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Abstract
We develop a novel, general and computation-
ally efficient framework, called Divide and Con-
quer Dynamic Programming (DCDP), for local-
izing change points in time series data with high-
dimensional features. DCDP deploys a class of
greedy algorithms that are applicable to a broad
variety of high-dimensional statistical models and
can enjoy almost linear computational complexity.
We investigate the performance of DCDP in three
commonly studied change point settings in high
dimensions: the mean model, the Gaussian graph-
ical model, and the linear regression model. In
all three cases, we derive non-asymptotic bounds
for the accuracy of the DCDP change point es-
timators. We demonstrate that the DCDP proce-
dures consistently estimate the change points with
sharp, and in some cases, optimal rates while in-
curring significantly smaller computational costs
than the best available algorithms. Our findings
are supported by extensive numerical experiments
on both synthetic and real data.

1. Introduction
Change point analysis is a well-established topic in statistics
that is concerned with identifying abrupt changes in the data,
typically observed as a time series, that are due to structural
changes in the underlying distribution. Initially introduced
in the 1940s (Wald, 1945; Page, 1954), change point analy-
sis has been the subject of a rich statistical literature and has
produced a host of well-established methods for statistical
inference. Despite their popularity, most existing change
point methods available to practitioners are ill-suited or
computationally costly to handle high-dimensional complex
data. In this paper, we develop a general and flexible frame-
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work for high-dimensional change point analysis that enjoys
very favorable statistical and computational properties.

We adopt a standard offline change point analysis set-up,
whereby we observe a sequence {Zi}i∈[n] of independent
data points, where [n] := {1, . . . , n}. We assume that each
Zi follows a high-dimensional parametric distribution Pθ∗

i

specified by an unknown parameter θ∗
i , and that sequence of

parameters {θi}i∈[n] is piece-wise constant over time. For
example, in the mean change point model (see Section 3.1
below), E(Zi) = θ∗

i ∈ Rp, where θ∗
i is a vector in Rp.

In the regression change point model (see Section 3.2),
Zi = (Xi, yi) ∈ Rp × R satisfying E(yi|Xi) = X⊤

i θ
∗
i

where θ∗
i is a vector of regression parameters.

We postulate that there exists an unknown sub-sequence of
change points 1 = η0 < η1 < η2 < . . . < ηK < ηK+1 =
n + 1 such that θ∗

i ̸= θ∗
i−1 if and only if i ∈ {ηk}k∈[K].

For each k ∈ [K] = {1, . . . ,K}, define the local spacing
parameter and local jump size parameter as

∆k = ηk − ηk−1 and κk := ∥θ∗
ηk
− θ∗

ηk−1∥ (1.1)

respectively, where ∥ · ∥ is some appropriate norm that is
problem specific. Throughout the paper, we will allow the
parameters of the data generating distributions, the spacing
and jump sizes to change with n, though we will require
K to be bounded. Our goal is to estimate the number and
locations of the change points sequence {ηk}k∈[K]. We will
deem any estimator {η̂k}k∈[K̂] of the change point sequence
consistent if, with probability tending to 1 as n→∞,

K̂ = K and max
k∈[K]

|η̂k − ηk| = o(∆min), (1.2)

where ∆min = mink∈[K] ∆k.

Recent years have witnessed significant advances in the
fields of high-dimensional change point analysis, both in
terms of methodological developments and theoretical ad-
vances. Most change point estimators for high-dimensional
problems can be divided into two main categories: those
based on variants of the binary segmentation algorithm and
those relying on the penalized likelihood. See below for a
brief summary of the relevant literature.

In this paper, we aim to develop a comprehensive framework
for estimating change points in high-dimensional models
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using an ℓ0-penalized likelihood approach. While ℓ0-based
change point algorithms have demonstrated excellent – in
fact, often optimal – localization rates, their computational
costs remain a significant challenge. Indeed, optimizing the
ℓ0-penalized objective function using a dynamic program-
ming (DP) approach requires quadratic time complexity
(Friedrich et al., 2008) and, therefore, is often impractical.

To overcome this computational bottleneck, we propose
a novel class of algorithms for high-dimensional multiple
change point estimation problems called divide and conquer
dynamic programming (DCDP) - see Algorithm 1. The
DCDP framework is very versatile and can be applied to a
wide range of high-dimensional change point problems. At
the same time, it yields a substantial reduction in compu-
tational complexity compared to the vanilla DP. In particu-
lar, when the minimal spacing ∆min between consecutive
change points is of order n, DCDP exhibits almost linear
time complexity.

Moreover, the DCDP algorithm retains a high degree of
statistical accuracy. Indeed, we show that DCDP delivers
minimax optimal localization error rates for change point
localization in the sparse high-dimensional mean model, the
Gaussian graphical model and the sparse linear regression
model. To the best of our knowledge, DCDP is the first near-
linear time procedure that can provide optimal statistical
guarantees in these three different models. See Remark 3
and Remark 4 for more detailed discussions on optimality.

Structure of the paper. Below we provide a selective re-
view of the recent relevant literature on high-dimensional
change point analysis. In Section 2, we describe the DCDP
framework. In Section 3, we provide detailed theoretical
studies to demonstrate that DCDP achieves minimax opti-
mal localization errors in the three models. In Section 4, we
conduct extensive numerical experiments on synthetic and
real data to illustrate the superior numerical performance of
DCDP compared to existing procedures.

Relevant litearture. Binary Segmentation(BS) is a greedy
iterative approach that breaks the multiple-change-point
problem down into a sequence of single change-point sub-
problems. Originally introduced by (Scott and Knott,
1974) to handle the case of one change point, the BS al-
gorithm was later shown by (Venkatraman, 1992) to be ef-
fective also in the multiple-change-point senerios. Modern
computationally efficient variants of the original BS algo-
rithms include wild-binary segmentation of (Fryzlewicz,
2014) and Seeded Binary Segmentation (SBS) algorithm of
(Kovács et al., 2020). Binary Segmentation procedures have
been designed for various change point problems, includ-
ing high-dimensional mean models (Eichinger and Kirch,
2018; Wang and Samworth, 2018), graphical models (Lond-
schien et al., 2021), covariance models (Wang et al., 2021b),
network models (Wang et al., 2021a), functional models

(Madrid Padilla et al., 2022) and many more.

Penalized likelihood-based approaches are also popular in
the change point literature. Broadly, these approaches seg-
ment the time series by maximizing a likelihood function
with an appropriate penalty to avoid over-segmentation.
(Yao and Au, 1989) showed that ℓ0-penalized likelihood-
based methods yield consistent estimators of change points.
Relaxing the ℓ0-penalty to the ℓ1-penalty results in the Fused
Lasso algorithm, whose theoretical and computational prop-
erties have been analyzed by many, including (Lin et al.,
2017) for the mean setting and by (Qian and Su, 2016)
for the linear regression setting. More recently, (Bai and
Safikhani, 2022) proposed a unified framework to analyze
Fused-Lasso-based change point estimators in linear mod-
els.

Few recent notable contributions in the literature have fo-
cused on designing unified methodological frameworks for
offline change point analysis. (Pilliat et al., 2020) developed
a general approach based on local two-sample tests to detect
changes in means, but their approach can only consistently
estimate the number of change points and the localization
accuracy of the estimators is unspecified. (Londschien et al.,
2022) proposed a novel multivariate nonparametric multi-
ple change point detection method based on the likelihood
ratio tests. (Bai and Safikhani, 2022) studied a general
framework based on the Fused Lasso to deal with change
points in mean and linear regression models, but their de-
tection boundary is sub-optimal and it is computationally
demanding to numerically optimize the Fused Lasso objec-
tive function for high-dimensional time series. Until now,
a unified framework for offline change point localization
with optimal statistical guarantees and low computational
complexity is still missing in the literature.

Notation. For n ∈ Z+, denote [n] := {1, · · · , n}. For a
vector v ∈ Rp, denote the i-th entry as vi, and similarly,
for a matrxi A ∈ Rm×n, we use Aij to denote its element
at the i-th row and j-th column. We use Sp+ to denote the
cone of positive semidefinite matrices in Rp×p. For two real
numbers a, b, we denote a ∨ b := max{a, b}.

∥ · ∥1, ∥ · ∥2 refer to the ℓ1 and ℓ2 norm of vectors, i.e.,
∥v∥1 =

∑
i∈[p] |vi| and ∥v∥2 = (

∑
i∈[p] v

2
i )

1/2. For a
square matrix A ∈ Rn×n, we use ∥A∥F to denote its
Frobenius norm, Tr(A) =

∑
i∈[n]Aii to denote its trace,

and |A| to denote its determinant. For a random variable
X ∈ R, we denote ∥X∥ψ2

as the subgaussian norm (Ver-
shynin, 2018): ∥X∥ψ2

:= inf{t > 0 : Eψ2(|X|/t) ≤ 1}
where ψ2(t) = et

2 − 1.

For asymptotics, we denote xn ≲ yn or xn = O(yn) if
∀n, xn ≤ c1yn for some universal constant c1 > 0. an =
o(bn) means an/bn → 0 as n → ∞, and Xn = op(Yn) if
Xn/Yn → 0 in probability. We call a positive sequence
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{an}n∈Z+ a diverging sequence if an →∞ as n→∞.

2. Methodology
In this section, we introduce the DCDP framework and
analyze its computational complexity. We assume that we
observe a time series of independent data {Zi}i∈[n] sampled
from the unknown sequence of distributions {Pθ∗

i
}i∈[n]. For

a time interval I ⊂ [1, n] comprised of integers, let F(θ, I)
denote the value of an appropriately chosen goodness-of-fit
function of the subset {Zi}i∈I , and for a fixed and common
value of the parameter θ. The choice of the goodness-of-fit
function is problem dependent.

Next, we use θ̂I to denote the penalized or unpenalized
maximum likelihood estimator of θ∗ within the interval I.
Intuitively, F(θ̂I , I) can be considered a local statistic to
test for the existence of one or more change points in I.

DCDP is a two-stage algorithm that entails a divide step and
an conquer step; see Algorithm 1 for details. In the divide
step, described in Algorithm 2, DCDP first computes pre-
liminary estimates of the change point locations by running
DDP, a dynamic programming algorithm over a uniformly-
spaced grid of time points {si = ⌊i · n/(Q + 1)⌋}i∈[Q].
(DDP can also take as input a random collection of time
points, but there are no computational or statistical advan-
tages in randomizing this choice). In the subsequent conquer
step, detailed in Algorithm 3, the localization accuracy of
the initial estimates is improved using a penalized local
refinement (PLR) methodology.

Computational complexity of DCDP. The DCDP proce-
dure achieves substantial computational gains by using a
coarse, regular grid of time points {si}i∈Q ⊂ [n] during the
divide step. Additionally, the PLR procedure in the conquer
step is a local algorithm and is easily parallelizable. The
number of grid points Q to be given as input to DDP in the
divide step should be chosen to be of smaller order than the
length of the time course n, but large enough to identify the
number and the approximate positions of the true change
points.

Algorithm 1 Divide and Conquer Dynamic Programming.
DCDP ({Zi}i∈[n], γ, ζ,Q)
Input: Data {Zi}i∈[n], tuning parameters γ, ζ,Q > 0.
Set grid points si = ⌊ i·nQ+1⌋ for i ∈ [Q].

(Divide Step) Compute the proxy estimators {η̂k}k∈[K̂] us-
ing DDP ({Zi}i∈[n], {si}i∈[Q], γ) in Algorithm 2.

(Conquer Step) Compute the final estimators {η̃k}k∈[K̂]

using PLR({η̂k}k∈[K̂], ζ) in Algorithm 3.

Output: The change point estimators {η̃k}k∈[K̂].

Algorithm 2 Divided Dynamic Programming DDP
({Zi}i∈[n], {si}i∈[Q], γ): the divide step.

Input: Data {Zi}i∈[n], ordered integers {si}i∈[Q] ⊂ (0, n),
tuning parameter γ > 0.
Set P̂ = ∅, p = (−1, . . . ,−1)︸ ︷︷ ︸

n

, B = (γ,∞, . . . ,∞)︸ ︷︷ ︸
n

.

for r in {si}i∈[Q] do
for l in {si}i∈[Q], l < r do

I ← [l, r] ∩ {1, . . . , n};
compute θ̂I and F(θ̂I , I) based on {Zi}i∈I ;
b← Bl + γ + F(θ̂I , I);

if b < Br then
Br ← b;
pr ← l.

To compute p ∈ Nn, set k ← n.
while k > 1 do

h← pk;
P̂ ← P̂ ∪ {h};
k ← h.

Output: The set of estimated change points P̂ .

In detail, let C1(|I|, p) denote the time complexity of com-
puting the goodness-of-fit function F(θ̂I , I). Naively, the
time complexity of Algorithm 2 is O(Q2 · C1(n, p)), where
Q is the size of the grid {si}i∈[Q] in Algorithm 2. With
the memorization technique proposed in (Xu et al., 2022),
we show in Lemma B.1 that the complexity of the divide
step can be reduced to O(nQ · C2(p)), and in Lemma F.1
that the conquer step can be computed with time complexity
O(n · C2(p)), where C2(p) is independent of n. Further-
more, as shown later in Section 3 and Appendix B, setting
Q = 4n

∆min
log2(n) ensures consistency of Algorithm 2.

Therefore, the complexity of DCDP is

O

(
n2

∆min
· log2(n) · C2(p)

)
.

When ∆min is of the same order as n, the complexity of
DCDP becomes O(n log2(n) · C2(p)). To the best of our
knowledge, DCDP is the first multiple-change-point detec-
tion algorithm that can provably achieve near-linear time
complexity in the three models presented in Section 3.

Statistical accuracy. As we will show below, though the
DDP procedure in the divide step may already be sufficiently
accurate to deliver consistent estimates as defined in (1.2),
its error rate is suboptimal. Sharper, even optimal, local-
ization errors can be achieved through the PLR algorithm
in the conquer step (see Algorithm 3). The PLR procedure
takes as input the preliminary change points estimates from
the divide step1, and provably reduces their localization er-

1More generally, it can be shown that the PLR procedure re-

3



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

Algorithm 3 Penalized Local Refinement
PLR({η̂k}k∈[K̂], ζ): the conquer step.

Input: Data {Zi}i∈[n], estimated change points {η̂k}k∈[K̂]

from Algorithm 2, tuning parameter ζ > 0.
Let (η̂0, η̂K̂+1)← (0, n).
for k = 1, . . . , K̂ do

(sk, ek)← ( 23 η̂k−1 +
1
3 η̂k,

1
3 η̂k +

2
3 η̂k+1)(

η̌k, θ̂
(1),θ̂(2)

)
← argmin

η,θ(1),θ(2)

{F(θ(1), [sk, η))+

F(θ(2), [η, ek)) + ζR(θ(1),θ(2), η; sk, ek)}

η̃k ← argmin
η

{
F(θ̂(1), [sk, η)) + F(θ̂(2), [η, ek))

}
Output: The refined estimators {η̃k}k∈[K̂].

rors – for some of the models considered in the next section,
down to the minimax optimal rates. The effectiveness of
local refinement methods to enhance the precision of initial
change point estimates has been well-documented in the
recent literature on change point analysis (Rinaldo et al.,
2021; Li et al., 2022). In Algorithm 3, the additional penalty
function R(θ(1),θ(2), η; s, e) in Algorithm 3 is introduced
to ensure numerical stability of the parameter estimates in
high dimensions and, possibly, to reproduce desired struc-
tural properties, such as sparsity. Its choice is, therefore,
problem specific. For example, in the sparse mean and lin-
ear change point model in Section 3.1, θ(1),θ(2) ∈ Rp and
we consider the group lasso penalty function

R(·) =
∑
i∈[p]

√
(η − s)(θ(1))2i + (e− η)(θ(2))2i . (2.1)

Remark 1 (Penalization). In Algorithm 2, γ is a tuning
parameter to control the number of selected change points
and to avoid false discoveries. In Algorithm 3, the tuning
parameter ζ is used to modulate the impact of the penalty
function R. We derive theoretically valid choices of tuning
parameters in Section 3, and provide practical guidance on
how to select them in a data-driven way in Section 4.

3. Main Results
We investigate the theoretical performance of DCDP in
three different high-dimensional change point models. For
each of the models examined, we first derive localization
rates for the DDP algorithm in the divide step and find
that, though they imply consistency, they are worse than the

mains effective as long as it is given as input any change point
estimates whose Hausdorff distance from the true change points is
bounded by ∆min. Thus, the preliminary estimates need not even
be consistent.

corresponding rates afforded by the computationally costly
vanilla DP algorithm (Wang et al., 2020; Rinaldo et al.,
2021). This suboptimal performance reflects the trade-off
between computation efficiency and statistical accuracy and
should not come as a surprise. Next, we demonstrate that, by
using the PLR algorithm in the conquer step, the estimation
accuracy increases and the final localization rates become
comparable to the (often minimax) optimal rates.

Throughout the section, we will consider the following high-
dimensional offline change point analysis framework of
reference.
Assumption 3.1. We observe independent data points
{Zi}i∈[n] such that, for each i, Zi is a draw from a para-
metric distribution Pθ∗

i
specified by an unknown parameter

vector θ∗
i . There exists an unknown collection of change

points 1 = η0 < η1 < η2 < . . . < ηK < ηK+1 = n + 1
such that θ∗

i ̸= θ∗
i−1 if and only if i ∈ {ηk}k∈[K]. For each

change point ηk, we will let κk = ∥θ∗
ηk
−θ∗

ηk−1∥ be the size
of the corresponding change, where ∥ · ∥ is an appropriate
norm (to be specified, depending on the model). For simplic-
ity, we further assume that the magnitudes of the changes
are of the same order: there exists a κ > 0 such that κk ≍ κ
for all k ∈ [K]. We denote the spacing between ηk and
ηk−1 with ∆k = ηk − ηk−1 and let ∆min = mink∈[K] ∆k

denote the minimal spacing. All the model parameters are
allowed to change with n, with the exception of K.

3.1. Changes in means

Change point detection and localization of a piece-wise
constant mean signal is arguably the most traditional and
well-studied change point model. Initially developed in
the 1940s for univariate data, the model has recently been
generalized under various high-dimensional settings and
thoroughly investigated: see, e.g., (Wang and Samworth,
2018; Chao, 2019; Pilliat et al., 2020; Bai and Safikhani,
2022). Below, we show that, for this model, DCDP achieves
the sharp detection boundary and delivers the minimax opti-
mal localization error rate.
Assumption 3.2 (Mean model). Suppose that for each i ∈
[n], Zi = Xi satisfies the mean model Xi = µ∗

i + ϵi ∈ Rp
and Assumption 3.1 holds with θ∗

i = µ∗
i and ∥ · ∥ = ∥ · ∥2.

(a) The measurement errors {ϵi}i∈[n] are independent mean-
zero random vectors with independent subgaussian entries
such that 0 < σϵ = supi∈[n] supj∈[p] ∥(ϵi)j∥ψ2

<∞.

(b) For each i ∈ [n], there exists a collection of subsets
Si ⊂ [p], such that (µ∗

i )j = 0 if j ̸∈ Si. In addition, the
cardinality of the support satisfies |Si| ≤ s.

Conditions (a) and (b) above are standard assumptions for
the high-dimensional linear regression time series models
(Basu and Michailidis, 2015; Bai and Safikhani, 2022). In
our first result, we establish consistency of the divide step.
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The proof of the following theorem is in Appendix C.
Theorem 3.3. Suppose that Assumption 3.2 holds and that

∆minκ
2 ≥ Bnσ2

ϵ s log(p ∨ n), (3.1)

for some slowly diverging sequence {Bn}n∈Z+ . For suffi-
ciently large constants Cγ and CF , let {η̂k}k∈[K̂] denote

the output of Algorithm 2 with Q = 4n
∆min

log2(n),

F(µ̂I , I) :=

{∑
i∈I ∥Xi − µ̂I∥22 if |I| ≥ CFs log(p ∨ n),

0 otherwise,

and γ = CγB−1/2
n ∆minκ

2. Here

µ̂I = argmin
µ∈Rp

∥Xi − µ∥22 + λ
√
|I| ∥µ∥1, (3.2)

with λ = Cλ
√
log(p ∨ n) and Cλ a sufficiently large con-

stant. Then, with probability 1− n−3, K̂ = K and

max
k∈[K]

|ηk − η̂k| ≲
σ2
ϵ log(p ∨ n)

κ2
+ B−1/2

n ∆min.

The signal-to-noise-ratio (SNR) condition (3.1) assumed in
Theorem 3.3 is frequently used in the change point detection
literature (Bai and Safikhani, 2022; Wang and Samworth,
2018). Recently, (Pilliat et al., 2020) showed that, if s ≤√
p , condition (3.1) is indeed necessary, in the sense that if

∆minκ
2

σ2
ϵ s log(p ∨ n)

= o(1),

then there exists a setting for which no change point estima-
tor is consistent. The localization error of DCDP estimator
{η̂k}k∈[K̂] returned by Algorithm 2 satisfies

maxk∈[K] |ηk − η̂k|
∆min

≲
σ2
ϵ log(p ∨ n)
∆minκ2

+ B−1/2
n ,

with high probability. Thus, using (3.1), it follows that the
resulting estimator is consistent:

maxk∈[K] |ηk − η̂k|
∆min

≲ B−1
n + B−1/2

n = op(1).

Remark 2 (Grid size). In Theorem 3.3 and in all the results
of this section, we choose a value for the grid size Q that,
while coarse, ensures consistency. Any finer grid can yield
the same error rate, at an additional computational cost.

Compared to the localization error of the vanilla DP, the
localization error of Divided DP Algorithm 2 picks up an
additional term B−1/2

n ∆min. As remarked above, this is to
be expected, as Algorithm 2 only deploys a subset of the
data indices. Starting with the coarse (but still consistent)
preliminary estimators from the divide step Algorithm 2, the
local refinement algorithm Algorithm 3 further improves its
accuracy and, in fact, yields an optimal error rate.

Theorem 3.4. Let {Bn}n∈Z+ be any slowly diverging se-
quence and suppose that ∆minκ

2 ≥ Bnσ2
ϵ s

2 log3(p ∨ n).
Let {η̃k}k∈[K̂] be the output of Algorithm 3 with ζ =

Cζ
√
log(p ∨ n) for sufficiently large constant Cζ and

R(θ(1), θ(2), η; s, e) be specified in (2.1). Then under As-
sumption 3.2, for any α ∈ (0, 1), with probability at least
1− (α ∨ n−1) it holds that K̂ = K and

max
k∈[K]

|ηk − η̃k| ≲
σ2
ϵ

κ2
(1 + log(1/α)). (3.3)

The proof of Theorem 3.4 can be found in Appendix F.3.
Remark 3. The localization error bound (3.3) is the tightest
in the literature. It improves the existing bounds by (Wang
and Samworth, 2018) and (Bai and Safikhani, 2022) by a fac-
tor of s log(p). It also matches the lower bound established
in (Wang and Samworth, 2018), showing that Op(1/κ2) is
the optimal error order and can not be further improved.

3.2. Changes in regression coefficients

We now consider the more complex high-dimensional re-
gression change point model in which the regression co-
efficients are sparse and change in a piecewise constant
manner. Recently, various approaches and methods have
been proposed to address this challenging scenario; see, in
particular, (Rinaldo et al., 2021; Wang et al., 2021c; Bai and
Safikhani, 2022; Xu et al., 2022). Below, we will show that
DCDP yields optimal localization errors also for this class
of change point models.

Assumption 3.5 (High-dimensional linear model). Let the
observed data {Xi, yi}i∈[n] ⊂ Rp × R be such that yi =
X⊤
i β

∗
i +ϵi and let Assumption 3.1 hold with θ∗

i = β∗
i ∈ Rp

and ∥ · ∥ = ∥ · ∥2. In addition,

(a) Suppose that {Xi}i∈[n]
i.i.d.∼ Np(0,Σ) and that

the minimal and the maximal eigenvalues of Σ satisfy
Λmin(Σ) ≥ cX and Λmax(Σ) ≤ CX , with universal
constants cX , CX ∈ (0,∞). In addition, suppose that
{ϵi}i∈[n]

i.i.d.∼ N(0, σ2
ϵ ) and is independent of {Xi}i∈[n].

(b) For each i ∈ [n], there exists a collection of indices
Si ⊂ [p], such that (β∗

i )j = 0 if j ̸∈ Si. In addition, the
cardinality of the support satisfies |Si| ≤ s.

We note that Assumption 3.5 (a) and (b) are standard as-
sumptions for Lasso estimators. Similarly to the case of the
mean change point model, we first analyze the performance
of the divide step of DCDP and find it to be consistent, albeit
at a sub-optimal rate.

Theorem 3.6. Suppose Assumption 3.5 holds and that

∆minκ
2 ≥ Bnσ2

ϵ s log(p ∨ n) (3.4)
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for some diverging sequence {Bn}n∈Z+ . Let {η̂k}k∈[K̂] be

the output of Algorithm 2 with Q = 4n
∆min

log2(n), γ =

CγB−1/2
n ∆minκ

2 and

F(β̂I , I) :=

{
0 if |I| < CFs log(p ∨ n);∑
i∈I(yi −X⊤

i β̂I)
2 otherwise,

for sufficiently large constants Cγ and CF and β̂I given by

β̂I = argmin
β∈Rp

(yi −X⊤
i β)

2 + λ
√
|I| ∥β∥1, (3.5)

with λ = Cλ
√
log(p ∨ n) , for Cλ a sufficiently large con-

stant. Then, with probability 1− n−3, K̂ = K and that

max
k∈[K]

|ηk − η̂k| ≲
σ2
ϵ s log(p ∨ n)

κ2
+ B−1/2

n ∆min.

The proof of Theorem 3.6 is deferred to Appendix D. It is
immediate to verify that, under the SNR condition (3.4) and
given the choice of γ, estimators satisfy that maxk∈[K] |ηk−
η̂k| = op(∆min) and are therefore consistent.

With a slightly stronger SNR condition than (3.4), statisti-
cally optimal change point estimators can be obtained in the
conquer step.

Theorem 3.7. Let {Bn}n∈Z+ be any slowly diverging se-
quence and suppose that ∆minκ

2 ≥ Bnσ2
ϵ s

2 log3(p ∨
n). Let {η̃k}k∈[K̂] be the output of Algorithm 3 with

ζ = Cζ
√
log(p ∨ n) for sufficiently large constant Cζ

and R(θ(1),θ(2), η) specified in (2.1) Then under Assump-
tion 3.5, for any α ∈ (0, 1), with probability at least
1− (α ∨ n−1), it holds that K̂ = K and

max
k∈[K]

|ηk − η̃k| ≲ (1 +
σ2
ϵ

κ2
log2(1/α)). (3.6)

The proof of Theorem 3.7 can be found in Appendix F.4.
Remark 4. The localization error (3.6) matches the existing
lower bound established in (Rinaldo et al., 2021) and, there-
fore, it is rate minimax optimal. To the best of our knowl-
edge, the only other existing change point algorithm that can
achieve optimal localization errors in the high-dimensional
linear regression setting is the one developed in (Xu et al.,
2022), which allows for dependent observations. However,
the approach by (Xu et al., 2022) requires quadratic time
complexity. It is worth mentioning that both (Rinaldo et al.,
2021) and (Xu et al., 2022) also assume the SNR condition
we use in Theorem 3.6 and Theorem 3.7.

3.3. Changes in precision matrices

For our third and final example, we specialize the general
change point framework of Assumption 3.1 to the case

of Gaussian graphical models, in which the distributional
changes are induced by a sequence of temporally piece-
wise constant precision matrices, with the magnitude of the
changes measured in Frobenius norm.

Assumption 3.8 (Gaussian graphical model). Suppose for
each i ∈ [n], Xi is a mean-zero Gaussian vector in Rp with
covariance matrix Σ∗

i = E[XiX
⊤
i ], and Assumption 3.1

holds with θ∗
i = (Σ∗

i )
−1 with ∥ · ∥ = ∥ · ∥F . Assume that

for each i ∈ [n], the minimal and maximal eigenvalues of
Σ∗
i satisfy Λmin(Σ

∗
i ) ≥ cX and Λmax(Σ

∗
i ) ≤ CX , with

universal constants cX , CX ∈ (0,∞).

Several contributions in he recent literature address the prob-
lem of detecting change points in precision matrices; see,
e.g., (Gibberd and Roy, 2017; Gibberd and Nelson, 2017;
Bybee and Atchadé, 2018; Keshavarz et al., 2020; Lond-
schien et al., 2021; Liu et al., 2021; Bai and Safikhani,
2022). Most of these studies focus on estimating a single
change point. To the best of our knowledge, only (Bai and
Safikhani, 2022) has provided theoretical guarantees for the
multiple-change-point setting assuming sparse changes in
the precision matrices. Below, we show that the divide step
of the DCDP procedure is able to detect multiple change
points in the precision matrices in the dense regime.

Theorem 3.9. Suppose Assumption 3.8 holds and that

∆minκ
2 ≥ Bnp2 log(n ∨ p) (3.7)

for some slowly diverging sequence {Bn}n∈Z+ . Let
{η̂k}k∈[K̂] be the output of Algorithm 2 with Q =

4n
∆min

log2(n), γ = CγB−1/2
n ∆minκ

2 and

F(Ω̂I , I) =

{
0 if |I| < CFp log(p ∨ n);∑
i∈I Tr[Ω̂⊤

I XiX
⊤
i ]− |I| log |Ω̂I | otherwise.

for sufficiently large constants Cγ and CF . Here Ω̂I is

Ω̂I = argmin
Ω∈Sp+

∑
i∈I

Tr[Ω⊤XiX
⊤
i ]− |I| log |Ω|. (3.8)

Then with probability at least 1− n−3, K̂ = K and that

max
k∈[K]

|ηk − η̂k| ≲
p2 log(p ∨ n)

κ2
+ B−

1
2

n ∆min. (3.9)

The proof of Theorem 3.9 is deferred to Appendix E.

Under the assumption of the theorem, the localization rate
(3.9) implies consistency, as defined in (1.2); indeed, it is
easy to see that maxk∈[K] |ηk − η̂k| = op(∆min).

An analogous condition to Condition (3.7) is used in (Bai
and Safikhani, 2022) under the slightly different settings of
sparse changes. More precisely, the authors there requires
that ∆minκ

2 ≥ Bnd log(n ∨ p), where d is the maximal

6
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number of nonzero entries in the precision matrices. When
applied to our dense settings, their SNR condition matches
(3.7).

Under a slightly stronger SNR condition, we further obtain
that the local refinement algorithm in the conquer step im-
proves the localization rate to match the sharpest rate known
for this problem.

Theorem 3.10. Let Bn be an arbitrary slowly diverg-
ing sequence and suppose ∆minκ

2 ≥ Bnp4 log2(n ∨
p). Let {η̃k}k∈[K̂] be the output of Algorithm 3 with

R(θ(1), θ(2), η) = 0. Then under Assumption 3.8, it holds
that with probability at least 1− n−1

max
k∈[K]

|ηk − η̃k| ≲
1

κ2
log(n). (3.10)

The proof of Theorem 3.10 is in Appendix F.5. The local-
ization error bound obtained for DCDP in Theorem 3.10
matches the sharpest error bounds obtained for the preci-
sion matrices change point model (Liu et al., 2021; Bai and
Safikhani, 2022) and does not require the precision matrices
to be sparse. To the best of our knowledge, DCDP is the first
linear time algorithm that can optimally estimate multiple
change points in the precision matrices in high dimensions.

4. Numerical Experiments
We evaluate the numerical performance of DCDP through
examples of synthetic and real data. The tuning parameters
γ and ζ of DCDP are chosen using cross-validation. The
implementations of our numerical experiments are available
online 2. More details, including the implementation for
cross-validation and additional numerical results, can be
found in Appendix A due to space constraints.

4.1. Time complexity and accuracy of DCDP

We generate i.i.d. Gaussian random variables {yi}i∈[n] ⊂ R
with yi = µ∗

i + ϵi and σϵ = 1. We set n = 4∆ where
∆ will be specified in each setting. The three popula-
tion change points of {µ∗

i }i∈[n] are set to be µ∗
η0 = 0,

µ∗
η1 = δ, µ∗

η2 = 0, µ∗
η3 = δ, where ηk = k∆ + δk with

δk ∼ Unif[− 3
10∆,

3
10∆] for k = 1, 2, 3. We use the Haus-

dorff distance H({η̂k}k∈[K̂], {ηk}k∈[K]) to quantify the dif-
ference between the estimators and the true change points.

