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Abstract

A key challenge for much of the machine learning work on remote sensing and earth ob-1

servation data is the difficulty in acquiring large amounts of accurately labeled data. This2

is particularly true for semantic segmentation tasks, which are much less common in the3

remote sensing domain because of the incredible difficulty in collecting precise, accurate,4

pixel-level annotations at scale. Recent efforts have addressed these challenges both through5

the creation of supervised datasets as well as the application of self-supervised methods. We6

continue these efforts on both fronts. First, we generate and release an improved version7

of the Agriculture-Vision dataset Chiu et al. (2020b) to include raw, full-field imagery for8

greater experimental flexibility. Second, we extend this dataset with the release of 36009

large, high-resolution (10cm/pixel), full-field, red-green-blue and near-infrared images for10

pre-training. Third, we incorporate the Pixel-to-Propagation Module (Xie et al., 2021b)11

originally built on the SimCLR framework into the framework of MoCo-V2 (Chen et al.,12

2020b). Finally, we demonstrate the usefulness of this data by benchmarking different con-13

trastive learning approaches on both downstream classifications and semantic segmentation14

tasks. We explore both CNN and Swin Transformer (Liu et al., 2021a) architectures within15

different frameworks based on MoCo-V2. Together, these approaches enable us to better16

detect key agricultural patterns of interest across a field from aerial imagery so that farmers17

may be alerted to problematic areas in a timely fashion to inform their management deci-18

sions. Furthermore, the release of these datasets will support numerous avenues of research19

for computer vision in remote sensing for agriculture.20

1 Introduction21

Massive annotated datasets like ImageNet have fostered the development of powerful and robust deep-22

learning models for natural images (Deng et al., 2009; He et al., 2016; Simonyan & Zisserman, 2014;23
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Krizhevsky et al., 2012; Russakovsky et al., 2015). However, creating large complex datasets is costly,24

time-consuming, and may be infeasible in some domains or for certain tasks. Simultaneously, vast amounts25

of unlabeled data exist in most domains. Among different self-supervised learning methods(Chang et al.,26

2022; Khan et al., 2022; Ziegler & Asano, 2022; Albelwi, 2022; Singh et al., 2018; Ziegler & Asano, 2022),27

Contrastive learning has recently emerged as an encouraging candidate for solving the need for large labeled28

datasets (Grill et al., 2020; Caron et al., 2020; 2018; He et al., 2020). Through pre-training, these approaches29

open up the possibility of using unlabeled images as its own supervision and transferring in-domain images30

to further downstream tasks (Tian et al., 2020; Ayush et al., 2020).31

While natural scene imagery largely dominates the research landscape in terms of vision algorithms, datasets32

and benchmarks, the rapid increase in quantity and quality of remote sensing imagery has led to significant33

advances in this domain as well (Kelcey & Lucieer, 2012; Maggiori et al., 2017; Ramanath et al., 2019;34

Xia et al., 2017). Coupled with deep neural networks, remote sensing has achieved exceptional success35

in multiple domains such as natural hazards assessment (Van Westen, 2013), climate tracking (Rolnick36

et al., 2019; Yang et al., 2013), and precision agriculture (Mulla, 2013; Seelan et al., 2003; Wu et al., 2022;37

Barrientos et al., 2011; Gitelson et al., 2002). However, obtaining large quantities of accurate annotations is38

especially challenging for remote sensing tasks, particularly for agriculture, as objects of interest tend to be39

very small, high in number (perhaps thousands per image), possess complex organic boundaries, and may40

require channels beyond red-green-blue (RGB) to identify.41

Approaches developed initially for natural images may work well on remote sensing imagery with only42

minimal modification. However, this is not guaranteed due to the large domain gap. Additionally, initial43

methods may fail to exploit the unique structure of earth observation data, such as geographic consistency44

or seasonality (Mañas et al., 2021). Explicitly benchmarking approaches on domain-relevant data is critical.45

In this work, we focus primarily on the Agriculture-Vision (AV) dataset (Chiu et al., 2020b): a large, multi-46

spectral, high-resolution (10 cm/pixel), labeled remote sensing dataset for semantic segmentation. Unlike47

low-resolution public satellite data, this imagery enables within-field identification of key agronomic patterns48

such as weeds and nutrient deficiency. While this dataset is noted for its size, most aerial agriculture datasets49

are quite small. Therefore we leverage the large amounts of un-annotated data which is readily available in50

this domain, benchmark several self-supervised approaches whose inductive bias reflects the structure of this51

data, and evaluate the impact of these approaches in more data-limited settings.52

Together, our contributions are as follows:53

• We release a full-field version of the Agriculture-Vision dataset to further encourage broad agricul-54

tural research in pattern analysis.55

• We release over 3 terabytes of unlabeled, full-field images from more than 3600 full-field images to56

enable unsupervised pre-training.57

• We benchmark self-supervised pre-training methods based on momentum contrastive learning and58

evaluate their performance on downstream classification and semantic segmentation tasks with vari-59

able amounts of annotated data.60

• We perform benchmarks using both CNN and Swin Transformer backbones.61

• We incorporate the Pixel-to-Propagation Module (Xie et al., 2021b) (PPM), originally built on62

