
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INFUSER: INJECTING SYNTHETIC FAILURES FOR
SELF-CORRECTING EMBODIED AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) have become a powerful foundation for embod-
ied agents, which are typically fine-tuned on expert demonstrations of successful
task completions. However, collecting expert demonstrations is prohibitively ex-
pensive, and additionally, training exclusively on these ideal trajectories leaves
agents brittle and struggle to recover from inevitable errors. To address this
issue, we introduce INFUSER, INjecting synthetic FailUre for Self-correcting
Embodied agent. Our idea is to augment existing expert trajectories with auto-
matically generated failure-and-recovery scenarios (i.e., no human cost), rather
than collecting additional (costly) expert demonstrations. Specifically, we synthe-
size these data by injecting suboptimal actions into ground-truth paths, creating
a diverse set of controlled failure scenarios. By fine-tuning on this augmented
dataset, INFUSER learns to take corrective actions and recover from mistakes.
Our experiments validate the effectiveness of INFUSER through comprehensive
evaluations on benchmarks for embodied agents including EB-ALFRED and EB-
Habitat; training the Qwen2.5-VL-7B model by augmenting with our synthetic
failure-tolerant data improves its performance by 18.3% → 47.0% and 59.7% →
66.3% on EB-ALFRED and EB-Habitat, respectively, achieving state-of-the-art
performance among open-source models and even surpassing Qwen2.5-VL-72B
with 10× fewer parameters. These results demonstrate that learning to recover from
failures through synthetic augmentation, rather than collecting additional expert
demonstrations, is a cost-effective approach to building robust embodied agents.

1 INTRODUCTION

Vision-Language Models (VLMs; OpenAI, 2025; Wang et al., 2025b; Anthropic, 2025b; Team et al.,
2025) have demonstrated remarkable success across a range of multimodal tasks, including visual
question answering (Liu et al., 2024), image captioning (Li et al., 2023), image-text retrieval (Xiao
et al., 2025), and zero-shot learning (Saha et al., 2024). A recent frontier in VLM research seeks to
extend these capabilities beyond understanding static image-text pairs to more complex, sequential
decision-making problems (Klissarov et al., 2025; Rocamonde et al., 2024). A prominent example of
this direction is the development of embodied agents (Driess et al., 2023; Wu et al., 2025; Shi et al.,
2025; Wang et al., 2025a), which must reason about their environment and generate a sequence of
actions to achieve a goal. The predominant paradigm for training these agents involves fine-tuning a
VLM on expert demonstrations of successful task completion (Wu et al., 2025; Shi et al., 2025).

Despite this progress, current agents trained via supervised fine-tuning suffer from several limitations.
First, collecting the necessary expert demonstrations is prohibitively expensive and labor-intensive,
posing a significant barrier to scalability. Second, by training exclusively on flawless expert demon-
strations, agents are only exposed to on-distribution, ideal state-action trajectories. Consequently,
the agent lacks the knowledge to take corrective actions and recover when an error inevitably occur.
Our analysis of error persistence patterns reveals this fundamental limitation: even state-of-the-art
models like Claude-3.7-Sonnet (Anthropic, 2025a), despite achieving the fewest total errors, demon-
strate the poorest recovery capabilities with only 65.4% of errors followed by successful actions
(see Table 6 for more detail). This recovery paradox—where models optimized for precision lack
resilience—highlights the critical need for explicit training on failure scenarios.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Previous Models INFUSER (Ours)

The action begins locating
the cabinet.

Once the cabinet is found,
pick up the cloth

The failure occurred because the
action to pick up the cloth was
attempted without confirming its
visibility or accessibility.

The cloth is likely inside the
Cabinet, which was not opened
before attempting to pick it up.

Move Cloth in Cabinet to Bath

Reasoning

Planning

Visual Perception

ObservationAction

Failure Action

Success Action

Pick up Cloth

Pick up Cloth

Pick up Cloth Go to Bath Put Down

Open Cabinet

Go to Bathroom

Find a Cabinet

Pick up ClothPick up Cloth

Last Observation

Action History

(a) Problem Overview (b) Example of Failuare-Recovery Action in INFUSER

Pick up Cloth

Figure 1: INFUSER’s problem overview and failure-recovery example. (a) INFUSER enhances
embodied agents to interact with environments to perceive visual scenes, reason about task states,
and plan appropriate actions even after failures occur. Environments where INFUSER is evaluated:
EmbodiedBench (Yang et al., 2025)’s ALFRED (Shridhar et al., 2020) & Habitat (Szot et al., 2021),
and VisualAgentBench (Liu et al., 2025)’s OmniGibson (Li et al., 2022) & Minecraft (Microsoft,
2025). (b) Given task, observation, and action history, the previous agents often fail by attempting to
pick up the cloth without opening Cabinet. On the other hand, INFUSER recognizes that the cloth
is likely inside the closed cabinet (failure analysis), generates a corrective plan to open the cabinet
first, then successfully retrieves the cloth. Yellow and green boxes represent produced reasoning and
observation. Blue boxes indicate successful actions, red indicates failed actions.

Contribution. To address this limitation, we propose INFUSER: INjecting synthetic FailUre for Self-
correcting Embodied agents. Our key idea is to enhance agent robustness by explicitly teaching it how
to recover from mistakes. We achieve this by augmenting expert demonstrations with synthetically
generated failure-and-recovery trajectories. Specifically, we start from ground-truth expert trajectories
and inject suboptimal actions (e.g., choosing an incorrect navigation direction) at various decision
points. This process creates a diverse set of controlled failure scenarios and their corresponding
recovery sequences with minimal human effort. By fine-tuning the VLM on this augmented dataset,
which combines both successful and failure-recovery trajectories, INFUSER learns to perceive
failures as recoverable states rather than terminal conditions.

We validate the effectiveness of INFUSER through comprehensive evaluations on the EB-ALFRED
and EB-Habitat tasks from EmbodiedBench (Yang et al., 2025) and VAB-OmniGibson and VAB-
Minecraft from VisualAgentBench (Liu et al., 2025). Our results demonstrate that INFUSER sig-
nificantly outperforms baseline models trained exclusively on successful trajectories. Notably,
INFUSER boosts the performance of the Qwen2.5-VL-7B-Instruct model (Bai et al., 2025) by a
substantial margin, elevating the success rate from 18.3% to 47.0% on EB-ALFRED and from 59.7%
to 66.3% on EB-Habitat. Beyond task success rates, our error persistence analysis reveals that
INFUSER achieves the highest recovery rate (86.1%) among all tested models, including proprietary
models, and contains error cascades 67% more effectively than the baseline, demonstrating that
failure-aware training fundamentally transforms agent behavior from error avoidance to active recov-
ery. Furthermore, our experiments show that the proposed augmentation strategy is highly scalable,
with performance improving monotonically as the ratio of failure-recovery trajectories increases.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 METHOD

In this section, we introduce our synthetic data generation pipeline for training INFUSER, our
failure-tolerant VLM (see Figure 1). Our key idea is to generate synthetic failure-recovery dataset,
which can be done without human costs (Section 2.1). Then, INFUSER is built by fine-tuning a base
VLM on both the original expert and the synthesized failure-recovery trajectories (Section 2.2).

Problem setup. We formulate embodied task planning as a sequential decision-making process,
i.e., given a natural language instruction g, an agent interacts with an environment to achieve the
goal. At each timestep t, the agent receives a visual observation ot ∈ O and selects an action
at ∈ A. The agent’s policy πθ is conditioned on the goal instruction g and the interaction history
ht = (o0, a0, f0, . . . , at−1, ft−1, ot), where fi is the environmental feedback from action ai. The
policy then generates the next action at ∼ πθ(·|ht, g). A complete trajectory τ = (o0, a0, f0, . . . , oT)
is a successful trajectory if its final state satisfies the goal conditions.

A key challenge is that the suboptimal actions can lead to failure states that deviate from successful
execution paths. In such cases, the agent must recover and replan to accomplish the original objective.
Therefore, our goal is to learn a robust policy πθ that maximizes the task success rate by effectively
handling such failures. Therefore, the objective is to:

max
θ

Eτ∼πθ
[1(goal achieved in τ)]. (1)

This objective requires the policy not only to follow optimal trajectories but also to develop robust
recovery capabilities from off-distribution states encountered after failures.

2.1 SYNTHETIC FAILURE-RECOVERY DATASET GENERATION

To enhance failure tolerance, our framework generates a synthetic dataset that augments expert
demonstrations with failure-recovery trajectories. This process enables the policy model to learn
from both successful and corrective action sequences, thereby improving task success rates (see
Equation 1). The generation process consists of three main stages.

Expert Trajectory Processing. Our method begins by processing expert demonstrations. Specifically,
for each ground-truth trajectory τ∗ = (g, o0, a

∗
0, f0, . . . , oT , a

∗
T , fT), where g is the goal and a∗t is

the expert action at timestep t, we first generate step-by-step reasoning annotations. We use a large
language model (LLM) to generate a natural language explanation rt for each step. Here, the LLM is
prompted with the task goal g, the current visual observation ot, the expert action a∗t , and the set of
available actions A. The resulting reasoning rt explains the rationale behind the expert action, its
contribution to the overall goal, and its expected outcome. This yields an augmented expert trajectory:

τ̃∗ = (g, (o0, a
∗
0, r0), (o1, a

∗
1, r1), . . . , (oT , a

∗
T , rT)). (2)

Failure Injection. Next, we inject potential failures into the ground-truth trajectory. To achieve this,
we randomly sample timesteps tfail from each expert trajectory τ̃ with a uniform probability ρ. At
each sampled step, we prompt an LLM to generate a contextually relevant but suboptimal action
afail, conditioned on the history up to that point. The LLM is instructed to generate an action that
deviates from a∗t while remaining within the valid action space A, simulating a realistic mistake:

atfail = LLM(g, htfail , a
∗
tfail ,A) s.t. atfail ̸= a∗tfail and atfail ∈ A. (3)

Here, htfail = (o0, a
∗
0, . . . , otfail) represents the history leading to the failure point. Injecting failure

action within expert trajectory is illustrated in Figure 2

Recovery Reasoning Generation. Following a failure injection, we synthesize a corresponding
recovery strategy. Using the context of the failure, i.e., including the history htfail , the incorrect action
atfail , the resulting observation otfail , and the subsequent sequence of correct actions {a∗t , . . . , a∗T },
we prompt an LLM to generate a recovery plan:

rrecovery = LLM(g, htfail , atfail , otfail , {a∗t , . . . , a∗T }). (4)

This rrecovery analyzes why the incorrect action would prevent goal completion, identifies the
necessary corrective actions, and outlines the plan to return to a successful trajectory.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

pick up Cloth find a Bathtubfind a Cabinet Open Cabinet Put Down Obj.

pick up Soap

Step 1 Step 6Step 4 Step 5Step 3

pick up Cloth find a Bathtub Put Down Obj.

