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Abstract

We contribute to the growing body of knowledge on more powerful and adaptive
stepsizes for convex optimization, empowered by local curvature information.
We do not go the route of fully-fledged second-order methods which require the
expensive computation of the Hessian. Instead, our key observation is that, for
some problems (e.g., when minimizing the sum of squares of absolutely convex
functions), certain local curvature information is readily available, and can be used
to obtain surprisingly powerful matrix-valued stepsizes, and meaningful theory. In
particular, we develop three new methods—LCD1, LCD2 and LCD3—where the
abbreviation stands for local curvature descent. While LCD1 generalizes gradient
descent with fixed stepsize, LCD2 generalizes gradient descent with Polyak stepsize.
Our methods enhance these classical gradient descent baselines with local curvature
information, and our theory recovers the known rates in the special case when
no curvature information is used. Our last method, LCD3, is a variable-metric
version of LCD2; this feature leads to a closed-form expression for the iterates.
Our empirical results are encouraging, and show that the local curvature descent
improves upon gradient descent.

1 Introduction

In this work we revisit the standard optimization problem

min x 1
rcRd f( )’ M
where f : R? — R is a continuous convex function with a nonempty set of minimizers &. Further,
we denote the optimal function value by f, := f(x,), where x, € X.

1.1 First-order methods

First-order methods of the Gradient Descent (GD) and Stochastic Gradient Descent (SGD) variety
have been widely adopted to solve problems of type (I)) [Polyak] [1963] [Robbins and Monro, [1951]].
Due to their simplicity and relatively low computational cost, these methods have seen great success
across many machine learning applications, and beyond. Nonetheless, GD, performing iterations of
the form

Try1 = ) — VRV f(ar), 2
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where v, > 0 is a learning rate (stepsize), suffers from several well-known drawbacks. For example,
for convex and L-smooth objectives, GD converges provided thatﬂ

o)
Y = +00 and Y < L vE>0 3)
k=0

&

[Nesterov, |2004]. For many problems, L is very large and/or unknown, and estimating its value is a
non-trivial task. Overestimation of the smoothness constant leads to unnecessarily small stepsizes,
which degrades performance, both in theory and in practice.

Polyak stepsize. When the optimal value f, is known, a very elegant solution to the above-mentioned
problems was provided by [Polyakl [1987], who proposed the use of what is now known as the Polyak
stepsize:

a1
T = SRl )

It is known that if f is convex and L-smooth, then v, > i for all £ > 0. So, unlike strategies

based on the recommendation provided by (3], Polyak stepsize can never be too small compared to
the upper bound from (3)). In fact, it is possible for -y to be larger than %, which leads to practical
benefits. Moreover, this is achieved without having to know or estimate L, which is a big advantage.
Since the function value f(x}) and the gradient V f(xy) are typically known, the only price for
these benefits is the knowledge of the optimal value f,. This may or may not be a large price to pay,
depending on the application.

Malitsky-Mishchenko stepsize. In the case of convex and locally smooth objectives, Malitsky and
Mishchenkol[2020] recently proposed an ingenious adaptive stepsize rule that iteratively builds an
estimate of the inverse local smoothness constant from the information provided by the sequence
of iterates and gradients. Furthermore, they prove their methods achieve the same or better rate of
convergence as GD, without the need to assume global smoothness. For a review of further approaches
to adaptivity, we refer the reader to Malitsky and Mishchenko| [2020], and for several extensions of
this line of work, we refer to|Zhou et al.|[2024]).

Adaptive stepsizes in deep learning. When training neural networks and other machine learning
models, issues related to the appropriate selection of stepsizes are amplified even further. Optimiza-
tion problems appearing in deep learning are not convex and may not even be L-smooth, or L is
prohibitively large, and tuning the learning rate usually requires the use of schedulers or a costly
grid search. In this domain, adaptive stepsizes have played a pivotal role in the success of first-order
optimization algorithms. Adaptive methods such as Adam, RMSProp, AMSGrad, and Adagrad scale
the stepsize at each iteration based on the gradients [Kingma and Ba, 2017, Hinton| 2014} Reddi
et al., 2019, |Duchi et al.,|2011]]. Although Adam has seen great success empirically when training
deep learning models, there is very little theoretical understanding of why it works so well. On the
other hand, Adagrad converges at the desired rate for smooth and Lipschitz objectives but is not as
successful in practice as Adam [Duchi et al.,[2011]].

1.2 Second-order methods

When f is twice differentiable and L-smooth, L can be seen as a global upper bound on the largest
eigenvalue of the Hessian of f. So, there are close connections between the way a learning rate
should be set in GD-type methods and the curvature of f.

Newton’s method. Perhaps the most well-known second-order algorithm is Newton’s method:

T+l = T — (V2f(.')3k))71 Vf(l'k)

When it works, it converges in a few iterations only. However, it may fail to converge even on convex
objectiveﬂ It needs to be modified in order to converge from any starting point, say by adding a
damping factor [Hanzely et al.,|2022] or regularization [Mishchenkol 2023]]. However, under suitable
assumptions, Newton’s method converges quadratically when started close enough to the solution.
The key difficulty in performing a Newton’s step is the computation of the Hessian and performing a

linear solve. In analogy with (), it is possible to think of (V2 f (xk)) ~! as a matrix-valued stepsize.

't is possible to use slightly larger stepsizes, by at most a factor of 2, but this is not relevant to our narrative.
2A well-known example is the function f(z) = In(e™" + €®) with 2o = 1.1.



Quasi-Newton methods. To reduce the computational cost, quasi-Newton methods such as L-
BFGS utilize an approximation of the inverse Hessian that can be computed from gradients and
iterates only, typically using the approximation V2 f(xs41)(2k11 — 1) = Vf(211) — Vf(21),
which makes sense under appropriate assumptions when ||zx11 — x| is small Nocedal and Wright
[2006], |Al-Baali et al.|[2014], |Al-Baali and Khalfan| [2007]], Dennis and Moré¢| [[1977]]. Until very
recently, quasi-Newton methods were merely efficient heuristics, with very weak theory beyond
quadratics [[Kovalev et al., 2021, Rodomanov and Nesterov, |2021]]. Furthermore, recent work has
shown that the Hessian of deep neural networks exhibits a block diagonal structure [Dong et al.,
2025[]. A deeper understanding of these diagonal patterns can facilitate the design of more efficient
adaptive algorithms for deep networks.

Polyak stepsize with second-order information. |Li et al.|[2022] recently proposed extensions of
the Polyak stepsize, named SP2 and SP2+, that incorporate second-order information. SP2 can also
be derived similarly to the Polyak stepsize. While SP2 can be utilized in the non-convex stochastic
setting, it only has convergence theory for quadratic functions and can often be very unstable in
practice. Furthermore, the quadratic constraint defined for SP2 does not guarantee that iterates
move closer to the set of minimizers. Instead, we propose an assumption similar to earlier works
Karimireddy et al.|[2018]], |Gower et al.|[2019], with the aim of using second-order information
rigorously.

1.3 Notation

All vectors are in R? unless explicitly stated otherwise. We use X, to denote the set of minimizes of
f. Matrices are uppercase and bold (e.g., A, C), the d x d zero (resp. identity) matrix is denoted by
0 (resp. I), and Sff_ is the set of d x d positive semi-definite matrices. The standard Euclidean inner

product is denoted with (-, -). For A € S%, we let ||:v||12A = (Az, z). By ||z], :== (Zle |z5|P)L/P
we denote the L, norm in R?. The Léwner order for positive semi-definite matrices is denoted with <.

2  Summary of Contributions

In this work we contribute to the growing body of knowledge on more powerful and adaptive
stepsizes, empowered by local curvature information. We do not go the route of fully-fledged
second-order methods which require the expensive computation of the Hessian.

Instead, our key observation is that, for some problems, certain local curvature
information is readily available, and can be used to obtain powerful matrix-valued
stepsizes.

The examples mentioned above, and discussed in detail in Sections [6] and [7]lead to the following
abstract assumption, which at the same time defines what we mean by the term local curvature:

Assumption 2.1 (Convexity and smoothness with local curvature). There exists a curvature map-
ping/metric/matrix C : R — Si and a constant Lc > 0 such that the inequalities

F@) + (V) e —y) + 3w —ylS,) < f@), 5)
MEY (z3y)
F@) < F@) + (VW) —v) + 3ll2 = vl S0 r0a (6)
Mg’ (w5y)

hold for all =,y € R<.

Assumption defines a new class of functions. Note that with the specific choice C(y) = 0,
@) reduces to convexity, and @ reduces to L-smoothness, with L = L. Note that any function
satisfying (3) is necessarily convex, and similarly, any L-smooth function satisfies () with any
curvature mapping C and Lc = L. However, the converse is not true: a function satisfying (6)
is not necessarily L-smooth for any finite L. Further, note that if f is p-strongly convex, then it
satisfies (3) with curvature mapping C(y) = ul. The class of convex and L-smooth functions is one



of the most studied functional classes in optimization. Furthermore, we emphasize our new class
is a strict and, as we shall see, useful generalization. We also show that many practical examples
satisfy Assumption [2.T) with a diagonal curvature mapping, which is particularly relevant in machine
learning applications as it enables efficient computation of the update steps for our algorithms.

Additionally, we want to stress that (3)) generalizes convexity, which is a global property, and thus,
(@) is also a global property, captured by the fact that we require it to hold for all 2 € R%. However,
the curvature matrix depends on y, which we will see shortly, refers to the current iterate in our
methods. So, it depends on the “locus” of the algorithm, i.e. the current iterate. This is why we
use the terminology “local”. This is not to be misunderstood or misinterpreted for “local” reach.
We elaborate on the connections between our assumptions and related notions in the literature in
Appendix [A] We now provide a brief overview of our theoretical and empirical contributions:

2.1 Local curvature and a new function class

We define a new function class, described by Assumption [2.1] extending the classical class of convex
and L-smooth functions. Further, we show that there are problems which satisfy Assumption
with nontrivial and easy-to-compute curvature mapping C (see Section[6]and Section [7).

2.2 Three new algorithms

We propose three novel algorithms for solving problem (TJ) for function f satisfying Assumption
Local Curvature Descent 1 (LCD1), Local Curvature Descent 2 (LCD2) and Local Curvature Descent
3 (LCD3). First, LCD1 generalizes GD with constant stepsize: one moves from point y to the point
obtained by minimizing the upper bound (6) on f in . Indeed, if C(y) = 0, this algorithmic design
strategy leads to gradient descent with stepsize 1/L, where L = L. Second, LCD2 generalizes GD
with Polyak stepsize: one moves from point y to the Euclidean projection of y onto the ellipsoid:

Lo(y) = {z € RY| ME (z3y) < f.}.

