 8.8573

DRNet 1.982± 0.6883 3.422± 1.6802 17.24± 9.7990 21.77± 6.9279 23.95± 9.2497
VCNet 1.457± 1.4142 3.502± 3.7841 12.95± 17.753 27.22± 17.365 25.28± 15.617
CEVAE 0.944± 0.1382 3.308± 0.2950 7.309± 0.6142 21.44± 1.2480 25.04± 1.9198
CRNet 0.865± 0.2212 1.360± 1.5138 6.651± 9.4864 11.79± 10.047 14.79± 15.678

Experimental results on the effectiveness of Cr block In the setting with multiple continuous
treatments and proxies, we propose the Cr to model E(X) to hold onto the information from unob-
served confounders. Practitioners use representation-based approaches to map proxies into a low-
dimension representation space which will lose information predictive of the predicted treatment
variable. As shown in Fig. 5(a) 5, the correlation between E(X) and T from conventional methods
is still weak. To retain the information predictive, Cr regularize the proxy representation E(X) by
contrastive learning, the correlation from CRNet and CRNet(ft) 6 is strong. In the experiment of
Fig. 5(b), we first train a U-to-T prediction network to obtain the representation T(U) to represent
the relationship between T and U. X T(U) denotes the dCor of X and T(U). DRNet refers to the
dCor between T(U) and representation f(X). Others are operated similarly. It demonstrates that
Cr successfully regularized the representation E(X) between X and T and other methods not.

Experimental results on the effectiveness of Rw block Our downstream block for estimation is
Rw. It is reliable iff the proxy representation is accurately measured. To evaluate the performance
of Rw block, we conduct 5 simulation experiments with no unobserved confounders. As shown in
Table 2, all experiments use the same backbone NN. In all experiments, GPS and MDN which direct
model the density of P(T|X) induce excessive bias in ADRF estimation. The direct rank weight
without Cr performs well in all experiments. And with Cr, our rank weighting method outperforms
other weighting methods. It demonstrates that our CRNet is state-of-the-art even with no unobserved
confounders.

3https://www.fredjo.com
4https://paperdatasets.s3.amazonaws.com/news.db
5X T refers the dCor between the proxies X and treatments T.
6CRNet(ft) means the correlation between f(X) and g(T).
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Figure 5: Correlation of treatments, unobserved confounders, and covariates. In both figures, the
abscissa represents the sample size, and the ordinate represents the value of dCor.

Table 2: Results (MSE±SD) on simulation DataX DT DX

E=30 DataX 1 5 DataX 1 50 DataX 1 200 DataX 2 200 DataX 5 200

NN 0.317± 0.2181 2.012± 2.3314 5.440± 5.6123 5.606± 7.3323 12.75± 20.344
+GPS 1.055± 1.2795 13.31± 25.384 36.58± 62.489 28.20± 33.284 47.64± 70.285

+CBGPS 0.323± 0.2911 1.353± 1.8173 6.196± 6.9755 5.472± 6.4689 8.019± 5.2724
+EB 0.552± 0.9203 2.933± 4.0231 6.398± 5.6984 4.217± 5.9709 8.210± 3.0670

+DCOWS 0.308± 0.2841 1.680± 1.6652 6.048± 5.3401 4.727± 6.2233 9.490± 7.9573
+MDN 0.589± 1.6048 13.11± 45.473 99.26± 246.86 12.03± 18.670 18.44± 19.405
+Rw 0.268± 0.2762 1.171± 0.8979 3.436± 4.0289 3.935± 4.1624 7.500± 3.9411

+Cr+Rw 0.105± 0.0308 1.170± 1.0302 3.043± 4.9246 1.915± 5.1747 5.654± 2.8299

Experimental results on real-world datasets We further verify the performance of CRNet in
real-world datasets IHDP & News. As shown in Table 3, the traditional methods Bart and Causal
Forest cannot estimate the treatment effect accurately and suffer from the high-dimensional proxy
imbalanced between different treatments. CRNet obtain a high-quality representation E(X) and
retain predictive information of the predicted treatments in representation using contrastive regular-
izer, but other deep-based methods fails to capture the rich information between high-dimensional
covariates and treatments. Therefore, CRNet shows robust performance and achieves the state-of-
the-art in all real-world experiments.