SimCLR (Chen et al., 2020a), into the MoCo-V2 (Chen et al., 2020b) framework and evaluate its63

performance.64

• We adapt the approach of Seasonal Contrast (SeCo) from Mañas et al. (2021) for this dataset,65

which contains imagery only during the growing season to address the spatiotemporal nature of the66

raw data specifically.67

2 Related Work68

2.1 Constrastive Learning69

Unsupervised and self-supervised learning (SSL) methods have proven to be very successful for pre-training70

deep neural networks (Erhan et al., 2010; Bengio, 2012; Mikolov et al., 2013; Devlin et al., 2018). Recently,71

methods like MoCo (He et al., 2020; Chen et al., 2020b), SimCLR (Chen et al., 2020a), BYOL (Grill et al.,72
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2020) and others such as Bachman et al. (2019); Henaff (2020); Li et al. (2020) based on contrastive learning73

methods have achieved state-of-the-art performance. These approaches seek to learn by encouraging the74

attraction of different views of the same image (“positive pairs”) as distinguished from “negative pairs” from75

different images (Hadsell et al., 2006). Several approaches have sought to build on these base frameworks76

by making modifications that better incorporate the invariant properties and structure of the input data or77

task output. Specifically pertinent to the current work, Xie et al. (2021b) extended the SimCLR framework78

through the incorporation of a pixel-to-propagation module and additional pixel-level losses to improve79

performance on downstream tasks requiring dense pixel predictions. Mañas et al. (2021) combined multiple80

encoders to capture the time and position invariance in downstream remote sensing tasks.81

2.2 Remote Sensing Datasets82

Aerial images have been widely explored over the past few decades (Cordts et al., 2016; Everingham et al.,83

2010; Gupta et al., 2019; Lin et al., 2014; Zhou et al., 2017), but the datasets for image segmentation typically84

focus on routine, ordinary objects or street scenes (Deng et al., 2009). Many prominent datasets including85

Inria Aerial Image (Maggiori et al., 2017), EuroSAT (Helber et al., 2019), and DeepGlobe Building (Demir86

et al., 2018) are built on low-resolution satellite (e.g. Sentinel-1, Sentinel-2, MODIS, Landsat) and only have87

limited resolutions that vary from 800 cm/pixel to 30 cm/pixel and can scale up to 5000×5000 pixels. Those88

datasets featuring segmentation tend to explore land-cover classification or change detection (Daudt et al.,89

2018; Sumbul et al., 2019).90

Pertaining to aerial agricultural imagery, datasets tend to be either low-resolution (>10 m/pixel) satel-91

lite (Tseng et al., 2021; Feng & Bai, 2019) or very high-resolution (<1 cm/pixel) imagery taken from UAV92

or on-board farming equipment (Haug & Ostermann, 2014; Olsen et al., 2019). The Agriculture-Vision93

dataset (Chiu et al., 2020b;a) introduced a large, high-resolution (10 cm/pixel) dataset for segmentation,94

bridging these two alternate paradigms.95

3 Datasets96

3.1 Review and Reprocessing of Agriculture-Vision Dataset97

The original AV dataset (Chiu et al., 2020b) consists of 94,986 labeled high-resolution (10-20 cm/pixel) RGB98

and near-infrared (NIR) aerial imagery of farmland. Special cameras were mounted to fixed-wing aircraft and99

flown over the Midwestern United States during the 2017-2019 growing seasons, capturing predominantly100

corn and soybean fields. Each field was annotated for nine patterns described in the supplemental material.101

After annotation, 512×512 tiles were extracted from the full-field images and then pre-processed and scaled.102

While this pre-processing produces a uniformly curated dataset, it naturally discards important information103

about the original data.104

To overcome this limitation, we obtained the original raw, full-field imagery. We are releasing this raw data as105

full-field images without any tiling, as it has been demonstrated to be beneficial to model performance (Chiu106

et al., 2020a). A sample image is shown in Figure 1 (left). The original dataset can be recreated from this107

new dataset by extracting the tiles at the appropriate pixel coordinates provided in the data manifest.108

3.2 Raw Data for Pre-training109

We identified 1200 fields from the 2019-2020 growing seasons collected in the same manner as in Section 3.1.110

For each field, we selected three images, referred to as flights, taken at different times in the growing season,111

resulting in 3600 raw images available for pre-training. We elect to include data from 2020 even though112

it is not a part of the original supervised dataset because it is of high quality, similar in distribution to113

2019, and we wish to encourage exploration around incorporating different source domains into modeling114

approaches as this is a very central problem to remote sensing data. We denote this raw imagery plus the115

original supervised dataset (in full-field format) as the “Extended Agriculture-Vision Dataset” (AV+); it will116

be made publicly available. The statistics of AV+ compared with AV are demonstrated in Table 1.117
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Figure 1: Left: Full-field imagery (RGB-only) constructed from the AV dataset. A field of this size is
approximately 15,000×15,000 pixels which can yield many smaller tiles. Right: Sample imagery and labels
for the fine-grained segmentation task.
One characteristic of remote sensing is data revisiting: capturing images from the same locations multiple118

times. Through data revisiting, the temporal information can serve as an additional dimension of variation119

beyond the spatial information alone. In AV+, a typical revisit time ranges from seven days to six months,120

capturing a field at different points during the pre-planting, growing, and harvest seasons. We provide an121

example of a revisit in Figure 3.122

Table 1: Statistics of Agriculture VisionChiu et al. (2020b) and Extended Agriculture Vision(the part of raw
imagery). We provide information about the number of images, image size, pixel numbers, color channels
and the ground sample resolution (GSD). “cls.”, “seg.” and “SSL” stand for classification, segmentation and
self-supervised learning respectively.

