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Abstract

Large Multimodal Models (LMMs) face lim-
itations in geometric reasoning due to insuffi-
cient Chain of Thought (CoT) image-text train-
ing data. While existing approaches leverage
template-based or LLM-assisted methods for
geometric CoT data creation, they often face
challenges in achieving both diversity and pre-
cision. To bridge this gap, we introduce a two-
stage Theorem-Validated Reverse Chain-of-
Thought Reasoning Synthesis (TR-CoT) frame-
work. The first stage, TR-Engine, synthesizes
theorem-grounded geometric diagrams with
structured descriptions and properties. The
second stage, TR-Reasoner, employs reverse
reasoning to iteratively refine question-answer
pairs by cross-validating geometric properties
and description fragments. Our approach ex-
pands theorem-type coverage, corrects long-
standing misunderstandings, and enhances geo-
metric reasoning. Fine-grained CoT improves
theorem understanding and increases logical
consistency by 24.5%. Our best models sur-
pass the baselines in MathVista and GeoQA
by 10.1% and 4.7%, outperforming advanced
closed-source models like GPT-4o.

1 Introduction

Large Language Models (LLMs) (OpenAl, 2024;
Guo et al., 2025) have revolutionized textual math-
ematical reasoning through advanced inferential
mechanisms. While architectural innovations now
enable these models to process multimodal in-
puts via parameter-efficient vision-language align-
ment (e.g., GPT-40 (Islam and Moushi, 2024),
Gemini (Team et al., 2023)), achieving human-
competitive VQA performance (Fan et al., 2024),
their geometric reasoning remains constrained.
This limitation stems from training data dominated
by natural scenes, which lack the geometric speci-
ficity required for rigorous spatial problem-solving.

Current methods for generating geometric rea-
soning data through Chain-of-Thought (CoT)

frameworks face three fundamental limitations.
First, rephrasing approaches (Gao et al., 2023b)
use LLM to transform the CoT format of existing
problems, which requires scarce high-quality an-
notations and domain-specific expertise to ensure
theorem consistency (Fig. 1 (a)). Second, template-
based methods (Kazemi et al., 2023a; Zhang et al.,
2024b) generate geometrically oversimplified im-
ages by combining predefined polygons in rigid
configurations, lacking theorem-aware element in-
teractions, limiting their applicability to advanced
reasoning, as shown in Fig. 1 (b). Thirdly, while
LMM-based resoning (Peng et al., 2024) ensures
reasoning diversity, but insufficient mathematical
priors often lead to icorrect reasoning, e.g., it uses
the Pythagorean theorem for the three sides of dif-
ferent triangles, leading to logically invalid chains
of reasoning(Fig. 1 (c)).

We introduce Theorem-Validated Reverse Chain-
of-Thought (TR-CoT), a two-stage framework de-
signed to generate geometric reasoning data and
verify logical flows, as shown in Fig. 1 (d). In
the first stage, we develop the theorem-driven im-
age and property generation engine (TR-Engine),
which creates images paired with geometric prop-
erties, ensuring dependencies among elements. In
the second stage, TR-Reasoner derives questions
from answers by segmenting image descriptions,
generating single-step reasoning, and combining
them into multi-step reasoning chains. Each step
is verified against geometric properties, discarding
pairs that violate mathematical rules. This ensures
the logical rigor in the generated data.

With TR-CoT, we create TR-GeoMM and TR-
GeoSup, comprehensive datasets of diverse geo-
metric theorems, which fully leverage CoT infor-
mation. TR-CoT can bring notable and consistent
improvements across a range of LMM baselines
such as LLaVA, Qwen, and InternVL. Using the
recent LMM baselines, we achieve a new perfor-
mance record in 2B, 7B, and 8B settings for solving
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Figure 1: Comparison of TR-CoT with existing CoT data generation approaches. (a) Rephrase existing Q&A pairs
using LLMs, relying on existing CoT data. (b) Generate images and CoT data using pre-defined templates containing
a limited number of theorems. (c) Generate CoT using LMMs, where accuracy is limited by the performance of
the LMMs. (d) Design TR-Engine to generate images, corresponding descriptions, and geometric properties from
theorems. And input the descriptions and properties into TR-Reasoner to generate reliable CoT Q&A pairs.

geometry problems. The main advantages of our
method are summarized as follows:

* Compared to traditional template-based meth-
ods, our approach covers twice the number
of theorem types, effectively correcting long-
standing theorem misunderstandings in mod-
els and enhancing their geometric reasoning.

* Generating geometric data with fine-grained
CoTs enhances the model’s understanding of
theorems, increasing the proportion of logi-
cally consistent and clear outputs by 24.5%.

* Our most advanced models achieve a 10.1%
performance gain on MathVista and 4.7% on
GeoQA over the baseline, outperforming ad-
vanced closed-source models such as GPT-4o.

2 Related Work

Enhancing Reasoning with CoT in Inference.
Recent works leverage chain-of-thought (CoT) rea-
soning to improve mathematical and geometric
problem-solving. KQG-CoT (Liang et al., 2023a)
is a prompting method for few-shot Question Gen-
eration over Knowledge Bases (KBQG) that uses
reasoning chains to select logical forms from an
unlabeled data pool. In general math tasks, (Zhou
et al., 2023) introduces code-based self-verification
(CSV) to validate reasoning steps, while (Zhao
et al., 2024b) (SSC-CoT) combines multiple rea-
soning chains with knowledge graph queries to
reduce errors. Other approaches, such as Problem
Elaboration Prompting (PEP) (Liao et al., 2024)

Plan-and-Solve Prompting (PS) (Wang et al., 2023),
and in-context example solutions (Didolkar et al.,
2024), further refine reasoning accuracy across
datasets. In geometry, (Zhao et al., 2024a) employs
dual visual-symbolic CoT reasoning, and (Hu et al.,
2024) generates code-based diagrams paired with
visual CoT to align multimodal understanding.

Enhancing Reasoning in Geometry Training.
Training robust geometric solvers faces two key
challenges: scalability of datasets and diversity
of geometric representations. Early symbolic sys-
tems like GeoS (Seo et al., 2015), Inter-GPS (Lu
etal.,2021), and S2G (hung Tsai et al., 2021) estab-
lished foundational deductive frameworks but were
limited to small benchmarks (e.g., GeoS, Geome-
try3K). Subsequent neural solvers, such as UniGeo
(Chen et al., 2022), PGPS9K (Zhang et al., 2023a)
and LANS (Li et al., 2024b), expanded problem
coverage to 36K examples, yet manual annotation
costs remains. Recent efforts to automate data gen-
eration, including G-LLaVA (Gao et al., 2023a),
leverage existing datasets like GeoQA to synthe-
size reasoning traces, while code-based engines
(Kazemi et al., 2023b; Zhang et al., 2024b) priori-
tize procedural diagram generation. Additionally,
GeoEval(Zhang et al., 2024a) assesses model per-
formance across various subsets, including stan-
dard, reverse reasoning, augmented, and hard prob-
lems. Advances in LLM-generated CoT data (e.g.,
(Peng et al., 2024)) show promise for evolving rea-
soning capabilities of base models.