Table 3: Results (MSE±SD) on semi-simulation Real-Data DT

E=30 IHDP 1 News 1 News 2 News 5

Causal Forest 0.576± 0.5651 24.60± 4.7884 20.08± 4.0395 21.23± 4.7864
Bart 0.514± 0.3728 6.200± 12.018 11.83± 3.2380 22.25± 17.902
GPS 3.198± 15.148 1.603± 0.2932 2.293± 0.7984 6.085± 1.1495
NN 0.774± 1.5413 0.958± 0.1148 2.435± 0.2597 7.435± 1.0865

DRNet 1.485± 1.4620 3.442± 1.3222 6.486± 4.2931 10.18± 2.8848
VCNet 0.626± 0.7126 8.563± 9.4974 7.578± 9.2410 10.56± 6.4256
CEVAE 1.935± 0.7765 1.142± 0.0762 3.289± 0.1860 9.660± 0.4348
CRNet 0.351± 0.2122 0.867± 0.2193 2.115± 0.6143 5.081± 0.7098

6 CONCLUSION

For CTP problem, we formulate the estimation error into three terms from recovery of unobserved
confounder, treatment assignment and approximation of outcome. We propose the contrastive reg-
ularizer to constrain the proxy representation in representation space for the bias from recovery of
unobserved confounder. Based on Cr, we propose a rank weighting method to eliminate the extreme
values problem and alleviate the sensitivity problem to model misspecified in treatment assignment
model. Combining Cr and Rw, we elaborate a CRNet adapted to CTP problem to reduce the out-
come approximation bias. CRNet achieves the state-of-the-art performance in estimating ADRF of
both synthetic and semi-synthetic data.
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A APPENDIX

A.1 IDENTIFICATION

Given latent unconfoundedness and proxy assumption, we know that the causal effect is not iden-
tified conditioning on X. Because ϵ1 ̸⊥ U|X, then Y (t) ̸⊥ T|X. We also show this problem in
ADRF adjustment formula. The true ADRF is identified as

ADRF ∗ = E[Y(t)]] = EU[E[Y(t) | U]]] = EU[E[Y(t) | T = t,U]] = EU[E[Y | T = t,U]]
(11)

When proxy exists, ADRF is identified as

ˆADRF = E[Y(t)]] = EX[E[Y(t) | X]]] = EX[E[Y(t) | T = t,X]] = EX[E[Y | T = t,X]]

̸= EU[E[Y | T = t,U]] = ADRF ∗.
(12)

It is clear that the adjustment formula of ADRF from proxy is different from that of true ADRF
because Y (t) ̸⊥ T|X, it will induce the recovery error ∆ϵ1 in the ADRF estimation phase if the
unmeasured confounder U is not correct specified. The performance of using proxy to estimate
ADRF depends on the degree of recovery of U.

A.2 PROOF OF EQUATION (4)

We set ˆADRF as baseline and define the estimation error as

∆ = ADRF ∗ − ˆADRF = E[Yi(Ti = t)]− E[ϕ(Xi|t)]
= E[ϕ∗(U, do(t))]− E[ϕ̂(Ui|t) + ĥ(ϵ1i|t)]
= E[ϕ∗(U, do(t))]− E[ϕ̂(Ui|t)]− E[ĥ(ϵ1i|t)]
= E[ϕ∗(U, do(t))]− E[ϕ∗(U|t)] + E[ϕ∗(U|t)]− E[ϕ̂(Ui|t)]− E[ĥ(ϵ1i|t)]
= E[ϕ∗(U, do(t))− ϕ∗(U|t)] + E[ϕ∗(U|t)− ϕ̂(Ui|t)]− E[ĥ(ϵ1i|t)]

(13)

A.3 ANALYSIS FOR RANK WEIGHT

Based on the definition rank, we define the corresponding index function of rank I(Ri) = i. And
we record the stride

δRi
=

{
WI(Ri−1) −Wi 0 < Ri < n

Wi Ri = 0
(14)

as the difference between two adjacent weights of the sorted data. Then we can build a sequence
model of W as:

Wi =

{
WI(Ri−1) − δRi 0 < Ri < n

δRi
Ri = 0

(15)
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Supposing an extreme value example that the maximum weight is much larger than others, this
is because there are many unmeasured weights between the largest weight and the second largest
weight we obtained. Combining Eq.(15) and the continuity of the probability density, it is clear that
the excessive stride causes the extreme value of the weights. Moreover, the sample weights with
large stride will also cause the sensitivity to misspecified because slight misspecifed of the large
stride induce significant bias. Then is just using the rank information enough to make a covariate
balance? To answer this question, we formulate the model in Eq.(15) as:

W = ψ(R, I(R), δ) = ξ(R, δ), (16)

where W is the sample weight, R is the rank, I is the index function of R and δ is stride. We
reduce the second line to third line because I is a deterministic function of R.