Dataset # of Images Tasks Image Size Channels Resolution (GSD) # of pixels
AV 94,986 Cls./Seg. 512 × 512 RGB, NIR 10/15/20 cm/px 22.6B
AV+ 3600 SSL 15,000 × 15,000 RGB, NIR 10/15/20 cm/px 810.0B

3.3 Fine-Grained Segmentation Dataset123

Fine-grained segmentation tasks for high-resolution remote sensing data, particularly for agriculture, are124

often overlooked because of the difficulty in collecting sufficient amounts of annotated data(Monteiro & von125

Wangenheim, 2019; Haug & Ostermann, 2015). To explore the transferability of the AV+ dataset and SSL126

methods to a very challenging, data-limited, in-domain (i.e. same sensor and geography) task, we construct127

a densely annotated dataset. We collected 68 flights from the 2020 growing season that were not included in128

AV+ for this task. From these flights, 184 tiles with shape 1500×1500 were selected and densely annotated129

with four classes: soil, weeds, crops, and un-managed area (e.g. roads, trees, waterways, buildings); an130

“ignore” label was used to exclude pixels which may unidentifiable due to image collection issues, shadows,131

or clouds. The annotations in this dataset are much more fine-grained than those in the AV+ dataset. For132

example, whereas the AV+ dataset identifies regions of high weed density as a “weed cluster”, this dataset133

identifies each weed individually at the pixel level and also labels any crop or soil in those regions by their134

appropriate class. A sample image and annotation are shown in Figure 1 (right).135

The fine-grained nature and small dataset size make this a very challenging segmentation task: very young136

crops often look like weeds, weeds growing among mature crops are only detectable through an interruption137

in the larger structure of the crop row, unmanaged areas often contain grasses and other biomass which138

closely resemble weeds but is not of concern to the grower, and classes are highly imbalanced.139

4 Methodology for Benchmarks140

In this section, we present multiple methods for pre-training a transferable representation on the AV+141

dataset. These methods include MoCo-V2 (Chen et al., 2020b), MoCo-V2 with a Pixel-to-Propagation142

Module (PPM) (Xie et al., 2021b), the multi-head Temporal Contrast based on SeCo (Mañas et al., 2021), and143
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a combined Temporal Contrast model with PPM. We also explore different backbones based on ResNet (He144

et al., 2016) and the Swin Transformer architecture (Liu et al., 2021a).145

4.1 Momentum Contrast146

MoCo-V2 is employed as the baseline module for the pre-training task. Unlike previous work focusing only147

on RGB channels (He et al., 2020; Mañas et al., 2021; Chen et al., 2020b), we include the information and148

learn representations from RGB and NIR channels. In each training step of MoCo, a given training example149

x is augmented into two separate views, query xq and key xk. An online network and a momentum-updated150

offline network, map these two views into close embedding spaces q = fq(xq) and k+ = fk(xk) accordingly;151

the query q should be far from the negative keys k− coming from a random subset of data samples different152

from x. Therefore, MoCo can be formulated as a form of dictionary lookup in which k+ and k− are153

the positive and negative keys. We define the instance-level loss Linst with temperature parameter τ for154

scaling (Wu et al., 2018) and optimize the dictionary lookup with InfoNCE (Oord et al., 2018):155

Linst = − log exp(q · k+/τ)∑
k− exp(q · k−/τ) + exp(q · k+/τ) (1)

4.2 Momentum Contrast with Pixel-to-Propagation Module156

Compared with classical datasets such as ImageNet Deng et al. (2009), COCO (Lin et al., 2014), and157

LVIS (Gupta et al., 2019) in the machine learning community, low-level semantic information from AV+ is158

more abundant, with regions of interest corresponding more closely to “patterns” (i.e. areas of weed clusters,159

nutrient deficiency, storm damage) and less to individual instances. Therefore, pre-training MoCo-V2 beyond160

image-level contrast should be beneficial to downstream pattern analysis tasks.161