Indeed, if C(y) = 0, this algorithmic design leads to GD with stepsize ({@). Computing the projection
involves finding the unique root of a scalar equation in variable, which can be executed efficiently.
Third, LCD3 is obtained from LCD2 by replacing the Euclidean projection with the projection defined
by the local curvature matrix C. The projection problem then has a closed-form solution.

2.3 Theory

We prove convergence theorems for LCD1 (Theorem[4.1)) and LCD2 (Theorem[.2), with the same
O(1/k) worst case rate of GD with constant and Polyak stepsize, respectively. Previous work on
preconditioned Polyak stepsize [Abdukhakimov et al.l [2023]] fails to provide convergence theory
and uses matrix stepsizes based on heuristics. In contrast, LCD2 utilizes local curvature from
Assumption[2.1] and enjoys strong convergence guarantees.

2.4 Experiments

We demonstrate superior empirical behavior of LCD2 over the GD with Polyak stepsize across several
standard machine learning problems to which our theory applies. The presence of local curvature in
our algorithms boosts their empirical performance when compared to their counterparts not taking
advantage of local curvature.

3 Three Flavors of Local Curvature Descent

‘We now describe our methods.

3.1 Local Curvature Descent 1

Our first method, LCD1 is obtained by minimizing the upper bound from Assumption 2.1] where
Yy = T, and letting x4 ; be the minimizer:

Tpp1 = 2 — [Clar) + Le - 17 Vf(a) (LCD1)




The derivation is routine; nevertheless, the detailed steps behind Equation can be found in
Appendix If C(x) = 0 and we let L = L, we recover GD with the constant stepsize vy, = %
Note that just like GD, LCD1 is not adaptive to the smoothness parameter Lc; this parameter is
needed to perform a step.

3.2 Local Curvature Descent 2

Given any y € R?, let us define the localization set

Lo(y) ={z eR? : M&"(z,y) < f.}. @)

Due to (E]), we have X, C L¢(y), which justifies the use of the word “localization”. Furthermore,
y € X, ifand only if y € Lc(y). Therefore, Lo () separates R? in two regions: one containing
X, the other the current iterate y = x. This allows us to design our second algorithm, LCD2: we
simply project the current iterate x4 into the localization set L (), bringing it closer to the set of
optimal points X:

Tper = argmin 3z — x| (LCD2)
z€Lc(xk)

It turns out that this projection problem has an implicit parametric solution of the form

Tpgr = T — [Clar) + B - 17 Vi (), (LCD2)

where 85, > 0. Importantly, we show in Appendix[C.I]that the structure of the problem is easy: the pa-
rameter 1/ is the unique root of a scalar equation, solvable efficiently. Moreover, if C(z},) is a rank-
one matrix or a multiple of I, a closed-form solution exists. We present the details in Appendix[C.3]

When C(z) = 0, the localization set defined in @) reduces to a half-space, and LCD2 becomes GD
with Polyak stepsize. In general, LCD2 can be seen as a variant of GD with Polyak stepsize, enhanced
with local curvature. The method no longer points in the negative gradient direction anymore, of
course. We argue that one step of LCD2 improves on one step of GD with Polyak stepsize. Indeed,
since Lo (zx) C Lo(xy), with equality if and only if C(z) = 0, the point z1 obtained by LCD2
is closer to X, than what is achieved by a single step of GD with Polyak stepsize.

3.3 Local Curvature Descent 3

Our last method, LCD3, was born out of the desire to remove the need for the univariate root-finding
subroutine in order to execute the projection defining LCD2. This can be achieved by projecting using
the norm given by the local curvature matrix C(xy,) instead:

Tpy1 = argmin 3z — l‘k”?:(zk) (LCD3)
z€Lc(xk)

IfCis invertibleEI, this projection problem admits the closed-form solution

Ccl(zy)

Batt = B = (1 -\ W) C @)V (@) (LCD3)

The full derivation of this fact can be found in Appendix [D.I] Although LCD3 uses the same
localization set as LCD2, we do not provide any convergence theorem for this method. The variable
metric nature of the projection makes it technically difficult to provide a meaningful analysis of this
method. Nevertheless, we justify the introduction of LCD3 via its promising experimental behavior in
Section[8]and Appendix [G]

4 Convergence Rates

Having described the methods, this appears to be the right moment to present our main convergence
results for LCD1 and LCD2.

3We assume this for simplicity only.



Theorem 4.1 (Convergence of LCD1). Let Assumption[2.1|be satisfied. For all k > 1, the iterates of
LCD1 satisfy

To—24]|?
flan) = f < Lelzgznl®,
Theorem 4.2 (Convergence of LCD2). Let Assumption[2.1|be satisfied. For all k > 1, the iterates of
LCD2 satisfy

M LC”wO w*”2
min  f(x:) — [« < ==
1<i<k ( t) f = ok

The proofs of these results can be found in Appendix and Appendix [C.2] respectively. It is
possible to derive linear convergence results under the assumption that C(z) = ulI for all z € R?
and some 1 > 0; however, we refrain from listing these for brevity reasons.

If C(x) = 0, and we let L = L, these theorems recover the standard rates known for GD with
the stepsize 1/L and GD with Polyak stepsize, respectively. So, we generalize these earlier results.
However, it is possible for a function to satisfy Assumption[2.TJand not be L-smooth. In this sense, our
results extend the reach of the classical theorems beyond the class of convex and L-smooth functions.
On the other hand, if f is convex and L-smooth, it may be possible that it satisfies Assumption
with some nonzero local curvature mapping C, in which case we can choose L such that Lo < L.
Indeed,
inf Apin (C(z)) < L — Lo < sup Amax(C(z)),
z€R? zERA

where Apin (1) (resp. Amax(+)) represents the smallest (resp. largest) eigenvalue of the argument,
confirming Lc < L. However, it may be that Lc < L, in which case our result leads to improved
complexity. Nevertheless, the main allure of our methods is their attractive empirical behavior.

Convex quadratics. For convex quadratics, Assumption [2.1/is satisfied with C(z) = V2 f(z) and
Lc = 0. In this case, both LCD1 and LCD2 reduce to Newton’s method, and converge in a single
step. Moreover, Theorem [4.T]and Theorem [4.2] predict this one-step convergence behavior.

To validate our theoretical setting, we will show that functions satisfying Assumption[2.T]are easy to
construct, well-behaved, and practically interesting.

5 Local Curvature Calculus

We now mention a couple basic properties of functions that satisfy Inequalities (3)) and (6).

Lemma 5.1. Let o, 5 € R with 5 > 0. Suppose functions f and g satisfy inequality with
curvature mappings C1 and Cy respectively. Then:

f+a,  Bf, and f+g,

satisfy Inequality (3) with curvature mappings C1, 5C1, and Cq + C; respectively.

The proof of the lemma can be found in Appendix [E.I] A particularly useful instantiation of
Lemma[5.T]is presented in the following corollary.

Corollary 5.1. If f satisfies (B) and g is convex, then h := f + g also satisfies ().

Corollary enables us to derive a variety of examples of functions satisfying inequality (3] by
summing convex functions with instances from our class. Moreover, we can also show that inequality
(3) is preserved under pre-composition with linear functions. Additional results for functions
satisfying Assumption [2.1]can be found in Appendix [E]

6 Examples of Functions Satisfying Assumption [2.1]

We first list three examples that satisfy both inequalities in Assumption [2.1] Firstly, observe that
if a function is L-smooth, then it satisfies inequality @) since C(x) is assumed to be a positive
semi-definite matrix. We aim to find convex functions that satisfy our assumption in a non-trivial
manner, i.e., C(z) # 0 and C(z) # plI for some p > 0.



Example 6.1 (Huber loss). Let § > 0 and consider the Huber loss function h : R — R given by
1.2
ST x| <6
h(z) = {2 .
8(jz| = 30) |z >
Then f = h? satisfies Assumptionwith constant Lc = 262 and curvature mapping

22 |z| <9
Cla) = {52 2| > 6

Exampleis particularly interesting because C(z) + 262 < 352 for any € R. By computing the
second derivative of f, we can obtain the tightest L-smoothness constant; it is equal to 362. Therefore,
the variable bound we derived is at least as good as the L-smoothness bound.

Example 6.2 (Squared p norm). Let p > 2 and define f : R? — Roas f(z) = ||{EHp Then f?
satisfies Assumption with either of the two curvature mappings,

C(x) = =z Diag Iz ... Jwal”™®), Clz) =2V f(2)Vf(2)",

ez
and constant Lc = 2(p — 1).
Example 6.3 (L, regression). Suppose A € R"*? and b € R™. For p > 2, the function f(x) =
|Az — bH; , satisfies Assumptionas a precomposition of Examplewith an affine function.

Therefore, linear regression in the squared L, norm satisfies our assumption. The L, regression
problem has several applications in machine learning [Dasgupta et al., 2009, Musco et al., 2022}
Yang et al.| 2018]]. This includes low-rank matrix approximation, sparse recovery, data clustering,
and learning tasks [Adil et al.l 2023]]. In general, convex optimization in non-Euclidean geometries is
a well-studied and important research direction. This motivates us to study L, norms further and
understand how they can fit within our assumptions.

We can perform other simple modifications of L, norm that satisfy only inequality (E])
Example 6.4. Letp > 2. Then f(z) = ||$c||§ satisfies (5)) with either of the curvature mappings

Ci(2) = 41 V2f(2),  Calw) = A=V F(@)Vf(a)T.

We postpone comments to Appendix [E.3] Using Corollary [5.1] and the above examples, we can
construct regularized convex problems that satisfy our assumptions. For instance, we can add the
square of an L, norm to the logistic loss function to obtain an objective function that satisfies (5),
with the mapping from the regularizer. The objective function will be L-smooth, so it also satisfies

inequality (6).

7 Absolutely Convex Functions

In addition to the examples from Section@ we now introduce the class of absolutely convex functions,
and the problem of minimizing the sum of squares of absolutely convex functions. In this setting,
as we shall show, the curvature mapping C satisfying Inequality (3] is readily available. Absolutely
convex functions are defined as follows.

Definition 7.1 (Absolute convexity). A function ¢ : R? — R is absolutely convex if
o(x) = [6(y) + (Vo(y), = —y)| Va,y eR" ®)

Above, V(y) refers to a subgradient of ¢ at y. Geometrically, (8)) means that linear approximations
of ¢ are always above the graph of —¢ in addition to being below the graph of ¢ (same as convexity),

—o(x) < ¢(y) +(Vo(y), x — y) < d(x).
Thus, any absolutely convex function is necessarily convex and non-negative. A constant function is
absolutely convex if and only if it is non-negative. A linear function is absolutely convex if and only
if it is constant and non-negative. Moreover, the absolute value of any affine function is absolutely
convex; that is, ¢(x) = | (a, z) + b| is absolutely convex. We avoid stating basic calculus rules as in
Lemma[5.1} and opt to present only one interesting property, and one notable example. Many others
can be found in Appendix [F

Lemma 7.1. Absolutely convex functions have bounded subgradients.
Example 7.1. Ifp > 1, then ¢(z) = ||z|, is absolutely convex.