Based on Eq.(14) we notice that in {Wi}ni=1 ∈ [0, 1], if n → ∞, then stride → 0 because WRi
−

WRi−1 → 0. It is similar to the unnormalized density. Therefore, we formulate an IPW via Gibbs

sampling: 1
P (T|U) = e−W

Z = e−ξ̃(R,δ)

Z , where Z =
∫
e−ξ(R,δ). We set n → ∞, then e−ξ̃(R))

Z →
e−ξ(R,δ)

Z = 1
P(t|U) . So we propose that

Proposition There exists some rank weight ξ̃(R) that when n → ∞, e−ξ̃(R)

Z → 1
P(t|U) , where

Z =
∫
e−ξ̃(R) is the normalizing constant of ξ̃(R).

The proposition and Eq.(16) show that when n → ∞, using rank weight ξ̃(R) is enough to make
a covariate balance because the weights Rw approximate to the IPW of density P(T|U). It means
when n → ∞, the causal effect estimation with Rw approximates to the unbiased estimation of
causal effect (for unbiased estimation with IPW of P̂(T|U), see Imbens (2000)). And when the
data size is limited, rank function ξ̃(R) can effectively avoid the extreme value problem and alleviate
the sensitivity to the model misspecified. So we direct eliminate delta by setting δ = 1

n to obtain
ξ̂(R) ≈ Ri. The operation can be considered as enforce the distribution of delta is Uniform, which
is biased. But as n→ ∞, the obtained ξ̂(R) ≈ Ri is approximating to the true IPW.

A.4 EXPERIMENTAL DETAILS

The rules for defining symbols in this section are the same as in the main body. Please note that
when the superscript is specified as Ap=2, it means the dimension of A is 2, and when it is not
specified (e.g., A2), it means the power of A is 2.

A.4.1 DETAILS ON DATASETS

The dataset split and dimension information corresponding to the data name are expressed in Table
4.

Table 4: Dataset description
Ntrain/Ntest DT DX DU DY

DataU 1 5 1800/300 1 5 5 1
DataU 1 50 1800/300 1 50 50 1
DataU 1 200 1800/300 1 200 200 1
DataU 1 200 1800/300 2 200 200 1
DataU 1 200 1800/300 5 200 200 1
DataX 1 5 1800/300 1 5 0 1
DataX 1 50 1800/300 1 50 0 1
DataX 1 200 1800/300 1 200 0 1
DataX 1 200 1800/300 2 200 0 1
DataX 1 200 1800/300 5 200 0 1

IHDP 1 672/75 1 25 25 1
News 1 3150/1350 1 2870 20 1
News 2 3150/1350 2 2870 20 1
News 5 3150/1350 5 2870 20 1
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Synthetic datasets we construct synthetic datasets following EB (Vegetabile et al., 2021). For all
simulation datasets, the true covariates Up=1···200 are constructed as: Up=1···200 ∼ N (0, 1).

For DataX 1 5, DataX 1 50, DataX 1 200 datasets, Tp=1 is constructed as:

Tp=1 = 0.5N (3, 1) + 0.5N (6, 0.5) + 1.5 ∗
p=3∑
p=1

Xp

And Y p=1 is constructed as:

Y p=1 =
1

e−
∑p=2

p=1 Tp
+ eX

p=1

+ 2.1 ∗Xp=2 + 2.2 ∗Xp=3

+ 2.3 ∗Xp=4 +Xp=5 + 4.0 ∗
p=200∑
p=151

Xp + I(DT==5 ∗ (3 ∗ cos(
p=5∑
p=3

Tp)

For DataU 1 5, DataU 1 50, DataU 1 200 datasets, Tp=1 is constructed as:

Tp=1 = 0.5N (3, 1) + 0.5N (6, 0.5) + 1.5 ∗
p=3∑
p=1

Up + 0.5 ∗
p=DU∑
p=151

Up.

And Y p=1 is constructed as:

Y p=1 =
1

e−
∑p=2

p=1 Tp
+ eU

p=1

+ 2.1 ∗Up=2 + 2.2 ∗Up=3 + 2.3 ∗Up=4

+Up=5 + I(DU > 5) ∗ DU

50
− I(DU == 200) ∗ 2

+
100

DU + 5
∗

p=151∑
p=6

Up + 4.0 ∗
p=200∑
p=151

Up − 1

where DU is the dimension of U and I is the indicator function.