In the first set of experiments, we set ∆ = 5000, δ = 5 and
vary Q from 25 to 200, and summarize results in Figure 1.
The left plot of the figure shows that while the localization
errors of the divide step are sensitive to the choice of Q, the
additional conquer step (Algorithm 3) greatly improves the
numerical accuracy of the final estimators of DCDP. The

2
https://github.com/MountLee/DCDP
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Figure 1: Average localization error and average run time
versus the number of grid points Q over 100 trials. The
shaded area indicates the upper and lower 0.1 quantiles of
the corresponding quantities.

right plot of the figure demonstrates that the time complex-
ity of DCDP is quadratic in Q, which is in line with the
complexity analysis presented in Section 2.

In the second set of experiments, we fixQ = 100.δ = 5 and
let ∆ range from 1000 to 6000. The results are summarized
in Figure 2. The left plot of the figure shows that while
the localization errors of the dive step change with ∆, the
accuracy of DCDP is consistently small for all the different
values of ∆. The right plot of the figure shows that the time
complexity is linear in n, and this observation matches the
findings presented in Section 2.
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Figure 2: Average localization error and average run time
v.s. ∆ over 100 trials.
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Figure 3: Localization error when varying δ, the magnitude
of nonzero signals.

Next, we fixQ = 100 and ∆ ∈ {500, 5000} and vary δ, the
strength of signals, to illustrate the performance of DCDP
under different SNR levels. The results are summarized in
Figure 3. More discussions on the accuracy under small δ
are included in Appendix A.2.
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4.2. Numerical performance of DCDP

Below we report the outcome of various simulation studies
in which we compare the numerical performance of DCDP
with that of several other state-of-the-art methods, for each
of the three models presented in Section 3.

In the following experiments, for each specific ∆ we set
the total number of observations n = (K + 1)∆ and the
locations of true change points ηk = k∆+ δk, where δk is
a random variable sampled from the uniform distribution
Unif[− 3

10∆,
3
10∆]. In each setting, we conduct 100 trials

and report the average execution time, the average Hausdorff
distance between true and estimated change points, and the
frequency of cases in which K̂ = K, for each method.

The mean model
We set K = 3 and, for k = 0, · · · ,K and δ ∈ {1, 5}, we
assume a population mean vector of the form

µ∗
ηk

= (0, . . . , 0︸ ︷︷ ︸
5k

, δ, . . . , δ︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
p−5k−5

)⊤ ∈ Rp.

We compare DCDP with Change-Forest (CF) (Londschien
et al., 2022), Block-wise Fused Lasso (BFL) (Bai and
Safikhani, 2022), and Inspect (Wang and Samworth, 2018).
The results are summarized in Table 1. On average, DCDP
outputs the most accurate change point estimators while
remaining computationally efficient.

Method H(η̂,η) Time P̂[K̂ = K]
n = 200, p = 100,K = 3, δ = 5

DCDP 0.00 (0.00) 0.6s (0.0) 1.00
Inspect 0.40 (3.50) 0.0s (0.0) 0.91
CF 1.84 (6.27) 0.8s (0.2) 0.90
BFL 47.84 (6.69) 1.4s (0.2) 0.00

n = 200, p = 100,K = 3, δ = 1
DCDP 0.83 (0.87) 0.8s (0.2) 1.00
Inspect 2.65 (5.16) 0.0s (0.0) 0.86
CF 6.29 (9.57) 1.1s (0.3) 0.78
BFL 47.19 (6.48) 1.1s (0.2) 0.00

Table 1: Numerical comparison of different methods in the
high-dimensional mean shift models. The numbers in the
cells indicate the averages over 100 trials and the numbers
in the brackets indicate the corresponding standard errors.

The linear regression model

We set K = 3 and, for k = 0, · · · ,K, assume population
regression coefficients of the form

β∗
ηk

= (0, . . . , 0︸ ︷︷ ︸
5k

, δ, . . . , δ︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
p−5k−5

)⊤ ∈ Rp,

where δ ∈ {1, 5}.

We compare the numerical performance of DCDP with
Variance-Projected Wild Binary Segmentation (VPBS)
(Wang et al., 2021c) and vanilla Dynamic Programming
(DP) (Rinaldo et al., 2021). The results are summarized in
Table 2. On average, DCDP is the most efficient algorithm
with compelling numerical accuracy.

Method H(η̂,η) Time P̂[K̂ = K]
n = 200, p = 100,K = 3, δ = 5

DCDP 0.13 (0.39) 18.4s (1.1) 1.00
DP 0.01 (0.10) 220.3s (16.8) 0.98
VPWBS 15.44 (17.99) 120.1s (13.1) 0.70

n = 200, p = 100,K = 3, δ = 1
DCDP 1.45 (8.59) 8.8s (0.7) 0.98
DP 0.22 (2.00) 84.4s (5.7) 0.99
VPWBS 11.54 (11.23) 120.4s (14.5) 0.65

Table 2: Numerical comparison of different methods in the
high-dimensional regression coefficient shift models.

The Gaussian graphical model
We setK = 3 and the population covariance matrix matrices
as Σ∗

η0 = Σ∗
η2 = Ip and Σ∗

η1 = Σ∗
η3 where

(Σ∗
η1)ij = (Σ∗

η3)ij =


δ1, i = j;

δ2, |i− j| = 1;

0, otherwise,

with δ1 = 5, δ2 = 0.3.

We compare the numerical performance of DCDP with
Change-Forest (CF) (Londschien et al., 2022) and Block-
wise Fused Lasso (BFL) (Bai and Safikhani, 2022). Note
that the BFL algorithm produces empty set in all trials, so
we only report DCDP and CF in Table 3. It can be seen that
on average DCDP outputs the most accurate change point
estimates and is highly computationally efficient.

Method H(η̂,η) Time P̂[K̂ = K]
n = 400, p = 10,K = 3, δ1 = 5, δ2 = 0.3

DCDP 0.42 (0.64) 0.5s (0.0) 1.00
CF 5.54 (14.71) 0.6s (0.1) 0.88

n = 400, p = 20,K = 3, δ1 = 5, δ2 = 0.3
DCDP 0.66 (4.37) 0.9s (0.3) 1.00
CF 7.37 (18.76) 1.0s (0.0) 0.85

Table 3: Numerical comparison of different methods in the
precision matrix shift models.

4.3. Real data analysis

In this section, we apply DCDP to three popular real data
examples and compare it with state-of-the-art methods.

Bladder tumor micro-array data. This dataset contains
the micro-array records of 43 patients with bladder tumor,
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collected and studied by (Stransky et al., 2006). The result
is visualized in Figure 4, where we only show the data of
10 patients for the ease of presentation and reading. While
there is no accurate ground truth of locations of change
points, the 37 change points spotted by DCDP align well
with previous research (James and Matteson, 2015; Wang
and Samworth, 2018). Figure 4 provides virtual support for
the findings by DCDP.
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Figure 4: Estimated change points in the micro-array data.
The result is based on the data of all 43 patients, while only
the data of 10 patients is presented. The estimated change
points are indicated by dashed vertical lines.

Dow Jones industrial average index. We apply DCDP to
the weekly log return of the 29 companies composing the
Dow Jones Industrial Average(DJIA) from April, 1990 to
January, 2012, to detect changes in the covariance structure.
We use the version of the data provided in (James and Mat-
teson, 2015). Two change points at September 22, 2008 and
May 4, 2009 are detected, which correspond to the months
during which the market was impacted by the financial crisis
in 2008. The estimates by DCDP match well with previous
research (James and Matteson, 2015) on this data.

To give a virtual evaluation on estimated change points, in
Figure 5 we show the estimated precision matrices on the
three segments of the data split by the estimated change
points.
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Figure 5: Estimated change points in the DJIA data.

FRED data. We also apply DCDP to Federal Reserve
Economic Database (FRED) data.3 We use the subset of
monthly data spanning from January 2000 to December
2019, which consists of n = 240 samples. The original data

3The dataset is publicly available at https://research.

stlouisfed.org/econ/mccracken/fred-databases.

has 128 features. We use the R package fbi(Yankang , Ben-
nie) to transform the raw data to be stationary and remove
outliers, as is suggested by the data collector (McCracken
and Ng, 2016). After preprocessing, there are 118 features,
including the date.

We use logarithm of the monthly growth rate of the US in-
dustrial production index (named as INDPRO in the FRED
data set) as the response variable, and other 116 macroeco-
nomic variables as predictors. Previous research (Wang and
Zhao, 2022; Xu et al., 2022) suggests that there exist change
points in the association between INDPRO and predictors.

DCDP spots a change point at January 2008, which is con-
sistent with previous research on this data (Wang and Zhao,
2022; Xu et al., 2022).

5. Discussion
In this paper, we propose a novel framework called DCDP
for offline change point detection that can efficiently lo-
calize multiple change points for a broad range of high-
dimensional models. DCDP improves the computational
efficiency of vanilla dynamic programming while preserv-
ing the accuracy of change point estimation. DCDP serves
as a unified methodology for a large family of change point
models and theoretical guarantees for the localization errors
of DCDP under three specific models are established. Ex-
tensive numerical experiments are conducted to compare
the performance of DCDP with other popular methods to
support our theoretical findings.

There are two main limitations in this paper. First, although
the methodology itself is model-agnostic, we only consider
linear-type models in the theoretical analysis. Thus, an
important future direction is to generalize the theoretical
analysis to other models like non-parametric families or ar-
tificial neural networks. Moreover, in our theoretical results,
the sharpest localization error rates require stronger SNR
conditions, as is discussed in Appendix F. Since there is no
existing work in the literature achieving the same error rate
with weaker assumptions, weakening the SNR conditions
for the sharp error rate will be another important direction
for future work.
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Appendix
The appendix contains seven parts. The first five parts present the proof of main results in Section 3 and the last two parts
show some additional results of experiments on synthetic and real data. In detail,

1. Appendix A contains supplementary materials to numerical experiments in Section 4.

2. Appendix B contains key properties that make the proof of DCDP different from that of the vanilla DP. The computation
complexity of the divide step is discussed in Lemma B.1.

3. Appendix C contains proof of Theorem 3.3 for the divide step under the mean model in Section 3.1.

4. Appendix D contains proof of Theorem 3.6 for the divide step under the linear model in Section 3.2.

5. Appendix E contains proof of Theorem 3.9 for the divide step under the Gaussian graphical model in Section 3.3.

6. Appendix F contains proof of Theorem 3.4, 3.7, 3.10 for the conquer step.
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A. Additional Experiments
This section serves as a supplement to Section 4. In Appendix A.1, we discuss the selection of γ. In Appendix A.3, we
present full results of numerical experiments in Section 4.2.

A.1. Selection of γ

In the theory of DCDP, we need γ = CγB−1/2
n ∆minκ

2, which involves unknown population parameter ∆min and κ2. It is
common in the change point literature and even broader literature that theoretically best tuning parameters involve unknown
quantities, and a typical practical solution is to perform cross validation to select the best tuning parameter from a list of
candidates.

Suppose we have data {Zi}i∈[n] with Zi ∼ Pθi . Without loss of generality, suppose n = 2m for some m ∈ Z+. We split
the data by indices, such that data with odd indices {Z2i−1}i∈[m] is the training set and data with even indices {Z2i}i∈[m]

is the test set. This is a common way to conduct cross validation in the change point literature. Given a set of candidate
parameters G = {(γi, ζi)}i∈[l], for each i ∈ [l], the CV has three steps:

1. Run DCDP on {Z2i−1}i∈Ik with (γi, ζi) to get a segmentation P̃ = {Ik}k∈[K̂+1] of [1,m] where Ik = [η̃k−1, η̃k).

2. Calculate {θ̂k}k∈[K̂+1] from {{Z2i−1}i∈Ik}k∈[K̂+1] and

Ri =
∑

k∈[K̂+1]

F(θ̂k, Ik)

from {{Z2i}i∈Ik}k∈[K̂+1].

3. Select (γicv , ζicv ) with the index icv = argmini∈[l]Ri.

A.2. Impact of SNR

In Section 4.1, we illustrate the performance of DCDP with varying SNR levels. As is shown in Figure 3, the localization
error gets larger when δ, the signal strength, becomes smaller. In this section, we show that the localization errors of DCDP
for small δ are in fact reasonably good. The data generating mechanism is the same as in Section 4.1.

We set ∆ = 500. In the left panel of Figure 6, we set n = 2∆ and allow the estimator to know that there is a single change
point, which is the simplest setting of change point detection. In this setting, the optimal estimator is to simply pick the
extreme point of the CUSUM statistic. It can be seen that with similar SNR, the localization error of DCDP under the (much
more difficult) multiple change point setting is only twice of the error of the most powerful method in the simplest case.
This demonstrate that DCDP performs well in low SNR scenarios.

Figure 6: Left: localization error of the extreme point of the CUSUM statistic when n = 2∆ and it is known that there is
only one change point; right: localization error of DCDP when Q = n under n = 4∆ and δ ∈ {0.50, 0.75}.

In the right panel of Figure 6, we set n = 4∆ (i.e., there are 3 change points) and letQ = n, δ ∈ {0.50, 0.75}. In this setting,
the "divide step" corresponds to the vanilla DP and "DCDP" corresponds to vanilla DP + local refinement. Theoretically,
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this would lead to more accurate estimates, but with a much higher computational price. However, comparing the resulted
errors with those in Figure 3, it can be seen that the improvement on the localization error against that of Q = 100 is fairly
small, while the actual run time is more than 200 times longer. This demonstrates that DCDP is efficient and accurate, even
when the SNR is low.
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A.3. More results on comparisons

In this section we present full results of comparisons between DCDP and other methods in Table 4, Table 5, and Table 6, as
a supplement to Section 4.2. Among all involved methods, DCDP is implemented in Python, ChangeForest is implemented
in Rust and provides Python API, Inspect, Variance-Projected WBS, vanilla DP, and Block-Fused-Lasso are implemented in
R based on Rcpp. For fair comparison, we first generate data in Python and then load the data in R for R-based methods.
All experiments for DCDP and ChangeForest are run on a virtual machine of Google Colab with Intel(R) Xeon(R) CPU of 2
cores 2.30 GHz and 12GB RAM (one setting at a time). All other experiments are run on a personal computer with Intel Core
i7 8850H CPU of 6 cores 2.60GHz and 64GB RAM (one setting at a time). Notice that programs implemented by Rcpp is
usually faster than Python, and the machine to run Rcpp-based methods has better parameters than the virtual machine to
run DCDP and ChangeForest, the comparison of execution time would not be unfair against Rcpp-based methods.

Table 4 shows full results of the comparison under the mean shift model.

Setting Method H(η̂, η) Time K̂ < K K̂ = K K̂ > K

n = 200, p = 20,K =
3, δ = 5

DCDP 0.00 (0.00) 0.7s (0.2) 0 100 0
Inspect 0.54 (4.46) 0.0s (0.0) 0 96 4
CF 3.59 (10.10) 0.3s (0.0) 0 84 16
BFL 42.56 (6.95) 3.5s (0.6) 100 0 0

n = 200, p = 20,K =
3, δ = 1

DCDP 0.51 (0.77) 0.7s (0.2) 0 100 0
Inspect 3.13 (5.50) 0.0s (0.0) 0 67 33
CF 4.38 (10.13) 0.4s (0.1) 0 81 19
BFL 43.30 (8.25) 2.9s (0.6) 100 0 0

n = 200, p = 20,K =
3, δ = 0.5

DCDP 8.30 (12.90) 0.4s (0.0) 8 90 2
Inspect 6.85 (7.53) 0.0s (0.0) 0 78 22
CF 7.15 (9.57) 0.4s (0.1) 1 78 21
BFL 54.48 (20.98) 2.8s (1.1) 100 0 0

n = 200, p = 100,K =
3, δ = 5

DCDP 0.0 (0.0) 0.6s (0.0) 0 100 0
Inspect 0.40 (3.50) 0.0s (0.0) 0 91 9
CF 2.85 (7.50) 0.8s (0.2) 0 85 15
BFL 47.80 (6.66) 1.5s (0.3) 100 0 0

n = 200, p = 100,K =
3, δ = 1

DCDP 0.83 (0.87) 0.8s (0.2) 0 100 0
Inspect 2.65 (5.16) 0.0s (0.0) 0 86 14
CF 3.28 (7.01) 1.3s (0.1) 0 85 15
BFL 47.59 (6.08) 1.1s (0.2) 100 0 0

n = 800, p = 100,K =
3, δ = 0.5

DCDP 9.36 (29.96) 2.1s (0.3) 3 97 0
Inspect 12.55 (22.14) 0.1s (0.0) 0 77 23
CF 14.73 (30.50) 5.5s (0.3) 0 82 18
BFL 80.10 (137.33) 15.7s (3.8) 28 71 1

Table 4: Comparison of DCDP and other methods under the mean model with different simulation settings. 100 trials are
conducted in each setting. For the localization error and running time (in seconds), the average over 100 trials is shown with
standard error in the bracket. The three columns on the right record the number of trials in which K̂ < K, K̂ = K, and
K̂ > K respectively.

Table 5 shows full results of the comparison under the linear regression coefficient shift model.
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Setting Method H(η̂, η) Time K̂ < K K̂ = K K̂ > K

n = 200, p = 20,K =
3, δ = 5

DCDP 0.03 (0.17) 5.1s (0.3) 0 100 0
DP 0.04 (0.20) 17.0s (0.5) 0 100 0
VPWBS 7.69 (15.53) 28.4s (3.5) 1 71 28
BFL 84.45 (15.33) 4.2s (0.7) 100 0 0

n = 200, p = 20,K =
3, δ = 1

DCDP 0.94 (5.17) 2.3s (0.2) 2 98 0
DP 0.05 (0.22) 12.8s (0.5) 0 100 0
VPWBS 11.71 (19.82) 30.4s (2.2) 21 73 6
BFL 43.31 (8.82) 3.1s (0.8) 100 0 0

n = 200, p = 100,K =
3, δ = 5

DCDP 0.13 (0.39) 18.4s (1.1) 0 100 0
DP 0.01 (0.10) 220.3s (16.8) 0 98 2
VPWBS 15.44 (17.99) 120.1s (13.1) 18 70 12
BFL 47.84 (6.69) 1.4s (0.2) 100 0 0

n = 200, p = 100,K =
3, δ = 1

DCDP 1.45 (8.59) 8.8s (0.7) 2 98 0
DP 0.22 (2.00) 84.4s (5.7) 0 99 1
VPWBS 11.54 (11.23) 120.4s (14.5) 3 65 32
BFL 47.19 (6.48) 1.1s (0.2) 100 0 0

Table 5: Comparison of DCDP and other methods under the linear model with different simulation settings. 100 trials are
conducted in each setting. For the localization error and running time (in seconds), the average over 100 trials is shown with
standard error in the bracket. The three columns on the right record the number of trials in which K̂ < K, K̂ = K, and
K̂ > K respectively.

Table 6 shows full results of the comparison under the precision shift model. In Table 6, we didn’t present the results of BFL
because it produces empty set in all trials, for some unknown reason. We tried to fine tune the parameters in BFL, but didn’t
manage to produce nonempty sets, probably because the precision matrices under our setting are not sparse enough for BFL
to perform well.

Setting Method H(η̂, η) Time K̂ < K K̂ = K K̂ > K
n = 2000, p = 5,K =
3, δ1 = 2, δ2 = 0.3

DCDP 5.16 (6.52) 0.7s (0.3) 0 100 0
CF 58.25 (151.74) 1.8s (0.3) 2 69 29

n = 2000, p = 10,K =
3, δ1 = 5, δ2 = 0.3

DCDP 0.27 (0.49) 0.7s (0.1) 0 100 0
CF 42.5 (137.92) 2.9s (0.2) 0 84 16

n = 2000, p = 20,K =
3, δ1 = 5, δ2 = 0.3

DCDP 0.03 (0.17) 1.2s (0.2) 0 100 0
CF 27.68 (97.20) 4.8s (0.4) 0 86 14

n = 400, p = 10,K =
3, δ1 = 5, δ2 = 0.3

DCDP 0.42 (0.64) 0.5s (0.0) 0 100 0
CF 5.54 (14.71) 0.6s (0.1) 0 88 12

n = 400, p = 20,K =
3, δ1 = 5, δ2 = 0.3

DCDP 0.66 (4.37) 0.9s (0.3) 0 100 0
CF 7.37 (18.76) 1.0s (0.0) 0 85 15

Table 6: Comparison of DCDP and other methods under the covariance model with different simulation settings. 100 trials
are conducted in each setting. For the localization error and running time (in seconds), the average over 100 trials is shown
with standard error in the bracket. The three columns on the right record the number of trials in which K̂ < K, K̂ = K,
and K̂ > K respectively.
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B. Fundamental lemma
In the proof of localization error of the vanilla dynamic programming, we frequently compare the goodness-of-fit function
F(θ̂I , I) over an interval I = (s, e] with

F(θ̂(s,ηi+1], (s, ηi+1]) + · · ·+ F(θ̂(ηi+m,e], (ηi+m, e]) +mγ (B.1)

where {ηi+j}j∈[m] = {ηℓ}ℓ∈[K] ∩ I is the collection of true change points within interval I and γ is the penalty tuning
parameter of the DP.

However, for DCDP, we only search over the rough grid {si = ⌊ i·nQ+1⌋}i∈[Q] that may or may not contain any true change
points. Therefore, we need to a) guarantee the existence of some reference points (contained in {si}i∈[Q]) that are close
enough to true change points, and b) quantify the deviation of the goodness-of-fit function evaluated at the reference points
compared to that evaluated at the true change points.

Reference points. The grid is given by points sq = ⌊ q·nQ+1⌋ for q ∈ [Q]. Let {ηk}k∈[K] be the collection of change points
and denote

Lk(δ) :=
{
{sq}q∈[Q]

⋂
[ηk − δ, ηk] ̸= ∅

}
, and Rk(δ) :=

{
{sq}q∈[Q]

⋂
[ηk, ηk + δ] ̸= ∅

}
.

Intuitively, if sq ∈ [ηk − δ, ηk] and sq′ ∈ [ηk, ηk + δ] , then sq, sq′ can serve as reference points of the true change point ηk.
Denote

L(δ) :=
K⋂
k=1

Lk
(
δ
)

and R(δ) :=
K⋂
k=1

Rk
(
δ
)
. (B.2)

Then it is straightforward to see that both events L(δ) andR(δ) will hold as long as minq∈[Q+1] |sq − sq−1| < δ
2 , which is

guaranteed if Q > 3nδ . For the proofs in Appendix C, Appendix D, and Appendix E, we require that L(B−1
n ∆min) and

R(B−1
n ∆min) hold. Therefore, for the theoretical results in Section 3 to hold, Q should satisfy that

Q >
3n

∆min
Bn.

Since in our paper, {Bn}n∈Z+ is a slowly diverging sequence, we can take it as Bn = log(n) and then it suffices to take
Q = 4n

∆min
log2(n).

Under the fixed-K setting of paper and when {∆k}k∈[K] are of the same order, the existence of reference points will be
guaranteed as long as Q > 4 log2(n).

Goodness-of-fit. The deviation of goodness-of-fit functions at reference points are different from the one that occurs in
the proof of the vanilla DP, because the fitted parameters would have some bias since reference points may not locate at
true change points. For different models, the deviation of the goodness-of-fit has different orders. We need to analyze each
model separately. The deviations are described in Lemma C.4, Lemma D.4, and Lemma E.4.

Complexity analysis. In Lemma B.1 we analyze the complexity of the divide step.
Lemma B.1 (Complexity of the divide step). Under all three models in Section 3, with a memorization technique, the
computation complexity of Algorithm 2 would be O(nQ · C2(p)).

Proof. For generality, suppose {si}i∈[Q] is an arbitrary grid of integers over (0, n), i.e., 0 < s1 < s2 < · · · < sQ < n, and
denote s0 = 0, sQ+1 = n, δi = si − si−1 for i ∈ [Q+ 1].

Under the three models in Section 3, calculating θ̂I only involves summations like
∑
i∈I Xi,

∑
i∈I XiX

⊤
i ,
∑
i∈I Xiyi. In

l-th step (l ≥ 1) of the inner loop of Algorithm 2 at the right end point sr, it suffices to remove δl terms from the summation.
Thus, the complexity for the inner loop at sr would be O(sr · C2(p)), and the total complexity would be∑

r∈[Q]

O(sr · C2(p)) = O(nQ · C2(p)).
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C. Mean model
In this section we show the proof of Theorem 3.3. Throughout this section, for any generic interval I ⊂ [1, n], denote
µ∗
I = 1

|I|
∑
i∈I µ

∗
i and

µ̂I = argmin
µ∈Rp

1

|I|
∑
i∈I
∥Xi − µ∥22 +

λ√
|I|
∥µ∥1.

Also, unless specially mentioned, in this section, we set the goodness-of-fit function F(I) in Algorithm 1 to be

F(I) :=

{∑
i∈I ∥Xi − µ̂I∥22, when |I| ≥ CFσ

2
ϵ s log(n ∨ p),

0, otherwise,
. (C.1)

where CF is a universal constant.

Assumptions. For the ease of presentation, we combine the SNR condition we will use throughout this section and
Assumption 3.2 into a single assumption.

Assumption C.1 (Mean model). Suppose that Assumption 3.2 holds. In addition, suppose that ∆minκ
2 ≥ Bns log(n ∨ p)

as is assumed in Theorem 3.3.

Proof of Theorem 3.3. By Proposition C.2, K ≤ |P̂| ≤ 3K. This combined with Proposition C.3 completes the proof.

Proposition C.2. Suppose Assumption C.1 holds. Let P̂ denote the output of Algorithm 1. Then with probability at least
1− Cn−3, the following conditions hold.

(i) For each interval I = (s, e] ∈ P̂ containing one and only one true change point ηk, it must be the case that

min{ηk − s, e− ηk} ≲ σ2
ϵ

(
s log(n ∨ p) + γ

κ2k

)
+ B−1

n ∆min.

(ii) For each interval I = (s, e] ∈ P̂ containing exactly two true change points, say ηk < ηk+1, it must be the case that

ηk − s ≲ B−1/2
n ∆min and e− ηk+1 ≲ B−1/2

n ∆min.

(iii) No interval I ∈ P̂ contains strictly more than two true change points.

(iv) For all consecutive intervals I1 and I2 in P̂ , the interval I1 ∪ I2 contains at least one true change point.

Proof. The four cases are proved in Lemma C.7, Lemma C.8, Lemma C.9, and Lemma C.10, respectively.

Proposition C.3. Suppose Assumption C.1 holds. Let P̂ be the output of Algorithm 1. Suppose γ ≥ CγKB−1
n ∆minκ

2 for
sufficiently large constant Cγ . Then with probability at least 1− Cn−3, |P̂| = K.

Proof of Proposition C.3. Denote G∗
n =

∑n
i=1 ∥Xi − µ∗

i ∥22. Given any collection {t1, . . . , tm}, where t1 < · · · < tm, and
t0 = 0, tm+1 = n, let

Gn(t1, . . . , tm) =

m∑
k=1

F(µ̂(tk,tk+1], (tk, tk+1]). (C.2)

For any collection of time points, when defining (C.2), the time points are sorted in an increasing order.

Let {η̂k}K̂k=1 denote the change points induced by P̂ . Suppose we can justify that

G∗
n +Kγ ≥Gn(s1, . . . , sK) +Kγ − C1(K + 1)σ2

ϵ s log(n ∨ p)− C1

∑
k∈[K]

κ2kB−1
n ∆min (C.3)

≥Gn(η̂1, . . . , η̂K̂) + K̂γ − C1(K + 1)σ2
ϵ s log(n ∨ p)− C1

∑
k∈[K]

κ2kB−1
n ∆min (C.4)
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≥Gn(η̂1, . . . , η̂K̂ , η1, . . . , ηK) + K̂γ − 2C1(K + 1)σ2
ϵ s log(n ∨ p)− C1

∑
k∈[K]

κ2kB−1
n ∆min (C.5)

and that

G∗
n −Gn(η̂1, . . . , η̂K̂ , η1, . . . , ηK) ≤ C2(K + K̂ + 2)σ2

ϵ s log(n ∨ p). (C.6)

Then it must hold that |P| = K, as otherwise if K̂ ≥ K + 1, then

C2(K + K̂ + 2)σ2
ϵ s log(n ∨ p) ≥ G∗

n −Gn(η̂1, . . . , η̂K̂ , η1, . . . , ηK)

≥ (K̂ −K)γ − 2C1(K + 1)σ2
ϵ s log(n ∨ p)− 2C1

∑
k∈[K]

κ2kB−1
n ∆min.

Therefore due to the assumption that |p̂| = K̂ ≤ 3K, it holds that

[C2(4K + 2) + 2C1(K + 1)]σ2
ϵ s log(n ∨ p) + 2C1

∑
k∈[K]

κ2kB−1
n ∆min ≥ (K̂ −K)γ ≥ γ, (C.7)

Note that (C.7) contradicts the choice of γ.

Step 1. Note that (C.3) is implied by

|G∗
n −Gn(s1, . . . , sK)| ≤ C3(K + 1)σ2

ϵ s log(n ∨ p) + C3

∑
k∈[K]

κ2kB−1
n ∆min, (C.8)

which is an immediate consequence of Lemma C.4.

Step 2. Since {η̂k}K̂k=1 are the change points induced by P̂ , (C.4) holds because P̂ is a minimizer.
Step 3. For every I = (s, e] ∈ p̂, by Proposition C.2, we know that I contains at most two change points. We only show the
proof for the two-change-points case as the other case is easier. Denote

I = (s, ηq] ∪ (ηq, ηq+1] ∪ (ηq+1, e] = J1 ∪ J2 ∪ J3, (C.9)

where {ηq, ηq+1} = I ∩ {ηk}Kk=1.

For each m = 1, 2, 3, if |Jm| ≥ CFσ
2
ϵ s log(n ∨ p), then by Lemma C.4, it holds that∑

i∈Jm

∥yi − µ̂Jm∥22 ≤
∑
i∈Jm

∥yi − µ∗
i ∥22 + Cσ2

ϵ s log(n ∨ p).

Thus, we have
F(µ̂Jm ,Jm) ≤ F(µ∗

Jm ,Jm) + Cσ2
ϵ s log(n ∨ p). (C.10)

On the other hand, by Lemma C.6, we have

F(µ̂I ,Jm) ≥ F(µ∗
Jm ,Jm)− Cσ2

ϵ s log(n ∨ p).

Therefore the last two inequalities above imply that

F(µ̂I , I) ≥
3∑

m=1

F(µ̂I ,Jm)

≥
3∑

m=1

F(µ̂Jm ,Jm)− 6Cσ2
ϵ s log(n ∨ p). (C.11)

Note that (C.5) is an immediate consequence of (C.11).

Step 4. Finally, to show (C.6), let P̃ denote the partition induced by {η̂1, . . . , η̂K̂ , η1, . . . , ηK}. Then |P̃| ≤ K + K̂ + 2

and that µ∗
i is unchanged in every interval I ∈ P̃ . So Equation (C.6) is an immediate consequence of Lemma C.4.
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C.1. Fundamental lemmas

Lemma C.4 (Deviation, mean model). Let I = (s, e] ⊂ (0, n] be any generic interval and

µ̂I = argmin
µ

1

|I|
∑
i∈I
∥Xi − µ∥22 +

λ√
|I|
∥µ∥1.

a. If I contains no change points, then it holds that

P
(∣∣∣∣∑

i∈I
∥Xi − µ̂I∥22 −

∑
i∈I
∥Xi − µ∗

i ∥22
∣∣∣∣ ≥ Cσ2

ϵ s log(n ∨ p)
)
≤ (n ∨ p)−3.

b. Suppose that the interval I contains one and only one change point ηk. Denote

J = (s, ηk] and J ′ = (ηk, e].

Then it holds that

P
(∣∣∣∣∑

i∈I
∥Xi − µ̂I∥2 −

∑
i∈I
∥Xi − µ∗

i ∥2
∣∣∣∣ ≥ 2

|J ||J ′|
|I|

κ2k + Cσ2
ϵ s log(n ∨ p)

)
≤ (n ∨ p)−3.

Proof. We show b as a immediately follows from b with |J ′| = 0. Denote

J = (s, ηk] and J ′ = (ηk, e].

Denote µI = 1
|I|
∑
i∈I µ

∗
i . The it holds that∑

i∈I
∥Xi − µ̂I∥22 −

∑
i∈I
∥Xi − µ∗

i ∥22

=
∑
i∈I
∥µ̂I − µ∗

i ∥22 − 2
∑
i∈I

ϵ⊤i (µ̂I − µ∗
i )

≤2
∑
i∈I
∥µ̂I − µ∗

I∥22 + 2
∑
i∈I
∥µ∗

I − µ∗
i ∥22 − 2

∑
i∈I

ϵ⊤i (µ̂I − µ∗
I)− 2

∑
i∈I

ϵ⊤i (µ
∗
I − µ∗

i ).

Observe that

P
(
∥
∑
i∈I

ϵi∥∞ ≥ Cσϵ
√
log(n ∨ p)|I|

)
≤ (n ∨ p)−5

Suppose this good event holds.

