Under review as a conference paper at ICLR 2026

MULTI-LEVEL META-REINFORCEMENT LEARNING
WITH SKILL-BASED CURRICULUM

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider problems in sequential decision making with natural multi-level
structure, where sub-tasks are assembled together to accomplish complex goals.
Systematically inferring and leveraging hierarchical structure has remained a
longstanding challenge; we describe an efficient multi-level procedure for re-
peatedly compressing Markov decision processes (MDPs), wherein a parametric
family of policies at one level is treated as a action in the compressed MDPs at
higher levels, while preserving the semantic meanings and structure of the orig-
inal MDP, and mimicking the natural logic to address a complex MDP. Higher-
level MDPs are themselves independent, deterministic MDPs, and may be solved
using existing algorithms. The multi-level representation delivered by this proce-
dure decouples sub-tasks from each other and usually greatly reduces unnecessary
stochasticity and the policy search space, leading to fewer iterations and compu-
tations when solving the MDPs. A second fundamental aspect of this work is that
these multi-level decompositions plus the factorization of policies into embed-
dings (problem-specific) and skills (including higher-order functions) yield new
transfer opportunities of skills across different problems and different levels. This
whole process is framed within curriculum learning, wherein a teacher organizes
the student agent’s learning process in a way that gradually increases the difficulty
of tasks and ensures the abundance of transfer opportunities across different MDPs
and different levels within/across curricula. The consistency of this new, general
framework and its benefits brought by these multi-level structures and abundant
transfer learning opportunities can in general be justified under mild assumptions.
We demonstrate abstraction, transferability, and curriculum learning in some il-
lustrative domains, including a more complex version of the MazeBase example.

1 INTRODUCTION

Discovering and exploiting multi-level structure is a longstanding challenge in sequential decision
making. Classical hierarchical RL (HRL) decomposes tasks into reusable sub-policies—e.g., op-
tions and semi-Markov abstractions (Sutton et al., |1999; Dietterich, 2000; [Parr & Russell, [1997;
Dayan & Hintonl [1993). These advances are often restricted to one—two levels or rely on hand-
specified subgoals, which can hinder principled planning and transfer at scale (Barto & Mahadevan,
2003). Recent deep HRL automates parts of this pipeline (option-critic, FeUdal, HIRO, HAC) yet
commonly fixes depth, mixes high/low-level reasoning, or depends on brittle goal-space design
(Bacf [Vezhnevets et al.,|2017; [Nachum et al.|[2018; Levy et al.,[2019; | Dwiel et al., 2019).

Our contribution. We introduce a teacher—student—assistant meta-RL framework that (i) repeatedly
compresses MDPs so that parametric families of policies at one level become single, abstract actions,
yet having semantic meaning, at the next level, yielding deterministic higher-level MDPs, which are
easier to solve and that can capture the high-level logic needed in complex problems; (ii) factors
policies into embeddings and skills to enable transfer across levels and across MDPs, accelerating
solutions and enabling the creation of a dictionary of highly reusable policies, at different levels of
abstraction, to be applied as new problems are encountered; and (iii) organizes learning as a skill-
based curriculum aligned with these abstractions. This unified view yields fewer iterations at lower
per-iteration cost when used in conjunction with existing optimization algorithms such as value
iteration, scaling in sparse-reward domains where many prior approaches struggle.

Under review as a conference paper at ICLR 2026

Context and relationships with related work. A thread in HRL learns skills without external
rewards to build general-purpose primitives (Eysenbach et al., [2019; |Gregor et al., 2016). While
broadly useful, naive long-horizon composition can reintroduce stochasticity and tangled credit as-
signment; our multi-level compression decouples sub-tasks and reduces stochasticity at higher lev-
els. Abstraction further motivates compression, with each compression step preserves the semantics
of the original MDP while shrinking variance and branching, so solving a long-horizon task re-
duces to a stack of cleaner subproblems solvable with standard methods (Puterman, [1994). We also
exploit natural tensorization of action factors and function composition to induce transferable, high-
level behaviors. This is conceptually very different from spectral and spatial techniques (Mahadevan
& Maggionil |2007; Machado et al.| |2017; Dean & Givan, 1997} |Li et al., 2006; Rav).

Curriculum learning (Narvekar et al., 2020; [Bengio et al., 2009; Mat; |[Florensa et al.l 2017
Sukhbaatar et al.l [2017; 2018b) supplies the second pillar. Many curricula operationalize diffi-
culty by time to solve rather than time to learn, and often restrict the final task to a concatenation
of subtasks. Our compression-aligned curriculum instead defines difficulty via natural human logic,
mirroring how humans tackle complex tasks and improve optimization and transfer in sparse-reward
regimes, with higher levels coarsening space/time while broadening scope as a natural byproduct.

Transfer is the third pillar, providing repid learning and policy improvement across related
tasks (Barreto et al.l 2017} Bar; [Andreas et al.l 2017; Rusu et al.| [2016). We factor policies into
embeddings (problem-specific perception/featurization) and skills (including reusable higher-order
functions) and then compress families of such policies into single abstract actions. This supports
transfer across levels and across MDPs, both within and across curricula—even when state spaces
differ—without relying on rote replay, targeting semantic reuse of skills rather than state memoriza-
tion, without the need of storing and revisiting states (Ecoffet et al., [2021)).

Recent evidence from meta-learning for compositionality shows that optimizing a standard neu-
ral network for compositional skills yields human-like systematic generalization |[Lake & Baroni
(2023). Because multi-level structure is a prior over families of problems, our work connects to
meta-RL (Duan et al.|[2016; |Finn et al.||2017;|Rakelly et al.l[2019; |Frans et al., 2018)). Our compres-
sion and policy factorization provides constructive meta-generalization: higher levels expose slower,
more stable dynamics, while lower levels encapsulate fast feedback, enabling cross-task reuse.

Finally, our framework is compatible with inverse reinforcement learning (IRL) and imitation|Ng &
Russell| (2000); /Abbeel & Ng|(2004); Ziebart et al.| (2008); Finn et al.| (2016); Ho & Ermon| (2016));
Fu et al.|(2018)), and Hierarchical IRL Krishnan et al.|(2016). Because each compression step yields
an independent, semantically preserved MDP, we can invert the process: estimate rewards or sub-
goal structures at appropriate levels, then learn skills and curricula consistent with demonstrations,
improving sample-efficiency and interpretability relative to flat IRL |/Adams et al.[(2022).

An extended literature review, further connections and comparisons are discussed in Appendix[A]

2 MULTI-LEVEL MARKOV DECISION PROCESSES

Basic definitions. A Markov decision process (MDP) is a sequential decision making process
where the agent interacts with the environment and learns how to maximize the cumulative rewards
from such interactions. An MDP is modeled as MDP := (S,S™ S A P R,T), where: the
state space S, with its distinguished subsets S™ and S of initial and terminal states; the action
set A; the transition probabilities P, corresponding rewards R and discount factors I". We
assume A is a subset of the product A4; X --- Ak of the actions factors A, each containing a
universal element a°"¢ indicating the “end” action. Given an active action factor set I C [K],
we “restrict” a € A to ay by setting to the special value 0, an “action” that cannot be taken, the
coordinates of a corresponding to any .A;’s with k ¢ I, and let A; be the image of .4 under such
map. See App. B.1]for detailed definitions. A policy m : SA — [0,1] is, for each (s,a) € SA,
the probability of selecting a when the agent is in state s, and satisfies) A(s) 7(s,a) =1 for
any s € S. We may assume that 7(s, a) = l{genay(a) for any s € S Solving an MDP means
learning an optimal policy 7, maximizing the long-term cumulative rewards, summarized by the
value function V, (s) := E, s, a,.._,[Ro+|S0 = s, Ag.r—1 ~ 7, for any s € S™. Here, for
any two (random) times 7', 7", Ry - is the discounted reward accumulated over the interval [T', T"|
(equation [B.T)). The optimal policy 7, is independent of the initial state .Sy, by Markovianity.

Under review as a conference paper at ICLR 2026

Box 1: Geometric configuration and MDPs in the Mazebase+ example

We introduce the MazeBase+ example to walk the reader through the concepts and techniques
we introduce; it is more challenging than MazeBase, a well-known example in the literature on
hierarchical RL and curriculum learning, including [Sukhbaatar et al| (2018alc). We solve it with
a curriculum containing a (stochastic) MDP of difficulty 3, showcasing the role of the teacher,
the assistant, and the student (the actual learning agent), and of curricula, transfer learning, and
abstractions in our framework, and building on another example, “navigation and transportation
with traffic jams” (introduced later). We show minimal examples to convey the key ideas; we
could easily extend them to larger grid worlds, where the computational reduction brought by our
framework would be even larger thanks to multi-scale compression.

MDP,: retrieve goal

* MDP;; is the same as MDPgy ., and
teaches the student to navigate within a

single room while avoiding blocks;

o level 3 A 20— e with (0pick, fopen) =

Oopen)

(key, . doory), (key,,door), (keys, doors), (goal, goal),
A,B))

and (g, 0,) = (Opicx Dopen)

composition with 7

e MDPj; teaches the student to navigate in
Q while avoiding blocks assuming all the
doors are open;

JpickOopen)’
20 10 Oy then pick up fyey then go to fopen then open fopen |
generate.
b

{go to key; then pick up key, then go to door;

then open door;}i—1 23, go to goal then pick up goal}

« level 2 A: pick,open; E : 6 — ¢g, with 6 = key,, key,, keys, [1 * MDPy,; teaches the student the concatena-

doory, doors, doors, goal, and g : (A,B) — (cur, f) oonn EREES? tion logic of retrieving and picking up a
composition WY, -): go from cur to 6 through open doors 1 RN key and then opening a door;
HEMOE, (pick, open, go from cur to § through open doors B8] « MDP3; teaches the student to retrieve
i_]
1

(0 = key,, key,, keys, doory, doors, doors, goal) } the goal, which requires the student to
3

open at least two doors beforehand, so
it mainly focuses on navigation between
those rooms when some doors may be
] (=] ()| closed.

« level 1 final answer ,: retrieve goal by opening and walking miE
through some doors when necessary in an optimal manner

MDP3;

[™

MDPy,; — MDP3 5

|

MDP1,1

*

MDP,,;: navigation across rooms assuming all doors are open

MDP; »: retrieve key & open door

« level 2 A: E: 0 — ey, with § = door, doors, doors, dest, and * level 2 A: pick,open; : 0 = eg, with 6 =key ,door , and

o ¢ (A,B) — (cur,§) <2 !
LN, (pick, open, go from cur to 0 (0 = key ,door)}

composition with
eg : (A,B, obstacles) — (cur, #, blocks) —

7g: attempt to reach 6 from cur while avoiding blocks

= m: go from cur to §

room
o level 1 €gecomp © (key ,door) — (A,B); my: go to key
o level 1 eqecomp ¢ (cur.dest) — (A, B); m.: go from cur to dest then pick up key then go to door then open door
skill-embedding decomposition skill-embedding decomposition,

“higher-order function” Foneat;

20 to A then pick up A then go to B then open B
EEEEE]
room

through open doors “AI-mbedding decomposition,
“basic skill” 7: go from A to B through open doors

[1]
* /
G.,._A__D_(‘RB@'° O

o level 1: exactly the same as level 1 for MDPy 3 in the curriculum for agent block open closed key goal dest pick open effective
the example of navigation and transportation with traffic jams door door

MDP; 1 : exactly the same as MDPy 3 in the curriculum for
the example of navigation and transportation with traffic jams

Figure 1: A representation of the first experiment in MazeBase+, detailed in the current Box

We conduct 3 MazeBase+ experiments: (1) Solving MazeBase+ (Box 1] Fig.[I)) using a curriculum
(Sec.), a minimal ordered MDP family that helps the student agent develop skills at varying
abstraction levels for efficient solution of a complex MDP; (2) efficient transfer to MazeBase+
worlds with different room, door, key, and goal configurations (Box@ Fig. ; (3) demonstrating
robustness when the highest-level optimal policy requires significant refinement at finer levels but
outperforms naive value iteration (Box [I3] Fig. [3).

The figure illustrates MazeBase+, showing initial door states and with matching door-key indices.
The agent navigates a grid world from an initial position to a goal, needing to pick up keys to
open doors across multiple rooms. We map this MDP to a three-level MMDP, using a curriculum
(top-right figure inset) with four MDPs, MDP ;, MDP5 1, MDP3 o, and MDP3 1, of difficulties 1, 2,
2, and 3, respectively, and in this order, from the bottom up, provided by the teacher.

Under review as a conference paper at ICLR 2026

MDP ; teaches the student to navigate within a single room; this is the same as MDPgy . in the
example of navigation and transportation with traffic jams (sec. [, with blocks and doors mapped
to a subset of traffic jams. In that MDP we learn the skill 733y . that teaches the student to navigate
while avoiding traffic jams as much as possible. Here we solve MDP; ; by transferring that skill,

now ready to be utilized as a single action in MDP3 ;.

MDP» ; teaches the student to navigate all of €2 while avoiding blocks, assuming all the doors are
open. The agent learns the optimal policy for this problem, which becomes a higher-order function
7% to be utilized in MDP3 5 and MDP3 ;.

MDP5 o teaches the student the concatenation logic of retrieving and picking up a key and then
opening the corresponding door: the optimal policy for MDP » becomes a higher-order function
TORAt 1o be utilized in MDPy ;.

In MDP3 1, the student learns to reach a goal by navigating rooms and opening doors.

Actions at this higher level correspond to entire skills at finer levels, composed/decomposed via
embeddings (distinct arrows, detailed later), forming long, complex paths (long red arrows). Each
skill is a parametric family of policies. At higher levels, the effective state space (hollow red
squares, final states of actions) is significantly smaller than at level 1, reducing the policy search
space and speeding up MDP solutions. Actions and policies have semantic, interpretable names.
The policy from an initial state is shown with red arrows (actions) and red squares (effective states),
highlighting the reduced state space and action count at higher levels. For example, in level 2 of
MDP3 ; (middle row), the agent navigates from roomsy to room; to key, using 7, picks up
key, (filled red square), navigates to doors, and opens it with key, (empty red circle), reaching
state sp. At level 3 (top row), a single action using 7<°"°3* an abstract concatenation skill, reaches
S92, with arrow endpoints touching a filled red square or an empty red circle.

Different colors of text correspond to different roles in our framework, namely teacher (red), as-
sistant (blue), and student (black). Note that door; does not need to be opened, so it is just a
“confounder”; clearly an optimal policy avoids picking up key; and trying to open doorj.

See App. for the formal definition of these MDPs. In particular, observe that there are many
shared components between the target MDP3 1 and other MDPs, including the skill of navigation
through doors, and the concatenation logic behind opening a door. In order to efficiently solve this
family of problems, we exploit the similarities between them to enable potential transfer.

We now exploit the tensor product structure underlying the action space to introduce policies that use
only a few action factors, are easier to learn and transfer, and can be combined (using the notion of
outer products) to obtain general policies. We define a partial policy as follows: foreach I C [K], a
partial policy 7 : SA; — [0, 1] is, for each (s,ar) € SAj, the probability of selecting a; € A(s)
when the agent is in state s, and satisfies the normalization property -, 4,) 7r(s,a) = 1 for
any s € S. When I = [K], 77 is a policy in the usual sense; otherwise, a partial policy does not
prescribe valid/useful actions for the agent, as it prescribes actions with some factors equaling to 0.

We now introduce partial policy generators to allow the teacher to provide hints to the student on how
to potentially restrict the search of an optimal policy to subsets of combinations of partial policies. A
partial policy generator g; maps a parameter set O to the set of all partial policies {7}, yielding a
parametric family of partial policies {gr(0) : ¢ € ©}. Given a finite set G = {(g1);,," -, (9m)p,, }
of partial policy generators (not necessarily sharing the same active action factor set), we define the
set of partial policies generated from G as Ilg := UY_ {(g,); () : 0 € ©,,}. The action
factors and partial policy generators for the MazeBase+ example arewfeported in Box 3]

In order to construct valid policies from partial policies, we need to appropriately “combine” partial
policies acting along mutually disjoint action factors that overall “cover” all possible action factors.
Given two partial policies 7y, 77, with I (I’ = &, we define their outer-product as the improper
partial policy 77 @ 7}, : {(s, (ar,ar)) : s € S,ar € Ar(s),ar € Ap(s)} — [0, 1] satisfying

(mr @ 7)) (s, (ar,ar)) == 7r(s,ar) x 7 (s, ap). 2.1)

We call this “improper” because a (proper) partial policy is defined on SA;yuy, but (s, (ar,ar))
may not belong to SA;y, since in general Arp (s) € Aj(s) x Ap(s). However, we can map
every improper partial policy to a proper one by restricting it to S.A;y and renormalizing it. This

Under review as a conference paper at ICLR 2026

outer product operator, with or without normalization, is commutative and associative, so from
equation we can define a unique outer product of multiple partial policies with pairwise disjoint
active action factor sets. Given the set 1Ig of partial policies generated by the finite partial policy
generator set G, we define the set of polices I1g generated by G as the union of all policies 7 that are
the outer product of finitely many partial policies in IIg restricted to .A(s) and then normalized. See
App. [B.2]for the formal definitions and equations.

We refer the reader to Box [6 for the partial policy generator sets in the MazeBase+ example.

2.1 MULTI-LEVEL MARKOV DECISION PROCESSES (MMDPSs)

We construct an MMDP from a single MDP := (S, S™ S A P R,T), comprising MDPs with
the same state space S but multiple levels of increasing abstraction, enabling more powerful actions
at higher levels. For example, level-two actions are defined using a partial policy generator G! for
the original MDP (level one), with the action set A% (s) := TIg:. Taking action a € A?(s) at state
s involves running policy a € Ilg: from s for a specified duration, typically longer at higher levels,
where each action corresponds to a sequence of level-one actions from G!. This construction iterates
for higher levels, facilitating faster MDP solutions and transfer across multiple MDPs.

Definition 2.1. A sequence of generator sets is a sequence of finite partial policy generator sets
{G'}52, on an MDP that satisfies the following: G' is defined on SA' for any | € Z*, where A' := A
and A1 (s) ;=g for! > 1andall s € S. We let IT! := Tlg:.

The inputs needed for the construction of an MMDP from a given MDP are the following:

1. A sequence of generator sets {G'} that naturally gives a sequence of state space-action set pairs
{S.Al}fil. In addition, the teacher provides another sequence of finite partial policy generator
sets {GLy }°, with Gl defined on S.A' for any I € Z* that is used by the student to assess the
level of difficulty of the MDP being solved.

2. A timescale 1 < ¢, < oo, for each policy 7 € (U2, 1) U (U2 Tl), giving probability
1/t of terminating at each time step (if ¢, = 400, then the probability 1 / tr is defined to be 0).

3. Finally, a sequence of negative rewards {rl}fil, to penalize choosing an action containing ¢°"¢
at a non-terminal state. In particular, R(s,a,s) = r! forany a € (A')*"d and s ¢ S,

We refer the reader to Box [/|for the inputs for the construction of MMDPs in MazeBase+.

We construct an MMDP in an inductive manner with the inputs provided above. At level one we let
MDP! := (S, St Send AL P R T') to be the original given MDP = (S, S™ S A P R, T).
If the optimal policy m, of MDP! learned by the student is in ITg: , then MDP' is defined to be of

difficulty 1, and we are done. Otherwise, we move to higher levels. Inductively, given MDP! :=
(S, St Send AL Pl RETY), 1 € N, we define the (I + 1)-st level MDP!*+! with:

« State space S, S™' C S, and S C S are the same as those of the original MDP!.

* Action set A"+ (s) := II', represented as a subset of AL x AL x .o x AITL with AL =

gt
Ol U{null,a®"} for 1 < k < |G!|, and ©! being the domain of the k-th generator in G'.

Transition probabilities P! (s, a1, s"): when a!T! € TI' is chosen in state s, the policy a!*?
will be run starting from s till time 7 := min{first time when a®" is chosen, Geo(1 /¢4 }
and P'*1(s,a't!, ") is defined to be the total probability of terminating at s, equation

Rewards R'™! : SAS'™ — R are set to 0 when s € S otherwise set to r'*! when
a'*tl e (AHh)end| In all other cases, they are defined to be the expected total discounted
reward collected along trajectories associated to (s, al+1), as described above, which end at s’,
see equation For any two (random) times 0 < 7' < T” < oo(a.s.), the random variable
RlT,T’ is the discounted reward accumulated over the interval [T, 7"] in MDP!, see equation

'Geo()) is a geometric distribution of parameter); t, = oo is allowed and means that with probability 1
such time is co.

Under review as a conference paper at ICLR 2026

« Discount factors I'*! : SAS'™ — (0,1] are set, for a!™! € II, to be the expected product
of the discounts applied to rewards along trajectories associated to (s, a'*!) which end at s/, see
equation and similarly for T'}. ., see equation

With MDp!H! = (S, St Send AlH+1 pltl RIFL PIHL) constructed by the student, if the opti-
mal policy 7Lt of MDPLHT s in 11 Gt then MDP has difficulty L := [+ 1, and construction

ends. Otherwise, higher levels are explored This completes the MMDP construction: given
MDP = (S, S™Mt, Se“d A,P,R,T),{G' F2s {gtest}lzl’ {tr }WEULOZI(HIUHQIZW)’ and {r! }i21, the dif-

ficulty L and MMDP {MDP'}% | are defined, where each MDP'*! (from level two) is a compressed
abstraction of MDP!, with consistent rewards and discount factors. This compression, akin to coars-
ening, homogenization, or lumping, reduces the problem by locally averaging, preserving MDP
structure and semantics via partial policies, potentially coarsening spatial or temporal scales as the
agent uses more powerful, longer-running actions at higher levels.

Solving an MMDP. To solve the original MDP using an MMDP, we employ a bottom-up then
top-down procedure. In the bottom-up phase, we construct MDP!T! from MDP'. In the top-down
phase, we solve the MDP at the highest level L, then iteratively refine the solution down to the
original MDP. The refinement step “unpacks” the optimal policy w/*! of MDP!*! into an initial
policy 7! for MDP! by concatenating action sequences, forming the “convolution” 7'+ x G (see
App.[B.4). Iterating yields 7, at the initial level, which, though not optimal, is close to 7, and aids
value iteration. Value iteration at each level refines the policy, passed down iteratively to obtain the
optimal policy for the original MDP. The MDP’s difficulty, defined by level L, reflects the number
of convolution steps with partial policy generators and value iteration refinements, or the levels of
abstraction from compressing 7, with G, G2, ... to level L.

See Box [§]for an instance of unpacking compressed policies in the MazeBase+ example.