New Step 3 Step 7Step 5 Step 6Step 4

Step 2

Step 3

Observation

pick up Cloth

Figure 2: Illustration of synthetic failure trajectory generation. Starting from an expert trajectory
for "Move cloth to bathtub," we inject a plausible failure at Step 3—the agent mistakenly attempts to
pick up soap instead of cloth, simulating object confusion. The subsequent expert actions (pick up
cloth, find bathtub, put down) now serve as recovery steps.

2.2 TRAINING DATASET CONSTRUCTION

An insight of our method is that to learn effective failure-recovery, the model should be guided
by expert actions rather than attempting to learn from potentially suboptimal recovery strategies.
Therefore, during training, we provide the ground-truth action a∗t as an input and train the model to
generate the corresponding corrective reasoning that justifies this action. To this end, we construct a
unified training dataset Dtrain that combines successful trajectories with failure-recovery examples.

Successful Trajectory. For a standard successful demonstration, each training instance is formulated
as predicting the subsequent reasoning and action plan given the history:

x(t)
success = (g, ht), (5)

y(t)success = (rt, a
∗
[t:T]). (6)

Failure-Recovery Trajectory. For failure scenarios, the input is augmented with the expert’s recovery
action, and the model is trained to generate the rationale behind it. When a failure occurs at timestep
tfail, the training example is structured as:

x
(tfail)
failure = (g, htfail , atfail , otfail , a

∗
tfail), (7)

y
(tfail)
failure = (rrecovery, a

∗
[tfail:T]). (8)

Here, we provide the expert recovery action a∗tfail
directly in the input. With this training scheme,

our model focuses on generating corrective reasoning rrecovery that explains why a∗tfail
is the optimal

choice, along with the rest of the future action plan a∗[tfail:T]. This form of teacher-forcing on the
action space ensures that the model focuses on learning the principles of recovery, rather than being
penalized for predicting a suboptimal action while correcting failures. By conditioning on the correct
action, we guide the model to develop a robust understanding of failure-recovery logic that can
generalize to unseen scenarios at test time. Our final training dataset is the union of both successful
and failure-recovery examples:

Dtrain = {(x(t)
success, y

(t)
success)} ∪ {(x(tfail)

failure, y
(tfail)
failure)} (9)

Vision-Language Model Fine-tuning. We fine-tune pre-trained vision-language models (VLMs) on
Dtrain using a standard auto-regressive language modeling objective. Specifically, we initialize our
models from Qwen2.5-VL (Bai et al., 2025) , aligning with recent approaches in training VLMs for
embodied tasks (Luo et al., 2025; Ji et al., 2025; Azzolini et al., 2025). For all experiments, we used
a learning rate of 1× 10−5, a batch size of 64, and trained for 5 epochs. A complete description of
the training configuration is available in the Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on EmbodiedBench (EB-ALFRED). We report the success
rates (%) across six task categories and their average. Results with † are reported from Yang et al.
(2025). Results with †† are reported from Wu et al. (2025). Qwen2.5-VL-7B∗ denotes that the model
is additionally trained with success trajectories without our failure-recovery trajectories.

Model Base Common Complex Visual Spatial Long Average

Proprietary Models
GPT-4o mini 34 24 28 26 20 2 22.3
GPT-4o 64 48 66 46 50 60 55.7
Gemini-1.5-flash † 44 40 56 42 26 28 39.3
Gemini-2.0-flash 58 46 48 42 40 62 48.2
Gemini-1.5-Pro † 70 64 72 58 52 58 62.3
Claude-3.5-Sonnet † 72 66 76 60 58 52 64.0
Claude-3.7-Sonnet 70 70 68 66 60 66 66.7

Open-Source Models (> 7B)
InternVL3.5-8B 22 16 22 14 10 0 14.0
InternVL3.5-14B 38 22 42 26 14 24 27.7
InternVL3.5-38B 36 26 38 34 34 30 33.0
Qwen2.5-VL-32B 32 28 38 30 38 34 33.3
Qwen2.5-VL-72B 42 42 50 42 52 42 45.0
Gemma3-12B 38 32 40 32 18 50 35.0

Open-Source Models (= 7B)
Qwen2-VL-7B 6 0 4 0 0 8 3.0
Qwen2.5-VL-7B 8 0 6 4 0 2 3.3
VeBrain-7B 10 4 8 2 0 6 5.0
RoboBrain-7B 12 6 10 0 0 4 5.3
Qwen2.5-VL-7B∗ 22 24 20 24 16 4 18.3
Reinforce-7B†† 54 42 46 28 38 6 35.6
INFUSER-7B (Ours) 68 50 66 42 40 16 47.0

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method, INFUSER, on two benchmarks for embodied multimodal
agents that require continuous, multi-step decision making: EmbodiedBench (Yang et al., 2025) and
VisualAgentBench (Liu et al., 2025). EmbodiedBench provides environments for household planning
tasks across six. We use expert demonstration datasets from ALFRED (Shridhar et al., 2020) for
household manipulation and EB-Habitat (Yang et al., 2025) for navigation tasks, both supporting
manipulation primitives, navigation commands, and object interactions. VisualAgentBench (Liu
et al., 2025) encompasses a variety of visual agent tasks, from which we focus on the Embodied
suite: VAB-OmniGibson for manipulation tasks (e.g., “grasp,” “put inside”) (Li et al., 2022), and
VAB-Minecraft, presenting open-world survival and crafting with game-specific actions (e.g., “craft,”
“mine”) (Microsoft, 2025). To construct our primary training data, we augment all expert trajectories
from these datasets by synthetically injecting failure steps and generating corresponding failure-
recovery data. We refer to Appendix D for details.

Implementation Details. We build INFUSER on a state-of-the-art VLM: Qwen2.5-VL (Bai et al.,
2025), training a separate instance for each benchmark. All models are fine-tuned using a standard
language modeling loss with a learning rate of 1× 10−5 and a batch size of 64. We train for 5 epochs
on EmbodiedBench (Yang et al., 2025) and 3 epochs on VisualAgentBench (Liu et al., 2025). For our
failure injection strategy, we control the proportion of expert steps to be injected via an augmentation
ratio ρ ∈ [0, 1.0]. All failure scenarios and recovery reasoning are generated using GPT-4o (OpenAI,
2024a). We provide detailed hyperparameters in Appendix B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on EmbodiedBench (EB-Habitat). We report the success rates
(%) across six task categories and their average. Results with † are reported from Yang et al. (2025).
Qwen2.5-VL-7B∗ denotes that the model is additionally trained with success trajectories without our
failure-recovery trajectories. The highest scores are shown in bold.

Model Base Common Complex Visual Spatial Long Average

Proprietary Models
GPT-4o-mini 68 38 28 28 22 10 32.3
Gemini-2.0-flash † 82 38 38 36 34 26 42.3

Open-Source Models (> 7B)
InternVL2.5-8B 48 6 16 10 18 4 17.0
InternVL3.5-8B 50 6 24 22 18 8 21.3
Qwen2.5-VL-72B 74 28 42 40 24 18 37.0

Open-Source Models (= 7B)
Qwen2.5-VL-7B 38 4 12 4 12 6 12.7
RoboBrain-7B 38 6 18 8 18 4 15.3
VeBrain-7B 44 8 18 18 10 2 16.7
Qwen2.5-VL-7B∗ 86 50 74 64 42 42 59.7
INFUSER-7B (Ours) 92 60 72 66 48 60 66.3

Baselines. We compare INFUSER against proprietary and open-source models. Proprietary models
include GPT-4o, GPT-4o-mini (OpenAI, 2024a), Claude-3.7-Sonnet, Claude-3.5-Sonnet (Anthropic,
2025a), Gemini-2.0-flash (Google, 2024), Gemini-1.5-Pro, and Gemini-1.5-flash (Team et al., 2024).
Open-source models include Qwen2.5-VL-{7, 32, 72}B (Bai et al., 2025), Qwen2-VL-7B (Wang
et al., 2024b), InternVL-3.5-{8, 14, 38}B (Zhu et al., 2025), and Gemma-3-12B (Team et al., 2024).

3.2 MAIN RESULTS

Comparison on EmbodiedBench. As detailed in Tables 1 and 2, INFUSER achieves new state-of-
the-art performance among open-source models on the EmbodiedBench suite. On EB-ALFRED,
our approach elevates the success rate of the Qwen2.5-VL-7B model from 3.3% to 47.0%. This
result surpasses strong baselines like Reinforce (35.6% success rate) by a significant margin of 11.4
percentage points. In particular, the INFUSER-7B model (47.0%) also outperforms the much larger
Qwen2.5-VL-72B baseline (45.0%), demonstrating that targeted failure-recovery training can be
more effective than simply scaling the model size. We observe a similar substantial improvement
on EB-Habitat, where the success rate surges from 12.7% to 66.3%. Furthermore, across both
datasets, our 7B-scale model often outperforms larger, proprietary models such as GPT-4o-mini and
Gemini-2.0-flash.

Comparison on VisualAgentBench. To validate the broader applicability of our failure-recovery
methodology, we extend our evaluation to VisualAgentBench benchmark, utilizing separately trained
models (see Table 3). In the VAB-OmniGibson environment, INFUSER elevates the success rate
from a 5.5% baseline to 8.8%, marking a substantial 60% relative improvement. A similar trend is
observed in VAB-Minecraft, where the success rate increases from 28.4% to 31.4%. The consistent
performance enhancements across these distinct benchmarks highlight the robustness of synthetic
failure-recovery augmentation, verifying its efficacy for a wide range of embodied agents.

3.3 ABLATION STUDY

Effectiveness of Failure-Recovery Trajectories. To validate that our performance gains stem
from the unique learning signals in failure-recovery data, rather than merely the volume of training
samples, we conduct a controlled ablative analysis (see Table 4). We first establish a baseline trained
exclusively on 6K successful trajectories, which achieves an 18.3% success rate. We then train our
proposed model on a dataset of identical size, composed of 5K successful trajectories and 1K failure-
recovery examples. Despite the equivalent data quantity, our failure-augmented model achieves a
33.0% success rate. This constitutes an 80% relative improvement over the success-only baseline,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison on Visu-
alAgentBench. We report success rates (%).
Qwen2.5-VL-7B∗ denotes that the model is
additionally trained with success trajectories
without our failure-recovery trajectories.