Step 1. By the event and Lemma C.5, we have∑
i∈I
∥µ̂I − µ∗

I∥22 ≤ Cσ2
ϵ s log(n ∨ p),

|2
∑
i∈I

ϵ⊤i (µ̂I − µ∗
I)| ≤ |I|∥

∑
i∈I

ϵi∥∞∥µ̂I − µ∗
I∥1 ≤ Cσ2

ϵ s log(n ∨ p).

Step 2. Notice that ∑
i∈I
∥µ∗

I − µ∗
i ∥2 =

∑
i∈I
∥
|J |µ∗

J + |J ′|µ∗
J ′

|I|
− µ∗

i ∥22

=
∑
i∈J
∥
|J ′|(µ∗

J − µ∗
J ′)

|I|
∥22 +

∑
i∈J ′

∥
|J |(µ∗

J − µ∗
J ′)

|I|
∥22

=
|J ||J ′|
|I|

∥µ∗
J − µ∗

J ′∥22 =
|J ||J ′|
|I|

κ2k.
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Meanwhile, it holds that∑
i∈I

ϵ⊤i (µ
∗
I − µ∗

i ) =
∑
i∈I

ϵ⊤i

( |J |µ∗
J + |J ′|µ∗

J ′

|I|
− µ∗

i

)
=
|J ′|
|I|

∑
i∈J

ϵ⊤i (µ
∗
J ′ − µ∗

J ) +
|J |
|I|

∑
i∈J ′

ϵ⊤i (µ
∗
J − µ∗

J ′)

≤C2σϵ

√
|J ||J ′|
|I|

κ2k log(n ∨ p) ≤
|J ||J ′|
|I|

κ2k + Cσ2
ϵ log(n ∨ p),

where the first inequality follows from the fact that the variance is upper bounded by∑
i∈J

σ2
ϵ

|J ′|2

|I|2
∥µ∗

J − µ∗
J ′∥22 +

∑
i∈J ′

σ2
ϵ

|J |2

|I|2
∥µ∗

J − µ∗
J ′∥22 =

|J ||J ′|
|I|

σ2
ϵκ

2
k.

Lemma C.5. For any interval I ⊂ [1, n] with |I| ≥ C0s log(n ∨ p) that contains finitely many change points. Let

µ̂I := argmin
µ∈Rp

1

|I|
∑
i∈I
∥Xi − µ∥22 +

λ√
|I|
∥µ∥1,

for λ = Cλσϵ
√
log(n ∨ p) for sufficiently large constant Cλ. Then it holds with probability at least 1− (n ∨ p)−5 that

∥µ̂I − µ∗
I∥22 ≤

Cσ2
ϵ s log(n ∨ p)
I

∥µ̂I − µ∗
I∥1 ≤ Cσϵs

√
log(n ∨ p)
|I|

∥ (µ̂I − µ∗
I)Sc ∥1 ≤ 3∥ (µ̂I − µ∗

I)S ∥1,

(C.12)

where µ∗
I = 1

|I|
∑
i∈I µ

∗
i .

Proof. By definition, we have L(µ̂I , I) ≤ L(µI , I), that is∑
i∈I
∥Yi − µ̂I∥22 + λ

√
|I| ∥µ̂I∥1 ≤

∑
i∈I
∥Yi − µ∗

I∥22 + λ
√
|I| ∥µ∗

I∥1

⇒
∑
i∈I

(µ̂I − µ∗
I)

⊤(2Yi − µ∗
I − µ̂I) + λ

√
|I| [∥µ∗

I∥1 − ∥µ̂I∥1] ≥ 0

⇒(µ̂I − µ∗
I)

⊤(
∑
i∈I

ϵi) + 2(µ̂I − µ∗
I)

⊤
∑
i∈I

(µ∗
i − µ∗

I)− |I|
∑
i∈I
∥µ̂I − µ∗

I∥22 + λ
√
|I| [∥µ∗

I∥1 − ∥µ̂I∥1] ≥ 0

⇒∥µ̂I − µ∗
I∥1∥2

∑
i∈I

ϵi∥∞ + λ
√
|I| [∥µ∗

I∥1 − ∥µ̂I∥1] ≥ |I|
∑
i∈I
∥µ̂I − µ∗

I∥22. (C.13)

By a union bound, we know that for some universal constant C > 0, with probability at least 1− (n ∨ p)−5,

∥
∑
i∈I

ϵi∥∞ ≤ Cσϵ
√
|I| log(n ∨ p) ≤ λ

4

√
|I| ,

as long as Cλ is sufficiently large. Therefore, based on the sparsity assumption in Assumption C.1, it holds that

λ

2
∥µ̂I − µ∗

I∥1 + λ[∥µ∗
I∥1 − ∥µ̂I∥1] ≥ 0

⇒λ

2
∥µ̂I − µ∗

I∥1 + λ[∥(µ∗
I)S∥1 − ∥(µ̂I)S∥1] ≥ λ∥(µ̂I)Sc∥1
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⇒λ

2
∥µ̂I − µ∗

I∥1 + λ∥(µ∗
I − µ̂I)S∥1 ≥ λ∥(µ∗

I − µ̂I)Sc∥1

⇒3∥(µ∗
I − µ̂I)S∥1 ≥ ∥(µ∗

I − µ̂I)Sc∥1.

Now from Equation (C.13) we can get

|I|∥µ̂I − µ∗
I∥22 ≤

3λ

2

√
|I| ∥µ̂I − µ∗

I∥1

≤12λ

2

√
|I| ∥(µ̂I − µ∗

I)S∥1

≤6λ
√
s
√
|I| ∥(µ̂I − µ∗

I)S∥2
≤6λ
√
s
√
|I| ∥µ̂I − µ∗

I∥2,

which implies that

∥µ̂I − µ∗
I∥2 ≤ 6Cλσϵ

√
s log(n ∨ p)
|I|

.

The other inequality follows accordingly.

C.2. Technical lemmas

Throughout this section, let P̂ denote the output of Algorithm 1.

Lemma C.6 (No change point). Let I ⊂ [1, . . . , n] be any interval that contains no change point. Then for any interval
J ⊃ I, it holds with probability at least 1− (n ∨ p)−5 that

F(µ∗
I , I) ≤ F(µ̂J , I) + Cσ2

ϵ s log(n ∨ p).

Proof. Case 1. If |I| < CFσϵs log(n∨ p), then by definition, we have F(µ∗
I , I) = F(µ̂∗

J , I) = 0 and the inequality holds.

Case 2. If |I| ≥ CFσϵs log(n ∨ p), then take difference and we can get∑
i∈I
∥Xi − µ∗

i ∥22 −
∑
i∈I
∥Xi − µ̂J ∥22

=2(µ̂J − µ∗
I)

⊤
∑
i∈I

ϵi − |I|∥µ∗
I − µ̂J ∥22

≤2(∥(µ̂J − µ∗
I)S∥1 + ∥(µ̂J − µ∗

I)Sc∥1)∥
∑
i∈I

ϵi∥∞ − |I|∥µ∗
I − µ̂J ∥22

≤c1∥µ̂J − µ∗
I∥2σϵ

√
s|I| log(n ∨ p) + c2σϵs

√
log(n ∨ p)
|I|

· c1σϵ
√
|I| log(n ∨ p) − |I|∥µ∗

I − µ̂J ∥22

≤1

2
|I|∥µ∗

I − µ̂J ∥22 + 2c21σ
2
ϵ s log(n ∨ p) + c2σ

2
ϵ s log(n ∨ p)− |I|∥µ∗

I − µ̂J ∥22
≤Cσ2

ϵ s log(n ∨ p),

where in the second inequality we use the definition of the index set S and Lemma C.5.

Lemma C.7 (Single change point). Suppose the good events L(B−1
n ∆min) and R(B−1

n ∆min) defined in Equation (B.2)
hold. Let I = (s, e] ∈ P̂ be such that I contains exactly one change point ηk. Then with probability at least 1− (n ∨ p)−3,
it holds that

min{ηk − s, e− ηk} ≲ σ2
ϵ

(
s log(n ∨ p) + γ

κ2k

)
+ B−1

n ∆min.

Proof. If either ηk − s ≤ B−1
n ∆min or e− ηk ≤ B−1

n ∆min, then there is nothing to show. So assume that

ηk − s > B−1
n ∆min and e− ηk > B−1

n ∆min.
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By eventR(B−1
n ∆min), there exists su ∈ {sq}Qq=1 such that

0 ≤ su − ηk ≤ B−1
n ∆min.

So
ηk ≤ su ≤ e.

Denote
I1 = (s, su] and I2 = (su, e].

Since s, e, su ∈ {sq}Qq=1, it follows that∑
i∈I
∥Xi − µ̂I∥22 ≤

∑
i∈I1

∥Xi − µ̂I1
∥22 +

∑
i∈I2

∥Xi − µ̂I2
∥22 + γ

≤
∑
i∈I1

∥Xi − µ∗
i ∥22 + C1

(
σ2
ϵ s log(n ∨ p) + (su − ηk)κ2k

)
+
∑
i∈I1

∥Xi − µ∗
i ∥22 + C1σ

2
ϵ s log(n ∨ p) + γ

=
∑
i∈I
∥Xi − µ∗

i ∥22 + C2

(
σ2
ϵ s log(n ∨ p) + (su − ηk)κ2k

)
+ γ

≤
∑
i∈I
∥Xi − µ∗

i ∥22 + C2

(
σ2
ϵ s log(n ∨ p) + B−1

n ∆minκ
2
k

)
+ γ, (C.14)

where the first inequality follows from the fact that I = (s, e] ∈ P̂ and so it is the local minimizer, the second inequality
follows from Lemma C.4 a and b and the observation that

ηk − s > B−1
n ∆min ≥ su − ηk

Denote
J1 = (s, ηk] and J2 = (ηk, e].

Equation (C.14) gives∑
i∈J1

∥Xi − µ̂I∥22 +
∑
i∈J2

∥Xi − µ̂I∥22 ≤
∑
i∈J1

∥Xi − µ∗
J1
∥22 +

∑
i∈J2

∥Xi − µ∗
J2
∥22 + C2

(
σ2
ϵ s log(n ∨ p) + B−1

n ∆minκ
2
k

)
+ γ,

which leads to ∑
i∈J1

∥µ̂I − µ∗
J1
∥22 +

∑
i∈J2

∥µ̂I − µ∗
J2
∥22

≤2
∑
i∈J1

ϵ⊤i (µ̂I − µ∗
J1
) + 2

∑
i∈J2

ϵ⊤i (µ̂I − µ∗
J2
) + C2

(
σ2
ϵ s log(n ∨ p) + κ2kB−1

n ∆min

)
+ γ

≤2σϵ
∑
j=1,2

∥µ̂I − µ∗
Jj∥2

√
|Jj | log(n ∨ p) + C2

(
σ2
ϵ s log(n ∨ p) + κ2kB−1

n ∆min

)
+ γ

≤1

2

∑
j=1,2

|Jj |∥µ̂I − µ∗
Jj∥

2
2 + C3

(
σ2
ϵ s log(n ∨ p) + κ2kB−1

n ∆min

)
+ γ,

where the second inequality holds because the Orlicz norm ∥·∥ψ2
of
∑
i∈J1

ϵ⊤i (µI−µ∗
J1
) is upper bounded by |J1|σ2

ϵ ∥µI−
µ∗
J1
∥22.

It follows that

|J1|∥µ̂I−µ∗
J1
∥22+ |J2|∥µ̂I−µ∗

J2
∥22 =

∑
i∈J1

∥µ̂I−µ∗
J1
∥22+

∑
i∈J2

∥µ̂I−µ∗
J2
∥22 ≤ C4

(
σ2
ϵ s log(n∨p)+B−1

n ∆minκ
2
k

)
+2γ.
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Note that

inf
a∈R
|J1|∥a− µ∗

J1
∥22 + |J2|∥a− µ∗

J2
∥2 = κ2k

|J1||J2|
|I|

≥ κ2k
2

min{|J1|, |J2|}.

This leads to
κ2k
2

min{|J1|, |J2|} ≤ C4

(
σ2
ϵ s log(n ∨ p) + B−1

n ∆minκ
2
k + γ

)
,

which is

min{|J1|, |J2|} ≤ C5

(
σ2
ϵ s log(n ∨ p) + γ

κ2k
+ B−1

n ∆min

)
.

Lemma C.8 (Two change points). Suppose the good events L(B−1
n ∆min) and R(B−1

n ∆min) defined in Equation (B.2)
hold. Let I = (s, e] ∈ P̂ be an interval that contains exactly two change points ηk, ηk+1. Suppose in addition that

∆minκ
2 ≥ CBn1/2

(
σ2
ϵ s log(n ∨ p) + γ) (C.15)

for sufficiently large constant C. Then with probability at least 1− (n ∨ p)−3, it holds that

ηk − s ≲ B−1/2
n ∆min and e− ηk+1 ≲ B−1/2

n ∆min.

Proof. Since the events L(B−1
n ∆min) andR(B−1

n ∆min) hold, let su, sv be such that ηk ≤ su ≤ sv ≤ ηk+1 and that

0 ≤ su − ηk ≤ B−1
n ∆min, 0 ≤ ηk+1 − sv ≤ B−1

n ∆min.

s ηk su ηk+1sv e

Denote
I1 = (s, su], I2 = (su, sv] and I3 = (sv, e].

In addition, denote

J1 = (s, ηk], J2 = (ηk, ηk +
ηk+1 − ηk

2
], J3 = (ηk +

ηk+1 − ηk
2

, ηk+1] and J4 = (ηk+1, e].

Since s, e, su, sv ∈ {sq}Qq=1, then it follows from the definition of P̂ that∑
i∈I
∥Xi − µ̂I∥22

≤
∑
i∈I1

∥Xi − µ̂I1
∥22 +

∑
i∈I2

∥Xi − µ̂I2
∥22 +

∑
i∈I3

∥Xi − µ̂I3
∥22 + 2γ

≤
∑
i∈I1

∥Xi − µ∗
i ∥22 + C1

(
σ2
ϵ s log(n ∨ p) +

|J1|(su − ηk)
|J1|+ (su − ηk)

κ2k

)
+
∑
i∈I2

∥Xi − µ∗
i ∥22 + C1σ

2
ϵ s log(n ∨ p)

+
∑
i∈I3

∥Xi − µ∗
i ∥22 + C1

(
σ2
ϵ s log(n ∨ p) +

|J4|(ηk+1 − sv)
|J4|+ (ηk+1 − sv)

κ2k+1

)
+ 2γ

≤
∑
i∈I
∥Xi − µ∗

i ∥22 + C ′
1

(
σ2
ϵ s log(n ∨ p) +

|J1|(su − ηk)
|J1|+ (su − ηk)

κ2k +
|J4|(ηk+1 − sv)
|J4|+ (ηk+1 − sv)

κ2k+1

)
+ 2γ (C.16)

where the first inequality follows from the fact that I = (s, e] ∈ P̂ , the second inequality follows from Lemma C.4 a and b.
Equation (C.16) gives∑

i∈J1

∥Xi − µ̂I∥22 +
∑
i∈J2

∥Xi − µ̂I∥22 +
∑
i∈J3

∥Xi − µ̂I∥22 +
∑
i∈J4

∥Xi − µ̂I∥22
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≤
∑
i∈J1

∥Xi − µ∗
J1
∥22 +

∑
i∈J2

∥Xi − µ∗
J2
∥22 +

∑
i∈J3

∥Xi − µ∗
J3
∥22 +

∑
i∈J4

∥Xi − µ∗
J4
∥22

+C ′
1

(
σ2
ϵ s log(n ∨ p) +

|J1|(su − ηk)
|J1|+ (su − ηk)

κ2k +
|J4|(ηk+1 − sv)
|J4|+ (ηk+1 − sv)

κ2k+1

)
+ 2γ. (C.17)

Note that for ℓ ∈ {1, 2, 3, 4}, ∑
i∈Jℓ

∥Xi − µ̂I∥22 −
∑
i∈Jℓ

∥Xi − µ∗
Jℓ∥

2
2 −

∑
i∈Jℓ

∥µ̂I − µ∗
Jℓ∥

2
2

=2
∑
i∈Jℓ

ϵ⊤i (µ
∗
Jℓ − µ̂I)

≥− Cσϵ∥µ̂I − µ∗
Jℓ∥2

√
|Jℓ| log(n ∨ p)

≥− 1

2
|Jℓ|∥µ̂I − µ∗

Jℓ∥
2
2 − C ′σ2

ϵ s log(n ∨ p).

which gives ∑
i∈Jℓ

∥Xi − µ̂I∥22 −
∑
i∈Jℓ

∥Xi − µ∗
Jℓ∥

2
2 ≥

1

2

∑
i∈Jℓ

∥µ̂I − µ∗
Jℓ∥

2
2 − C2σ

2
ϵ s log(n ∨ p). (C.18)

Equation (C.17) and Equation (C.18) together implies that

4∑
l=1

|Jl|(µ̂I − µ∗
Jℓ)

2 ≤ C3

(
σ2
ϵ s log(n ∨ p) +

|J1|(su − ηk)
|J1|+ (su − ηk)

κ2k +
|J4|(ηk+1 − sv)
|J4|+ (ηk+1 − sv)

κ2k+1

)
+ 4γ. (C.19)

Note that

inf
a∈R
|J1|(a− µ∗

J1
)2 + |J2|(a− µ∗

J2
)2 =

|J1||J2|
|J1|+ |J2|

κ2k. (C.20)

Similarly

inf
a∈R
|J3|(a− µ∗

J3
)2 + |J4|(a− µ∗

J4
)2 =

|J3||J4|
|J3|+ |J4|

κ2k+1, (C.21)

Equation (C.19) together with Equation (C.20) and Equation (C.21) leads to

|J1||J2|
|J1|+ |J2|

κ2k +
|J3||J4|
|J3|+ |J4|

κ2k+1 ≤ C3

(
σ2
ϵ s log(n ∨ p) +

|J1|(su − ηk)
|J1|+ (su − ηk)

κ2k +
|J4|(ηk+1 − sv)
|J4|+ (ηk+1 − sv)

κ2k+1

)
+ 4γ.

(C.22)

Note that
0 ≤ su − ηk ≤ B−1

n ∆min and 0 ≤ ηk+1 − sv ≤ B−1
n ∆min,

and so there are four possible cases.

case a. If
|J1| ≤ B−1/2

n ∆min and |J4| ≤ B−1/2
n ∆min,

then the desired result follows immediately.

case b. |J1| > B−1/2
n ∆min and |J4| ≤ B−1/2

n ∆min. Then since |J2| ≥ ∆min/2, it holds that

|J1||J2|
|J1|+ |J2|

≥ 1

2
min{|J1|, |J2|} ≥

1

2
B−1/2
n ∆min.
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In addition,

|J1|(su − ηk)
|J1|+ (su − ηk)

≤ su − ηk ≤ B−1
n ∆min and

|J4|(ηk+1 − sv)
|J4|+ (ηk+1 − sv)

≤ ηk+1 − sv ≤ B−1
n ∆min.

So Equation (C.22) leads to

1

2
B−1/2
n ∆minκ

2
k +

|J3||J4|
|J3|+ |J4|

κ2k+1 ≤ C3

(
σ2
ϵ s log(n ∨ p) + B−1

n ∆minκ
2
k + B−1

n ∆minκ
2
k+1

)
+ 4γ. (C.23)

Since κk ≍ κ and κk+1 ≍ κ, Equation (C.23) gives

1

2
B−1/2
n ∆minκ

2 ≤ C4

(
σ2
ϵ s log(n ∨ p) + B−1

n ∆minκ
2 + B−1

n ∆minκ
2

)
+ 4γ.

Since Bn is a diverging sequence, the above display gives

∆minκ
2 ≤ C5Bn1/2(log(n ∨ p) + γ).

This contradicts Equation (C.15).

case c. |J1| ≤ B−1/2
n ∆min and |J4| > B−1/2

n ∆min. Then the same argument as that in case b leads to the same
contradiction.

case d. |J1| > B−1/2
n ∆min and |J4| > B−1/2

n ∆min. Then since |J2| ≥ ∆min/2, |J4| ≥ ∆min/2, it holds that

|J1||J2|
|J1|+ |J2|

≥ 1

2
min{|J1|, |J2|} ≥

1

2
B−1/2
n ∆min and

|J3||J4|
|J3|+ |J4|

≥ 1

2
min{|J3|, |J4|} ≥

1

2
B−1/2
n ∆min

In addition,

|J4|(ηk+1 − sv)
|J4|+ (ηk+1 − sv)

≤ ηk+1 − sv ≤ B−1
n ∆min

|J1|(su − ηk)
|J1|+ (su − ηk)

≤ su − ηk ≤ B−1
n ∆min.

So Equation (C.22) leads to

1

2
B−1/2
n ∆minκ

2
k +

1

2
B−1/2
n ∆minκ

2
k+1 ≤ C6

(
σ2
ϵ s log(n ∨ p) + B−1

n ∆minκ
2
k + B−1

n ∆minκ
2
k+1

)
+ 4γ. (C.24)

Note that Bn is a diverging sequence. So the above display gives

∆min

(
κ2k + κ2k+1

)
≤ C7Bn1/2(σ2

ϵ s log(n ∨ p) + γ)

Since κk ≍ κ and κk+1 ≍ κ. This contradicts Equation (C.15).

Lemma C.9 (Three or more change points). Suppose the good events L(B−1
n ∆min) and R(B−1

n ∆min) defined in Equa-
tion (B.2) hold. Suppose in addition that

∆κ2 ≥ C
(
σ2
ϵ s log(n ∨ p) + γ) (C.25)

for sufficiently large constant C. Then with probability at least 1− (n ∨ p)−3, there is no interval P̂ containing three or
more true change points.

Proof. For contradiction, suppose I = (s, e] ∈ P̂ be such that {η1, . . . , ηM} ⊂ I with M ≥ 3. Throughout the proof, M
is assumed to be a parameter that can potentially change with n. Since the events L(B−1

n ∆min) andR(B−1
n ∆min) hold, by

relabeling {sq}Qq=1 if necessary, let {sm}Mm=1 be such that

0 ≤ sm − ηm ≤ B−1
n ∆min for 1 ≤ m ≤M − 1

and that
0 ≤ ηM − sM ≤ B−1

n ∆min.

Note that these choices ensure that {sm}Mm=1 ⊂ I.
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s η1 s1 η2 s2 η3s3 e

Step 1. Denote
I1 = (s, s1], Im = (sm−1, sm] for 2 ≤ m ≤M and IM+1 = (sM , e].

Then since s, e, {sm}Mm=1 ⊂ {sq}Qq=1, it follows that∑
i∈I
∥Xi − µ̂I∥22

≤
M+1∑
m=1

∑
i∈Im

∥Xi − ŷIm∥22 +Mγ

≤
∑
i∈I1

∥Xi − µ∗
i ∥22 + C1

(
σ2
ϵ s log(n ∨ p) +

(η1 − s)(s1 − η1)
s1 − s

κ21

)
(C.26)

+

M−1∑
m=2

∑
i∈Im

∥Xi − µ∗
i ∥22 + C1

(
σ2
ϵ s log(n ∨ p) +

(ηm − sm−1)(sm − ηm)

sm − sm−1
κ2m

)
(C.27)

+C1σ
2
ϵ s log(n ∨ p) (C.28)

+
∑

i∈IM+1

∥Xi − µ∗
i ∥22 + C1

(
σ2
ϵ s log(n ∨ p) +

(ηM − sM )(e− ηM )

e− sM
κ2M

)
+Mγ, (C.29)

where Equations (C.26), (C.27) (C.28) and (C.29) follow from Lemma C.4 and in particular, Equation (C.28) corresponds
to the interval IM = (sM−1, sM ] which by assumption containing no change points. Note that

(η1 − s)(s1 − η1)
s1 − s

≤ s1 − η1 ≤ B−1
n ∆min,

(ηm − sm−1)(sm − ηm)

sm − sm−1
≤ sm − ηm ≤ B−1

n ∆min, and

(ηM − sM )(e− ηM )

e− sM
≤ ηM − sm ≤ B−1

n ∆min

and that κk ≍ κ for all 1 ≤ k ≤ K. Therefore∑
i∈I
∥Xi − µ̂I∥22 ≤

∑
i∈I
∥Xi − µ∗

i ∥22 + C2

(
Mσ2

ϵ s log(n ∨ p) +MB−1
n ∆minκ

2 +Mγ

)
, (C.30)

where C2 is some large constant independent of M .

Step 2. Let
J1 = (s, η1], Jm = (ηm−1, ηm] for 2 ≤ m ≤M, JM+1 = (ηM , e].

Note that µ∗
i is unchanged in any of {Jm}M+1

m=0 . So for 1 ≤ m ≤M + 1,∑
i∈Jm

∥Xi − µ̂I∥22 −
∑
i∈Jm

∥Xi − µ∗
Jm∥

2
2 −

∑
i∈Jm

∥µ̂I − µ∗
Jm∥

2
2

=2
∑
i∈Jm

ϵ⊤i (µ
∗
Jm − µ̂I)

≥− Cσϵ∥µ̂I − µ∗
Jm∥2

√
|Jm| log(n ∨ p)

≥− C3σ
2
ϵ s log(n ∨ p)−

1

2
|Jm|∥µ̂I − µ∗

Jm∥
2
2

which gives ∑
i∈Jm

∥Xi − µ̂I∥22 −
∑
i∈Jm

∥Xi − µ∗
Jm∥

2
2 ≥

1

2

∑
i∈Jm

∥µ̂I − µ∗
Jm∥

2
2 − C3σ

2
ϵ s log(n ∨ p). (C.31)
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Therefore

M+1∑
m=1

|Jm|∥µ̂I − µ∗
Jm∥

2
2 =

M+1∑
m=1

∑
i∈Jm

∥µ̂I − µ∗
Jm∥

2
2 ≤ C4M

(
σ2
ϵ s log(n ∨ p) + B−1

n ∆minκ
2 + γ

)
, (C.32)

where the equality follows from the fact that µ∗
i is unchanged in any of {Jm}M+1

m=0 , and the inequality follows from
Equation (C.30) and Equation (C.31).

Step 3. For any m ∈ {2, . . . ,M}, it holds that

inf
a∈R
|Jm−1|∥a− µ∗

Jm−1
∥22 + |Jm|∥a− µ∗

Jm∥
2
2 =

|Jm−1||Jm|
|Jm−1|+ |Jm|

κ2m ≥
1

2
∆minκ

2, (C.33)

where the last inequality follows from the assumptions that ηk − ηk−1 ≥ ∆min and κk ≍ κ for all 1 ≤ k ≤ K. So

2

M∑
m=1

|Jm|∥µ̂I − µ∗
Jm∥

2
2

≥
M∑
m=2

(
|Jm−1|∥µ̂I − µ∗

Jm−1
∥22 + |Jm|∥µ̂I − µ∗

Jm∥
2
2

)
≥(M − 1)

1

2
∆minκ

2 ≥ M

4
∆minκ

2, (C.34)

where the second inequality follows from Equation (C.33) and the last inequality follows from M ≥ 3. Equation (C.32) and
Equation (C.34) together imply that

M

4
∆minκ

2 ≤ 2C4M

(
σ2
ϵ s log(n ∨ p) + B−1

n ∆minκ
2 + γ

)
. (C.35)

Since Bn →∞, it follows that for sufficiently large n, Equation (C.35) gives

∆minκ
2 ≤ C5

(
σ2
ϵ s log(n ∨ p) + γ),

which contradicts Equation (C.25).

Lemma C.10 (Two consecutive intervals). Suppose γ ≥ CγKB−1
n ∆minκ

2 for sufficiently large constant Cγ . With
probability at least 1− (n∨ p)−3, there are no two consecutive intervals I1 = (s, t] ∈ P̂ , I2 = (t, e] ∈ P̂ such that I1 ∪I2
contains no change points.

Proof. For contradiction, suppose that
I := I1 ∪ I2

contains no change points. Since s, t, e ∈ {sq}Qq=1, it follows that∑
i∈I1

∥Xi − µ̂I1∥2 +
∑
i∈I2

∥Xi − µ̂I2∥22 + γ ≤
∑
i∈I
∥Xi − µ̂I∥22.

By Lemma C.4, it follows that ∑
i∈I1

∥Xi − µ∗
i ∥22 ≤ C1σ

2
ϵ s log(n ∨ p) +

∑
i∈I1

∥Xi − µ̂I1∥22,∑
i∈I2

∥Xi − µ∗
i ∥22 ≤ C1σ

2
ϵ s log(n ∨ p) +

∑
i∈I2

∥Xi − µ̂I2∥22∑
i∈I
∥Xi − µ̂I∥22 ≤ C1σ

2
ϵ s log(n ∨ p) +

∑
i∈I
∥Xi − µ∗

i ∥22.
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So ∑
i∈I1

∥Xi − µ∗
i ∥22 +

∑
i∈I2

∥Xi − µ∗
i ∥22 − 2C1σ

2
ϵ s log(n ∨ p) + γ ≤

∑
i∈I
∥Xi − µ∗

i ∥22 + C1σ
2
ϵ s log(n ∨ p).

Since µ∗
i is unchanged when i ∈ I, it follows that

γ ≤ 3C1σ
2
ϵ s log(n ∨ p).

This is a contradiction when Cγ > 3C1.
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D. Linear model
In this section we show the proof of Theorem 3.6. Throughout this section, for any generic interval I ⊂ [1, n], denote
β∗
I = 1

|I|
∑
i∈I β

∗
i and

β̂I = argmin
β∈Rp

1

|I|
∑
i∈I

(yi −X⊤
i β)

2 +
λ√
|I|
∥β∥1.

Also, unless specified otherwise, for the output of Algorithm 1, we always set the goodness-of-fit function F(·, ·) to be

F(β, I) :=

{∑
i∈I(yi −X⊤

i β)
2 if |I| ≥ CFs log(n ∨ p),

0 otherwise,
(D.1)

where CF is a universal constant which is larger than Cs, the constant in sample size in Lemma D.5 and Lemma D.16.

Assumptions. For the ease of presentation, we combine the SNR condition we will use throughout this section and
Assumption 3.5 into a single assumption.

Assumption D.1 (Linear model). Suppose that Assumption 3.5 holds. In addition, suppose that ∆minκ
2 ≥ Bns log(n ∨ p)

as is assumed in Theorem 3.6.

Proof of Theorem 3.6. By Proposition D.2, K ≤ |P̂| ≤ 3K. This combined with Proposition D.3 completes the proof.

Proposition D.2. Suppose Assumption D.1 holds. Let P̂ denote the output of Algorithm 1 with γ = CγKB−1
n ∆minκ

2. Then
with probability at least 1− n−3, the following properties hold.

(i) For each interval I = (s, e] ∈ P̂ containing one and only one true change point ηk, it must be the case that

min{ηk − s, e− ηk} ≲
σ2
ϵ ∨ 1

κ2

(
s log(n ∨ p) + γ

)
+ B−1

n ∆min.

(ii) For each interval I = (s, e] ∈ P̂ containing exactly two true change points, say ηk < ηk+1, it must be the case that

ηk − s ≲
σ2
ϵ ∨ 1

κ2

(
s log(n ∨ p) + γ

)
+ B−1

n ∆min and e− ηk+1 ≤ C
σ2
ϵ ∨ 1

κ2

(
s log(n ∨ p) + γ

)
+ B−1

n ∆min.

(iii) No interval I ∈ P̂ contains strictly more than two true change points; and

(iv) For all consecutive intervals I1 and I2 in P̂ , the interval I1 ∪ I2 contains at least one true change point.

Proof. The four cases are proved in Lemma D.7, Lemma D.8, Lemma D.9, and Lemma D.10 respectively.

Proposition D.3. Suppose Assumption D.1 holds. Let P̂ denote the output of Algorithm 1. Suppose γ ≥ CγKB−1
n ∆minκ

2

for sufficiently large constant Cγ . Then with probability at least 1− Cn−3, |P̂| = K.

Proof of Proposition D.3. Denote G∗
n =

∑n
i=1(yi −X⊤

i β
∗
i )

2. Given any collection {t1, . . . , tm}, where t1 < · · · < tm,
and t0 = 0, tm+1 = n, let

Gn(t1, . . . , tm) =

m∑
k=1

tk+1∑
i=tk+1

F(β̂(tk,tk+1], (tk, tk+1]). (D.2)

For any collection of time points, when defining (D.2), the time points are sorted in an increasing order.