Recently, reverse engineering has emerged to di-
agnose and refine reasoning errors in LLMs. Meth-
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Figure 2: The TR-Engine generates diverse images, corresponding descriptions, and geometric properties step by
step based on geometric theorems. Subsequently, the TR-Reasoner is utilized to obtain accurate geometric Q&A

pairs from descriptions and properties.

ods like condition-answer swapping (Jiang et al.,
2024; Weng et al., 2023) and error localization
(Xue et al., 2023) verify logical consistency with-
out updating model weights, while (Yuan et al.,
2024) optimizes prompts based on initial reasoning
traces. However, these approaches lack direct in-
tervention in model training. Our work integrates
reverse engineering into the CoT generation pro-
cess, forming high-quality fine-grained reasoning
process with accurate theorem comprehension.

3 Theorem-Validated Reverse
Chain-of-Thought

There are two key challenges for generating ge-
ometry reasoning data: (1) Direct generation of
question-answer pairs often leads to errors or un-
solvable problems due to oversimplified scenarios.
(2) Single-step reasoning processes lack validation
of intermediate steps, compromising reliability.

We propose Theorem-Validated Reverse Chain-
of-Thought (TR-CoT), a two-stage framework for
creating geometry reasoning data with verified log-
ical flow, as shown in Fig. 2. The pseudo-code of
TR-CoT is shown in Appendix A.

1) Stage 1: Theorem-Driven Image & Prop-
erty Generation. We collect 110 fundamental ge-
ometry theorems (the complete theorems are shown
in Appendix G) and develop TR-Engine, a struc-
tured method to generate images paired with textual
descriptions and geometric properties (e.g., angles,
lengths). Unlike random image generation, TR-
Engine enforces dependencies between geometric
elements across generation steps. Current step’s
operation must perform on geometric objects(lines,
angles, points, etc.) generated in the previous step.

2) Stage 2: Q&A Generation with Stepwise
Validation. Using the descriptions and properties

from Stage 1, we implement TR-Reasoner to de-
rive questions from answers through three steps:
First, the image description is divided into logical
segments (e.g., “Triangle ABC is isosceles with
AB=AC”). A language model processes these se-
quentially, generating single-step inferences. These
inferences are progressively combined into multi-
step reasoning chains. Secondely, for each reason-
ing step, the system creates corresponding ques-
tions. For instance, the inference “/B = ZC”
generates the question: “If triangle ABC is isosce-
les with AB=AC, which angles are equal?” Finally,
all Q&A pairs are cross-checked against the wge-
ometric properties from Stage 1. Pairs violating
mathematical rules (e.g., claiming “ZA = 90°”
for a non-right isosceles triangle) are automatically
discarded.

3.1 TR-Engine

TR-Engine is a theorem-guided framework for syn-
thesizing geometrically valid images with rich re-
lational structures. TR-Engine operates through
three key components (Fig. 3):

1) Geometric Substrate Library. We curate 20
foundational shapes (substrates) such as triangles,
circles, and quadrilaterals, each paired with multi-
ple description templates. These templates encode
geometric conditions (e.g., “Triangle ABC has AB
=5 cm, BC =6 cm”) to anchor subsequent reason-
ing steps.

2) Theorem-Based Dynamic Element Injection.
TR-Engine integrates 110 geometric theorems and
defines element-combination rules, strategically in-
jecting elements to enable complex reasoning sce-
narios based on theorem requirements. For exam-
ple: Adding parallel lines to invoke properties of
alternate angles. Introducing auxiliary lines (e.g.,
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Figure 3: Overview of the TR-Engine. Starting from a Geometric Substrate Library, dynamically injecting elements
based on theorems, and integrating a property computation module to enable multi-step geometric reasoning and

validation in image generation.

medians, altitudes) to create congruent sub-shapes.
Such operations expand reasoning opportunities
while maintaining geometric validity.

3) Property Computation Module. As elements
are added, coordinates of vertices are used to au-
tomatically calculate: Metric properties: Lengths,
angles, areas. Relational properties: Parallelism,
congruence, symmetry. These properties serve as
ground truth for verifying generated Q&A pairs.
By integrating theorem-driven construction with
stepwise validation, TR-Engine ensures images in-
herently support multi-step geometric reasoning,
which is a critical advance over prior generation
methods in practice.

3.2 TR-Reasoner

Despite advances in large language models (LLMs),
generating accurate and educationally viable geo-
metric question-answer (Q&A) pairs remains chal-
lenging due to three persistent issues: (1) misappli-
cation of geometric theorems in multi-step proofs,
(2) diagram-text misalignment in problem formu-
lation, and (3) inability to maintain answerability
constraints during question generation. To address
these limitations, we propose the TR-Reasoner to
generate theorem-grounded Q&A pairs through co-
ordinated interaction between geometric properties
and structured reasoning chains (Fig. 4).

Description Patch Reasoning Fusion Building
on the geometrically valid descriptions from TR-
Engine, this module enforces logical coherence
through causal dependencies between reasoning
steps. Let D = {p1,p2,...,p,} denote the x de-
scription patches extracted from an image, where
each patch p; corresponds to a geometrically mean-

ingful component (e.g., “Circle O with chord AB
and tangent CD”). The single-step reasoning r; for
patch p; is generated through theorem-constrained
transformation:

ri = Fum(pilr<i, T), (D

where r—; = {ry,...,_1} represents preceding
reasoning states, and 7~ denotes the applicable theo-
rem set (e.g., intersecting chords theorem for patch
p; describing chord intersections). This chained
formulation ensures cumulative reasoning: later
steps automatically inherit and extend prior conclu-
sions (e.g., deriving arc lengths after establishing
chord congruence).

Reverse Question Generation To prevent
answerability drift, we implement answer-
constrained reverse generation rtather than
open-ended question synthesis. Given a verified
reasoning chain R = {ry,r9,...,r,}, each step
r; undergoes answerability assessment through a
theorem-aware discriminator:

Ja(ris Peeo), iV (14, Gprops) = True

Joars) = 0, otherwise

(@)
where Gpops denotes geometric properties from
TR-Engine (e.g., coordinate-derived lengths), V
performs theorem-based validation (e.g., check-
ing triangle congruence rules), and f, generates
questions using a geometry-specialized LLM with
instruction prompt ®ge,. This approach leverages
the granular reasoning steps from patch reasoning
stage to generate fine-grained theorem-aware Q&A
pairs.



In equilateral triangle ABC, Draw a line from A perpendicularto BC, Draw the bisectorline of angle BAD
its side length measures 10. intersecting BC atpoint D. from A, intersectingline BDat point E.

Description Patch Reasoning Fusion

v v v
According to the three sides of an equilateral AD divides BC into two equal parts, BD and CD, Wwe can use trigonometry in triangle
triangle being equal, we can get AB=BC=CA=10. —> eachoflength 5 (since BC = 10). Triangle ABD is —> ADE: AD = AE*cos(15°). Since
The perimeter of the triangle is 3*10 = 30. a30-60-90 triangle, so AD = AB*sin(60°)= 5V3. AD = 5V3, AE is approximately 8.95.

Reverse Question Generation

1
: DESCRIPTION
b : In equilateral triangle ABC, its side length measures 10. Draw a line
1 from A perpendicularto BC, intersecting BC at point D. Draw the
: bisectorline ofangle BAD from A, intersecting line BD at point E.

Property
Length: AB=10,AC=10, AD=8.66, AE=8.95, BC=10...
Angle: BAC=60,BAD=30, DAC=30, EAC=45...
Arca: ABC=43.30, ABD=21.65, ACD=21.65...

v \2 v
What is the perimeter of triangle ABC ? What s the length ofline AD? What s the length ofline AE?
| | |
Error A&Q Filtering <
2 2 \2
Right Right Right
Step 1 Math Problems Step 2 Math Problems Step 3 Math Problems

Figure 4: Overview of the TR-Reasoner. Image descriptions are segmented into patches to generate single-step
reasoning results. Single-step reasoning results are fused progressively to get multi-step reasoning results. Then
questions are generated based on the multi-step reasoning results. Finally, Q&A pairs that contradict geometric

properties are filtered.