Multi-level compression. See App. for details, where we provide explicit formulas for higher-
level transition probabilities, rewards, and discount factors, both in matrix form and in scalar form,
and see Box [9]for how this is realized in the MazeBase+ example.

3 TRANSFER LEARNING WITH SKILLS AND EMBEDDINGS

Knowledge, represented by policies, is transferred from one MDP to another to accelerate
solving the latter. Our MMDP and curriculum-based framework enables transfer of entire
MDPs, specific MDPs in the curriculum, or selected levels within them. The key mech-
anism is skill-embedding decomposition, which factors a policy into an embedding that ab-
stracts aspects of the state-action space and a highly transferable skill that operates on the ab-
stracted output, applicable to multiple new MDPs with compatible abstracted state-action spaces.

Definition 3.1. (7, ¢) a skill-embedding decomposition of a partial pol- ~ SAr ——— [0,1]
icy 77 : SAr — [0,1] on D, if 77(s,a) = T(e(s,a)) for any (s,a) € D, T 1
where 7 : € — [0,1] is the skill, e : D — & is the embedding, with Al E
D C SA;. When applicable, the timescale of the skill 7 is the same as the D———F7——¢

timescale of the original partial policy ;.

This definition aims at reducing the semantic and sample complexity of 7y, with the embedding
function e extracting “features” of the state-action space that are sufficient for 7;, and possibly
restricting the partial policy domain S.A; to a smaller subset D; both are usually provided by the
teacher as a hint, so that the skill 7 is abstract enough to be generalized to other MDPs. The skill 7
can be thought of as a higher-order function, taking e as an input; different e’s in different problems
may be provided as inputs to the same skill 77, making a skill a transferable abstraction of policy.

Box 2: Skills and embeddings in the MazeBase+ example

One instance of semantic meanings of skills includes “walking from A to B”, which is some
basic “navigation™ skill 7"*", which appears in the definition of (g3 ,)5(6) in equation E.9|and

Under review as a conference paper at ICLR 2026

as we will see is needed for the student to derive by itself the partial policy generator (g%’Q) 5(0)
about navigation in the MazeBase+ example.

In another instance, a skill could mean “repeating a policy multiple times”, which is a higher-
order function 7"t with (TP (€gecomp)3,2) @ skill-embedding decomposition of the (par-
tial) policy 7r2’2,*, where the embedding (edecomp)%2 is defined in equation and the concate-
nation skill 77€°"¢at in equation In general, 7°°"°** concatenates two policies, such as Ty,
followed by mp;ck, and mqoor followed by mop, here. It provides a general logic, independent
of the exact location of the agent, key, or door and only depending on the partial information of
their relative locations. We do not need the whole grid world to learn opening all the four doors,
but only restrict to a much smaller domain €2,.,, and learn opening a single door (door;) in
order to learn the general logic behind opening a door, before applying it to opening more doors.

Reversing Def. 3.1 yields composite partial policies from an embedding and a skill, see App.[B.5]

Skills, embeddings, and embedding generators abstract functions in equation|B.8|using composition,
enabling transfer learning of skills across MDP levels with varying difficulties. A skill’s abstraction
is proportional to its MMDP level. Higher-level skills, as higher-order functions, take embeddings
or embedding generators as inputs, with the product of state space and finer-level policies as domain.

See Box [I0] for the composition of partial policy generators in the MazeBase+ example.

4 LEARNING MMDPs MR Lt T e T MO Lt

The main framework underlying our Do

algorithm implementation is a cur-

riculum, which is an ordered set MDP2,1 MDP2,2 7 MDPy

of MDPs {{MDP ,,}""%, }imax with

difficulty L between 1 and L,,,, and MDP11 MDP1,2 S P T MDB1,m,

ny, MDPs at difficulty L: We have strict lexicographic order “<” on the MDPs in a curriculum: for
any L,L' € [Lyax),n € [nr],n" € [nr], (L,n) < (L',n’) if and only if one of the following
occurs: (1) L < L'; (2) L = L’,n < n'. The student solves the MDPs in this order.

The curriculum for MazeBase+ was described in Box [T]and visualized in Fig.[T]

Teacher-student-assistant three-way cooperation. To enable transfer learning and multi-level
learning, we introduce three roles: the teacher, who provides a curriculum of MDPs (each an
MMDP) with information on transfer learning opportunities via shared skills, embeddings, or em-
bedding generators; the student, who constructs and solves these MDPs in the given order; and
the assistant, who aids the student by extracting and recording useful information from previously
solved MDPs using skill-embedding decompositions. Learning is performed as follows. Having
difficulty L, each MDPy, ,, is an MMDP with L levels; the teacher provides information assisting
in its solution to the student, as for an MMDP above, with the following caveats (i) instead of
{1t Ln l 1 , the teacher provides the sequence of generator sets {G% n l 1 , where each genera-

tor in each G! Lon 18 prov1ded either directly or as a skill-embedding generator pair (Def . (i1)

the initial pohcy for MDP ¥ ., (the highest-level MDP) may be provided either directly or as a skill-
embedding pair (Def. [B.]] - In both cases, the embeddings or embeddlng generators are directly
provided by the teacher, providing an opportunity for transfer; the skill is either directly provided
by the teacher or hinted at by the teacher by providing the level and a previous MDP at that level
from whose optimal policies the skill is extracted by the assistant, with the latter case yielding a
direct transfer of the skill. The student solves MDP, ,, (L € [Lyax|, 7 € [nz]) using Alg. |1} Tt first
constructs higher-level MDPs bottom-up—the first transfer opportunity—with actions from compo-
sitions of skills (provided by the teacher or extracted by the assistant) and embedding generators
from the teacher (lines 3-8 of Alg. [6). The student then uses propositions in App. [D.I]| to com-
pute compressed transition probabilities, rewards, and discount factors for these MDPs (lines 9-10).
Next, it solves the MDPs top-down: the highest-level MDP’s initial policy (lines 12—16) is either
the degenerate diffusive policy (uniform over actions) or an informed one from composing a skill
(teacher or assistant) with a teacher-provided embedding—the second transfer opportunity—after
which finer MDPs are solved easily using higher-level optimal policies as warm-start initializations

Under review as a conference paper at ICLR 2026

(line 17). For each level I € [L], the student learns an optimal policy 7t . by solving MDP} .
some of which may aid later MDPs (via the two transfer opportunities). If the teacher provides an
embedding for 775:,71,*’ the assistant performs a skill-embedding decomposition (Def.|3.1)) to extract a
skill skilly, 1, 1, added to the public skill set Skills, which the student can use anytime (lines 18-22 of
Alg. |§[) The teacher does not know these skills, but sees the set Skills and can refer to its elements,
to provide the students with hints about using a certain skill in an MDP.

Box 3: Transfer learning to a new problem in the MazeBase+ example

The decomposition of MDP3 ; into multiple levels and extraction of both basic skills and of the
higher-order function accelerate learning new difficult problems: we introduce a new problem
ang,l, similar to MDP3 1, but with different configuration of the objects (see Box .

MDP ;: retrieve goal

o level 3 A: E: 6 — € (Opscefopen)» WItH (fpick, Bopen) =
(key;,door), (key,y, doors), (keys, doors), (goal, goal),
and e) e (A,B) = (fpick, Bopen

pick:Bopen

composition with Feoncat

T (Opick,Oopen)*
20 10 fgey then pick up Oxey then go to fopen then open fopen
generate

{{go to key; then pick up key; then go to door;

then open door;};i—1,23, g0 to goal then pick up goal}

o level 2 A: pick,open; E : 0 — eg, with 0 = key,, key,, keys,
doory,doors, doors, goal, and eg : (A,B) — (cur,)

composition with (722Y)’
composition with (T),

7p: go from cur to 6 through open doors

enerate
ECSE2, {pick, open, go from cur to 6 through open doors

(0 = key,, keys,, keys, door;,doors, doors, goal)}

e level 1 final answer m,: retrieve goal by opening and walking
through some doors when necessary in an optimal manner

EEEEEEEE oja]afr
MDP; ;: navigation across rooms assuming all doors are open MDP;,: retrieve key & open door
o level 2 A: E: 0 — ey, with 6 = doory, doors, doors, dest, and o level 2 A: pick,open; £ : 6 — ¢y, with § = key, door, and
composition with 7Y, composition with 72
ep : (A,B,obstacles) — (cur, f,blocks) ——————————— =2, ep : (A,B) — (cur,6) mp: go from cur to 6
mp: attempt to reach 6 from cur while avoiding blocks Jgenerate {pick, open, go from cur to 6 (§ = key, door)}
o level 1 eqecomp @ (cur,dest) — (A, B); my: go from cur to dest
skill-embedding decomposition e level 2 eqecomp © (key,door) — (A,B); T go to key
yt’,hro}lgh Open:}gglf then pick up key then go to door then open door
“basic skill” (7°*)": go from A to B through open doors skill-embedding decomposition “higher-order function” 7oncat,

2o to A then pick up A then go to B then open B

MDPj ; : exactly the same as MDP; 3 in the curriculum for

the example of navigation and transportation with traffic jams
\.,.,._A__A_QB@'°D

agent block open closed key goal dest pick open effective
door door

e level 1: exactly the same as level 1 for MDPq 3 in the curriculum for
the example of navigation and transportation with traffic jams

Figure 2: A representation of the second experiment of the MazeBase+ example, where our
framework yields efficient transfer to worlds with different configurations of doors, keys, and the
goal. The representation in this figure is similar to the one for the first experiment (Fig. E[)

Under review as a conference paper at ICLR 2026

Box 4: Algorithmic realization and numerical performance in the MazeBase+ example

The algorithms for solv- MDP;,;: retrieve goal MDP},
ing MMDPs, detailed in |m oo S T —
App. ET.6 applied to the [~/ 10000 -y soool J*
MazeBase+, yield significant = BOOOL i soool-/"

speed ups, shown in Fig. [3] R R L AR R LR
(left), displaying Es Vi (S0), e’ MDPsz oy rMDP“ o o2

the average (over all ini- =™ ng[e :ZZZ[

tial conditions sg) of V. (so), oot _ ool iy A L

where V; is the value func-

tion for MDP 11, MDPgj, R

8000 8000

MDPjy 2, and MDP3 1, during
iterations of classical value = o
iteration (in red) and of
value iteration within our al- -
gorithm, within MDP;; = o

-10000
T 5 9 131721 2529 33

MDPRY in orange, iterations i siemew e

Wlthln MDPQ’TL(]. S n S 2) Tumberof iterations .

at level 2 in blue followed by Figure 3: Learning performance for MazeBase+ examples.
iterations at level 1 in orange, and iterations within MDP3 ; at level 3 in green followed by it-
erations at level 2 in blue followed by iterations at level 1 in orange. The extra effort spent in
solving the MDP» ,,’s (MDP ; is transferred from navigation and transportation with traffic jams),
their policies allow us to spend only a few more iterations to solve MDP3 ; (green+blue+orange)
— far fewer than required by classical value iteration (red). These few iterations correspond to
learning how to stitch different steps, well-separated in semantic meaning, including navigating
to different objects, or pick or open successfully. For the transfer to new MazeBase+ (Fig. 3]
right), we also plot iterations within MDP% ; at level 2 in purple followed by iterations at level
1 in yellow, assuming the student did not solve MDP5 » and consequently the assistant did not
extract 7" This corresponds to treating MDPj 5 as an MDP of difficulty 2. The extra ef-
fort here (purple+yellow) compared with the original case (green+blue+orange) demonstrates
the advantage of treating MDP4 ; as an MDP of difficulty 3 and of extracting the higher-order

function 7°°"°®* In all cases the cost of each of our iterations is smaller than that in classical

value iteration, as the compressed MDPs have smaller action sets and effective state spaces.

By, Vz(s0)

2000

(s0)

Eq, Va(so)

MDP,,,=MDP,

2000
0
2000

By, Va(so
By, Va(s0)

Navigation and transportation with traffic jams. This example includes multiple action factors,
corresponding to moving and to choosing a means of transportation for the moves in a grid world
environment with different traffic conditions. The MazeBase+ uses skills (e.g., an abstract navi-
gation policy) learned from this curriculum. Please see App.[C.2} and Fig. [7]in particular, for a
comprehensive summary of this example, and see Fig. [§for the corresponding curriculum.

4.1 THEORETICAL ANALYSIS: MMDP SOLVER AND TRANSFER LEARNING

Our MMDP framework can be combined with standard MDP solvers, such as value or policy itera-
tion, and Q-learning is also possible in MMDPs. The multiscale compression both yields savings due
to the reduced effective state spaces and policy-search spaces at higher levels, and yet it is robust in
situations during the top-bottom phase should high-level policy require significant refinement, yield-
ing a consistent estimate of the optimal policy for the original MDP, for example when combined
with value iteration. See App. [D.4]for a brief explanation on the consistency of our approach.

5 CONCLUSION AND FUTURE WORK

Preliminary work shows very encouraging results when extending this work to learning algorithms
such as sorting, and to incorporate recursion. Learning embeddings and skills, instead of having
them suggested to the student by the teacher and the assistant, using self-play to discover, at least in
part, curricula, and extending to multi-agent systems will be important steps forward.

ChatGPT and Grok were used to compress several paragraphs to satisfy space constraints.

Under review as a conference paper at ICLR 2026

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learn-
ing. In Proceedings of the 21st International Conference on Machine Learning. ACM, 2004.
doi: 10.1145/1015330.1015430. URL https://dl.acm.org/doi/10.1145/1015330.
1015430.

Stephen Adams, Tyler Cody, and Philip A. Beling. A survey of inverse reinforcement learning.
Artificial Intelligence Review, 55(6):4307-4346, 2022. doi: 10.1007/s10462-021-10108-x. URL
https://link.springer.com/article/10.1007/s10462-021-10108-x.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 166-175. PMLR, 2017. URL
https://proceedings.mlr.press/v70/andreasl7a/andreasl7a.pdf.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in Neural
Information Processing Systems 30,2017. URL https://papers.neurips.cc/paper/
6994-successor—-features—for-transfer-in-reinforcement-learning.
pdf.

A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete
Event Dynamic Systems: Theory and Applications, 13:341-379, 2003.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th International Conference on Machine Learning, pp. 41-48. ACM, 2009.
URLhttps://dl.acm.orqg/doi/10.1145/1553374.1553380.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In Advances in Neural Informa-
tion Processing Systems 5, pp. 271-278. Morgan Kaufmann, 1993. URL https://papers.
nips.cc/paper/1992/file/d14220ee66aeec73c49038385428ec4c—Paper.
pdf.

Thomas Dean and Robert Givan. Model minimization in markov decision processes. In Proceedings
of the AAAI Conference on Artificial Intelligence, pp. 106111, 1997. URL https://cdn.
aaai.org/AAAI/1997/AAAIOT7-017.pdf.

T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research, 13:227-303, 2000.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.
URLhttps://arxiv.org/abs/1611.027709.

Zach Dwiel, Madhavun Candadai, Mariano Phielipp, and Arjun K. Bansal. Hierarchical policy
learning is sensitive to goal space design. arXiv preprint arXiv:1905.01537,2019. URL https:
//arxiv.org/abs/1905.01537.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580-586, 2021. doi: 10.1038/s41586-020-03157-9. URL https:
//www.nature.com/articles/s41586-020-03157-9.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=SJx63 jRgFm.

10

https://dl.acm.org/doi/10.1145/1015330.1015430
https://dl.acm.org/doi/10.1145/1015330.1015430
https://link.springer.com/article/10.1007/s10462-021-10108-x
https://proceedings.mlr.press/v70/andreas17a/andreas17a.pdf
https://papers.neurips.cc/paper/6994-successor-features-for-transfer-in-reinforcement-learning.pdf
https://papers.neurips.cc/paper/6994-successor-features-for-transfer-in-reinforcement-learning.pdf
https://papers.neurips.cc/paper/6994-successor-features-for-transfer-in-reinforcement-learning.pdf
https://dl.acm.org/doi/10.1145/1553374.1553380
https://papers.nips.cc/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://papers.nips.cc/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://papers.nips.cc/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://cdn.aaai.org/AAAI/1997/AAAI97-017.pdf
https://cdn.aaai.org/AAAI/1997/AAAI97-017.pdf
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1905.01537
https://arxiv.org/abs/1905.01537
https://www.nature.com/articles/s41586-020-03157-9
https://www.nature.com/articles/s41586-020-03157-9
https://openreview.net/forum?id=SJx63jRqFm

Under review as a conference paper at ICLR 2026

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal con-
trol via policy optimization. In Proceedings of the 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pp. 49-58. PMLR, 2016.
URLhttps://proceedings.mlr.press/v48/finnl6.pdfl

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 1126—1135. PMLR, 2017. URL
https://proceedings.mlr.press/v70/finnl7a/finnl7a.pdfl

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In Conference on Robot Learning, vol-
ume 78 of Proceedings of Machine Learning Research, pp. 482-495. PMLR, 2017. URL
https://proceedings.mlr.press/v78/florensal7a/florensal’a.pdf.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SyX0IeWAW.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse re-
inforcement learning. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=rkHywl-A-.

Karol Gregor, Danilo J. Rezende, and Daan Wierstra. Variational intrinsic control. arXiv preprint
arXiv:1611.07507,2016. URL https://arxiv.org/abs/1611.07507.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in
Neural Information Processing Systems 29, pp. 4565-4573, 2016. URL https://papers.
neurips.cc/paper/6391-generative—adversarial-imitation—-learning.
pdf.

Sanjay Krishnan, Animesh Garg, Richard Liaw, Lauren Miller, Florian T. Pokorny, and Ken Gold-
berg. HIRL: Hierarchical inverse reinforcement learning for long-horizon tasks with delayed
rewards. arXiv preprint arXiv:1604.06508, 2016. URL https://arxiv.org/abs/1604.
06508.

Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-learning
neural network. Nature, 623(7985):115-121, 2023. doi: 10.1038/s41586-023-06668-3. URL
https://www.nature.com/articles/s41586-023-06668-3.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryzECoAcY7/.

Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a unified theory of state abstraction
for MDPs. In International Symposium on Artificial Intelligence and Mathematics, 2006. URL
https://rbr.cs.umass.edu/aimath06/proceedings/P21.pdf.

Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. A laplacian framework for op-
tion discovery in reinforcement learning. In Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 2295—
2304. PMLR, 2017. URL https://proceedings.mlr.press/v70/machadol7a/
machadol7a.pdf.

S. Mahadevan and M. Maggioni. Proto-value functions: A laplacian framework for learning repre-
sentation and control in Markov decision processes. Journal of Machine Learning Research, 8:
2169-2231, 2007.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient
hierarchical reinforcement learning. In Advances in Neural Information Pro-
cessing Systems 31, 2018. URL https://papers.neurips.cc/paper/
7591-data—-efficient-hierarchical-reinforcement-learning.pdf.

11

https://proceedings.mlr.press/v48/finn16.pdf
https://proceedings.mlr.press/v70/finn17a/finn17a.pdf
https://proceedings.mlr.press/v78/florensa17a/florensa17a.pdf
https://openreview.net/forum?id=SyX0IeWAW
https://openreview.net/forum?id=SyX0IeWAW
https://openreview.net/forum?id=rkHywl-A-
https://arxiv.org/abs/1611.07507
https://papers.neurips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
https://papers.neurips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
https://papers.neurips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
https://arxiv.org/abs/1604.06508
https://arxiv.org/abs/1604.06508
https://www.nature.com/articles/s41586-023-06668-3
https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7
https://rbr.cs.umass.edu/aimath06/proceedings/P21.pdf
https://proceedings.mlr.press/v70/machado17a/machado17a.pdf
https://proceedings.mlr.press/v70/machado17a/machado17a.pdf
https://papers.neurips.cc/paper/7591-data-efficient-hierarchical-reinforcement-learning.pdf
https://papers.neurips.cc/paper/7591-data-efficient-hierarchical-reinforcement-learning.pdf

Under review as a conference paper at ICLR 2026

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1-50, 2020. URL http://jmlr.org/papers/v21/
20-212.htmll

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the 17th International Conference on Machine Learning, pp. 663—-670. Morgan Kaufmann,
2000. URL https://ai.stanford.edu/~ang/papers/icml00-irl.pdf.

Ronald Parr and Stuart J. Russell. Reinforcement learning with hierarchies of ma-
chines. In Advances in Neural Information Processing Systems 10, pp. 1043—
1049. MIT Press, 1997. URL |https://papers.neurips.cc/paper/

1384-reinforcement-learning-with-hierarchies-of-machines.pdfl
M. L. Puterman. Markov Decision Processes. Wiley, 1994.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. PEARL: Proba-
bilistic embeddings for actor-critic reinforcement learning. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Re-
search, pp. 4171-4180. PMLR, 2019. URL https://proceedings.mlr.press/v97/
rakellyl9a/rakellyl9a.pdfl

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671,2016. URL https://arxiv.org/abs/1606.04671.

Sainbayar Sukhbaatar, Zita Marinho, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407,2017. URL https://arxiv.org/abs/1703.05407.

Sainbayar Sukhbaatar, Emily L. Denton, Arthur D. Szlam, and R. Fergus. Learning goal embeddings
via self-play for hierarchical reinforcement learning. ArXiv, abs/1811.09083, 2018a.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob Fer-
gus. Learning goal embeddings via self-play for hierarchical reinforcement learning. arXiv
preprint arXiv:1811.09083,2018b. URL https://arxiv.org/abs/1811.09083!

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob Fer-
gus. Intrinsic motivation and automatic curricula via asymmetric self-play. In International Con-
ference on Learning Representations, 2018c. URL https://openreview.net/forum?
1d=SkT5Yg-RZ.

R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112:181-211, 1999.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. FeUdal networks for hierarchical reinforcement learning. In Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pp. 3540-3549. PMLR, 2017. URL https://proceedings.
mlr.press/v70/vezhnevetsl7a/vezhnevetsl7a.pdfl

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
1433-1438,2008. URL https://aaai.org/Papers/AAAT/2008/AAATI08-227 .pdf.

12

http://jmlr.org/papers/v21/20-212.html
http://jmlr.org/papers/v21/20-212.html
https://ai.stanford.edu/~ang/papers/icml00-irl.pdf
https://papers.neurips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines.pdf
https://papers.neurips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines.pdf
https://proceedings.mlr.press/v97/rakelly19a/rakelly19a.pdf
https://proceedings.mlr.press/v97/rakelly19a/rakelly19a.pdf
https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1703.05407
https://arxiv.org/abs/1811.09083
https://openreview.net/forum?id=SkT5Yg-RZ
https://openreview.net/forum?id=SkT5Yg-RZ
https://proceedings.mlr.press/v70/vezhnevets17a/vezhnevets17a.pdf
https://proceedings.mlr.press/v70/vezhnevets17a/vezhnevets17a.pdf
https://aaai.org/Papers/AAAI/2008/AAAI08-227.pdf

Under review as a conference paper at ICLR 2026

A RELATED WORK

We expand our discussion of related work in the introduction — of course the related literature is
vast, and we restrict ourselves here to mentioning and comparing with some of the techniques we
fell are most related to our proposal in this work.