Let {η̂k}K̂k=1 denote the change points induced by P̂ . Suppose we can justify that

G∗
n +Kγ ≥Gn(s1, . . . , sK) +Kγ − C1(K + 1)s log(n ∨ p)− C1

∑
k∈[K]

κ2kB−1
n ∆min (D.3)
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≥Gn(η̂1, . . . , η̂K̂) + K̂γ − C1(K + 1)s log(n ∨ p)− C1

∑
k∈[K]

κ2kB−1
n ∆min (D.4)

≥Gn(η̂1, . . . , η̂K̂ , η1, . . . , ηK) + K̂γ − C1(K + 1)s log(n ∨ p)− C1

∑
k∈[K]

κ2kB−1
n ∆min (D.5)

and that

G∗
n −Gn(η̂1, . . . , η̂K̂ , η1, . . . , ηK) ≤ C2(K + K̂ + 2)s log(n ∨ p). (D.6)

Then it must hold that |p̂| = K, as otherwise if K̂ ≥ K + 1, then

C2(K + K̂ + 2)s log(n ∨ p) ≥ G∗
n −Gn(η̂1, . . . , η̂K̂ , η1, . . . , ηK)

≥ (K̂ −K)γ − C1(K + 1)s log(n ∨ p)− C1

∑
k∈[K]

κ2kB−1
n ∆min.

Therefore due to the assumption that |p̂| = K̂ ≤ 3K, it holds that

C2(4K + 2)s log(n ∨ p) + C1(K + 1)s log(n ∨ p) + C1

∑
k∈[K]

κ2kB−1
n ∆min ≥ (K̂ −K)γ ≥ γ, (D.7)

Note that (D.7) contradicts the choice of γ.

Step 1. Note that (D.3) is implied by

|G∗
n −Gn(s1, . . . , sK)| ≤ C3(K + 1)λ2 + C3

∑
k∈[K]

κ2kB−1
n ∆min, (D.8)

which is an immediate consequence of Lemma D.4.

Step 2. Since {η̂k}K̂k=1 are the change points induced by P̂ , (D.4) holds because p̂ is a minimizer.

Step 3. For every I = (s, e] ∈ p̂, by Proposition D.2, we know that with probability at least 1 − (n ∨ p)−5, I
contains at most two change points. We only show the proof for the two-change-point case as the other case is easier. Denote

I = (s, ηq] ∪ (ηq, ηq+1] ∪ (ηq+1, e] = J1 ∪ J2 ∪ J3, (D.9)

where {ηq, ηq+1} = I ∩ {ηk}Kk=1.

For each m ∈ {1, 2, 3}, by Lemma D.4, it holds that∑
i∈Jm

(yi −X⊤
i β̂Jm)

2 ≤
∑
i∈Jm

(yi −X⊤
i β

∗
i )

2 + Cσ2
ϵ s log(n ∨ p). (D.10)

By Lemma D.6, we have ∑
i∈Jm

(yi −X⊤
i β̂I)

2 ≥
∑
i∈Jm

(yi −X⊤
i β

∗
i )

2 − Cσ2
ϵ s log(n ∨ p). (D.11)

Therefore the above inequality implies that

∑
i∈I

(yi −X∗
i β̂I)

2 ≥
3∑

m=1

∑
i∈Jm

(yi −X⊤
i β̂Jm)

2 − Cσ2
ϵ s log(n ∨ p). (D.12)

Note that (D.5) is an immediate consequence of (D.12).

Step 4. Finally, to show (D.6), let P̃ denote the partition induced by {η̂1, . . . , η̂K̂ , η1, . . . , ηK}. Then |P̃| ≤ K + K̂ + 2

and that β∗
i is unchanged in every interval I ∈ P̃ . So Equation (D.6) is an immediate consequence of Lemma D.4.
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D.1. Fundamental lemmas

Lemma D.4. Let I = (s, e] be any generic interval.
a. If I contains no change points and that |I| ≥ Css log(n ∨ p) where Cs is the universal constant in Lemma D.5. Then it
holds that

P
(∣∣∣∣∑

i∈I
(yi −X⊤

i β̂I)
2 −

∑
i∈I

(yi −X⊤
i β

∗
I)

2

∣∣∣∣ ≥ Cs log(n ∨ p)) ≤ n−4.

b. Suppose that the interval I = (s, e] contains one and only change point ηk and that |I| ≥ Css log(n ∨ p). Denote
µ̂I = 1

|I|
∑
i∈I yi and

J = (s, ηk] and J ′ = (ηk, e].

Then it holds that

P
(∣∣∣∣∑

i∈I
(yi −X⊤

i β̂I)
2 −

∑
i∈I

(yi −X⊤
i β

∗
i )

2

∣∣∣∣ ≥ C{ |J ||J ′|
|I|

κ2k + s log(n ∨ p)
})
≤ n−4.

Proof. We show b as a immediatelly follows from b with |J ′| = 0. Denote

J = (s, ηk] and J ′ = (ηk, e].

Denote β∗
I = 1

|I|
∑
i∈I β

∗
i . Note that∣∣∣∣∑

i∈I
(yi −X⊤

i β̂I)
2 −

∑
i∈I

(yi −X⊤
i β

∗
i )

2

∣∣∣∣ =∣∣∣∣∑
i∈I

{
X⊤
i (β̂I − β∗

i )
}2 − 2

∑
i∈I

ϵiX
⊤
i (β̂I − β∗

i )

∣∣∣∣
≤2
∑
i∈I

{
X⊤
i (β̂I − β∗

I)
}2

(D.13)

+2
∑
i∈I

{
X⊤
i (β

∗
I − β∗

i )
}2

(D.14)

+2

∣∣∣∣∑
i∈I

ϵiX
⊤
i (β̂I − β∗

I)

∣∣∣∣ (D.15)

+2

∣∣∣∣∑
i∈I

ϵiX
⊤
i (β

∗
I − β∗

i )

∣∣∣∣. (D.16)

Suppose all the good events in Lemma D.5 holds.

Step 1. By Lemma D.5, β̂I − β∗
I satisfies the cone condition that

∥(β̂I − β∗
I)Sc∥1 ≤ 3∥(β̂I − β∗

I)S∥1.

It follows from Lemma D.14 that with probability at least 1− n−5,∣∣∣∣ 1|I|∑
i∈I

{
X⊤
i (β̂I − β∗

I)
}2 − (β̂I − β∗

I)
⊤Σ(β̂I − β∗

I)

∣∣∣∣ ≤ C1

√
s log(n ∨ p)
|I|

∥β̂I − β∗
I∥22.

The above display gives∣∣∣∣ 1|I|∑
i∈I

{
X⊤
i (β̂I − β∗

I)
}2∣∣∣∣ ≤∥Σ∥op∥β̂I − β∗

I∥22 + C1

√
s log(n ∨ p)
|I|

∥β̂I − β∗
I∥22

≤Cx∥β̂I − β∗
I∥22 + C1

√
s log(n ∨ p)
Cζs log(n ∨ p)

∥β̂I − β∗
I∥22
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≤C2s log(n ∨ p)
|I|

where the second inequality follows from the assumption that |I| ≥ Cζs log(n ∨ p) and the last inequality follows from
Equation (D.17) in Lemma D.5. This gives∣∣∣∣∑

i∈I

{
X⊤
i (β̂I − β∗

I)
}2∣∣∣∣ ≤ 2C2s log(n ∨ p).

Step 2. Observe that X⊤
i (β

∗
I − β∗

i ) is Gaussian with mean 0 and variance

ω2
i = (β∗

I − β∗
i )

⊤Σ(β∗
I − β∗

i ).

Since

β∗
I =

|J |β∗
J + |J ′|β∗

J ′

|I|
,

it follows that

ω2
i =


(

|J ′|(β∗
J−β∗

J′ )

|I|

)⊤

Σ

(
|J ′|(β∗

J−β∗
J′ )

|I|

)
≤ |J ′|2κ2

k

|I|2 when i ∈ J ,(
|J |(β∗

J′−β∗
J )

|I|

)⊤

Σ

(
|J ′|(β∗

J′−β∗
J )

|I|

)
≤ |J |2κ2

k

|I|2 when i ∈ J ′.

Consequently, {X⊤
i (β

∗
I − β∗

i )}2 is sub-Exponential with parameter ω2
i . By standard sub-Exponential tail bounds, it follows

that

P
(∣∣∣∣∑

i∈I
{X⊤

i (β
∗
I − β∗

i )}2 − E
∑
i∈I
{X⊤

i (β
∗
I − β∗

i )}2
∣∣∣∣ ≥ C3τ

)
≤ exp

(
− cmin

{
τ2∑
i∈I ω

4
i

,
τ

maxi∈I ω2
i

})
≤ exp

(
− c′ min

{
τ2∑
i∈I ω

2
i

,
τ

maxi∈I |ωi|

})
≤ exp

(
− c′′ min

{
τ2
(
|I|
|J ′||J |

κ−2
k

)
, τ

|I|
max{|J |, |J ′|}

κ−1
k

})
,

where the second inequality follows from the observation that

ω2
i ≤ κk|ωi| ≤ Cκ|ωi| for all i ∈ I,

and the last inequality follows from the observation that∑
i∈I

ω2
i ≤ Cx|J |

|J ′|2κ2k
|I|2

+ Cx|J ′| |J |
2κ2k
|I|2

= Cx
|J ′||J |
|I|

κ2k.

So there exists a sufficiently large constant C4 such that with probability at least 1− n−5,∣∣∣∣∑
i∈I
{X⊤

i (β
∗
I − β∗

i )}2 − E
∑
i∈I
{X⊤

i (β
∗
I − β∗

i )}2
∣∣∣∣

≤C4

{√
|J ′||J |
|I|

log(n)κ2k + log(n)
max{|J |, |J ′|}

|I|
κk

}
≤C ′

4

{
|J ′||J |
|I|

κ2k + log(n) + log(n)
max{|J |, |J ′|}

|I|
κk

}
≤C5

{
|J ′||J |
|I|

κ2k + log(n)

}
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where κk ≍ κ ≤ Cκ is used in the last inequality. Since E
∑
i∈I{X⊤

i (β
∗
I − β∗

i )}2 =
∑
i∈I ω

2
i ≤ Cx

|J ′||J |
|I| κ2k, it follows

that

P
(∣∣∣∣∑

i∈I
{X⊤

i (β
∗
I − β∗

i )}2
∣∣∣∣ ≤ (C5 + Cx)

|J ′||J |
|I|

κ2k + C5 log(n)

)
≥ 1− n−5.

Step 3. For Equation (D.15), it follows that with probability at least 1− 2n−4

1

|I|
∑
i∈I

ϵiX
⊤
i (β̂I − β∗

I) ≤ C6

√
log(n ∨ p)
|I|

∥β̂I − β∗
I∥1 ≤ C7

s log(n ∨ p)
|I|

where the first inequality is a consequence of Equation (D.61), the second inequality follows from Equation (D.19) in
Lemma D.5.

Step 4. From Step 2, we have that X⊤
i (β

∗
I − β∗

i ) is Gaussian with mean 0 and variance

ω2
i =


(

|J ′|(β∗
J−β∗

J′ )

|I|

)⊤

Σ

(
|J ′|(β∗

J−β∗
J′ )

|I|

)
≤ |J ′|2κ2

k

|I|2 when i ∈ J ,(
|J |(β∗

J′−β∗
J )

|I|

)⊤

Σ

(
|J ′|(β∗

J′−β∗
J )

|I|

)
≤ |J |2κ2

k

|I|2 when i ∈ J ′.

Consequently, ϵiX⊤
i (β

∗
I − β∗

i ) is centered sub-Exponential with parameter ωiσϵ. By standard sub-Exponential tail bounds,
it follows that

P
(∣∣∣∣∑

i∈I
ϵiX

⊤
i (β

∗
I − β∗

i )

∣∣∣∣ ≥ C8τ

)
≤ exp

(
− cmin

{
τ2∑
i∈I ω

2
i

,
τ

maxi∈I |ωi|

})
≤ exp

(
− c′ min

{
τ2
(
|I|
|J ′||J |

κ−2
k

)
, τ

|I|
max{|J |, |J ′|}

κ−1
k

})
,

where the last inequality follows from the observation that

∑
i∈I

ω2
i ≤ Cx|J |

|J ′|2κ2k
|I|2

+ Cx|J ′| |J |
2κ2k
|I|2

= Cx
|J ′||J |
|I|

κ2k.

So there exists a sufficiently large constant C9 such that with probability at least 1− n−5,∣∣∣∣∑
i∈I

ϵiX
⊤
i (β

∗
I − β∗

i )

∣∣∣∣
≤C9

{√
|J ′||J |
|I|

log(n)κ2k + log(n)
max{|J |, |J ′|}

|I|
κk

}
≤C ′

9

{
|J ′||J |
|I|

κ2k + log(n) + log(n)
max{|J |, |J ′|}

|I|
κk

}
≤C9

{
|J ′||J |
|I|

κ2k + log(n)

}
where κk ≍ κ ≤ Cκ is used in the last inequality.

Lemma D.5. Suppose Assumption D.1 holds. Let

β̂I = arg min
β∈Rp

1

|I|
∑
i∈I

(yi −X⊤
i β)

2 + λ∥β∥1
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with λ = Cλ(σϵ ∨ 1)
√
log(n ∨ p) for some sufficiently large constant Cλ. There exists a sufficiently large constant Cs

such that for all I ⊂ (0, n] such that |I| ≥ Css log(n ∨ p), it holds with probability at least 1− (n ∨ p)−3 that

∥β̂I − β∗
I∥22 ≤

C(σ2
ϵ ∨ 1)s log(n ∨ p)

|I|
; (D.17)

∥β̂I − β∗
I∥1 ≤ C(σϵ ∨ 1)s

√
log(n ∨ p)
|I|

; (D.18)

∥(β̂I − β∗
I)Sc∥1 ≤ 3∥(β̂I − β∗

I)S∥1. (D.19)

where β∗
I = 1

|I|
∑
i∈I β

∗
i .

Proof. Denote S =
⋃K
k=1 Sηk+1. Since K <∞, |S| ≍ s. It follows from the definition of β̂I that

1

|I|
∑
i∈I

(yi −X⊤
i β̂I)

2 +
λ√
|I|
∥β̂I∥1 ≤

1

|I|
∑
t∈I

(yi −X⊤
i β

∗
I)

2 +
λ√
|I|
∥β∗

I∥1. (D.20)

This gives

1

|I|
∑
i∈I

{
X⊤
i (β̂I − β∗

I)
}2

+
2

|I|
∑
i∈I

(yi −X⊤
i β

∗
I)X

⊤
i (β

∗
I − β̂I) +

λ√
|I|
∥∥β̂I∥∥1 ≤ λ√

|I|
∥∥β∗

I
∥∥
1
,

and therefore

1

|I|
∑
i∈I

{
X⊤
i (β̂I − β∗

I)
}2

+
λ√
|I|
∥∥β̂I∥∥1

≤ 2

|I|
∑
i∈I

ϵiX
⊤
i (β̂I − β∗

I) + 2(β̂I − β∗
I)

⊤ 1

|I|
∑
i∈I

XiX
⊤
i (β

∗
i − β∗

I) +
λ√
|I|
∥∥β∗

I
∥∥
1
. (D.21)

To bound
∥∥∑

i∈I XiX
⊤
i (β

∗
I − β∗

i )
∥∥
∞ , note that for any j ∈ {1, . . . , p}, the j-th entry of∑

i∈I XiX
⊤
i (β

∗
I − βi) satisfies

E

{∑
i∈I

Xi(j)X
⊤
i (β

∗
I − β∗

i )

}
=
∑
i∈I

E{Xi(j)X
⊤
i }{β∗

I − β∗
i } = E{X1(j)X

⊤
1 }
∑
i∈I
{β∗

I − β∗
i } = 0.

So E{
∑
i∈I XiX

⊤
i (β

∗
I − β∗

i )} = 0 ∈ Rp. By Lemma D.16b,∣∣∣∣(β∗
i − β∗

I)
⊤ 1

|I|
∑
i∈I

XtX
⊤
t (β̂I − β∗

I)

∣∣∣∣ ≤C1

(
max
1≤i≤n

∥β∗
i − β∗

I∥2
)√ log(n ∨ p)

|I|
∥β̂I − β∗

I∥1

≤C2

√
log(n ∨ p)
|I|

∥β̂I − β∗
I∥1

≤ λ

8
√
|I|
∥β̂I − β∗

I∥1

where the second inequality follows from Lemma D.18 and the last inequality follows from λ = Cλσϵ
√

log(n ∨ p) with
sufficiently large constant Cλ. In addition by Lemma D.16a,

2

|I|
∑
i∈I

ϵiX
⊤
i (β̂I − β∗

I) ≤ Cσϵ

√
log(n ∨ p)
|I|

∥β̂I − β∗
I∥1 ≤

λ

8
√
|I|
∥β̂I − β∗

I∥1.

So (D.21) gives

1

|I|
∑
i∈I

{
X⊤
i (β̂I − β∗

I)
}2

+
λ√
|I|
∥∥β̂I∥∥1 ≤ λ

4
√
|I|
∥β̂I − β∗

I∥1 +
λ√
|I|
∥∥β∗

I
∥∥
1
.
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Let Θ = β̂I − β∗
I . The above inequality implies

1

|I|
∑
i∈I

(
X⊤
i Θ
)2

+
λ

2
√
|I|
∥(β̂I)Sc∥1 ≤

3λ

2
√
|I|
∥(β̂I − β∗

I)S∥1, (D.22)

which also implies that
λ

2
∥ΘSc∥1 =

λ

2
∥(β̂I)Sc∥1 ≤

3λ

2
∥(β̂I − β∗

I)S∥1 =
3λ

2
∥ΘS∥1.

The above inequality and Lemma D.14 imply that with probability at least 1− n−5,

1

|I|
∑
i∈I

(
X⊤
i Θ
)2

= Θ⊤Σ̂IΘ ≥ Θ⊤ΣΘ− C3

√
s log(n ∨ p)
|I|

∥Θ∥22 ≥
cx
2
∥Θ∥22,

where the last inequality follows from the assumption that |I| ≥ Css log(n ∨ p) for sufficiently large Cs. Therefore
Equation (D.22) gives

c′∥Θ∥22 +
λ

2
√
|I|
∥(β̂I − β∗

I)Sc∥1 ≤
3λ

2
√
|I|
∥ΘS∥1 ≤

3λ
√
s

2
√
|I|
∥Θ∥2 (D.23)

and so

∥Θ∥2 ≤
Cλ
√
s√
|I|

.

The above display gives

∥ΘS∥1 ≤
√
s ∥ΘS∥2 ≤

Cλs√
|I|

.

Since ∥ΘSc∥1 ≤ 3∥ΘS∥1, it also holds that

∥Θ∥1 = ∥ΘS∥1 + ∥ΘSc∥1 ≤ 4∥ΘS∥1 ≤
4Cλs√
|I|

.

D.2. Technical lemmas

Throughout this section, let P̂ denote the output of Algorithm 1.

Lemma D.6 (No change point). Let I ⊂ [1, T ] be any interval that contains no change point. Then under Assumption D.1,
for any interval J ⊃ I, it holds with probability at least 1− (n ∨ p)−5 that

F(β∗
I , I) ≤ F(β̂J , I) + C(σ2

ϵ ∨ 1)s log(n ∨ p).

Proof. Case 1. If |I| < CFs log(np), then by the definition of F(β, I), we have F(β∗
I , I) = F(β̂J , I) = 0 and the

inequality holds automatically.

Case 2. If
|I| ≥ CFs log(np), (D.24)

then letting δI = β∗
I − β̂J and consider the high-probability event given in Lemma D.15, we have√∑

t∈I
(X⊤

t δI)
2 ≥ c′1

√
|I| ∥δI∥2 − c′2

√
log(p) ∥δI∥1

=c′1
√
|I| ∥δI∥2 − c′2

√
log(p) ∥(δI)S∥1 − c′2

√
log(p) ∥(δI)Sc∥1

≥c′1
√
|I| ∥δI∥2 − c′2

√
s log(p) ∥δI∥2 − c′2

√
log(p) ∥(δI)Sc∥1
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≥c
′
1

2

√
|I| ∥δI∥2 − c′2

√
log(p) ∥(β̂J )Sc∥1 ≥ c1

√
|I| ∥δI∥2 − c2

√
log(p)

sλ√
|I|

, (D.25)

where the last inequality follows from Lemma D.5 and the assumption that (β∗
t )i = 0, for all t ∈ [T ] and i ∈ Sc. Then by

the fact that (a− b)2 ≥ 1
2a

2 − b2 for all a, b ∈ R, it holds that

∑
t∈I

(X⊤
t δI)

2 ≥ c21
2
|I|∥δI∥22 −

c22λ
2s2 log(p)

|I|
. (D.26)

Notice that ∑
t∈I

(yt −X⊤
t β

∗
I)

2 −
∑
t∈I

(yt −X⊤
t β̂J )2 = 2

∑
t∈I

ϵtX
⊤
t δI −

∑
t∈I

(X⊤
t δI)

2

≤2∥
∑
t∈I

Xtϵt∥∞
(√

s ∥(δI)S∥2 + ∥(β̂J )Sc∥1
)
−
∑
t∈I

(X⊤
t δI)

2.

Since for each t, ϵt is subgaussian with ∥ϵt∥ψ2 ≤ σϵ and for each i ∈ [p], (Xt)i is subgaussian with ∥(Xt)i∥ψ2 ≤ Cx, we
know that (Xt)iϵt is subexponential with ∥(Xt)iϵt∥ψ1 ≤ Cxσϵ. Therefore, by Bernstein’s inequality (see, e.g., Theorem
2.8.1 in (Vershynin, 2018)) and a union bound, for ∀u ≥ 0 it holds that

P(∥
∑
t∈I

Xtϵt∥∞ > u) ≤ 2p exp(−cmin{ u2

|I|C2
xσ

2
ϵ

,
u

Cxσϵ
}).

Take u = cCxσϵ
√
|I| log(n ∨ p) , then by the fact that |I| ≥ CFs log(n ∨ p), it follows that with probability at least

1− (n ∨ p)−7,

∥
∑
t∈I

Xtϵt∥∞ ≤ CCxσϵ
√
|I| log(n ∨ p) ≤ λ

√
|I| ,

where we use the fact that λ = Cλ(σϵ ∨ 1)
√
log(n ∨ p) . Therefore, we have∑

t∈I
(yt −X⊤

t β
∗
I)

2 −
∑
t∈I

(yt −X⊤
t β̂J )2

≤2λ
√
|I|s ∥δI∥2 + 2λ

√
|I| · λs√

|I|
− c21|I|

2
∥δI∥22 +

c22λ
2s2 log(p)

|I|

≤2λ
√
|I|s ∥δI∥2 + 2λ2s− c21|I|

2
∥δI∥22 +

c22λ
2s2 log(p)

|I|

≤ 4

c21
λ2s+

c21
4
|I|∥δI∥22 + 2λ2s− c21

2
|I|∥δI∥22 +

c22λ
2s2 log(p)

CFs log(n ∨ p)

≤c3λ2s+ 2λ2s+
c22λ

2s2 log(p)

CFs log(n ∨ p)
≤c4λ2s.

where the third inequality follows from 2ab ≤ a2 + b2.

Lemma D.7 (Single change point). Suppose the good events L(B−1
n ∆min) and R(B−1

n ∆min) defined in Equation (B.2)
hold. Let I = (s, e] ∈ P̂ be such that I contains exactly one true change point ηk. Suppose γ ≥ CγKB−1

n ∆minκ
2. Then

with probability at least 1− n−3, it holds that

min{ηk − s, e− ηk} ≲
σ2
ϵ ∨ 1

κ2

(
s log(n ∨ p) + γ

)
+ B−1

n ∆min.
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Proof. If either ηk − s ≤ CFs log(n ∨ p) or e− ηk ≤ CFs log(n ∨ p), then

min{ηk − s, e− ηk} ≤ CFs log(n ∨ p)

and there is nothing to show. So assume that

ηk − s > CFs log(n ∨ p) and e− ηk > CFs log(n ∨ p).

By eventR(B−1
n ∆min), there exists su ∈ {sq}Qq=1 such that

0 ≤ su − ηk ≤ B−1
n ∆min.

s ηk su e

Step 1. Denote
I1 = (s, su] and I2 = (su, e].

Since ηk − s ≥ CFs log(n ∨ p), it follows that |I| ≥ CFs log(n ∨ p) and |I1| ≥ CFs log(n ∨ p). Thus

F(I) =
∑
i∈I

(yi −X⊤
i β̂I)

2 and F(I1) =
∑
i∈I1

(yi −X⊤
i β̂I1

)2.

Since I ∈ P̂ , it holds that

F(I) ≤ F(I1) + F(I2) + γ. (D.27)

Case a. Suppose |I2| < CFs log(n ∨ p). It follows from Equation (D.27) that∑
i∈I

(yi −X⊤
i β̂I)

2 ≤
∑
i∈I1

(yi −X⊤
i β̂I1

)2 + 0 + γ

≤
∑
i∈I1

(yi −X⊤
i β

∗
i )

2 + C1

(
(su − ηk)κ2k + s log(n ∨ p)

)
+ γ

≤
∑
i∈I1

(yi −X⊤
i β

∗
i )

2 + C1

(
B−1
n ∆minκ

2
k + s log(n ∨ p)

)
+ γ

≤
∑
i∈I

(yi −X⊤
i β

∗
i )

2 + C1

(
B−1
n ∆minκ

2
k + s log(n ∨ p)

)
+ γ, (D.28)

where the first inequality follows from the fact that F(I2) = 0 when |I2| < CFs log(n ∨ p), the second inequality follows
from Lemma D.4 b, the third inequality follows from the assumption that (su − ηk) ≤ B−1

n ∆min, and the inequality holds
because

∑
i∈I2

(yi −X⊤
i β

∗
i )

2 ≥ 0.

Case b. Suppose |I2| ≥ CFs log(n ∨ p). It follows from Equation (D.27) that∑
i∈I

(yi −X⊤
i β̂I)

2 ≤
∑
i∈I1

(yi −X⊤
i β̂I1

)2 +
∑
i∈I2

(yi −X⊤
i β̂I2

)2 + γ

≤
∑
i∈I1

(yi −X⊤
i β

∗
i )

2 + C1

(
(su − ηk)κ2k + s log(n ∨ p)

)
+
∑
i∈I2

(yi −X⊤
i β

∗
i )

2 + C1s log(n ∨ p) + 2γ

≤
∑
i∈I

(yi −X⊤
i β

∗
i )

2 + C2

(
B−1
n ∆minκ

2
k + s log(n ∨ p)

)
+ γ, (D.29)

where the second inequality follows from Lemma D.4 a and b, and the third inequality follows from the assumption that
(su − ηk) ≤ B−1

n ∆min. Combing two cases leads to∑
i∈I

(yi −X⊤
i β̂I)

2 ≤
∑
i∈I

(yi −X⊤
i β

∗
i )

2 + C2

(
B−1
n ∆minκ

2
k + s log(n ∨ p)

)
+ γ. (D.30)
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Step 2. Denote
J1 = (s, ηk] and J2 = (ηk, e].

Equation (C.14) gives∑
i∈J1

(yi −X⊤
i β̂I)

2 +
∑
i∈J2

(yi −X⊤
i β̂I)

2

≤
∑
i∈J1

(yi −X⊤
i β

∗
J1
)2 +

∑
i∈J2

(yi −X⊤
i β

∗
J1
)2 + C2

(
B−1
n ∆minκ

2
k + s log(n ∨ p)

)
+ γ (D.31)

The above display leads to∑
i∈J1

{
X⊤
i (β̂I − β∗

J1
)
}2

+
∑
i∈J2

{
X⊤
i (β̂I − β∗

J2
)
}2

≤2
∑
i∈J1

ϵiX
⊤
i (β̂I − β∗

J1
) + 2

∑
i∈J2

ϵiX
⊤
i (β̂I − β∗

J2
) + C2

(
B−1
n ∆minκ

2
k + s log(n ∨ p)

)
+ γ

≤C3

√
log(n ∨ p)|J1| ∥β̂I − β∗

J1
∥1 + C3

√
log(n ∨ p)|J2| ∥β̂I − β∗

J2
∥1 + C2

(
B−1
n ∆minκ

2
k + s log(n ∨ p)

)
+ γ

(D.32)

where the last inequality follows from Lemma D.16 and that |J1| ≥ CFs log(n ∨ p) and |J2| ≥ CFs log(n ∨ p). Note that

∥(β̂I − β∗
J1
)Sc∥1 = ∥(β̂I)Sc∥1 = ∥(β̂I − β∗

I)Sc∥1 ≤ 3∥(β̂I − β∗
I)S∥1 ≤ C5s

√
log(n ∨ p)
|I|

,

where the last two inequalities follows from Lemma D.5. So

∥β̂I − β∗
J1
∥1 = ∥(β̂I − β∗

J1
)S∥1 + ∥(β̂I − β∗

J1
)Sc∥1 ≤

√
s ∥β̂I − β∗

J1
∥2 + C5s

√
log(n ∨ p)
|I|

. (D.33)

Therefore Equation (D.32) gives∑
i∈J1

{
X⊤
i (β̂I − β∗

J1
)
}2

+
∑
i∈J2

{
X⊤
i (β̂I − β∗

J2
)
}2

≤C3

√
log(n ∨ p)|J1|

(√
s ∥β̂I − β∗

J1
∥2 + C5s

√
log(n ∨ p)
|I|

)

+C3

√
log(n ∨ p)|J2|

(√
s ∥β̂I − β∗

J2
∥2 + C5s

√
log(n ∨ p)
|I|

)
+ 2γ

≤cx|J1|
64
∥β̂I − β∗

J1
∥22 +

cx|J2|
64
∥β̂I − β∗

J2
∥22 + C ′

5s log(n ∨ p)

+C2

(
B−1
n ∆minκ

2
k + s log(n ∨ p)

)
+ 2γ, (D.34)

|J1| ≤ |I|, |J2| ≤ |I| are used in the last inequality.

Step 3. Since |J1| ≥ CFs log(n ∨ p) and |J2| ≥ CFs log(n ∨ p), for ℓ = 1, 2, it holds that∑
i∈Jℓ

{
X⊤
i (β̂I − β∗

Jℓ)
}2

≥cx|Jℓ|
16
∥β̂I − β∗

Jℓ∥
2
2 − C6 log(p)∥β̂I − β∗

Jℓ∥
2
1

≥cx|Jℓ|
16
∥β̂I − β∗

Jℓ∥
2
2 − C ′

6s log(p)∥β̂I − β∗
Jℓ∥

2
2 − C ′

6

s2 log(p) log(n ∨ p)
|I|
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≥cx|Jℓ|
32
∥β̂I − β∗

Jℓ∥
2
2 − C7s log(n ∨ p), (D.35)

where the first inequality follows from Lemma D.15, the second inequality follows from Equation (D.33) and the last
inequality follows from the observation that

|I| ≥ |Jℓ| ≥ CFs log(n ∨ p).

Equation (D.34) and Equation (D.35) together lead to

|J1|∥β̂I − β∗
J1
∥22 + |J2|∥β̂I − β∗

J2
∥22 ≤ C8(s log(n ∨ p) + B−1

n ∆minκ
2
k + γ).

Observe that

inf
β∈Rp

|J1|∥β − β∗
J1
∥22 + |J2|∥β − β∗

J2
∥22 = κ2k

|J1||J2|
|I|

≥ κ2k
2

min{|J1|, |J2|}.

This leads to
κ2k
2

min{|J1|, |J2|} ≤ C8(s log(n ∨ p) + B−1
n ∆min + γ).

Since κk ≍ κ, it follows that

min{|J1|, |J2|} ≤ C9

(
s log(n ∨ p) + γ

κ2
+ B−1

n ∆min

)
.

Lemma D.8 (Two change points). Suppose the good events L(B−1
n ∆min) andR(B−1

n ∆min) in Equation (B.2) hold. Let
I = (s, e] ∈ P̂ be such that I contains exactly two change points ηk, ηk+1. Suppose in addition that

∆minκ
2 ≥ C

(
σ2
ϵ s log(n ∨ p) + γ) (D.36)

for sufficiently large constant C and that γ ≥ CγB−1
n ∆minκ

2. Then with probability at least 1− n−3, it holds that

ηk − s ≲
σ2
ϵ ∨ 1

κ2

(
s log(n ∨ p) + γ

)
+ B−1

n ∆min and e− ηk+1 ≲
σ2
ϵ ∨ 1

κ2

(
s log(n ∨ p) + γ

)
+ B−1

n ∆min,

where C0 ≥ 1 is some sufficiently large constant.

Proof. By symmetry, it suffices to show that ηk − s ≲ σ2
ϵ∨1
κ2

(
s log(n ∨ p) + γ

)
+ B−1

n ∆min. If

ηk − s ≤ CFs log(n ∨ p),

then the desired result follows immediately. So it suffices to assume that

ηk − s > CFs log(n ∨ p).