Error A&Q Filtering The final verification
stage employs bidirectional theorem cross-
checking to align generated content with
ground-truth geometric properties.  Forward
validation ensures strict adherence of all Q&A
pairs to the precomputed geometric properties
(Gprops), such as rejecting questions like “Find
(AB)” if the model-generated answer contradicts
coordinate-derived lengths. Reverse consistency
analysis enforces answer uniqueness under
theorem constraints, eliminating ambiguous
questions that permit multiple valid answers under
differing geometric conditions (e.g., congruence
proofs lacking sufficient criteria). This pipeline
systematically filters four categories of errors:
theorem violations (36.3%), such as incorrectly
citing the SSA congruence rule; metric discrepan-
cies (24.9%), including arithmetic inconsistencies
between stated lengths (e.g., claiming (AB +
BC = 12) cm when (AB = 5) cm and (BC = 8)
cm); diagram-text mismatches (12.2%), where
questions reference nonexistent elements; and
ambiguous answerability(26.5%), exemplified
by underspecified tasks like “Prove similarity”
without requisite premises.

Context-Aware Prompt Engineering To opti-
mize reasoning, we deploy an instruction-based
context-aware prompting strategy. Specifically, we
pre-construct a reasoning instruction template pool,
which includes a series of typical geometric prob-
lems with corresponding reasoning process. For

each input, we sample three to four instruction
templates that are most relevant based on the ge-
ometric figure and theorem included in the input.
The sampled instruction templates serve as exam-
ples to assist the LLM to perform correct reasoning.
In practice, such instruction-based context-aware
prompt engineering ensures a relatively ideal rea-
soning accuracy, improving the efficiency of data
generation. Details of prompt templates in Ap-
pendix B.

3.3 TR-GeoMM

Through the TR-CoT pipeline, we construct TR-
GeoMM dataset containing diverse knowledge, de-
signed to enhance LMM’s geometric reasoning
ability. We generate Q&A pairs from 15k figure,
obtaining 45k high-quality Q&A pairs as the final
dataset after error filtering, with an average of 3.49
questions per figure. Comprehensive statistical de-
tails of TR-GeoMM are illustrated in Fig. 6.

At the image level, TR-GeoMM comprises 20
substrate shapes, primarily triangles, quadrilaterals,
and circles. Departing from conventional polygon-
combining approaches, TR-Engine adopts lines as
fundamental geometric elements. Key lines with
distinctive properties such as midlines, angle bisec-
tors, and radii are central to geometric theorems
(e.g., midline theorems). As illustrated in Fig. 5 (a),
TR-GeoMM contains 1.7k image patterns through
sequential line additions derived from diverse the-
orem combinations. Each step ensures interaction
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Figure 6: Statistical information about TR-GeoMM.

with existing elements (e.g., a new line’s vertex
must align with previously generated lines).

At the text level, the TR-GeoMM dataset orga-
nizes questions into four core problem types: side
length, angle measurement, area calculation, and
geometric relationships. The hierarchical structure
of generated images leads to interdependent ques-
tions across stages, where initial solutions form pre-
requisites for subsequent problems. Such "subprob-
lem" characteristic facilitates progressive learning
of geometric concepts and complex relationships.
As shown in Fig. 5 (b), TR-GeoMM contains a
theorem repository twice as large as existing syn-
thetic datasets (MAVIS and GeomVerse). Further-
more, Fig. 5 (c) demonstrates superior data diver-
sity through higher Q&A pair cosine distances. De-
tailed information are provided in Appendix C.

3.4 TR-GeoSup

TR-CoT can not only synthesize reliable CoT
geometric data but also be used to augment ex-
isting CoT data. Current real-world geometry
CoT data usually contain several key intermediate
steps which also contain abundant problem-solving
knowledge. However, these intermediate steps are
often implicitly or simplistically expressed, assum-
ing human examinees’ prior knowledge, which
may hinder model training efficiency due to mod-
els’ limited knowledge and reasoning abilities. By
leveraging TR-CoT pipeline, we decompose the
original CoT process into explicit theorem-aware
steps, then reversely generate new Q&A pairs with
TR-Reasoner.

Specifically, our augmentation involves three
steps: generating a comprehensive multi-step anal-

ysis of the geometric figure, segmenting it into
essential problem-solving steps, and creating new
QA pairs for each step. These fine-grained Q&A
pairs explicitly guide the model with theorems and
knowledge implicitly expressed in original data,
leading to improvement in comprehension and rea-
soning abilities. We applied TR-Reasoner to the
GeoQA dataset, producing the TR-GeoSup dataset
with 20k new entries. Final TR-GeoSup dataset
does not contain the original GeoQA data. Exam-
ples of TR-GeoSup are shown in Appendix D.

4 Experiments

4.1 Setup

We train multiple LMMs (Wang et al., 2024; Liu
et al., 2024; Chen et al., 2024c¢) using existing ge-
ometric instruction datasets (Chen et al., 2021;
Gao et al., 2023b) and our TR-CoT generated data
(TR-GeoMM and TR-GeoSup). Both the projected
linear layer and the language model are trainable.
The models are trained for two epochs with a batch
size of 128 on 16x 64G NPU, and learning rate set
to Se-6. For evaluation, we assess these models on
the geometry problem solving on the testmini set
of MathVista (Lu et al., 2023) and GeoQA (Chen
et al., 2021) following Gao et al. (2023b). Top-1
accuracy serves as the metric, with predictions and
ground truth evaluated via ERNIE Bot 4.0. Abla-
tion experiments were done on Intern-VL-2.0-8B.

4.2 Ablation Study

Data generating procedures. To assess the ef-
fectiveness of the key designs in TR-CoT, we con-
struct several ablated variants by selectively remov-
ing different proposed components, as summarized
in Tab. 1. Each variant is used to generate train-
ing data, and the resulting models are evaluated
on MathVista and GeoQA. Q&A pairs generated
based on descriptions outperform those generated
directly from images, with performance improve-
ments of 5.3% on MathVista and 6.3% on GeoQA.
Reverse generation is designed to improve the ac-



curacy of Q&A pairs. When using the reverse gen-
eration strategy, the accuracy is improved by 2.9%
on MathVista and 2.6% on GeoQA. As a result,
the full setting achieves the highest result on both
datasets, demonstrating the effectiveness of each
procedure in the TR-CoT pipeline.

Table 1: Ablation study on the data generating proce-
dures. ‘Description’ represents generation based on
descriptions. ‘Reverse’ represents generating reasoning
followed by reverse question generation. ‘Filter’ repre-
sents filtering errors based on geometric properties.

Configurations .
Description Reverse  Filter MathVista  GeoQA
X X X 55.3 442
v X X 60.6 50.5
v v X 63.5 53.1
v v v 64.4 54.0

Separate validity of synthetic and augmented
data. We evaluated the impact of the TR-GeoSup
and TR-GeoMM datasets on model performance,
as shown in Tab. 2. First, training with TR-GeoSup
improved performance by 1.4% on MathVista and
7.9% on GeoQA compared to baseline. Further-
more, combining GeoQA with TR-GeoSup im-
proves performance by 2.9% on MathVista and
3.9% on GeoQA compared to GeoQA alone, indi-
cating their complementarity. This suggests that
TR-CoT-augmented data enhances in-domain per-
formance by better-extracting knowledge from ex-
isting data. Additionally, a deeper understanding
of knowledge may contributes to improved gener-
alization on mixed out-of-domain datasets.