Hierarchical RL (classic and deep). Classic HRL formalizes temporal abstraction via options
and SMDPs (Sutton et al.,|1999), value decomposition in MAXQ (Dietterichl, 2000), and hierarchies
of abstract machines (Parr & Russell, [1997); see Barto & Mahadevan| (2003) for a survey. Early
“feudal” ideas cast hierarchy as managers setting subgoals for workers (Dayan & Hinton| [1993).
Deep HRL automates parts of this stack: option-critic learns intra-option policies and termination
end-to-end (Bac), FeUdal Networks separate goal setting from control in a learned latent space
(Vezhnevets et al., 2017, HIRO corrects off-policy bias for hierarchical goal relabeling (Nachum
et al.,2018), and HAC combines hindsight with multi-level goals (Levy et al.,2019). These systems
improve sample efficiency in sparse-reward tasks, yet many fix hierarchical depth or entangle low-
level stochasticity with high-level planning; goal-space specification can be brittle (Dwiel et al.,
2019). Our approach repeatedly compresses families of lower-level policies into single abstract
actions at higher levels, producing MDPs with less stochasticity that are easier to solve.

Skill discovery and pretraining. Unsupervised methods learn versatile primitives without task
rewards, e.g., DIAYN maximizes skill-state mutual information (Eysenbach et al., 2019) and VIC
pursues empowerment-like objectives (Gregor et al.l [2016). When composed for long horizons,
such skills can reintroduce stochasticity and complicate credit assignment; our compression reduces
variance at higher levels and aligns the skill library with planning on specific objectives.

Abstraction, representation, and safe compression. Abstraction further motivates multi-level
compression. Spectral state representations capture environment geometry and enable multiscale
reasoning (Mahadevan & Maggioni, [2007; Machado et al., [2017). Model minimization and ho-
momorphisms formalize when two models or states are “equivalent” for decision making, giving
principled conditions for safe compression (Dean & Givanl|[1997; Li et al., 20065 Rav)). Our method
leverages these ideas operationally: each compression step preserves the semantics of the original
MDP while shrinking variance and branching, so that solving a long-horizon task reduces to solving
a stack of smaller, cleaner MDPs with existing algorithms (Puterman, {1994)).

Curriculum learning. Curriculum learning provides the second pillar. Classical curricula grad-
ually increase task difficulty to ease optimization (Bengio et al., | 2009), with modern variants such
as teacher—student curricula (Mat), reverse curricula from goal states (Florensa et al., [2017), and
(a-)symmetric self-play that automatically generates tasks (Sukhbaatar et al., |2017; |2018b). How-
ever, many curricula define difficulty by time to solve rather than time to learn, and often restrict the
final task to a concatenation of subtasks. In our framework, difficulty emerges from the compression:
higher-level problems are coarsened in space/time but more global in scope, producing a curricu-
lum that mirrors how humans solve complex tasks—Ilearn sub-skills, compress them into abstract
actions, then plan at the higher scale, improving both optimization and transfer on sparse-reward
domains.

Transfer and modularity. Our transfer perspective is equally explicit. Successor-feature meth-
ods decouple dynamics from rewards and enable generalized policy improvement across tasks with
shared structure (Barreto et al.l 2017; |Bar); policy sketches encourage modular sub-policies that
recombine across tasks (Andreas et al., [2017); and progressive nets avoid catastrophic forgetting
by lateral connections (Rusu et al., | 2016). We factor policies into embeddings (problem-specific
perception/featurization) and skills (reusable higher-order functions), and then compress families of
such policies into single abstract actions at higher levels. This creates transfer across levels and
across MDPs, even when state spaces differ, without resorting to rote replay of previously seen
trajectories. As a cautionary contrast, Go-Explore achieves remarkable exploration by explicitly
remembering cells and returning before exploring (Ecoffet et al.l2021)); while highly effective, this
mechanism can resemble memorization of the state space and requires additional robustification for
stochasticity, whereas our abstraction focuses on reusing semantics rather than stored states.

13

Under review as a conference paper at ICLR 2026

Meta-reinforcement learning. Because multi-level structure is a prior over families of problems,
our work connects to meta-RL: RL? trains recurrent agents to adapt quickly (Duan et al.| 2016)),
MAML learns initializations for fast policy updates (Finn et al., 2017), PEARL infers latent task
variables for rapid adaptation (Rakelly et al., 2019), and MLSH co-trains shared sub-policies with
task-specific controllers (Frans et al., 2018). Our compression-and-skill factorization gives a con-
structive route to meta-generalization: higher levels expose slower, more stable dynamics, while
lower levels encapsulate fast feedback, allowing efficient cross-task reuse with fewer iterations and
cheaper per-iteration computation.

Inverse reinforcement learning and imitation. Finally, our framework is compatible with inverse
reinforcement learning (IRL) and imitation. Foundational methods (IRL by Ng & Russell|2000; ap-
prenticeship learning by |Abbeel & Ng|2004; Maximum-Entropy IRL by Ziebart et al.|2008) recover
rewards from demonstrations; modern deep variants learn cost/reward implicitly (GCL (Finn et al.|
2016)), through adversarial imitation (GAIL (Ho & Ermon, [2016))) or adversarial IRL (AIRL (Fu
et al., 2018))). Hierarchical IRL further segments demonstrations to recover sub-task rewards (Kr-
ishnan et al.|, [2016). Because each compression step yields an independent, semantically preserved
MDP, we can invert the process: estimate rewards or subgoal structures at appropriate levels, then
learn skills and curricula consistent with demonstrations, improving sample-efficiency and inter-
pretability relative to flat IRL (Adams et al., 2022]).

Extended discussion and comparison of our work with Sukhbaatar et al.| (2018a) The Maze-
Base+ example we consider is a more complicated version of MazeBase appearing in many liter-
ature, such as in |Sukhbaatar et al.| (2018a)), which is of difficulty 2 in our regime, since we add
multiple rooms, with different geometries and arrangements/order of doors and keys, that require an
additional level of abstraction/complexity in order to achieve efficient learning.

This MazeBase+ example shows sufficiently how planning like humans is realized by our frame-
work. When trying to solve a difficult problem of picking up a goal, we first consider it at high level:
we need to open door A, open door B, and then we pick up the goal. Then, we focus on each subtask
and consider it more carefully: to open a door, we need to travel to a key, pick it up, travel to the
door, and then open it; to pick up the goal, we need to travel to the goal, and then pick it up. These
two logics are similar, so we extract out a single higher-order function 7°°"“®*, Then, we also notice
that we need to go to another location in §2 for multiple times while avoiding blocks assuming all
the doors are open, so we extract out a single navigation skill 7%V, Finally, we go down to the finest
level: to travel to a certain destination while avoiding the blocks, we should first go to door A, then
to doors B,C, ... before going directly to that destination. All these processes are similarly about
navigation within a single room while avoiding blocks, so we extract a single basic navigation skill
Thanse> Which we may also transfer from perviously solved problems in a different curriculum, such
as here in the example of navigation and transportation with traffic jams.

Another main advantage of our framework is that thanks to the introduction of partial policy genera-
tors, embedding generators and skills, we allow for very flexible transfer learning opportunities, not
restricted to only concatenation as in |Sukhbaatar et al.|(2018a). In particular, our embeddings take
the current state, action coordinates and goal state as inputs, rather than only taking the goal state as
input while keeping fixed the high-dimensional current state as in|Sukhbaatar et al.| (2018a), giving
us the opportunity to reduce the dimension and generate abstractions to a greater extent, as well as
utilize the policy structure better. In this way, we encapsulate the knowledge in the policies we have
already learned and focus on learning the unknown parts of the policies in new MDPs. Therefore,
we avoid learning repeatedly similar subtasks for multiple times, such as traveling to certain desti-
nations while avoiding blocks assuming all the doors are open, which greatly reduces computational
costs. Last but not least, the framework in [Sukhbaatar et al.| (2018a) is unsupervised, whereas our
framework is constructed for solving the target MDPs, such as MDP3 ; here, so it is supervised.

B DETAILED DEFINITIONS

In this section, we provide more detailed definitions of the important mathematical concepts, start-
ing from MDPs, to generating set of policies essential for constructing and solving MMDPs, and
concluding in building connections between different MDPs through transfer opportunities.

14

Under review as a conference paper at ICLR 2026

B.1 MDPs

« State space S consisting of all the possible states of the agent; it includes the set of initial states,
Shit C S and of terminal states, S C S, at which an episode starts and ends, respectively.
MDP is episodic if S # . Without losing generality, we let S™ C S\ S to be the set of
states starting from which the agent can reach some state in S if S £ @, and set SMt = S
otherwise.

* Action set A := UgcsA(s) with A(s) the set of actions available in s, for s € S. We let
SA :={(s,a) : s € S,a € A(s)}. We assume that A C A; X --- x Ak, where Ay is called
the k-th action factor, k& € [K] := {1,..., K}. We assume each .4, contains a special element
a®*%, universal across all different MDPs, used to end a policy. We let .A™ be the set of actions
in which at least one factor is a®", and assume A**? C A(s) for any s € S. We let a®™? € A
be the action whose coordinates are a®"9 in all action factors. For any A’ C A, we denote
A’ = A" U A®™. We can restrict actions to a subset of factors: for I C [K], called an active
action factor set, we map a € A to ay by setting to the special value 0, an “action” that cannot
be taken, the coordinates of a corresponding to the action factors Ay with k ¢ I, and let A; be
the image of A under such map.

* Transition probabilities P : SA x S — [0, 1], where P(s, a, s") is the probability of reaching
state s’ for an agent in state s selecting action a. We assume P(s,a,s’) = 14(s’) for any
a € A,

* Rewards R : SAS — R, with R(s, a, s’) the reward for an agent in state s, selecting action a,
and reaching state s'. We let R(s,a,s’) = 0 for s € S, R(s,a,s’) =r < 0fors ¢ S a €
Aend.

* Discount factors I' : SAS — (0, 1], with I'(s, a, s’) the discount applied to reward R(s, a, s).
We always define I'(s, a, s’) = 1 for any a € A",

We assume throughout that S, A are finite sets (the generalization to continuous state spaces with
the use of basis functions is rather straightforward), and that the rewards R are bounded.

For any two (random) times 7,77, 0 < T < T’ < oo(a.s.), the random variable Ry 7 is the
discounted reward accumulated over the interval [T, T"]:
T'-1
Rrg := R(St, Ary1, Sr41) + Y, [M2pT(Sy, Av g, Swg)] X R(Sp, Argr, Sepr), (BD)
t=T+1

and 7 = +oo for non-episodic MDPs, and otherwise 7 being the first time ¢ such that S, € S
(400 if not existing). The optimal policy 7. is independent of the initial state .Sy, by Markovianity.

B.2 ON GENERATION OF THE SET OF POLICIES FROM THE PARTIAL POLICY GENERATOR SET

Once we have the partial policy generator set G, we can use it to generate the set IIg of policies,
wherein a policy 7, before restriction and normalization, can be written as (g,)1,,, (0m,) ® -+ ®
(9ms)1, (Om,) for some J € [M],{m; :€ [J]} C [M], Op; € Op, for any j € [J], and
Iy, NIy, = () for j; # jo; it therefore may be represented by a vector with entries O, for
j € [J] and null for all the other entries, with indices [M] — {m; : j € [J]}. Note that null is
a special value universal across all different MDPs, meaning that the corresponding partial policy
generator in G is not selected. All the policies in IIg can then be represented by an element in the
product set (©1 U {null}) x (O@2 U{null}) x -+ x (©p U{null}).

B.3 CONSTRUCTING MMDPs

Now, since we have generated the set of policies, we obtain the action set at higher levels of MMDPs,
and we now provide equations for various quantities needed in the definition of MMDPs, in sec. [2.1]
Note that A" (s) in the definition of an MMDP does not depend on s; this is not very restrictive as

a policy in I may choose the action a®*® with probability 1 at certain states. This will be needed
in some of the examples.

PHl(s,atL,s") .= P! (S, = 8'|So =5, Ager_1 ~ a1 7 ~ Geo(1/tyi1)] . (B.2)

7,51:7,A0:7—1

15

Under review as a conference paper at ICLR 2026

R (s,a't ¢ = ElTyslonzFl [Rf),T|SO =58, =5, Agir_1 ~ a1, (B.3)
T'—1

Rl v i= RY(St, Arq1, ST41)+ Z [TSy, Apry1, Ser1)] X RY(St, Avy1, Sign) . (B.4)
t=T+1

To clarify, the condition in equation may happen with probability 0, in which case R'*! is not
well-defined at such input triples (s,a’"1, s’); this is immaterial since such values are not needed
when solving MDP!*!. The same applies to the discount factor T'**1.

' Hl(s, a1 ¢) =Rl [F67T|So =58, =5, Ag;r_1 ~a' . (B.5)

7,81:r,A0ir—1

For any two (random) times 7', 7" satisfying 0 < T' < T’ < oo(a.s.), the random variable FlT,T’
is the cumulative discount applied to trajectories (St, Sty1,- -, S7/) over the interval [T, 7] in
MDP!:

T o= T2 TSy, At Siv) - (B.6)

B.4 SoOLVING MMDPs

Once we complete the definition of MMDPs, the next step is to solve them: at this point the essential
ingredient is the ability of moving a policy from a coarse scale to a policy at a finer scale, which we
think as a sort of “convolution”. The “convolution” 7 % G between a generator set G = {g|; : © —
{7l s Xaea,(s) wli(s,a) = 1forany s € S}t} and a function 7 mapping from S x Ilg, is a policy
on S A defined by:

(7T * g)(s’ Cl) = Z Z W(Sa ®£¥{:19m‘1m (em)) X [®7]‘7/1[:1 g‘m|fm (Gm)] (3’ CL),

g1lry s sgmlry, 01,0 ,0m
B.7)
where the sum is taken over all ¢1|7,,92|1,, * , 9nm|ry, € G mapping from ©1,0,,--- , O re-
spectively, such that their active action factor sets Iy, I5, - - - , I are a partition of [K], where K is

the number of action factors in .4, and the second sum is taken over all parameters in their domains
ﬂ Iterating over levels (from top to bottom), the optimal policy 7%~ of MDP” is convolved with the

sequence of generator sets {gl}f;f to a policy 7, for the original MDP, and so on:

Foi= [[(rEx GEHY x G2 % -] 5 GL (B.8)

B.5 TRANSFER

Before we are ready to achieve transfer between different MDPs, we need to further decompose or
compose the terms appearing in equation [B.8] where we need the following additional definitions,
besides the ones in Sec.

Definition B.1. Given SA;, D C SA;, an embedding e : D — £, and askill 7 : £ — [0, 1], we
define their composite partial policy 77; : SA; — [0, 1], denoted (with abuse of notation) by 7 o e:

T1(s,a) =~

R Tr(s,a) #0

71(5,0) 1= T(e(s,) Lo ((s,a)) , 71(s,a) i= 4 Zacari A ZaeAzgs) 1(s,0) £0
T {qenay () , otherwise

and the timescale of the composite partial policy 7y is the same as the timescale of the skill 7. The
intuition behind the normalization is that the action a®®® provides the option to terminate when the
agent reaches states new to it.

The generalization of this definition to that of a composite partial policy generator is straightforward:

Definition B.2. Given a partial policy domain S.A;, an embedding generator £ : © — {e : D, C
SAr — e(De)},and askill g : £ — g(&) satisfying Uoe poye(De) C &, we define their composite

“here, we assume the domains of all the partial policy generators in G are discrete domains; the generaliza-
tion to the case when some of the domains are continuous is straightforward.

16

Under review as a conference paper at ICLR 2026

partial policy generator g|; : © — {7 : > 1, (s 7i(s,a) = lforanys € S} by function
composition and normalization starting from F, g:

C

composition : g1(0)(s,a) :=g(E(0)(s,a))Llpy, (s, a)
g1(0)(s,a) 5 (0)(s. a 0
normalization : g1(0)(s,a) := { Zacare 910)(sa) Laeas(s) 91(0)(s,) 7 .
Ligenay(a) ,otherwise

INSTANTIATION OF MATHEMATICAL CONCEPTS IN OUR EXAMPLES

Now that we have provided more detailed definitions of the important mathematical concepts in
App. Bl we instantiate them within the setup of each of the two examples considered in the main
text: MazeBase+ (and its variations) in the next subsection, and Navigation and Transportation with
Traffic Jams in the one after that..

C.

1 MAZEBASE+

Box 5: Action factors and partial policy generators in the MazeBase+ example

App. [ET.4] details the equation(s) needed for this box. In this example there is a single action
factor, and to simplify the notation, we will sometimes omit the ““|.” notations in partial policies
or partial policy generators when there is only a single action factor. In the forthcoming example
of navigation and transportation with traffic jams, there are two action factors Ag;, U {a®*?}
and Apcans U {aend}, with active action factor sets I; := dir and I := means, respectively.
Because of this, all the partial policy generators in the MazeBase+ example are policy generators;
one policy generator is (g3 5) o used for MDPy 5. It is defined on (03 5) := {pick, open}, and

(92.2)a * (©22)a = {(m35)§ : 0 € (03 3)a}, mapping 0 to {(m35)§ : 0 € (03 5)a}, with the
partial policy (73 ,)§ : SAj, — {0,1}

(W%2>g((scurvspick;Sopen)ya) = 1{9}(@), (Cll)

which selects the action f € {pick, open}. The role of the lower and upper indices in the names
of the policy generators will become apparent later, as indicator of which MDP the generator is
used on, and, respectively, of the “level” of the MDP within an MMDP.

The other partial policy generator (g%’z)lg used for MDPj o iS more interesting. (95,2)5

(032)5 = {(mh2)y : 0 € (Oh)s} is given by (93,)5(0) = (73), and here (73,);
SA%’Q — [0,1] (0 € (©3,5)p) are defined as in equation

Box 6: Partial policy generator set in the MazeBase+ example

Take MDPy > for instance. For the first level, MDP}y = (S3,,(Sy%)t, (85%), Ab o, Pi s,
R} 9,15 5) = (S22, 8%, 85", As.2, Pa 2, R2.2,'2 2). The teacher provides

g21,2 = {(g%,Q)aa (95,2),8}’

whose elements were defined in the previous Box [6] From the set of partial policies

{(132)5 : 0 € (Ol 2)a} U{(m2)g : 0 € (B})}

the student generates the set of policies Hé,Q, which in this case is exactly the same as the set itself
as there is only a single action factor in this example. More interesting instantiations utilizing

. . . . 1 . .
equation can be seen in MDP3 ;. Note that each policy in II; , is represented by an element in
the product set ((©3 5)o U{a*™®, null}) x ((635)sU{a®"% null}). For instance, (73 ,)
is represented by (pick,null). So, I} , has two action factors.

«
pick

17

Under review as a conference paper at ICLR 2026

Box 7: Inputs for the construction of MMDPs in the MazeBase+ example

App [E.1.4]details the equation(s) needed for this box. The provided sequence of generator sets
{G} 2}i2 for MDP 5 in this example consists of 92 5 asin Box@ and G, o=@ forl > 2. There

are multiple options for {G5 5 . }72,, with the restrictions: 72,2« & G35 et 3.2+ € 5.9 o5t
with mp 9, = 79 2, 77%’2’* being defined in equation and equation respectively. These
conditions will guarantee that MDP 5 is of difficulty 2. The timescale of (g3 5)q is 1, and the
timescale of (9572) 5 is +00. We let 7! = —10. The student then constructs the second-level
MDP3 5 := (822,84, SS“S, 3.9, P3a, R5 5,15 ,), using the inputs above and the procedures
we describe momentarily.

Box 8: Unpacking compressed policies in the MazeBase+ example

App. [E.1.4|details the equation(s) needed for this box. Once the second-level MDP MDP%2 =
(S22, 85, 85", 11} 5, Py, R3 5,13) is constructed using the procedures above, it can be
solved to find the optimal policy w%yz’*. We construct stochastic trajectories starting from each
state s € S by “gluing” together the actions in { (73 5)§ : 6 € (0% 5)a }U{ (73 Q)g 0 € (035)p}
(defined in Box |5) following an order of the form (w%’z)g‘g, ooy (md 2)2: -: the agent starts
from Sp = sin MDP%Q, and chooses actions in A; = (7@72)@\: forany 0 < ¢ < 7 —1 with 7 being
the first time ¢ such that S, € S (if such event does not occur, we set 7 = +o00). For each state

s, the sequence of actions needs to be optimized to maximize the expected cumulative rewards
along the stochastic trajectories. Following the description here, the value 7r§727* (s,a), for each

a = (m32)p € {(7752)3 16 € (B} 2)a) U{(mh2)j : 0 € (©42)5}, 8 = (Scur, Spici, Sopen)s
equals equation | where recall that for any two (random) times 0 < T < 7" < oo (a.s.),
(R2 o)1, 18 deﬁned as in equation for MDP2 5. Note that the minimization of 6} is trivial at
any state . Solving this optlmlzatlon problem, the student derives equation [E.12] representing
the concatenation logic that the agent will go to the key, pick it up, go the door, and then open the
door. The agent could focus on learning this higher-order function, which is the new knowledge
to be learned from MDP5 o, because the details of going from A to B have been encapsulated by
the navigation skill 7°%V.

MDPQ,2 has at least two key advantages compared to the level-1 MDP: first, it has much shorter
time horizon, as a single action moves the agent by multiple steps, until achieving a small subgoal
including going to key, N (S400r), picking up key or opening door; second, the stochasticity
is greatly reduced as it is absorbed into each higher-level navigation policy, further simplifying
the optimization in equation [E.T1] Note that it is crucial here that the navigation policies used at
this level terminate, by choosing a®"< at very precise times and locations, instead of relying on
random stopping times.

Finally, the student solves the original MDP3 2, by using equation [B.7|to pass the optimal policy
of MDP%2 down to level one, resulting in the policy equation In this particular example,
3,2 18 in fact the optimal policy 7 2 . of the original MDP 5, requiring no additional refinement
by value iteration.