Since the events L(B−1
n ∆min) andR(B−1

n ∆min) hold, let su, sv be such that ηk ≤ su ≤ sv ≤ ηk+1 and that

0 ≤ su − ηk ≤ B−1
n ∆min, 0 ≤ ηk+1 − sv ≤ B−1

n ∆min.

s ηk su ηk+1sv e
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Step 1. Denote
I1 = (s, su], I2 = (su, sv] and I3 = (sv, e].

Since |I| ≥ ηk+1 − ηk ≥ CFs log(n ∨ p),

F(I) =
∑
i∈I

(yi −X⊤
i β̂I)

2.

Since |I1| ≥ ηk − s ≥ CFs log(n ∨ p), it follows that

F(I1) =
∑
i∈I1

(yi −X⊤
i β̂I1

)2.

In addition since |I1| ≥ CFs log(n ∨ p), then

F(I1) =
∑
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2

≤
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∗
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∗
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}
≤
∑
i∈I1

(yi −X⊤
i β

∗
i )

2 + C1

{
B−1
n ∆minκ

2 + s log(n ∨ p)
}
,

where the first inequality follows from Lemma D.4 and that κk ≍ κ. Similarly, since |I2| ≥ ∆min/2 ≥ CFs log(n ∨ p), it
follows that

F(I2) =
∑
i∈I2

(yi −X⊤
i β̂I2)

2.

Since |I2| ≥ CFs log(n ∨ p) and I2 contains no change points, by Lemma D.4,

F(I2) ≤
∑
i∈I2

(yi −X⊤
i β

∗
i )

2 + C1s log(n ∨ p).

Step 2. If |I3| ≥ CFs log(n ∨ p), then

F(I3) =
∑
i∈I3

(yi −X⊤
i β̂I3

)2

≤
∑
i∈I3

(yi −X⊤
i β

∗
i )

2 + C1

{
(ηk+1 − sv)(e− ηk+1)

(ηk+1 − sv) + (e− ηk+1)
κ2 + s log(n ∨ p)

}
≤
∑
i∈I3

(yi −X⊤
i β

∗
i )

2 + C1

{
(ηk+1 − sv)κ2 + s log(n ∨ p)

}
≤
∑
i∈I3

(yi −X⊤
i β

∗
i )

2 + C1

{
B−1
n ∆minκ

2 + s log(n ∨ p)
}
,

where the first inequality follows from Lemma D.4b and that κk+1 ≍ κ. If |I3| < CFs log(n ∨ p), then F(I3) = 0. So
both cases imply that

F(I3) ≤
∑
i∈I3

(yi −X⊤
i β

∗
i )

2 + C1

{
B−1
n ∆minκ

2
k + s log(n ∨ p)

}
.
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Step 3. Since I ∈ P̂ , we have

F(I) ≤ F(I1) + F(I2) + F(I3) + 2γ. (D.37)

The above display and the calculations in Step 1 and Step 2 implies that∑
i∈I

(yi −X⊤
i β̂I)

2 ≤
∑
i∈I

(yi −X⊤
i β

∗
i )

2 + 3C1

{
B−1
n ∆minκ

2 + s log(n ∨ p)
}
+ 2γ. (D.38)

Denote
J1 = (s, ηk], J2 = (ηk, ηk + ηk+1] and J3 = (ηk+1, e].

Equation (D.38) gives

3∑
ℓ=1

∑
i∈Jℓ

(yi −X⊤
i β̂I)

2 ≤
3∑
ℓ=1

∑
i∈Jℓ

(yi −X⊤
i β

∗
Jℓ)

2 + 3C1

{
B−1
n ∆minκ

2 + s log(n ∨ p)
}
+ 2γ (D.39)

Step 4. Note that for ℓ ∈ {1, 2, 3},

∥(β̂I − β∗
Jℓ)Sc∥1 = ∥(β̂I)Sc∥1 = ∥(β̂I − β∗

I)Sc∥1 ≤ 3∥(β̂I − β∗
I)S∥1 ≤ C2s

√
log(n ∨ p)
|I|

,

where the last two inequalities follows from Lemma D.5. So

∥β̂I − β∗
Jℓ∥1 = ∥(β̂I − β∗

Jℓ)S∥1 + ∥(β̂I − β
∗
Jℓ)Sc∥1 ≤

√
s ∥β̂I − β∗

Jℓ∥2 + C2s

√
log(n ∨ p)
|I|

. (D.40)

Note that by assumptions,
|J1| ≥ CFs log(n ∨ p) and |J2| ≥ CFs log(n ∨ p).

So for ℓ ∈ {1, 2}, it holds that∑
i∈Jℓ

{
X⊤
i (β̂I − β∗

Jℓ)
}2

≥cx|Jℓ|
16
∥β̂I − β∗

Jℓ∥
2
2 − C3 log(p)∥β̂I − β∗

Jℓ∥
2
1

≥cx|Jℓ|
16
∥β̂I − β∗

Jℓ∥
2
2 − C ′

3s log(p)∥β̂I − β∗
Jℓ∥

2
2 − C ′

3

s2 log(p) log(n ∨ p)
|I|

≥cx|Jℓ|
32
∥β̂I − β∗

Jℓ∥
2
2 − C4s log(n ∨ p), (D.41)

where the first inequality follows from Lemma D.15, the second inequality follows from Equation (D.40) and the last
inequality follows from the observation that

|I| ≥ |Jℓ| ≥ Cγs log(n ∨ p).

So for ℓ ∈ {1, 2},∑
i∈Jℓ

(yi −X⊤
i β̂I)

2 −
∑
i∈Jℓ

(yi −X⊤
i β

∗
Jℓ)

2 =
∑
i∈Jℓ

{
X⊤
i (β̂I − β∗

J4
)
}2 − 2

∑
i∈Jℓ

ϵiX
⊤
i (β̂I − β∗

Jℓ)

≥
∑
i∈Jℓ

{
X⊤
i (β̂I − β∗

Jℓ)
}2 − 2∥

∑
i∈Jℓ

ϵiX
⊤
i ∥∞∥β̂I − β∗

Jℓ∥1

≥
∑
i∈Jℓ

{
X⊤
i (β̂I − β∗

Jℓ)
}2 − C5

√
log(n ∨ p)|Jℓ|

(√
s ∥β̂I − β∗

J1
∥2 + C2s

√
log(n ∨ p)
|I|

)
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≥cx|Jℓ|
32
∥β̂I − β∗

Jℓ∥
2
2 − C4s log(n ∨ p)− C5

√
log(n ∨ p)|Jℓ|

(√
s ∥β̂I − β∗

J1
∥2 + C2s

√
log(n ∨ p)
|I|

)
≥cx|Jℓ|

32
∥β̂I − β∗

Jℓ∥
2
2 −

cx|Jℓ|
64
∥β̂I − β∗

Jℓ∥
2
2 − C6s log(n ∨ p) =

cx|Jℓ|
64
∥β̂I − β∗

Jℓ∥
2
2 − C6s log(n ∨ p),

where the second inequality follows from the standard sub-Exponential tail bound and Equation (D.40), the third inequality
follows from Equation (D.41), and the fourth inequality follows from Jℓ ⊂ I and so |I| ≥ |Jℓ|.

So for ℓ ∈ {1, 2}, ∑
i∈Jℓ

(yi −X⊤
i β̂I)

2 −
∑
i∈Jℓ

(yi −X⊤
i β

∗
Jℓ)

2 ≥ cx|Jℓ|
64
∥β̂I − β∗

Jℓ∥
2
2 − C6s log(n ∨ p). (D.42)

Step 5. For J3, if |J3| ≥ CFs log(n ∨ p), following the same calculations as in Step 4,∑
i∈J3

(yi −X⊤
i β̂I)

2 −
∑
i∈J3

(yi −X⊤
i β

∗
J3
)2 ≥ cx|J3|

64
∥β̂I − β∗

J3
∥22 − C6s log(n ∨ p) ≥ −C6s log(n ∨ p).

If |J3| < CFs log(n ∨ p), then∑
i∈J3

(yi −X⊤
i β̂I)

2 −
∑
i∈J3

(yi −X⊤
i β

∗
J3
)2 =

∑
i∈J3

{
X⊤
i (β̂I − β∗

J3
)
}2 − 2

∑
i∈J3

ϵiX
⊤
i (β̂I − β∗

J3
)

≥
∑
i∈J3

{
X⊤
i (β̂I − β∗

J3
)
}2 − 1

2

∑
i∈J3

{
X⊤
i (β̂I − β∗

J3
)
}2 − 4

∑
i∈J3

ϵ2i

≥1

2

∑
i∈J3

{
X⊤
i (β̂I − β∗

J3
)
}2 − C7

(√
γ log(n) + log(n) + γ

)
≥1

2

∑
i∈J3

{
X⊤
i (β̂I − β∗

J3
)
}2 − C ′

7

(
log(n) + γ

)
≥1

2

∑
i∈J3

{
X⊤
i (β̂I − β∗

J3
)
}2 − C8(s log(n ∨ p) + γ) ≥ −C8(s log(n ∨ p) + γ) (D.43)

where the second inequality follows from the standard sub-exponential deviation bound.

Step 6. Putting Equation (D.39), (D.42) and (D.43) together, it follows that

2∑
ℓ=1

cx|Jℓ|
64
∥β̂I − β∗

Jℓ∥
2
2 ≤ C9(s log(n ∨ p) + B−1

n ∆minκ
2 + γ).

This leads to
|J1|∥β̂I − β∗

J1
∥22 + |J2|∥β̂I − β∗

J2
∥22 ≤ C9(s log(n ∨ p) + B−1

n ∆minκ
2 + γ).

Observe that

inf
β∈Rp

|J1|∥β − β∗
J1
∥22 + |J2|∥β − β∗

J2
∥22 = κ2k

|J1||J2|
|J1|+ |J2|

≥ κ2k
2

min{|J1|, |J2|} ≥
cκ2

2
min{|J1|, |J2|}.

Thus
κ2 min{|J1|, |J2|} ≤ C10(s log(n ∨ p) + B−1

n ∆minκ
2 + γ),

which is

min{|J1|, |J2|} ≤ C5

(
s log(n ∨ p) + γ

κ2
+ B−1

n ∆min +
γ

κ2

)
.
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Since |J2| ≥ ∆min ≥ C(s log(n∨p)+γ)
κ2 for sufficiently large constant C, it follows that

|J2| ≥ ∆min > C5

(
s log(n ∨ p) + γ

κ2
+ B−1

n ∆min +
γ

κ2

)
.

So it holds that

|J1| ≤ C5

(
s log(n ∨ p) + γ

κ2
+ B−1

n ∆min

)
.

Lemma D.9 (Three or more change points). Suppose the good events L(B−1
n ∆min) and R(B−1

n ∆min) defined in Equa-
tion (B.2) hold. Suppose in addition that

∆minκ
2 ≥ C

(
s log(n ∨ p) + γ) (D.44)

for sufficiently large constant C. Then with probability at least 1− n−3, there is no intervals in P̂ containing three or more
true change points.

Proof. For contradiction, suppose I = (s, e] ∈ P̂ be such that {η1, . . . , ηM} ⊂ I with M ≥ 3.

Since the events L(B−1
n ∆min) and R(B−1

n ∆min) hold, by relabeling {sq}Qq=1 if necessary, let {sm}Mm=1 be such
that

0 ≤ sm − ηm ≤ B−1
n ∆min for 1 ≤ m ≤M − 1

and that
0 ≤ ηM − sM ≤ B−1

n ∆min.

Note that these choices ensure that {sm}Mm=1 ⊂ I.

s η1 s1 η2 s2 ηMsM e

Step 1. Denote
I1 = (s, s1], Im = (sm−1, sm] for 2 ≤ m ≤M and IM+1 = (sM , e].

Then since |I| ≥ ∆min ≥ Css log(n ∨ p), it follows that Since |I| ≥ ηk+1 − ηk ≥ Css log(n ∨ p),

F(I) =
∑
i∈I

(yi −X⊤
i β̂I)

2.

Since |Im| ≥ ∆min/2 ≥ Css log(n ∨ p) for all 2 ≤ m ≤M , it follows from the same argument as Step 1 in the proof of
Lemma D.8 that

F(Im) =
∑
i∈Im

(yi −X⊤
i β̂Im)

2 ≤
∑
i∈Im

(yi −X⊤
i β

∗
i )

2 + C1

{
B−1
n ∆minκ

2 + s log(n ∨ p)
}

for all 2 ≤ m ≤M.

Step 2. It follows from the same argument as Step 2 in the proof of Lemma D.8 that

F(I1) ≤
∑
i∈I1

(yi −X⊤
i β

∗
i )

2 + C1

{
B−1
n ∆minκ

2 + s log(n ∨ p)
}
, and

F(IM+1) ≤
∑

i∈IM+1

(yi −X⊤
i β

∗
i )

2 + C1

{
B−1
n ∆minκ

2 + s log(n ∨ p)
}

44



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

Step 3. Since I ∈ P̂ , we have

F(I) ≤
M+1∑
m=1

F(Im) +Mγ. (D.45)

The above display and the calculations in Step 1 and Step 2 implies that∑
i∈I

(yi −X⊤
i β̂I)

2 ≤
∑
i∈I

(yi −X⊤
i β

∗
i )

2 + (M + 1)C1

{
B−1
n ∆minκ

2 + s log(n ∨ p)
}
+Mγ. (D.46)

Denote
J1 = (s, η1], Jm = (ηm−1, ηm] for 2 ≤ m ≤M, JM+1 = (ηM , e].

Equation (D.46) gives

M+1∑
m=1

∑
i∈Jm

(yi −X⊤
i β̂I)

2 ≤
M+1∑
m=1

∑
i∈Jm

(yi −X⊤
i β

∗
Jm)

2 + (M + 1)C1

{
B−1
n ∆minκ

2 + s log(n ∨ p)
}
+Mγ (D.47)

Step 4. Using the same argument as in the Step 4 in the proof of Lemma D.8, it follows that∑
i∈Jm

(yi −X⊤
i β̂I)

2 −
∑
i∈Jm

(yi −X⊤
i β

∗
Jm)

2 ≥ cx|Jm|
64

∥β̂I − β∗
Jm∥

2
2 − C2s log(n ∨ p) for all 2 ≤ m ≤M. (D.48)

Step 5. Using the same argument as in the Step 4 in the proof of Lemma D.8, it follows that∑
i∈J1

(yi −X⊤
i β̂I)

2 −
∑
i∈J1

(yi −X⊤
i β

∗
J1
)2 ≥ −C3(s log(n ∨ p) + γ) and (D.49)

∑
i∈JM+1

(yi −X⊤
i β̂I)

2 −
∑

i∈JM+1

(yi −X⊤
i β

∗
JM+1

)2 ≥ −C3(s log(n ∨ p) + γ) (D.50)

Step 6. Putting Equation (D.47), (D.48), (D.49) and (D.50), it follows that

M∑
m=2

cx|Jm|
64

∥β̂I − β∗
Jm∥

2
2 ≤ C4M(s log(n ∨ p) + B−1

n ∆minκ
2 + γ). (D.51)

For any m ∈ {2, . . . ,M}, it holds that

inf
β∈Rp

|Jm−1|∥β − β∗
Jm−1

∥2 + |Jm|∥β − β∗
Jm∥

2 =
|Jm−1||Jm|
|Jm−1|+ |Jm|

κ2m ≥
1

2
∆minκ

2, (D.52)

where the last inequality follows from the assumptions that ηk − ηk−1 ≥ ∆min and κk ≍ κ for all 1 ≤ k ≤ K. So

2

M∑
m=1

|Jm|∥β̂I − β∗
Jm∥

2
2

≥
M∑
m=2

(
|Jm−1∥β̂I − β∗

Jm−1
∥22 + |Jm|∥β̂I − β∗

Jm∥
2
2

)
≥(M − 1)

1

2
∆minκ

2 ≥ M

4
∆minκ

2, (D.53)

where the second inequality follows from Equation (D.52) and the last inequality follows from M ≥ 3. Equation (D.51) and
Equation (D.53) together imply that

M

4
∆minκ

2 ≤ 2C5M

(
s log(n ∨ p) + B−1

n ∆minκ
2 + γ

)
. (D.54)
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Since Bn →∞, it follows that for sufficiently large n, Equation (D.54) gives

∆minκ
2 ≤ C5

(
s log(n ∨ p) + γ),

which contradicts Equation (D.44).

Lemma D.10 (Two consecutive intervals). Suppose γ ≥ Cγs log(n ∨ p) for sufficiently large constant Cγ . With probability
at least 1 − n−3, there are no two consecutive intervals I1 = (s, t] ∈ P̂ , I2 = (t, e] ∈ P̂ such that I1 ∪ I2 contains no
change points.

Proof. For contradiction, suppose that
I := I1 ∪ I2

contains no change points. For I1, note that if |I1| ≥ Cζs log(n ∨ p), then by Lemma D.4 a, it follows that∣∣∣∣F(I1)−∑
i∈I1

(yi −X⊤
i β

∗
i )

2

∣∣∣∣ = ∣∣∣∣ ∑
i∈I1

(yi −X⊤
i β̂I1

)2 −
∑
i∈I1

(yi −X⊤
i β

∗
i )

2

∣∣∣∣ ≤ C1s log(n ∨ p).

If |I1| < Cζs log(n ∨ p), then∣∣∣∣F(I1)−∑
i∈I1

(yi −X⊤
i β

∗
i )

2

∣∣∣∣ = ∣∣∣∣ ∑
i∈I1

(yi −X⊤
i β

∗
i )

2

∣∣∣∣ = ∑
i∈I1

ϵ2i

≤|I1|E(ϵ21) + C2

√
|I1| log(n) + log(n) ≤ C ′

2s log(n ∨ p).

So ∣∣∣∣F(I1)−∑
i∈I1

(yi −X⊤
i β

∗
i )

2

∣∣∣∣ ≤ C3s log(n ∨ p).

Similarly, ∣∣∣∣F(I2)−∑
i∈I2

(yi −X⊤
i β

∗
i )

2

∣∣∣∣ ≤ C3s log(n ∨ p), and∣∣∣∣F(I)−∑
i∈I

(yi −X⊤
i β

∗
i )

2

∣∣∣∣ ≤ C3s log(n ∨ p).

So ∑
i∈I1

(yi −X⊤
i β

∗
i )

2 +
∑
i∈I2

(yi −X⊤
i β

∗
i )

2 − 2C1s log(n ∨ p) + γ ≤
∑
i∈I

(yi −X⊤
i β

∗
i )

2 + C1s log(n ∨ p).

Since β∗
i is unchanged when i ∈ I, it follows that

γ ≤ 3C1s log(n ∨ p).

This is a contradiction when Cγ > 3C1.

Lemma D.11. Let S be any linear subspace in Rn and N1/4 be a 1/4-net of S ∩B(0, 1), where B(0, 1) is the unit ball in
Rn. For any u ∈ Rn, it holds that

sup
v∈S∩B(0,1)

⟨v, u⟩ ≤ 2 sup
v∈N1/4

⟨v, u⟩, (D.55)

where ⟨·, ·⟩ denotes the inner product in Rn.
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Proof. Due to the definition ofN1/4, it holds that for any v ∈ S ∩B(0, 1), there exists a vk ∈ N1/4, such that ∥v− vk∥2 <
1/4. Therefore,

⟨v, u⟩ = ⟨v − vk + vk, u⟩ = ⟨xk, u⟩+ ⟨vk, u⟩ ≤
1

4
⟨v, u⟩+ 1

4
⟨v⊥, u⟩+ ⟨vk, u⟩,

where the inequality follows from xk = v − vk = ⟨xk, v⟩v + ⟨xk, v⊥⟩v⊥. Then we have

3

4
⟨v, u⟩ ≤ 1

4
⟨v⊥, u⟩+ ⟨vk, u⟩. (D.56)

It follows from the same argument that

3

4
⟨v⊥, u⟩ ≤ 1

4
⟨v, u⟩+ ⟨vl, u⟩, (D.57)

where vl ∈ N1/4 satisfies ∥v⊥ − vl∥2 < 1/4. Combining the previous two equation displays yields

⟨v, u⟩ ≤ 2 sup
v∈N1/4

⟨v, u⟩, (D.58)

and the final claims holds.

Lemma D.12 is an adaptation of Lemma 3 in (Wang et al., 2021c).

Lemma D.12. Given any interval I = (s, e] ⊂ {1, . . . , n}. LetRm := {v ∈ R(e−s)|∥v∥2 = 1,
∑e−s−1
t=1 1{vi ̸= vi+1} =

m}. Then for data generated from Assumption D.1, it holds that for any δ > 0, i ∈ {1, . . . , p},

P

{
sup
v∈Rm

∣∣∣∣∣
e∑

t=s+1

vtϵt(Xt)i

∣∣∣∣∣ > ∆min

}
≤ C(e− s− 1)m9m+1 exp

{
−cmin

{
δ2

4C2
x

,
δ

2Cx∥v∥∞

}}
. (D.59)

Proof. For any v ∈ R(e−s) satisfying
∑e−s−1
t=1 1{vi ̸= vi+1} = m, it is determined by a vector in Rm+1 and a choice of m

out of (e− s− 1) points. Therefore we have,

P

 sup
v∈R(e−s), ∥v∥2=1∑e−s−1
t=1 1{vi ̸=vi+1}=m

∣∣∣∣∣
e∑

t=s+1

vtϵt(Xt)i

∣∣∣∣∣ > ∆min


≤
(
(e− s− 1)

m

)
9m+1 sup

v∈N1/4

P

{∣∣∣∣∣
e∑

t=s+1

vtϵt(Xt)i

∣∣∣∣∣ > δ/2

}

≤
(
(e− s− 1)

m

)
9m+1C exp

{
−cmin

{
δ2

4C2
x

,
δ

2Cx∥v∥∞

}}
≤C(e− s− 1)m9m+1 exp

{
−cmin

{
δ2

4C2
x

,
δ

2Cx∥v∥∞

}}
.

D.3. Additional Technical Results

Lemma D.13. Suppose {Xi}1≤i≤n
i.i.d.∼ Np(0,Σ). Denote CS := {v : Rp : ∥vSc∥1 ≤ 3∥vS∥1}, where |S| ≤ s. Then

there exists constants c and C such that for all η ≤ 1,

P

(
sup

v∈CS ,∥v∥2=1

∣∣∣v⊤(Σ̂− Σ)v
∣∣∣ ≥ CηΛmax(Σ)

)
≤ 2 exp(−cnη2 + 2s log(p)). (D.60)

Proof. This is a well known restricted eigenvalue property for Gaussian design. The proof can be found in (Basu and
Michailidis, 2015) or (Loh and Wainwright, 2012).
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Lemma D.14. Suppose {Xi}1≤i≤n
i.i.d.∼ Np(0,Σ). Denote CS := {v : Rp : ∥vSc∥1 ≤ 3∥vS∥1}, where |S| ≤ s. With

probability at least 1− n−5, it holds that

∣∣∣v⊤(Σ̂I − Σ)v
∣∣∣ ≤ C√s log(n ∨ p)

|I|
∥v∥22

for all v ∈ CS and all I ⊂ (0, n] such that |I| ≥ Css log(n ∨ p), where Cs is the constant in Lemma D.16 which is
independent of n, p.

Proof. For any I ⊂ (0, n] such that |I| ≥ Css log(n ∨ p), by Lemma D.13, it holds that

P

(
sup

v∈CS ,∥v∥2=1

∣∣∣v⊤(Σ̂I − Σ)v
∣∣∣ ≥ CηΛmax(Σ)

)
≤ 2 exp(−c|I|η2 + 2s log(p)).

Let η = C1

√
s log(n∨p)

|I| for sufficiently large constant C1. Note that η < 1 if |I| > C2
1s log(n ∨ p). Then with probability

at least (n ∨ p)−7,

sup
v∈CS ,∥v∥2=1

∣∣∣v⊤(Σ̂I − Σ)v
∣∣∣ ≥ C2

√
s log(n ∨ p)
|I|

.

Since there are at most n2 many different choices of I ⊂ (0, n], the desired result follows from a union bound argument.

Lemma D.15. Under Assumption D.1, it holds that

P
(∑
t∈I

(X⊤
t v)

2 ≥ cx|I|
4
∥v∥22 − C2 log(n ∨ p)∥v∥21 ∀v ∈ Rp and ∀|I| ≥ Css log(n ∨ p)

)
≤ n−5

where C2 > 0 is an absolute constant only depending on Cx.

Proof. By the well known restricted eigenvalue condition, for any I, it holds that

P
(∑
t∈I

(X⊤
t v)

2 ≥ cx|I|
4
∥v∥22 − C2 log(n ∨ p)∥v∥21 ∀v ∈ Rp

)
≤ C3 exp(−c3|I|).

Since |I| ≥ Css log(n ∨ p),

P
(∑
t∈I

(X⊤
t v)

2 ≥ cx|I|
4
∥v∥22 − C2 log(n ∨ p)∥v∥21 ∀v ∈ Rp

)
≤ n−4.

Since there are at most n2 many subinterval I ⊂ (0, n], it follows from a union bound argument that

P
(∑
t∈I

(X⊤
t v)

2 ≥ cx|I|
4
∥v∥22 − C2 log(n ∨ p)∥v∥21 ∀v ∈ Rp and ∀|I| ≥ Css log(n ∨ p)

)
≤ n−2.

Lemma D.16. Suppose Assumption D.1 holds. There exists a sufficient large constant Cs such that the following conditions
holds.

a. With probability at least 1− n−3, it holds that∣∣∣∣∣ 1|I|∑
i∈I

ϵiX
⊤
i β

∣∣∣∣∣ ≤ Cσϵ
√

log(n ∨ p)
|I|

∥β∥1 (D.61)

uniformly for all β ∈ Rp and all I ⊂ (0, n] such that |I| ≥ Css log(n ∨ p),
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b. Let {ui}ni=1 ⊂ Rp be a collection of deterministic vectors. Then with probability at least 1 − n−3, it holds
that ∣∣∣∣∣ 1|I|∑

i∈I
u⊤i XiX

⊤
i β −

1

|I|
∑
i∈I

u⊤i Σβ

∣∣∣∣∣ ≤ C
(

max
1≤i≤n

∥ui∥2
)√

log(n ∨ p)
|I|

∥β∥1 (D.62)

uniformly for all β ∈ Rp and all I ⊂ (0, n] such that |I| ≥ Css log(n ∨ p).

Proof. The justification of the (D.61) is similar and simpler than the justification of (D.62). For conciseness, only the
justification of (D.62) is presented.

For any I ⊂ (0, n] such that |I| ≥ Css log(n ∨ p), it holds that∣∣∣∣∣ 1|I|∑
i∈I

u⊤i XiX
⊤
i β −

1

|I|
∑
i∈I

u⊤i Σβ

∣∣∣∣∣
=

∣∣∣∣∣
(

1

|I|
∑
i∈I

u⊤i XiX
⊤
i −

1

|I|
∑
i∈I

u⊤i Σ

)
β

∣∣∣∣∣
≤ max

1≤j≤p

∣∣∣∣∣ 1|I|∑
i∈I

u⊤i XiXi,j −
1

|I|
∑
i∈I

u⊤i Σ(, j)

∣∣∣∣∣ ∥β∥1.
Note that E(u⊤i XiXi,j) = u⊤i Σ(, j) and in addition,

u⊤i Xi ∼ N(0, u⊤i Σui) and Xi,j ∼ N(0,Σ(j, j)).

So u⊤i XiXi,j is a sub-exponential random variable such that

u⊤i XiXi,j ∼ SE(u⊤i ΣuiΣ(j, j)).

As a result, for γ < 1 and every j,

P

(∣∣∣∣∣ 1|I|∑
i∈I

u⊤i XiXi,j − u⊤Σ(, j)

∣∣∣∣∣ ≥ γ
√

max
1≤i≤n

(u⊤i Σui)Σ(j, j)

)
≤ exp(−cγ2|I|).

Since √
u⊤i ΣuiΣ(j, j) ≤ Cx∥ui∥2,

by union bound,

P

(
max
1≤j≤p

∣∣∣∣∣ 1|I|∑
i∈I

u⊤i XiXi,j −
1

|I|
∑
i∈I

u⊤i Σ(, j)

∣∣∣∣∣ ≥ γCx
(

max
1≤i≤n

∥ui∥2
))
≤ p exp(−cγ2|I|).

Let γ = 3
√

log(n∨p)
c|I| . Note that γ < 1 if |I| ≥ Css log(n ∨ p) for sufficiently large Cs. Therefore

P

(
max
1≤j≤p

∣∣∣∣∣ 1|I|∑
i∈I

u⊤i XiXi,j −
1

|I|
∑
i∈I

u⊤i Σ(, j)

∣∣∣∣∣ ≥ C1

√
log(n ∨ p)
|I|

(
max
1≤i≤n

∥ui∥2
))
≤ p exp(−9 log(n ∨ p)).

Since there are at most n2 many intervals I ⊂ (0, n], it follows that

P

(
max
1≤j≤p

∣∣∣∣∣ 1|I|∑
i∈I

u⊤i XiXi,j −
1

|I|
∑
i∈I

u⊤i Σ(, j)

∣∣∣∣∣ ≥ C1

√
log(n ∨ p)
|I|

(
max
1≤i≤n

∥ui∥2
)
∀|I| ≥ Css log(n ∨ p)

)
≤pn2 exp(−9 log(n ∨ p)) ≤ n−3.

This immediately gives (D.62).
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Lemma D.17. Uder Assumption D.1, for any interval I ⊂ (0, n], for any

λ ≥ λ1 := Cλσϵ
√

log(np) , (D.63)

where Cλ > 0 is a large enough absolute constant, it holds with probability at least 1− n−5 that

∥
∑
i∈I

ϵiXi∥∞ ≤ λ
√
max{|I|, log(np)} /8, (D.64)

where c3 > 0 is an absolute constant depending only on the distributions of covariants {Xi} and {ϵi}.

Proof. Since ϵi’s are sub-Gaussian random variables and Xi’s are sub-Gaussian random vectors, we have that ϵiXi’s are
sub-Exponential random vectors with ∥ϵiXi∥ψ1 ≤ Cxσϵ (see e.g. Lemma 2.7.7 in Vershynin, 2018). It then follows from
Bernstein’s inequality (see e.g. Theorem 2.8.1 in Vershynin, 2018) that for any t > 0,

P

{
∥
∑
i∈I

ϵiXi∥∞ > t

}
≤ 2p exp

{
−cmin

{
t2

|I|C2
xσ

2
ϵ

,
t

Cxσϵ

}}
. (D.65)

Taking

t = CλCx/4σϵ
√

log(np)
√

max{|I|, log(np)} (D.66)

yields the conclusion.

Lemma D.18. Suppose Assumption D.1 holds. Let I ⊂ [1, n]. Denote κ = mink∈{1,...,K} κk, where {κk}Kk=1 are defined
in Assumption D.1. Then for any i ∈ [T ],

∥β∗
I − β∗

i ∥2 ≤ Cκ ≤ CCκ,

for some absolute constant C independent of n.

Proof. It suffices to consider I = [1, n] and β∗
i = β∗

1 as the general case is similar. Observe that

∥β∗
[1,n] − β

∗
1∥2 =∥ 1

n

n∑
i=1

β∗
i − β∗

1∥2 = ∥ 1
n

K∑
k=0

∆kβ
∗
ηk+1 −

1

n

K∑
k=0

∆kβ
∗
1∥2

≤ 1

n

K∑
k=0

∥∥∆k(β
∗
ηk+1 − β∗

1)
∥∥
2
≤ 1

n

K∑
k=0

∆k(K + 1)κ ≤ (K + 1)κ.

By Assumption D.1, both κ and K bounded above.

Lemma D.19. Let t ∈ I = (s, e] ⊂ [1, n]. Denote κmax = maxk∈{1,...,K} κk, where {κk}Kk=1 are defined in Assump-
tion D.1. Then

sup
0<s<t<e≤n

∥β∗
(s,t] − β

∗
(t,e]∥2 ≤ Cκ ≤ CCκ.

for some absolute constant C independent of n.