Model OmniGibson Minecraft

Qwen2.5-VL-7B 2.2 6.9
Qwen2.5-VL-7B∗ 5.5 28.4
INFUSER-7B 8.8 31.4

Table 4: Ablation study. We compare Qwen2.5-
VL-7B trained with success data only (Qwen2.5-
VL-7B∗) and success data with failure-recovery
data (INFUSER-7B) in same scale on Embodied-
Bench (EB-ALFRED).

Model Success Failure Avg.

Qwen2.5-VL-7B - - 3.3
Qwen2.5-VL-7B∗ 6K - 18.3
INFUSER-7B 5K 1K 33.0

0.00 0.25 0.50 0.75 1.00
Augmentation Ratio

10

20

30

40

50

Su
cc

es
s

Ra
te

 (
%

)

18.3

43.3 45.3 47

Figure 3: Ablation study on augmenta-
tion ratio ρ on EB-ALFRED.

Table 5: Ablation study on using expert guidance a∗tfail
when constructing failure-recovery trajectories on Em-
bodiedBench (EB-ALFRED). We report average suc-
ces rate (SR; %). Qwen2.5-VL-7B∗ denotes that the
Qwen2.5-VL-7B additionally trained with success tra-
jectories without our failure-recovery trajectories. We
denote the best score as bold.

Model Expert guidance (a∗
tfail) SR (%)

Qwen2.5-VL-7B∗ - 18.3

INFUSER (Variant) ✗ 39.3
INFUSER (Ours) ✓ 47.0

confirming that failure-recovery trajectories provide critical information for learning robust recovery
policies, which is a signal unavailable in successful demonstrations alone. This highlights that the
quality and diversity of the training data are more impactful than sheer quantity in this context.

Effect of augmentation ratio for failure-recovery trajectories. We find that performance improves
monotonically with the failure augmentation ratio, ρ ∈ [0, 1.0], as shown in Figure 3. The success
rate increases from a baseline of 18.3% (ρ = 0) to 47.0% with full augmentation (ρ = 1.0), a 157%
relative improvement. Even a small fraction of failure data provides substantial gains, with ρ = 0.1
boosting performance to 38.0%. These results confirm that exposing the model to diverse failure
scenarios is a crucial and scalable method for improving agent capabilities.

Effectiveness of Expert Guidance. We examine the importance of expert supervision a∗tfail (see
Equation 7) in Table 5. By training INFUSER with expert ground-truth actions as an input of training
example for recovery reasoning targets, INFUSER achieves 47.0% success rate. In contrast, allowing
the model to generate its own recovery actions during training yields only 39.3% success rate. This
8.3% percentage point gap shows that expert guidance prevents the model from learning suboptimal
recovery strategies, ensuring that failure scenarios lead to principled corrections.

4 DISCUSSION

To understand how synthetic failure-recovery training improves embodied agents, we analyze three
key aspects of INFUSER’s behavior. Section 4.1 examines error persistence patterns, revealing that
INFUSER achieves the highest recovery rate (86.1%) among all tested models, including proprietary
models, learning active recovery rather than error avoidance. Section 4.2 demonstrates qualitative
effect of recovery reasoning. See Figure 4 for example recovery reasoning.

4.1 ERROR PERSISTENCE AND RECOVERY ANALYSIS

We analyze error persistence patterns across 300 EB-ALFRED test episodes to understand how
failure-aware training affects the agent. We measure four metrics: error streaks (consecutive failures
before success), recovery rate (errors corrected within two steps), terminal error rate (errors in final
20% of episodes), and error cascades (sequences of 2+ consecutive errors indicating control loss).

Our analysis, summarized in Table 6, highlights a critical trade-off between task performance and
practical deployability in existing embodied agents. Top-performing models, such as Claude-3.7-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 6: Error persistence analysis across models. We evaluate error handling and recovery
capabilities across 300 EB-ALFRED test episodes. Metrics include error streaks (consecutive failures
before recovery), recovery rate (errors corrected within 2 steps; %), terminal error rate (%), and error
cascades (2+ consecutive errors indicating loss of control). Qwen2.5-VL-7B∗ denotes that the model
is additionally trained with success trajectories without our failure-recovery trajectories.

Claude-3.7-Sonnet Qwen2.5-VL-72B Qwen2.5-VL-7B∗ INFUSER-7B (Ours)
Overall Error Metrics
Total Errors (↓) 764 1,126 2,469 1,733
Total Streaks (↓) 511 904 2,136 1,484
Avg. Streak Length (↓) 1.50 1.25 1.18 1.17
Recovery Capabilities
Recovery Rate (↑) 65.4 73.7 77.4 86.1
Terminal Error Rate (↓) 24.3 25.0 20.2 19.8
Cascade Analysis
Total Cascades (↓) 83 82 50 164
Avg. Cascade Length (↓) 4.05 3.71 7.66 2.52

Pick up Knife

Slice the potato, put slice in fridge, put it in the microwave

Last action is invalid. Knife is not visible because it is in
DiningTable. Go there to pick the object instead.

Success-only model Reasoning INFUSED (Ours) Reasoning

Pick up Cloth Find a Dining Table

... begins by locating a countertop, which is a
logical starting point for food preparation. Picking
up a knife follows, as it is essential for slicing.
Finding a potato is necessary to proceed with the
slicing. Once sliced, the potato needs to be stored
in the fridge, ... retrieving the potato slice from the
fridge and placing it in the microwave, completing
the task. Each step logically follows the previous
one, ensuring the task is completed efficiently.

The failure occurred because the robot
attempted to pick up a knife that was not visible
in the current area. The knife is ... possibly on a
dining table as suggested by the feedback. ...
needs to first locate the knife before proceeding
with slicing the potato. The task requires ... finding
the knife, ... and then the microwave. The
absence of the knife halted the process,
necessitating a search in other locations.

Previous Action

Figure 4: Comparison of recovery reasoning between a success-only model and INFUSER.
Success-only models provide generic task descriptions that ignore failure and feedback, while
INFUSER reasons about the failure cause and suggests corrective actions.

Sonnet, achieve a high task success rate (66.7%) but exhibit poor resilience, with the lowest recovery
rate (65.4%) and the longest average error persistence (1.50 steps). As a proprietary API-only model,
Claude-3.7-Sonnet cannot be fine-tuned for specific platforms, while Qwen2.5-72B’s 72B parameters
are computationally prohibitive for edge robotics. Current state-of-the-art models remain unsuitable
for deployment scenarios requiring adaptation and failure recovery.

The controlled comparison between our baseline and INFUSER demonstrates that failure-aware
training addresses both deployment constraints and resilience requirements within a practical 7B
parameter budget. Both models share identical architectures suitable for edge deployment, differing
only in training data composition. The inclusion of synthetic failure-recovery trajectories transforms
the model’s error handling: recovery rate improves from 77.4% to 86.1%, surpassing all tested models.
This improvement occurs alongside a 30% reduction in total errors, indicating that failure training
develops both preventive and corrective capabilities absent in conventional approaches.

A deeper cascade analysis reveals the mechanism behind INFUSER’s robustness. While it encounters
more error cascades than the baseline (164 vs. 50), it contains them far more effectively. The

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

average cascade length for INFUSER is only 2.52 steps, in sharp contrast to the baseline’s 7.66 steps.
This pattern, combined with INFUSER achieving the lowest terminal error rate (19.8%) across all
tested models, shows that its resilience stems from active, learned recovery rather than simple error
avoidance. These results show that for embodied agents to be practical and deployable, systematic
training on failure scenarios is not just beneficial but essential for achieving the robustness.

4.2 LEARNED RECOVERY REASONING

Figure 4 shows that failure-aware training fundamentally changes how the agent reasons. When faced
with an error, the success-only model provides a generic plan, ignoring the environmental feedback
and the specific failure. In contrast, INFUSER directly addresses the error by identifying its cause
("the knife was not visible"), using feedback to infer a solution, and generating a corrective recovery
action ("Find a Dining Table"). This demonstrates that the INFUSER learns to handle failures to be
solved through explicit reasoning, a capability absent in models trained solely on ideal trajectories.

5 RELATED WORK

VLMs for Embodied Agents. Early works adapted pretrained VLMs like CLIP for embodied tasks
by grounding natural language goals into visual representations (Dorbala et al., 2022; Gadre et al.,
2023; Khandelwal et al., 2022). Subsequent research scaled to large VLMs for high-level planning:
ViLaIn (Shirai et al., 2024), GPT-4V for Robotics (Wake et al., 2024), and Voyager (Wang et al.,
2024a) leverage LLMs to produce symbolic task plans from demonstrations, while PaLM-E (Driess
et al., 2023) provides an end-to-end approach unifying vision and language across diverse embodied
tasks. However, most existing approaches focus primarily on leveraging success demonstrations,
leaving open the question of how embodied VLM agents can remain robust when confronted with
inevitable execution errors.

Training Embodied Agents. Training embodied agents typically employs imitation learning through
behavior cloning or variants like DAgger (Ross et al., 2011), reinforcement learning with exploration
and preference optimization (Tang et al., 2025; Chevalier-Boisvert et al., 2019), or supervised fine-
tuning on reasoning-heavy planning tasks (Wu et al., 2025; Shi et al., 2025). Recent work has
augmented agents with self-reflection through verbal feedback (Shinn et al., 2023) and structured
memory for long-horizon dependencies (Fang et al., 2019). Despite these advances, most paradigms
improve success-only policies with limited attention to modeling recovery behaviors after failures.

Failure-Aware Learning. Recent research explicitly treats failures as learning signals rather than
terminal states. ReplanVLM (Mei et al., 2024) and CMFR (Farag et al., 2025) detect incorrect actions
and trigger replanning through error correction modules and multi-stage frameworks with subgoal
analysis. ReWiND (Zhang et al., 2025) synthesizes failures by perturbing successful demonstrations
for training language-conditioned reward models. While these approaches show that failure data
improves robustness, existing methods primarily leverage failures for reward shaping rather than direct
training. In contrast, INFUSER systematically injects realistic failures into expert demonstrations
with explicit recovery trajectories, directly teaching embodied agents to recover from failure states.

6 CONCLUSION

We introduced INFUSER, a framework that transforms brittle embodied agents into resilient systems
by augmenting expert demonstrations with synthetically generated failure-recovery trajectories.
Our key insight—that agents must learn to treat failures as recoverable states rather than terminal
conditions—addresses a fundamental limitation in current training paradigms. INFUSER achieves
substantial improvements across diverse benchmarks: 18.3% → 47.0% on EB-ALFRED and 59.7%
→ 66.3% on EB-Habitat, while attaining the highest recovery rate (86.1%) among all tested models.
Remarkably, our 7B parameter model surpasses 72B models, demonstrating that strategic training
data composition outweighs model scaling. The synthetic generation approach eliminates costly
human demonstrations while enabling practical deployment on resource-constrained platforms. As
embodied AI transitions from laboratories to real-world applications, INFUSER’s failure-aware
training paradigm represents a critical step toward agents that actively recover from errors.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude 3.7 Sonnet and Claude Code, 2025a. URL https://www.anthropic.com/
news/claude-3-7-sonnet.