4.2.1 Pixel-to-Propagation Module162

Xie et al. (2021b) added a Pixel-Propagation-Module (PPM) to the SimCLR framework and achieved out-163

standing results on dense downstream tasks. In PPM, the feature of a pixel xi is smoothed to qs
i by feature164

propagation with all pixels xî within the same image I following the equation:165

qs
i =

∑
xj∈I

S(xi, xî) · G(xî), (2)

where G(·) is a transformation function instantiated by linear and ReLU layers. S(·, ·) is a similarity function166

defined as167

S(xi, xî) = (max(cos(xi, xî), 0))γ (3)

with a hyper-parameter γ to control the sharpness of the function.168

4.2.2 Extend Pixel-to-Propagation Module to MoCo169

Notably, previous work (Xie et al., 2021b) based on SimCLR requires a large batch size, which is not always170

achievable. To generalize the PPM and make the overall pre-training model efficient, we incorporate the171

pixel-level pretext tasks into basic MoCo-V2 models to learn dense feature representations. As demonstrated172

in Figure 2, we add two extra projectors for pixel-level pretask compared with MoCo-V2. The features from173

the backbones are kept as feature maps instead of vectors to ensure pixel-level contrast. To decide positive174

pairs of pixels for contrast, each feature map is first warped to the original image space. Then the distances175

between the pixel i and pixel j from each of the two feature maps are computed and normalized. Given a176

hyper-parameter τ (set as 0.7 by default), i and j are recognized as one positive pair if their distance is less177

than τ . Then, we can compute the similarity between two pixel-level feature vectors, i.e., smoothed qs
i from178

PPM and kj from the feature map for each positive pair of pixels i and j. Since two augmentation views179

both pass the two encoders, we use a loss in a symmetric form following Xie et al. (2021b):180
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Figure 2: A. Diagram of MoCo-V2 with Pixel-to-Propagation Module (MoCo-PixPro). P includes a nor-
mally updated projector and a momentum-updated projector. For pixel-level pre-task, P_P1 is updated by
gradient descent and P_P2 is the momentum projector. B. Diagram of Temporal Contrast with Pixel-to-
Propagation Module (TemCo-PixPro). Query view xq and key view xk0 contain both artificial and temporal
variance. Query view xq and key view xk1 contain only temporal variance. Query view xq and key view
xk2 only contain artificial variance. Identical cropping Tcrop is applied to xt1 and xt3 . Pixel-level contrast in
only computed on xq and xk2 . For these two sub-plots, modules in navy blue serve as encoders for feature
extraction. Modules in brown are designed for pixel contrast, which includes projectors, pixel propagation
modules and the loss being used. Pink modules represent instance-level contrast with embeddings space
invariant to all kinds of augmentations. Similarly, modules in green and sky blue mean instance-level
contrast but extract features invariant to artificial augmentation and temporal augmentation, respectively.

LP ixP ro = −cos(qs
i , kj) − cos(qs

j , ki) (4)

During the training, the loss LP ixP ro from the PPM is integrated with the instance-level loss as shown in181

the equation 5. These two complementary losses are balanced by a factor α, set to 0.4 in all the experiments182

(see Supplemental: Additional Results - Balance Factor).183

L = αLinst + LP ixP ro (5)

4.3 Temporal Contrast184

While a pixel-level pretext task learns representations useful for spatial inference, we would like to learn a185

representation that takes advantage of the temporal information structure of AV+. Following the work of186

SeCo (Mañas et al., 2021), additional embedding sub-spaces that are invariant to time are created. Since187

the backbones learn temporal-aware features through extra sub-spaces, it offers a more precise and general188

pattern analysis in downstream tasks. More specifically, we define a positive temporal pair by obtaining one189

pair of images from the same area (i.e. of the same field) but at different times as shown in Figure 3. We190

explore whether the structure provided by the temporal alignment of positive temporal pairs provides more191

semantically significant content than naive artificial transformations (i.e. flipping, shifting) for pre-training.192

Unlike in SeCo where images were separated with a constant time (3 months), the time difference between193

images from our data varies from 1 week to 6 months. We adapt SeCo as follows. First, we randomly select194

three tiles with 512 × 512 from the same field at identical locations but different times, which will be defined195

as xt1 , xt2 and xt3 . Only random cropping Tcrop is applied to the query image to generate the query view,196

i.e., xq = Tcrop(xt1). The first key view that contains both temporal and artificial variance is defined as xk0197
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Figure 3: Visualization of temporal contrast in AV+.

= T (xt1), where the T is the typical data augmentation pipeline used in MoCo. The second key contains198

only temporal augmentation compared with the query view. Therefore, we apply the exact same cropping199

window applied to the query image, xk1 = Tcrop(xt2). The third key contains only artificial augmentations,200

xk2=T (xt0). Following the MoCo and SeCo learning strategy (He et al., 2020; Mañas et al., 2021), these views201

can be mapped into three sub-spaces that are invariant to temporal augmentation, artificial augmentation202

and both variance. In this way, we fully explore the multi-time scale information in AV+ to improve the203

temporal sensitivity of encoders further. Since the temporal contrast does not necessarily cross seasons or204

enforce alignment of seasonality within a sub-space, we denote our approach as Temporal Contrast (TemCo).205

4.4 Temporal Contrast with Pixel-to-Propagation Module206

We create an integrated model (TemCo-PixPro) to capture the dense, spatiotemporal structure of AV+.207