7.1 Minimizing the sum of squares of absolutely convex functions

To conclude, we present the derivation of the curvature mapping C for the sum of squares of absolutely
convex functions. Consider the optimization problem

Ty = arg min {f(x) = % > cbf(x)} , 9)
rcR4 =1

where each ¢; is absolutely convex and a solution, x,, is assumed to exist. Let f; := (b?, so that

V fi(x) = 2¢;(x)V;(x). The gradient of f is given by

Vi) =1 ; Vfilz) = 2 ile)Vebi(a).

-

i=1

Since ¢; is absolutely convex, f; is necessarily convex. Indeed, by squaring both sides of the defining
inequality (8)), we get that for all z, y € R%,

i) + (VI x = y) + (Voi(y)Vei ()" (x —y).x —y) < fi(x).
Summing these inequalities across ¢ and taking the average, we find that the curvature mapping can
be set to,

Clx) = 2 :lei(m)wi(x)i

In Appendix [G] we provide experiments on objective functions that are in this class.

8 Experiments
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Figure 1: Logistic regression on a2a dataset with Lo regularization.
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Figure 2: Logistic regression on mushrooms dataset with Ly regularization.

Through our experiments, we highlight the effectiveness of our methods on standard convex opti-
mization problems, especially when employing diagonal curvature matrices. We use a MacBook
Pro with Apple M1 chip annd 8GB of RAM. The datasets are from LibSVM [[Chang and Lin|, 201T]).
First, let us focus on solving the binary classification problem:

fl@) =5 lelog(l +emh) + M,

where a; € R% and b; € {—1,1} are the data samples. The regularization weight X is proportional to
the L-smoothness constant of the logistic regression instance.



In the first experiment, we use Lo regularization. Therefore, f is L-smooth and p-strongly-convex,
so C(z) = plI. This experiment demonstrates our LCD2 and LCD3 outperform standard adaptive
methods for convex optimization, such as the Barzilai-Borwein [Barzilai and Borwein, [1988|] and
Malitsky-Mischenko [Malitsky and Mishchenko, 2020] step sizes. As mentioned previously, in this
setting, LCD1 recovers GD and LCD2 has a closed-form solution coinciding with LCD3.Figures[TH2]
show that LCD2 consistently outperforms Polyak. As expected, the gap increases with A\ because
C(z) only stores information about the regularizer. Thus, increasing A shrinks the localization set of
LCD2 so its improvement over Polyak grows. Importantly, since LCD2 has a closed form solution, its
cost-per-iteration is the same as Polyak.

In the next experiment, we use L3 regularization. In Example we propose two C(x) matrix
candidates for ||IHZ Here we decide on the diagonal variant C;(x). The objective function is no
longer L-smooth, due to the non-smooth regularizer. As a result, we run LCD1 with the smallest
L such that the method converges. Additionally, LCD2 no longer has a closed form solution, so
the projection algorithm must be deployed. To perform a fair comparison of our algorithms, we show
both time and iteration plots.

Figure 3: Logistic regression on mushrooms dataset with L3 regularization - iteration convergence.
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Figure 4: Logistic regression on mushrooms dataset with L3 regularization - time convergence.
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Figure [3| displays similar to the Lo case improvement of LCD2 over Polyak, which grows with A.
Our heuristic LCD3 can produce satisfying results, experimentally. However, its convergence cannot
be guaranteed. In fact, as A increases it becomes unstable. LCD1 converges at comparable pace with
the other three methods at initial steps, yet the limited adaptiveness slows it down later on. Figure 4]
shows convergence of our methods in time. One may point that the plots look almost identical to
the iteration counterpart. The main reason is the cost of computing the gradient, which is O(nd).
All other operations performed by LCD3 and LCD1 are O(d). The method with the most expensive
update rule is LCD2. At every step it performs around 5 rounds of the projection algorithm, each
costing O(d). We conclude that all the methods have comparable computational cost per iteration, as
the main expense is the gradient evaluation. While the complexities discussed above are for diagonal
matrices, we remark that the general O(d?) cost is bearable when n >> d. Moreover, our examples
usually allow cheap diagonal matrix methods. Further experiments are in Appendix [G]

9 Conclusion

We explored adaptive matrix-valued stepsizes under novel assumptions that reinforce convexity and
L-smoothness with extra curvature information. Under our assumptions, we proposed LCD1 and
LCD2, which generalize GD with constant stepsize and Polyak stepsize, respectively. Moreover, we
provided convergence theorems for both of these algorithms. We also proposed LCD3 which displays



promising experimental behavior. Our key insight is that, for some problems, we have certain local
curvature information that can be readily exploited. We tested the methods on these problems using a
variety of datasets, demonstrating strong empirical performance. The main limitation of our analysis
is the restriction to a deterministic setting. We also acknowledge that the assumption has yet to be
explored in its entirety. The most natural extension of the present work is including stochasticity and
understanding the full potential of Assumption [2.1]
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A Related Assumptions

In this section, we highlight the main differences and advantages of Assumption [2.1] over other
related notions in literature such as relative smoothness and relative convexity [Bauschke et al.,[2017]
Dragomir et al., [2022] |Gower et al., 2019} |Qu et al., [2016].

Bauschke et al.| [2017] proposed the notion of smoothness relative to a kernel function. A kernel
function 4 : RY — R on closed convex subset C of R? is defined as follows,
Definition A.1. (Kernel function). A function A : R% — R is called a kernel function if,

(i) his aclosed convex proper,
(i) dom h = C,
(iii) h is continuously differentiable and strictly convex on int dom h # {).

The Bregman distance of a kernel function is defined as,
Dp(z,y) = h(z) — h(y) — (Vh(y),z —y), VYa € domh,y € Vdom h.

A function f is relatively smooth with respect to h if there exists a constant L such that Lh — f is
convex on dom h. This implies the following inequality,

fx) < f(y) + (Vf(y),z —y) + LDy(x,y), Vz € dom h,y € Vdom h.

Notably, if we choose the Euclidean kernel function h(z) = %HmHQ, we recover the classic L-smooth

assumption. Suppose M € S? is a positive semi-definite matrix. If we select h(z) = %HxHi,I, we
get an inequality that seems similar to Equation (6)),

L
f@) < f@) + (V@) — )+ Sllz —yly, Yoy € RE (10)

Furthermore, Qu et al|[2016] propose a corresponding lower bound assumption on f based on
another positive semi-definite matrix G € Si,

F) + (V@) =)+ g lle —yls < f(), Ve, € RY (an

The crucial difference between Assumption [2.1] and Equation (I0) and Equation (IT) is that the
curvature matrix in Assumption [2.1] can vary with y which allows it to capture a large class of
functions. For instance, a simple function such as the square of the Huber loss given in Example[6.1]
does not satisfy Equation for any G # 0 but does satisfy Assumption Furthermore,
the motivation for our assumption is to leverage local curvature information to develop adaptive
algorithms. Hence, the fact that C(y) varies with y, which is the current iterate in our algorithms, is
crucial to the performance as demonstrated by our numerical experiments.

Additionally, due to the variable nature of the norm in Assumption @} it is not clear that there exists
an elementary kernel function h such that LDy, (z,y) = %Hx -y Hc(y) 417+ The difficulty arises
from the fact that the matrix C(y) varies only with y. Therefore, we believe that Assumption |2.1|is
not captured by the relative smoothness framework.

The Hessian of f has also been used to define other notions of relative convexity and relative
smoothness. Specifically, there exists constants L > [ > 0 such that for all z,y € R4,

F() < ) + (VT ) — ) + 2 eyl (12)
Fw) + (V1) =) + B e~ gl < S(0) (13)

Assumption[2.T|does not restrict the curvature matrix to be the Hessian. Besides, our goal is to develop
adaptive algorithms without going the route of fully-fledged second-order methods. Thus, leveraging
readily available local curvature information without expensive computation of the Hessian is an
advantage of our assumption and methods. Further, [Li et al.|[2022] recently proposed extensions of
the Polyak step size, SP2 and SP2+, that utilize the Hessian but can be unstable in practice. Therefore,
we develop our assumption with the aim to rigorously utilize second-order information without the
need to compute the Hessian.
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B Local Curvature Descent 1 (LCD1)

B.1 Derivation

Suppose that the upper bound in (@) from Assumption holds. Then, at a given point 21 € R%,
we have:

1 2
f(@ry1) < flog) +(Vf(ar), Tra1 — ox) + §H$k+1 — Tkl S@yror Yok €RY
Minimizing the right hand side with respect to x4 we find that:
Tpyp1 =z — [Clay) + Lel] ™ Vif(ap). (14)
In particular, the matrix that pre-multiplies the vector is always invertible, since C(x) is positive
semi-definite for each = € R
B.2 Convergence proof

Lemma B.1. Let Assumptionhold. For all k > 0, the sequence (xy)ren of LCD1 is such that:

2
lzps1 =@l = lar — 23 < ~ g @kt) = flz.), VEEN. (15)

Proof. The proof is achieved by carefully bounding terms. For this reason, we split it into three steps.
We seek a connection between the two distances in the geometry induced by C(z,) := C(x) + Lcl:
2 2
2k = 2l &) = 26 — Trtr + Tt — 2l Gy
= or = @rs11Ep,) + 2 ([C@R] @k = Ths1), 2441 — 20
2
+ Ze41 = Tull &)
2 2
= llok = Trs1ll@ ) T2 (V@) Tod1 — 20) + lzit1 — 2ullgey)
2 2
= llzit1 — Trllge,) + 2 (VI (@r), Top1 — 20) + [Zh41 — 2l &0y
Rearranging the terms we obtain
2 2 2
[Tr+1 = Tellg o) = 170 = Tl gy = —l1Tr+1 = Tkl @) — 2(Vf(@k), Thr1 — @)
2
= —[|@p1 — xk”é(xk)
—2(Vf(xr), Thyr — Tk + ) — 24)
2
= —lzes1 — wrllge,) — 2(VF(2r), Thr1 — k)
+ 2(Vf(xk),zs — zk) .
In particular, we wish to bound the inner products.
Rearranging the lower bound (5)) in Assumption [2.1|for the pair (zy, Z,):
2(Vf(@r), s = aw) < 2F () = flan)) = llox = 2l

In a similar way, massaging the upper bound (6) of Assumption[2.1]for the pair (241, z) one can
derive:
—2(Vf(zk), Th+1 — zk) < [Tt — !Ek||2c(xk,) +2(f(@k) = fr41))-

Combining two previous steps we find:

[Zk41 = Tl &) = 125 = Tell&ae) < —NTht1 = Tl Eay) + 1T041 — Tkl G
+2(f (k) — F@rgn)) + 20 () = F(zn) = ok — 2ulesay
= 2(f(22) = f(@r41) — 2k — 2ullga,)-
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The positive term ||z — 24 ||é(zk) is on both sides of the inequality, so we can cancel it out:

lzirr = 2l = low = 2allior < 20f (22) = flzrn)-
Having almost removed all the C(x) norms, it suffices to apply the crude bound:
Lollers =zl = #nm = 2lfor < lone = 24lEm,)s
which holds since LI < C(xy) + Lel = é(xk)
Therefore, we obtain
ek = 2lfor = lon = 2allLor < 20£ (@) = Flaen) = =2(f(zre) = f(20).