Proof. It suffices to consider (s, e] = (0, n], as the general case is similar. Suppose that ηq < t ≤ ηq+1. Observe that

∥β∗
(1,t] − β

∗
(t,n]∥2

=

∥∥∥∥∥1t
t∑
i=1

β∗
i −

1

n− t

n∑
i=t+1

β∗
i

∥∥∥∥∥
2

=

∥∥∥∥∥∥1t
(
q−1∑
k=0

∆kβ
∗
ηk+1 + (t− ηq)β∗

ηq+1

)
− 1

n− t

 K∑
k=q+1

∆kβ
∗
ηk+1 + (ηq+1 − t)β∗

ηq+1

∥∥∥∥∥∥
2
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=

∥∥∥∥∥∥1t
(
q−1∑
k=0

∆k(β
∗
ηk+1 − β∗

ηq+1)

)
+ β∗

ηq+1 −
1

n− t

 K∑
k=q+1

∆k(β
∗
ηk+1 − β∗

ηq+1)

− β∗
ηq+1

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥1t
(
q−1∑
k=0

∆k(β
∗
ηk+1 − β∗

ηq+1)

)
− 1

n− t

 K∑
k=q+1

∆k(β
∗
ηk+1 − β∗

ηq+1)

∥∥∥∥∥∥
2

≤1

t

q−1∑
k=0

∆kKκ+
1

n− t

K∑
k=q+1

∆kKκ ≤ 2Kκ.
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E. Gaussian graphical model
In this section, we will present the proof of Theorem 3.9. Throughout this section, we use Σ for covariance matrices and Ω
for precision matrices. For any generic interval I ⊂ [1, n], denote Ω∗

I = 1
|I|
∑
i∈I Ω∗

i and

Ω̂I = argmin
Ω∈Sp+

∑
i∈I

Tr[Ω⊤XiX
⊤
i ]− |I| log |Ω|.

Also, unless specially mentioned, in this section, we set the goodness-of-fit function F(I) in Algorithm 1 to be

F(Ω̂I , I) =

{
0 if |I| < CFp log(p ∨ n);∑
i∈I Tr[Ω̂⊤XiX

⊤
i ]− |I| log |Ω̂| otherwise.

(E.1)

where CF is a universal constant.

Additional notations. Before presenting more details on Gaussian graphical model, we introduce some additional
notations while reviewing some notations we used in the main text. We use Sp+ to denote the cone of positive semidefinite

matrices in Rp×p. For a matrix A ∈ Rm×n, we use ∥A∥F :=
√∑

i∈[m]

∑
j∈[n]A

2
ij to denote its Forbenius norm,

∥A∥op = supv∈Rp ∥Av∥2/∥v∥2 as its operator norm, and Tr(A) =
∑
i∈[m∧n]Aii to denote its trace. For a square matrix

A ∈ Rn×n, denote its determinant by |A|. For two matrices A,B ∈ Rp×p, A ⪯ B means that B −A ∈ Sp+. For a random
vector X ∈ Rp, we denote gX as the subgaussian norm (Vershynin, 2018): gX := sup{∥v⊤X∥ψ2

: v ∈ Rp, ∥v∥2 = 1}.

Assumptions. For the ease of presentation, we combine the SNR condition we will use throughout this section and
Assumption 3.8 into a single assumption. Besides, we would like to point out that although we assume that {Xi}i∈[n]

are Gaussian vectors in Assumption 3.8, it is actually only compulsory for the proof of the conquer step. Throughout
this section for the divide step, it suffices to assume that {Xi}i∈[n] are subgaussian vectors with bounded Orlicz norm
supi∈[n] ∥Xi∥ψ2

≤ gX <∞ where gX is some absolute constant. Thus, we keep gX in all results in this section, although
when {Xi}i∈[n] are Gaussian it holds that gX = CX .

Assumption E.1 (Gaussian graphical model). Suppose that Assumption E.1 holds. In addition, suppose that ∆minκ
2 ≥

Bnp2 log2(n ∨ p) as is assumed in Theorem 3.9.

Proposition E.2. Suppose Assumption E.1 holds. Let P̂ denote the output of Algorithm 2. Then with probability at least
1− Cn−3, the following conditions hold.

(i) For each interval I = (s, e] ∈ P̂ containing one and only one true change point ηk, it must be the case that

min{ηk − s, e− ηk} ≲ Cγg
4
X

C2
X

c6X

p2 log(n ∨ p)
κ2k

+ g4X
C6
X

c6X
B−1
n ∆min.

(ii) For each interval I = (s, e] ∈ P̂ containing exactly two true change points, say ηk < ηk+1, it must be the case that

ηk − s ≲ B−1/2
n ∆min and e− ηk+1 ≲ B−1/2

n ∆min.

(iii) No interval I ∈ P̂ contains strictly more than two true change points; and

(iv) For all consecutive intervals I1 and I2 in P̂ , the interval I1 ∪ I2 contains at least one true change point.

Proof. The four cases are proved in Lemma E.8, Lemma E.9, Lemma E.10, and Lemma E.11, respectively.

Proposition E.3. Suppose Assumption E.1 holds. Let P̂ be the output of Algorithm 2. Suppose γ ≥ CγKB−1
n ∆minκ

2 for
sufficiently large constant Cγ . Then with probability at least 1− Cn−3, |P̂| = K.
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Proof of Proposition E.3. Denote G∗
n =

∑n
i=1[Tr[(Ω

∗
i )

⊤XiX
⊤
i ] − log |Ω∗

i |]. Given any collection {t1, . . . , tm}, where
t1 < · · · < tm, and t0 = 0, tm+1 = n, let

Gn(t1, . . . , tm) =

m∑
k=1

tk+1∑
i=tk+1

F(Ω̂(tk,tk+1], (tk, tk+1]). (E.2)

For any collection of time points, when defining (E.2), the time points are sorted in an increasing order.

Let {η̂k}K̂k=1 denote the change points induced by P̂ . Suppose we can justify that

G∗
n +Kγ ≥Gn(s1, . . . , sK) +Kγ − C(K + 1)

g2X
c4X

p2 log(n ∨ p)
κ2

− C
∑
k∈[K]

κ2kB−1
n ∆min (E.3)

≥Gn(η̂1, . . . , η̂K̂) + K̂γ − C ′
1(K + 1)

g2X
c4X

p2 log(n ∨ p)
κ2

− C ′
1

∑
k∈[K]

κ2kB−1
n ∆min (E.4)

≥Gn(η̂1, . . . , η̂K̂ , η1, . . . , ηK) + K̂γ − C1(K + 1)
g2X
c4X

p2 log(n ∨ p)
κ2

− C1

∑
k∈[K]

κ2kB−1
n ∆min (E.5)

and that

G∗
n −Gn(η̂1, . . . , η̂K̂ , η1, . . . , ηK) ≤ C2(K + K̂ + 2)

g4X
c2X

p2 log(n ∨ p). (E.6)

Then it must hold that |P̂| = K, as otherwise if K̂ ≥ K + 1, then

C2(K + K̂ + 2)
g4X
c2X

p2 log(n ∨ p) ≥ G∗
n −Gn(η̂1, . . . , η̂K̂ , η1, . . . , ηK)

≥ (K̂ −K)γ − C1(K + 1)
g4X
c2X

p2 log(n ∨ p).

Therefore due to the assumption that |P̂| = K̂ ≤ 3K, it holds that

[C2(4K + 2) + C1(K + 1)]
g4X
c2X

p2 log(n ∨ p) ≥ (K̂ −K)γ ≥ γ. (E.7)

Note that (E.7) contradicts the choice of γ. Therefore, it remains to show Equation (E.3) to Equation (E.6).

Step 1. Equation (E.3) holds because Ω̂I is (one of) the minimizer of F(Ω, I) for any interval I.

Step 2. Equation (E.4) is guaranteed by the definition of P̂ .

Step 3. For every I = (s, e] ∈ P̂ , by Proposition E.2, we know that I contains at most two change points. We only show
the proof for the two-change-points case as the other case is easier. Denote

I = (s, ηq] ∪ (ηq, ηq+1] ∪ (ηq+1, e] = J1 ∪ J2 ∪ J3, (E.8)

where {ηq, ηq+1} = I ∩ {ηk}Kk=1.

For each m = 1, 2, 3, by definition it holds that

F(Ω̂Jm ,Jm) ≤ F(Ω∗
Jm ,Jm). (E.9)

On the other hand, by Lemma E.7, we have

F(Ω̂I ,Jm) ≥ F(Ω∗
Jm ,Jm)− C g

4
X

c2X
p2 log(n ∨ p).
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Therefore the last two inequalities above imply that

∑
i∈I
F(Ω̂I , I) ≥

3∑
m=1

∑
i∈Jm

F(Ω̂I ,Jm)

≥
3∑

m=1

∑
i∈Jm

F(Ω̂Jm ,Jm)− C g
4
X

c2X
p2 log(n ∨ p). (E.10)

Then (E.5) is an immediate consequence of (E.10).

Step 4. Finally, to show (E.6), let P̃ denote the partition induced by {η̂1, . . . , η̂K̂ , η1, . . . , ηK}. Then |P̃| ≤ K + K̂ + 2

and that Ω∗
i is unchanged in every interval I ∈ P̃ . So Equation (E.6) is an immediate consequence of Lemma E.6.

E.1. Fundamental lemmas

Lemma E.4 (Deviation, Gaussian graphical model). Let I = (s, e] be any generic interval, and define the loss
function F(Ω, I) =

∑
i∈I Tr[Ω⊤(XiX

⊤
i )] − |I| log |Ω|. Define Ω̂I = argminΩ∈S+ L(Ω, I) and F∗(Ω∗, I) =∑

i∈I [Tr((Ω
∗
i )

⊤(XiX
⊤
i ))− log |Ω∗

i |].

a. If I contains no change points. Then it holds that

P
(
|F(Ω̂I , I)−F∗(Ω∗, I)| ≥ C g

4
X

c2X
p2 log(n ∨ p)

)
≤ (n ∨ p)−3.

b. Suppose that the interval I = (s, e] contains one and only one change point ηk. Denote

J = (s, ηk] and J ′ = (ηk, e].

Then it holds that

P
(
|F(Ω̂I , I)−F∗(I)| ≥ C2

Xp

c8X

|J ||J ′|
|I|

κ2k + C
g4XC

2
X

c4X
p2 log(n ∨ p)

)
≤ (n ∨ p)−3.

Proof. We show b as a immediately follows from b with |J ′| = 0. Denote

J = (s, ηk] and J ′ = (ηk, e].

Let Ω̃I = ( 1
|I|
∑
i∈I Σ∗

i )
−1. Then by Taylor expansion and Lemma E.5, we have

|F(Ω̂I , I)−F(Ω̃I , I)|

≤|Tr[(Ω̂I − Ω̃I)
⊤(
∑
i∈I

XiX
⊤
i − |I|Ω̃−1

I )]|+ C2
X

2
|I|∥Ω̂I − Ω̃I∥2F

≤|I|∥Ω̂I − Ω̃I∥F ∥Σ̂I − Ω̃−1
I ∥F +

C2
X

2
|I|∥Ω̂I − Ω̃I∥2F

≤C g
4
X

c2X
p2 log(n ∨ p) + C

g4XC
2
X

c4X
p2 log(n ∨ p) ≤ C g

4
XC

2
X

c4X
p2 log(n ∨ p). (E.11)

On the other hand, it holds that

|F(Ω̃I , I)−F∗(Ω∗, I)|

≤|Tr[(Ω̃I − ΩJ )⊤(
∑
i∈J

XiX
⊤
i − |J |Ω−1

J )]|+ C2
X

2
|J |∥Ω̃I − ΩJ ∥2F

+ |Tr[(Ω̃I − ΩJ ′)⊤(
∑
i∈J ′

XiX
⊤
i − |J ′|Ω−1

J ′ )]|+
C2
X

2
|J ′|∥Ω̃I − ΩJ ′∥2F . (E.12)
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To bound ∥Ω̃I − ΩJ ∥F and ∥Ω̃I − ΩJ ′∥F , notice that for two positive definite matrices Σ1,Σ2 ∈ S+ and two positive
numbers w1, w2 such that w1 + w2 = 1, we have

∥(w1Σ1 + w2Σ2)
−1 − Σ−1

1 ∥F
≤√p ∥(w1Σ1 + w2Σ2)

−1 − Σ−1
1 ∥op

=
√
p ∥(w1Σ1 + w2Σ2)

−1[Σ1 − (w1Σ1 + w2Σ2)]Σ
−1
1 ∥op

≤√p ∥(w1Σ1 + w2Σ2)
−1∥op∥Σ1 − (w1Σ1 + w2Σ2)∥op∥Σ−1

1 ∥op
≤∥(w1Σ1 + w2Σ2)

−1∥op∥Σ−1
1 ∥op ·

√
p w2∥Σ1 − Σ2∥op

≤∥(w1Σ1 + w2Σ2)
−1∥op∥Σ−1

1 ∥op∥Σ1∥op∥Σ2∥op ·
√
p w2∥Σ−1

1 − Σ−1
2 ∥op.

Therefore, under Assumption E.1, it holds that

∥Ω̃I − ΩJ ∥F ≤
C2
X

c2X

|J ′|
|I|
√
p κk, ∥Ω̃I − ΩJ ′∥F ≤

C2
X

c2X

|J |
|I|
√
p κk, (E.13)

where in the second inequality we use the fact that 2ab ≤ a2 + b2. As a consequence, Equation (E.12) can be bounded as

|F(Ω̃I , I)−F∗(Ω∗, I)|

≤C
g2Xp

√
log(n ∨ p)

c2XC
−2
X

κk(
|J ′||J | 12
|I|

+
|J ′| 12 |J |
|I|

) +
C6
Xp

2c4X
κ2k(
|J ||J ′|2

|I|2
+
|J ′||J |2

|I|2
)

≤C g
4
Xp

2log(n ∨ p)
C2
X

+
C6
Xp

c4X

|J ||J ′|
|I|

κ2k. (E.14)

Combine Equation (E.11) and Equation (E.14) and we can get

|F(Ω̂I , I)−F∗(Ω∗, I)| ≤|F(Ω̂I , I)−F(ΩI , I)|+ |F(ΩI , I)−F∗(I)|

≤C g
4
XC

2
X

c4X
p2 log(n ∨ p) + C6

Xp

c4X

|J ||J ′|
|I|

κ2k.

Remark 5. It can be seen later that the p factor in the signal term C6
Xp

c4X

|J ||J ′|
|I| κ2k will require an additional p factor in the

number of points in the grid for DCDP, leading to an additional p2 factor in the computation time.

This factor is hard to remove because it is rooted in the approximation error

∥(w1Σ1 + w2Σ2)
−1 − Σ−1

1 ∥F .

We can try another slightly neater way of bounding this term. As is mentioned in (Željko Kereta and Klock, 2021), for two
matrices G,H ∈ Rd1×d2 , it holds that∥∥H† −G†∥∥

F
≤ min

{∥∥H†∥∥
op

∥∥G†(H−G)
∥∥
F
,
∥∥G†∥∥

op

∥∥H†(H−G)
∥∥
op

}
,

if rank(G) = rank(H) = min {d1, d2}. Therefore, we have

∥(w1Σ1 + w2Σ2)
−1 − Σ−1

1 ∥F ≤∥(w1Σ1 + w2Σ2)
−1∥op∥Σ−1

1 (w1Σ1 + w2Σ2 − Σ1)∥F
≤∥(w1Σ1 + w2Σ2)

−1∥op∥Σ−1
1 ∥w2∥Σ2 − Σ1∥F .

However, to relate ∥Σ2 − Σ1∥F to ∥Σ−1
2 − Σ−1

1 ∥F , we need to proceed in the following way:

∥Σ2 − Σ1∥F ≤
√
p ∥Σ2 − Σ1∥op

≤∥Σ1∥op∥Σ2∥op ·
√
p ∥Σ−1

2 − Σ−1
1 ∥op

≤∥Σ1∥op∥Σ2∥op ·
√
p ∥Σ−1

2 − Σ−1
1 ∥F ,

which leads to the same bound in Lemma E.4.
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Lemma E.5. Let {Xi}i∈[n] be a sequence of subgaussian vectors in Rp with Orlicz norm upper bounded by gX < ∞.
Suppose E[Xi] = 0 and E[XiX

⊤
i ] = Σi for i ∈ [n]. Consider the change point setting in Assumption E.1 and consider

a generic interval I ⊂ [1, n]. Let Σ̂I = 1
|I|
∑
i∈I XiX

⊤
i and ΣI = 1

|I|
∑
i∈I Σ∗

i . Then for any u > 0, it holds with
probability at least 1− exp(−u) that

∥Σ̂I − ΣI∥op ≲ g2X(

√
p+ u

|I|
∨ p+ u

|I|
). (E.15)

As a result, when n ≥ Csp log(n ∨ p) for some universal constant Cs > 0, it holds with probability at least 1− (n ∨ p)−7

that

∥Σ̂I − ΣI∥op ≤ Cg2X

√
p log(n ∨ p)
|I|

, (E.16)

where C is some universal constant that does not depend on n, p, gX , and Cs. In addition let Ω̂I = argminΩ∈S+ L(Ω, I)
and Ω̃I = ( 1

|I|
∑
i∈I Σ∗

i )
−1. if |I| ≥ Csp log(n ∨ p)g4X/c2X for sufficiently large constant Cs > 0, then it holds with

probability at least 1− (n ∨ p)−7 that

∥Ω̂I − Ω̃I∥op ≤ C
g2X
c2X

√
p log(n ∨ p)
|I|

. (E.17)

Proof. If there is no change point in I, then the two inequalities (E.15) and (E.16) are well-known results in the literature,
see, e.g., (Željko Kereta and Klock, 2021). Otherwise, suppose I is split by change points into q subintervals I1, · · · , Iq.
By Assumption E.1, we know that q ≤ C for some constant C <∞. Thus with probability at least 1− exp(−u),

∥Σ̂I − ΣI∥op ≤ ∥
1

|I|
∑
k∈[q]

|Ik|(Σ̂Ik − ΣIk)∥op

≤ C1g
2
X

√
p+ u

|I|
∑
k∈[q]

√
|Ik| ∨ (p+ u)

≤ C2g
2
X

√
p+ u

|I|
max
k∈[q]

|Ik| ∨ (p+ u)

≤ C2g
2
X

√
p+ u

|I|
(

√
maxk∈[q] |Ik|

|I|
∨
√
p+ u

|I|
) ≤ C2g

2
X(

√
p+ u

|I|
∨ p+ u

|I|
).

It is then straightforward to see that Equation (E.16) holds with probability at least 1− (n ∨ p)−7 when n ≥ Csp log(n ∨ p)
for some sufficiently large constant Cs > 0.

For Equation (E.17), first vanish the gradient of the loss function L(Ω, I) and we get

Ω̂I = (Σ̂I)
†.

Then Equation (E.17) is implied by Equation (E.16) and the well-known property that∥∥H† −G†∥∥
op
≤ Cmax

{
∥G†∥2op, ∥H†∥2op

}
∥H−G∥op ,

for two matrices G,H ∈ Rp×p.

E.2. Technical lemmas

Lemma E.6 (No change point). For interval I containing no change point, it holds with probability at least 1− n−5 that

F(Ω̂I , I)−F(Ω∗, I) ≥ −g4Xp2 log(n ∨ p) max
k∈[K+1]

∥Ω∗
ηk
∥2op. (E.18)
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Proof. If I < Cs
g4X
c2X
p log(n ∨ p), then F(Ω̂I , I) = F(Ω∗, I) = 0 and the conclusion holds automatically. If I ≥

Cs
g4X
c2X
p log(n ∨ p), then by Lemma E.5, it holds with probability at least 1− n−7 that

F(Ω̂I , I)−F(Ω∗, I) ≥|I|Tr[(Ω̂I − Ω∗)⊤(Σ̂I − Σ∗)] +
c|I|

2∥Ω∗∥2op
∥Ω̂I − Ω∗∥2F . (E.19)

≥− |I|∥Ω̂I − Ω∗∥F ∥Σ̂I − Σ∗∥F (E.20)

≥− |I|p∥Ω̂I − Ω∗∥op∥Σ̂I − Σ∗∥op (E.21)

≥− g4Xp2 log(n ∨ p)∥Ω∗∥2op. (E.22)

Lemma E.7. Let I ⊂ [1, T ] be any interval that contains no change point. Then for any interval J ⊃ I, it holds with
probability at least 1− (n ∨ p)−5 that

F(Ω∗
I , I) ≤ F(Ω̂J , I) + C

g4X
c2X

p2 log(n ∨ p).

Proof. The conclusion is guaranteed by Lemma E.6 Ω̂I is the minimizer of F(Ω, I).

Lemma E.8 (Single change point). Suppose the good events L(B−1
n ∆min) and R(B−1

n ∆min) defined in Equation (B.2)
hold. Let I = (s, e] ∈ P̂ be such that I contains exactly one change point ηk. Then with probability at least 1− (n ∨ p)−3,
it holds that

min{ηk − s, e− ηk} ≤ CCγg4X
C2
X

c6X

p2 log(n ∨ p)
κ2k

+ Cg4X
C6
X

c6X
B−1
n ∆min. (E.23)

Proof. If either ηk − s ≤ B−1
n ∆min or e− ηk ≤ B−1

n ∆min, then there is nothing to show. So assume that

ηk − s > B−1
n ∆min and e− ηk > B−1

n ∆min.

By eventR(p−1B−1
n ∆min), there exists su ∈ {sq}Qq=1 such that

0 ≤ su − ηk ≤ p−1B−1
n ∆min.

So
ηk ≤ su ≤ e.

Denote
I1 = (s, su] and I2 = (su, e],

andF∗(J ) =
∑
i∈J [Tr((Ω∗

i )
⊤XiX

⊤
i )−log |Ω∗

i |]. Since s, e, su ∈ {sq}Qq=1, by the definition of P̂ and Ω̂, and Lemma E.4,
it holds that

F(Ω̂I , I) ≤F(Ω̂I1
, I1) + F(Ω̂I2

, I2) + γ

≤F∗(I1) +
C6
Xp

c4X
(su − ηk)κ2k + C

g4XC
2
X

c4X
p2 log(n ∨ p) + F∗(I2) + γ

≤F∗(I) + C6
X

c4X
B−1
n ∆κ2k + C

g4XC
2
X

c4X
p2 log(n ∨ p) + γ, (E.24)

where the last inequality is due to su − ηk ≤ B−1
n ∆. Let

γ̃ =
C6
X

c4X
B−1
n ∆κ2k + C

g4XC
2
X

c4X
p2 log(n ∨ p) + γ.
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Then by Taylor expansion and Lemma E.5 we have

c

maxk∈[K] ∥Ω∗
Ik∥

2
op

∑
t∈I
∥Ω̂I − Ω∗

t ∥2F ≤ γ̃ +

k∑
i=k−1

|Ii|Tr[(Ω∗
Ii − Ω̂I)

⊤(Σ̂Ii − Σ∗
Ii)]

≤ γ̃ +

k∑
i=k−1

|Ii|∥Σ̂Ii − Σ∗
Ii∥F ∥Ω̂I − Ω∗

Ii∥F

≤ γ̃ + C1g
2
Xp log

1
2 (n ∨ p)

[
k∑

i=k−1

√
|Ii| ∥Ω̂I − Ω∗

Ii∥F

]

≤ γ̃ + C1g
2
Xp log

1
2 (n ∨ p)

√∑
t∈I
∥Ω̂I − Ω∗

t ∥2F . (E.25)

The inequality above implies that∑
t∈I
∥Ω̂I − Ω∗

t ∥2F ≤
2

c
max ∥Ω∗

Ik∥
2
op

[
γ̃ +max ∥Ω∗

Ik∥
2
op∥X∥4ψ2

p2 log(n ∨ p)
]
. (E.26)

On the other hand, ∑
t∈I
∥Ω̂I − Ω∗

t ∥2F ≥
|Ik−1||Ik|
|I|

∥Ω∗
Ik−1

− Ω∗
Ik∥

2
F , (E.27)

which implies that

min{|Ik−1|, |Ik|} ≤ C2Cγg
4
X

C2
X

c6X

p2 log(n ∨ p)
κ2k

+ C2g
4
X

C6
X

c6X
B−1
n ∆min. (E.28)

Recall that we assume for i ∈ [n], cXIp ⪯ Σi ⪯ CXIp for some universal constants cX > 0, CX <∞.

Lemma E.9 (Two change points). Suppose the good events L(B−1
n ∆min) and R(B−1

n ∆min) defined in Equation (B.2)
hold. Let I = (s, e] ∈ P̂ be an interval that contains exactly two change points ηk, ηk+1. Suppose in addition that
γ ≥ Cγ g

4
X

c2X
p2 log(n ∨ p), and

∆minκ
2 ≥ Bn

g4X
c4X

p2 log(n ∨ p), (E.29)

then with probability at least 1− n−5 it holds that

max{ηk − s, e− ηk+1} ≤ B−1/2
n ∆min. (E.30)

Proof. Since the events L(B−1
n ∆min) andR(B−1

n ∆min) hold, let su, sv be such that ηk ≤ su ≤ sv ≤ ηk+1 and that

0 ≤ su − ηk ≤ B−1
n ∆min, 0 ≤ ηk+1 − sv ≤ B−1

n ∆min.

s ηk su ηk+1sv e

Denote
I1 = (s, su], I2 = (su, sv] and I3 = (sv, e].

In addition, denote

J1 = (s, ηk], J2 = (ηk, ηk +
ηk+1 − ηk

2
], J3 = (ηk +

ηk+1 − ηk
2

, ηk+1] and J4 = (ηk+1, e].
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Since s, e, su, sv ∈ {sq}Qq=1, by the event L(p−1B−1
n ∆min) andR(p−1B−1

n ∆min), it holds with probability at least 1−n−3

that
0 ≤ su − ηk ≤ p−1B−1

n ∆min, 0 ≤ ηk+1 − sv ≤ p−1B−1
n ∆min.

Denote
I1 = (s, ηk], I2 = (ηk, ηk+1], I3 = (ηk+1, e].

By the definition of DP and Ω̂I , it holds that

F(Ω̂I , I) ≤
3∑
i=1

F(Ω̂Ii , Ii) + 2γ (E.31)

≤
3∑
i=1

F(Ω∗
Ii , Ii) + 2γ +

C6
Xp

c4X

|J1|(su − ηk)
|J1|+ su − ηk

κ2k +
C6
Xp

c4X

|J4|(ηk+1 − sv)
|J4|+ ηk+1 − sv

κ2k + C
g4XC

2
X

c4X
p2 log(n ∨ p)

(E.32)

≤
3∑
i=1

F(Ω∗
Ii , Ii) + 2γ +

C6
X

c4X
B−1
n ∆minκ

2
k + C

g4XC
2
X

c4X
p2 log(n ∨ p). (E.33)

Let

γ̃ = 2
C6
X

c4X
B−1
n ∆κ2k + C

g4XC
2
X

c4X
p2 log(n ∨ p) + 2γ.

Then by Taylor expansion and Lemma E.5 we have

cc2X
∑
t∈I
∥Ω̂I − Ω∗

t ∥2F ≤ γ̃ +

3∑
i=1

|Ii|Tr[(Ω∗
Ii − Ω̂I)

⊤(Σ̂Ii − Σ∗
Ii)]

≤ γ̃ + Cg2Xp log
1
2 (n ∨ p)

[
3∑
i=1

√
|Ii| ∥Ω̂I − Ω∗

i ∥F

]

≤ γ̃ + Cg2Xp log
1
2 (n ∨ p)

√∑
t∈I
∥Ω̂I − Ω∗

t ∥2F . (E.34)

The inequality above implies that∑
t∈I
∥Ω̂I − Ω∗

t ∥2F ≤
C1

c2X

[
γ̃ +

1

c2X
∥X∥4ψ2

p2 log(n ∨ p)
]
. (E.35)

By the choice of γ, it holds that ∑
t∈I1∪I2

∥Ω̂I − Ω∗
t ∥2F ≤

C1Cγ
c4X
∥X∥4ψ2

p2 log(n ∨ p). (E.36)

On the other hand, ∑
t∈I1∪I2

∥Ω̂I − Ω∗
t ∥2F ≥

|I1||I2|
|I|

∥Ω∗
k−1 − Ω∗

k∥2F ≥
1

2
min{|I1|, |I2|}∥Ω∗

k−1 − Ω∗
k∥2F . (E.37)

Suppose |I1| ≥ |I2|, then the inequality above leads to

∆minκ
2 ≤ C1Cγ

c4X
∥X∥4ψ2

p2 log(n ∨ p),

which is contradictory to the assumption on ∆. Therefore, |I1| < |I2| and we have

s− ηk = |I1| ≤ CCγ
g4X

c4X∥Ω∗
k − Ω∗

k−1∥2F
p2 log(n ∨ p). (E.38)

The bound for e− ηk+1 can be proved similarly.
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Lemma E.10 (Three or more change points). Suppose the assumptions in Assumption E.1 hold. Then with probability at
least 1− (n ∨ p)−3, there is no intervals in P̂ containing three or more true change points.

Proof. We prove by contradiction. Suppose I = (s, e] ∈ P̂ be such that {η1, . . . , ηM} ⊂ I with M ≥ 3. Throughout the
proof, M is assumed to be a parameter that can potentially change with n. Since the events L(B−1

n ∆min) andR(B−1
n ∆min)

hold, by relabeling {sq}Qq=1 if necessary, let {sm}Mm=1 be such that

0 ≤ sm − ηm ≤ B−1
n ∆min for 1 ≤ m ≤M − 1

and that
0 ≤ ηM − sM ≤ B−1

n ∆min.

Note that these choices ensure that {sm}Mm=1 ⊂ I.

s η1 s1 η2 s2 η3s3 e

Step 1. Denote
I1 = (s, s1], Im = (sm−1, sm] for 2 ≤ m ≤M and IM+1 = (sM , e].

Then since s, e, {sm}Mm=1 ⊂ {sq}Qq=1, it follows that

Suppose I = (s, e] ∈ P̂ and there are M ≥ 3 true change points {ηq+i}i∈[M ] inside I, and denote

I1 = (s, ηq+1], Im = (ηq+m−1, ηq+m], IM+1 = (ηq+M , e].

Then by the definition of P̂ and Ω̂Im , it holds that

F(Ω̂I , I) ≤
M+1∑
i=1

F(Ω̂Ii , Ii) +Mγ ≤
M+1∑
i=1

F(Ω∗
Ii , Ii) +Mγ,

which implies that ∑
t∈I

Tr(Ω̂⊤
I (XtX

⊤
t ))− |I| log |Ω̂I |

≤
M+1∑
i=1

∑
t∈Ii

Tr((Ω∗
Ii)

⊤(XtX
⊤
t ))−

M+1∑
i=1

|Ii| log |Ω∗
Ii |+Mγ. (E.39)

By Taylor expansion and Lemma E.5 we have

cc2X
∑
t∈I
∥Ω̂I − Ω∗

t ∥2F ≤Mγ +

M+1∑
i=1

|Ii|Tr[(Ω∗
Ii − Ω̂I)

⊤(Σ̂Ii − Σ∗
Ii)]

≤Mγ + Cg2Xp log
1
2 (n ∨ p)

[
M+1∑
i=1

√
|Ii| ∥Ω̂I − Ω∗

i ∥F

]

≤Mγ + Cg2Xp log
1
2 (n ∨ p)

√∑
t∈I
∥Ω̂I − Ω∗

t ∥2F . (E.40)

The inequality above implies that∑
t∈I
∥Ω̂I − Ω∗

t ∥2F ≤
C1

c2X

[
Mγ +

1

c2X
∥X∥4ψ2

p2 log(n ∨ p)
]
. (E.41)

On the other hand, for each i ∈ [M ], we have∑
t∈Ii∪Ii+1

∥Ω̂I − Ω∗
t ∥2F ≥

|Ii||Ii+1|
|I|

∥Ω∗
ηq+i+1

− Ω∗
ηq+i∥

2
F . (E.42)
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In addition, for each i ∈ {2, · · · ,M}, by definition, it holds that min{|Ii|, |Ii+1|} ≥ ∆min. Therefore, we have

(M − 2)∆minκ
2 ≤ C1

c2X

[
Mγ +

1

c2X
∥X∥4ψ2

p2 log(n ∨ p)
]
.

Since M/(M − 2) ≤ 3 for any M ≥ 3, it holds that

∆min ≤ CCγ
g4X

c4X∥Ω∗
k − Ω∗

k−1∥2F
p2 log(n ∨ p), (E.43)

which is contradictory to the assumption on ∆, and the proof is complete.

Lemma E.11 (Two consecutive intervals). Under Assumption E.1 and the choice that

γ ≥ Cγ
g4X
c2X

p2 log(n ∨ p),

with probability at least 1− (n ∨ p)−3, there are no two consecutive intervals I1 = (s, t] ∈ P̂ , I2 = (t, e] ∈ P̂ such that
I1 ∪ I2 contains no change points.

Proof. We prove by contradiction. Suppose that I1, I2 ∈ P̂ and

I := I1 ∪ I2

contains no change points. By the definition of P̂ and Ω̂I , it holds that

F(Ω̂I1 , I1) + F(Ω̂I2 , I2) + γ ≤ F(Ω̂I , I) ≤ F(Ω∗
I , I)

By Lemma E.6, it follows that

F(Ω∗
I1
, I1) ≤F(Ω̂I1 , I1) + C

g4X
c2X

p2 log(n ∨ p),

F(Ω∗
I2
, I2) ≤F(Ω̂I2

, I2) + C
g4X
c2X

p2 log(n ∨ p)

So

F(Ω∗
I1
, I1) + F(Ω∗

I2
, I2)− 2C

g4X
c2X

p2 log(n ∨ p) + γ ≤ F(Ω∗
I , I).