Table 2: Ablation study on the TR-CoT generated data.

Configurations .

GeoQA TR-GeoSup TR-GeoMM | MathVista GeoQA
X X X 3.0 524
v X 64.9 64.8
x v X 64.4 60.3
X X v 64.4 54.0
v v X 67.8 68.7
v X v 65.4 67.9
v v v 68.3 69.0

Second, training with TR-GeoMM improved
performance by 1.4% on MathVista and 1.6% on
GeoQA, confirming the strong generalization of
TR-CoT synthetic data to real data. Moreover,
joint training with GeoQA further improved perfor-
mance, highlighting the effectiveness of synthetic
data in supplementing real data. Finally, when
jointly training on all three datasets (GeoQA, TR-
GeoSup, and TR-GeoMM), the model achieved the

best performance, with improvements of 5.3% on
MathVista and 6.6% on GeoQA over the baseline.
These results support that TR-CoT-generated data
compensate for the limitations of existing datasets
and enhance the model’s reasoning capability.

Compared with other synthesis datasets. We
train InternVL-2.0-8B using TR-GeoMM and two
recent synthetic datasets for geometric problems,
i.e. MAVIS (synthesis part) (Zhang et al., 2024b)
and Geom Verse (Kazemi et al., 2023a), as summa-
rized in Tab. 3. Compared to the baseline, models
trained with GeomVerse or MAVIS show a slight
performance gain on GeoQA and a decline on
MathVista, both lower than TR-GeoMM. We at-
tribute this to the limited diversity of image and
Q&A pairs in these datasets, which benefits the
simpler distribution of GeoQA but struggles with
the diverse distributions in MathVista. In contrast,
TR-GeoMM, with its diverse image and Q&A pairs,
improves performance on both datasets.

Table 3: Compared with other synthesis datasets.

Dataset MathVista GeoQA
/ 63.0 524
GeomVerse 58.2 53.6
MAVIS 57.2 53.2
TR-GeoMM k 64.4 54.0

4.3 Comparison with Previous
State-of-the-Art

With the proposed method, we train three special-
ized models for geometry problem solving named
TR-CoT-InternVL-2.0-2B, TR-CoT-Qwen2.5-VL-
7B, and TR-CoT-InternVL-2.5-8B on joint dataset
of Geol70K and TR-CoT-generated data (TR-
GeoMM and TR-GeoSup). We compare our mod-
els with both general and mathematical LMMs on
the geometry problems from testmini set of Math-
Vista and the test set of GeoQA. As shown in Tab. 4,
TR-CoT-InternVL-2.5-8B outperforms GPT-40 by
17.3% on MathVista and TR-CoT-Qwen2.5-VL-7B
outperforms GPT-40 by 17.8% on GeoQA. Com-
pared to mathematical LMMs, TR-CoT-InternVL-
2.5-8B maintains a 11.1% lead on MathVista, and
TR-CoT-Qwen2.5-VL-7B achieves a 12.5% advan-
tage on GeoQA. For performance analysis on more
baselines, please refer to Appendix H and Tab. 7.

5 Discussion

Fig. 7 highlights consistent improvements: post-
trained models produce concise, logical CoTs with



K Question: In the figure, KL is tangent to
17 OM atK. Find the value of x.
Choices: (A) 6.00 (B)9.45(C) 18.9(D) 37.8
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1. To find the value of x, we can use the Pythagorean theorem in the right triangle KLM.
2. KL =17, LM = 10, MK = x. Since KL is tangent to the circle at K, MK is the radius of the ve can express MK as V(ML"2 -
circle. Using the Pythagorean theorem in AKLM :KL"2 = KM"2 + LM"2. KL"2), I h >

3. Substitute the given values: 1742 = x"2 + 10”2, x=13.75. Since none of the given choices {(x+10)"2

Utilizing the Pythagorean theorem,

the tion

L match this value, it appears there might be an error in the problem. the value of x is 9.45. Answer: B

To find the length of AC, we use the given information and the properties of isosceles triangles.
AB=9x -1, AC=4x + 1, BC = 5x - 0.5. Since ABC is an isosceles triangle, two sides are equal.
We can set up the following equations based on the given information: 1. AB = AC 2. AB = BC.
Step 1: Set AB=AC, 9x- 1=4x+1,s0x=5/2. Set AB=BC, 9x - 1 =5x -0.5, s0x =0.375. = 15 AC = 4(15 + 1 =17

8 Question: Find the length of AC in the
o < s isosceles triangle ABC.
A Choices: (A) 1.5 (B) 7 (C) 11 (D) 12.5

A 9x-1

By equating the expressions for the
sides of the triangle, we get 4x + |
5% - 0.5. Solving for x, we find x

Step 2: Since x must be consistent in both equations, 5/2 = 0.4, 0.375#0.4 ... Answer:(

(a) pre-trained model

(b) post-trained model

Figure 7: Comparison of model problem solving before and after training.

Table 4: Top-1 Accuracy (%) on geometry problem
solving on the testmini set of MathVista and the GeoQA
test set. * represents the results from the existing papers.

Model ‘ MathVista ‘ GeoQA
Closed-source LMMs
GPT-40 (Islam and Moushi, 2024) 60.6 61.4
GPT-4V 51.0* 43.4*
Gemini Ultra (Team et al., 2023) 56.3* -
Open-source LMMs
LLaVA2-13B (Liu et al., 2024) 29.3* 20.3%
mPLUG-OwI2-7B (Ye et al., 2024) 25.5 21.4
Qwen-VL-Chat-7B (Bai et al., 2023) 35.6 26.1
Monkey-Chat-7B (Li et al., 2024a) 24.5 28.5
Deepseek-VL-7B (Lu et al., 2024) 34.6 33.7
InternVL-2.0-2B (Chen et al., 2024c¢) 46.2 38.2
InternLM-XC2-7B (Zhang et al., 2023b) 514 44.7
InternVL-1.5-20B (Chen et al., 2024b) 60.1 49.7
Qwen2-VL-7B (Wang et al., 2024) 55.1 55.7
InternVL-2.0-8B (Chen et al., 2024c) 65.9 56.5
InternVL-2.5-8B (Chen et al., 2024a) 67.8 59.0
Qwen2.5-VL-7B (Wang et al., 2024) 71.6 74.5
Open-source Mathematical LMMs
UniMath (Liang et al., 2023b) - 50.0%
Math-LLaVA-13B (Shi et al., 2024) 56.5% 47.8
G-LLaVA-7B (Gao et al., 2023b) 53.4% 62.8%*
MAVIS-7B (Zhang et al., 2024b) - 66.7*
PUMA-Qwen2-7B (Zhuang et al., 2024)| 48.1* -
MultiMath-7B (Peng et al., 2024) 66.8* -
TR-CoT-InternVL-2.0-2B 56.3 63.4
TR-CoT-Qwen2.5-VL-7B 74.5 79.2
TR-CoT-InternVL-2.5-8B 77.9 76.7

(a) Reasoning Quality Score Interval (b) Token length interval for correct answers
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Figure 8: Comparison of model output quality and token
length before and after training.

accurate conclusions, demonstrating robust geo-
metric understanding. Pre-trained models show re-

curring errors (e.g., misdefining isosceles triangles
as having two equal sides), reflecting foundational
gaps in theorem comprehension. Our approach
trains models on diverse theorems with structured
reasoning, addressing these errors and enhancing
general geometric problem-solving.