Reordering gives the claim. O

Lemma B.2. Forany k € N, the iterations of LCD1 satisfy:
Flin) = F@) <~ IV F @y on 1 <0 (16)
Proof. Let us remind the form of the updates for each k£ € N
v =~ O] VA,

where C(z1) = C(zy,) + Ll
By Assumption[2.1] we know that

Flan) < Flaw) = (Vo). [0@] Vi) ) + 5 (V). 6] V()

1
= f(@x) = IV @)

and the claim follows by simple rearrangement. O

Having the lemmas established, let us proceed to the proof of Theorem[d.1] We want to show that if
f: R% — R satisfies Assumptionthen for any k € N, the iterates of LCD1 are such that:

L
Flaw) = fla) < 5 o — ) (17)

Proof. We use a standard Lyapunov function proof technique. For completeness, let us report it.

By Lemma [B.2] function values get closer to f, across iterations. By Lemma[B.1] the vectors get
closer in norm to an optimum.

Then, we can combine the two positive decreasing terms L ||z, — z,||* and f(z1) — f(x,) into a
Lyapunov energy function:

& = Lellzy — zl” + 2k(f (z1) — f(2.)), vk € N.

In particular, & = L¢||zo — 2 2, and we claim that & is a decreasing function. To see this, we

start by rewriting the difference:

Ekt1 — & = 2(k + 1)(f (wr41) — f(24)) — 2k(f (2x) — f(z4))
+ Lol — 2* = Loz — 2.
= 2(f(zrt1) — (i) + 2k(f(@rg1) — f(2e) — fzr) + f(24))
+ Lllzksr — 2* = Lollar — 2.
=2(f(zr41) — f(@0)) + 2k(f (2p41) — flaw))

+ Lellorrt — zl” = Lellae — 2.
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It is evident that we can apply our Lemmas as follows:

flxp1) — flzr) <0 by Lemma B2} (18)

Lollzrir — 2l* = Lollok — 2.)° < =2(f(zx11) — f(z)) by LemmaBT}  (19)
Putting everything together:
Ek1 — &k < 2(f(zpt1) — f(@4)) = 2(f(z41) — f(24)) =0,

showing that & is decreasing. As a particular case, we then find:

2k (f(xr) — f(2.)) < & < & = Lellwo — 2.,
which reordered recovers the rate of GD with stepsize i, i.e.

2
Flaw) - o) < el 2

O

Remark. For quadratic functions Assumption|2.1is satisfied with C(z) equal to the Hessian, and
Lc = 0. Thus, LCD1 convergences in one step for this class of functions.
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C Local Curvature Descent 2 (LCD2)

C.1 Derivation

Consider the minimization problem for the update step of LCD2:

. 1 2
min  —||lz — x|, 20
Lonin 5| kll (20)
where
1
Lc(zg) = {x €R?| flax) + (Vf(xx),x — zp) + §||33 - $k||z;(zk) < f*} . 21

If C(x,) is the zero matrix, we know this problem has a closed-form solution. Therefore, we focus
on the case where C(xy) is a non-zero matrix. Moreover, we assume that 2, & X,. The Lagrangian
of this problem is:

2(08) = gllo ~aul? + 8 (5l ~ oulen + (VS ax)oa = an) + o) = £.)
where 3 > 0. For optimal Z and 3 we have that V,.%(Z, ) = 0. Therefore,
7=+ B (|7 - willgge,) + VI @) =0
Isolating for z, we find that:
=z, — B [I+ BC(xk)]fl Vi(xk).

We can see [3 # 0 so the constraint is tight. The next step would be to substitute Z into the constraint
and solve for 3:

7 = elZ ) + (VT (@), & — 22 + fx) — Fo = 0.

Despite the left-hand side being a scalar function of 3, we cannot obtain a closed-form solution for
3. However, we can use an iterative root-finding sub-routine such as Newton’s method to get an
approximation of 5 cheaply and effectively. By substituting in the value of Z, we see that we need to
find the root of the following function:

H(B) = ;9; [+ BC(zx)] " Clak) [L+ BC(x1)] " gi (22)
— By [T+ BC(xx)] " g + Ay

To simplify notation, let C := C(xy), g := V f(xy) and Ay, == f(z) — f«.

In the following proposition, we confirm that H has a root in the interval [0, c0). We also show
that H is convex and monotonically decreasing on that interval. Therefore, Newton’s method is
guaranteed to converge to the root of H at a quadratic rate. In particular, we do not need H to be
monotonically decreasing; nonetheless, it is an interesting property of the problem.

Proposition C.1 (Properties of H). Let H be defined as in Equation (22). Then, for 8 > 0:
H(0)>0, H'(B)<0, H"(B)>0, ma H(B) <O. (23)
— 00

Proof. W.l.0.g. assume that C is a symmetric matrix. As a result, C is orthogonally diagonalizable
so we let C = QDQT where D is a diagonal matrix, and Q is an orthogonal matrix such that
QQ" = I. Manipulating the inverse matrix in the definition of H, we find:

I+8C(z)] " =[QQ" +8QDQ"] ™ = [QI+4D)Q"]  =QI+4D'Q".
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Let g := QT g. Let D; represent the i entry of the diagonal of D and §; represent the i entry in §.
We rewrite H as:

2
H(B) = @gTQ [1+4D] 'D[I+4D] ' Qg —Bg" QI+ D] ' Qg+ A

2
=2 gm0+ D) D1+ D) g 5T (14 AD) g+ A

5
Z 1+6D _BZI+BD At

By inspection, H is a rational function and the derivative is easily found;

oN~_ GDE @ D
ﬂ;wrﬂD _BZ(1+6D) Z;1+6D2-Jrﬁz;(lﬁLﬁDm
:‘;uww'

Since C is a positive semi-definite matrix, D; > 0 for all ¢. Thus for 8 > 0, we have H'(S) < 0.
Since the null-space of an orthogonal matrix is the singleton of the zero vector, the product § = Q' ¢
is different than zero when g # 0, which holds by the assumption z;, ¢ X,. Therefore, there is at
least one g; that is non-zero and thus, H'(3) # 0. The second derivative of H is,

d
H// Z 1+6D

By similar arguments used for the first derivative, we can show that H”(5) > 0.

To conclude, we will show that limg_, H(8) < 0. We discuss two cases separately.

Suppose C is not invertible. Then, there exists an entry ¢ of D such that D; = 0. Without loss of
generality, suppose that the last entry Dy, is equal to 0. The same reasoning will apply if more than
one entry is equal to 0. Taking the limit:

B~ F#

lim H(3) = lim >
Jim H(B) BLH;OQZ(H@ ﬁZHﬁD A
BZd_l ~9
= lim =— S Ll — — B3>+ A
BLH;OZZZ:("‘ﬂD ﬁZl+5D Bgi + B
d—1 . d—1 .
1 G2 g7
ZQZE_ E Ak—l-hm —B§?
=1 =1
= -0



Recalling our definitions, the right hand side is:
. 1 2
Jim H(8) = =3IV F @0, + F(@e) = fo.

By Lemma limg_,o, H(B) < 0. The inequality is strict when f(zx) — f. # %HVf(ask)Hé_l
In the case where equality holds, we have that limg_,o, H(8) = 0. Therefore, H does not have a
root in the interval [0, co) but the solution to the optimization problem is obtain when 5 = co. This
corresponds to the following optimal solution :

T =xp — C (k) V (k). (24)

Interestingly, under the same condition, LCD3 takes a step in the form xj, 11 = x, — C ™ (2)V f(x1).
An example of a setting where the equality condition holds is when f is a convex quadratic and C is
the Hessian of f. One can see that the update step of LCD3 and LCD2 are equivalent to Newton’s
method for that case so they both converge in one iteration. O

It may seem that using Newton’s root finding method is impractical because computing H defined in
Equation for a given [ requires performing a matrix inversion. However, this can be avoided
by computing the eigendecomposition of C(zy) at the beginning of each step of LCD2. Then
each subsequent evaluation of H done by Newton’s method sub-routine only requires inverting a
diagonal matrix and not the full matrix. Thus, the main cost at each step of LCD2 is computing the
eigendecomposition of C(z) once, which in practice is much faster than computing the inverse.
Furthermore, if C(zy,) is a diagonal matrix, the eigendecomposition of C(xy) is itself so each step
of LCD2 becomes even cheaper. Also, in practice, Newton’s method for root-finding is terminated
when |H| < e. Therefore, in the case where

1
F@n) = fu = SIV @R )

the method will run until a large enough £ is obtained and the step will become numerically equivalent
toz =1z, — C™! (xx)Vf(zg).

On a related note, Newton’s method is used to solve a similar constrained optimization problem for
trust region methods, namely, the trust region sub-problem [Nocedal and Wright, 2006]. Practical
versions of such algorithms do not iterate until convergence but are content with an approximate
solution that can be obtained in two or three iterations.

C.2 Convergence proof

Lemma C.1. Let Assumptionhold. For all k > 0, the sequence (xy)ren of LCD2 obeys the
recursion: ) ) )
[Zrt1 — 2™ < log — 24|” = [|op11 — 2]

Hence, for any k > 1, we have

2
min  ||zegr — 2l® < M.