Concretely, we merge PPM and TemCo into a single model to increase the encoders’ spatial and temporal208

sensitivity.209

To ensure efficient computation, we do not compute pixel-wise contrastive updates in each temporal sub-210

space. Instead, we assign two extra projectors for pixel-level contrastive learning. We include the PPM after211

the online backbone and one of the pixel-level projectors to smooth learned features. Then, we calculate the212

similarity of the smooth feature vectors and the momentum encoder features through a dot product. We213

illustrate the overall architecture of this model in Figure 2B.214

4.5 Swin Transformer-Based Momentum Contrast215

While the Swin Transformer achieves superior performance on various computer vision tasks (Liu et al.,216

2021a;b), only very recent work has focused on self-supervised training for vision transformers (ViT)Xie217

et al. (2021a); Li et al. (2021). To the best of our knowledge, no study has investigated Swin Trans-218

former’s performance on remote sensing datasets using self-supervised methods. Therefore, we explore a219

Swin Transformer-based MoCo for pre-training of AV+. Specifically, we adopt the tiny version of the Swin220

Transformer (Swin-T) as the default backbone.221

Following most transformer-based learning tasks, we adopt AdamW Kingma & Ba (2014) for training. Addi-222

tionally, we incorporate the multiple-head projectors from TemCo and PPM to capture temporal knowledge223

and pixel-level pretext tasks.224
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5 Experiments and Results225

We benchmark the performance and transferability of the learned representations on four downstream tasks:226

agricultural pattern classifications, semantic segmentation on AV+, fine-grained semantic segmentation and227

land-cover classification.228

We report the implementation details and results from four models covering two kinds of backbones: ba-229

sic Momentum Contrast model (MoCo-V2), basic Momentum Contrast with Pixel-to-Propagation Mod-230

ule (MoCo-PixPro), Temporal Contrast (TemCo), Temporal Contrast with Pixel-to-Propagation Mod-231

ule (TemCo-PixPro), Swin Transformer-Based MoCo-V2, Swin Transformer-Based TemCo, and Swin232

Transformer-Based TemCo-PixPro.233

5.1 Pre-training Settings234

yDataset. We take AV+ as the dataset to pre-train the backbones. To be specific, all the raw images235

are cropped tiles with a shape 512 ×512 without overlapping, following the settings in Chiu et al. (2020b).236

Therefore, we eventually have 3 million cropped images. For each tile, it will be fed to the contrastive237

learning pipelines.238

Implementation Details. We train each model for 200 epochs with batch size 512. For ResNet-based239

models, we use SGD as the optimizer with a weight decay of 0.0001 and momentum of 0.9. The learning240

rate is set to 0.03 initially and is divided by 10 at epochs 120 and 160. Swin-T models use the AdamW241

optimizer, following previous work (Xie et al., 2021a; Liu et al., 2021a). The initial learning rate is 0.001,242

and the weight decay is 0.05. All the artificial data augmentations used in this paper follow the work of243

MoCo-V2 as this data augmentation pipeline archives the optimal performance. These data augmentations244

include random color jitter, gray-scale transform, Gaussian blur, horizontal flipping, resizing, and cropping.245

We use all four channels, RGB and NIR, to fully extract the features contained in the dataset. When testing246

ImageNet-initialized backbones for comparison, we copy the weights corresponding to the Red channel of the247

pre-trained weights from ImageNet to the NIR channel for all the downstream tasks following the method248

of Chiu et al. (2020b).249

5.2 Downstream Classifications250

5.2.1 Preliminaries251

Protocols. The downstream classification task considers nine patterns: Nutrient Deficiency, Storm Damage,252

Drydown, Endrow, Double plant and Weeds. More details descriptions of these patterns can be found in the253

supplementary. We benchmark and verify the performance of our basic model (MoCo-V2) and its variants254

on the classification task of the labeled portion of AV+, following three protocols: (i) linear probing (He255

et al., 2020; Chen et al., 2020b;a; Tian et al., 2020), (ii) non-linear probing (Han et al., 2020), and (iii)256

fine-tuning the entire network for the downstream task.257

Dataset. For this classification task, there are a total of 94,986 tiles with a size of 512×512 from AV. With a258

6/2/2 train/val/test ratio, AV contains 56,944/18,334/19,708 train/val/test images following the exact same259

settings from Chiu et al. (2020b). We train the classifiers on the training set and evaluate their performance260

in the validation set.261

5.2.2 Linear Probing262

Following standard protocol, we freeze the pre-trained backbone network and train only a linear head for263

the downstream task. We train the models for 50 epochs using Adam optimizer with an initial learning rate264

of 0.0001 and report the top-1 classification validation set.265

Figure 4 shows the impact of different weight initialization and percentages of labeled data in the downstream266

task. Consistent with previous research (Mañas et al., 2021), there is a gap between remote sensing and267

natural image domains: ImageNet weights are not always an optimal choice in this domain. MoCo-PixPro268
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Figure 4: Accuracy under the linear probing protocol on AV+ classification. Results are shown from different
pre-training approaches with different backbones.
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Figure 5: Accuracy under the non-linear probing protocol on AV+ classification. Results are shown from
different pre-training approaches with different backbones, ResNet-18 (left), ResNet-50 (middle), and Swin-T
(right), under different percentages of labeled data for the downstream task.

obtains the highest accuracy for the ResNet-18 backbone. As we compare the results of ResNet50 and269