We use DeepSeek R1 and ERNIE Bot 4.0 to
quantitatively evaluate model outputs before and
after training, focusing on logical consistency, clar-
ity, and lack of ambiguity (see Appendix I for de-
tailed information). We use average score of the
two models as final score. As shown in Fig. 8 (a),
the total mean score increased by 0.37 after train-
ing, the mean score for correct answers increased
by 0.70, and outputs with scores of 8 or higher
increased by 24.5%. We attribute these improve-
ments to TR-CoT’s explicit focus on the reasoning
process, where step decomposition enhances the
model’s logical consistency and rigor.

We further compare the token usage for correct
answers before and after training. As shown in
Fig. 8 (b), the model after training requires fewer
tokens on average, with the percentage of correct
answers within 200 tokens increasing by 35%. We
assume this improvement results from the data di-
versity, which enables the model to find more ef-
ficient solutions across different theorems, while
a deeper understanding of the theorems allows for
more concise reasoning.

6 Conclusion

We propose TR-CoT, a novel theorem-based re-
verse generation pipeline that enhances theorem
coverage and supports fine-grained theorem under-
standing in geometric datasets. Models trained on
TR-CoT data demonstrates a significant improve-
ment in geometric problem solving with more con-
cise and rigorous reasoning. We will extend this
approach to other mathematical domains to further
analyze the impact of theorem mastery on problem-
solving, offering insights for future research.



7 Limitations

During our practice, there still exist limitations that
can be further improved.

For our method, one major constraint is that
there is still room for further improvement in the
generation efficiency. The overall efficiency can
be divided into time efficiency and data efficiency.
First, in our process, LLM is called multiple times
for reasoning generation. The limited reasoning
speed of LLM becomes the bottleneck of time ef-
ficiency. In addition, although we have adopted
various methods to improve the reasoning accuracy
of LLM, due to the limitations of model perfor-
mance, there is still a certain proportion of errors
in the direct output of the model. We observe that
about 10% of the direct output is deleted in the
Error A&Q Filtering stage.
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A Pseudo Code ( Description Patch Reasoning Fusion Prompt )

Assume expertise in geomety. Perform accurate inferences based on image

‘We have written pseudO—COde for the overall flow of descriptions, summarize amalysis, and provide logical, correct reasoning for
. . . . ch level of description based on the ided data.
TR-CoT, the details of which are given in Algor. 1. o etions: criprion bsedon fhe provided data

1. Infrence Process: Analyze each description step by step and derive cnclusions.
2. Relevance: If a description is irrelevant, state why and ignore it.

. N 3. Output Formar. Present inference as numbered points, concise and precise.
Algorithm 1: Pseudo-code of TR-CoT Tnput:
R . Step 1: In triangle ABC, length of side AB is 4, kngth of side AC is 6,
Input. Geon.letry S].‘letrateS sar.np}mg rqunds n, pl.Ot length of side BC is 6.Sep 2: CD is the bisector of angle ACB, D lies on
function f, image-description pair sets S, line line segment AB. Step3: Eis the midpoint of CD, comnect Eand B
sampling rounds k, geometric propert; Outpl
p g '8 property Reasoning 1: Triangle ABC has sides AB=4,AC= 6, BC= 6. Since AC=
alculation module V, large language model BC, triangke ABC is isosceles. The perimeter of triangle ABC is AB+AC +
C
M BC=4+ 6+ 6 = 16.Reasoning 2: CD bisectsangke ACB, forming 2 equal
. sl angk ACD and B(D. Also, according © the property of isosceks tiangle,
Olltpllt. Generate_d Image :Z_’ DCSCI'lptIOFl D, CD is also Perpendicular bictor of AB. We can know AD = BD = 0.5
Geometric Properties 7, Question Q; \times AB = 2, and using the Pythagarean theorem, we get CD = V(AC?2 -
Answer A AD”2) CD= 4\ 2. Reasoning 3: As E being the midpoint of (D, CE= ED
Initiali ion: T @ D 0 T @ = 0.5 \times CD = 2 V 2. Comecting BE form a new triangle BDE, and
1 Initia 1z.at10n. <~ U, «— ¥, < ), vertex angk BDE = 90 degrees as CD is perpendicular to AB. Using the
coordinate C < 0, rs < 0 Pythagorean theorem, we can get BE = (BD"2 + DE/2) = 2\sqrt(3)
2 fori<Itondo . Input: [DESCRIPTION]
3 Sample geometry substrate G; and description Output: [INFERENCE]

D; from image-description pair sets S Basic knowledge:

. Lo 1. sin(15 °) =cos(75 °) = 0.2588 , cos(15 °)= sin(75°) = 09659.
4 Refresh 7 using plOt function: Z < f(Iv gl) 2. The radius of circle equals the side kngthof its inscribed regular hexagon.

5 Refresh corresponding description: 4.1n a hexagon, diagonals CA, AC, EA, AE, DB, BD, FB, BF, EC, CE are
D+« DUD;  3*side length; diagonals DA, AD, EB, BE, FC, CF are 2 *side length.
o . 5. In a square, the radius of the circle is r, and the side kngth of the
6 Refresh vertex coordinate: C < C U C; inscribed square is  2*r.
7 end 6. In an equihteral trangk, the radius of the circk is r , and the side kngth
. of the inscribed triangle is N 3%,
s forj< Itokdo . J
9 Select line drawing position P;

o Draw line and label length:  « f(Z,P;) Figure 9: The prompt of the Description Patch Reason-

1 Refresh corresponding description: ing Fusion.
D+ DUP;
12 Refresh vertex coordinate: C < C U C;
= everse Question Generation Pro
13 if j = k then . ‘ ( R tionG tion P t )
14 Calculate all angle information R
15 Draw angles and label degrees: Assume you're anexpert in gcqpctry. 'Your vz}sk is to generate qu:s?innsand
T TR step-by-step answers from provided hierarchical geometry descriptions. For
— f( ’ ) . Lo each kwl of dewil, crea a specific, calculation-based question with a
16 Refresh correspondmg deSCI'lpUOl’lZ precise answer. Ensure questionsand answers align with the given reasoning
Instructions:
D+ DUR 1. Anabsis: Amalyze hierarchical geonetry descriptions for key properties
17 end and relationships, ensuring logical consistency.
18 end 2. Question and Answer Gereration: For each step, creat specific,
. . cakulation-based questions with detailed answers, using appropriate
19 Refresh Geometric Properties: 7 <+ V(C) geometric principles.
20 Produce single-step reasoning result r. using prompt 3. Output Format: Provide questions and answers in a clear, stuctured
Poor M(,D P ) format as shown in the example below.
s 7c 258 Input:
21 Generate answer A, and its corresponding question Step 1: Equilaeral triangle ATW has side lengh AT = 9.Step 2: AG is
: . pempendicular to TW,with G on TW. Step 3: M is the midpoint of AT,and
,QF‘ l,lSng prompt Pq' Ae’ Qe M(TC’ Pq) . MG is drawn. Reasoning 1: Reasoning 1: All sides of the equihteral
22 Filtering for correct answer A and its corresponding triangk are equal, so AW = TW = 9. Reasoning 2: Since AG is
question Q using prompt P.: pempendiculr to TW and G lies on TW, AG is the height of the equikteral

triangke ATW. The height h of an equi‘/lgmal trangk can be cakuhted as

h= 73 *side length Therefore, AG =¥ .G is the midpoint of TW, so TG

= GW = 9/2= 4.5. Reasoning 3: GM is the midline of trangk ATW,

parallel to AW, and halfits length. Therefore, GM =4.5.