2
0<t<k—1 k 25

Proof. Let us write down the first-order optimality conditions for the optimization problem at Step 3
of LCD2:

() — Tppr, i1 —y) 20, Vy € Lo(ar). (26)
Since x, € Lc(xk), for any k& > 0 we have
[2rr1 — z2))® = |lan — 2 ]|® = 2 @k — Tpor, T — ) + | Tprs — 22|
= ||33k - x*HQ -2 <$k — Tk+1, Tk4+1 — $*>
—2(xp — Ty 1, Tk — Tpr1) + |21 — i
= llok — zull® = 2 (@k — T, Trr1 — ) — ll@esr — il
()
< ok — 2l = Nz — 2>

Summing up these inequalities for £ = 0, ..., K — 1, we obtain (25). O
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Let us proceed to the proof of Theorem for LCD2. We show that if f : R? — R satisfies
Assumption 21| for any k& > 1 the iterates of LCD2 are such that:

min  f(xy) — fi < 7LCHxO _ x*||2
1<t<k t * = 2k

Proof. Since 41 € Lc(xy), we have
@ 1
F@rer) = flaw) +(VF(zp), trer = z0) + llzee — o [
1
= flar) +{Vf2n), thrr = 2a) + 5 llons — o [
1 2 1 2
- §||33k+1 - xk”c(zk) + §ka+1 - xk"c(zk)+LcI
1 1
= f(z) + (Vf(@r), terr —an) + Sllzern — Tkl Gan) + gk = Tl o1
&1 1 )
2 e+ §||90k+1 — ok llp o1

Lol — o
5 .

By rearranging the above inequality and applying (23] from Lemma [C.1] we get

:f*-‘r

. Loz — o)
_ < ] B o
ogrtrggq f(xtH) fo = ogrtnglllefl 2

Lc|lzo — .
- 2k '
O

Remark. For quadratic functions Assumptionis satisfied with C(x) equal to the Hessian, and
L¢ = 0. Thus, LCD2 convergences in one step for this class of functions.

C.3 Closed-form solutions

In the main text, we argued that the update step of LCD2 has a closed-form solution in certain special
cases. One interesting case is when C(x) is a rank one matrix. In the setting of minimizing the sum
of squares of absolutely convex functions, we present a special rank one matrix and the corresponding
update step of LCD2. For general rank one matrices, the update step is not as interpretable or insightful
so we leave out the computation.

Let f(z) = Z?Zl ¢?(x) where ¢; : R? — R is absolutely convex. Then f satisfies inequality (3]
with the following curvature mapping:

Cly) = %(y)w(y)w(y)?

If we use the localization set defined by this curvature mapping, we can obtain a closed-form solution
to the LCD2 update step. To simplify notation, let gx := V f(x), fx := f(zk), Ak := f(zk) — [+,
D := D(xy) and Q = Q(x). Consider the orthogonal decomposition of C(xy,):

T
. K K N N
D(ﬂ?k) = Dlag (gk J ) 07 ey 0) Q(xk) = [ 9k,1 cee 9k,d—1| »
2fk gkl
where §r. 1, ..., Jk,d—1 are d — 1 orthogonal eigenvectors that are all also orthogonal to g;.

From Appendix [C} we know that to obtain a closed-form solution of LCD2, we must find the positive
root of the following function:
2
o _ _ -
H(a) = -9 QI+ aD)"'D(I +aD)~'Q " gi — ag Q(I - aD)~'Q gy + Ay

(2fr + gy gr)? 2fi + agy gk

T 2 T
2
— o2 fk(gk gr) o Tr9y 9k
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The second equality comes from simplifying the matrix multiplications and observing that,

_ : 2f
(I+aD)™! = Diag <M7 0, ..., 0) Q'gr=lgrll, 0 ... 0F
k

Letv = g,: gr.- Since C is a rank-one matrix, we can simplify H and realize that it is a quadratic
function of a,
[ 0> 2 2frv

a? —
(2fr + av)? 2fr + av
Therefore, we will have at most two roots and there must exist a unique positive root that corresponds
to the solution of the problem (the optimalLagrange multiplier). We can solve this quadratic to obtain
an interpretable update step for LCD2. To start, we multiply the entire equation by (2 + av)? and
simplify to get,

H(a): Oé+Ak:O.

(V2 A — fro?)a® + a(dfrva — 4fEv) + 4ffa = 0.
By observing that A, = fi — f, we can simplify the expression further,
fov?a? +Afp fova — 4f2 AL = 0.

Therefore,

o — —Afefov £/ (Afefov)? + 4(fov) (AfEAL)  2fe S £2fu/ frfx
- 2f .02 N fev '

To determine which root is positive we can rearrange the terms to see that,

o — 2/ Fe (= Fi £V k)
Jxv

For a to be positive we must select the positive sign. Now recall from Appendix [C] that the update
step of LCD2 is defined as follows,

Tp1 =2 — (I +aC) Ly
=z —aQ(I+aD)'Q g
= Tk — VkIk;
where v, = awifﬁ. We substitute

2 fe + 206V T T
‘= f*v

into v, to get

2, (72fkf*+2fk\/7fkf*> 2fi (72fkf*125kﬁfkf*> ofr - 2T

fav
Ve = : — =
2y + v (M) 2fk\/7f*fkf* v

Therefore, we conclude that the update step has the following form:

2 (F(an) = V@O )
IV f ()l

The update step of LCD2 differs from the classic Polyak stepsize in that we have \/f(xy) f5 instead
of f, and we multiply by 2.

Thi1 = Tk — (zk)-

Remark. In case C(x) = cI, for ¢ > 0, LCD2 reduces to LCD3. Thus, the closed-form solution
exists.
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D Local Curvature Descent 3 (LCD3)

D.1 Derivation

Suppose the optimal value f, is known. While the update step of LCD2 does not have a closed-form
solution, the following update step does:

1
Tipr =arg min  Zlle - 2kl Gy 27)

where L () is the same localization set defined in (21). Instead of using the Ly norm, we can use
the norm induced by C(xy). Hence, this algorithm is referred to as LCD3. The benefit of using a
different norm is that we can obtain a closed-form solution to this constrained optimization algorithm.

The Lagrangian of this problem is
1 1
L(@,0) = glle —2il[g, +o (f(wk) + (Vi x),x = aw) + 517~ 2kl f*> :

If « is the optimal multiplier, then for optimal Z we get V.. (Z, &) = 0. The gradient is:
V. Z(Z,a) = Cxp)(T — 2x) + a (Vf(xr) + Clag) (T — xp)) = 0.

Isolating x, we get:

T =xp— —— [Clzy)] " . 28
T=wk -1 [C(zr)] Vf(xr) (28)
Lett := % If & =0, zx € Lc(xx), which means that the algorithm converged since 7y, € L ()

if and only if 2, € X. Then, for a generic update, we will have & # 0. Imposing V.2 (Z, @) = 0,
which means that the constraint must be tight:

Fla) + (Vf(or), 7 = o) + 5l — 2l — fo =0

Plugging T = Z(t) = (@) into the equation gives
(V@) [CER] ™ V@) + 5 (V@) [Clan)] ™ Vi) = f — fo)

The two inner products are norms of the form ||V f(z) ||[2C (2)]~1» and with more compact notation

we can write:
va(xk)H[C(xk)]*l

This equation has two roots summing up to 2, but only one of them can be of the form ¢t = 1%7 since
only one of them can be smaller than 1, with expression:

F—=1_ \/1 . 2(f(-73k)2_ fx) . (29)
va(xk)n[c(mk)]*l

Substituting back ¢ = 5 into (28), where ¢ is given by (29), leads to the method

2(f(xr) — fs _
Thi1 = Ty — (1 B ’“)2 1) ) [C(zx)] " V().
IV £ @)oo
To realize that the scalar component of the stepsize is well-defined, it suffices to show that:

B 2(f(xx) — fv)
IV £ (@) s )

which follows by reordering the result of Lemma for the pair (zg, ).

=0, (30)
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Then the update rule has a closed-form solution:

. 2(f(zk) — f+)

Tpr1 = op — 7P [Clap)] 7 Vi(ag), a2 = IV () ||
k Cgl

3D

) is promising: we apply a scalar stepsize 'y,%cm that is similar in spirit to Polyak’s in Equation (4],

In particular, the argument of the square root is always positive, making LCD3 well-defined. Routine
and “reorient” the gradient according to C; ' = [C(z)]

Moreover, at each step, we aim to be as close as possible according to local upper-lower bounds on f.
Experiments in section[8]and[G] show that the algorithm converges, but is slower than LCD2.

D.2 Convergence for quadratics
Despite not converging in general, in special cases LCD3 reduces to Newton’s method. Below, we
show that the update rule (3T) takes the form of Hessian times gradient.

Let ¢;(z) = |a]  — b;|, where a; € R% and b; € R, fori € {1,...,n}. We know from Example
that ¢; is absolutely convex. Then problem (9) becomes

n

iy L aTa -0,

=1

If x is such that ¢; (x) # 0 for all 4, then V¢, (x) = %al Therefore, in view of the computation
in Section[7| we get

2 « 2 alx—b; alx —b; T
C(x) = — ngla:quZxT:— : Zai<z lai)
(@) = 5 2 Ve Vea) T = 03 2 e
2 - (af = ;) T_ 2 - T 2
==Y —~——"aa; =— Y aa; =V-_f(x).

n "
Therefore, for least-squares problems, the LCD3 method of @) moves in Newton’s direction.
Furthermore, fy,';cm = 1 since for quadratics we have the identity

1
Fa) = fo = 51V F @) o+

Indeed, this follows from Lemma[E-3]and the fact that for quadratics, equation (3 is an identity. So,
for least-squares problems, LCD3 reduces to Newton’s method, and converges in one step.
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E Properties & Examples

E.1 On the lower bound

For clarity, the statements are repeated, but correspond to Lemma[5.1]and Corollary [5.1]

Lemma E.1. Suppose f, fi, fo : R® — R satisfy Equation () with curvature mappings C,Cy, Cy :
R? — Si, respectively. Then, the following functions satisfy Equation :

(1) f+ aforaeR, with C(-);
(2) af for a > 0, with aC(-);
(3) fi1+ fa, with C1(-) + Ca().

Proof. We prove each statement separately.
(1) For any =,y € R%, it holds:

9(x) = f(x) +a = fly) +(Vf(y),z —y) + %le ~ylew +a
= o) + (Voly).x —9) + gz~ yli%g,.

(2) Similarly, for all 2,y € R, one has:

o) = af() 2 a (1) + (V50— )+ glle vl )
= afly) + V)2~ ) + gl — )l
= 9) + (Vo(w),x —9) + gllale — )l

(3) Concluding, for arbitrary vectors:

o(x) = Fu(a) + Fola) = Filo) + (VFilw),w— ) + gl — ol

1 2
+ f2(y) + (Via(y), 2 —y) + §||~”U = Yllcay)
1 2
=9+ (V9(v),z =) + 5z = yllo,wyre -
O
Corollary E.1. Suppose f : R? — R satisfies the lower bound of Equation (5) with curvature

mapping C : R — S¢. Let g : R — R be a convex function. Then, h(z) = f(z) + g(z) satisfies
the lower bound with matrix C(y).

Proof. Since g is convex it satisfies the lower bound with matrix C(y) = 0. By Lemma h
satisfies the lower bound with C(y) + 0 = C(y). O

Another lemma used to construct functions that satisfy the lower bound is the following.