Swin-T with fully labeled data, all Swin-T models underperformed their CNN counterparts.270

5.2.3 Non-Linear Probing271

We evaluate the frozen representations with non-linear probing: a multi-layer perceptron (MLP) head is272

trained as the classifier for 100 epochs with Adam optimization.273

Classification results on AV+ classification under non-linear probing are shown in Figure 5. Consistent with274

results in the natural image domain (Han et al., 2020), non-linear probing results surpass linear probing. Our275

SSL weights exceed ImageNet’s weights by over 5% regardless of the amount of downstream data or backbone276

type. From the results of ResNet-18, the optimal accuracy between different pre-training strategies comes277

from either MoCo-PixPro or TemCo-PixPro, which is different from linear probing. Overall, MoCo-PixPro278

performs better than the basic MoCo model across different backbones.279

5.2.4 Fine-Tuning280

Finally, we examine end-to-end fine-tuning with different percentages of labeled AV+ data for classification.281

We use the same architecture, learning schedule and optimizer as non-linear probing.282

Our SSL weights show outstanding results in the low-data regions (<10% of data). For ResNet-18, MoCo-283

PixPro is better than the other models in all cases, whereas other SSL models demonstrate similar per-284

formance to ImageNet when labeled data is abundant. As we increase the backbone size to ResNet-50,285

our MoCo and MoCo-PixPro stably outperform ImageNet’s model across all amounts of data, suggesting a286

greater capacity to learn domain-relevant features.287

In Figure 6 (right), all models perform agreeably well in the Swin-T framework compared with weights from288

ImageNet. While fine-tuning was performed in the same manner as the ResNet models for fair comparisons,289

Swin-T shows the most promising performance in this end-to-end setting.290
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Figure 6: The accuracy under the end-to-end classification protocol on AV+. Results cover different pre-
training approaches and backbones, varying from ResNet-18 (left), ResNet-50 (middle), and Swin-T (right).
We also report the model’s performance tuned with different percentages of the fully labeled dataset, ranging
from one percent to a hundred percent.

5.3 Semantic Segmentation on Extended Agriculture-Vision291

5.3.1 Preliminaries292

Protocols. We continue our benchmarking study by examining their impact on the semantic segmentation293

approach on AV+ as originally formulated in Chiu et al. (2020b). Again, we apply two protocols for evaluating294

the learned representations: maintaining a fixed encoder or fine-tuning the entire network.295

To naively assess the pre-trained representations, we adopt the simple yet effective U-Net (Ronneberger296

et al., 2015) framework. Unlike previous work on AV (Chiu et al., 2020b), we report results over all the297

patterns in AV+, including storm damage, to ensure an integrated and comprehensive analysis.298

First, we evaluate the representation by holding the pre-trained encoder fixed and fine-tuning only the decoder299

during the supervised learning phase. Similarly, we evaluate the pre-training impact on segmentation tasks300

allowing for fine-tuning of both the encoder and decoder during the supervised learning phase. We train the301

models using Adam optimization with an initial learning rate of 0.01. The one-cycle policy (Smith, 2017) is302

used to update the learning rate as in Chiu et al. (2020b). ResNet-18 models are trained for 30,000 steps,303

while the larger ResNet-50 and Swin-T models are trained for 120,000 steps to allow for sufficient training.304

Dataset. For this segmentation task, there are a total of 94,986 tiles with a size of 512 × 512. With the305

same 6/2/2 train/val/test ratio, AV contains 56,944/18,334/19,708 train/val/test images following settings306

from Chiu et al. (2020b) and the previous classification task. We train the classifiers on the training set and307

evaluate their performance in the validation set.308

5.3.2 Segmentation Results309

As results are shown in Table 2, MoCo-PixPro performs the best for the ResNet-18 backbone when the310

encoder remains fixed during supervised training; this result is similar to that seen for classification. This311

result supports our hypothesis that AV+ has abundant low-level semantic information and including pixel-312

level pre-task is critical for downstream learning tasks. When the encoder is unfrozen during supervised313

training, the basic MoCo-V2 shows the best results, but is not significantly better than TemCo or TemCo-314

PixPro. By scaling from ResNet-18 to ResNet-50, MoCo-PixPro outperforms ImageNet, especially when the315

encoder remains fixed. Importantly, unlike the ResNet-based models, the Swin Transformer-based MoCo-316

PixPro shows the best results across all variations in the setting. Another important observation is that317

the PPM benefits more as we scale up the models from ResNet-18 to ResNet-50 and then Swin-T. As318

the training epochs are all the same for all the pre-training, smaller backbones like ResNet-18 are more319

likely to get overfitted. When trained with ResNet-50, the performance drop of MoCo-PixPro is very small320

compared with MoCo. As we move to Swin-T, MoCo-PixPro eventually shows the best performance over321

other methods.322
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Table 2: Results of Downstream Segmentation Task on AV+ using mean-IoU metric

Pretrained Weights Backbone
mIoU (%)