Box 9: Multi-level compression in the MazeBase+ example

App. [E.1.3] details the equation(s) needed for this box. For this example, we actually can
provide the explicit formulas for the compressed MDPs to help the reader see what the ef-
fects of the compression are in abstracting out the part of knowledge provided and let the
agent focus on learning higher-level policies. To simplify these expressions, assume 7.
extracted from MDP; ; is deterministic, and hence 7"*¥ extracted from MDPj ; is determinis-
tic. We first take MDP5 o for instance: the student constructs the second level MDP MDP%,2 =

init d 171 2 2 2 e 2 2 2 s 2
(S22, SV, 85 T} . P35, R3 5. T3 ,). with P35, B3 5, T3 , as defined in equation|E.4]

18

Under review as a conference paper at ICLR 2026

Box 10: Composing partial policy generators in the MazeBase+ example

App. details the equation(s) needed for this box. In the MazeBase+ example, we now
explain how the partial policy generators (g3 5)q and (g3 5)3 in G; 5 can be constructed by com-

posing skills with two embedding generators E/, and Ej.

(9%72)04 is the composition of the degenerate skill, which is the identity map on [0, 1], and
(Bl2)a + (O32)a — {(ed2)f : 0 € (©32)a} is defined as (E35)a(f) = (e32)5, with
(6%72)3 2 SA;2 — {0, 1} being defined as (6572)3‘((!9““ Spick, Sopen), @) i= Il{g}(a), which is
the (73 5)g we introduced in equation

(93.2) is the composition of 7 and (B3 ,)s, with (E3,)s : (035) — {(6%’2)5 NS
(©35)s} with (83 5)s := {key,door} being defined as in equation In particular, we
ruled out the final step of reaching s 4., from the domain of the embedding ((3%72)50Or generated
from (E} 5)g, and replaced it by a="%, so that the policy generator (g3), composed from 7Y

and (B3 ,) s, generated the policy (71'%72)300}: stopping at N (sqe0y) instead of stopping at Sqcor,
because the door may be closed initially.

Box 11: Transfer learning to a new problem in the MazeBase+ example: more information

App. details the equation(s) needed for this box. First of all, doory is now connecting

between roomg and roomy rather than room; and rooms (i.e., the constraints for s4.,, change

t0 Sdoors (1) > Sacor; (1), Sdcor; (2) < Sacors (2) < Saoors(2)), and secondly, initially, sxe,, €
init

QrOOm27SkGY3 € Q1:oom47$goal € Qroomga 3,2 — (Scurvspickysopenasdone) € 83,2 * Sdone =
0}. The other objects and notations are defined as above, taking into consideration the updated
configuration just described.

In MDPgJ, doors is indeed useful in order to reach goal, and even though goal, doors,
key,, and keys now have significantly different positions, and all the other objects could have
other fixed locations within the given constraints, in order to solve MDP3 ; we only need a few

iterations of value iteration inside our algorithm, with no need to re-solve MDP " . and MDP3 ».

——nav

The reason is that we do not change the overall geometry, so the skill g5y, about navigation
within a single room while avoiding blocks still applies; the logic of how to open a door is
ubiquitous and universally applies everywhere; the only parts that need to be relearned include:
(4) navigation through €2 while avoiding blocks assuming all the doors are open (since the doors
have significantly changed positions); (i¢) the policy of how to navigate between rooms when
some doors may be closed at level 3 (since doors and keys have significantly changed positions).
For (7), the teacher just needs to construct a new MDP MDP’QJ, similar to MDP ;; the student
solves it and the assistant extracts a new skill (7"*")’ about navigation through the whole grid
world {2 while avoiding blocks assuming all the doors are open, by stitching together several
policies coming from g . Only a few iterations of value iteration will suffice to achieve this,
see Fig. 4 For (i4), after the student constructs (MDP3 ;)’, the student needs to solve it as if it

is a completely new problem, but of tiny size. The optimal policy (7r§71,*)' for (MDP%yl)’ has

length 4, longer than the previous w%yly* for MDP3 ;, and can be discovered in very few iterations
3

of value iteration. (75 ;)’ is given by equation

So, even if (7"*)" and (73 ;)’ need to be relearned, we still achieve a significant reduction in
the effort to learn and in computations thanks to transfer learning and compression, achieving
“few-shot learning”, because (7) Ty 18 still usable when building (MDPEJ)’ , level 2 of MDP} 4,
and thus essentially the process of traveling between any two locations within a single room is
encapsulated in a single action. Given that in “grid world type” examples, the number of itera-
tions in value iteration is proportional to the average number of actions needed before reaching
the goal state, working at level 2 of MDP?, ; where each step/action is at level of a whole room,
only a few iterations (proportional to the number of rooms the student needs to walk through
before reaching sq4.st) are needed for solving MDP'M. (47) Similarly, at level 3 for MDngl, all the
actions within a single room are encapsulated in a single action, so we only need a few iterations

19

Under review as a conference paper at ICLR 2026

(proportional to the number of rooms the student needs to walk through before picking up goal)
for solving MDP3 ;.

Without transfer and without our framework, solving MDP% ; directly would be significantly more
expensive, requiring a number of iterations proportional to the average diameter of the rooms the
student needs to walk through before picking up goal multiplied by the number of rooms the
student needs to walk through before picking up goal.

Last but not least, this variant MDP% ; also further justifies why we need three levels in this
MazeBase+ example: if we stopped at level 2, we would still need at least three times more
iterations when learning new problems, because we would not have encapsulated the learned
knowledge of 7°°"“** so we would need to let the student learn the process represented by
meoncat repeatedly, while at the same time finding the correct navigation between rooms. See
Fig.] for the comparison and more detailed analysis.

MDPY ;: retrieve goal

L R—
sooof o
r
so0o./
40001
S eo00f
N
Lt
!-d 2000
4000
6000
8000
175 8 1317 21 25 20 30 37 41 45 49 5 67 61 65 69 73 77 81 85 89 83
number of iterations
MDP} : navigation assuming all doors are open MDP, »: retrieve key and open door (concatenation logic)
10000~ 10000
BOOOJ. 8000
6000 6000
40001 4000)
s 2000 2000
wF oF 0
=
o 000 2000
4000- 4000
6000 6000
8000 8000
10000 1—L
1 59
number of iterations number of iterations
wav
MDP, ,=MDP7v
10000~
80001
6000
40001
S 20000
o
o 000
4000
600
8000

TS e T2 529 %
number of iterations

Figure 4: We display E;,V;:(so), where V. is the value function for MDP; i, MDP’2 1>, MDP3 o,
and MDP3 , respectively, as 7 is optimized during iterations of classical value iteration and of
value iteration within our algorithm. See Fig. [3] for the detailed explanation, and Fig. 2] for
the representation of this second experiment of the MazeBase+ example. One addition here
compared with fig3|is that here we also plot iterations within MDP3 1 atlevel 2 in purple followed
by iterations at level 1 in yellow, assuming the student did not solve MDP3 o and consequently
the assistant did not extract 7°°"***. This corresponds to treating MDP% ; as an MDP of difficulty
2. The extra effort here (purple+yellow) compared with the original case (green+blue+orange)
demonstrates the advantage of treating MDP4 ; as an MDP of difficulty 3 and of extracting the

higher-order function 7¢°"<a*,

Box 12: Online learning illustrated in the MazeBase+ example

20

Under review as a conference paper at ICLR 2026

App. [E-T.3| details the mathematical notation(s) mentioned for this box. When new MDPs come
into the curriculum, such as MDP ; and MDPj ; here, the student can solve them following the
strict lexicographic order defined on the MDPs, while the assistant extracts out new skills, such
as (")’ and adds to the public skill set. The student can also utilize all the skills in the skill
set, both the ones already there and ones newly added, when solving the MDPs. For instance, the
student utilizes 7°°"°** which are already there in the skill set, and (7"*V)’, which is newly added
when solving MDP3 4, in order to solve it faster. In this way, all the current learned knowledge
does not need to be relearned again, so this whole process is in a fully online fashion.

Box 13: Robustness in the refinement procedure in the example of navigation and trans-
portation with traffic jams

MDPg',l : retrieve goal

o leeh3 A B0 = e
(key,,dod

and e

> With (fpick, fopen) =
(keys, door;) (keys, doori) Tgoal),
) = (Bpick, fopen)

ik fopen) agent

B o

/. open door

Opick,fopen) *

composition with Feoneat

Oopen then open fopen o EEZT A\ closed door
generate
R { o to door; | Q key
the; en door; }i—1,2,3, 20 to goal then pick up go: B goal
o level 2 A: pick,open; I : 0 — ey, with 0 = key,,key,, keys, @ dest
doory,doors, doors, goal, and ey : (A,B) — (cur,f))
composition with (F"V)"” .] pick
—————— mp: go from cur to ¢ through open doors 5] @] DTDF
generate o open
& . . =]
=——= {pick,open, go from cur to 6 through open doors =
ffecti
(6 = key, , key,, keys, door, doors, doors, goal)} B o O effective
o level 1 final answer m,: retrieve goal by opening and walking (])] G i
through some doors when necessary in an optimal manner (O] | [roomu || [0]es]O]
[SEEEEEDE!
MDP};: navigation across rooms assuming all doors are open MDP;: retrieve key & open door
o level 2 A: E: 0 — ey, with § = doory, doorsy, doors, dest, and o level 2 A: pick,open; E : § — ¢y, with # = key, door, and
, X composition with T, » |\ composition with 72 }
¢p : (A,B, obstacles) — (cur,), blocks) ——————————cbstacles, g : (A,B) — (cur,0) mp: go from cur to ¢
Tg: attempt to reach # from cur while avoiding blocks Jgenerate, {pick, open, go from cur to @ (¢ = key, door)}
o level 1 egecomp @ (cur,dest) — (A, B); my: go from cur to dest , .
skill-embedding decomposition + level 2 eqecomy © (key,door) — (A, B); mu: go to key
thwu;,h open doors —M8MM—— then pick up key then go to door then open door
“basic skill” (7"2)": go from A to B through open doors skill-embedding decomposition, “higher-order function” 7oAt

2o to A then pick up A then go to B then open B

e

MDPj) : exactly the same as MDP; 3 in the curriculum for

the example of navigation and transportation with traffic jams

o level 1: exactly the same as level 1 for MDP; 3 in the curriculum for
the example of navigation and transportation with traffic jams

Figure 5: A representation of the third experiment of the MazeBase+ example. The representa-
tion in this figure is similar to the one for the first experiment (Fig.[T). In the third experiment,
we consider the situation where the optimal policy at the highest difficulty level, when pushed
down to a finer level, yields a suboptimal policy where the student collects key,, opens doora,
and then collects keys (very close to key,) to then open doors. Within our algorithm, this
suboptimal policy gets refined in order to yield the optimal policy, demonstrating the robustness
of our optimization procedure; in this case it is also the case that our algorithm still outperforms
naive value iteration (see Fig. .

21

Under review as a conference paper at ICLR 2026

App. [E2:4] details the mathematical notation(s) mentioned for this box. We introduce a new
problem MDPgJ, similar to MDP3 1, with the main difference lying in the geometric configuration
of the objects. We omit the details of the changes, but hope to emphasize that one main change
is that now both key, and keys are in room;, and they are next to each other, so the optimal
policy is to pick up both keys, before opening doors, rather than pick up key, then open
doors and go back to pick up doors then open doors as hinted by 7¢°"2%, In this situation,
the optimal policy at the highest difficulty level, when pushed down to a finer level, is suboptimal
and requires, within our algorithm, significant refinement in order to yield the optimal policy,
demonstrating the robustness of our optimization procedure: see Fig.[5} Figure[6]shows that even
in this setting our algorithm outperforms naive value iteration.

MDP3 ;: retrieve goal
I

10000 »eessssses

8000 e

-
6000

4000

20001 /“"'

2000+

Ey, Vi (s0)

40001
6000

-8000

10000
15 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

number of iterations

MDPY: navigation assuming all doors are open

MDP,,: retrieve key and open door (concatenation logic)
10000 10000

/x(s0)

B,V

8000
6000
4000

> 2000F

2000+
-4000F
6000
8000

10000 -
1

10000
8000
6000
4000+
2000+

-2000+
-4000
6000
-8000

-10000

oF

number of iterations

MDP, ;=MDP}2"

dense

5 e e 1 e 3 2w
number of iterations

8000
6000
4000
2000

0

2000

-4000
6000
8000

~10000 H—+

1

number of iterations

Figure 6: We display .,V (s0), where V;; is the value function for MDP; 1, MDPy ;, MDPy o,
and MDP{;’y1 respectively, as 7 is optimized during iterations of classical value iteration and of
value iteration within our algorithm. See Fig. [3] for the detailed explanation, and see Fig. [5 for
the representation of this third experiment of the MazeBase+ example.

C.2 NAVIGATION AND TRANSPORTATION WITH TRAFFIC JAMS

In this section, we provide another example curricula: navigation and transportation with traffic
jams, an example with multiple action factors that the first example MazeBase+ is based on. Please
see Fig. [7] for a comprehensive summary of this example, and see Fig. [§] for the corresponding
curriculum.

22

Under review as a conference paper at ICLR 2026

Box 14: MDPs in the example of navigation and transportation with traffic jams

{anzn}g:] = {MDP,: } ek : MDPy 7: navigation & transportation with more light-traffic roads
navigation & transportation with a few heavy-traffic roads
o level 2 A: mc, car; E : 6 — eg, with § = Dpause, Dpauses and « level 2 A: exactly the same construction as of level 2 A for {MDPs,}5_,
) composition with 7Y,
ep : (A,B, obstacles) — (cur,dest, jams) supported only on 6 o level 2 ecomp ¢ (Da:Dg) — (Dpause: Dans)
Tp: attempt to reach dest from cur while avoiding traffic jams within 6 L o tra &
generate, . . o N composition with FranPoer value iteration
ECE, {attempt to reach dest from cur following g within 0 using 6’ :
7.t go from cur to dest following 7 if in D, and mpe
0 = Dpause; Dgause; ' = me, car} 8 8 MDpause panse Dhause

otherwise, while using car if in Djags and mc otherwise

+ level 2 Caecomp ¢ (Dpauses Dyans) — (Do Dy); mat go from cur to dest following oy, | o lovel 1 final answer ,: go from cur to dest while avoiding traffic jams
if in Dpause and mpg,, . otherwise, while using car if in Djans and mc otherwise and selecting the correct transportation tool in each movement,
skill-embedding decomposition_ ;. PN

a ! “higher-order function” TSPt oo from cur to dest

following 7p,, if in Dy and mpg otherwise, while using car if in Dg and mc otherwise

level 1 final answer .: go from cur to dest while avoiding traffic jams
and selecting the correct transportation tool in each movement

N o agent
& O
= — Qjans
L]
(=l ® dest
ﬂ = > mc
120 W o 5 T N
T car
3 3+
— Dause
5 ~—— Djans — Dpause
O effective
[u]
J 10000
]
9950
1
9900
MDPy ,,(1 < n < 3): navigation with traffic jams 9850
o level 1 egecomy (cur,dest, jams) — (A, B, obstacles); m: go from cur to dest while avoiding traffic jams 9800
skill-embedding decc siti . . . L
Shll-embedding decomposition, «pagic shill” 7Y, 1ost €0 from A to B while avoiding obstacles 9750
9700
®
9650
9600
s 9550
& 9500
s fof I 9450

Figure 7: A representation of the example of navigation and transportation with traffic jams, with
curriculum in Fig.[8] The representation in this figure is similar to the one for the first experiment
(Fig.[I). The goal of the agent is to learn optimal policies to travel from an initial position in a
grid world to a known final state in any position in the grid world. Some regions, {25.ns, in the
grid world have traffic jams (of different degrees of severity). The agent will have at its disposal
two means of transportation, mc and car, with car having different velocities in 2,ns and
s The curriculum has two sets of problems, corresponding to two difficulties. The problems
{MDP; ,, }3 _, of difficulty 1, at the bottom of the figure, are designed to teach the agent how to
navigate, without a choice of means of transportation, and only basic up/down/left/right moves
(red arrows). Different n’s correspond to different velocities in the Q.5 regions with car,
and, for n = 3, a different choice of €2;.,s. The agent will learn optimal policies for these
problems that become basic skills Tooy, . .15, to be utilized in higher level MDPs (upper part
of the figure). The problems {MDP }.cx of difficulty 2 involve both navigation and means of
transportation; different x’s correspond to different velocities in the 25,5 regions with car,
separated into two classes /C; (first column) and Ko (second column), requiring two different
optimal navigation rules because of the different velocities in ;.45 vs. §29,,.. A single action
at level 2 corresponds to an entire skill at level 1, up to a composition/decomposition with family
of maps that we call embeddings (represented by corresponding different types of arrows; this
will be detailed later), and therefore leads to a long and complex path (long red arrow). Roughly
speaking, each skill is a parametric family of policies, and in some of the figures above we
display the actual parameter for each action (at level 2); for example (Dg_,..,mc) denotes the
action at level 2 consisting of navigating with mc in a region not requiring changes in the means
of transportation; (Dpayse, car) denotes the action at level 2 consisting of navigating with car
in a region that does require a change in the means of transportation. The effective state space
(red squares) at level 2, consisting of final states of level 2 actions, is much smaller than at level
1. This leads to a significant speed-up in learning MDPs at level 2, because we reduce the space
of policies we search over.

23

Under review as a conference paper at ICLR 2026

Figure 7: (Continued) The gray lines between adjacent grid points represent that the roads be-
tween them have certain traffic conditions: the thicker the lines, the heavier the traffic. The value
functions are represented by heat maps; optimal policies starting from certain initial states (which
could be at any location) are represented by concatenations of red arrows (single actions at that
level) and red squares (effective states at that level), again showing the significant reduction in
the effective state space and in the number of actions at level 2. The third column shows an MDP
with a different configuration of traffic jam regions, often requiring many changes in the means of
transportation, increasing the difficulty of learning: we will use transfer learning of higher-order
functions to speed up the learning process.

App. [E2.T] details the equation(s) needed for this box. We now introduce a pedagogical “navi-
gation and transportation with traffic jams” example to walk the reader through the concepts and
notations we introduce. Please see Fig. [7|for a comprehensive summary of this example, and see
Fig. [§| for the corresponding curriculum (as defined in Sec.).

Given a two-dimensional
grid world € =

[71, 22] X [y1, 2] € NxN, {{MDPx}rerc,, {MDPx brexc, } MDE2, 1 |+1K2|+1
a first action factor T T

Ay = Agi U{a®"} with

the set of moves in dif- {MDP,1, MDP1 2} MDP; 3
ferent directions given by

Aqir = {(1,0),(0,1), Figure 8: Curriculum for the example of navigation and transporta-
(=1,0),(0,—1)}, and tion with traffic jams. The meaning of the arrows here are the same

a second action factor as in Fig.[T} an arrow means the knowledge learned from one MDP
Az = Aneans U {a®"?}, (starting point of the arrow) is utilized when solving another MDP
with the set of wuses (endpoint of the arrow). The line in the middle separates the two
of different means of groups of MDPs.

transportation given by

Anpeans = {mc,car},

motorcycle and car respectively, having different velocities (and corresponding rewards,
which we detail momentarily). We try to teach an agent (student) how to travel from
point s to point s’ while selecting the most efficient means of transportation for each step
along the way. To mimic a variety of road conditions, we add two roads of heavy traffic:
[x1,22] X {ys} and {z3} X [y1,y2], where 21 < z3 < Za2,y1 < ys < Yo (here we take
21 = 1,29 = 15,23 = 5,y1 = 1,y2 = 8,y3 = 6), and we denote their union as .ps.
The traffic rules are: generally, the agent could use either the motorcycle or the car, with
corresponding speeds Upc, Vear, Satisfying v, = 1 > vear = 0.6; if the agent is traveling along,
entering, or leaving any of these two roads with mc, it will receive a large negative penalty in the
reward; with car its speed will be s for some k£ < v.,,. The reward at each step is %0, with
ro < 0 (set to —10 here), and v the agent’s current speed, i.e., v = vy, if the agent has chosen
mc in the current action, v = & if the agent is traveling along, entering, or leaving any of the two
roads of heavy traffic with car, and otherwise v = vc,-

We consider a family {MDP,; } .cx of MDPs as above, with varying , which can and will affect
the optimal policy. The formal definition of these MDPs is postponed to App. [E2.T} here we
specify the state space and action set as follows:

S = {(Scum Sdest) ! Scury Sdest € Q} = OxQ 3 A = (Adiru{aend})x(Ameansu{aend}) -

Here the teacher has the role to set all the parameters of the problems, including the reward at
dest or the negative reward for driving along/entering/leaving ;.5 using mc. The value of &
affects the speed of the car in traffic regions.

Observe that there will be entanglement between the two action factors, modeling navigation and
means of transportation, along typical optimal routes. In order to efficiently solve this family
of problems, we exploit the similarities between them to enable potential transfer; we start by

24

Under review as a conference paper at ICLR 2026

disentangling the action factors and introducing partial policies, and we will then combine these
partial policies across action factors to obtain full optimal policies.

Box 15: Partial policy generators in the example of navigation and transportation with
traffic jams

App. details the equation(s) needed for this box. We define the transition region Dy.yse C
S Aqi- as the set of all the state-action pairs that either enter or leave the region 4.,s. See Fig.
for an illustration of Dy, s, Where we use an undirected edge to represent two directed elements
in Dpause, for the sake of not cluttering the image.

For the previously defined MDP;, we will have two types of partial policy generators, correspond-
ing to the two action factors Ay; ,U{a®"?} and Ay c.ns U{a®"?}, which we name (g1)4, (k € K)
and (gl)means, with active action factor sets [; := dir and I := means, respectively. The role
of the upper index 1 in the names will become apparent later as indicator of the “level” of these
MDPs within an MMDP.

Foreach k € K, (g})air : Oair = {(mp*")air }oco... is defined by (g;:)ai-(0) := (7™)air,
where O, indexes partial policies (75)ai, : SAL;, — [0,1], such that each (7}*¥") s,
takes positive values only in DS_ . or only in Dyause U {(Scur; Sgoal), (a®"9,0)}. This partial
policy is oblivious of the means of transportation, and represents only navigation along paths.
This partial policy generator conveys information: Dp,,s. suggests where the agent may change
the means of transportation, and Df_ .. suggests that there might not be a benefit in changing
the means of transportation, so the agent may focus on navigation only.

The other partial policy generator (g%)ncans is simpler. It is defined on Opeans = Ancanss
and (g)neans @ Aneans — {76/)neans }o'e ..., mapping 6’ to (g)neans. It generates two
partial policies {(7p/ Jmeans : 0" € Anecans}> With (7o/)neans : S.Aéeans — {0,1} (defined in

equation [E.33)) representing the partial policy of choosing a fixed means of transportation 6’.