Anthropic. Introducing Claude 4, 2025b. URL https://www.anthropic.com/news/
claude-4.

Alisson Azzolini, Junjie Bai, Hannah Brandon, Jiaxin Cao, Prithvijit Chattopadhyay, Huayu Chen,
Jinju Chu, Yin Cui, Jenna Diamond, Yifan Ding, et al. Cosmos-reason1: From physical common
sense to embodied reasoning. ArXiv preprint, abs/2503.15558, 2025. URL https://arxiv.
org/abs/2503.15558.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. ArXiv preprint, abs/2502.13923, 2025.
URL https://arxiv.org/abs/2502.13923.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. In International Conference on Learning Representations, 2019.

Vishnu Sashank Dorbala, Gunnar A Sigurdsson, Jesse Thomason, Robinson Piramuthu, and Gaurav S.
Sukhatme. CLIP-nav: Using CLIP for zero-shot vision-and-language navigation. In Workshop on
Language and Robotics at CoRL 2022, 2022.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. PaLM-e: An embodied
multimodal language model. In Proceedings of the 40th International Conference on Machine
Learning, 2023.

Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese. Scene memory transformer for
embodied agents in long-horizon tasks. In IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

Youmna Farag, Svetlana Stoyanchev, Mohan Li, Simon Keizer, and Rama Doddipatla. Conditional
multi-stage failure recovery for embodied agents. In Proceedings of the 1st Workshop for Research
on Agent Language Models (REALM 2025), 2025.

Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt, and Shuran Song.
Cows on pasture: Baselines and benchmarks for language-driven zero-shot object navigation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

Google. Introducing Gemini 2.0: Our new AI model for the agentic era, 2024.

Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, Yuan Zhang, Hengyuan Zhang, Pengwei Wang,
Mengdi Zhao, Yao Mu, Pengju An, et al. Robobrain: A unified brain model for robotic manipulation
from abstract to concrete. In Proceedings of the Computer Vision and Pattern Recognition
Conference, 2025.

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kembhavi. Simple but effective:
Clip embeddings for embodied ai. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

Martin Klissarov, Devon Hjelm, Alexander Toshev, and Bogdan Mazoure. On the modeling capa-
bilities of large language models for sequential decision making. In International Conference on
Learning Representations, 2025.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, Mona Anvari, Minjune
Hwang, Manasi Sharma, Arman Aydin, Dhruva Bansal, Samuel Hunter, Kyu-Young Kim, Alan
Lou, et al. BEHAVIOR-1k: A benchmark for embodied AI with 1,000 everyday activities and
realistic simulation. In 6th Annual Conference on Robot Learning, 2022.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2503.15558
https://arxiv.org/abs/2503.15558
https://arxiv.org/abs/2502.13923

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International Conference
on Machine Learning, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2024.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Song XiXuan, Yifan Xu, Shudan Zhang, Hanyu
Lai, Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao Sun, Siyi Cheng,
et al. Visualagentbench: Towards large multimodal models as visual foundation agents. In The
Thirteenth International Conference on Learning Representations, 2025.

Gen Luo, Ganlin Yang, Ziyang Gong, Guanzhou Chen, Haonan Duan, Erfei Cui, Ronglei Tong,
Zhi Hou, Tianyi Zhang, Zhe Chen, et al. Visual embodied brain: Let multimodal large language
models see, think, and control in spaces. ArXiv preprint, abs/2506.00123, 2025. URL https:
//arxiv.org/abs/2506.00123.

Aoran Mei, Guo-Niu Zhu, Huaxiang Zhang, and Zhongxue Gan. Replanvlm: Replanning robotic
tasks with visual language models. IEEE Robotics and Automation Letters, 2024.

Microsoft. Welcome to the minecraft official site, 2025. URL https://www.minecraft.net/
en-us.

Minerllabs. The minerl python package, 2025. URL https://github.com/minerllabs/
minerl.

OpenAI. Hello GPT-4o, 2024a. URL https://openai.com/index/hello-gpt-4o/.

OpenAI. Gpt-4 turbo, 2024b. URL https://platform.openai.com/docs/models/
gpt-4-turbo.

OpenAI. GPT-5 system card, 2025. URL https://openai.com/index/
gpt-5-system-card/.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. In International Confer-
ence on Learning Representations, 2024.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, 2011.

Oindrila Saha, Grant Van Horn, and Subhransu Maji. Improved zero-shot classification by adapting
vlms with text descriptions. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2024.

Junhao Shi, Zhaoye Fei, Siyin Wang, Qipeng Guo, Jingjing Gong, and Xipeng QIu. World-aware
planning narratives enhance large vision-language model planner. ArXiv preprint, abs/2506.21230,
2025. URL https://arxiv.org/abs/2506.21230.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Keisuke Shirai, Cristian C Beltran-Hernandez, Masashi Hamaya, Atsushi Hashimoto, Shohei Tanaka,
Kento Kawaharazuka, Kazutoshi Tanaka, Yoshitaka Ushiku, and Shinsuke Mori. Vision-language
interpreter for robot task planning. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), 2024.

11

https://arxiv.org/abs/2506.00123
https://arxiv.org/abs/2506.00123
https://www.minecraft.net/en-us
https://www.minecraft.net/en-us
https://github.com/minerllabs/minerl
https://github.com/minerllabs/minerl
https://openai.com/index/hello-gpt-4o/
https://platform.openai.com/docs/models/gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-turbo
https://openai.com/index/gpt-5-system-card/
https://openai.com/index/gpt-5-system-card/
https://arxiv.org/abs/2506.21230

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A benchmark for interpreting grounded instructions
for everyday tasks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, 2020.

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. Advances in neural information processing
systems, 34:251–266, 2021.

Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martín-Martín, and Peter Stone.
Deep reinforcement learning for robotics: A survey of real-world successes. Annual Review of
Control, Robotics, and Autonomous Systems, 2025.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. ArXiv preprint, abs/2403.05530, 2024. URL
https://arxiv.org/abs/2403.05530.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. ArXiv preprint, abs/2503.19786, 2025. URL https://arxiv.org/abs/2503.
19786.

Naoki Wake, Atsushi Kanehira, Kazuhiro Sasabuchi, Jun Takamatsu, and Katsushi Ikeuchi. Gpt-4v
(ision) for robotics: Multimodal task planning from human demonstration. IEEE Robotics and
Automation Letters, 2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large lan-
guage models. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL
https://openreview.net/forum?id=ehfRiF0R3a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. ArXiv preprint, abs/2409.12191, 2024b. URL https://arxiv.org/
abs/2409.12191.

Siyin Wang, Zhaoye Fei, Qinyuan Cheng, Shiduo Zhang, Panpan Cai, Jinlan Fu, and Xipeng Qiu.
World modeling makes a better planner: Dual preference optimization for embodied task planning.
In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2025a.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
models in versatility, reasoning, and efficiency. ArXiv preprint, abs/2508.18265, 2025b. URL
https://arxiv.org/abs/2508.18265.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world multi-task agents with memory-
augmented multimodal language models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024c.

Di Wu, Jiaxin Fan, Junzhe Zang, Guanbo Wang, Wei Yin, Wenhao Li, and Bo Jin. Reinforced
reasoning for embodied planning. ArXiv preprint, abs/2505.22050, 2025. URL https://
arxiv.org/abs/2505.22050.

Rui Xiao, Sanghwan Kim, Mariana-Iuliana Georgescu, Zeynep Akata, and Stephan Alaniz. Flair:
Vlm with fine-grained language-informed image representations. In Proceedings of the Computer
Vision and Pattern Recognition Conference, 2025.

12

https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://openreview.net/forum?id=ehfRiF0R3a
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2508.18265
https://arxiv.org/abs/2505.22050
https://arxiv.org/abs/2505.22050

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng Wang,
Teja Venkat Koripella, Marziyeh Movahedi, Manling Li, Heng Ji, Huan Zhang, and Tong Zhang.
Embodiedbench: Comprehensive benchmarking multi-modal large language models for vision-
driven embodied agents. In Forty-second International Conference on Machine Learning, 2025.

Jiahui Zhang, Yusen Luo, Abrar Anwar, Sumedh Anand Sontakke, Joseph J Lim, Jesse Thomason,
Erdem Biyik, and Jesse Zhang. RewiND: Language-guided rewards teach robot policies without
new demonstrations. In 9th Annual Conference on Robot Learning, 2025.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), 2024.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes
for open-source multimodal models. ArXiv preprint, abs/2504.10479, 2025. URL https:
//arxiv.org/abs/2504.10479.

13

https://arxiv.org/abs/2504.10479
https://arxiv.org/abs/2504.10479

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

This work was developed with assistance from Large Language Models (Claude (Anthropic, 2025b)
and GPT-4o (OpenAI, 2024a)) for proofreading, editing, language refinement, and synthetic data
generation as described in our methodology. While LLMs supported various aspects of writing and
research, all substantive intellectual contributions, experimental results, and scientific claims originate
from the human authors, who retain full responsibility for the accuracy and validity of all content.
All AI-generated material underwent human review and verification.

B TRAINING CONFIGURATION AND IMPLEMENTATION DETAILS

B.1 HYPERPARAMETERS

Training Configuration. We implemented INFUSER using LLaMA-Factory (Zheng et al., 2024)
as our training framework, leveraging DeepSpeed ZeRO Stage 3 (Rasley et al., 2020) for distributed
training optimization along with automatic mixed precision using BF16 and parameter offloading.
All models were initialized from Qwen2.5-VL-7B-Instruct Bai et al. (2025) and fine-tuned with the
following configuration:

Table 7: Training hyperparameters for INFUSER

Hyperparameter Value
Optimization
Optimizer AdamW (β1=0.9, β2=0.999, ϵ=1e-8)
Learning rate 1×10−5

Learning rate scheduler Cosine annealing
Warmup ratio 0.1
Weight decay 0.01

Training Settings
Effective batch size 64
Training epochs (EmbodiedBench (Yang et al., 2025)) 5
Training epochs (VisualAgentBench (Liu et al., 2025)) 3
Random seed 42
Precision BF16

Model Configuration
Base model Qwen2.5-VL-7B-Instruct
Vision tower Frozen
Multi-modal projector Frozen
Language model Trainable
Maximum sequence length 8,192 tokens
Image resolution 512×512 (max 262,144 pixels)
Video resolution 128×128 (max 16,384 pixels)

Framework Details. Training was conducted using LLaMA-Factory (Zheng et al., 2024), which
provides efficient implementations for vision-language model fine-tuning. We utilized the qwen2_vl
template for consistent formatting of multi-modal inputs and outputs and follow original preprocess-
ing.