Output:

Question 1: In equilateral triangk ATW,with AT= 9, whatare the kngths

of sides AW and TW? Answer 1: Since all sides of an equilatral tiangle

B D ll f Trom in TR_R ner are equal, AT= AW = TW = 9.. The finalanswer: AW = TW = 9 Question
eta SO p 0 pt easone 2: Inequihteral riangle ATW, with AT= 9,and AG perpendicular to TW at

G, what is the kngth of AG? Answer 2: All three sides of the equikhteral

A,Q + M(Ae,Qe, T, P.)
23 Return: Z, D, Q, A

We used ERNIE BOt 40 to implement TR- triangk are eqtaal, 0 AT = AW =TW = 9. Since 13(; is the height of the
. . triangk, h = — *side length. Substituting, AG=— . Question 3: In

Reasoner. We describe the prompts used in TR- cquilatral trangk ATW, with AT= 9, AG pemendioular to TW, Goon TW,

. . T and Mthe midpoint of AT, what is the kngthof GM? Answer 3: WithM as
Reasoner, including the prompts for the Descrip the midpoint of AT and G as the midpoint of TW, GM is the midline of
tion Patch Reasonlng FUSIOH (Flg 9), the Reverse tr}angk: ATW. The mlgilme is paralkl to one s@e and has half its length.

. . . Since AW =9, GM = 514.54The final answer is GM=4.5
Question Generation (Fig. 10), and the Error A&Q | ..
o . . Input: [DESCRIPTION AND REASONING]
Filtering (Fig. 11). In these figures, the texts in blue  Output: [QUESTION AND ANSWER| )
represent the Task Description, while the texts in or-
Figure 10: The prompt of the Reverse Question Genera-

ange represent the input information. Each prompt
includes three contextual examples, and we show
only one of them, with the remaining examples  that specifies more detailed requirements, some in-
replaced by ellipses. In addition to the examples, corporate additional basic knowledge, and others
some prompts also include an instruction section  outline more specific goals that must be achieved.

tion.
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( Error A&Q Filtering Prompt h
All the comect answers are given in Ground Truth, if the result obained
in Answer contradicts the Ground Truth, return Score: 0, otherwise return
Score: 1.
Input:

Grownd Truth: Lengh of ssgment OA = 2.00. Length of ssgment OB =

2.00. Length of segment AC = 1.04. Length of segment BC = 4.00.

Lengt of ssgment BD = 1.04. Angke OAC measures 75.0 degrees. Angk

AOB neasues 1500 degrees Angke ACB measures 750 degrees. Angke

OBD measwes 750 degrees. Angle CBD measwes 750

degrees.Question: There isa circk O witha radius of 2. The centralangk

AOB measures 150 degrees. Line BD is paralkl to line CA. What is the

rehtionship between angle DBCand angk ACB?Answer: Since line BD

is parallel to line CA, accarding to the propertees of paralkl lines, the

corresponding angks are equal. Therefore, ange DBC is equal to angk

ACB.

Output:

Analysis: Fom the ground truth we can get angk ACB measures 75.0

degrees and angle CBD measures 75.0 degrees. So angke ACB = angk

DBC.Score: 1

Input: [GROUND TRUTH AND ANSWER]

Output: [SCORE]

What must be achieved:

1. When Ground Truth is the same as the content of the Answer, Score: 1.

2. When Ground Truth contradicts the content of the Answer, Score: 0.

3. When Ground Truth is notrehted to the conent of the Answer, Score:

4. You don't need to focus on the solution process, as long as the result
\ agrees with the Ground Truth, retum Scare: 1.

J
Figure 11: The prompt of the Error A&Q Filtering.

C More information of TR-GeoMM

Through the TR-CoT, we construct a high-quality
geometric dataset, TR-GeoMM. In Fig. 12, we pro-
vide a detailed overview of specific cases from
TR-GeoMM. These cases demonstrate the variety
of mathematical geometry question types covered
by TR-GeoMM, including solving for lengths, an-
gles, areas, and geometry elemental relations. Each
of these categories is critical for improving the ge-
ometric reasoning ability of LMMs.

For Cosine distance based data diversity, we
first randomly sample 5000 instances from each
dataset(MAVIS, GeomVerse and TR-GeoMM),
then we encode the instances into embedding fea-
tures using pretrained BERT model (Devlin, 2018).
Finally, we calculate the average cosine distance
of each dataset using the BERT output features.
Higher distance score indicates better diversity,
and our TR-GeoMM has the highest distance score
among the three dataset.

D Examples of TR-GeoSup dataset

Fig. 13 illustrates an example from the TR-GeoSup
dataset, showcasing the transformation of a multi-
step reasoning problem from the original GeoQA
dataset. In the original Q&A pair, the reasoning
process is condensed and lacks explicit interme-
diate steps, relying on implicit knowledge. TR-
GeoSup decomposes the original reasoning process
into three hierarchical sub-questions, each accom-
panied by a detailed and theorem-aware reasoning
chain. This augmentation not only clarifies the
implicit knowledge embedded in the original data
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Question:

There is a circle O in the figure with a radius of 2, line
AB s a chord of the circle with a length of 3.0 units. Let
M be the midpoint of AB, which of the following
correctly represents the distance from the center of the
circle O to the chord?

Answer:

By Pythagoras theorem, we have OM = \l{OAAZ -
AM"2}. Given that OA (the radius) is 2 units and AM is
half of AB, which is 1.5 units, we can calculate OM =
V{212 - (1.5)72} = V{4 - 2.25} = V1.75 units.

Question:

In a regular pentagon ABCDE, a perpendicular line is
drawn from point F to DE, intersecting DE at G. What is
the measure of ZDFG? A. 27° B.36° C.45° D. 54°
Answer:

In a regular pentagon, each internal angk is 108°. The
angle bisector divides ZCDE into two equal parts, so the
angle formed by the bisector and DE is 108°/2 = 54°. In
the right triangle FGD, 2FGD is 90°. Since 2FDG is 54°,
£DFG = 180° - 90° - 54° = 36°. Answer: B.

.

Question:

A circk hasa radius of 9.2, and an equilateral triangk
ABC is inscribed within it. what is the area of triangk
ABC?

Answer:

The side length of an equilateral triangle inscribed in a
circle with radius 9.2 is V' 3 times 9.2 = 9.2 V'3 units.
Using the formula S = 73 times (side length)”2, the area
of triangle ABC is 63.48 V3 square units.

Question:

In square ABCD, a perpendicular line is drawn from
point C to line FA, intersecting FA at point G. what is
the rehtionship about CG and FA? A. CG is parallel to
FA. B. CG is perpendicular to FA. C. CG is equal to FA.
D. CG is half of FA.

Answer:

Since a perpendiculr line is drawn from point C to line
FA, intersecting FA at point G, CG is perpendicular to
FA.

Figure 12: Examples of TR-GeoMM dataset.

(Original

Question: \

As shown in the figure, in triangke ABC, point D is on
4 BC, AB=AD=DC, £B=80°, then the degree of 2C is ()
A.30°B.40° C.45°D. 60°
Answer:
In triangle ABD, since AB=AD and £B=80°, we have
£B=£ADB=80°. Therefore, ZADC=180°-2ADB=100°.
Because AD=CD, we can calculate 2C as (180°-
£ADC)/2=(180°-100°)/2=40°. So the answer is B.