Since I does not contain any change points, Ω∗
I1

= Ω∗
I2

= Ω∗
I , and it follows that

γ ≤ 2C
g4X
c2X

p2 log(n ∨ p).

This is a contradiction when Cγ is sufficiently large.
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F. Penalized local refinement
In this section, we prove consistency results in Section 3 for penalized local refinement, or the conquer step. We also provide
more details on the computational complexity of local refinement using memorization technique which is summarized in
Section 2. In particular,

1. In Appendix F.1, we analyze the complexity of the local refinement step and show that it is linear in terms of n, as is
mentioned in Section 2.

2. Appendix F.2 presents some fundamental lemmas to prove other results.

3. Appendix F.3 prove results for the mean model, i.e., Theorem 3.4.

4. Appendix F.4 prove results for the linear regression model, i.e., Theorem 3.7.

5. Appendix F.5 prove results for the Gaussian graphical model, i.e., Theorem 3.10.

F.1. Complexity analysis

We show in Lemma F.1 that the complexity of the conquer step (Algorithm 3) can be as low as O(n · C2(p)).
Lemma F.1 (Complexity of the conquer step). For all three models we discussed in Section 3, with a memorization technique,
the complexity of Algorithm 3 would be O(n · C2(p)).

Proof. In Algorithm 3, for each k ∈ [K̂], we search over the interval of length 2
3 (∆̂k−1 + ∆̂k) where ∆̂k := η̂k+1 − η̂k.

Without any algorithmic optimization, the complexity would be O((∆̂k−1 + ∆̂k)C1(∆̂k−1 + ∆̂k, p)) where C1(m, p) is the
complexity of calculating θ̂I and F(θ̂I , I) for an interval of length m,

Under the three models in Section 3, calculating θ̂I involves the calculation of some sufficient statistics or gradients and a
gradient descent or coordinate descent procedure which is independent of |I|. Therefore, C1(|I|, p) = O(|I|) +O(C2(p)).
For instance, solving Lasso only takes O(p) time once

∑
i∈[n]XiX

⊤
i and

∑
i∈[n]Xiyi are known. In the conquer step,

each time we only update the two summations (
∑
i∈[n]XiX

⊤
i ,
∑
i∈[n]Xiyi) by one term, so we can use memorization

trick to reduce C1(∆̂k−1 + ∆̂k, p) to O(1) +O(C2(p)). Consequently, the complexity at the k− th step of Algorithm 3 can
be reduced to O((∆̂k−1 + ∆̂k)C2(p)). Taking summation over k ∈ [K̂] and considering the fact that P̂ is a segmentation of
[1, n], the total complexity of the conquer step would be∑

k∈[K̂]

O((∆̂k−1 + ∆̂k) · C2(p)) = O(n · C2(p)).

F.2. Fundamental lemma

As is introduced in Section 1, the sub-gaussian norm of a random variable is defined as (Vershynin, 2018): ∥X∥ψ2
:=

inf{t > 0 : Eψ2(|X|/t) ≤ 1} where ψ2(t) = et
2 − 1.

Similarly, for sub-exponential random variables, one can define its Orlicz norm as ∥X∥ψ1
:= inf{t > 0 : Eψ1(|X|/t) ≤ 2}

where ψ1(t) = et.
Lemma F.2. Suppose {zi}∞i=1 is a collection of independent centered sub-exponential random variables with 0 <
sup1≤i<∞ ∥zi∥ψ1

≤ 1. Then for any integer d > 0, α > 0 and any x > 0

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ exp

{
− x2

2(1 + α)

}
+ exp

{
−
√
d x

2

}
.

Proof. Denote Sn =
∑n
i=1 zi. Let ζ = sup1≤i≤∞ ∥zi∥ψ1

. For any two integers m < n and any t ≤ C1

ζ

E (exp (t (Sn − Sm))) ≤
n∏

i=m+1

E (exp (tzi)) ≤
n∏

i=m+1

E
(
C2

1 t
2/2
)
= E

[
(n−m)C2

1 t
2/2
]
.
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Let Fk denote the sigma-algebra generated by (z1, . . . , zk). Without loss of generality, assume that C1 = 1. Since Sk is
independent of Sn − Sk, this implies that when t ≥ 1/ζ

E
(
exp

{
tSn −

t2n

2

}
| Fk

)
= exp

{
tSk −

t2k

2

}
E
(
exp {t (Sn − Sk)} −

t2(n− k)
2

)
≤ exp

{
tSk −

t2k

2

}

Therefore exp
{
tSn − t2n

2

}
is a super-Martingale. Let x be given and

A = inf
{
n ≥ d, Sn ≥

√
n x
}
.

Then SA ≥
√
A x ≥

√
d x. Thus for t ≥ 1/ζ,

E
(
exp

{
t
√
d x− t2A

2

})
≤ E

(
exp

{
tSA −

t2A

2

})
≤ E

(
exp

{
tS1 −

t2

2

})
≤ 1.

By definition of A,

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ P(A ≤ (1 + α)d).

Since u→ exp
(
s
√
d x− t2u

2

)
is decreasing, it follows that

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ P

(
exp

{
t
√
d x− t2A/2

}
≥ exp

{
t
√
d x− t2(1 + α)d/2

})
.

Markov’s inequality implies that when t ≥ 1
ζ ,

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ exp

{
−t
√
d x+ t2(1 + α)d/2

}
Set

t = min

{
1

ζ
,

x

(1 + α)
√
d

}
If 1
ζ ≥

x
(1+α)

√
d

. Then t = x
(1+α)

√
d

and therefore

−t
√
d x+ t2(1 + α)d/2 = − x2

2(1 + α)

So

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ exp

{
− x2

2(1 + α)

}
.

If 1
ζ ≤

x
(1+α)

√
d

. Then t = 1
ζ ≤

x
(1+α)

√
d

and so

−t
√
d x+ t2(1 + α)d/2 ≤ −

√
d x

ζ
+

1

ζ

x

(1 + α)
√
d

(1 + α)d

2
=
−
√
d x

2ζ
.

So

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ exp

{
−
√
d x

2ζ

}
≤ exp

{
−
√
d x

2

}
,

where ζ ≤ 1 is used in the last inequality. Putting the two cases together leads the desired result.
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Lemma F.3. Suppose {zi}∞i=1 is a collection of independent centered sub-exponential random variable with 0 <
sup1≤i<∞ ∥zi∥ψ1

≤ 1. Let ν > 0 be given. For any x > 0, it holds that

P

(
r∑
i=1

zi ≤ 4
√
r{log log(4νr) + x+ 1} + 4

√
rν {log log(4νr) + x+ 1} for all r ≥ 1/ν

)
≥ 1− 2 exp(−x).

Proof. Let s ∈ Z+and Ts =
[
2s/ν, 2s+1/ν

]
. By Lemma F.2, for all x > 0,

P
(
sup
r∈Ts

∑r
i=1 zi√
r

≥ x
)
≤ exp

{
−x

2

4

}
+ exp

{
−
√
2s/ν x

2

}
≤ exp

{
−x

2

4

}
+ exp

{
− x

2
√
ν

}
.

Therefore by a union bound,

P
(
∃s ∈ Z+ : sup

r∈Ts

∑r
i=1 zi√
r

≥ 2
√
log log((s+ 1)(s+ 2)) + x + 2

√
ν {log log((s+ 1)(s+ 2)) + x}

)
≤

∞∑
s=0

2
exp(−x)

(s+ 1)(s+ 2)
= 2 exp(−x). (F.1)

For any r ≥ 2s/ν, s ≤ log(rν)/ log(2), and therefore

(s+ 1)(s+ 2) ≤ log(2rν) log(4rν)

log2(2)
≤
(
log(4rν)

log(2)

)2

.

Thus

log((s+ 1)(s+ 2)) ≤ 2 log

(
log(4rν)

log(2)

)
≤ 2 log log(4rν) + 1.

The above display together with (F.1) gives

P

(
sup
r≥1/ν

∑r
i=1 zi√
r

≥ 2
√
2r log log(4rν) + x+ 1 + 2

√
rν {log log(4rν) + x+ 1}

)
≤ 2 exp(−x).

Next we present two analogous lemmas for sub-gaussian random variables.

Lemma F.4. Suppose {zi}∞i=1 is a collection of independent centered sub-gaussian random variables with 0 <
sup1≤i<∞ ∥zi∥ψ2

≤ σ. Then for any integer d > 0, α > 0 and any x > 0

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ exp

{
− x2

2(1 + α)σ2

}
.

Proof. Denote Sn =
∑n
i=1 zi. Let ζ = sup1≤i≤∞ ∥zi∥ψ2

. For any two integers m < n,

E (exp (t (Sn − Sm))) ≤
n∏

i=m+1

E (exp (tzi)) ≤
n∏

i=m+1

E
(
ζ2t2/2

)
= E

[
(n−m)ζ2t2/2

]
.

Let Fk denote the sigma-algebra generated by (z1, . . . , zk). Since Sk is independent of Sn − Sk, this implies that

E
(
exp

{
tSn −

ζ2t2n

2

}
| Fk

)
= exp

{
tSk −

ζ2t2k

2

}
E
(
exp {t (Sn − Sk)} −

ζ2t2(n− k)
2

)
≤ exp

{
tSk −

ζ2t2k

2

}
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Therefore exp
{
tSn − ζ2t2n

2

}
is a super-martingale. Let x be given and

A = inf
{
n ≥ d, Sn ≥

√
n x
}
.

Then SA ≥
√
A x ≥

√
d x. Thus for t > 0,

E
(
exp

{
t
√
d x− ζ2t2A

2

})
≤ E

(
exp

{
tSA −

ζ2t2A

2

})
≤ E

(
exp

{
tS1 −

ζ2t2

2

})
≤ 1.

By definition of A,

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ P(A ≤ (1 + α)d).

Since u→ exp
(
s
√
d x− ζ2t2u

2

)
is decreasing, it follows that

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ P

(
exp

{
t
√
d x− ζ2t2A/2

}
≥ exp

{
t
√
d x− ζ2t2(1 + α)d/2

})
.

Markov’s inequality implies that,

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ exp

{
−t
√
d x+ ζ2t2(1 + α)d/2

}
Set t = x

ζ2(1+α)
√
d

, then

−t
√
d x+ ζ2t2(1 + α)d/2 = − x2

2(1 + α)ζ2

So

P

(
max

k∈[d,(1+α)d]

∑k
i=1 zi√
k

≥ x

)
≤ exp

{
− x2

2(1 + α)ζ2

}
.

Lemma F.5. Suppose {zi}∞i=1 is a collection of independent centered sub-gaussian random variable with 0 <
sup1≤i<∞ ∥zi∥ψ2

≤ σ. Let ν > 0 be given. For any x > 0, it holds that

P

(
r∑
i=1

zi ≤ 4σ
√
r{log log(4νr) + x+ 1} for all r ≥ 1/ν

)
≥ 1− 2 exp(−x).

Proof. Let s ∈ Z+and Ts =
[
2s/ν, 2s+1/ν

]
. By Lemma F.4, for all x > 0,

P
(
sup
r∈Ts

∑r
i=1 zi√
r

≥ x
)
≤ exp

{
− x2

4σ2

}
.

Therefore by a union bound,

P
(
∃s ∈ Z+ : sup

r∈Ts

∑r
i=1 zi√
r

≥ 2σ
√
log log((s+ 1)(s+ 2)) + x

)
≤

∞∑
s=0

2
exp(−x)

(s+ 1)(s+ 2)
= 2 exp(−x). (F.2)

For any r ≥ 2s/ν, s ≤ log(rν)/ log(2), and therefore

(s+ 1)(s+ 2) ≤ log(2rν) log(4rν)

log2(2)
≤
(
log(4rν)

log(2)

)2

.
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Thus

log((s+ 1)(s+ 2)) ≤ 2 log

(
log(4rν)

log(2)

)
≤ 2 log log(4rν) + 1.

The above display together with (F.2) gives

P

(
sup
r≥1/ν

∑r
i=1 zi√
r

≥ 2σ
√
2r log log(4rν) + x+ 1

)
≤ 2 exp(−x).
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F.3. Local Refinement in the mean model

For the ease of notations, we re-index the observations in the k-th interval by [n0] : {1, · · · , n0} (though the sample size of
the problem is still n), and denote the k-th jump size as κ and the minimal spacing between consecutive change points as ∆
(instead of ∆min in the main text).

By Assumption C.1 and the setting of the local refinement algorithm, we have for some α∗, β∗ ∈ Rp that

yi =

{
α∗ + ϵi when i ∈ (0, η]

β∗ + ϵi when i ∈ (η, n0]

where {ϵi} is an i.i.d sequence of subgaussian variables such that ∥ϵi∥ψ2
= σϵ < ∞. In addition, there exists θ ∈ (0, 1)

such that η = ⌊nθ⌋ and that ∥α∗ − β∗∥2 = κ <∞. By Assumption C.1, it holds that ∥α∗∥0 ≤ s, ∥β∗∥0 ≤ s and

s2 log2(n ∨ p)
∆κ2

→ 0. (F.3)

By Lemma F.7, with probability at least 1− n−2, there exist α̂ and β̂ such that

∥α̂− α∗∥22 ≤ C
s log(n ∨ p)

∆
and ∥α̂− α∗∥1 ≤ Cs

√
log(n ∨ p)

∆
;

∥β̂ − β∗∥22 ≤ C
s log(n ∨ p)

∆
and ∥β̂ − β∗∥1 ≤ Cs

√
log(n ∨ p)

∆
.

In fact, Lemma F.7 shows that we are able to remove the extra B−1/2
n ∆min term in the localization error in Theorem 3.3

under the same SNR condition. In Lemma F.6, we show that with slightly stronger SNR condition, the localization error can
be further reduced as is concluded in Theorem 3.4.

Let

Q̂(k) =
k∑
i=1

∥yi − α̂∥22 +
n0∑

i=k+1

∥yi − β̂∥22 and Q∗(k) =

k∑
i=1

∥yi − α∗∥22 +
n0∑

i=k+1

∥yi − β∗∥22.

Lemma F.6 (Refinement for the mean model). Let

η + r = argmax
k∈(0,n0]

Q̂(k).

Then under the assumptions above, for any given α ∈ (0, 1), it holds with probability 1− (α ∨ n−1) that

κ2r ≤ C log
1

α
.

Proof. Without loss of generality, suppose r ≥ 0. Since η + r is the minimizer, it follows that

Q̂(η + r) ≤ Q̂(η).

If r ≤ 1
κ2 , then there is nothing to show. So for the rest of the argument, for contradiction, assume that

r ≥ 1

κ2

Observe that

Q̂(η + r)− Q̂(η) =
η+r∑
i=η+1

∥yi − α̂∥22 −
η+r∑
i=η+1

∥yi − β̂∥22

Q∗(η + r)−Q∗(η) =

η+r∑
i=η+1

∥yi − α∗∥22 −
η+r∑
i=η+1

∥yi − β∗∥22
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Step 1. It follows that
η+r∑
i=η+1

∥yi − α̂∥22 −
η+r∑
i=η+1

∥yi − α∗∥22

=

η+r∑
i=η+1

∥α̂− α∗∥22 + 2 (α̂− α∗)
⊤

η+r∑
i=η+1

(yi − α∗)

=

η+r∑
i=η+1

∥α̂− α∗∥22 + 2r (α̂− α∗)
⊤
(β∗ − α∗) + 2 (α̂− α∗)

⊤
η+r∑
i=η+1

ϵi

By assumptions, we have
η+r∑
i=η+1

∥α̂− α∗∥22 ≤ C1r
s log(p)

∆
.

Similarly

r (α̂− α∗)
⊤
(β∗ − α∗) ≤ r∥α̂− α∗∥2∥β∗ − α∗∥2 ≤ C1rκ

√
s log(p)

∆

where the second equality follows from ∥β∗ − α∗∥2 = κ, and the last equality follows from (F.3). In addition,

(α̂− α∗)
⊤

η+r∑
i=η+1

ϵi ≤ ∥α̂− α∗∥1∥
η+r∑
i=η+1

ϵi∥∞

=C2s

√
log(p)

∆

√
r log(p) = C2s log(p)

√
r

∆
.

Therefore
η+r∑
i=η+1

∥yi − α̂∥22 −
η+r∑
i=η+1

∥yi − α∗∥22 ≤ C1r
s log(p)

∆
+ C1rκ

√
s log(p)

∆
+ C2s log(p)

√
r

∆

≤ C1rκ
2 s log(p)

∆κ2
+ C1rκ

2

√
s log(p)

∆κ2
+ C2s log(p)

√
rκ2

∆κ2

≤ C3rκ
2 s log(p)√

∆κ2
. (F.4)

Step 2. Using the same argument as in the previous step, it follows that
η+r∑
i=η+1

∥yi − β̂∥22 −
η+r∑
i=η+1

∥yi − β∗∥22 ≤ C3rκ
2 s log(p)√

∆κ2
.

Therefore ∣∣∣Q̂(η + r)− Q̂(η)− {Q∗(η + r)−Q∗(η)}
∣∣∣ ≤ C3rκ

2 s log(p)√
∆κ2

(F.5)

Notice that Q̂(η + r)− Q̂(η) ≤ 0, so our goal is to find a regime where Q∗(η + r)−Q∗(η) ≥ 0, in order to get rid of the
| · |.

Step 3. Observe that

Q∗(η + r)−Q∗(η) =

η+r∑
i=η+1

∥yi − α∗∥22 −
η+r∑
i=η+1

∥yi − β∗∥22

=r∥α∗ − β∗∥22 − 2

η+r∑
i=η+1

(yi − β∗)(α∗ − β∗)

=r∥α∗ − β∗∥22 − 2(α∗ − β∗)⊤
η+r∑
i=η+1

ϵi
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Let
wi =

1

κ
ϵ⊤i (α∗ − β∗)

Then {wi}∞i=1 are subgaussian random variables with bounded ψ2 norm. Therefore by Lemma F.5, uniformly for all
r ≥ 1/κ2, with probability at least 1− α/2,

r∑
i=1

wi ≤ 4

√
r

{
log log (κ2r) + log

4

α
+ 1

}
It follows that

η+r∑
i=η+1

ϵ⊤i (α∗ − β∗) ≤ 4

√
rκ2

{
log log (κ2r) + log

4

α
+ 1

}
.

Therefore

Q∗(η + r)−Q∗(η) ≥ rκ2 − 4

√
rκ2

{
log log (κ2r) + log

4

α
+ 1

}
≥ rκ2 − 4

√
rκ2{1 ∨ log log (κ2r)} − 4

√
rκ2 log

4

α
− 4
√
rκ2

(F.6)

Since x
144 − log log(x) ≥ 0 for all x > 0, when rκ2 ≥ max{144 log 4

α , 144}, we have Q∗(η + r)−Q∗(η) ≥ 0.

Step 4. Equation (F.5) and Equation (F.6) together give, uniformly for all r such that rκ2 ≥ 144(1 ∨ log 4
α ),

0 ≤ rκ2 − 4

√
rκ2

{
log log (κ2r) + log

4

α
+ 1

}
≤ C3rκ

2 s log(p)√
∆κ2

.

Since we assume that s2 log2(p)
∆κ2 → 0, this either leads to a contradiction or implies that rκ2 ≤ C4(1 ∨ log 1

α ).

Lemma F.7 (Local refinement step 1). The output η̌ of step 1 of the local refinement satisfies that with probability at least
1− n−3,

max
k∈[K]

|η̌k − ηk| ≤
Cσ2

ϵ s log(n ∨ p)
κ2

. (F.7)

Proof of Lemma F.7. For each k ∈ [K], let µ̂t = µ̂(1) if sk < t < η̌k and µ̂t = µ̂(2) otherwise, and µ∗
t be the true parameter

at time point t. First we show that under conditions K̃ = K and maxk∈[K] |η̃k − ηk| ≤ ∆/5, there is only one true change
point ηk in (sk, ek). It suffices to show that

|η̃k − ηk| ≤
2

3
(η̃k+1 − η̃k), and |η̃k+1 − ηk+1| ≤

1

3
(η̃k+1 − η̃k). (F.8)

Denote R = maxk∈[K] |η̃k − ηk|, then

η̃k+1 − η̃k = η̃k+1 − ηk+1 + ηk+1 − ηk + ηk − η̃k
= (ηk+1 − ηk) + (η̃k+1 − ηk+1) + (ηk − η̃k) ∈ [ηk+1 − ηk − 2R, ηk+1 − ηk + 2R].

Therefore, Equation (F.8) is guaranteed as long as

R ≤ 1

3
(∆− 2R),

which is equivalent to R ≤ ∆/5.

Now without loss of generality, assume that sk < ηk < η̌k < ek. Denote Ik = {sk + 1, · · · , ek}. Consider two cases:

Case 1 If
η̌k − ηk < max{Cσ2

ϵ s log(n ∨ p), Cσ2
ϵ s log(n ∨ p)/κ2},
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then the proof is done.

Case 2 If
η̌k − ηk ≥ max{Cσ2

ϵ s log(n ∨ p), Cσ2
ϵ s log(n ∨ p)/κ2},

then we proceed to prove that |η̌k − ηk| ≤ Cσ2
ϵ s log(n ∨ p)/κ2 with probability at least 1− (Tn)−3. Then we either prove

the result or get an contradiction, and complete the proof in either case.

By definition, we have

∑
t∈I
∥yt − µ̂t∥22 + ζ

p∑
i=1

√∑
i∈I

(µ̂t)2i ≤
∑
t∈I
∥yt − µ∗

t ∥22 + ζ

p∑
i=1

√∑
i∈I

(µ∗
t )

2
i ,

which implies that

∑
t∈I
∥µ∗

t − µ̂t∥22 + ζ

p∑
i=1

√∑
i∈I

(µ̂t)2i ≤ 2
∑
t∈I

(yt − µ∗
t )

⊤(µ̂t − µ∗
t ) + ζ

p∑
i=1

√∑
i∈I

(µ∗
t )

2
i .

Denote δt = µ̂t − µ∗
t . Notice that ∑

i∈[p]

√∑
i∈I

(µ∗
t )

2
i −

∑
i∈[p]

√∑
i∈I

(µ̂t)2i

=
∑
i∈[p]

√∑
i∈I

(µ∗
t )

2
i −

∑
i∈S

√∑
i∈I

(µ̂t)2i −
∑
i∈Sc

√∑
i∈I

(µ̂t)2i

≤
∑
i∈S

√∑
i∈I

(δt)2i −
∑
i∈Sc

√∑
i∈I

(δt)2i .

Now we check the cross term. Notice that the variance of
∑
t∈I(ϵt)i(δt)i is

∑
t∈I(δt)

2
i , so with probability at least

1− (n ∨ p)−5, ∑
t∈I

(yt − µ∗
t )

⊤(µ̂t − µ∗
t ) ≤ Cσϵ

√
log(n ∨ p)

∑
i∈[p]

√∑
t∈I

(δt)2i ≤
ζ

4

∑
i∈[p]

√∑
t∈I

(δt)2i ,

since ζ = Cζσϵ
√
log(n ∨ p) with sufficiently large constant Cζ . Combining inequalities above, we can get∑

t∈I
∥δt∥22 +

ζ

2

∑
i∈Sc

√∑
t∈I

(δt)2i ≤
3ζ

2

∑
i∈S

√∑
t∈I

(δt)2i

≤3ζ

2

√
s

√∑
t∈I
∥(δt)S∥22

≤3ζ

2

√
s

√∑
t∈I
∥δt∥22 ,

which implies that ∑
t∈I
∥δt∥22 ≤

9

4
sζ2 ≤ Csσ2

ϵ log(n ∨ p). (F.9)

Without loss of generality, assume that η̌ > ηk and denote

J1 = [sk, ηk),J2 = [ηk, η̌k),J3 = [η̌k, ek),

and µ(1) = µ∗
ηk−1, µ(2) = µ∗

ηk
. Then Equation (F.9) is equivalent to

J1∥µ̂(1) − µ(1)∥22 + J2∥µ̂(1) − µ(2)∥22 + J3∥µ̂(2) − µ(2)∥22 ≤ Csσ2
ϵ log(n ∨ p).
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Since |J1| = ηk − sk ≥ c0∆ with some constant c0 under Assumption C.1, we have

∆∥µ̂(1) − µ(1)∥22 ≤ c0|J1|∥µ̂(1) − µ(1)∥22 ≤ Cσ2
ϵ s log(n ∨ p) ≤ c2∆κ2, (F.10)

with some constant c2 ∈ (0, 1/4), where the last inequality is due to the fact that Bn →∞. Thus we have

∥µ̂(1) − µ(1)∥22 ≤ c2κ2.

Triangle inequality gives
∥µ̂(1) − µ(2)∥2 ≥ ∥µ(1) − µ(2)∥2 − ∥µ̂(1) − µ(1)∥2 ≥ κ/2.

Therefore, κ2|J2|/4 ≤ |J2|∥µ̂(1) − µ(2)∥22 ≤ Cσ2
ϵ s log(n ∨ p) and

|η̌k − ηk| = |J2| ≤
Cσ2

ϵ s log(n ∨ p)
κ2

.
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F.4. Local refinement in the regression model

For the ease of notations, we re-index the observations in the k-th interval by [n0] : {1, · · · , n0} (though the sample size of
the problem is still n), and denote the k-th jump size as κ and the minimal spacing between consecutive change points as ∆
(instead of ∆min in the main text).

By Assumption D.1 and the setting of the local refinement algorithm, we have

yi =

{
X⊤
i α

∗ + ϵi when i ∈ (0, η]
X⊤
i β

∗ + ϵi when i ∈ (η, n0]
.

In addition, there exists θ ∈ (0, 1) such that η = ⌊n0θ⌋ and that ∥α∗ − β∗∥2 = κ <∞. By Assumption D.1, it holds that
∥α∗∥0 ≤ s, ∥β∗∥0 ≤ s, and

s2 log3(n ∨ p)
∆κ2

→ 0. (F.11)

By Lemma F.9, with probability at least 1− n−2, the output of the first step of the PLR algorithm (Algorithm 3) α̂ and β̂
satisfies that

∥α̂− α∗∥22 ≤ C
s log(n ∨ p)

∆
and ∥α̂− α∗∥1 ≤ Cs

√
log(n ∨ p)

∆
;

∥β̂ − β∗∥22 ≤ C
s log(n ∨ p)

∆
and ∥β̂ − β∗∥1 ≤ Cs

√
log(n ∨ p)

∆
.

(F.12)

In fact, Lemma F.9 shows that we are able to remove the extra B−1/2
n ∆min term in the localization error in Theorem 3.6

under the same SNR condition. In Lemma F.8, we show that with slightly stronger SNR condition, the localization error can
be further reduced as is concluded in Theorem 3.7.

Let

Q̂(k) =
k∑
i=1

(
yi −X⊤

i α̂
)2

+

n0∑
i=k+1

(
yi −X⊤

i β̂
)2

and Q∗(k) =

k∑
i=1

(
yi −X⊤

i α
∗)2 + n0∑

i=k+1

(
yi −X⊤

i β
∗)2 .

Lemma F.8 (Refinement for regression). Let

η + r = argmax
k∈(0,n0]

Q̂(k).

Then under the assumptions above, it holds with probability at least 1− (α ∨ n−1) that

rκ2 ≤ C log2
1

α
.

where C is a universal constant that only depends on Cκ, Λmin, σϵ.

Proof. For the brevity of notations, we denote pn := n ∨ p throughout the proof. Without loss of generality, suppose r ≥ 0.
Since η + r is the minimizer, it follows that

Q̂(η + r) ≤ Q̂(η).
If r ≤ 1

κ2 , then there is nothing to show. So for the rest of the argument, for contradiction, assume that

r ≥ 1

κ2

Observe that

Q̂(t)− Q̂(η) =
η+r∑
i=η+1

(
yi −X⊤

i α̂
)2 − η+r∑

i=η+1

(
yi −X⊤

i β̂
)2

Q∗(t)−Q∗(η) =

η+r∑
i=η+1

(
yi −X⊤

i α
∗)2 − η+r∑

i=η+1

(
yi −X⊤

i β
∗)2
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Step 1. It follows that

η+r∑
i=η+1

(
yi −X⊤

i α̂
)2 − η+r∑

i=η+1

(
yi −X⊤

i α
∗)2

=

η+r∑
i=η+1

(
X⊤
i α̂−X⊤

i α
∗)2 + 2 (α̂− α∗)

⊤
Xi

η+r∑
i=η+1

(
yi −X⊤

i α
∗)

=

η+r∑
i=η+1

(
X⊤
i α̂−X⊤

i α
∗)2 + 2 (α̂− α∗)

⊤
r∑
i=1

XiX
⊤
i (β∗ − α∗) + 2 (α̂− α∗)

⊤
η+r∑
i=η+1

Xiϵi

By Lemma F.10, uniformly for all r,∥∥∥∥∥1r
r∑
i=1

XiX
⊤
i − Σ

∥∥∥∥∥
∞

≤ C

(√
log(pn)

r
+

log(pn)

r

)
.

Therefore

η+r∑
i=η+1

(
X⊤
i α̂−X⊤

i α
∗)2 =

η+r∑
i=η+1

(α̂− α∗)
⊤

r∑
i=1

{
XiX

⊤
i − Σ

}
(α̂− α∗) + r (α̂− α∗)

⊤
Σ (α̂− α∗)

≤ ∥α̂− α∗∥21

∥∥∥∥∥
r∑
i=1

XiX
⊤
i − Σ

∥∥∥∥∥
∞

+ Λmaxr∥α̂− α∗∥22

≤ C1
s2 log(pn)

∆
(
√
r log(pn) + log(pn)) + C1r

s log(p)

∆

≤ C1

√
r
s2 log3/2(pn)

∆
+ C1

s2 log2(pn)

∆
+ C1r

s log(pn)

∆

where the second inequality follows from Lemma F.10. Similarly

(α̂− α∗)
⊤

r∑
i=1

XiX
⊤
i (β∗ − α∗) = (α̂− α∗)

⊤
r∑
i=1

{
XiX

⊤
i − Σ

}
(β∗ − α∗) + r (α̂− α∗)

⊤
Σ (β∗ − α∗)

≤ ∥α̂− α∗∥1∥ (β∗ − α∗)
⊤

{
r∑
i=1

XiX
⊤
i − Σ

}
∥∞ + Λmaxr∥α̂− α∗∥2∥β∗ − α∗∥2

≤ C2s

√
log(pn)

∆
(κ
√
r log(pn) + κ log(pn)) + C2rκ

√
s log(pn)

∆
.

≤ C2sκ log(pn)

√
r

∆
+ C2sκ

√
log3(pn)

∆
+ C2rκ

√
s log(pn)

∆
.

where the second equality follows from ∥β∗ − α∗∥2 = κ and Lemma F.11. In addition,

(α̂− α∗)
⊤

η+r∑
i=η+1

Xiϵi ≤ ∥α̂− α∗∥1∥
η+r∑
i=η+1

Xiϵi∥∞

≤C3s

√
log(pn)

∆
(
√
r log(pn) + log(pn)) ≤ C3s log(pn)

√
r

∆
+ C3s

√
log3(pn)

∆
.

where the second equality follows from Lemma F.10. Therefore

η+r∑
i=η+1

(
yi −X⊤

i α̂
)2 − η+r∑

i=η+1

(
yi −X⊤

i α
∗)2
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≤C4(κ+ 1)s log(pn)

√
r

∆
+ C4(κ+ 1)s

√
log3(pn)

∆
+ C4rκ

2

√
s log(pn)

∆κ2

+ C1
s2 log2(pn)

∆
+ C1

√
r
s2 log3/2(pn)

δ

≤C4(κ+ 1)rκ2

√
s2 log2(pn)

∆κ2
+ C4(κ

2 + κ)

√
s2 log3(pn)

∆κ2
+ C4κ

√
rκ2

s2 log3/2(pn)

∆κ2

≤C4(κ+ 1)rκ2

√
s2 log2(pn)

∆κ2
+ C4κ(κ+ 1 +

√
rκ2 )

√
s2 log3(pn)

∆κ2
≤ C5(C

2
κ + 1)rκ2

√
s2 log3(pn)

∆κ2
.

where we use the assumption that ∆κ2 ≥ Bns2 log2(pn), κ ≤ Cκ, and rκ2 ≥ 1.

Step 2. Using the same argument as in the previous step, it follows that

η+r∑
i=η+1

(
yi −X⊤

i β̂
)2
−

η+r∑
i=η+1

(
yi −X⊤

i β
∗)2 ≤ C5(C

2
κ + 1)rκ2

√
s2 log3(pn)

∆κ2
.