Box 16: Partial policy generator set in the example of navigation and transportation with
traffic jams

App. [E.2.3| details the equation(s) needed for this box. For the first level, MDPL =
(S, (S™H (Sl AL PLURLTY) = (S, 8™t §nd A, P, R,.,T). The teacher provides

G = {{(g})aix }uexc (9 means} » €2)

whose elements were defined above. Notice that it may happen that (g.)ai. = (g})air for
k # r'. The student constructs the set of policies II' generated from the set of partial policies

{(”gaVE)dir}GGGdlr,nelC U {(76)means } 0/ € Apeuns |
Hl — {(WgaVN)dir ® (7T9’)means 10 S @dira 9/ S Amean57 K € K:}v

where, as in equation 2.1} (7**)4i; ® (g)means : SA' — [0,1] is, using the definition of
(76)means in equation [E.33]

((Wgavm)dir @D(WG’)means)((scurySdest);(adiryameans))
::<WgaVK>dir<(scur73dest)7(adirao)) X H{O’}(ameans)

nav

The right hand side, once (7,)qi, will be learned, represents a policy for navigating from s,
t0 Sqest Within the domain domg € {Dpause, Dgause} using only ageans = 6. Note that each

policy in IT" is represented by an element in the product set (©; U{nu11})*l x (©,U{nu11}),
with ©1 := B4, U{a®"?}, and O3 := Aneans U{a"?}. For instance, (75")gir ® (Tcar Jmeans
is represented by a vector with € for the entry corresponding to s and car for the last entry, and
null for all the other |/C| — 1 entries; it corresponds to a policy of navigating inside domy from
Scur tO Sgest With car; if domy = DE note that this policy will lead to sgcst only when

pause?
Scur and sgese are not separated by €25ps.

25

Under review as a conference paper at ICLR 2026

These partial policy generators are ripe for being used to build higher-level actions for MMDPs,
as we now discuss.

Box 17: Inputs for the construction of MMDPs in the example of navigation and trans-
portation with traffic jams

App. details the equation(s) needed for this box. The provided sequence of generator
sets {G };ﬁl (same for any MDP,) for this example consists of G! defined as in Box @ and
G' := @ for | > 2. There are multiple options for {G. . }7°, here, with these restrictions:
(D) e ¢ g;m; 2) W,zw € gi[est, with 7, . = 7, ﬂﬁ’* being defined in equation
equation respectively. These two conditions together guarantee that {MDP, }.cx are all

of difficulty 2 as shown later. The timescales of both (g})4:, and (g')neans are +0o. We let
rt = —10.

The student then constructs the second-level MDP2 := (S, S™t Send T[T, P2 R2 T'?), using the
inputs above and the procedures we describe momentarily.

Box 18: Unpacking compressed policies in the example of navigation and transportation
with traffic jams

App. details the equation(s) needed for this box. Once the second-level MDP MDP2 =

(S, St send TI1, P2, R2 T'2), for each k € K, is constructed using the procedures above, it
can be solved to find the optimal policy 7r,%7*. We construct stochastic trajectories starting from

each state s € S by “gluing” together the actions (wi}‘“*" Yair ® (79 Jmeans (defined in Box

following an order of the form (7r90 Mgir ® (m%)means, e (DAV

7T19t zli\i/r & (Weg)meansy ceeld
Kt

the agent starts from Sy = s in MDP2, and chooses actions in A; = (mg, "*)air ® (7o))means

for any 0 < ¢ < 7 — 1 with 7 being the first time ¢ such that S; € S (if such event does
not occur, we set 7 = +400). For each state s, the sequence of actions needs to be optimized
to maximize the expected cumulative rewards along the stochastic trajectories. Following the
description here, the value wz,*(s, (1™ ")air ® (Mg’)means), for each § € Ogiy,0" € Apeans,
$ = (Scur, Sgest), equals equation Note that the minimization of 6 is trivial at any state

s. Here Dyans == {(s,(dir,0)) € SAL. :seur € Qams OF Scur + Agir € Qyans | 18 the set

dir
of state-action pairs such that either the agent’s current location is in {25.ns, or the agent intends

to move to Qyams; D?ams = S.Acliir — D5ams. See Fig. [7| for an illustration of these important

subsets of SA4ir = {(Scur, Saest), (@air,0))} appearing in this higher-order policy 7r,2€7*, with
the directions of edges omitted because the existence and colors of the edges are always the same
when reversing the directions of the edges. In addition, recall that for any two (random) times
0<T<T < co(as.), (R2)rq is defined as in equationfor MDP2. MDP? has at least
two key advantages compared to the level 1 MDP: first, it has much shorter time horizon, as
a single action moves the agent by multiple steps all within a connected region of Dy,yse OF
D¢ e — {(Scur, Saest), (a°"%,0) }; second, the stochasticity is greatly reduced as it is absorbed
into each higher-level navigation policy, further simplifying the optimization in equation [E.36

Note how equation and equation cause an interplay between the tensor-product struc-
ture of A; and the geometry of 25.ns: the student needs to stop and reconsider which means of
transportation to use every time it enters or leaves {25,ns. Also note that it is crucial here that
the navigation policies used at this level terminate, by choosing a*"¢ at very precise times and
locations, instead of relying on random stopping times.

Finally, the student solves the original MDPs, by using equation to pass the optimal policy
of each MDP2 down to level one, resulting in the policy 7, as in equation In this partic-
ular example, 7, is in fact the optimal policy 7, . of the original MDP, requiring no additional
refinement by value iteration.

26

Under review as a conference paper at ICLR 2026

Box 19: Multi-level compression in the example of navigation and transportation with traf-
fic jams

Box [[3]details the mathematical notation(s) mentioned for this box. For this example, we do not
provide the explicit formulas for the compressed MDPs, because the policies here are relatively
complicated (in particular for the parts { (75")4+ }oco..., kek)-

Box 20: Composing partial policy generators in the example of navigation and transporta-
tion with traffic jams

App. [E.2.4] details the equation(s) needed for this box. In the example of nav1gat10n and trans-
portation with traffic jams, we now explain how the partial policy generators (g})ai.(k € K),
(9%)means in G! can be constructed by composing skills with two embedding generators E} and
EL.
B
For each k € K, (gl)ai, is the composition of Tt cles and El, which we now de-
fine. We let the navigation skill Toovr | ¢ {(Scur; Sdest,@air) © ScursSdest € ,aqir €
Agiy U {a*"?}} — [0,1], with timescale 400, be essentially the same as (7"%Vx)gy;,:
Tt des(Scurs Sdest s @air) = (T"**)gir((Scur, Saest), (@qir,0)), which coincides with
WDp:;)air o0 Dpayse and (77“‘“” introduced in Boxﬁ Such a skill 722V~

se)dlr on Dg obstacles
will be learned from some other aux111ary MDPs in a “curriculum” focusing on navigation only
(as discussed momentarily).

E} is defined as in equation While (e!)§* in the definition of E} may look like a glorified
identity, the crucial point here is that E} lets the teacher provide the student with the information
that Dyayse and Dp, . is a partition of S AL, important for learning an optimal policy, since
(el)cajllr is supported on 6, where 6 € O; ..

pause’

dir

(9%)means is the composition of the degenerate skill, which is the identity map on [0, 1], and Eé
as defined in equation [E.41]

Box 21: Designed curriculum in the example of navigation and transportation with traffic
jams

App. details the equation(s) needed for this box. In the example of navigation and trans-
portation with traffic jams, the teacher provides a curriculum containing two types of MDPs:
MDP1 (1 < n < ny := 2) and MDP3 ,,(1 < n < ng := |K| = 6). MDPy,, of difficulty 1
and with detailed definition in equation teaches the student to navigate through 2, with
no choice of means of transportation, but with n; = 2 different values of the parameter s, cor-
responding to light and heavy traffic jams, and inducing different optimal policies. The MDPs
{MDPy ,, }1<n<n,, of difficulty 2, are {MDP,. } .cx as previously mentioned (with detailed defini-
tion in equation , with ny = |K| = 6; these are our main objectives and require combining
navigation with transportation.

Box 22: Merits of action factors in the example of navigation and transportation with traffic
jams

App. [E2.4] and Box [16] detail the mathematical notation(s) mentioned for this box. In each
MDP3 ,,, the action set consists of two action factors Agi» U{a®"}, Apeans U{a®"?} independent
of each other, which takes charge of navigation and transportation respectively. This tensor

product structure enables transfer to MDPs ,,, for 1 < n < ng of the skills 7 *gﬁz,:acles(l <n<

n1) in the action factor Agi, U {a®"?}, with {mop o @ 1 < n < ny} exactly the same
as {Topt es & K € K}, the set of skills we need for deriving G' defined as in equation

and constructing MDPg’n. The optimization over Apeans occurs at level 2 of MDPy ,,, and the
combination with Ag; . is optimized at level 1 of MDPy ,,. In words: before going to a certain
destination, the student first solves MDP1 ,, to find virtual routes to the destination, then solving
level 2 MDP,, ,, yields the optimal means for those routes, based on traffic conditions, and finally

27

Under review as a conference paper at ICLR 2026

solving level 1 of MDP5, ,, yields the optimal combination of routes and means of transportation.
The embedding generator E}, provided by the teacher, allows the student to break routes at
locations in Dy, ,se, Where it can then optimally change the means of transportation.

Merits of this are threefold. First, just like for a human, focusing on one problem at each time
is more efficient than thinking about several problems all at once. Second, it can speed up the
solution of the MDPs by leveraging transfer of skills within the curriculum, see Fig. [0} which
generally comes from extracting the “repetitions”/repeated patterns (shared skills/components)
and learning them for only once, or extracting the patterns that could be merged together into a
single one and learning them in parallel. Third, it promotes further opportunities of transfer to
other curricula; for instance, the first example MazeBase+ utilizes one of the navigation skills
extracted in this example.

MDPs; MDP,, MDP, 3 MDP,, MDP,; MDPy g
% sl wafl / wafl wofl / wof / wfl 7
S ool o/ o/ o/ o/ o/
= -5000 4‘ -5000 «‘ -5000 [5000 [5000 [-5000 4‘

16 1116 21 26 31 16 1116 21 26 31 16 1116 21 26 31 16 1116 21 26 31 16 1116 21 26 31 16 1116 21 26 31
number of iterations number of iterations number of iterations number of iterations number of iterations number of iterations

MDP; MDP,

10000 10000

E so00 s000

5
-5000 5000

16 111621 26 31 16 1116 21 26 31
number of iterations number of iterations

Figure 9: Similar to Fig. 3| we display E Vx(so), where V, is the value function for MDP4 ,, and
MDPs, ,,, as 7 is optimized during iterations of classical value iteration (in red) and of value itera-
tion within our algorithm, with iterations within MDP ,, in orange, and iterations within MDP ,,
at level 2 in blue followed by iterations at level 1 in orange. Although we spend extra effort in
solving the MDP; ,,’s, they prepare us well enough so that we only need a few more iterations for
solving the MDP5 ,,’s (blue+orange), much fewer than if we solved them from scratch using clas-
sical value iteration (red). These extra iterations correspond to learning how to stitch different
pieces of routes separated by Dy, s, Which contains the turning points at which the student may
need to switch the means of transportation. Of course, the cost of solving the MDP; ,,’s (which
for our algorithm is the same as for classical value iteration) is amortized over solving possibly
many MDPs ,,’s, showcasing the power of transfer in our framework. This is also analyzed in

general by Sec. 4.1}

Box 23: Transfer learning of the higher-order function in the example of navigation and
transportation with traffic jams

Apps. detail the equation(s) needed for this box. One issue of our framework in
this example occurs when there are many roads of traffic (say, Q’jams = [z1,22) X {y1, 11 +
3,- -+ h{x1, 1 + 3,--- } X [y1,y2]), forcing the agent to switch the means of transportation
every few steps. However, this problem can be resolved in our framework by using transfer
learning to greatly speed up learning the second-level policy.

The main idea is that if we take out one element of /C, say x1, we observe that the second-level
policy 7r,2€17*, given by equation , depends on the exact choice of (5.5, but only mildly,

and such dependence could be decomposed using an embedding. Semantically, 72 .+ Selects the
index of the navigation partial policy, which determines both the support of the navigation policy
and which navigation policy, and the means of transportation, independently. (Here for simplicity
we restrict the embedding in the decomposition only to a single navigation policy and focus on
selecting onto which support it is restricted.) We use the following logic: the agent selects the
index 0 if (Scur, aqir) € 6 for some 6 € O; ., and selects the means of transportation §’ = car
if (Scur, @air) € Dyanms and ' = mc otherwise. Here, s., is the agent’s current location, and
agi, 18 the intended direction according to (7™*V#1)y;,, as introduced in Box Notice here
D;ams Of Dpayse are different when we change €25, to Q’jams, so we need this embedding to
encapsulate the “if-conditions” in the logic above, after which a higher-order function could be

extracted from the second-level policy 77,%1,*, which is purely about the “if-then” logic, the core

28

Under review as a conference paper at ICLR 2026

part in 77,%1,* of interest to us, and also transferrable across different geometries, in some sense

achieving “few-shot learning”.

Formally, after learning 7r,2€1 «» if the teacher provides the embedding defined as in equation ,
then the assistant extracts a higher-order function for selecting the index of the navigation policy
and the means of transportation 7225t " defined in equation and with with timescale

t=transport = +00.

Next, we show how the transfer learning of this higher-order function could be achieved in this
example. Given the new region of traffic jams ', . = [z1, 22] X {y1,y1 +3,--- } U{z1, 21 +
3,-+-} X [y1,y2] containing many more roads, displayed in the insets on the right column in
Fig. |Z|, the teacher adds to the curriculum MDP ,, 41, similar to MDP j,, and MDPs ,,, 41, Similar
to MDPg ,,, except that 1/x = 1.1, and correspondingly 1/v.., = 1.05, for both these new
MDPs, describing a new scenario where the traffic jams are light. From now on we may also

refer to MDPq n,+1 as Mnggzse'

The process to solve the two new MDPs in the curriculum uses the same Algs. [5HE but we
also extract a navigation skill 742y.., and we also have in hand the higher-order function for
selecting the means of transportation 7"#"5P°r® extracted previously. Therefore, after the student

reransport and the embedding

constructs MDP%m2 1, the teacher provides the hint to use the skill
(ecomp)2,ns+1 for solving it, where (ecomp)2,n,+1 18 defined similarly to (edecomp)%y Then, the
student uses the composition of skill 77traPort and (ecomp)2,ns+1, Which is similar to 773,17*, as
the initial policy for solving MDP3 . This leads to a very fast learning of MDP3 . On
the other l?and,yif we do n%t uti1i22’7é2t+hlis opportunity of tran}slfer learning gwhen folQIgLvi/Jirnlg our
framework to solve MDP%m2 11, we will need many more iterations, because there are many
pieces of routes separated by D] _ ... when selecting means of transportation given that the roads
with traffic are much more densely-distributed in 2 now. See Fig. [I0|for a comparison between

the two options.

Figure 10: Similar to Fig. EL we dis-

play E;, Vi (s0), where V is the value

function for MDP;,,41 (in orange)

MDP, ; and MDP3 j,, 41, as 7 is optimized dur-

oo — ing iterations of value iteration within
our algorithm. More specifically,
within MDP ,,, 41 We have iterations at
level 2 in blue followed by iterations at
level 1 in orange, where 7 is optimized
during iterations of value iteration
e within our algorithm without utilizing
ST T mber of terations griransport. we also have iterations at
MDP, y~MDP1 level 2 in pgrple followed by iter:ations

at level 1 in yellow, where 7 is op-
timized within our algorithm utilizing
Firansport - Although we spend extra
effort in extracting 7Pt it pre-
pares us well enough so that we could
solve MDPy ,,,+1 (purple+yellow) al-
wer/ most instantly, with much fewer iter-
A AN NI A ations than if we solved it from scratch
within our algorithm (blue+orange).

This is also analyzed in general by

Sec.@??.

By, Vi (s0)

-8000 L+
1

B, Vs(s0)

Box 24: Online learning illustrated in the example of navigation and transportation with
traffic jams

29

Under review as a conference paper at ICLR 2026

App. [E24] details the mathematical notation(s) mentioned for this box. Another comment is
that Box [23] also shows that the student can achieve online learning in the current framework.
When new MDPs come into the curriculum, such as MDP ny+1 and MDP2 np+1 here, the student
can solve them following the strict lexicographic order defined on the MDPs, while the assistant
extracts out new skills, such as 7'22SP°' and adds to the public skill set. The student can also
utilize all the skills in the skill set, both the ones already there and ones newly added, when
solving the MDPs. For instance, the student utilizes the two navigation skills, which are already
there in the skill set, and 7"*"*P°**, which is newly added when solving MDPy ,, ., in order

to solve MDPQ,712 11 faster. In this way, all the current learned knowledge does not need to be
relearned again, so this whole process is in a fully online fashion.

D MULTI-LEVEL COMPRESSION AND ALGORITHMIC REALIZATIONS

D.1 MULTI-LEVEL COMPRESSION

The results in this section are analytical and allow the effective construction of higher-level transition
probabilities, rewards and discount factors from a current level, essentially by only solving linear
systems.

D.1.1 STATEMENT OF RESULTS

Now we derive the closed-form formulas for P!*1(s, 7!, s'), Rl“(s nl,s'), T (s, !, s") given

the finer MDP MDP! = (S, S™Mit send Al P! Rl T?) and a policy 7! on SAZ.

To do that, we first bring in the following notations before stating three propositions. Given a

policy 7!, we compute policy-specific Markov transition matrices by averaging out the actions in A’

according to 7':

Z Pl(s,a,s)7 (s,a), (D.1)

acAl(s)

end

and if we restrict the domain in the sum above to (A')*"9, then we have:

Pluyena(s,5) = > Pl(s,a,) (s,0) = > Lggy(s)r'(s,a), (D-2)

ae(Al)end ae(Al)end
where the second equality comes from the fact that P'(s,a, s') = 14 (s') for any a € (A")end,

For any pair of tensors X = X (s, a, '), Y(s,a,s’), indexed by 5,5' € S, a € Al(s), we define the

matrix (X o Y)”l to be the expectation w.r.t. the extended policy 7! of the elementwise (Hadamard)
product between X and Y:

(X oY)™ Z X(s,a,8)Y (s,a,s)7(s,a).

1

Note that (X o Y)™ = (Y o X)~
Now we can state three propositions.
Proposition D.1. For the finer MDP MDP! = (S, St Ssend Al P! R! T and the policy 7! on
SA', we have PH(s, 7l s") = H, o, for all s,s’ € S, where H is the minimal non-negative
solution to the linear system

1 Sl il 1 7‘_1 Pﬂl
[17 (17 r)(P 7P(Al)end)]H: (1* a)P(Al)end +—. (D3)

il [
Proposition D.2. With the same settings as in Prop. we have R*L(- 7l s') = hy, for all
s’ € 8, where h is the (unique, bounded) solution, for each s’ € S, to the linear system
1 ,n_l 71" ﬂ_l
[+ (1= =) (Pyona — (PF 0T)iy

s

30

Under review as a conference paper at ICLR 2026

]. 7-;-" 7‘_l ﬂ_l
=(1— ;)[(5 o R)™ 1 — ' Plyiyenal (D.4)
L
- (Py o RY™ vy
+rl[Pl+1(~,7Tl, SI)}dizla,gP(Al)endlUs/] + —

where
Pl(s, a, S”)Pl"’_l(s//,ﬂ'l, S/)
Pli1(s 7l s ’

Pl(s,a,s")
PiHl(s 7l s’

o
P (s,a,8") = and P, (s,a,s") =

S

1 is a vector whose |{s € S : P*!(s,n!,s') > 0}| coordinates are all ones, vqiag is a diagonal
matrix whose diagonal elements are in v, v; is a vector whose |S| coordinates are all zeros except
for the position corresponding to the state s, whose value is one.

Proposition D.3. With the same settings as in Prop. we have I'H1(- 7l s") = hy, for all
s’ € 8, where h is the minimal non-negative solution, for each s’ € S, to the linear system

1 Trl 7Tl Tl'L
[1+1- ;)(P(Al)end — (P oT)™)lhy
-
(P o FZ)”lvs/
- ’

T

1
=)P) g Platyenar +

T

(D.5)

D.1.2 PROOFS

Proof of Prop. . First, according to the Markov property, we have P”l(s 7l s') = Hy o, for
all s,s’ € S, where H is the minimal non-negative solution, for each s’ € S, to the linear system

(-2 Y w(s,0)+1Hey

wt ae(Al)end

ZP s,s" g,,,s/)+(1fi) > wl(s,a)ly(s) +

t
s""eS wt a€g(Al)end

p (s,s)

[’
Transforming this to matrix-vector form, we have equation
Proof of Prop. First, according to the Markov property, we have R'*!(s, 7!, s') = Hj o, for

all s,s" € S, where H is the (unique, bounded) solution, for each s’ € S, to the linear system

[1+<1—ti> Y (sl

it ac(Al)end

SN Y PE(sa s (s,)l (s a)Hore + > D P (s,0,8")R (s,0,8")7 (5,)

s""€S ac Al(s) s""€S ac Al(s)
!
! ! r ! 1 5 ! !
—r Z 7w (s,a) + Pi(s, 7, Z 7' (s,a) Ly (s)] + . Z P (s,a,8 YR (s,a,8)7 (s,a).
ag(Al)end 7T 7T ag(atlyend T acAl(s)

Transforming this to matrix-vector form, we have equation[D.4]

Proof of Prop. First, according to the Markov property, we have "1 (s, 7!, s') = H, 4, for
all s,s’ € S, where H is the minimal non-negative solution, for each s’ € S, to the linear system

[1+<1fti> S s

Tl

aG(.Al)e“d
7, 1
I Y Pises)Msas)m (sl + prr—gy D T (5a)ln)]
s""€S acAl(s) ac(Al)end
1 =t
+t— Z Pl (s,a,8)T'(s,a,s)7 (s,a).

™

acAl(s)

Transforming this to matrix-vector form, we have equation [D.5]

31

Under review as a conference paper at ICLR 2026

D.2 ALGORITHMIC REALIZATION WITHOUT TRANSFER LEARNING

With the multi-level compression provided in detail in the previous App. we are ready to discuss
the algorithmic realization, first without transfer learning. We have the following Alg. [T]as well as
the auxiliary Algs. The inputs of Alg. [T] are mostly as discussed in Sec. There are two
exceptions: (1) for simplification, the teacher does not provide the sequence of finite partial policy
generator sets {GL,}7,, and provides instead the difficulty L of MDP directly, which is set as an
extra property of MDP. Consequently, the teacher only needs to provide {Ql}leljl, the first L' — 1
elements of the infinite sequence {G'}°,, with L’ = L for this section. (2) The timescales of
policies could be reduced to the timescales of partial policies and then further reduced to partial
policy generators by assuming: (z), the timescale of a policy equals the minimum of the timescales
of partial policies producing it using outer product as in equation (21) the timescale of a partial
policy equals the timescale of the partial policy generator generating it. In this way, the timescales
of partial policy generators are provided instead, which are set as an extra property of partial policy
generators. A lower bound and an upper bound of such timescales t,qunds- Min, thounds. Max are
also provided.