C FAILURE TAXONOMY AND ANALYSIS

We provide comprehensive definitions for each failure type identified in our taxonomy.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C.1 PLANNING ERRORS

Planning errors occur when agents generate structurally invalid action sequences despite accurate
environmental perception.

Missing Prerequisites: Attempting actions without satisfying necessary preconditions. The agent
executes valid actions but fails to complete enabling steps first, such as opening containers before
accessing contents or navigating to objects before manipulation.

Wrong Action Sequence: Executing actions in orders that violate task logic or physical constraints.
Actions are individually valid but their temporal ordering prevents task completion, such as cleaning
objects while contained or placing items before retrieval.

Spatial Navigation Error: Failing to establish proper spatial configuration for interaction. The
agent attempts manipulation from incorrect positions, fails to account for reachability constraints, or
navigates to wrong locations.

C.2 REASONING ERRORS

Reasoning errors arise from incorrect interpretation of visual input or failure to maintain accurate
environmental understanding.

Perception Error: Misidentifying task-relevant objects due to visual or semantic confusion. The
agent selects incorrect objects that share visual features or semantic categories with intended targets.

State Tracking Error: Losing coherence between internal world model and actual environment state.
The agent maintains outdated beliefs about object locations or states, failing to update representations
based on environmental changes or feedback.

Container Mismatch: Selecting incorrect containers or receptacles for object placement. The agent
confuses functionally different containers or fails to distinguish between valid and invalid receptacles
for specific objects.

Manipulation Error: Choosing inappropriate manipulation primitives for object interactions. The
agent applies incorrect grasping strategies, force parameters, or manipulation sequences for specific
object types.

Termination Error: Incorrectly assessing task completion status. The agent declares success with
incomplete objectives or continues execution after goal achievement.

These failure modes exhibit hierarchical relationships—planning errors typically manifest as execu-
tion failures while reasoning errors produce semantic inconsistencies. Failures often cascade, with
initial errors corrupting subsequent decision-making and creating increasingly divergent trajectories
from optimal behavior.

C.3 FAILURE MODE ANALYSIS

Our failure analysis in across 300 EB-ALFRED test episodes reveals that INFUSE addresses system-
atic planning deficiencies rather than random execution errors. The baseline model exhibits 2,469
failed actions with planning errors dominating (1,532 instances, 62% of failures), primarily driven by
missing prerequisite steps where agents attempt object interactions without first opening containers
or navigating to proper locations. INFUSE reduces total failures to 1,733 while demonstrating
differential recovery effectiveness: planning errors decrease by 41% (1,532 → 905) and object
confusion drops by 65% (381 → 132), while reasoning errors show modest 12% improvement (937
→ 828). This pattern confirms that systematic errors amenable to learned recovery sequences can be
effectively addressed through synthetic failure training.

The error distribution changes reveal the nature of INFUSE’s learned behaviors. While step-level
success rate improves from 54.0% to 68.4%, manipulation errors actually increase from 556 to 696
instances, suggesting that INFUSE learns to attempt more sophisticated interaction strategies that
sometimes fail at execution. This increase in manipulation attempts coupled with overall failure
reduction indicates that INFUSE develops persistence strategies—continuing to attempt tasks despite
individual action failures rather than abandoning them after initial errors.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Failure Mode Analysis on EB-ALFRED (300 test episodes)

Failure Type Claude-3.7 Qwen2.5-72B Success (7B) INFUSE (7B)

Total Steps 4,587 5,029 5,367 5,490
Total Failures 764 1,126 2,469 1,733
Task Success Rate (%) 66.7 45.0 18.3 47.0
Step Success Rate (%) 83.3 77.6 54.0 68.4
Avg. Failures/Episode 2.5 3.8 8.2 5.8

Error Type Distribution
Planning Errors 241 251 1,532 905
Reasoning Errors 523 875 937 828

Error Subtype Breakdown
Missing Prerequisites 231 243 1,451 873
Manipulation Errors 459 777 556 696
Object Confusion 64 98 381 132
Navigation Errors 10 8 81 32

D DATASET DETAILS

D.1 EMBODIEDBENCH

We construct dataset for expert demonstration from released data from ALFRED (Shridhar et al.,
2020), following Wu et al. (2025). From release data, we collect a total of 6,574 expert trajectory
with total 62,255 steps. Out of this total steps, we exclude the first and last step to be sampled, with
the result total 49,045 failure trajactory, excluding a few malicious data. For EB-Habitat, we use
published expert trajectory from Yang et al. (2025). From total 3,235 trajactory, we filter out 1,651
only successful trajactories. Among 1,651 success trajactories, we generated 4904 failure trajectory.

D.2 VISUALAGENTBENCH

For VisualAgentBench, we use training dataset from VisualAgentBench (Liu et al., 2025). VAB-
OmniGibson contains 872 trajactory with total 20,153 steps, and VAB-Minecraft contains 382
train trajactory with total 5,197 train step. From their training data, we generate 19165 and 4745
failure-recovery trajactory, respectively.

E ADDITIONAL DETAILS FOR EMBODIEDBENCH

E.1 OVERVIEW OF EMBODIEDBENCH FRAMEWORK

EmbodiedBench establishes a pioneering evaluation paradigm for vision-language models operating
within interactive embodied environments. This comprehensive framework transcends conventional
static benchmarks by immersing agents in dynamic, physically grounded simulations where multi-
modal perception, semantic reasoning, and sequential action execution must harmoniously integrate.
The benchmark encompasses four distinct simulation environments supporting over 1,100 meticu-
lously designed tasks, ranging from atomic actions to complex multi-step planning sequences that
challenge current model capabilities.

The framework’s architecture emphasizes ecological validity through realistic task scenarios grounded
in everyday activities, while maintaining computational tractability for systematic evaluation. By
bridging the gap between controlled laboratory conditions and real-world deployment requirements,
EmbodiedBench provides essential infrastructure for advancing embodied artificial intelligence.

E.2 EB-ALFRED: HOUSEHOLD TASK ENVIRONMENT

Environment Specifications. EB-ALFRED, built upon the ALFRED dataset foundation and AI2-
THOR simulator, delivers a sophisticated household interaction platform featuring eight core action

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

primitives: object manipulation (pick up, put down), spatial navigation (find), state modifications
(open/close, turn on/off), and object processing (slice, clean). The environment provides first-person
RGB visual observations complemented by structured textual feedback, enabling agents to develop
robust planning strategies through iterative refinement.

Technical Enhancements. Distinguished from its predecessor, EB-ALFRED incorporates critical
architectural improvements: support for multiple instances of identical object types within scenes,
consolidated action sets with unified manipulation commands, and dynamically adjustable action
spaces spanning 171 to 298 distinct actions based on scene configuration. These enhancements create
a more naturalistic evaluation environment that better approximates real-world embodied reasoning
challenges.

Task Complexity and Distribution. EB-Alfred environment encompasses 6,535 training trajecto-
ries spanning six specialized categories: base tasks establishing fundamental competencies, common
sense reasoning scenarios requiring implicit world knowledge, complex instruction processing with
verbose or ambiguous directives, spatial awareness challenges demanding 3D relationship understand-
ing, visual appearance recognition requiring fine-grained discrimination, and long horizon planning
sequences exceeding 15 coordinated actions. Indeed, we do not use this 6,535 training trajectories.
Following Wu et al. (2025), we directly used trajactory released from ALFRED (Shridhar et al.,
2020).

E.3 EB-HABITAT: SPATIAL REASONING ENVIRONMENT

Environment Architecture. EB-Habitat, extending the Language Rearrangement benchmark
within the Habitat 2.0 framework, emphasizes spatial reasoning and object manipulation within
photorealistic indoor scenes. The environment focuses on five core competencies: goal-directed
navigation, object grasping, precise placement, container manipulation, and spatial relationship under-
standing. Navigation constraints require agents to approach receptacle-type destinations exclusively,
necessitating sophisticated scene understanding capabilities.

Instruction Templates and Diversity. The environment provides 282 distinct instruction tem-
plates that challenge agents’ spatial reasoning abilities through relative positioning requirements,
containment relationships, and efficient path planning scenarios. This template diversity ensures
comprehensive evaluation of spatial cognitive capabilities across varied linguistic formulations and
environmental configurations.

E.4 TASK TAXONOMY AND EVALUATION DIMENSIONS

Both EmbodiedBench environments employ a systematic six-category taxonomy designed to isolate
and assess specific cognitive capabilities across embodied reasoning scenarios. This standardized
categorization enables comprehensive evaluation of agent competencies while facilitating meaningful
performance analysis across different environmental contexts.

Evaluation Categories.

• Base Tasks: Fundamental scenarios establishing core embodied reasoning competencies through
standard object interactions and straightforward goal achievement under moderate complexity
constraints.

• Common Sense Reasoning: Scenarios requiring implicit world knowledge application and am-
biguous reference resolution through understanding of typical object uses, default locations, and
everyday behavioral patterns.

• Complex Instruction Processing: Linguistically challenging directives featuring verbose descrip-
tions, nested clauses, or extraneous information requiring salient goal extraction from naturalistic,
unstructured language.

• Spatial Awareness: Three-dimensional relationship comprehension including relative positioning,
containment hierarchies, and navigational constraints requiring accurate spatial mental model
maintenance.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Visual Appearance Recognition: Fine-grained visual discrimination based on object attributes
including color, texture, material, and shape, testing perceptual acuity beyond simple classification.

• Long Horizon Planning: Extended sequences requiring 15+ coordinated actions evaluating
temporal reasoning, state tracking, and plan maintenance over extended interaction periods.

F ADDITIONAL DETAILS FOR VISUALAGENTBENCH EMBODIED SUITE

F.1 OVERVIEW OF VISUALAGENTBENCH EMBODIED FRAMEWORK

VisualAgentBench (VAB) establishes a comprehensive evaluation paradigm for Multimodal Large
Language Models (MLLMs) as visual foundation agents across interactive embodied scenarios. This
pioneering framework transcends traditional static evaluation methodologies by requiring agents to
process egocentric visual observations, interpret environmental feedback, and execute coherent action
sequences within visually rich, physically grounded simulations. The embodied suite encompasses
two meticulously designed environments that challenge agents’ capabilities in spatial reasoning,
object manipulation, and sequential decision-making.

The framework’s distinctive approach addresses fundamental gaps in existing evaluation method-
ologies by providing both high-quality test sets and comprehensive training trajectories essential
for developing robust visual agents. By enabling systematic assessment of both proprietary and
open-source MLLMs through standardized interfaces, VAB facilitates rigorous comparison and
advancement of embodied multimodal intelligence.