For DataU 2 200 and DataU 5 200 datasets, Tp=1···5 is constructed as:

Tp=1 = 0.5N (3, 1) + 0.5N (6, 0.5) + 1.5 ∗
p=4∑
p=1

Up + 0.4 ∗
p=DU∑
p=151

Up,

Tp=2 = N (4, 1) + 1.5 ∗Up=5.

Tp=3···5 = N (p, 0.5) +

100+p∑
q=100

Uq.

And Y p=1 is constructed as:

Y p=1 =
1

e−
∑p=2

p=1 Tp
+ eU

p=1

+ 2.1 ∗Up=2 + 2.2 ∗Up=3 + 2.3 ∗Up=4

+Up=5 + I(DU > 5) ∗ DU

50
− I(DU == 200) ∗ 2

+
100

DU + 5
∗

p=151∑
p=6

Up + 4.0 ∗
p=200∑
p=151

Up

+ I(DT == 5) ∗ (0.1 ∗
p=5∑
p=3

Tp + 2)− 1

The observed covariates Xp=1···200 of DataU 1 5, DataU 1 50, DataU 1 200, DataU 2 200 and
DataU 5 200 are formulated as

Xp=1···5 = Up + linespace(0,
p

10
, NX)

Xp=5···200 = Up=5···200,

where linespace(0, p
10 , NX) means samples NX data from [0, p

10 ].
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IHDP The generation process of T and Y are formulated as:

T =
2Up=1

5Up=1
+

0.1max(Up=3,5,6, 1)

2.1 +min(Up=3,5,6, 1)
+N (0, 0.25),

Y =
sin(3T )UPT = 4

1.2− T
+

p=15∑
p=8

Up +N (0, 0.25).

U are standardized to N (0, 1) and T are normalized to [0, 1].

The observed covariates Xp=1···25 are formulated as

Xp=1 = 0.2
(Up=1)2

Up=2
, Xp=2 = sin(Up=3),

Xp=3 = cos(Up=4), Xp=4 = 0.5exp(Up=5),

X5 = Up=6Up=7, Xp=5···25 = Up=5

News The generation process of T and Y are formulated as:

Tp=1···5 = sin(Up)tanh(Up) +N (0, 1),

Y p=1 =
3Tp(Up + 1) +M(Up=31···100, 1) +N (0, 1)

ϵ
.

For News 2, ϵ = 2, for News 5 ϵ = 4. U are standardized to N (0, 1) and T are normalized to [0, 1].

fX (Up) =



0.2(Up)2 , I{mod((p− 1), 5) ≡ 0}
sin(Up) + 0.1 , I{mod((p− 1), 5) ≡ 1}
cos(Up) + 0.1 , I{mod((p− 1), 5) ≡ 2}
0.1(10 + abs(Up) , I{mod((p− 1), 5) ≡ 3}
abs(Up) , I{mod((p− 1), 5) ≡ 4}

Given fX, the observed covariates Xp=1···2870 are formulated as

Xp=1···20 = fX(Up),

Xp=21···2870 = Up.

A.4.2 DETAILS ON MODELS

We construct CRNet with depth 5. As Fig. 2 shown, F consists of 5 FCs with
{256, 128, 128, 128, 128} hidden units. G consists of 5 FCs with {32, 64, 64, 32, 32} hidden units.
The MDN module consists of 3 FCs with {20, 20, 20}.

NN consists of 4 FCs with {32, 32, 32, 1} hidden units. We implement GPS, Bart, CF and DRNet
following Schwab et al. (2020). We improve on DRNet and implement VCNet following Nie et al.
(2021). We implement CEVAE following Louizos et al. (2017). We normalize simulation data to
[0,1] for the conditional density estimator in DRNet and VCNet.

A.4.3 DETAILS ON HYPERPARAMETERS

For GPS , Bart and CF, we use the default hyperparameters as Schwab et al. (2020). For all
representation-based models, we fixed the random seed and search for the best performance with
SGD or Adam. We also adjust the learning rate with {0.1, 0.01, 0.001, 0.0001, 0.00001}. For
DRNet and VCNet, we adjust the hyperparameters knots with {[0.33, 0.66], [0.2, 0.4, 0.6, 0.8],
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]} and α with {100, 10, 1, 0.1, 0.01, 0.001}. For VC-
Net+TR, we adjust the hyperparameters β with {10, 1, 0.1} and the learning rate of
TR with {0.1, 0.01, 0.001}. Besides, for CRNet, we adjust hyperparameters α with
{100, 10, 1, 0.1, 0.01, 0.001} and β = 1 consistently.
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