Lemma E.2. Suppose f : R — R satisfies Equation (5) with the curvature mapping C : R — S%.
Let A € R™™ and b € R%. Then g : R™ — R where g(x) := f(Ax + b) satisfies Equation
with curvature mapping C(y) = ATC(Ay + b)A.
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Proof. Without loss of generality, we can assume that C(y) is symmetric. Then,
g(v) == f(Az +b) > f(Ay +b) + (Vf(Ay +b),Az +b— (Ay + b))
+ % (C(Ay +b)(Az+b — (Ay + b)), Az + b — (Ay + b))
= [(Ay+0) + (Vf(Ay +b), Az —y))
+ 5 (C(Ay + (A~ y), Alw — )
= f(Ay+b)+ (ATVf(Ay+b),z —y)

+L(ATC(AY + DA~ y).x )
=g(y) + (Va(y),z —y) + % <C(y)(w —y),z— y> :

Considering the right hand side and the left hand side, we have recovered the claimed expression.
The only missing detail is proving that C(-) is positive semi-definite. Let z € R™. Since C(y)

is symmetric and positive semi-definite then C(y) = C(y)2 C(y)z and C(y)2 is also symmetric.
Therefore:

2TC(y)z =2 ATC(Ay +b)Az
=2TATC(Ay +b)?C(Ay + b)ZAz
= ((C(Ay+1)?)"Az) T (C(Ay +b)? Az)
= (C(Ay +b)2Az)" (C(Ay +b)ZAz)
2
- HC(Ay + b)%AzH > 0.
By the arbitrariness of z, the matrix is positive semi-definite. O

Lemma E.3. Suppose f : R¢ — R satisfies Equation (S) with curvature mapping C : R4 — Si.
Then the following inequalities hold for any x,y € R?,

(1) (VF(y) = V@), 2 —y) = S|z — vl o
(2) (V) = VF(z), 2 —y) > Lz —yllg,

(3) (Vi) = V()2 —y) > Lz —ylEe,

Proof. Let us present one proof in detail. The other two follow trivially.
(1) By the definition of Bregman divergence:
1 2 1 2 1 2
§||9U —Yllew +ew = 5”95 —Ylow + 5”?/ — 2l
< Dg(x,y) + Ds(y, )
=(Vf(@) = VIQy),z—y).

: 2 2
(2) Start with (1) and note that 3 |lz — Ylcw+cw = iz — yllcw):
(2) Same as above but use that ||z — y||2c(m)+0(y) > iz — y||2c:(x). O

Lemma E.4. Suppose f : R? — R satisfies
2
o = yliZ,) < (V@) = VE(y)oz —5)
forall x,y € R* with curvature mapping C : R — S‘i. Then f satisfies Equation li with curvature

mapping C(-).
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Proof. By the fundamental theorem of calculus:
1
£@) = 1) = [ TS+ to - )~ g

0
— (V) —y) + / (VI (y+ 1t — ) — VH(y)x—y) db
(Vi@ )+ [ (VI e~ ) = V)t - )

o11 2

> (VH) =)+ [l =)l
—(Vfw)a v+l =l [ e

1
= (VI e = 9) + 5z~ yllgg,).

Rearranging the terms we obtain that D (z,y) > $|lz — y||i;(y) as desired. O

Lemma E.5. Suppose that f : R® — R satisfies Equation (5) with curvature mapping C : R% — Sjl_.
Suppose that f is differentiable and C is non-singular. Then

1
SIVF@) = ViWlew - > Ds(x.y), Yoy R

Proof. Fix # € R® Suppose y € R? is arbitrary. Let ¢(y) = f(y) — (Vf(x),y). By con-
struction, Vio(y) = Vf(y) — Vf(z). Using this fact, it can be shown that for any u,v € R,
Dy(u,v) > 3u— U||2c(u)- Therefore, ¢ satisfies Equation (5)) with curvature mapping C. Hence,
for v € R? we have that p(y) > G(y) where G(y) is defined as
1
G(y) = () + (Veo(v).y =) + 5|y — vllE )

Observe that Vp(x) = 0. Since @ is convex, z is a minimizer of ¢, and we the inequality below
holds:

o(z) = igf o(y) > igf G(y). (32)

By computing the gradient of G and setting it to zero, we find y = —C(v) !V (v) + v such that
VG(y) = 0. Therefore,

[(x) — {(Vf(@).2) = () > G@)
= o(v) — (Vo(v), C) V() + 5| Cw) " Vio(w)]%,
= () ~ IV9()llg1(0) + 31V g 100
= f(0) = (V1(@), ) ~ 5[V los 0

= f(v) = (Vf(x),v) - %va(v) = VI@)llg-1 (-

By rearranging the terms, we find our result since = and v are arbitrary:

%va(v) V@) g1y = f0) = f(@) + (Vf(x),z) = (V(2),0)
=f(v) = flx) +(Vf(z),x —v
= f(v) = f(z) = (Vf(z),v—
= f(’UVT)
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Lemma E.6. Suppose that f : R® — R satisfies Equation (5) with curvature mapping C : R% — S‘i.
If f is twice continuously differentiable, then

C(z) 2 V*f(x),
forall x € R%,

Proof. Letx,y’ € R%and A > 0. Since f satisfies Equation (5) we can substitute x + \(y’ — z) and
Ay’ — ) into the first inequality described in LemmalE.3] to find:

(V4 My — ) = VI @) M~ 7)) = LAY ~ 0y sowsrer

A2 2
= EHZJ - 33||C(z)+0(z+,\(yuz))~

By the Fundamental Theorem of Calculus, we further have that:
(Vi@+ Ay —2)) = Vf(),y —z) = /01 (V2f(x + Ay — )Ny — @),y — ) dt.
Dividing the first inequality by A2 on both sides we obtain an intermediate inequality:
21~ Flowysotesapr ey < 5 (V@ + AW —2) = V(@) y' )

- i/o (V2 f(a+ Ay — )\ — ).y —a)dt

- / (V2 (z + Ay — 2)(¢f —2).y/ — ) dt,

from which we take A — 0 of both sides to get an inequality between norms,

%HZ/ - x\lgc(z) < /0 (V2f(2)(y — ),y —z)dt
= (Vf(@)(y —2),y —x).

Thus, ||y’ — :CHé(x) < (V2f(z)(y — ),y —x). Since x,y are arbitrary this implies that
C(z) 2 V2 f(x). O

E.2 On the upper bound

We provide analogous lemmas involving functions that satisfy Equation (6).
Lemma E.7. Suppose f : R¢ — R satisfies Equation (@ Then for all z,y € R% we have,

1 2 2
(Vfly) = Vf(z),y—z) < §H$ = Yllo@)+ow + Lelz—yl™
Proof. Take the sum of the two Bregmann divergences:
(Vf(y) - Vf(x),y—x> = Df(x7y) +Df(y7x)
1 2 1 2
< 5”55 —Ylle@) +rer + §||33 —Yllcw)+ror
1 2 2
= §||9’j —Yllew +ew + Lellz =yl

O

Lemma E.8. Suppose f : R? — R satisfies the following inequality with constant Lc > 0 and
curvature mapping C : R — Si,

(VI@) = VI, 2=y <llz = vlSyirer Y2,y €RE

Then f satisfies Equation (6)) with curvature mapping C and constant Lc.
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Proof. We invoke the Fundamental Theorem of Calculus:

f(@) — f() = / (Vi + tx —g)).o — y) dt
0
= (Vi) z— )+ / (VI + 1z —y)) — V@) — y)dt
=(Vf(y),z—y) + / % (Vi +tx—y) = Vfy) tlx—y)dt
01 X 2
<V — )+ [ 1= Dot
— (VI — ) + 12— s o / tat

1
=(Vfy),z—y) + 5“»”5 - yllé(y)+LCI'

Rearranging the inequality above we get our result, Dy (z,y) < %Hx - yHé(y) LLT O

Lemma E.9. Suppose that f : R* — R is convex and satisfies Equation @ Also, assume that f is
differentiable. Then,

1

SIVF(2) = Vily e+ ren-1 < Drle,y)
Proof. Fix x € R Suppose y € R Let p(y) := f(y) — (Vf(x),y). By construction,
Ve(y) = Vi(y) = V().

Using the above fact, we can show that ¢ is convex and that for any u,v € R?, we have
Dy(u,v) < %|lu— ”H2C(v)+LcI~ Therefore ¢ satisfies Equation (EI) Now, let v € R? be arbitrary.
Since ¢ satisfies Equation (6), ¢(y) < G(y) where

1 2
G(y) = ¢(v) +(Vo(),y —v) + 5 lly = vlcw)+ror
Moreover, z is a minimizer of ¢ because Vp(z) = 0 and ¢ is convex. Combining the last two facts,
pla) =info(y) = inf G(y).

We minimize G with respect to y by finding a 7 € R? such that VG(g) = 0. Since C(v) is positive
semi-definite, C(v) + LcI is non-singular. Then 4 = v — (C(v) + LcI) ¢ (v). Therefore,

f(@) = (Vf(z),z) = p(z) < G(H)
= ¢(v) = (Ve (v), (C(v) + Lel) "' Ve(v))
*H )+ LeD) ™ V() HC(U +Lcl
=p(v) — ||V<P(U)||(c(v)+LcI)—1 + §HV<P( )|| C(v)+Lcl)~
= o(0) ~ 31V o zon

= F(0) ~ (VI (@), 0}~ 5IVI0) ~ VI @y oy

Rearranging the terms we obtain

%IIVf(v) F@) o ren-1 < f@) = f@) = (Vf(2),0) + (V (), z)
= f(v) = f(z) = (Vf(2),v) = (V[(z), —x)
= f(v) = flz) = (Vf(z),v - )
= Dy(v,z)
Since v, x were arbitrary, the claim is true. O



Lemma E.10. Suppose that f : R* — R is convex and satisfies Equation @ Also, assume that f is
twice differentiable. Then,
V2f(z) = C(x) + LI

Proof. Suppose z,y' € R? and A > 0. Since f satisfies Equation @, we can substitute  + \(y' — z)

and A(y' — ) into LemmalE.7]

/ / 1
(Vf@+ Ay —2)) =V (), Ay — ) < iH)\(y/ - I)||QC(1;)+C(:L'+)\(y’—:L'))+2LCI

A2 2
= 7”?/ - ‘rHC(w)—&-C(m—i—A(y/—x))—&-QLcI'

The following equality is a direct application of the fundamental theorem of calculus:
1
(Vfa+ 2y =) = VI —a) = [ (TS 00 = )M =)y’ ~ o) de
0

1
— [ M+ o)~ o)y - )
0
Dividing the inequality by A2 on both sides:
1 2 1
5”?/ - 95||c(z)+c(z+,\(yuz))+2LCI > 2 (VI + Ay —2) = V@), Ay —2))

- % (V@ + Ay —2) = Vf(z),y — )

1

- X/o A <V2f(3[; +tA(y — x))(y’ — ac),y’ — g[;> dt

1
= /0 (V2f(z +tAy —2))(y —z),y —z)dt.