F.2 VAB-OMNIGIBSON: HOUSEHOLD EMBODIED INTELLIGENCE

Environment Specifications. VAB-OmniGibson, built upon the OmniGibson simulator (Li et al.,
2022), delivers photorealistic rendering and sophisticated physics simulation for household envi-
ronments. The platform features 20 distinct high-level actions optimized for semantic planning
evaluation: object manipulation primitives (grasp, put_inside, put_on_top), navigation
commands (move, move_to_room), camera control operations, and state modification actions
(open, close, toggle_on/off, cook, heat, freeze).

Technical Architecture. The environment transcends limitations of existing household benchmarks
through carefully curated action abstraction that enables MLLMs to focus on high-level planning
capabilities rather than low-level motor control. Tasks are grounded in specific scene configura-
tions with randomized object positions, ensuring robust evaluation across varying initial conditions.
BEHAVIOR Domain Definition Language (BDDL) specifications define precise goal conditions,
enabling deterministic success evaluation while maintaining ecological validity.

Task Complexity and Distribution. VAB-OmniGibson encompasses 181 test instances derived
from 45 carefully selected activity prototypes spanning simple object relocations to complex multi-
step procedures including meal preparation and household organization. The training infrastructure
comprises 872 trajectories collected through hybrid methodology: 785 trajectories from rule-based
solvers across 901 training instances, supplemented by 87 MLLMs bootstrapping trajectories from
GPT-4V, introducing natural variability in problem-solving approaches.

F.3 VAB-MINECRAFT: OPEN-WORLD EMBODIED REASONING

Environment Specifications. VAB-Minecraft, extending the MineRL framework (Minerllabs,
2025) with JARVIS-1 integration (Wang et al., 2024c), provides open-world scenarios requiring
exploration, resource gathering, and multi-step crafting procedures. The environment presents
unique challenges through procedural world generation, diverse biome navigation, and complex item
dependency chains spanning six material tiers from wood through netherite. The platform supports
both peaceful and hostile mob interactions, necessitating adaptive planning strategies.

Action Space and Capabilities. The environment implements six high-level actions tailored
for multi-modal large language models (MLLMs) agents: craft and smelt for item creation,
equip for tool management, teleport_to_spawn for navigation reset, look_up for recipe

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

information retrieval, and execute for invoking specialized low-level controllers. This abstraction
enables MLLMs to leverage natural language understanding for complex instruction following while
delegating fine-grained control to dedicated models.

Task Diversity and Scale. VAB-Minecraft features 116 test tasks encompassing diverse resource
types including 11 plant varieties, 4 animal types, and 6 hostile mob categories. Tasks evaluate
progressive skill acquisition from basic resource gathering to advanced item synthesis requiring
multiple intermediate crafting steps. Training data comprises 382 successful trajectories: 176 from
GPT-4-turbo (OpenAI, 2024b) on newly designed tasks and 206 from GPT-4o with JARVIS-1 memory
augmentation, capturing both exploratory and optimized solution strategies.

F.4 EVALUATION METHODOLOGY AND PERFORMANCE METRICS

Assessment Framework. Both environments employ task success rate as the primary evaluation
metric, measuring completion within prescribed interaction limits (100 rounds per environment).
Success determination utilizes environment-specific criteria: BDDL goal satisfaction for OmniGibson
and target item acquisition for Minecraft. Interactive evaluation protocols require agents to engage
directly with simulated environments, processing visual observations and environmental feedback at
each timestep while maintaining temporal consistency across extended sequences.

Statistical Distribution. VAB-OmniGibson provides 181 test instances across 45 activity types
with 872 training trajectories averaging 20.15 steps per sequence across 20-dimensional action space.
VAB-Minecraft offers 116 test instances with 382 training trajectories averaging 13.6 steps per
sequence across 6-dimensional action space, covering comprehensive crafting hierarchies and 21
distinct resource types distributed across multiple material progression tiers.

G TECHNICAL IMPLEMENTATION DETAILS

G.1 SYNTHETIC FAILURE GENERATION METHODOLOGY

Uniform Sampling Strategy. Our synthetic failure injection employs uniform random sampling
across expert trajectory steps, ensuring unbiased coverage of potential failure scenarios without
predetermined error type distributions. The our framework samples ρ of eligible steps from each
trajectory, excluding initial and final steps to preserve task initiation and completion integrity.

Failure Candidate Generation Pipeline. Throughout our work, we use GPT-4o (OpenAI, 2024a)
(gpt-4o-2024-08-06) model for all data annotation purpose. The failure injection process
operates through a streamlined pipeline: (1) trajectory preprocessing identifies eligible steps for
failure injection, (2) uniform random sampling selects candidate steps based on a sample rate ρ, (3)
contextual alternative action generation utilizes GPT-4o to suggest plausible but suboptimal actions
given environmental context and available action spaces, and (4) validation filtering removes actions
that violate environmental constraints or action space definitions (e.g. alternative action is not in
action space, returning same action).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H EXAMPLE TRAJECTORY IN EB-ALFRED BENCHMARK

Visual Input VLM Analysis Action & Feedback

Task: Rinse off a ladle and move it to the table.

Visual: The image shows a section of a kitchen
with a large dark-colored cabinet door partially
visible on the left side. There is a metal sink
located at the
Reasoning: The task requires rinsing a ladle and
moving it to a table. The action sequence begins
by locating a countertop, which i
Plan: 1. Locate a countertop where the ladle
might be found

ID: 39
Action: find a CounterTop
Feedback: Last action executed
successfully.
Success: ✓

Visual: The image shows an outdoor area with a
concrete surface, possibly a patio or garden path.
There are shadows cast across the surface, likely
from nearb
Reasoning: The failure occurred because the
ladle is located on a different countertop that was
not initially considered. The actio
Plan: 1. Locate the CounterTop_2 where the ladle
is placed

ID: 39
Action: find a CounterTop
Feedback: Last action executed
successfully.
Success: ✓

Visual: The image shows a kitchen environment
with a countertop next to a stove. On the
countertop, there are two metal cups and a
wooden cutting board. A pot
Reasoning: The failure occurred because the
ladle was not visible when the robot attempted to
pick it up from the countertop. This
Plan: 1. Locate where the ladle is stored by
performing a find action to discover its exact
position

ID: 109
Action: pick up the Ladle
Feedback: Last action executed
successfully.
Success: ✓

Visual: The image shows a kitchen environment
with a countertop next to a stove. On the
countertop, there are two metal cups and a
wooden cutting board. A pot
Reasoning: The failure occurred because the
ladle was not visible when the robot attempted to
pick it up from the countertop. This
Plan: 1. Locate where the ladle is stored by
performing a find action to discover its exact
position

ID: 155
Action: turn on the Faucet
Feedback: Last action executed
successfully.
Success: ✓

Visual: The image shows a kitchen environment
with a countertop next to a stove. On the
countertop, there are two metal cups and a
wooden cutting board. A pot
Reasoning: The failure occurred because the
ladle was not visible when the robot attempted to
pick it up from the countertop. This
Plan: 1. Locate where the ladle is stored by
performing a find action to discover its exact
position

ID: 109
Action: pick up the Ladle
Feedback: Last action executed
successfully.
Success: ✓

Figure 5: Example execution result of INFUSER in EB-ALREAD, Sampled total 6 steps out of
full trajectory with interval of 3 steps

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Visual Input VLM Analysis Action & Feedback

Task: wash the ladle and put it back on the table

Visual: The image shows a part of a room with a
smooth, beige wall and a small section of what
appears to be a floor or furniture edge. There are
no visible o
Reasoning: The task requires washing a ladle
and returning it to the table. The action sequence
begins by locating the dining table
Plan: 1. Locate the dining table to find the ladle

ID: 18
Action: find a DiningTable
Feedback: Last action executed
successfully.
Success: ✓

Visual: The image shows a part of a room with a
smooth, beige wall and a small section of what
appears to be a floor or furniture edge. There are
no visible o
Reasoning: The task requires washing a ladle
and returning it to the table. The action sequence
begins by locating the dining table
Plan: 1. Locate the dining table to find the ladle

ID: 109
Action: pick up the Ladle
Feedback: Last action executed
successfully.
Success: ✓

Visual: The image shows a part of a room with a
smooth, beige wall and a small section of what
appears to be a floor or furniture edge. There are
no visible o
Reasoning: The task requires washing a ladle
and returning it to the table. The action sequence
begins by locating the dining table
Plan: 1. Locate the dining table to find the ladle

ID: 133
Action: put down the object in hand
Feedback: Last action executed
successfully.
Success: ✓

Visual: The image shows a part of a room with a
smooth, beige wall and a small section of what
appears to be a floor or furniture edge. There are
no visible o
Reasoning: The task requires washing a ladle
and returning it to the table. The action sequence
begins by locating the dining table
Plan: 1. Locate the dining table to find the ladle

ID: 156
Action: turn off the Faucet
Feedback: Last action executed
successfully.
Success: ✓

Visual: The image shows a part of a room with a
smooth, beige wall and a small section of what
appears to be a floor or furniture edge. There are
no visible o
Reasoning: The task requires washing a ladle
and returning it to the table. The action sequence
begins by locating the dining table
Plan: 1. Locate the dining table to find the ladle

ID: 18
Action: find a DiningTable
Feedback: Last action executed
successfully.
Success: ✓

Visual: The image shows a part of a room with a
smooth, beige wall and a small section of what
appears to be a floor or furniture edge. There are
no visible o
Reasoning: The task requires washing a ladle
and returning it to the table. The action sequence
begins by locating the dining table
Plan: 1. Locate the dining table to find the ladle

ID: 133
Action: put down the object in hand
Feedback: Last action executed
successfully.
Success: ✓

Figure 6: Example execution result of INFUSER in EB-ALREAD, Sampled total 6 steps out of
full trajectory with interval of 3 steps

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I PROMPT USED FOR DATASET GENERATION

Failure Candidate Prompt for EmbodiedBench

<system>
You are an expert at analyzing robot task execution trajectories and identifying plausible

alternative actions that could be taken at specific points in the sequence.

Your task is to suggest ONE alternative action that is:
1. Plausible but less optimal than the expert action
2. Would potentially lead to a failure or inefficiency
3. Still makes some logical sense given the context
4. Different from the current expert action

Consider common failure scenarios:
- Trying to pick up objects that don't exist or are in closed receptacles
- Attempting actions when robot is already holding something
- Trying to open/close objects that are already in that state
- Looking for objects in wrong locations
- Attempting to put objects in inappropriate receptacles

Return your response as a JSON object with:
{

"alternative_action": "the alternative action name",
"reasoning": "brief explanation of why this alternative might be chosen and why it would be less

optimal"
}

IMPORTANT: The alternative action MUST be from the provided action space list.