The algorithm consists of two main parts: constructing the MMDP following the recursive definition
in Sec. 2.T]and solving each MDP in it from the top most compressed MDP down til the bottom finest
original MDP.

For completeness, we also add the error detection mechanism in Alg. [T according to the criteria
{thresh'}/| = {(ernax,Trlnax,vfnin)}lL:/l, where for I-th level MDP MDP!, N! _ is the upper
bound on the number of allowed iterations before convergence; 77, is the maximum number of
steps per episode upon convergence, averaged across episodes upon convergence from possibly
multiple initial states, and T, is set to +oco for non-episodic MDP! by default; v! . is the lower
bound for the value of initial states, possibly averaged across multiple initial states. Meanwhile, we
record the corresponding actual values as {stats'} = {(N!, T?,v!)} when the student solves MDP!
for [€ [L']. If for some | € [L'], one of the actual values are out of the three thresholds in thresh’,
then the output error message err is {exist : 1,level : [}, indicating that there is an error occurring
at level [, so the algorithm stops there. Otherwise, all levels of MDPs are solved successfully, and
the output error message err is {exist : 0, level : 1}, indicating that there is no error across all levels
and the algorithm finishes on level one.

D.3 ALGORITHMIC REALIZATION WITH TRANSFER LEARNING

Now we incorporate transfer learning into the algorithmic realization discussed in the previous
App. After incorporating transfer learning into Alg. [T} we have the following Algs[5H6] See
Sec. 4| for the description of the algorithms.

D.4 EXPLANATION ON THE CONSISTENCY OF OUR ALGORITHM

One main reason behind consistency of our approach is that even in non-benign regimes, where we
may encounter scenarios in which the policy learned at a higher-level leads to a bad initialization
when pushed down to the next finer level, and therefore at the next finer level we need significant
refinement in order to obtain the optimal policy. Even in such a scenario, the MMDP solver could
still converge to the optimal policy of the original MDP as long as the MDP solver applied to the
next finer level, started from this bad initialization, converges to the optimal policy as the number of
iterations goes to infinity.

32

Under review as a conference paper at ICLR 2026

Input: MDP: the original MDP with difficulty L; {gl}f:';l: the first L/ — 1 elements of sequence

= = T T R S

of generator sets; tpounds: bounds for the timescale of any policy; {rl}le,l: negative rewards
on choosing actions in (A")®*d for [€ [L']; solver_init” : initial value function and policy for

the most compressed MDP MDPL'; {solver,endl}lelz stopping criteria for solver of MDP' for
I € [L'], possibly including error tolerance of solved value function or maximum number of

iterations; {thresh’}% : thresholds for error detection on MDP! for [€ [L/].

Initialize: MDP' = MDP, solution' = NA for [€ [L'], stats' = NA for [€ [L/]
forl=1,2,---, L' —1do
A*! = generate(MDP!, GY)
MDP!*! = compress(MDP!, Al pIF1)
end for
forl=L" L —1,---,1do
(solution’, stats!, err') = Solve MDP(MDP!, tpounds, solver_init!, solver_end', thresh')
if err! .exist = 1 then ,
return ({MDP'' }/;_ | {solution’ }1_,, {stats’ }5_,, {exist : 1,level : 1})
end if
if { > 1 then
Compute solver_init'~! from solution' and G!~1 using equation
end if
end for
return ({MDP'} 2 {solution} X, {stats'} 2|, {exist : 0,level : 1})

Output: {MDP'}F | {solution'}} |, {stats'}% : the MMDP, the solutions of the MDPs in it, and

summary of statistics when solving the MDPs; err: error information.

Algorithm 1: Solve an MDP from top to bottom: ({MDP'}Z" | {solution'} X |, {stats'} 2 |, err) =
solve_MMDP(MDP, {gl}f:';l, thounds; {1, solver_init”, {solver_end'} |, {thresh'} ')

Input: MDP: the MDP; G: the partial policy generator set, with domains of generators in it being

O 0 N N W ke W =

10
11

617@27"' 7®M~

if G = @ then
G =MDP.A

end if

partitions_list = 1ist_all_partitions(MDP.A,G)

nm=go

for each partition € partitions_list do
Generate policies Il using outer product as in equation [2.1]
Set timescales of policies in IT,ey as Ming|, epartition{9/7-timescale}
Add I,y to I1

end for

A=TU (I}, (6, Uas?) —TI¥_,0,,)

Output: A: the action set.

Algorithm 2: Generate the action set A= generate(MDP, G)

33

Under review as a conference paper at ICLR 2026

Input: MDP: the finer MDP; .Z: the action set for the compressed MDP; r: negative reward for

O 0 N N kR W N =

s

choosing actions in (A)°* within the compressed MDP.

MDP.S = MDP.S
MDP.SM = Mpp. SNt
MDP.S = MDP.Se
MDP. A=A ~
MDP.SA = MDP.S x A
for each m € A — (A)°"d do
Compute matrix P7,P7..q using equation[D.T} equation
Solve for matrix MDP.P(-, 7, -) using equation
for each s’ € S do
Solve for vector MDP.R(-, 7, s') using equation with r! = MDP.R(-,a,-) for any
a € Aend
Solve for vector MDP.T'(-, 7, s') using equation
end for
end for ~
Set P(s,a,s") = 1y (s'), R(s,a,s') =7,T(s,a,s') = 1 forany a € (A)°"d

Output: MDP: the compressed MDP.

Algorithm 3: Compress an MDP MDP = compress(MDP, A,)

Input: MDP: the MDP to be solved; tpounds: bounds for the timescale of any policy; solver_init:

~N O B W =

=)

initial value function and policy for MDP; solver_end: stopping criteria for solver of MDP;
thresh: thresholds for error detection on MDP.

Initialize: N = 0, solution = solver_init, solution, ., = solver_init, err.exist = 1

while 0 < N < solver_end. Ny .y and ||solution.V — solutiong,ey.V|loo > solver_end.e do
solutiongy e, = solution
solution = MDP_solve_update(MDP, solution)
N=N+1

end while

Update the distributions of solution.7 at MDP.S®™ to be 1 {qensy ()

stats = {N : N, T : 400, v : Zsesmh(i(;lazf‘ionhv)(s)}
if N < thresh.Npax and | (solution.V — solutiong,ey.V) |gui |looc < solver_end.e and
stats.V > thresh.vpin, and tpounds.max > thounds-min then
((solution.7).T, err) = compute_timescale(MDP, solution.m, thounds, thresh. Thax)
stats. T = (solution.7).T
end if
if err.exist = 1 then
solution = NA
end if

Qutput: solution: the solution of MDP, possibly containing a learned policy and a value function

associated to a learned policy; stats: summary of statistics when solving MDP; err: error infor-
mation.

Algorithm 4: Solve an MDP (solution, stats, err) =
Solve_MDP(MDP, thounds, Solver_init, solver_end, thresh)

34

Under review as a conference paper at ICLR 2026

Input: {MDP Lyn}ILJ""‘“"”L {hint Lyn}f""‘“"m : a series of MDPs ordered by difficulty as well as

=1,n=1’ =1,n=1"
correspondingly a series of hints provided by the teacher with detailed descriptions as given
in Alg. @ thounds: bounds for the timescale of any policy and skill; {solver_end Lm}f:}";ﬁ:ﬁ:
a series of stopping criteria for solvers of MDPs in the MMDP constructed from MDPy, ,, for

L € [Lyax),n € [np]; {thresh L,n}f":“]’:;:ljl: a series of thresholds for error detection on MDPs
in the MMDP constructed from MDP, ,, for L € [Linax],n € [nL].
Initialize: Skills = {id}
for L=1,2,---, Lyax do
forn=1,2,--- ,n; do
(solutiony, ,,, erry, ,,)
= learn MDP(MDPy, ,, hintz », thounds, Solver_endy, ,,, threshy, ,,)
5 end for
6 end for
Output: {solution L,n}éﬁf;::p {err L,n}é‘;j’j;;’;l: the solutions of the MDPs in the series of

EESVEI S TS

MMDPs constructed from {MDP L7n}£$?}g1 and the series of error information.

max,L max," L

Algorithm 5: Learn a curriculum ({solutioan}fz1 nzl,{errL,n}i:1) =
learn_curriculum

({MD Prn } ézai):;ln:Ll) {hintL,n } 22?;;21 s tbounds; {SOlver—endLm } EET:;ZL:Ll) {threShL,n } ézai):;ln:Ll)

Input: MDP: the original MDP with difficulty L and number n; hint: hints provided by the teacher
with five fields: the first field G of hint helps the student derive action sets in compressed MDPs,
which contains a sequence with length L’ — 1 of skill-embedding generator pair sets; a second
field » contains a sequence with length L’ of negative rewards for choosing actions in (A')e?d
for | € [L']; a third field skill 7 and a fourth field embedding e.omp help the student compose
the initial policy for the most compressed MDP MDPL/; the last field egecomp helps the assistant
extract out new skills from the optimal policies for the MDPs, which contains a sequence with
length L' of embeddings; tpounds: bounds for the timescale of any skill; {solver,endl}lelz
stopping criteria for solver of MDP! for I € [L/]; {thresh'} . : thresholds for error detection on
MDP! for [€ [L'].

Initialize: MDP! = MDP

i
2fori=1,2,---, L' —1do

3 Gl=o

4 for each (g, F) € hint.G(l) do

5 if g # NA then

6 G!' = G' U compose((g, E),MDPL.SA)
7 end if

8 end for

9 Al = generate(MDP!, G)

1o MDPHL.SA =MDP.S x AL, Mppit! difficulty = L — [

11 end for

12 if hint. 7 # NA and hint.ecomp 7 NA then

13 solver_init.m = compose (hint.7, hint.ecomp, MDP L’ SA)

14 else

15 Set solver_init.7 to be the diffusive policy with uniform distribution at each state
16 end if

17 ({solu‘cion}lL:/17 ~, ~, erT)

= solve_MMDP(MDP, {gl}f;l, hint.r, solver_init, {solver_end'}*' |, {thresh'}*')
18 forl=1,2,---,L do
19 if (hint.egecomp) (1) 7 NA and solution’ # NA then

20 Skills = Skills U {decompose(solutionl.ﬂ, (hint.egecomp) (1), thounds) }
21 end if
22 end for

Output: the solutions {solution}lL:'1 of the MDPs in MMDP constructed from original MDP and
the error information err.

Algorithm 6: Learn an MDP ({solution}%, err) =
learn MDP(MDP, hint, tpeunds, {solver_end' }2 | {thresh'}2))

35

Under review as a conference paper at ICLR 2026

E ANALYTICAL REALIZATION OF ALGORITHMS APPLIED TO OUR EXAMPLES

We conclude the appendix with the analytical realization of Algs[5H6|detailed in App. applied
to our examples. We organize this section in the following way: for each example, we first provide
inputs (problem settings and MDP definitions etc.) and how different objects (policies, skills, em-
beddings, etc.) should be constructed when using our algorithms detailed in App. then in the
last section of each example, we describe how the algorithms construct and discover these objects
as the algorithms progress, demonstrating their correctness.

E.1 MAZEBASE+

E.1.1 GEOMETRIC CONFIGURATION AND OBJECT STATES

We start with the geometric configuration of this example. With notations as in the previ-
ous example of navigation and transportation with traffic jams, we have a two-dimensional grid
world Q = [z1,22] X [y1,¥2) € N x N and a set of actions in different directions, Ay;, =
{(1,0),(0,1),(-1,0),(0,—1)}. This grid world contains some objects, including blocks, three
doors, three keys, and a goal. To show the effects of transfer learning in Box [3] Fig. 2| we assume
the initial locations of all the objects (including the blocks, keys, doors, and the goal) are fixed to
certain locations. All the state spaces of the MDPs in Box [3]and Box [T3]also satisfy the constraints
given here unless specified:

* Sdoory; Sdoorss Sdoors € 2, the locations of door;, doors, and doors respectively,
satisfy the following conditions: Sqcor,(1) < Sdcor; (1) = Sdcors(l), Sacor; (2) <
Sdoors (2) < Sdoors (2)s and Sdoorl(l) S {xla x1 + 37 e }7 Sdoors (2) S {yl; Y1 + 37 e }
(e.g., we may take Sqoor, (1) = 10, Sqoor, (2) = 4).

* the set of locations of the blocks Q1 cxs is given by: Qpi1ocks = [#1, 2] X {Sdoor,(2)} U
{Sdoorl(l)} X [yhy?] - {Sdoorlvsdoorfm Sdoor3}~

* the blocks together with the doors separate the remaining grid points — Qpiocxs —
U?:lsdoori into four rooms: roomj;, rooms, ---, roomy, with corresponding regions
Qroomy = {w € Q : w(l) < Saoor; (1),w(2) < Sacors (2)}, Qroomy, = {w € Q :
wW(1) > Sd0or;, (1),w(2) < Saoors (2)} Qroomg = {w € O : w(l) < Sqoor, (1),w(2) >
Sacors(2)}, Qrooms = {w € Q1 w(1) > Sgoor; (1), w(2) > Savor,(2)}-

* Scur € 5 ocks = 2 — Qp1ocks 1 the current location of the agent, and the agent could
not be at the location of a door unless the door is open.

® Skeyys Skeyss Skeys € 25100k are the locations of key;, keys,, and keyg respectively, and
key,; could only open door; fori = 1,2,3. Sgoa1 € Q) ooxs — US_1 Saoor; is the location
of the goal object.

We would like to comment here that our method actually does allow the locations of the keys and
goals to change within the above constraints. To be more precise, with another new embedding to
extract a more general skill following our framework, with the skill further abstracting out the logic
of navigation within a single room while avoiding obstacles along the way (without assuming much
on the geometry of the grid world/blocks), even the geometry of the grid world or the locations
of blocks could be changed completely, the only necessary and sufficient conditions is that all the
rooms are “geodesically complete” in the sense that each contains at least one shortest path between
any two points, so that the agent could at least find one shortest path in the usual sense. We consider
here a simpler setting which suffices to convey our message.

For i € [3], the state variable 5., € {0,1} indicates whether dooxr; is open or not respectively
(1=open); the state variable s .\, indicates whether the agent has key; (1=the agent has key,); the
state variable sq4.n indicates whether the agent has in hand the goal object (1=the agent has goal).
In particular, if sp;cx, = 1, then syey, = Scur and if spicx, = 1, then s4021 = Scur. Without
losing generality, for objects in {key,, keys, keys, goal} not initially picked up by the agent, we
assume initially syey,, Sxey, € rooms Skeys € Lroomss aNd Sgoa1 € Qroom, -

For i € [3], the agent can open door; by selecting the action open if the agent has in hand key;
and the agent is next to door;, meaning that sc,, € N (Sqoor;) := {8 : ||$ — Sacor;|[1 = 1}; the
agent can pick up key; by selecting the action pick if the agent is at the location of key,. The

36

Under review as a conference paper at ICLR 2026

agent can pick up the goal by selecting the action pick if the agent is at the location of the goal; the
agent is allowed to pick up multiple objects in {key;, key,, keys, goal} in a single time step.

For ease of notation, we let sxey := (Skey,sSkeyys Skeys)s Sdoor ‘= (Sdoor;sSdoorssSdoors)s
Spick ‘= (spickl » Spickys Spick3), and Sopen = (Sopen1 »y Sopeny s Sopen3)- We also denote Qroom =
Qroomy s Skey 1= Skey, > Sdoor := Sdoorys Spick := Spick,s Sopen ‘= Sopen, - Besides, in the definition
of MDP3 1, we let {2(s) denote the set of the agent’s all the possible locations given the objects’ lo-
cations and states determined by the current state s, i.e., for s = (Scur; Spick; Sopens Sdone) € S3,1,
Qs) == Q1 oeks \ {Sacor; © Sopen, = 0,1 < i < 3}. Consequently, we add the restriction
that s, € Q(s), meaning that if a door is closed, then the agent could not be at the location of
that door (nor of a block, of course). As a summary, Table E] lists all the parameters values in the
highest-difficulty MDPs throughout this example. For the rest MDPs in this section, MDP1 ; is ex-
actly the same as MDPJ2" (including applicable parameter values) in the example of navigation and
transportation with traffic jams; all the other MDPs use the same parameter values as in the corre-
sponding highest-difficulty MDP: for instance, MDP9 ; and MDP 5 use the same parameter values as
in MDP3 ;. Fig.[T|plots the geometric configurations of the grid world and the objects in it for these
MDPs described in Box [I] and detailed in App. [E.1.2]

Finally, recall that in the definition of an MDP, the set of initial states of the agent, Sinit_is set to be
the set of states starting from which the agent can reach the goal; in this example starting the agent
in 8™ means that the locations of the agent and keys, and the status of the doors are such that the
puzzle is indeed solvable.

Table 1: Parameters in the MazeBase+ example

T1|T2|T3|Y1|Y2|Y3|Skeyy | Skeyqy Skeys | Sdoory | Sdoors | Sdoorg | Sgoal | Ps RO T0
MDP3 | 1 |15]10] 1|8 | 4 [(1,3)] (1,1) | (1,8) |(10,2)] (9,4) [(10,5)](15,8)[0.9/10%[—10
MDP% | 1 |15]10] 1|8 | 4 [(1,1)](15,1)](15,8)](10,3)[(11,4)[(10,5)| (1,8) |0.9]10%|—10
MDPY, | 1 |15]10] 1|8 | 4 [(1,3)] (1,1) | (2,1) |(10,2)] (9,4) [(10,5)|(15,8)[0.9/107|—10

E.1.2 FORMAL DEFINITION OF MDPSs

The formal definitions of these MDPs are as follows, with the definition of MDP; ;, which is ex-
actly MDPg" . in the example of navigation and transportation with traffic jams, postponed to the
forthcoming App. [E.2.T] when we introduction the example of navigation and transportation with
traffic jams: MDPg 1 := (82’1,8‘2“7‘{, Sg‘jf, Az 1, P21, Rs1,T2 1) models navigation through €2 while

avoiding blocks assuming all the doors are open:

82,1 1= {(Scur; Saest) © Scurs Sdest € L1ockst = Doroeks X Poiocks »

Sémf i= {(Scur; Saest) € S1,1 ¢ Scur # Sdest }

S5 :={(Scur, Saest) € S1.1 Scur = Sdest } 5

Ag 1 = Agir U{a®},

P21((Scurs Saest)s @5 (8Curs Stest)) (E.D
= Doy (8heee) X [[1 = Tag, (Scur +a)] X T, 3 (5hor)

+ 1o, (Seur +@) X [P X Lotay (Stur) + (1= ps) X sy (stas)l]

Ro1((8curs Saest)s @, (Sturs Stese)) 7= Ro X Lg 3(stur) +70 % [1 = Tga 3(stu)],

F271<(SCUI‘7 SdeSt)’ a, (S/cuw Séest)) =1.

In the above, the teacher sets the following quantities: 0 < ps < 1 (set here to 0.9), the
probability for an action to succeed in the intended movement; Ry > 0 (set here to 10000),
a large positive reward; 79 < 0 (set here to —10), a small negative reward. For MDPo o :=

37

Under review as a conference paper at ICLR 2026

(82,2, 855, 85", A2, P22, Ra 2, T 2) related to picking up a key and opening the door, we have

S2.2 1= {(Scur, Spick, Sopen) ¢ Scur € Qroom, Spick, Sopen € 10, 11} = Qroon x {0,1}
S8 = {(Scurs Spicks Sopen) € S22 7 Sopen =0}, S8 = {(Scur, Spick, Sopen) € S22 7 Sopen = 1},
Az = Agi, U{pick,open,a™}
P2,2((8cur, Spick, Sopen), a, (Slcuu S;ick7 S/open))
l{splck}(séick) X l{sopcn}(sgpen) X APs X 1o o0n (Scur +a) X]l{scur+a}(s::ur)
1 = ps X Loo (scur +@)] X Lo,y (8} Jif a € Agir

]]'{Scur}(slcur) X {1 {open} (@) %]]'{spick}(S{DiCk)
X [Ps X Lnr(suoon) (Scur) X Liay(spicn) X L1y (Sopen)
H[1 = Ps X L(sgonn) (Scur) X L1y (Spick)] X Lisopen} (Sopen)]
F1piexy (@) X Lo,y (Sopen) X [Ps X La,y(Scur) X Liny(spick)

+[1 = ps X Tgs,,3 (Scur)] X Jl{spmk}(s;ick)]} , otherwise
R 2((Scur, Spick, Sopen), @, (s::urv S;)iclm s’open)) = Ro X]]‘{1}(Slopen) +7ro x [1—]]-{l}(slopen)])
F2,2((8cur, Spick, Sopen),a, (Slcuu Slpick? S/open)) =1
Now we move to the target MDP of difficulty 3. For MDP3; =

(83,178}9,?{, Sg‘jf, As1,P31,R31,I'31) related to picking up the goal, we have, for
5 = (Scur, Spick, Sopens Sdone) (and similarly for s”)

Ss.1:={s},

Sémi = {s € 83,1 Scur & Qroomas Sdone = 0} U {s € 83,1 : Sopen; = 1, Saone = 0},

ngli = {5 € 83,1 : Sa0ne = 1},

Az = Aai, U {pick, open,a™},

Ps1(s,a,s")
]l{spick}(slgiCk) X]l{Sopen}(Sgpen) X]]'{Sdone}(sélone)

X [ps X Lags) (scur + @) X Lis,, +ay (Seur)
+ (1= ps X Logs) (scur +a)) X Lo,y (500)] Jifa € Ag,

Loeny (Stur) X Dspia) (Spiex) X Lsgone) (Saone)

X {(1 7p5) X]]‘{Sopen}(sgpen)

3
+ps X H [HN(Sdoor,;)(Scur) X 1{1}(5plck7‘,) X 1{1}(5;peni)
i=1
)+ 1-]]‘N(Sdoori>(8cur) X]]‘{1}(813151%)} X]]'{Sopen,i}(sépeni)}} ,if a = open”’

]]'{SCur}(S;Ur) X l{sopen}(SgPen)

X {(1 _ps) X]l{spick}(slPiCk) X Jl{sdone}(sldone)
3

+ps X H I:Jl{skey,i}(scur) X 1{1}(8;iCki)

i=1
+]l{Skeyi}c(sCur) x]l{spicki}(slpiCki)]
X []l{sgoal}(Scur) X 1{1}(8;0%) +]l{sgoal}c (Scur) X I{Sdone}(séone)]} 7if a =pick
R371(S7 a, S/) := Ro X]]-{1}(8£ione) + 7o X 1{1}“ (séone)v
Fg,l(s, a, S/) =1.