It suffices to take limits A — O to get that:

1 1
5”2// - xHQC(g;)+0($)+2LCI > /0 <V2f(a:)(y’ —z), y/ - 33> dt
= <V2f($)(y/ - x),y’ - x> )

allowing us to conclude with:

1., 1.,
5”3/ - 9U||C(z)+c<z)+2LCI = §||y - 33||20(x)+21:01
((C(z) + LDy — 7).y — )
> (V2 f(a)(y — )y — ).
Since ', 2 € R? are arbitrary, we proved the claim: V2 f(z) < C(z) + LcL O

E.3 Lower bound examples

Lemma E.11. Suppose p > 2. Let f : R? — R where f(z) = ||x||§ Then f satisfies Equation
in Assumption[2.1|with curvature mapping

1

C(y) =pDiag (j1["~2,..., |yal"*) = T

V2 f(y)-

Proof. When p = 2, we have that C(y) = 2I. Then f satisfies Equation (5) because [|z||* is
2-strongly-convex.

Now suppose p > 2. For arbitrary =,y € R%, an application of Young’s Inequality yields

2\ 2 —2\ P _
(zll,)= (vl )7
p + _p_

2 p—2

2 -2
> [l
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Rearranging, we obtain:

p
el = Slizll3lyle = + (5 - 1) Iyl = o. (33)
By applying Holder’s inequality, we get:
d
2 -2 2 —2
S P 1wl < el llylE (34)
i=1

and thus,
d
p 201 1p—2 p 2, p—2
e M E s—i;m\ 7]
1=

By adding ||]|? + (§ — 1) ||y||? to both sides of Equation (34) and using Equation we get,

2
ot~ Zw il + (5= 1) Iwllp > 0.

To derive the result, we begin by rearranging the above inequality:
2
lally > 2 Z il il = (5 = 1)yl
p p a
2 -2
= llylly = pllylly + Slylly + 5 > Ll fyal”
i=1

d d d

=) -2 p p 2 —2

= lylly = pllylly + 2> Swilyil™ 2= p Y wilwal” e+ Syl + 5 Y Lol fual”™
=1 L i=1

After reordering, we find:

d d
2 2
2l = ylo +p > yilgil" 2 —p > v uil”
=1 =1

d d
P vl Slyly+ 2 >l .
1= 1=

By performing some basic algebra and observing that 3—5 = pyi |yil? ~2, we obtain our result:
d d » » d
-2 -2 2 -2
2D = llylD + > pyi [y~ (i — wi) —szz‘ lyil "™ @i + §||y\|§ +3 Z 2]~ |yal”
i=1 j j
d p d d
2 -2 -2
= lwlly + > pwi lsil” ™ (i = w:) + 5 Z il = p> wilwl’ s + Z s |y
i=1 i=1 i=1 i=1
d 1 1
-2
= llylly + > pwi lsil” ™ (@ = v:) + 5 {Cw)y v) — (Cwy, 2) + 5 (Cly), x)
i=1
d 1
-2
= llylly + > pyi lyil”™ (@i —yi) + 5 (CW)( —y), (x—y)
i=1

1
= llylly + (VF@W)e = o) + 5l =yl
O

Lemma E.12. Suppose p > 2. Let f : R? — R where f(x) = ||x||g Then f satisfies Equation
in Assumption with curvature mapping C(y) were the (i, j)™ entry of C(y) is

p —2 -2
Cijy) = Wyiyj lys| "7 |y, P
p
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or alternatively, in matrix form:
1

€W = e

VIV

Proof. When p = 2 we get that C(y) = ﬁyyr Since ||z||* is the square of ||z| which is

absolutely convex, f(x) = ||||* satisfies Equation (5) because the curvature mapping C corresponds
to the mapping obtained from absolute convexity.
Now suppose p > 2. Again by Holder’s Inequality, we have that

d

-1 -1
Dl gl < el llylE (35)

i=1

We can lower bound the left-hand side in the following manner:

d
Z|xz||yl\p = > iy lyil" 77
=1

Comblmng this 1nequal1ty with Inequahty (33)) and squaring both sides we get,

d 2 d
2p-2 -1
[ (leilly@p ) > (
i—1 i—1
g,

xlyz ‘ -

d
xiyz-yf’2‘ = |ziyi \yz—IP*Q( >
=1

2 d 2
Zfﬂiyi |yz‘|p_2|> = (Z Tili |yz‘|p_2> :
i=1

Then we multiply both sides by —£

2
d
p 2 2p—2 p —2
eyl < -2 (Zy lyil” ) . (36)
i=1

From Lemma[ET1] we know an application of Young’s Inequality with some rearranging yields the
following:

p p 2 -2
][> + (5 = 1) [lylly — S ll vl > 0.
2 2

Now multiply both sides by [|y||?,

2 2p—2
lelliglls + (5 = 1) Iyl = Bl 20272 > o. @)

Adding [|z]7|ly[|> + (5 — 1) Hy||12)p to both sides of Equation and together with Equation
we have that,

d
p 2 p —2
lelpllylly + (5 = 1) lyll,) = 5O @iyi [yal”~)? > 0.
2 2
i=1

Rearranging this inequality and proceeding with the following steps we obtain the claim.

d 2
p p -2
ol = (1= 2) Iyl + 5ot | D0 v lal”
) 191+ 37 | & o
d

p p
= lwlly = plyll; + Slvl; + TP (Z iy |y~ ) Z’Iyy] ly; [P~
p 7

p — -2
= llyll; = pliyl, + Syl + 2” 3T szy il 5 y; [

lejl

p 2 2.
= llvlly = plivlly + 51wl + 5 ”pzleyzynym’ sl

P i=1j=1

p 2p 1
=yl —plyly + 5w Iyl + 5 (Cw)z, ),
? P2yl 2
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The last term seems complicated but can be expressed as a matrix inner product. Continuing,

d d
P 1
]2 > [lyll> — pllyll} + 2T (Z Iyilp> > "]+ 5 (CW)z,z)
P \i=1 j=1

1
ly:l” ly;1" | + 5 (C(y)z, z)

«
Il
-

M=
M-

p
= lyll? — plyll? + 52
L T 1

J

d d
p _2 _o 1
= llyl> = pllylh + TP DD wiviys wil” sl | + 5 (Cy)w, )
P \i=1j=1
) , 1 1
= llyll, = pllyll, + 5 (CWy,y) + 5 (Cly)z, z)
d d
-2 -2
= lylly = pllylls +p D i lyil”* = p > wivi lyil”
=1 =1
1 1
+ B (CY)y,y) + 5 (C(y)z,z)
d » d d
—2 —2
= llyll? = pllylls +p > @iy yil"~* - TP <Z iy yil” > > Iyl
i=1 P \i=1 j=1
1 1
+ 5 (CY)y,y) + 5 (Cy)z,z) .
To finalize, we proceed with the last few equalities:
d » d d
—92 -2 -2
2D > (lyl> = pllylh +p > i lyilP~> - 7 <Z ziyi |yil” ) > i lysl”
i=1 Yllp \iza j=1
1 1
+5(CWyy + 5 (Cly)z, )
d » d d
—2 —2 —2
= llyl> = plylZ +p > i lyi" > - IR SN iy lyilP i Py
i=1 Ylilp i3 5=
1 1
+ 5 (CY)y,y) + > (C(y)z,z)
¢ 1 1
2
= llylly = pllylly + 2D zai luil”™ = (Cw)z.y) + 5 (Cw)y.v) + 5 (Cy)z, z)
=1

d d
_ 1
2
= lylly +p Yz lwil"™ = p Y lil” + 5 (Cla —y).x — )
i=1 =1
d

_ 1

2 2

= lylly + E pyi lyil” (%*yi)Jrng*yHC(y)
=1

1
= Iyl + (V) x —y) + s llz = ylleg,)-
2
O

Lemma E.13. Suppose p > 2. The function f(x) = ||z||” satisfies Equation (5 with either of the
two curvature mappings:

(1) Cly) =plyls L (2) Cly) = pllylls vy

Proof. (1). When p = 2, we have C(y) = 2I. Therefore, f satisfies Equation (5) because ||z||? is
2-strongly-convex.
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Now suppose p > 2. By applying Young’s Inequality we get that:

(lzl*)? | (lyl”=*)7= 2 12
+ = =l ™,

2 p—2

and rearranging

p p —2p.112
lal” + (5= 1) Iyll” = Zliyl” > Il

We get our result from the above inequality and by observing that V f(y) = p||y||’2972 .

p p -2 2
lallg = (1= 2 ) gl + Syl
p -2

= lylls = pllyls + Sllyll3

2 2 p -2 2 P
= llyllz + pllylls™ (2. 9) = plyllz ™ (2. y) = pllyllz + Sllyle =l + Syl

2, D
=2 + *Ilyllg

2 —2 P -2 p -2
= llyllz + pllylls ™ (@, 9) = pllyllz = pllyllz ™ (. y) + Sllyle™ (@2) + Slyllz ™ (v, v)

= lylls +pllylls ™ (2, 9) — pllyls ™ (v, 9) — (Cy)a,y) + % (Cly)z, ) + % (Cy)y.y)
= llyll5 +pllylls~* (@, 9) = pllylls ™ (v y) + % (C)(z—y),x—y)
= 1l + (pllwl 202~ v) + 3 e vl
= 3 + (pllwl 0.2~ v) + 3 e vl
=l + (VT ). ) + 5l — vl
(2) When p = 2, we have C(y) = ﬁyyr Since ||z||” is a square of an absolutely convex function,

it satisfies Equation (5) with curvature mapping C(y). For more details, refer to section[7]and [F}
Suppose that p > 2. As done previously, we can use Young’s Inequality to obtain:

lol” + (5= 1) Iwll” = 2lgl” > Il (39)
Moreover, by Cauchy-Schwarz:
lellollylly > I 5] = llel3lyl3 > (@, 9))*
Multiplying both sides by — % ||y||” ~ we get,
—SlelPlylP = < =S lylP~ (),

Adding [|z]|5 + (5 — 1) ||ly||% to both sides and by using Equation ,

p —4 p
lall” = Zllgl”~ (G, 9)? + (5 = 1) Iyl = 0.
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‘We can reorder the terms to obtain the result:
p p —4
lally > (1= 5 ) lnlls + Syl (. 9))?

p —4 p
= llyll3 = pllylls + 5 llyll2 ((z, )% + 3 vl

= llyls = pllyls + gl "o Tyy Tz + ZlylE 'y Ty Ty

= |lylls = pllylls + % (Cy)z,x) + % (CW)y,y)

= llylls = pllylls + pllyls > @, v) — pllyls > (2, v) + % (C(y)z,x) + % (CW)y,y)
= llyls = plyls +plyls > (@) — pllyll = Tyy Ty + % (C(y)z, ) + % (CW)y,y)
= 1yl — Pyl + Byl (@) — (Cw)2,9) + 5 (€W 2) + 5 (W, v)

= llyll3 — pliylls + pliylly ™2 (x.9) + (Cy)(@ — ),z — )

= g5 — Pl () + I o) + 5l — il

=l + (ol 02— v) + 3 e vl

1
= llylls + (VI @),z = y) + Slle = yleg,)-
O

Lemma E.14. Suppose p > 2 and let f : R? — R be defined as f(x) = ||x||12) Then f satisfies
Equation () with the following curvature mapping:

2 _ _
) = - R —— Diag(|y[" >, ..., lya”?)