<user>
"Task: {task_instruction}

Expert trajectory up to this point:
{previous_trajectory}

Current expert action (step {current_index}/{total_action_count}): {current_action}

Following expert actions:
{remaining_expert_actions}

Based on the task and trajectory context, suggest ONE plausible alternative action that could be
taken instead of "{current_action}".

Available actions:
{action_list}

The alternative action must be from the above list and should be different from the current expert
action.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Expert Reasoning Prompt for EmbodiedBench

<system>
You are an expert at analyzing visual scenes and generating detailed reasoning for robot task

planning in household environments.

Your task is to generate reasoning that explains WHY a specific sequence of actions is
appropriate for accomplishing a given task, based on the visual observation and task
instruction.

You will receive:
1. An image showing the initial state of the environment
2. A task instruction describing what needs to be accomplished
3. An expert action sequence that successfully completes the task

You must generate a JSON response with the following structure:
{

"visual_state_description": "Detailed description of what you observe in the image, including
objects, their positions, and spatial relationships",

"reasoning_and_reflection": "Logical reasoning explaining why this action sequence is
appropriate for the task, considering the visual state and task requirements",

"language_plan": "Step-by-step natural language description of the plan, explaining what each
action accomplishes",

"executable_plan": [List of actions with action_id and action_name]
}

Important guidelines:
- The visual_state_description should accurately describe what is visible in the image
- The reasoning_and_reflection should explain the logic behind choosing these specific actions
- The language_plan should break down the task into clear, understandable steps
- Each action in executable_plan must have both action_id and action_name
- Be precise and avoid unnecessary details
- Focus on explaining WHY these actions lead to task completion
- Consider object locations, accessibility, and task requirements in your reasoning

<user>
Task Instruction: {task_instruction}

Expert Action Sequence: {expert_action_sequence}

Based on the image and task instruction above, generate detailed reasoning for why this specific
action sequence effectively accomplishes the task. Your response should explain the logic
behind each action choice and how they work together to complete the task.

Remember to format your response as a JSON object with the required fields:
visual_state_description, reasoning_and_reflection, language_plan, and executable_plan

The executable_plan has been mapped to the following action IDs: {
action_id_mapped_expert_sequence}

Please incorporate this exact executable_plan in your response.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Failure Recovery Prompt for EmbodiedBench

You are an expert at analyzing visual scenes and generating recovery strategies for robot task
planning in household environments.

Your task is to analyze a failure scenario and generate reasoning that explains:
1. WHY the previous actions failed based on the visual observation and environment feedback
2. HOW to recover and complete the task successfully from the current state

You will receive:
1. An image showing the current state after the failure occurred
2. A task instruction describing what needs to be accomplished
3. An action history showing what was attempted and the environment feedback
4. Information about which action failed and why

Available Actions (0-{action_space_size}):
{action_list}

You must generate a JSON response with the following structure:
{{

"visual_state_description": "Detailed description of what you observe in the current image
after the failure, including objects, their positions, and the robot's current state",

"reasoning_and_reflection": "Analysis of why the failure occurred based on the visual state
and environment feedback, plus logical reasoning for the recovery strategy",

"language_plan": "Step-by-step natural language description of the recovery plan, explaining
what each remaining action will accomplish",

"executable_plan": [List of actions with action_id and action_name to complete the task from
current state]

}}

Important guidelines for failure recovery:
- The visual_state_description should capture the state AFTER the failure occurred
- The reasoning_and_reflection must explain WHY the failure happened and justify the recovery

approach
- Consider environment feedback messages carefully - they indicate specific issues
- The recovery plan should address the root cause of the failure
- Avoid repeating the same failed action sequence
- Be precise about the current robot state (holding object, location, etc.)
- Focus on explaining WHY the recovery actions lead to task completion

Task Instruction: {task_instruction}

Action History with Environment Feedback:
{action_history}

Failed Action Details:
- Action attempted: {failed_action_name} (id: {failed_action_id})
- Failure reason: {env_feedback}

Based on the image showing the current state after this failure, generate detailed reasoning for
:

1. Why this specific failure occurred given the visual state and task requirements
2. How to recover and successfully complete the task from this point

Your recovery plan should complete the remaining task objectives.
The expert demonstration shows these actions would complete the task from this point:
[
{remaining_expert_action_sequence}
]

Use this as guidance for your recovery plan.

Remember to format your response as a JSON object with the required fields:
visual_state_description, reasoning_and_reflection, language_plan, and executable_plan.

Each action in executable_plan must have both action_id (0-{action_space_size}) and action_name
from the available actions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Failure Recovery SFT Prompt for EmbodiedBench

You are an expert at analyzing visual scenes and generating recovery strategies for robot task
planning in household environments.

Your task is to analyze a failure scenario and generate reasoning that explains:
1. WHY the previous actions failed based on the visual observation and environment feedback
2. HOW to recover and complete the task successfully from the current state

You will receive:
1. An image showing the current state after the failure occurred
2. A task instruction describing what needs to be accomplished
3. An action history showing what was attempted and the environment feedback
4. Information about which action failed and why

You must generate a JSON response with the following structure:
{{

"visual_state_description": "Detailed description of what you observe in the current image
after the failure, including objects, their positions, and the robot's current state",

"reasoning_and_reflection": "Analysis of why the failure occurred based on the visual state
and environment feedback, plus logical reasoning for the recovery strategy",

"language_plan": "Step-by-step natural language description of the recovery plan, explaining
what each remaining action will accomplish",

"executable_plan": [List of actions with action_id and action_name to complete the task from
current state]

}}

Important guidelines for failure recovery:
- The visual_state_description should capture the state AFTER the failure occurred
- The reasoning_and_reflection must explain WHY the failure happened and justify the recovery

approach
- Consider environment feedback messages carefully - they indicate specific issues
- The recovery plan should address the root cause of the failure
- Avoid repeating the same failed action sequence
- Be precise about the current robot state (holding object, location, etc.)
- Focus on explaining WHY the recovery actions lead to task completion

Task Instruction: {task_instruction}

Action History with Environment Feedback:
{action_history}

Failed Action Details:
- Action attempted: {failed_action_name} (id: {action_id})
- Failure reason: {env_feedback}

Based on the image showing the current state after this failure, generate detailed reasoning for
:

1. Why this specific failure occurred given the visual state and task requirements
2. How to recover and successfully complete the task from this point

Your recovery plan should complete the remaining task objectives.
The expert demonstration shows these actions would complete the task from this point:
[
{remaining_expert_action_sequence}
]

Use this as guidance for your recovery plan.

Remember to format your response as a JSON object with the required fields:
visual_state_description, reasoning_and_reflection, language_plan, and executable_plan.

Each action in executable_plan must have both action_id (0-{action_space_size}) and action_name
from the available actions.

Available Actions (0-{action_space_size}):
{action_list}

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

SFT Prompt for EB-ALFRED

You are a robot operating in a home. Given a task, you must accomplish the task using a
defined set of actions to achieve the desired outcome.

Action Descriptions and Validity Rules
- Navigation: Parameterized by the name of the receptacle to navigate to. So long as the

receptacle is present in the scene, this skill is always valid
- Pick: Parameterized by the name of the object to pick. Only valid if the robot is close to the

object, not holding another object, and the object is not inside a closed receptacle.
- Place: Parameterized by the name of the receptacle to place the object on. Only valid if the

robot is close to the receptacle and is holding an object.
- Open: Parameterized by the name of the receptacle to open. Only valid if the receptacle is

closed and the robot is close to the receptacle.
- Close: Parameterized by the name of the receptacle to close. Only valid if the receptacle is

open and the robot is close to the receptacle.

The available action id (0 ~ {action_space_size}) and action names are:
{action_list}

{in_context_examples}

Guidelines
1. **Output Plan**: Avoid generating empty plan. Each plan should include no more than 20

actions.
2. **Visibility**: If an object is not currently visible, use the "Navigation" action to locate

it or its receptacle before attempting other operations.
3. **Action Validity**: Make sure match the action name and its corresponding action id in the

output.
Avoid performing actions that do not meet the defined validity criteria.

4. **Prevent Repeating Action Sequences**: Do not repeatedly execute the same action or sequence
of actions.

Try to modify the action sequence because previous actions do not lead to success.
5. **Multiple Instances**: There may be multiple instances of the same object, distinguished by

an index following their names, e.g., cabinet 2, cabinet 3. You can explore these
instances if you do not find the desired object in the current receptacle.

6. **Reflection on History and Feedback**: Use interaction history and feedback from the
environment to refine and enhance your current strategies and actions. If the last action
is invalid, reflect on the reason, such as not adhering to action rules or missing
preliminary actions, and adjust your plan accordingly.

Now the human instruction is: {task_instruction} You are supposed to output in json. You need
to describe current visual state from the image, output your reasoning steps and plan. At
the end, output the action id (0 ~ {action_space_size}) from the available actions to

execute.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

SFT Prompt for EB-Habitat

You are a robot operating in a home. Given a task, you must accomplish the task using a
defined set of actions to achieve the desired outcome.

Action Descriptions and Validity Rules
- Navigation: Parameterized by the name of the receptacle to navigate to. So long as the

receptacle is present in the scene, this skill is always valid
- Pick: Parameterized by the name of the object to pick. Only valid if the robot is close to the

object, not holding another object, and the object is not inside a closed receptacle.
- Place: Parameterized by the name of the receptacle to place the object on. Only valid if the

robot is close to the receptacle and is holding an object.
- Open: Parameterized by the name of the receptacle to open. Only valid if the receptacle is

closed and the robot is close to the receptacle.
- Close: Parameterized by the name of the receptacle to close. Only valid if the receptacle is

open and the robot is close to the receptacle.

The available action id (0 ~ {action_space_size}) and action names are:
{action_list}

{in_context_examples}

Guidelines
1. **Output Plan**: Avoid generating empty plan. Each plan should include no more than 20

actions.
2. **Visibility**: If an object is not currently visible, use the "Navigation" action to locate

it or its receptacle before attempting other operations.
3. **Action Validity**: Make sure match the action name and its corresponding action id in the

output.
Avoid performing actions that do not meet the defined validity criteria.

4. **Prevent Repeating Action Sequences**: Do not repeatedly execute the same action or sequence
of actions.

Try to modify the action sequence because previous actions do not lead to success.
5. **Multiple Instances**: There may be multiple instances of the same object, distinguished by

an index following their names, e.g., cabinet 2, cabinet 3. You can explore these
instances if you do not find the desired object in the current receptacle.