Fixed
1%

mIoU (%)
Fixed
100%

mIoU (%)
Fine-Tuned

1%

mIoU (%)
Fine-Tuned

100%
Random ResNet-18 18.89 21.37 19.02 26.94
ImageNet ResNet-18 19.02 23.39 19.73 29.23
MoCo-V2 ResNet-18 22.36 27.83 22.53 31.80
MoCo-PixPro ResNet-18 23.71 30.60 20.04 30.56
TemCo ResNet-18 23.71 26.85 21.09 31.76
TemCo-PixPro ResNet-18 22.97 28.60 21.32 31.66
Random ResNet-50 19.42 21.82 18.71 26.37
ImageNet ResNet-50 21.21 25.94 20.31 30.52
MoCo-V2 ResNet-50 24.25 31.03 21.47 31.87
MoCo-PixPro ResNet-50 25.76 32.35 21.36 31.58
Random Swin-T 15.89 20.10 22.68 37.14
ImageNet Swin-T 20.00 22.40 30.96 43.01
MoCo-V2 Swin-T 25.51 30.60 28.12 41.02
MoCo-PixPro Swin-T 27.61 32.96 32.06 43.33

5.3.3 Comparison with Agriculture-Vision Results323

The AV dataset was benchmarked on a downstream segmentation task with architectures based on the324

DeepLabV3 (Chen et al., 2018) framework. Since the previous results report mean Intersecion-over-Union325

(mIoU) for 8 agricultural patterns, we re-trained our models using a U-Net architecture (Ronneberger et al.,326

2015) including on more pattern, i.e., the storm damage. With a lightweight U-Net, smaller backbone, and327

much less training, our SwinT-based model outperforms the best results from Chiu et al. (2020b) in the328

Table 3, demonstrating the effectiveness of our approach. Additionally, we demonstrate the effectiveness of329

pre-training and fine-tuning this multi-spectral data. AV and AV+ are beyond most conventional images,330

consisting of NIR-Red-Green-Blue (NRGB) channels. Therefore, we investigate the differences in semantic331

segmentation performance from multi-spectral images, including regular RGB and RGBN images. Accord-332

ing to Table 3, NIR channels benefit the segmentation results over different backbones and segmentation333

methods.334

For this eight-class segmentation task, we train the nine-class models using an Adam optimization with an335

initial learning rate of 0.01 and the one-cycle policy Smith (2017) for the learning rate adjustment. For fair336

comparisons and to be consistent with the supervised learning settings in Chiu et al. (2020b), we use a batch337

size of 40 and 25,000 iterations with warmup training for 1,000 iterations.338

Table 3: Comparison of mIoUs between the Agriculture-Vision model and our proposed U-Net-based model
on Agriculture-Vision validation set.

Methods Pre-trained Weights Backbone Channels mIOU(%) # Parameters
FPN(Chiu et al., 2020b) ImageNet ResNet-101 RGB 40.48 45.10M
U-Net MoCo-V2 Swin-T RGB 44.77 32.40M
U-Net MoCo-PixPro Swin-T RGB 45.92 32.40M
FPN(Chiu et al., 2020b) ImageNet ResNet-101 RGBN 43.40 45.11M
U-Net MoCo-V2 Swin-T RGBN 46.15 32.40M
U-Net MoCo-PixPro Swin-T RGBN 48.75 32.40M
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Table 4: IoU for each model in the fine-grained semantic segmentation task considering different encoder
weight initialization, architectures, and weight fixing schemes.

Weights Architecture IoU (Fixed-Weights) IoU (Fine-Tuned)
Random ResNet-18 39.05 42.19
ImageNet ResNet-18 40.81 45.47
MoCo-V2 ResNet-18 44.05 43.97
MoCo-PixPro ResNet-18 42.03 44.62
TemCo ResNet-18 42.30 44.48
TemCo-PixPro ResNet-18 43.45 43.91
MoCo-V2 ResNet-50 40.03 40.54
MoCo-V2 Swin-T 40.25 40.00
MoCo-PixPro Swin-T 37.56 40.67
TemCo. Swin-T 39.52 40.26

Figure 7: A sample output on the fine-grained segmentation task using fixed-encoder weights from Ima-
geNet and MoCo-V2. The segmentation outputs are compared with both the original RGB image and the
segmentation labels.

5.4 Fine-Grained Semantic Segmentation339

Unlike AV+, this dataset is severely limited by the availability of fine-grained segmentation labels. There340

are 184 tiles, from 68 flights, in this dataset that are split into training (70%), validation (15%), and test341

(15%). Again, we use a U-Net architecture with a ResNet-18 encoder. For training, we use a multi-class342

focal loss Lin et al. (2017) to account for the strong class imbalance.343

Results are shown in Table 4, and sample output is shown in Figure 7. Results improve across the board344

when both the encoder and decoder are fine-tuned. Although less dramatic than the results seen on the AV+345

classification and segmentation tasks, some improvement over ImageNet weights is seen using the MoCo-v2346

framework with ResNet-18 backbone for fixed weights. As seen on the other tasks, when the entire network347

undergoes fine-tuning, the ImageNet and SSL weights, specifically MoCo-PixPro, produce roughly the same348

performance on the downstream task. Additional per-class analysis is provided in the Supplemental. The349