GeoSup
Question 1:
In triangle ABC, point D lies on BC, and AB = AD = DC. If £B is given as 80°,
which of the following represents the measure of ZADB? Choices are: A. 60° B. 70°
C.80° D. 90°
Answer 1:
In triangle ABD, since AB = AD and £B = 80°, the isosceles triangle property tells us
that the base angles are equal. Therefore, ZADB = £B = 80°. Answer: C.

Question 2:

Triangle ABC hasa point D on BC where AB = AD = DC, and £B measures 80°.
What is the correct measure of angle ADC? Choices: A. 80° B. 90° C. 100° D. 110°
Answer 2:

In triangle ABD, since AB = AD and 4B = 80°, with isosceles triangle property,
2ADB = £B = 80°. Since ZADB and £ADC are adjacent angks forming a straight
line, their sum is 180°. Given ZADB = 80°, ZADC=180° - ZADB = 100°. Answer: C.

Question 3:

In triangle ABC, point D is located on BC, with AB = AD = DC. If angle B is 80°,

what is the measure of angle C? Choices are: A. 20° B. 30°C. 40° D. 50°

Answer 3:

Triangle ADC is isosceles since AD = CD, making angles CAD and ACD equal. The

sum of angles in a triangle is 180°, so angle C = (180° - ZADC) /2. In triangle ABD,

since AB= AD and «B = 80°, knowing AB = AD, ZADB = /B = 80°. Since ZADB

and £ZADC are adjacent angles, ZADC = 180° - ZADB = 100°. With angle ADC =
\100“, angle C= (180°- 100°) /2 = 40°. Answer: C. )

Figure 13: Examples of TR-GeoSup dataset.

but also provides a step-by-step guide for model
training.

E Detail of polygon distribution

We conducted robustness experiments for different
polygon distributions, where the details of the poly-



gon distributions are shown in Tab. 5. From top to
bottom, the percentage of triangles and quads grad-
ually decreases, and the percentage of pentagons
and hexagons gradually increases. There is also a
clear difference in the percentage of circles.
Similar quantitative results within 0.6% in Tab. 6
show the impact of polygon distributions is al-
most negligible, demonstrating the strong robust-
ness of our method to different polygon distribu-
tions. Therefore, the performance gain is mainly
attributed to the diverse geometry representation
and reasoning knowledge provided by our method.

Table 5: Details of polygon distribution for distribu-
tional robust ablation studies.

Polygon Distribution

Method - :

triangle quad circle pentagon hexagon
Group I 29% 46% 17% 5% 3%
Group II 2% 40% 14% 8% 6%
Group Il | 25% 33% 21% 12% 8%

Table 6: Ablation study on the robustness to polygonal
distributions.

Polygon Distribution MathVista GeoQA
Group I 64.4 54.0
Group II 64.4 53.7

Group III 63.9 53.4

F The Case of Direct Generation and
TR-Reasoner Generation

The core idea of the TR-Reasoner is to improve
the accuracy of Q&A pairs by simplifying the rea-
soning based on descriptions and then generating
corresponding questions from the answers in a re-
versed manner. A straightforward approach is di-
rectly prompting ERNIE Bot 4.0 to generate Q&A
pairs from the input image description. However,
as shown in the left of Fig. 15, this approach often
fails to determine the correct answer. In contrast,
the Q&A pairs produced by TR-Reasoner are cor-
rect for all three instances with our design.

G Details of the theorems

The support of mathematical theorems is crucial for
the accuracy of TR-Engine. In Tab. 8, we present
the geometric theorems and properties that we used.
These define the rules for combining elements, es-
tablishing a logically coherent chain throughout
the figure construction process. They serve as the
foundation for extending reasoning scenarios and
also assist in the computation and verification of
question-answer pairs.
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Quality Judgment Prompt

You are provided with a language model's response to a geometric
question. Your mission is to judge the quality of the response based on
the following standards, and give a score between 0 to 10.

Judging Standards:

1.Logic consistency. Assess whether the response is self-consistent,
logically coherent, and free from contradictions or illogical reasoning.
2.Clarity. Evaluate whether the response is clear and easy to understand,
avoiding ambiguity or vague expressions.

3.Output format: Score: your score(from 0 to 10).

Figure 14: Comparison of model problem solving be-
fore and after training.

H Effectiveness of TR-CoT

As shown in Fig. 7, models jointly trained
on Geol70K and TR-CoT-generated data (TR-
GeoMM and TR-GeoSup) consistently outper-
form those trained solely on Geol70K (‘Geo-
’). InternVL2.5-8B receives a 1.5% improvement
on MathVista and GeoQA, and Qwen2.5-VL-7B
improves by 1.0% and 2.0% on MathVista and
GeoQA respectively. These results indicate that
TR-CoT-generated data can supplement existing
datasets and is widely effective in various LMMs.

Table 7: TR-CoT generated data effectiveness validation
on different models. ‘Geo-’ indicates the model is fine-
tuned only with geometric instruction data of Geol70K.
Consistent and significant improvement without adding
any additional parameters.

Model MathVista GeoQA
Geo-InternVL-2.0-2B 51.9 62.5
TR-CoT-InternVL-2.0-2B 56.3 (4.471) 63.4(0.91)
Geo-LLaVA-1.5-7B 27.9 47.6
TR-CoT-LLaVA-7B 29.3(1.41)  51.7 (4.17)
Geo-Qwen2-VL-7B 59.9 69.1
TR-CoT-Qwen2-VL-7B 67.6 (7.77)  70.4 (1.37)
Geo-InternVL-2.0-8B 70.2 74.9
TR-CoT-InternVL-2.0-8B 72.1(1.97)  76.7 (1.87)
Geo-InternVL-2.5-8B 76.4 75.2
TR-CoT-InternVL-2.5-8B 779 (1.57)  76.7 (1.57)
Geo-Qwen2.5-VL-7B 73.5 77.2
TR-CoT-Qwen2.5-VL-7B 745 (1.07)  79.2 (2.07)

I Details of CoT quality evaluation

We used ERNIE Bot 4.0 and DeepSeek R1 to eval-
uate model outputs. For each response, the eval-
uation model gives a score between 0 and 10 to
judge the logical consistency, clarity and lack of
ambiguity. We use average score of the two models
as final score. To ensure more accurate evaluation,
we include specific judging standards. The prompts
used are shown in Fig. 14. The blue part represents
the Task Description.
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Image: 0 0 Description:

There is a parallelogram in the diagram, represented by the symbol AHKC. There is also a rectangle in the diagram,

&

. represented by the symbol UBAC. The length of line BA is 5. Line QX is the line connecting the midpoint Q of line
T HK and the midpoint X of line CU. Point Q lies on line HK. Point X lies on line CU. The length of line QH equals
4 s the length of line QK. The length of line XC equals the length of line XU.UE is the extension line of CU, that is, C,
] o U, and E are collinear. Line AB is perpendicular to line UB. Point B lies on line UB.

There is a parallelogram in the diagram, represented by the symbol
AHKC. There is also a rectangle in the diagram, represented by the
symbol UBAC. The length of line BA is 5. Line QX is the line
connecting the midpoint Q of line HK and the midpoint X of line CU...
Generate reasonable math QA pairs based on image descriptions.