6. **Reflection on History and Feedback**: Use interaction history and feedback from the
environment to refine and enhance your current strategies and actions. If the last action
is invalid, reflect on the reason, such as not adhering to action rules or missing
preliminary actions, and adjust your plan accordingly.

Now the human instruction is: {task_instruction} You are supposed to output in json. You need
to describe current visual state from the image, output your reasoning steps and plan. At
the end, output the action id (0 ~ {action_space_size}) from the available actions to

execute.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Failure Candidate Prompt for VAB-OmniGibson

<system>
You are an expert at analyzing robot task execution trajectories and identifying plausible

alternative actions that could be taken at specific points in the sequence.

Your task is to suggest ONE alternative action that is:
1. Plausible but less optimal than the expert action
2. Would potentially lead to a failure or inefficiency
3. Still makes some logical sense given the context
4. Different from the current expert action

Consider common failure scenarios in household robotics:
- Trying to grasp objects that are not within reach
- Attempting actions when robot is already holding something
- Trying to put objects in inappropriate or closed containers
- Attempting to open/close objects that don't support those actions
- Looking for objects in wrong locations
- Attempting to manipulate objects without proper prerequisites

IMPORTANT: Only suggest core functional actions from this list:
grasp, move, put_inside, put_on_top, put_under, put_next_to, cook, burn, freeze, heat, open,

close, toggle_on, toggle_off, move_to_room

DO NOT suggest camera, turn, or perception actions as these are basic navigation aids.

Return your response as a JSON object with:
{

"alternative_action": "the alternative action in the same format as provided actions",
"reasoning": "brief explanation of why this alternative might be chosen and why it would be

less optimal"
}

IMPORTANT: The alternative action MUST follow the function format (e.g., grasp(obj), move(obj),
etc.) and use only the core functional actions listed above

<user>
Task Goal: {task_instruction}

Environmental Context:
- Current Room: {current_room}
- At Hand Object: {at_hand_object}
- Action Feedback: {action_feedback}
- Reachable Rooms: {reachable_rooms}

Expert action sequence up to this point:
{previous_actions}

Current expert action (step {current_index}/{total_action_count}): {current_action}

Following expert actions:
{remaining_expert_actions}

Based on the task, environmental context, and trajectory context, suggest ONE plausible
alternative action that could be taken instead of "{current_action}".

Available core functional action templates:
'grasp(obj)', 'move(obj)', 'put_inside(obj1, obj2)', 'put_on_top(obj1, obj2)',
'put_under(obj1, obj2)', 'put_next_to(obj1, obj2)', 'cook(obj)', 'burn(obj)',
'freeze(obj)', 'heat(obj)', 'open(obj)', 'close(obj)', 'toggle_on(obj)',
'toggle_off(obj)', 'move_to_room(room)'

The alternative action must follow one of these function templates and should be different from
the current expert action.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Failure Candidate Prompt for VAB-Minecraft

<system>
You are an expert at analyzing Minecraft gameplay and identifying plausible alternative actions

that could lead to failures.

Your task is to suggest ONE alternative Minecraft action that is:
1. Plausible but incorrect for the current situation
2. Would lead to a failure based on common Minecraft failure patterns
3. Still makes logical sense given the visual context and inventory
4. Different from the correct action

Consider common Minecraft failure patterns:
- Using wrong tools for mining (wooden pickaxe for diamond ore)
- Crafting without sufficient materials or crafting table
- Smelting without furnace or fuel
- Equipping items not in inventory
- Using complex execute commands instead of simple verb-object phrases
- Requesting excessive quantities
- Wrong action type (using execute for crafting)

Return a JSON with:
{

"alternative_action": "the incorrect action",
"reasoning": "why someone might choose this action based on the visual scene and game state"

}

<user>
Current observation: {observation}
Current thought: {thought}
Correct action that should be taken: {correct_action}

Based on the Minecraft visual scene and game state, suggest a plausible but incorrect
alternative action.

Available Minecraft actions:
- craft(item, num) - Craft items
- smelt(item, num) - Smelt items
- equip(item) - Equip items
- execute(prompt, goal_item, num) - Execute simple tasks
- teleport_to_spawn() - Teleport to spawn
- look_up(item) - Look up item information

The alternative must be different from the correct action and should reflect common Minecraft
failure patterns.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

System Prompt for Failure Recovery in VAB-OmniGibson

Setup
You are an intelligent agent exceling at solving household tasks. You are in a household

environment given a task to finish.
You can interact with the environment by performing actions using python-style pseudo code. For

each turn, please call exactly one predefined action.

Valid Actions
Predefined Action List:
```
...{omitting OmniGibson's predefined action space. We use the identical action space}

def toggle_on(obj):
'''Toggle on the object.
Args:

:param obj: the digital identifier of the object to toggle on.
Returns:

A string message of the environment feedback.
'''

def toggle_off(obj):
'''Toggle off the object.
Args:

:param obj: the digital identifier of the object to toggle off.
Returns:

A string message of the environment feedback.
'''

```
Reminder
1. You can only hold one object at a time.
2. When moving to a new position, you can always turn left, turn right, raise camera or lower

camera to see around before making a decision.
3. You can only interact with objects within your reach; if not, first try moving towards it or

something close to it.
4. You can only interact with objects that are visible to you (annotated with a bounding box in

the image); if it's not visible, try to move inside the room or other rooms and look
around to find it. You can open refrigerators or other enclosures to see inside them.

5. You can interact with objects that are very close to you, such as those you've just moved
towards, even if you don't see them currently.

6. When you are out of the room and see nothing useful, try moving to a room.
7. You can always move to something in the same room with you, if you have seen it before, even

though you cannot see it now. So when you are in a new room, try to move around and see
around to record more objects in your observation so that you can move to them flexibly
afterwards.

8. Don't repeat the failed action in the next round. Try to understand what went wrong and make
a different decision.

9. If you can't complete the task, you can do as much as you can and call `done()` to finish the
task.

Input
For each dialog, you will be given the following information at the beginning.
1. Task Goal: The task is finished only when these conditions are met.
2. Reachable Rooms: Rooms you can move to. Please refer to them with their names provided here.
For each turn, you will be given the following information.
1. Action Feedback: Environment feedback of the last action.
2. At Hand Object: The object you are currently holding.
3. Current Room: The room you are currently in.
4. Vision Input: the image you see from your perspective (or inside the fridge). All task-

related objects appear in your view will be annotated with bounding boxes and unique
identifiers. Please reference these objects using the digital identifier provided here.
Note that if the object is not annotated with a bounding box, the object can't be
interacted with.

Output
Now, given these information, you need to think and call the action needed to proceed with the

task. Your response should include 3 parts in the following format in each turn:
OBSERVATION: <What you observe in the image> Note that the Vision Input image won't be kept in

the dialog, so make sure you capture all the key information (eg, the identifier of the
object you see) here for future use.

THOUGHT: <Your step-by-step thoughts>
ACTION: <The action code> Note that only one function is allowed in each dialog turn! Only one

line of code is allowed in each dialog turn! If your output contains multiple actions or
multiple turns of actions, only the first one will be executed!

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

User Prompt for Failure Recovery in VAB-OmniGibson

<image>Your task goal is: {env_task_goal}
The reachable rooms during the task are: {reachable_rooms_str}
Action Feedback: {action_feedback}
At Hand Object: {at_hand_object}
Current Room: {current_room}
Vision Input:

Failure Analysis Context

You are analyzing a failure scenario where the robot attempted `{failure_action}` but received
the feedback: "{failure_feedback}".

Action History with Environment Feedback:
{action_history_str}

Expert Recovery Guidance:
The expert demonstration shows these actions would complete the task from this point:
[
{remaining_expert_action_sequence}
]

Recovery Instructions:
Based on the image showing the current state after this failure, you need to:
1. **Analyze WHY the failure occurred** given the visual state and environment feedback
2. **Plan HOW to recover** and complete the task successfully from this point

Your recovery should work toward completing the remaining task objectives. Use the expert
guidance but adapt based on the current visual state and failure context.

Important Guidelines:
- Consider environment feedback messages carefully - they indicate specific constraint

violations
- Avoid repeating the same failed action sequence
- Focus on explaining WHY the recovery action leads toward task completion
- Only use objects that are visible and have digital identifiers in the image
- Be precise about the current robot state (holding object, location, etc.)

Response Format:
OBSERVATION: [What you see in the current post-failure state]
THOUGHT: [Why failure occurred + recovery reasoning]
ACTION: [Single recovery action to execute]

Failure Recovery Prompt for VAB-Minecraft

<system>
You are an expert at analyzing Minecraft failures and explaining recovery strategies based on

visual scenes and game mechanics.

Given a Minecraft failure scenario with visual context, provide a brief but insightful
explanation of:

1. WHY the attempted action failed based on Minecraft game mechanics and what's visible
2. WHAT the correct recovery action should be and why it will work

Keep the explanation concise (2-3 sentences) and focused on Minecraft-specific mechanics.
The explanation should naturally lead into the original thought process.

<user>
Minecraft Failure Context:
- Attempted action: {failure_action}
- Failure feedback: {failure_feedback}
- Correct action to take: {correct_action}
- Current observation: {observation}
- Original planned thought: {original_thought}

Based on the Minecraft visual scene and game mechanics, generate a brief failure analysis that
explains why {failure_action} failed and why {correct_action} is the right recovery action
.

The analysis should reference specific Minecraft mechanics and connect smoothly with the
original thought: "{original_thought}"

Return just the failure reasoning text, no JSON.

31

	Introduction
	Method
	Synthetic Failure-Recovery Dataset Generation
	Training Dataset Construction

	Experiments
	Experimental Setup
	Main Results
	Ablation Study

	discussion
	Error Persistence and Recovery Analysis
	Learned recovery reasoning

	Related Work
	Conclusion
	LLM Usage Disclosure
	Training Configuration and Implementation Details
	Hyperparameters

	Failure Taxonomy and Analysis
	Planning Errors
	Reasoning Errors
	Failure Mode Analysis

	Dataset Details
	EmbodiedBench
	VisualAgentBench

	Additional Details for EmbodiedBench
	Overview of EmbodiedBench Framework
	EB-ALFRED: Household Task Environment
	EB-Habitat: Spatial Reasoning Environment
	Task Taxonomy and Evaluation Dimensions

	Additional Details for VisualAgentBench Embodied Suite
	Overview of VisualAgentBench Embodied Framework
	VAB-OmniGibson: Household Embodied Intelligence
	VAB-Minecraft: Open-World Embodied Reasoning
	Evaluation Methodology and Performance Metrics

	Technical Implementation Details
	Synthetic Failure Generation Methodology

	Example trajectory in EB-ALFRED Benchmark
	Prompt used for Dataset Generation