ResNet-50 and Swin-T models performed relatively worse compared to the ResNet-18 models, which is350

unsurprising given the extremely small size of this dataset.351

5.5 Land-Cover Classification on EuroSAT352

We further prove pretraining on the AV+ dataset benefits the downstream task in the broader remote sensing353

community. We conduct downstream classification experiments on EuroSAT (Helber et al., 2019). EuroSAT354

addresses the classification challenge of land use and land cover with images from Sentinel-2. It consists of355

27,000 labeled images and 10 classes over 34 European countries. We use the splits protocol of train/val356

following the work of Neumann et al. (2019).357

We freeze the pre-trained backbones and add a linear layer to evaluate the learned representation in this358

classification task. Totally, the linear layer is tunned with 100 epochs using the Adam optimizer. The initial359

learning rate is set to 0.001 and is divided by 10 at the 60th and 80th epochs.360
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Figure 8: Ablation study on the pre-training size of data on different pre-training methods on two downstream
tasks. Solid lines represent accuracy from 3600 flights while dashed lines represent accuracy from 1200
flights. Left: results from non-linear probing on downstream classification. Right: fine-tuning results on
entire networks for downstream AV+ segmentation.

The results shown in the Table 5 compare weights pre-trained from AV+ against other baselines. We notice361

that MoCo-V2 and our proposed MoCo-PixPro achieve 1.21% and 6.25% higher accuracy compared with362

ImageNet’s weights accordingly. These results confirm not only the effectiveness of pre-training on AV+ but363

also AV+’s significant potential to generalize to the broader remote sensing field.364

Table 5: Accuracy of the EuroSAT land-cover classification task using ResNet-18
Weights Random ImageNet MoCo-V2 MoCo-PixPro
Accuracy (%) 63.21 86.32 87.53 89.97

5.6 Ablation Study: Number of Flights365

We use a ResNet-18 backbone and basic MoCo-V2 for experiments. When the number of flights used for366

SSL is increased from 300 to 3600, we observe stable improvement in the downstream classification task367

under the non-linear probing setting; this gain is confirmed regardless of the fraction of the labeled dataset368

for tuning. See Supplemental: Additional Results for more detailed results.369

This improvement is seen for all examined SSL methods Figure 8 when the raw dataset is increased from370

1200 to 3600 flights and evaluated under non-linear probing for classification and full-network fine-tuning371

for AV+ segmentation. Our SSL models’ performance steadily grows as raw data size increases, suggesting372

that even more data may lead to even greater performance.373

6 Conclusion374

Large, high-quality datasets are opening tremendous new opportunities for computational agriculture, but375

they are extremely difficult to obtain. As in other domains, remote sensing and earth observation data are376

marked by huge amounts of unlabeled data and relatively few annotations; leveraging the information in this377

unlabeled data, therefore, becomes a critical task. In this work, we contribute to the advancement of these378

efforts by releasing the AV+ dataset, which contains annotated full-field imagery based on the original AV379

dataset Chiu et al. (2020b), supplemented by more than 3TB of raw full-field images taken at different times380

in the season. The improved supervised component of the AV dataset will allow for greater flexibility in381

training and augmentation protocols and enable additional possible lines of study around long-range context382

and large-scale imagery. The raw unlabeled data will enable continued exploration in the self, semi, and383

weakly supervised methods which we have begun to benchmark here. This extension of an already important384
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dataset in computational agriculture will open up many lines of research and investigation which benefit both385

the agriculture and computer vision communities.386

Next, we conduct a thorough benchmark study on self-supervised pre-training methods based on contrastive387

learning, which captures the fine-grained, spatiotemporal nature of this data. We analyze a classification388

formulation of the AV+ dataset under linear probing, non-linear probing, and fine-tuning. We also exam-389

ined segmentation tasks, which are often overlooked in remote sensing approaches, based on the original390

segmentation formulation of AV+ with a frozen and unfrozen encoder and an extremely small fine-grained391

segmentation task under the same formulations. Our benchmark study explores both traditional CNN ar-392

chitectures (ResNet-18 and ResNet-50) as well as the more recent Swin Transformer, which offers unique393

potentials for computer vision, but requires huge amounts of data to train.394

Importantly, we incorporate the Pixel-to-Propagation Module, originally built in the SimCLR framework,395

into the MoCo-V2 framework, which allows for training on larger batch sizes. Our results show that this396

module is key for downstream segmentation and classification tasks, even though it was designed primarily for397

dense detection and segmentation tasks. As our dataset contains richer low-level, high-frequency, fine-grained398

features than traditional natural imagery like COCO or ImageNet, this suggests that PPM is beneficial for399

learning dense, fine-grained features in addition to dense label structure.400

We further combine this module with a TemCo, a modification of SeCo, into a rich framework that captures401

the dense, spatiotemporal structure of our data. While this combined framework was not the highest-402

performing on the various task, it again may have been at a disadvantage since it is a larger model and the403

number of steps was fixed for a fair comparison. Additionally, extending how positive samples are generated404

could prove beneficial. These improvements are the focus of future analysis.405

Self-supervised methods will be crucial for unlocking opportunities in remote sensing, particularly for agri-406

culture, and this dataset release and benchmark study offer a significant step in that direction.407
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