(E.2)
We use cur, dest- in Fig. |I| instead of scyr, Sqest - for simplicity, and similarly for other objects,
here and elsewhere. Here the teacher has the role to set all the parameters of the problems, including
the reward for retrieving goal or the negative reward for taking one extra step without making
progress.

38

Under review as a conference paper at ICLR 2026

E.1.3 COMPRESSED MDPs

For MDP,;, the student constructs the second level MDP MDP%1 =
(52,17512rfi1ta Sg?fla H%,u P22,17 R%,lv F%,l)’ with P22,17 R%,p Fg,l as follows:

PY1(s,(m31)0,8") = Liay)o(s.00} ((d2,1)a (5. 8))
33,1(57 (W% 1)975/> = 7’%,1 + 1o X [E[X | X ~ NB((d%,l)e(sasl)va)] + (d%,1)9(575/)] , (E3)

F%,l(sv (7‘(‘%71)9, 5/) =1,
where r} | < 0 is a negative reward set by the teacher (here equal to —10); (d3 1)g : {(s,5') : 5,5" €
82,1} — N U {+00}, defined similarly to (d}), is a parametric family of distance functions
parametrized by 0 € @%71. Given the parameter 6, the agent’s starting state s and current state s’,
the value of (dj ;)a(s, s’) incorporates the information of (73 ;)¢ by defining the infinite sequence
{8:}32, inductively starting from sy = s: for 7 € N, there exists a unique action a € Ail such that

—=hav

(73.1)6(si,a) = 1 because Ty, is assumed to be deterministic, and we let

SUDges, {5} 12,1(8i,a,8) P2a(si,a,s) <1
Si+1 =
S; , otherwise
Then, we set (dj ;)g(s, s") to be the smallest i € N such that s; = s if there exists such an i, and
set it to be +oo otherwise. Consequently, we denote (d3 1)g(s,0) := sup{(d3)a(s,s') : s' €
52,1, (d%71)9(8, S') < +OO}

For MDPs,, the student constructs the second level MDP MDP%2 =
(S22, S5, 85", 113 5, Py, R3 5,13 5), with P35, R3 5, T3 , as follows:
2 1 X
PQ,Q(S: (7"2,2)975)

]]‘{Scur}(sf:ur) X {l{open} (9) X]]‘{Spick}(slpick)
X [ps X]]‘N(Sdoor)(scur) X]]'{1}(8P1Ck) X]]'{1}(S,open)
1= Ps X In(sgonn) (Seur) X Ty (spici)] X L,y (Stpen)]
- +]l{pick}(9) X]l{Sopen}(S/Open) X [ps X]l{skey}(scur) X 1{1}(S;ick)

+[1 —Ps X]‘{Skey}(SCUr)} X]]'{Spick}(sgick)]} ?lf >‘ =
X / . (E.4)
Lias (5,001 ((d2)a(s, 8)) A =7
R%Q(Sa (775,2)975/)
Ry % ﬂ{l}(slopen) “+7rg X [1 — ﬂ{l}(sgpen)] ,if A=«

r%’z + 79 X [E[X | X ~ NB((di?)g(S, s'),ps)] + (d%}z)g(s, s’)] JifA=4
F%,z(sv (7721,2)37 5/) =1,
!

where s = (Scur, Spick, Sopen)s 8 = (Shups Shick Shpen)i T30 < 0 is a negative reward set by the

teacher, and here it is set to —10; X ~ NB(r,p)(r € Z*,0 < p < 1) means X follows negative
binomial (or Pascal) distribution with r successes and success probability p, with the probability

k+r—1 r —p)XT
LT A=)k (k> 0). 50 E[X | X ~NB(r,p)] = 47227,

(d32)e = {(s,s') : 5,8 € Sa2} — NU {400}, is a parametric family of distance functions
parametrized by 6 € (9%72) 3. Given the parameter 6, the agent’s starting state s and current state s’,

mass function f,,(k; 7, p) = (

the value of (d3 ,)s(s, s') incorporates the information of (w%,z)g by defining the infinite sequence
{s:}$2, inductively starting from sg = s: for ¢ € N, there exists a unique action a € A%B such that
(73.9)0(si,a) = 1 because ™" is assumed to be deterministic, and we let

SUDses, ,—{s:} £2,2(80:0,8) Paa(sia,s;) <1

Si41 =
Si , otherwise

39

Under review as a conference paper at ICLR 2026

Then, we set (d} 5)g(s, s') to be the smallest ¢ € N such that s; = s’ if there exists such an i, and
set it to be +oo otherwise. Consequently, we denote (d 5)s(s,0) := sup{(dj,)a(s,s’) : s €
82,2, (d39)a(s,s") < +00}. Notice that if 7°*" is not deterministic, then the sequence defined here
is stochastlc makmg the calculations slightly more complicated.

Now we move to the target MDP of difficulty 3. For MDP3 1, the student constructs the second level
MDP MDP} | = (831, S, Ssnd TIE |, P7,, R3,,T3), where P§,, R}, and T'3 , are as follows:

Pii(s, (m31)5,5) (E.5)
Loy (Stur) X Lopuged (Spack) X Loy} (Shone)

X{(l - ps) X Jl~{Sopex1}(5::';>en)
3

+ps X H []]'N(Sdoori)(s(:ur) X 1{1}(spiCki) X]l{l}(s;peni)
=1
+[1 -]]'N(Sdoor,i)(s(:ur) X]]'{1}(SpiCki)] X]‘{Sopcnl}(‘sépeﬂi)]} ’lf 0= open

]l{scur}(slcur) X]l{sopen}(‘S;pen) X {(1 _pS) X 1{.9Pick}(8;ick) X]l{sdone}(sz/jone)
3
495 X [[Loy, 3 (seur) X D1y (Spici,) + Liaey, ye(Seur) X Lo,y) (Spick,)]

=1
X [L{sg0m3 (Scur) X L1y (Stone) + Lsgon e (Sour) X Lisynnd (Saone)] } ,if 0 = pick
1{((1;1)9(3,0)}((d§,1)9(57 s')) JdfA=3

(E.6)

Rg,l(& (W§,1)£75,)
Ry x 1{1}(5:10%) +7ro X 1{0}(3210%) A =«
731+ 70 % [E[X | X ~NB((d31)a(s,s"),ps)] + (dz1)a(s,)] ifA=8
Fg,l(S» (7F31,,1)97 3,) =1,
where (dj ;) is defined similarly to (d} 5); r3 ; < 0 is some negative reward set by the teacher and
here it is set to —10.

Then, the student constructs the third-level MDP MDP3 | = (Ss,1, S, 8§ 113 |, P§,, R} |, T3).
where P |, R |, Fil are as follows:

P51(s, (73.1)0 l{a,p},8") = 1{(d§71)9(s,0)}((dg,l)g(sv),

Rg,l((773 1) ‘{a B} S) Ry x :I]-{l}(SZione) +T?2>,1

+ 730 X [L(0,400) ((d5,1)0 (8, 8))1) + L(0,400) ((d5,1)e (s, 5))3)]

+ro x [E[X | X ~ NB(Y_((d31)6(s,8))i, ps)] +Z ((d5.1)e(s,s"))i]

i=1

Fg,l((7T3 1) ‘{a ,8}7) - 17 (E 7)

where rg’l < 0 is some negative reward set by the teacher, and here it is set to —10; (d§71)9

{(s,5) :5,5' € S31} = N*U{+00} generalizing (d3 ;) is a parametric family of vector distance
functions parametrized by 6 € @%71. Given the parameter 6, the agent’s starting state s and current
state ', the value of (d3 ;)(s,s’) incorporates the information of (73)¢ |1a,53 (6 € ©3,) by

defining the infinite sequence {s:}2, inductively starting from sy := s: for ¢ € N, there exists a
unique action 7; € A3 ; such that (71'3 1)6 lfa,8y (84, m) = 1, and then there exists a unique action

a; € Aé 1 such that 7;(s;,a;) = 1 because 7" is assumed to be deterministic, (a; = a®"® if
m; = a®"?), and we let
o J5UPsess (s} P31(si,ai,5) ,P31(s4,a4,8) <1
= : i .
s Si , otherwise

40

Under review as a conference paper at ICLR 2026

Then, we find the smallest iy € N such that s;, = s (we set (d3,)a(s,s’)
to be +oo if there does not exist such an ip), and we set (d3;)e(s,s’) to be

(E120" Ly, 1 (1) 020 Lmpecy (1) i L, 3 (i),
ZE":Bl Iir,.3(m)) for 6 = (keyy,doory)(= 1,2,3) and we set (d3;)g(s,s’) to be

io—1
0 Ly (m),
St T3 (mi),0, St Igr.,..3(m)) for & = (goal,goal). Then, since for any fixed s,

there is a natural ordering between any two elements in {(d3 ;)g(s,s") : s’ € S3.1,(d3 ;)e(s,s") <
/

400} induced by ordering on N, we still denote (d3;)a(s,0) := sup{(d3,)a(s,s’) : s’ €
Ss3,1,(d31)a(s,8") # +00}.

E.1.4 (PARTIAL) POLICIES AND (PARTIAL) POLICY GENERATORS
For MDP3 1:
931051 = {(m3)e : 0 € O}, } is as follows:
921(6) = (m2.)0 (E8)
and here (73) : SAéﬁl —[0,1] (6 € ©3 ;) are as follows:
(m2,1)0((Scur, Saest), @) = (Tamee © (€2,1)0)((Scur, Saest), @) = Tagmee (Scur, 50,) -

For MDPg o:

(W%72)§((Scur7 Spick; Sopen)a a)
{ﬂ.nav (Scura 59, CL) alf T (Scura 565 Sdoor — Scur) =0anda€ Adir U {aend}

L{genay(a) ,otherwise

(E.9)

Here, the navigation skill 7" is extracted from MDP ;. One comment here is that (w%z)ﬂ takes

key
the action a*"“ with probability one at states satisfying s.,» = Skey, telling the agent it could stop
the current policy because it has reached the current subgoal and should move on to the next one.
This shows why forcing a policy to satisfy 7(s,a) = Ligena}(a) for any s € S is important in

the construction of MMDPs and policy transfer.

end

Another more subtle comment here is that there is a little inconsistency between (77%)2)[3 and

door
its semantic representation “go from cur to door” in Fig. El, since (ﬂ%’z)goor actually stops at
N (8400) instead of stopping at S4.0r, because the door may be closed initially. The way this was
realized is that we ruled out the final step of reaching Sgo0 from (wé,Q)goor generated from the
policy generator (9%,2) 3, and replaced it by taking the action a°"“ with probability one at states
satisfying Scur € N (Sqoor). This is another important instance showcasing the necessity of in-
corporating the special “a®*%”. This applies to both (w;g)gw here and the following ingredients
related to “going to a door” throughout all the examples.

7T§727*(S, (ﬂ-%ﬂ)g) :]]-{(90,*(8))\0.*(5))}((aa)‘))) (E.10)
with
(00,4(8), Ao, (5)) € (E.11)
arg max max E:s;.. [(R§,2)0,7|So =s5,A: = (71'%’2);\2 forany0 <t <71 —1].

(60,70) (01:21)5 (071,27 1)

7r3,2,*((5@1&Spickasopen)7a)

= L{13(Sopen) X L{genap (@) + Loy (Sopen) X Lgop(Spick) X [Lgs.e,}(Scur) X Li(nt)

a
,2/pick

(a)

41

Under review as a conference paper at ICLR 2026

+ La e (Seur) X Lyoy g 1(@)] + Lgop(Sopen) X L1y (spici) (E.12)
X [N (s00) (Scur) X L)90} (@) + D (sgo0r)e (Seur) X Ly yo 3(a)] -
7T2,2((5cur73pick750pen>7a) (E13)
]1{0}(5pick) X]l{skey}C (Scur) X fnav(scura Skey> Cl)
+]]-{1}(3pick) X]]-N(sdoor)f(scur) X ﬁnav(scur’ Sdoor; a) Jifa € Agir
-]1{1}(Sopen) X l{aend}(a) +]l{o}(SOpen) (E.14)
X []]-{0}(8pick) X]]-{skey}(scur) X]]-{pick} (a)
+ 113 (Spick) X Ln(sgon,) (Scur) X]]-{open}(a)} , otherwise
For MDP3 1:
(95.1)a + (©31)a = {(751)§ : 0 € (©31)a} is defined as
(93,1)a(0) = (73,1)5 » (E.15)
and here (73 ;)5 =id o (e3,)§ = (e5,)§ (0 = pick,open).
(93,106 (05,108 = {(w51)g : 0 € (O41)5} is defined as
(9%,1%(9) = (7T§,1)57 (E.16)
and here (73) S.A3 1 — [0,1] for 0 € {key,, keysy, keys, goal} are as follows:
(Wé,l)g((scum Spicka Sopena 5done)> CL) :(ﬁnav o (e§71)5)((5cur7 5pick7 Sopen)7 a)
[T (5cur, 50,a) Sifa € Agir U {a®"%}
o ,otherwise ’
(7‘(31)’1)'3 : &A;l — [0,1] for # € {door,doors, doors} are as follows:
(W§71)g((scur; Spick; Sopen) 5done)7 CL)
= (ﬁnav o (651571)5)((5cur7 Spicks Sopen)’ a)
o {ﬂ'nav(scur; 50, a) alf fnav(scury 56,50 — scur) =0anda € Adir U {aend}
~ Loy (a) , otherwise -
931 l{apy: ©31 = {(731)6 |{a,p}: 0 € ©3 1} is as follows:
931 lta.8y (0) = (731)6 l{a.pys (E.17)
and here for 6 = (key;, door;)(i = 1,2,3), (75 1)¢ |{a,8}: S.A?),’1 — [0, 1] are as follows:
(7T3 1) ‘{a B} ((Scur7 Spick; Sopen) Sdone), (l)
= (ﬁconcat (eg 1)9)((80\11?, Spiclh Sopen, Sdone), (l)
fconcat(l{skey }(scur) 1{1}(SPle) X]lN(Sdoori)(SCur)7 SPiCki7 Sopeni77T9) 7if a = (ﬂ—?lm,l)g
7concdt(]—{8key1 (Scur)7 I]-{l}(splck) X]lN(Sdoori)(SCur)7 Spicki7 Sopen”ﬂ-key) alf a = (ﬂ—%,l)feyi
= —Concat(l{s){eyz (Scur)]]-{1}(SpleL) X]l/\/'(sdoori)(scur)7 Spick” Sopen”ﬂ-door) ,lf a = (ﬂ-%,l)goori)
7concat(]l{8key1 (Scur)]].{1} (Splckl) X]].N(sdogri)(scur)7 Spick; s Sopen; s a)) ifa= aeﬂd
0 , otherwise

for 6 = (goal,goal), (73 1) |{a,8}: $A§,1 — [0, 1] is as follows:

(77'%,1)9 |{a,6} ((Scur7 Spick; Sopen) Sdone)a CL)

42

Under review as a conference paper at ICLR 2026

= (ﬁconcat ())((Scur7 Spick; Sopen) Sdone); a)

7concat(]]-{sgoal}(3cur)7]]-{1}(5done) X]]-{sgoal}(scur)v Sdones Sdone> 770) 71f a = (77'%71)3
_ Concat(]]-{sg()al}(scur)v IL{1}(solone) X IL{sqoal}(scur)a Sdones Sdone) 71—key) 71f a = (,/T;,l)goal
Concat(l{sgoal}(scur)7 I].{l}(sdone) X I].{sgoal}(scur)v Sdone) Sdone) a) 71f a=a*"

0 ,otherwise

751+ ((Scur, Spick, Sopen, Sdone), @)
= L1} (Saome) X 1 qqensy (0)
+ []-Qroom4u{door3}(scur) +]]-Qroomgu{doorQ}(scur) X 1{1}(Sopens)
F L0, 00n, Uroony Uldoors } (Seur) X L1} (Sopeny) X L1} (Sopens)] X Li(nz g0} (@) (E.18)
F (L, g0ng Udoora} (Seur) + 1, 00n; URLoomy U{doors } (Scur) X 11} (Sopeny)] X Lo} (Sopens) X Ly(x2 1)door3}(a)

+]]‘Qrooml UQroomy U{doory } (Scur) X 1{0} (50pen2) X 1{(W§’1)door2 1 (a) .

Wg,l,*(saa)
= 1113 (Sdone) X Tyqgenay(a)
+ [19r00m4u{door3}(scur) +]lQrOQmSU{doorg}(scur) X T{1}(Sopeny) (E.19)
+ 10,000, Uoomy Ufaoors } (Scur) X L1} (Sopeny) X L1} (Sopens)] X (73 1) goa1 (5,)
F (L0, 00ng Ufacora } (Scur) F L, 00, URoony Ufdoors } (Scur) X L1} (Sopeny)] X L0} (Sopeng) X (73 1) doors (5, @)

+ L0y, URsoomy Ufdoor } (Seur) X Lo} (Sopeny) X (T3,1)doors (5, @) -

73,1,%(8, @)
= :l]-{l}(Sdone) X I].{aend}(a)

(L2 ooz (Seue) + Latnny Uaoora) (Seue) X L1y (Soper)

=+]]'Qrooml UQroomQU{doorl}(scur) X]]-{1}(8013602) X]]-{1}(8013603)] X Z (Wg,l)goal(sﬂr) X W(Sva)

TI'EH%}J
(E.20)
F (L0 00ny Ufaoor} (Seur) + L0 qon; Uoomy Ufaoor: } (Seur) X L1} (Sopen,)]
X Lo} (Sopens) X Y (73 1)doors (5,7) X 7(s,)
wené)l
2
+]lQrooml U(Zmomzu{doorl}(scur) X]l{()} (Sopeng) X Z (7r3,1)door2 (5777) X 77(5761) .
WGH%’J
For MDP} ;:
(ﬂ—g,l,*),((scur» Spick) Sopen, Sdone)a CL)
=]]-{1}(sdone) X]l{aend}(a)
+ []lﬂroom3u{door3}(5cur) +]lﬂroom4u{door2}(5cur) X 1{1}(50pen3)
+]]-Qroom2u{door1}(5cur) X]]-{1}(Sopen2) X]]-{1}(30pen3)
+ L0, 00m, (Scur) X L1} (Sopeny) X L{1}(Sopeny) X L{1}(Sopeny)] X 1{(”5,1);031}(@ (E:21)

+ (L0, 00n, Ufdoors} (Scur) + Lo, 0, Ufdoors } (Scur) X L1} (Sopens)

+ L0000, (8cur) X Liay(Sopeny) X L1y (Sopens)]

X 1{0}(Sopeng) X 1{(”3,1)éoor3}(a)

+ (10, 60n, Ufdoors } (Scur) + 10yon, (Scur) X 113 (Sopen;)] X Lo} (Sopeny) X Ly(x2 1)écoq}(a)
F Losoon, (Scur) X Loy (Sopeny) X Lz 1y 3(a).

43

Under review as a conference paper at ICLR 2026

E.1.5 EMBEDDINGS, EMBEDDING GENERATORS AND SKILLS

For MDPy 1:

B}, 05, = {(e5)g:0€0Oj,} with©} | := {door;,doors, doors, dest} is defined as
E31(0) == (ez,1)0 (E22)

with (e5 ;) : SA%J —{0,1} (f = doory,doory, doors, dest) being defined as

(6%71)9((5cur7 sdest)a a) = (Scurv S0, a) .

(€decomp)3 1 SA%}l — {(Scurs Sdest, @) © Scurs Sdest € 1 oexsr @ € Agir U{a®9}} is defined
- (ascomp)3 1 (Scur Saosc), @) = (Scue, Sasar @) (E.23)
Thav . (edecomp)il(SAé’l) — [0, 1] is as follows:
T (Scurs Saest, @) = T 1 4 ((Scurs Saest), @) - (E.24)
For MDPy »:
(E%’Q)g : (@%72)5 — {(6%’2)5 10 e (@%’2)5} with (@%,2)5 := {key, door} is defined as
(B32)5(0) = (e2)5 » (E.25)

with (€3 5)5 : {((Scur: Spick: Sopen)s @) € S22 X (Aqir U{a®}) ¢ scur +a # Sacor} C SAY, —
{(scur; Sg0a1,@) * Scur, Sgoa1 € L1gcksr @ € Aair U{a®}} (6 € (95,2)6) being defined as

(65,2)5((8cur> Spick) Sopen)a a) = (Scur> S0, a) .

(edecomp)g)Q((Scura Skey7 Sdoors Spick7 Sopen)a a)

(Lsueyy (Seur)s Ly (Spicx) X In(sueen) (Scur)s Spicis Sopen; M) - if @ = (my0)p
_ . (E26)
(Lsrer} (Scur)s Ly (Spicx) X In(sguen) (Scur)s Spicics Sopens @) othenise
Freoncat (eScur:3k6y7 €||Scur —Sdoor [[1=13 Spick; Sopen; a)
-]].{1}(sopen) X]]_{aend}(a,) + 1{0} (sopen) X 1{0}(Spick) (E.27)

X I:escur:'skey X]l{wplck}(a) +(1— escur:'skey) X]l{ﬂkey}(a)]
+ 110} (Sopen) X [€]sn—sunrfi=1 X Limoe3 (@) + (L1} (Spick) = s —saori=1) X Limoo3(@)] -

For MDP3 1:

(E31)a:(O31)a — {(e31)§ : 0 € (O31)a} With (03 1)o := {pick, open} is defined as
(E31)a(0) == (e31)5 (E.28)

with (e} 1)§ : SA3; — {0,1} (6 = pick,open) being defined as

(e§,1)3(<scura Spick) Sopen; Sdone); Cl) =]l{g}(d) .

(B3)s ¢ (©31)p — {(eé,ﬂg : 0 € (O31)p) with (©},)s =
{keyi, keysy, keys,doory,doors, doors, goal} is defined as
(E31)6(0) = (e31)p » (E.29)

44

Under review as a conference paper at ICLR 2026

with (e§71)§ : 831 X (Agir U{a®}) C SA;,J = {(Scur, Sdest, @) © Scurs Sdest € Q1 ooxsr @ €
Agir U{a®9}} (6 = key, keys, keys, goal) being defined as

(eé,l)g((scum Spick, Sopena 8done>7 CL) = (Scum S0, a))

and (e§’1)€ © {((Scurs Spick, Sopen, Sdone), @) € S31 X (Aqir U {a®™}) : scur + a #

1
59} g S-Ag)l — {(Scurasdestya) * Scur) Sdest € ch)locks’a’ € -Adir U {aend}} (9 =
doory, doorsg, doors) being defined as

(651),71)5((5&11?7 Spick; Sopen) sdone)a a) = (Scur7 S0, a) .