Therefore ∣∣∣Q̂(η + r)− Q̂(η)− {Q∗(η + r)−Q∗(η)}
∣∣∣ ≤ C5(C

2
κ + 1)rκ2

√
s2 log3(pn)

∆κ2
. (F.13)

Step 3. Observe that

Q∗(η + r)−Q∗(η)

=

η+r∑
i=η+1

(
yi −X⊤

i α
∗)2 − η+r∑

i=η+1

(
yi −X⊤

i β
∗)2

=

η+r∑
i=η+1

(
X⊤
i α

∗ −X⊤
i β

∗)2 − 2

η+r∑
i=η+1

(
yi −X⊤

i β
∗) (X⊤

i α
∗ −X⊤

i β
∗)

=

η+r∑
i=η+1

(α∗ − β∗)
⊤ {

X⊤
i Xi − Σ

}
(α∗ − β∗) + r (α∗ − β∗)

⊤
Σ (α∗ − β∗)− 2

η+r∑
i=η+1

ϵi
(
X⊤
i α

∗ −X⊤
i β

∗)
Note that

zi =
1

κ2
(α∗ − β∗)

⊤ {
X⊤
i Xi − Σ

}
(α∗ − β∗)

is a sub-exponential random variable with bounded ψ1 norm. Therefore by Lemma F.3, uniformly for all r ≥ 1/κ2, with
probability at least 1− α/2,

r∑
i=1

zi ≤ 4

(√
r

{
log log (κ2r) + log

4

α
+ 1

}
+
√
rκ2

{
log log

(
κ2r
)
+ log

4

α
+ 1

})
.

It follows that

η+r∑
i=η+1

(α∗ − β∗)
⊤ {

X⊤
i Xi − Σ

}
(α∗ − β∗)

≤ 4

(
κ2

√
r

{
log log (κ2r) + log

4

α
+ 1

}
+ κ3

√
r

{
log log

(
κ2r
)
+ log

4

α
+ 1

})
.

Similarly, let

wi =
1

κ
ϵi
(
X⊤
i α

∗ −X⊤
i β

∗)
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Then {wi}∞i=1 are sub-exponential random variables with bounded ψ1 norm. Therefore by Lemma F.3, uniformly for all
r ≥ 1/κ2,

r∑
i=1

wi ≤ 4

(√
r

{
log log (κ2r) + log

4

α
+ 1

}
+
√
rκ2

{
log log

(
κ2r
)
+ log

4

α
+ 1

})
It follows that

η+r∑
i=η+1

ϵi
(
X⊤
i α

∗ −X⊤
i β

∗)
≤ 4

(√
rκ2

{
log log (κ2r) + log

4

α
+ 1

}
+ κ2

√
r

{
log log

(
κ2r
)
+ log

4

α
+ 1

})
.

Therefore

Q∗(η + r)−Q∗(η) ≥Λminrκ
2 − 4(κ+ 1)

√
rκ2

{
log log (κ2r) + log

4

α
+ 1

}
− 4(κ2 + κ)

√
rκ2

{
log log

(
κ2r
)
+ log

4

α
+ 1

}
≥Λminrκ

2 − 16
√
rκ2 (κ2 ∨ 1)(1 + log

4

α
+ {1 ∨ log log(rκ2)})

≥Λminrκ
2 − 16

√
rκ2 (C2

κ ∨ 1)(1 + log
4

α
+ {1 ∨ log log(rκ2)}).

(F.14)

where Λmin is the minimal eigenvalue of Σ. By Lemma F.12, for rκ2 ≥ 482(C2
κ∨1)2

Λ2
min

∨ e2e, Λmin

3 rκ2 ≥
√
rκ2 log log(rκ2).

Thus, when rκ2 ≥ (
482(C2

κ∨1)2

Λ2
min

log2 4
α ) ∨ e

2e, we have Q∗(η + r)−Q∗(η) ≥ 0.

Step 4. Equation (F.13) and Equation (F.13) together give that, uniformly for all r such that rκ2 ≥ (
482(C2

κ∨1)2

Λ2
min

log2 4
α )∨e

2e,

with probability at least 1− (α ∨ n−1)

Λminrκ
2 − 16

√
rκ2 (C2

κ ∨ 1)(1 + log
4

α
+ {1 ∨ log log(rκ2)}) ≤ C5(C

2
κ + 1)rκ2

√
s2 log3(pn)

∆κ2
,

which either leads to a contradiction or implies the conclusion.

In what follows, we first show that the first step in the local refinement gives estimators α̂, β̂ that satisfies Equation (F.12),
and then prove some relevant lemmas.

Lemma F.9 (Local refinement step 1). For each k ∈ [K], let η̌k, β̂(1), β̂(2) be the output of step 1 of the local refinement
algorithm for linear regression, with

R(θ(1), θ(2), η; s, e) = ζ
∑
i∈[p]

√
(η − s)(θ(1)i )2 + (e− η)(θ(2)i )2 .

and ζ = Cζ
√

log(n ∨ p) . Then with probability at least 1− n−3, it holds that

max
k∈[K̂]

|η̌k − ηk| ≤ C
s log(n ∨ p)

κ2
. (F.15)

Proof of Lemma F.9. For each k ∈ [K], let β̂t = β̂(1) if sk < t < η̂k and β̂t = β̂(2) otherwise. Let β∗
t be the true

parameter at time point t, and β(1) = β∗
ηk

and β(2) = β∗
ηk+1. First we show that under conditions K̃ = K and

maxk∈[K] |η̃k − ηk| ≤ ∆/5, there is only one true change point ηk in (sk, ek). It suffices to show that

|η̃k − ηk| ≤
2

3
(η̃k+1 − η̃k), and |η̃k+1 − ηk+1| ≤

1

3
(η̃k+1 − η̃k). (F.16)
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Denote R = maxk∈[K] |η̃k − ηk|, then

η̃k+1 − η̃k = η̃k+1 − ηk+1 + ηk+1 − ηk + ηk − η̃k
= (ηk+1 − ηk) + (η̃k+1 − ηk+1) + (ηk − η̃k) ∈ [ηk+1 − ηk − 2R, ηk+1 − ηk + 2R].

Therefore, Equation (F.16) is guaranteed as long as

R ≤ 1

3
(∆− 2R),

which is equivalent to R ≤ ∆/5.

Now without loss of generality, assume that sk < ηk < η̂k < ek. Denote Ik = {sk + 1, · · · , ek}. Consider two cases:

Case 1. If
η̂k − ηk < max{Cs(σ2

ϵ ∨ 1)s log(n ∨ p), Cs(σ2
ϵ ∨ 1)s log(n ∨ p)/κ2},

then the proof is done.

Case 2. If
η̂k − ηk ≥ max{Cs(σ2

ϵ ∨ 1)s log(n ∨ p), Cs(σ2
ϵ ∨ 1)s log(n ∨ p)/κ2},

then we proceed to prove that |η̂k − ηk| ≤ C(σ2
ϵ ∨ 1)s log(n ∨ p)/κ2 with probability at least 1 − (n ∨ p)−5. Then we

either prove the result or get an contradiction, and complete the proof in either case. The first step is to prove that with
probability at least 1− (n ∨ p)−5,

ek∑
t=sk+1

∥β̂t − β∗
t ∥22 ≤ C1sζ

2. (F.17)

By definition, it holds that

ek∑
t=sk+1

(yt −X⊤
t β̂t)

2 + ζ

p∑
i=1

√√√√ ek∑
t=sk+1

(
β̂t
)2
i
≤

ek∑
t=sk+1

(yt −X⊤
t β

∗
t )

2 + ζ

p∑
i=1

√√√√ ek∑
t=sk+1

(
β∗
t

)2
i
. (F.18)

Let δt = β̂t − β∗
t . It holds that

∑ek−1
t=sk+1 1 {δt ̸= δt+1} = 2. Then Equation (F.18) implies that

ek∑
t=sk+1

(δ⊤t Xt)
2 + ζ

p∑
i=1

√√√√ ek∑
t=sk+1

(
β̂t
)2
i
≤ 2

ek∑
t=sk+1

(yt −X⊤
t β

∗
t )δ

⊤
t Xt + ζ

p∑
i=1

√√√√ ek∑
t=sk+1

(
β∗
t

)2
i
. (F.19)

Note that

p∑
i=1

√√√√ ek∑
t=sk+1

(
β∗
t

)2
i
−

p∑
i=1

√√√√ ek∑
t=sk+1

(
β̂t
)2
i

=
∑
i∈S

√√√√ ek∑
t=sk+1

(
β∗
t

)2
i
−
∑
i∈S

√√√√ ek∑
t=sk+1

(
β̂t
)2
i
−
∑
i∈Sc

√√√√ ek∑
t=sk+1

(
β̂t
)2
i

≤
∑
i∈S

√√√√ ek∑
t=sk+1

(
δt
)2
i
−
∑
i∈Sc

√√√√ ek∑
t=sk+1

(
δt
)2
i
. (F.20)

We then examine the cross term, with probability at least 1− (n ∨ p)−5, which satisfies the following∣∣∣∣∣
ek∑

t=sk+1

(yt −X⊤
t β

∗
t )δ

⊤
t Xt

∣∣∣∣∣ =
∣∣∣∣∣

ek∑
t=sk+1

ϵtδ
⊤
t Xt

∣∣∣∣∣ =
p∑
i=1


∣∣∣∣∣∣
∑ek
t=sk+1 ϵt(δt)i(Xt)i√∑ek

t=sk+1(δt)
2
i

∣∣∣∣∣∣
√√√√ ek∑
t=sk+1

(δt)2i


76



DCDP: An Almost Linear Time Change Point Detection Methodology in High-dimensions

≤ sup
i=1,...,p

∣∣∣∣∣∣
∑ek
t=sk+1 ϵt(δt)i(Xt)i√∑ek

t=sk+1(δt)
2
i

∣∣∣∣∣∣
p∑
i=1

√√√√ ek∑
t=sk+1

(δt)2i ≤ (ζ/4)

p∑
i=1

√√√√ ek∑
t=sk+1

(δt)2i , (F.21)

where the second inequality follows from Lemma D.12.

Combining (F.18), (F.19), (F.20) and (F.21) yields

ek∑
t=sk+1

(δ⊤t Xt)
2 +

ζ

2

∑
i∈Sc

√√√√ ek∑
t=sk+1

(
δt
)2
i
≤ 3ζ

2

∑
i∈S

√√√√ ek∑
t=sk+1

(
δt
)2
i
. (F.22)

Now we are to explore the restricted eigenvalue inequality. Let

I1 = (sk, ηk], I2 = (ηk, η̂k], I3 = (η̂k, ek]. (F.23)

Then for I1, it holds that

ηk − sk = ηk −
2

3
η̃k −

1

3
η̃k

=
2

3
(ηk − ηk−1) +

2

3
(η̃k − ηk)−

2

3
(η̃k−1 − ηk−1) + (ηk − η̃k)

≥2

3
∆− 1

3
∆ =

1

3
∆, (F.24)

where the inequality follows from Assumption D.1 and Equation (F.16).

For I3, by the design of the local refinement algorithm in Algorithm 3, we have |I3| ≥ Css log(n ∨ p). Since
min{|I1|, |I3|} ≥ Css log(n ∨ p), by Lemma D.15, it holds with probability at least 1− (n ∨ p)−5 that,∑

i=1,3

∑
t∈Ii

∥δ⊤IiXt∥22

≥
∑
i=1,3

(
c′1
√
|Ii| ∥δIi∥2 − c2

√
log(p) ∥δIi∥1

)2
≥
∑
i=1,3

(
c1
√
|Ii| ∥δIi∥2 − c2

√
log(p) ∥(δIi)Sc∥1

)2
,

where the last inequality follows from ∥(δI)S∥1 ≤
√
s ∥δI∥2 and the fact that min{|I1|, |I3|} > Css log(n ∨ p). Similarly,

since |I2| > ∆ > Css log(n ∨ p), we have√∑
t∈I2

(δ⊤I2
Xt)2 ≥ c1

√
|I2| ∥δI2∥2 − c2

√
log(p) ∥δI2(S

c)∥1. (F.25)

Denote n0 = Css log(n ∨ p). We first bound the terms with ∥ · ∥1. Note that

3∑
i=1

∑
j∈Sc
|(δIi)j | ≤

√
3

√√√√ 3∑
i=1

(
∑
j∈Sc
|(δIi)j |)2

≤
√
3

√√√√ 3∑
i=1

|Ii|
n0

(
∑
j∈Sc
|(δIi)j |)2 ≤

√
3

n0

3∑
i=1

√
|Ii| (

∑
j∈Sc
|(δIi)j |)

≤
√

3

n0

∑
j∈Sc

√√√√ ek∑
t=sk+1

(δt)2j ≤
3
√
3

√
n0

∑
j∈S

√√√√ ek∑
t=sk+1

(δt)2j

≤3
√
3

√
n0

√√√√s
∑
j∈S

ek∑
t=sk+1

(δt)2j ≤
c√

log(n ∨ p)

√√√√ ek∑
t=sk+1

∥δt∥22 .
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Therefore,

c1

√√√√ ek∑
t=sk+1

∥δt∥22 −
c2√

log(n ∨ p)

√√√√ ek∑
t=sk+1

∥δt∥22

≤
3∑
i=1

c1∥δIi∥2 −
c2√

log(n ∨ p)

√√√√ ek∑
t=sk+1

∥δt∥22 ≤
√
3

√√√√ ek∑
t=sk+1

(δ⊤t Xt)2

≤3
√
ζ√
2

s1/4

(
ek∑

t=sk+1

∥δt∥22

)1/4

≤ 9ζs1/2

4c1
+
c1
2

√√√√ ek∑
t=sk+1

∥δt∥22

where the third inequality follows from (F.22) and the fact that
∑
i∈S

√∑ek
t=sk+1(δt)

2
i ≤

√
s
√∑ek

t=sk+1 ∥δt∥22 . The
inequality above implies that

c1
4

√√√√ ek∑
t=sk+1

∥δt∥22 ≤
9ζs1/2

4c1
(F.26)

Therefore,
ek∑

t=sk+1

∥β̂t − β∗
t ∥22 ≤ 81ζ2s/c41. (F.27)

Recall that β(1) = β∗
ηk

and β(2) = β∗
ηk+1. We have that

ek∑
t=sk+1

∥β̂t − β∗
t ∥22 = |I1|∥β(1) − β̂(1)∥22 + |I2|∥β(2) − β̂(1)∥22 + |I3|∥β(2) − β̂(2)∥22. (F.28)

Since ηk − sk ≥ 1
3∆ as is shown in Equation (F.24). we have that

∆∥β(1) − β̂(1)∥22/3 ≤ |I1|∥β(1) − β̂(1)∥22 ≤
C1C

2
ζ∆κ

2

sKσ2
ϵBn

≤ c3∆κ2, (F.29)

where 1/4 > c3 > 0 is an arbitrarily small positive constant. Therefore we have

∥β(2) − β̂1∥22 ≤ 3c3κ
2. (F.30)

In addition we have

∥β(2) − β̂(1)∥2 ≥ ∥β(2) − β(1)∥2 − ∥β(1) − β̂(1)∥2 ≥ κ/2. (F.31)

Therefore, it holds that

κ2|I2|/4 ≤ |I2|∥β(2) − β̂(1)∥22 ≤ C2sζ
2, (F.32)

which implies that

|η̂k − ηk| ≤
4C2sζ

2

κ2
, (F.33)

which gives the bound we want.

Lemma F.10. Suppose {Xi}ni=1
i.i.d∼ Np(0,Σ) and {ϵi}ni=1

ii.d∼ N
(
0, σ2

)
. Then it holds that

P

(
∥1
r

r∑
i=1

XiX
⊤
i − Σ∥∞ ≥ C1

(√
log(p ∨ n)

r
+

log(p ∨ n)
r

)
for all 1 ≤ r ≤ n

)
≤ (n ∨ p)−2,

P

(
∥1
r

r∑
i=1

Xiϵi∥∞ ≥ C2

(√
log(p ∨ n)

r
+

log(p ∨ n)
r

)
for all 1 ≤ r ≤ n

)
≤ (n ∨ p)−2
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Proof. Proof. For the first probability bound, observe that for any j, k ∈ [1, . . . , p], XjXk − Σjk is subexponential random
variable. Therefore for any r > 0,

P

{∣∣∣∣∣1r
r∑
i=1

XijXik − Σjk

∣∣∣∣∣ ≥ x
}
≤ exp

(
−rc1x2

)
+ exp (−rc2x)

So

P

{∥∥∥∥∥1r
r∑
i=1

XijXik − Σjk

∥∥∥∥∥
∞

≥ x

}
≤ p exp

(
−rc1x2

)
+ p exp (−rc2x) .

This gives, for sufficiently large C1 > 0,

P

{∥∥∥∥∥1r
r∑
i=1

XijXik − Σjk

∥∥∥∥∥
∞

≥ C1

(√
log(p ∨ n)

r
+

log(p ∨ n)
r

)}
≤ (n ∨ p)−3.

By a union bound,

P

{∥∥∥∥∥1r
r∑
i=1

XijXik − Σjk

∥∥∥∥∥
∞

≥ C1

(√
log(p ∨ n)

r
+

log(p ∨ n)
r

)
for all 1 ≤ r ≤ n

}
≤ (n ∨ p)−2

The desired result follows from the assumption that p ≥ nα. The second probability bound follows from the same argument
and therefore is omitted for brevity.

Lemma F.11. Suppose {Xi}ni=1
i.i.d.∼ Np(0,Σ) and u ∈ Rp is a deterministic vector such that |u|2 = 1. Then it holds that

P

(
∥u⊤

{
1

r

r∑
i=1

XiX
⊤
i − Σ

}
∥∞ ≥ C1

(√
log(p ∨ n)

r
+

log(p ∨ n)
r

)
for all 1 ≤ r ≤ n

)
≤ (n ∨ p)−2.

Proof. For fixed j ∈ [1, . . . , p], let
zi = u⊤XiXij − u⊤Σ·j ,

where Σ·j denote the j-th column of Σ. Note that zi is a sub-exponential random variable with bounded ψ1 norm. The
desired result follows from the same argument as Lemma F.10.

Lemma F.12. Given a fixed constant c > 0, for x ≥ c2 ∨ e2e, it holds that

x ≥ c(log log x)2.

Proof. Let f(x) = x−c(log log x)2 for x > 1. We have f ′(x) = 1− 2c log log x
x log x . Therefore, when x ≥ (2c)∨ee, f ′(x) > 0.

Let x0 = c2 ∨ e2e, and then
f(x0) ≥ cee − c log log e2e = c[ee − log 2− 1] > 0,

and thus f(x) > 0 for x ≥ x0 = c2 ∨ e2e.
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F.5. Local refinement in the Gaussian graphical model

For the ease of notations, we re-index the observations in the k-th interval by [n0] : {1, · · · , n0} (though the sample size of
the problem is still n), and denote the k-th jump size as κ and the minimal spacing between consecutive change points as ∆
(instead of ∆min in the main text).

By Assumption 3.8 and the setting of the local refinement algorithm, we have for some G∗, H∗ ∈ Sp+ that

E[XiX
⊤
i ] =

{
G∗ when i ∈ (0, η]
H∗ when i ∈ (η, n0]

.

In addition, there exists θ ∈ (0, 1) such that η = ⌊n0θ⌋ and that ∥G∗ −H∗∥F = κF < ∞. By Assumption 3.8, it holds
that cXId ⪯ G∗ ⪯ CXId, cXId ⪯ H∗ ⪯ CXId, and

p4 log2(pn)

∆κ2F
→ 0,

p5 log3(pn)

∆
→ 0 (F.34)

By Lemma F.16, there exist Ĝ, Ĥ such that

∥Ĝ−G∗∥op ≤ C
√
p log(n ∨ p)

∆
and ∥Ĝ−G∗∥F ≤ Cp

√
log(n ∨ p)

∆
;

∥Ĥ −H∗∥op ≤ C
√
p log(n ∨ p)

∆
and ∥Ĥ −H∗∥F ≤ Cp

√
log(n ∨ p)

∆
.

(F.35)

In fact, Lemma F.16 shows that we are able to remove the extra B−1/2
n ∆min term in the localization error in Theorem 3.9

under the same SNR condition. In Lemma F.13, we show that with slightly stronger SNR condition, the localization error
can be further reduced as is concluded in Theorem 3.10.

Let

Q̂(k) =
k∑
i=1

∥XiX
⊤
i − Ĝ∥2F +

n0∑
i=k+1

∥XiX
⊤
i − Ĥ∥2F and Q∗(k) =

k∑
i=1

∥XiX
⊤
i −G∗∥2F +

n0∑
i=k+1

∥XiX
⊤
i −H∗∥2F .

Through out this section, we use κF = ∥G∗ −H∗∥F to measure the signal.

Lemma F.13 (Refinement for covariance model). Let

η + r = argmax
k∈(0,n0]

Q̂(k).

Then under the assumptions above, it holds that

κ2F r = OP (log(n)).

Proof. For the brevity of notations, we denote n ∨ p as pn throughout the proof. Without loss of generality, suppose r ≥ 0.
Since η + r is the minimizer, it follows that

Q̂(η + r) ≤ Q̂(η).

If r ≤ C log(n)
κ2
F

, then there is nothing to show. So for the rest of the argument, for contradiction, assume that

r ≥ C log(n)

κ2F

Observe that

Q̂(t)− Q̂(η) =
η+r∑
i=η+1

∥XiX
⊤
i − Ĝ∥2F −

η+r∑
i=η+1

∥XiX
⊤
i − Ĥ∥2F

Q∗(t)−Q∗(η) =

η+r∑
i=η+1

∥XiX
⊤
i −G∗∥2F −

η+r∑
i=η+1

∥XiX
⊤
i −H∗∥2F
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Step 1. It follows that

η+r∑
i=η+1

∥XiX
⊤
i − Ĝ∥2F −

η+r∑
i=η+1

∥XiX
⊤
i −G∗∥2F

=

η+r∑
i=η+1

∥Ĝ−G∗∥2F + 2

〈
G∗ − Ĝ,

η+r∑
i=η+1

(XiX
⊤
i −G∗)

〉

=r∥Ĝ−G∗∥2F + 2r
〈
G∗ − Ĝ,H∗ −G∗

〉
+ 2

〈
G∗ − Ĝ,

η+r∑
i=η+1

(XiX
⊤
i −H∗)

〉

By assumptions, we have

r∥Ĝ−G∗∥2F ≤ C1r
p2 log(pn)

∆
.

Similarly

r
〈
G∗ − Ĝ,H∗ −G∗

〉
≤ r∥G∗ − Ĝ∥F ∥H∗ −G∗∥F ≤ C2rκF p

√
log(pn)

∆
,

where the second equality follows from ∥G∗ −H∗∥F = κF , and the last equality follows from (F.34). In addition,〈
G∗ − Ĝ,

η+r∑
i=η+1

(XiX
⊤
i −H∗)

〉
≤ ∥G∗ − Ĝ∥F ∥

η+r∑
i=η+1

(XiX
⊤
i −H∗)∥F

≤C3p

√
log(pn)

∆
(p
√
r log(pn) + p3/2 log(pn)) ≤ C3p

2 log(pn)

√
r

∆
+ C3p

2

√
p log3(pn)

∆
.

Therefore

η+r∑
i=η+1

∥XiX
⊤
i − Ĝ∥2F −

η+r∑
i=η+1

∥XiX
⊤
i −G∗∥2F

≤C1p
2 log(pn)

r

∆
+ C2rκF p

√
log(pn)

∆
+ C3p

2 log(pn)

√
r

∆
+ C3p

2

√
p log3(pn)

∆

≤C4rκ
2
F

√
p4 log2(pn)

∆κ2F
+ C4

√
p5 log3(pn)

∆
.

Step 2. Using the same argument as in the previous step, it follows that

η+r∑
i=η+1

∥XiX
⊤
i − Ĥ∥2F −

η+r∑
i=η+1

∥XiX
⊤
i −H∗∥2F ≤ C4rκ

2
F

√
p4 log2(pn)

∆κ2F
+ C4

√
p5 log3(pn)

∆
.

Therefore

∣∣∣Q̂(η + r)− Q̂(η)− {Q∗(η + r)−Q∗(η)}
∣∣∣ ≤ C4rκ

2
F

√
p4 log2(pn)

∆κ2F
+ C4

√
p5 log3(pn)

∆
. (F.36)

Step 3. Observe that

Q∗(η + r)−Q∗(η) =

η+r∑
i=η+1

∥XiX
⊤
i −G∗∥2F −

η+r∑
i=η+1

∥XiX
⊤
i −H∗∥2F

=r∥G∗ −H∗∥2F − 2

〈
H∗ −G∗,

η+r∑
i=η+1

(XiX
⊤
i −H∗)

〉
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Denote D∗ = H∗ −G∗, then we can write the noise term as〈
H∗ −G∗, XiX

⊤
i −H∗〉 = X⊤

i D
∗Xi − E[X⊤

i D
∗Xi].

Since Xi’s are Gaussian, denote Σi = E[XiX
⊤
i ] = U⊤

i ΛiUi, then〈
H∗ −G∗,

η+r∑
i=η+1

(XiX
⊤
i −H∗)

〉
= Z⊤D̃Z⊤ − E[Z⊤D̃Z⊤],

where Z ∈ Rrd is a standard Gaussian vector and

D̃ = diag{U1D
∗U⊤

1 , U2D
∗U⊤

2 , · · · , UrD∗U⊤
r }.

Since ∥D̃∥F = rκ2F , by Hanson-Wright inequality, with probability at least 1− n−3, it holds uniformly for all r ≥ C log(n)
κ2
F

that

|

〈
H∗ −G∗,

η+r∑
i=η+1

(XiX
⊤
i −H∗)

〉
| ≤ C5∥X∥2ψ2

√
r κF log(rκ2F ).

Therefore, by Hanson-Wright inequality, uniformly for all r ≥ C log(n)
κ2
F

it holds that

Q∗(η + r)−Q∗(η) ≥ rκ2F − C5∥X∥2ψ2

√
r κF log(rκ2F ), (F.37)

and thus when r ≥ C(∥X∥4ψ2
∨ 1) log(n)

κ2
F

, Q∗(η + r)−Q∗(η) ≥ 0.

Step 4. Equation (F.36) and Equation (F.37) together give, uniformly for all r ≥ C log(n)/κ2F ,

rκ2F − C5∥X∥2ψ2

√
r κF log(rκ2F ) ≤ C4rκ

2
F

√
p4 log2(pn)

∆κ2F
+ C4

√
p5 log3(pn)

∆
,

which either leads to a contradiction or proves the conclusion since we assume that p
4 log2(pn)
∆κ2

F
→ 0 and p5 log3(pn)

∆ → 0.

Lemma F.14. Let {Xi}i∈[n] be a sequence of subgaussian vectors in Rd with orlitz norm upper bounded ∥X∥ψ2 < ∞.
Suppose E[Xi] = 0 and E[XiX

⊤
i ] = Σ for i ∈ [n]. Let Σ̂n = 1

n

∑
i∈[n]XiX

⊤
i . Then for any u > 0, it holds with

probability at least 1− exp(−u) that

∥Σ̂n − Σ∥op ≲ ∥X∥2ψ2
(

√
d+ u

n
∨ d+ u

n
). (F.38)

Proof. This is the same as Lemma E.5.

Lemma F.15 (Hanson-Wright inequality). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent, mean zero,
sub-gaussian coordinates. Let A be an n× n matrix. Then, for every t ≥ 0, we have

P
{∣∣X⊤AX − EX⊤AX

∣∣ ≥ t} ≤ 2 exp

[
−cmin

(
t2

K4∥A∥2F
,

t

K2∥A∥op

)]
,

where K = maxi ∥Xi∥ψ2

Proof. See (Vershynin, 2018) for a proof and (Adamczak, 2015) for a generalization to random vectors with dependence.

Lemma F.16 (Local refinement step 1). Under Assumption 3.8, let {η̃k}k∈[K̃] be a set of time points satisfying

max
k∈[K]

|η̃k − ηk| ≤ ∆/5. (F.39)

Let {η̌k}k∈[K̂] be the change point estimators generated from step 1 of the local refinement algorithm with {η̃k}k∈[K̂] as

inputs and the penalty function R(·) = 0. Then with probability at least 1− Cn−3, K̂ = K and that

max
k∈[K]

|η̌k − ηk| ≲
∥X∥4ψ2

c4X

p2 log(n ∨ p)
κ2

. (F.40)
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Proof. Denote I = (sk, ek) as the input interval in the local refinement algorithm. Without loss of generality, assume that

I = I1 ∪ I2 ∪ I3 = [s, ηk) ∪ [ηk, η̌k) ∪ [η̌k, ηk+1).

For I2, there are two cases.

Case 1. If
|I2| < max{Csp log(n ∨ p), Csp log(n ∨ p)/κ2},

then the proof is complete.

Case 2. If
|I2| ≥ max{Csp log(n ∨ p), Csp log(n ∨ p)/κ2},

Then we proceed to prove that |η̌k − ηk| ≤ C
∥X∥4

ψ2

c4X
p2 log(n∨ p)/κ2 for some universal constant C > 0 with probability at

least 1− (n ∨ p)−5.

For t ∈ I, let Ω̂t be the estimator at index t. By definition, we have∑
t∈I

Tr(Ω̂⊤
t XtX

⊤
t )−

∑
t∈I

log |Ω̂t| ≤
∑
t∈I

Tr((Ω∗
t )

⊤XtX
⊤
t )−

∑
t∈I

log |Ω∗
t | (F.41)

Due to the property that

ℓt(Ω̂)− ℓt(Ω∗) ≥ Tr[(Ω̂− Ω∗)⊤(XtX
⊤
t − Σ∗)] +

c

2

1

∥Ω∗∥2op
∥Ω̂− Ω∗∥2F , (F.42)

equation (F.41) implies that

3∑
i=1

|Ii|
∥Ω̂∗

Ii∥2op
∥Ω̂Ii − Ω∗

Ii∥
2
F

≤c1
3∑
i=1

|Ii|Tr[(Ω∗
Ii − Ω̂Ii)

⊤(Σ̂Ii − Σ∗
Ii)]

≤c1
3∑
i=1

|Ii|∥Ω∗
Ii − Ω̂Ii∥F ∥Σ̂Ii − Σ∗

Ii∥F

≤
3∑
i=1

|Ii|
2∥Ω̂∗

Ii∥2op
∥Ω̂Ii − Ω∗

Ii∥
2
F + c2

3∑
i=1

|Ii|∥Σ̂Ii − Σ∗
Ii∥

2
F ∥Ω∗

Ii∥
2
op, (F.43)

where we denote Ω̂I1
= Ω̂I2

= Ω̂[sk,η̌k), Ω̂I3
= Ω̂[η̌k,ek), Ω

∗
I1

= Ω∗
ηk−1, and Ω∗

I2
= Ω∗

I3
= Ω∗

ηk
.

By the setting of local refinement, we have min{|I1|, |I3|} ≥ Csp log(n ∨ p). Therefore, by Lemma F.14, for i = 1, 2, 3, it
holds with probability at least 1− (n ∨ p)−7 that

∥Σ̂Ii − Σ∗
Ii∥

2
F ≤ p∥Σ̂Ii − Σ∗

Ii∥
2
op ≤ C∥X∥4ψ2

p2 log(n ∨ p)
|Ii|

.

Consequently, we have

3∑
i=1

|Ii|
∥Ω̂∗

Ii∥2op
∥Ω̂Ii − Ω∗

Ii∥
2
F ≤ c2

3∑
i=1

∥Ω∗
Ii∥

2
op∥X∥4ψ2

p2 log(n ∨ p). (F.44)

In particular, ∆κ2 > Bn
∥X∥4

ψ2

c4X
p2 log(n ∨ p), we have

|I1|∥Ω̂I1
− Ω∗

I1
∥2F ≤c2∥Ω̂∗

I1
∥2op

3∑
i=1

∥Ω∗
Ii∥

2
op∥X∥4ψ2

p2 log(n ∨ p)
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≤3c2
∥X∥4ψ
c4X

p2 log(n ∨ p) ≤ 1

12
∆κ2,

for sufficiently large n because Bn → ∞ as n → ∞. Since |I1| ≥ 1
3∆, it follows from the inequality above that

∥Ω̂I1
− Ω∗

I1
∥F ≤ κ

2 and thus,

∥Ω̂I2 − Ω∗
I2
∥F ≥ ∥Ω̂I2 − Ω∗

I1
∥F + ∥Ω∗

I1
− Ω∗

I2
∥F ≥

κ

2
.

Plug this back into Equation (F.44) and we can get

κ2

4
|I2| ≤ c4

∥X∥4ψ2

c4X
p2 log(n ∨ p), (F.45)

which completes the proof.
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