©

Q1: What is the length of line QX in the diagram?
Al: Since QX connects the midpoints of lines HK and CU in a
parallelogram AHKC and rectangle UBAC, the length of QX
corresponds to half the diagonal of rectangle UBAC. However,
without additional information about the rectang]e' s dimensions,
we cannot determine the exact length of QX. @

Q2: Are the lines AB and UE parallel in the diagram?

A2: No, the AB and UE are not parallel because AB is perpendicular
to line UB, which means it is also perpendicular to CU since UBAC
is a rectangle. Line UE, being an extension of CU, would also be
perpendicular to AB. @

Q3: Line AB is perpendicular to line UB, what can be said about the
angle at point B? @
A3: Since AB is perpendicular to UB, the angle B is 90 degrees.

TR-Reasoner

Q1I: There is a parallelogram in the diagram, represented by the symbol
AHKC. There is also a rectangle in the diagram, represented by the
symbol UBAC. The length of line BA is 5. What is the length of line CU?
Al: Since BA is a side of the rectangle UBAC, and its length is given as 5,
we can infer that the length of CU is also 5. Q’)

Q2: There is a parallelogram...The length of line BA is 5. Line QX is the
line connecting the midpoint Q of line HK and the midpoint X of line CU.
What is the length of line XU?

A2: Since BA is a side of the rectangle UBAC, and its length is given as 5,
we can infer that the length of CU (the opposite side in the rectangle) is
also 5. X being the midpoint of CU means that XU=XC=CU/2=2.5. The
answer is 2.5. @

Q3: There is a parallelogram...Line QX is the line connecting the midpoint
Q of line HK and the midpoint X of line CU. What is the length of line QH
if the length of line HK is 8?

A3: Q being the midpoint of HK means that QH=QK=HK/2. Substituting
the given value HK=8, we get QH=8/2=4. @

Description:

The length of line EJ equals the

There is a regular pentagon in the diagram, represented by the symbol CPYJZ. The length of line PY
is 4. Line YE is the line connecting point Y and the midpoint E of line JZ. Point E lies on line JZ.

length of line EZ.Line YN is perpendicular to line CP. Point N lies

on line CP. Line CK is perpendicular to line YJ. Point K lies on line YJ.

There is a regular pentagon in the diagram, represented by the symbol ...
Generate reasonable math QA pairs based on image descriptions.

Q1: What is the length of line YE in the diagram?

Al: Since E is the midpoint of line JZ in a regular pentagon CPYJZ with side length
4, line YE can be considered as the apothem of the pentagon. The length of the
apothem in a regular pentagon can be calculated using the formula a=s /(2 * tan(m /
5)), where s is the side length of the pentagon. Substituting s = 4, we get a = 2,750

Q2: What is the length of line YN in the diagram?
A2: Line YN is perpendicular to line CP and passes through point Y, which is a
vertex of the regular pentagon CPYJZ. In a regular pentagon, the length of a
perpendicular from any vertex to the opposite side is the same as the apothem.
Therefore, the length of line YN is approximately 2.75.

Q3: What is the length of line CK in the diagram?

A3: Line CK is perpendicular to line YJ and passes through point C, which is a
vertex of the regular pentagon CPYJZ. Since CPYJZ is a regular pentagon, all its
sides are of equal length, and all its angles are equal. The length of line CK can be
calculated by considering the right triangle formed by line CK, line KC (which is a
part of line YJ), and line YK (which is a part of line JZ). However, without
additional information or assumptions, we cannot determine the exact lenglh@w
CK.

©

TR-Reasoner

QI: There is a regular pentagon in the diagram, represented by
the symbol CPYJZ. The length of line PY is 4. Line YE is the
line connecting point Y and the midpoint E of line JZ. What is
the length of line EZ?

Al: According to the five sides of a regular pentagon being
equal, we can get CP=PJ=JY=YZ=ZC=PY=4. According to E
is the midpoint of JZ, we can get JE=EZ=]Z*1/2=2. @

Q2: There is a regular pentagon in the diagram, represented by
the symbol CPYJZ. Line YN is perpendicular to line CP. What
is the product of the slopes of line YN and line CP?"

A2: According to the product of the slopes of two
perpendicular lines being -1, we can get the slope of YN*the
slope of CP=-1.

Q3: There is a regular pentagon in the diagram, represented by
the symbol CPYJZ. Line CK is perpendicular to line YJ. What
is the product of the slopes of line CK and line YJ?

A3: According to the product of the slopes of two
perpendicular lines being -1, we can get the slope of CK*the
slope of YJ=:

Figure 15: The Case of Direct Generation and TR-Reasoner Generation.
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Table 8: Summary of Geometric Theorems and Properties

Category

Properties

Criteria

Parallel Lines

Corresponding angles equal; Alternate inte-
rior angles equal; Consecutive interior an-
gles supplementary

Equal corresponding angles; Supplemen-
tary consecutive angles; Equal alternate an-
gles; Parallel to same line

General Triangles

Interior angles sum to 180°

AA similarity; SSS/SAS/ASA/AAS/HL
congruence

Isosceles  Trian-

gles

Equal base angles; Three-line coincidence
(angle bisector, median, altitude) ;Base an-
gles are 45° in right-isosceles case

Two equal angles ; Two equal sides

Equilateral Trian-
gles

All angles are 60° ; Three - line coincidence

Three equal sides ; Three equal angles ;
Isosceles triangle with a 60° angle

Right Triangles

Acute angles are complementary ; Side op-
posite 30° angle is half of the hypotenuse ;
Median on the hypotenuse is half of the hy-
p;)tenuse ; Pythagorean theorem: a”+b% =
c

Contains a right angle ; HL congruence for
right - triangles

Angle Bisector

Points on the perpendicular bisector are
equidistant from the endpoints

A ray that divides an angle into two equal
parts

Triangle Midline

Parallel to the third side and half of its
length

Connects the mid-points of two sides

Parallelogram Opposite sides are equal ; Diagonals bisect ~ Both pairs of opposite sides are parallel;
each other ; Area = base X height Diagonals bisect each other; Opposite sides
are equal
Rectangle All angles are 90° ; Diagonals are equal A parallelogram with a right angle; A
quadrilateral with three right angles
Rhombus All sides are equal ; Diagonals are perpen- A parallelogram with adjacent sides equal;
dicular to each other A quadrilateral with four equal sides
Square All sides and angles are equal; Diagonals  Prove it is both a rectangle and a rhombus
are equal and perpendicular
Isosceles Trape- Legs are equal; Base angles on the same Two equal legs; Equal base angles on the
zoid base are equal same base
Trigonometric sin30° = £ ;sin45° = X2 ;sin60° = /
Functions ? ; sin90° = 1 ; cos30° = ? ;
cos45° = g ; cos60° = % ; cos90° =
0 ; tan30° = ? ; tan4b® = 1 ;
tan 60° = /3
Circle The perpendicular bisector of a chord is per- /
pendicular to the chord; The perpendicular
bisector of a chord passes through the cen-
ter
Central Angle Equal central angles subtend equal chords ~ /
and arcs
Inscribed Angle An inscribed angle is half of the central /
angle subtended by the same arc; An angle
subtended by a diameter is a right angle
Cyclic Quadrilat- Opposite angles are supplementary /

eral

Tangent

A tangent is perpendicular to the radius at
the point of contact; Tangents from an ex-
ternal point to a circle are equal in length

A line perpendicular to the radius at the
endpoint on the circle is a tangent

Regular Polygon

For an equilateral triangle inscribed in a
circle of radius R, side length @ = Rv/3 ;
For a square inscribed in a circle of radius
R, side length a = RV2

/
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