E?%’l : @g,l — {(63’1)9 0 = (bxey,0q00r) € @%)1} with @%71 =
{(keyy,doory), (keys,doors), (keys, doors), (goal,goal)} is defined as

E3,(0) == (e31)0, (E.30)
and for 6 = (key,,door;) (i = 1,2,3), (e3.)e : S31 X
({(W?l),l)gicka (ﬂ-%,l)gpen’ (ﬂ-?l),l>]/<3€yi’ (ﬂ-é,l)goorﬁaend}) c 3-’4371 - {0,1}* x

d
{ﬂ-pic}m Topeny Tkeys Mdoor a®" }} are defined as

(63’1)9(('9&11?7 Spick; Sopen) Sdone)a a)

(Il{skey1 (Scur) IL{1} (Spicki) X]IN(Sdoor)(Scur) spickiasopeniaﬂ—e) ,lf a = (71—;’1)3
_ (l{ekey }(Scur) Iy (spicki) X ILN(gdoor)(Scur)vSpicki»SOpenikaey) ,ifa = (ﬂé,l)feyi
(Il{ekey1 (Scur)s Iy (spicki) X ﬂN(Gdoor)(Scur)vSpickwsOpendeoor) ,if a = (Wé,l)goori
(l{skey }(Scur) IL{1} (Spicki) X ILN(Sdoor)(Scur) Spickiasopeniaa) ,otherwise

for = (goal,goal), (e31)o : Sz % ({(731)5iexs (75,1)5pens (M31) 5001, a°7%}) € 843, —
{0,1}* x {@pick, Topen, Trey, a°"9}} is defined as

(631)9((3cur7 Spick; Sopen) Sdone) a)

(]]'{Sgoal} (Scur)]]-{1}(5done) X]]'{Sgoal}()a Sdones Sdones 71-9) 71f a = (ﬂ-%,l)g
= (]‘{Ggoal}(scur)]]-{1}(Sdone) X Il-{egoal}()asdoneasdonea'ﬁkey) Jifa= (W§,1)50a1 .
(1

{Sgoa1 } (Scur)a]1{1} (sdone) X l{sgoal}(cur)a Sdones Sdone) a)) otherwise
E.1.6 ANALYTICAL RUNNING OF ALGORITHMS

The following goes through how Algs. BH| solve these MDPs by constructing MMDPs. Al
timescales here are tyin = tmax = +00. See Apps. for the equations needed here
as well as the mathematical notations mentioned here.

MDP1 ; is exactly MDPgY . in the example of navigation and transportation with traffic jams. In
particular, we use the navigation skill 732, extracted there, which we assume to be deterministic to
simplify the calculations of compressed MDPs and better illustrate how the MMDP is constructed.

This skill is then added to the set of public skills Skills.

MDPy; = (Sa1, ‘2“‘1‘7 S5, Az 1, Pa1, Ry 1, Do 1), defined in equation models navigation
through (2 while avoiding blocks assuming all the doors are open.

Because MDPj; is of difficulty 2, the student constructs a two-level MMDP to solve
it, and for the first level, MDP3, := (S3,(S¥)', (S5, A, Psy,R3,,T5,) =
(8271,812?{, Sf‘f, As1,P21,Rz1,T21). To construct the second-level MDP, the teacher provides

the following information: Gj ; := {(Thae: £3.1)}, Where Ej | is defined in equation For
clarification, the teacher does not know the skill 752, but sees the set Skills and can refer to its
elements, for example here to provide the students with hints about using g, for constructing

Hil. Similar considerations will apply to all examples in this paper.

Then, the student constructs the policy generators g%yl from (Thav.., E2 1), Where g%,l is as defined
in equation with timescales (1), = t,1 = +0o0. In particular, notice here (W%J)g takes the

45

Under review as a conference paper at ICLR 2026

action ¢°"® with probability one at states satisfying s.,, = s, telling the agent it could stop the
current policy because it has reached the current subgoal and should move on to the next one. This
shows why forcing a policy 7 to satisfy 7(s,a) = L{ena}(a) for any s € S is important in the
construction of MMDPs and policy transfer.

To summarize, with the help of the teacher, the student concludes that
H%,l = {(75,1)0 10 € @%,1}7

where (73 1)g (0 € ©3 ;) all have timescales +oc.

Then, the student constructs the second level MDP MDP2, =
(8,1, B4, ST}, P3,, R3,,T3,), with P§,, R3,, T%, as in equation Notice that
if Tyi. 1s not deterministic, then the sequence defined here is stochastic, making the calculations

below more complicated.

Then, the student solves MDP%1 and finds its optimal policy 71'%’1)* with timescale ¢,z = +o0.

The essential meaning of 73 ; , is that since there are multiple rooms separated by blocks and doors
in Q, the student needs to walk across several rooms when going from his initial location to the
target location by surpassing the blocks around the route, but the navigation skill 735y, only teaches
the student to navigate within a single room while avoiding blocks and doors, so the student may
need to stitch w5y . for multiple times with the middle locations being the locations of the doors.
For instance, when going from some location in rooms to some location in roomy, the student
needs to first go to doory, then doors, then doors in the middle, because there are no doors
connecting between roomp and roomy. The student could focus on learning this higher-order
function at level 2 because the details of going from A to B within a single room while avoiding
blocks and doors has been encapsulated by the navigation skill 755%.. Consequently, the student

derives the optimal policy 7 1« = W%,L* for MDP ; without any more iterations. The reason is that
Qp1ocks U{door; : 1 <4 < 3} here is contained in 2 . in MDP{ . per our previous assumption,

and the light traffic will repel the student to not touch Q1 ocxs U{door; : 1 <i < 3} whenever the
total distance the student needs to travel does not increase.

Next, if the teacher provides the embedding (€gecomp)3,; as defined in equation [E.23| then the as-

sistant extracts 77V, a skill of navigation through {2 while avoiding blocks assuming all the doors
T enses WE assume

are open, as in equation with timescale tznav = ¢;1 = +o00. Similar to Tydi.,
hereafter 7%V is deterministic to simplify the calculations of compressed MDPs and better illustrate
how the MMDP is constructed without losing too much generality.

Now we move to MDP3 5, which we have discussed thoroughly in the previous boxes. It is related to
picking up a key and opening the door, and see equation [E.4]for its definition. From this MDP, the
assistant extracts a concatenation skill 7R3t

Now we move to the target MDP of difficulty 3. For MDPj3 =
(8371735)“1‘{,S§‘jf,.A371,P371,R371,F3)1) related to picking up the goal, we have, for
5 = (Scur, Spick; Sopens Sdone) (and similarly for s’), it is defined as in equation

Because MDPs; is of difficulty 3, the student constructs a three-level MMDP to solve
it, and for the first level, MDP3, = (83, (Sy1)' (SSN)' A3, Py, Ry, T5,) =
(Ss,1, 85,85, As 1, P31, Rs.1,Ts1). To construct the second-level MDP, the teacher provides
the following information:

gé,l = {(idv (E?},l)a)ﬂ (ﬁna‘/? (E?},l)ﬁ)},
where (E‘%’l)a as defined in equation and (E;l) g as defined in equationm

The student then composes the policy generators (g3)a. (93,)s coming from (id, (E3 ;)

)7
T, (E3 1)) respectively, where (g3 ;)q is defined in equation , with timescale ¢(g1), =1,

(7
and here (73 ;)§ (0 = pick, open), have timescales trt e =gl o = Lt

(93.1)p is as defined in equation , with timescale ¢(41), = tzmav = 400, and here for all

0 € (03), the timescales tin1) = tamav = 00, As a reminder, here we use 7% o (e:l,)’l)g to

46

Under review as a conference paper at ICLR 2026

represent the composite partial policy coming from the skill 7%V and the embedding (63 1)9, which

is a slight abuse of notations, because according to Def.[B.1] it is not exactly the output of function
composition: there is a second extra step of normalization. Similar notations apply hereafter.

To summarize, with the help of the teacher, the student concludes that

H:I’),l = {(Wé,l)g 10 € (@:15,1)&} U {(Wé,l)g S (6113,1)5}7

where (73 ,)§ (0 € (03))a) are two degenerate extended policies with timescales one, and
(73, 1) (0 € (©3,,)p) are seven extended policies with timescales +oc. In addition, all the policies
in IT} ; could be represented by an element in the product set (03 ;)o U{a*"®, null}) x ((©3 ;)sU
{a*"¥, null}): for instance, (73)%, is represented by (pick,null). So, IT} ; has two action
factors, and for simplicity, we index them as «, 3 respectively.

Then, the student constructs the second level MDP MDP%, =
(Ss,1, S, S5 TIL |, P21, R3,,T%), where P3,, R3,, and I'} | are as in equation

To construct the third-level MDP, the teacher provides the following information:
gg,l = {(meoneat, Egl)})

where E3 | is as defined in equationw

The student then derives that the pollcy generator g3 | |{a,s} coming from (7°°"°**, E3), where
gg)1 |{a,8} s as defined in equatlon with timescale ¢z | . = lzconcar = 400, and here for

all 0 € ©3 ,, the timescales ,, = trconcat = 4-00.

3.1)0l{a,8

To summarize, with the help of the teacher, the student concludes that

H%,l = {(73,1)0 l{a,8): 0 € @:25,1}7

wherein all the four policies have timescales +0cc. Here, we use the two skills, the navigation
skill 722" and the concatenation logic used behind opening a door 7", to generate by their
combinatorial combinations many new policies we do not see directly previously. This is the reason
why we could not combine the two skills at a single level, and have to go to the third level.

Then, the student constructs the third-level MDP MDP3 | = (8,1, S¥'f, S5, g P3RS LTS),
where P3|, R3 |, T3 | are as in equatlon.

Then, the student solves MDP%1 and finds its optimal policy 77%717* asin equation with timescale
+o00. For simplicity, we do not guarantee the functions (such as policies, and more generally, partial
policies) written down are correct at states never explored unless specified, and in particular the
normalization property may not be satisfied at those states. This applies to both 7r§ 1, here and such
functions elsewhere. Consequently, the student derives 71'3 1, as in equation and thus, the
student concludes 73 1 . as in equatlon@

——nav

Regarding the skill we could learn from 7r§”1’*, same as TV, essentially it is about finding the
shortest path, where this time each room is a vertex in the graph, and there are edges between two
rooms if there is at least one openable door connecting them. To avoid adding the complexity of
algorithms in learning the shortest path, which is not the main point of this example, we do not learn
this skill.

47

Under review as a conference paper at ICLR 2026

E.2 NAVIGATION AND TRANSPORTATION WITH TRAFFIC JAMS
E.2.1 FORMAL DEFINITION OF MDPs

The formal definition of the family of target MDPs is as follows: MDP, :=
(S,Snit §end A, P, R,;,T), for k in some finite set K (|| = 6), with

S = {(Scur» Sdest) * Scur; Saest € Qf = QA x Q,
8™ = {(Scurs Saest) € S ¢ Scur # Sacst } 5 S™ = {(Scur, Saest) € 8 ¢ Scur = Sdest }
A= (Agic U {aend}) X (Ameans U {aend})
P((Scur; Saest)s (Gair, Gmeans)s (Sturs Shest))
= Tsoy (Shese) ¥ [[1 = La(Scur + aair)] x Ly 3 (shyr)
+]lﬂ(scur + agir) X [p X l{scumLadlr}(cur) +(1—ps) x]]‘{Scur}(cur)]])
Ri((Scur; Saest), (@air, Gneans)s (Sturs Saest)

i = Rgest X I]-{s'desz}(si:ur)
To To
+ [(Rjams + r) X]]-{mc} (ameans) + ; X]]'{car}(ameans)]

mc

X [1 -]]'Q]C‘ams (scur) X]]-Q (Z:ur)]

+ [0 X]l{mc}(ameans) +

mc car

X]l{car}(a‘means)] X]lﬂg‘ams (Scur) X]lgc (/cur)7
F((Scura Sdest)a (adira ameans)a (Sgup Séest)) =7 -

(E.31)
For clarification, the “+” signs here in expressions such as s.,r + aqi, are just vector sums in the
grid world. Also, for the purpose of simplicity only, we set z + a®"¢ = a°* for any numerical value
z throughout, such as in the transition probabilities here. Also for brevity, we do not guarantee
the functions (such as transition probabilities, rewards, discount factors, policies, and their variants)
written down are defined and correct at s € S or s ¢ S q € A°" unless specified. These apply
to all the examples. The teacher has the role to set all the parameters of the problems: 0 < ps < 1,1is
the probability for any action to succeed, and here we set p; = 0.9; Rgest > 0 is some large positive
reward (here Ryos: = 10%) set for reaching sgest; Ryams < %’ — ZTO is some large negative reward
(here Rsans = —10?) if the agent drives along, enters, or leaves Q5ams using me; 0 < 79 < 1
is some large discount factor (here v = 0.999). 1/k = 2.4,2.8,3.2,3.6,4, 4.4 respectively for
{MDP },ex, modeling the dependence of the speed of the car in traffic regions as a function of the
heaviness of traffic. As a summary, Tablelists all the values of the parameters of the MDPs in this
example.

Table 2: Parameters in the example of navigation and transportation with traffic jams

Qjams Ps | Unc Vcar K Rdest Rjams T0 Yo
MDP3 [1,15] x {6} U {5} x [1, 8] 0.9] 1] 06 [1/2.4] 107 [-10%]—10[0.999
MDP> o [1,15] x {6} U {5} x [1, 8] 0.9] 1] 06 [1/2.8] 107 [-10%]—10[0.999
MDPo 3 1,15] x {6} U {5} x [1,8 0.9] 1] 06 [1/3.2] 10T [-10%]—10[0.999
MDP> 4 1,15] x {6} U {5} x [1,8 0.9/ 1] 06 [1/3.6] 10* [—10°[—10]0.999
MDP3 5 1,15] x {6} U {5} x [1,8 09/ 1] 06 | 1/4 | 10* [—10°[—10]0.999
MDP3 g 1,15 x {6} U {5} x [1,8 0.9/ 1] 06 [1/4.4] 10* [—10°[—10]0.999
MDPo 7| [1,15] x {1,4,7+U{1,4,7,10,13} x [1,8][0.9] 1 [1/1.05]1/1.1] 10* [—10°[—-10[0.999
MDP1 1 1,15 x {6} U {5} x [1,8 0.9/ 1] 06 [1/2.5] 10* [—10°[—10]0.999
MDP1 2 1,15 x {6} U {5} x [1,8 09/ 1] 06 | 1/4 | 10* [—10°[—10]0.999
MDPy 3| [1,15] x {1,4,7+U{1,4,7,10,13} x [1,8][0.9] 1 [1/1.05]1/1.1] 10* [—10°|—-10[0.999

48

Under review as a conference paper at ICLR 2026

Here is the detailed definition of MDP ,, := (S, 8™ 8§ Ay, P, Ry, [1)(1 <n <ny =2):
Ap = Agip U {a®},
Py((scur, Saest) @, (S/cur’ Sldest)) = P((Scur; Saest), (a,mc), (Sf:uw Sgest))v

Ri,n((Scur, Saest) @, (Slcurﬂsldest>) = Rgest X]l{sgest}(s/cur)

+ % x [1 -]]-Q?ams (scur) x]]'QQ (S/)] (E32)

jams cur

7o

+ x Lae (Seur) X Lae (sh,.),

jams
mc

Fl((SCur7 Sdest), a, (Si:urﬂ Sldest)) = Y0,

where 1/k = 2.5,4 in MDP 1, MDP o, respectively.

E.2.2 NOTATIONS INTRODUCED

For ease of notation, we first define in this example the transition region Dgyse =
1
{((Scurasdest)a(adirao)) € S-Adir * Scur S Qjams andscur +adir S QC‘ Or Scyr S

jams?
Qs and Scur + Gair € Q5ams }» which contains all the state-action pairs that either enter or leave

the region 4., with traffic jams, Df_ .. = SAL, — Dpuse. See Fig. [7| for an illustration of
these important subsets of SAL; . = {(Scur; Sacst), (@air,0))}, with the directions of edges omit-
ted because the existence and colors of the edges are always the same when reversing the directions

of the edges.

Here Dans := {(s,(dir,0)) € SAL. :s.u € Qams OF Scur + Gair € Q5ans } 18 the set of state-

dir
action pairs such that either the agent’s current location is in £25.ns, Or the agent intends to move
t0 Qyamss D?ams = S.A}Mr — Djans. See Fig. [7| for an illustration of these important subsets of

SAgir = {(Scur, Saest), (@gir,0))} appearing in this higher-order policy 7r,2$7*, with the directions

of edges omitted because the existence and colors of the edges are always the same when reversing
the directions of the edges.

E.2.3 (PARTIAL) POLICIES FOR TARGET MDPs

(WQ’)means((Scury Sdest)a (07 ameans)) =]]-{9’}(ameans) . (E33)

((ﬂgaVN)dir & (WG’)means)((scura Sdest)a (adira ameans))

= (ﬂ.gav”)dir((scury Sdest), (adir, 0)) X]1{0’}(ameans) . (E34)
Wz,*(& (WgaVNI)dir ® (WG/)means)
= Lo (0} (0) X Lpwy (R) X Y (™% Vs (5, (aix, 0)) (E.35)

Agir €EAgir

X []]-{car}(el) X]]'Djams (57 (adira 0)) +]]-{mc}(al) X]]'D;‘m (55 (adira 0))] 5

with

0o «(s) € argmin min
«(s) € argming, 01, 0r—1,00,0,,++ 0

T—1

ET)SliT [(Ri)oﬂ"so =S, At = (WS?VK)dir & (Feé)means

(E.36)
forany0 <t <7 —1].

Tk (57 (adira ameans)) :(Wg(i‘i?s))dir(sa (adira 0))
X []]-{car} (ameans) X]]‘Djams ((37 (adirv O))) (E37)
+]]-{mc}(ameans) X]]-D;ms((sa (adira O))) .

49

Under review as a conference paper at ICLR 2026

E.2.4 EMBEDDINGS, EMBEDDING GENERATORS AND SKILLS
For MDP ,, (1 < n < ny = 2) of difficulty 1:

(edecomp)% : S-A% — {(Scun Sdest » adir) * Scurs Sdest S Qa Qqgir S -Adir U {aend}} iS deﬁned as

(edecomp)%((scura Sdest)a adir) = (5cur7 Sdest adir) . (E.38)
T os - (edecomp)%(S.A%) — [0, 1] are as follows:
fgs:{;des(scur, Sdest adir) = W%’n?*((scum Sdest)7 adir) . (E39)

For target MDP,, (k € K) of difficulty 2:
Eé : Gdir — {(61)gir :0 € Gdir}s with (")dj_r = {DP3U567Dgause}’ is defined as
EL(0) = (eh)g*", (E.40)

Wlth (el)gir : 9 — {(Scumsdest,adir) * Scur) Sdest S Q7a/dj.r S Adir) {aend}} giVen by
(el)glr((scura sdest)a (adira O)) = (Scura Sdests adir)-

Bl Aneans — {(€1)§°%%° 1 0 € Ancans } is defined as
Ej(0) == (e')ge, (E.41)
with (e!)geans © SAL.... — {0,1} being defined as (€')5°*"°((Scur, Sacst)s (0, Gneans)) =

119} (@means), Which is the (79)neans We introduced in equation

(edecomp)gvl((scum 5dest)7 ((7"';1&‘/Nl)dir X (7T9’)means>)

= ({To(((5curs Saest)s (@air; 0))) fau, € Au, s {]leams (((Scurs Saest)s (@air; 0))) Yau, € Au, »
(E.42)

{71) i (((Scurs Sdest), @air)) Fau, € Aus, » 9/) .

The higher-order function for selecting the index of the navigation policy and the means of trans-

portation TSP L (e e €5amss €7, Aneans)} — [0, 1] is as follows:

—transport nav
™ (epause7 €jams, €) ameans)

= Z enav(adir) X epause(adir) X []l{car}(ameans) X ejams(adir) (E43)
agir€Agir

+]l{mc}(ameans) X (1 - ejams(adir))] .
E.2.5 ANALYTICAL RUNNING OF ALGORITHMS

The following goes through how Algs. BH| solve these MDPs by constructing MMDPs. Al

timescales here are tyi;, = tmax = +00. See Apps. for the equations needed here
as well as the mathematical notations mentioned here.

The student finds an optimal policy w%_n’* for MDPin = MDPy »,(1 < n < ny), and when the
teacher provides the trivial embedding (edecom)% as in equation the assistant extracts two
navigation skills 7opo .o as in equation with timescales +o0o. Both navigation skills are
about finding the shortest path between s.,. and Sgest, Where each grid point is a vertex in the
graph, and there are edges between two grid points if the agent can use one step in Ag4;, to move
between them, with edge weights reflecting the time the agent needs to take for that single step as

shown in the reward functions.

Let MDPg ,, := MDP,, , 1 < n < ng, Kk, € K, be an MDP of difficulty 2, which we have discussed
thoroughly in the previous boxes. The student constructs, for each MDP5, ,, a two-level MMDP, as in
Box |18} to solve it; for € Oy, 0" € Apeans, the timescales for (75") 4ir ® (g7 Jmeans in II* are
BB) @ (g Jmeans = min{t(wxgravm)dlr7 t (g)neans } = 1+00. Then, the student solves level 2 MDPs ,,
and finally solves level 1 of MDP ,, (See Box@for details).

50

	Introduction
	Multi-Level Markov decision processes
	Multi-level Markov Decision Processes (MMDPs)

	Transfer learning with skills and embeddings
	Learning MMDPs
	Theoretical analysis: MMDP solver and transfer learning

	Conclusion and future work
	Related Work
	Detailed definitions
	MDPs
	On generation of the set of policies from the partial policy generator set
	Constructing MMDPs
	Solving MMDPs
	Transfer

	Instantiation of mathematical concepts in our examples
	MazeBase+
	Navigation and transportation with traffic jams

	Multi-level compression and algorithmic realizations
	Multi-level compression
	Statement of results
	Proofs

	Algorithmic realization without transfer learning
	Algorithmic realization with transfer learning
	explanation on the consistency of our algorithm

	Analytical realization of algorithms applied to our examples
	MazeBase+
	Geometric configuration and object states
	Formal definition of MDPs
	Compressed MDPs
	(Partial) policies and (partial) policy generators
	Embeddings, embedding generators and skills
	Analytical running of algorithms

	Navigation and transportation with traffic jams
	Formal definition of MDPs
	Notations introduced
	(Partial) policies for target MDPs
	Embeddings, embedding generators and skills
	Analytical running of algorithms