Proof. Using Holder’s inequality we can see that,
-2

d p d 2 /4 p
(leiIQIyil’”) < (le#’) (Zw“) = [l |ly)2¥~2
=1 =1 =1

We raise both sides to the power of l and proceed by rearranging some terms:

2
|« Hp— Iy ”p 2Z| z| |yz|p

2 2 2
= ol = ol + 22\ Pyl

2 2
=l = 1 22|y7|” i QZ| Pyl

2 2
=l = 1= 22|yz|” T QZ| Pl QZW

2 2 2
=l + 1 QZyz ™ 0 QZL%V’ i 22| Pyl

2
e 22‘”’ il QZW
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We can arrive at our result by realizing that the last three terms are equal to |lz — y||%;(y) and the

middle two terms are equal to (V f(y), z — y). Observe that - af = HyH” —2 s |yi|P~>. Therefore,

2y; yil” 2
[ > 1|y +Z HZ ||; 5 - H i 2Z| i vl

i=1

Tl QZ‘% e 12 QZ'y"p
= lyl2+ (Vi(y),z —y) +
=yl + (Vi(),z —y) +

=yl + Vi), z—y) + =

(Cly)z,2) ~ (Cly),v) + 5 (Cl)y.v)
(CW)(z—y),x—y)

|z yHC(y)

N RN~ DN

O

Lemma E.15. Suppose p > 1. Let g : R — R be g(z) = [z, Then f = g? satisfies Equation
with the following curvature mapping:

C(y) =2Vg(y)Valy) "

Proof. By Lemma g is absolutely convex for p > 1. Therefore, g2 satisfies Equation (5) with
curvature mapping C. O

E.4 Lower and upper bound examples

Lemma E.16. Let G be a symmetric positive semi-definite matrix. Let f : R* — R where
flx) = Hx”é Then f satisfies Assumptianwith curvature mapping C(y) = 2G and constant

Lc=0.
Proof. We start by computing:
0= lylle — 20yl + vl
= —|lzllg + lzlE + lylE — 2lvlE + lylg
= —|lzllE + llylg — 2 (Gy,y) + (Gy,y) + (Gz, z)
= ||zl + llylg — 2(Gy,y) + (Gy,y) + (Gz, z)
= —|lzllg + lyllg + 2 (Gy, 2) — 2(Gy,y) + (Gy,y) — 2(Gy, ) + (Gz, z)
= —|lzllg + lylg + (2Gy. @ —y) + (Gy,y) — 2(Gy,z) + (G, )
= llall% + Il + (2Gy, @ — ) + g2l — ).

Rearranging the terms we get

2 2 1 2
lzlle = lvlle + (2Gy, = —y) + 52l — vl

1
= lylZ + (V7). 2~ 9) + 5l — ylEeg)
O

Lemma E.17. Let p > 2. Suppose g : R — R with g(x) = Hx||123 Let f == g% Then f satisfies
Assumption with constant Lc = 2(p — 1) and either of the two curvature mappings:

B)= 2,, S Diag(ln P, . wal”™) B(y) = 2Vg()Va(y)"
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Proof. In Lemma|[E.14] we proved that f satisfies inequality (5) with the abovementioned curvature
mappings. Now we will show that f is smooth so it satisfies inequality (6). For p = 2. it is clear that
f is 2-smooth. We focus on the case where p > 2.

Since p > 2 we have that 1 < ¢ < 2 where ¢ = ;5. Kakade et al. [2012] proved that h(z) = 1 Hx||z
is strongly-convex with respect to the L, norm with ;1 = ¢ — 1. We also know that L, norms are a
decreasing function of p. Therefore, h(z) = 3 Hx||z is also strongly-convex with respect to the Lo

norm because ||z — y||3 < ||z — y||C21:
1 2 1 2 1 2
3 l2lly = 5 Iyl + (Vh(y), 2 —y) + Sulle — vl

1,2 1 2
> 5 Iyl + (VAly),z = y) + Sullz =yl

The Frenchel conjugate of 1 ||||3 is & ||H; because the dual norm of |-, is [|-||,,. Kakade et al. [2012]
showed that if h is u-strongly-convex then the Frenchel conjugate of h is i-smooth. Therefore,
z ||:c||}27 is L-smooth with L = -3 = p — 1. Thus, f(z) = ||m|\i is smooth with constant 2(p — 1).

O

Lemma E.18. Suppose a,b € R and a # 0 and b > 0. The function f : R — R defined as
f(@)=+vaz*+b

satisfies the upper and lower bounds in Assumptionwith C(y) = i‘gj and Lc = /8a.

Proof. Observe that 22 + y? > 2x%y2. Multiply both sides by ab we get ab(z? + y?) > 2abx?y?.
Then we add a?z*y* + b? to both sides,

a’ztyt + aba? + aby® + b > a®ztyt + 2abx?y® + b,
We can write this equivalently as,
(az* + b)(ay* +b) > (b+ az’®y?)>.

Then taking the square root of both sides,

V(az +b)(ay* +b) > b+ az’y® = ay* + b — ay* + az’y>.

Rearranging the terms,

Vazt + by/ay* + b > ay* + b — ay* + az?y?
=ay* + b — 2ay* + az®y® + ay?
_ 4 3 4 2,2 3
=ay” + b+ 2azxy’ — 2ay” + ax®y” — 2axy’ + ay
= ay’ + b+ 20y’ (z — y) + ay® (2* — 22y + ¢*)

4

1
=ay’ +b+2ay’(x —y) + 52y (@ — y)*.

Divide both sides by /ay* + b to obtain our result,

2ay> 1 2ay? 9
axt+ 0> Vayt +b+ ——(r —y) + - ——(z — y)°.
Vv Vay ay4+b( W45 @ =)

To compute L, note that f is L-smooth so we can find an upper bound on f” which is given by

L¢c = V/8a. O
Lemma E.19. Suppose § > 0. Suppose h : R — R is such that:
12 lx] <6
h(z) = {2 T
(jz| = 30) |z >9
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Let f = h2. Then f satisfies (2.1) with constant Lc = 26% and curvature mapping

2
_ v lyl <6
C(y) = {52 |y| S5

Notice that L¢ is less than the L-smoothness constant of f, which is 362 (the tightest bound on the
second derivative of f).

Proof. First, we will prove that f satisfies inequality (5). We will split the proof into four cases and
prove the inequality holds in each case.

Case |7/, |y| < 6. We know 2% + y* > 222y2. We divide both sides by 4 and rearrange the terms,

1 1, 1 1 1, 1
Tt > =yt sty = 2yt =yt oyt Saty?

4 1 2 1 2 2
:1y4—y4+1y4+1w2y2+xy3—xy3
4 2 2
1 1
= Zy“ —yt ozt + 52/2(962 —2zy +y°)
_1 4_ 3 _ 1 2 _ 2
=Y Yo (x y)+2y(w y)©.

We have our result because f’(y) = y? for |y| < 4.
Case |z| > d and |y| < 4. For any |y| < ¢ define r : R — R as the following,

4 54 1’2 2
r(m):yz+z+§2x2—63|x|— 2y

First, we need to show that r(x) > 0. Suppose > §. When z = 4,

4 252 4
y Y=o ) 1
M) = - S+ = 40 =00 20,

Therefore, for 2 > ¢, if we show that 7/(z) > 0 then r(z) > 0. By a simple computation, we get that

2

' (z) = 26%x — 6% — %
Since x > § then obviously z > %5 o) %x — d > 0. Rearranging the terms and multiplying the entire
inequality by J we get that

2
25%—53—%20.

It is easy to show that —y? > —42 because |y| < J. Therefore,

2
r’(x)z?égx—é?’—%225233—53—%20.

Now suppose & < —d. Observe that 7(—d) = r(§) > 0. Thus, if we show that for z < —§, r'(x) <0
then () > 0. For x < —§, we have that

2

' (z) = 26%x + 6% — %
Notice that 4 < §2 because |y| < . Then we have that 262 — y; > % Multiplying both sides of
this inequality by x we obtain,

2 2 3
x<262—y><35“jg%§—53.

2) 7 2 2
The inequality was reversed because + < —J < 0 and the second inequality also follows from
x < —J. Rearranging the terms in this inequality we see that

2
' (z) = 26%x — 6% — % <0.
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Therefore, we have shown that () > 0 for arbitrary absy < ¢. Then by rearranging the terms in 7,

we have that . . 5 5
4 Yy Ty
5222 — §5° — > - .

x |z| + 121 + >

The left-hand side is equal to 6%(|z| — $6) = f(z). In the previous case, we showed that the
right-hand side is equal to iy‘l —y3(x —y) + %yz (x — y)?2. Therefore, we have our result.

Case |z|, |y| > ¢. First, we show that the following inequality holds:

x? — 2wy +y* — 20 (x| - x|y|) > 0. (39)
Y

For x,y > § and 2,y < —§ it is easy to show because (z — y)? > 0. Now suppose z > & and
y < —4. Then we must show that

2? — 22y +y* — 46z > 0.
Since y < —§ we have that (z — y)? > (2 + §)2. Therefore,
(z —y)? — 40z > (z+6)® — 46z = (z — 6)* > 0.
Now suppose < —4§ and y > 4. Similar to before, we need to show
2? — 22y + y* + 40z > 0.

Since y > ¢ we obtain 4xy < 46z by multiplying both sides by 4x and reversing the inequality
because < —§ < 0. Therefore,

(x —y)? + 40z > (x — y)* + 4oy = (z +y)? > 0.

As a result, we have shown inequality (39) holds. We can rewrite the inequality as

x? Y y
— —zy+ = —dlz|+dx= >0.
2 y ~ Okl
Moving some terms to the right-hand side we get,
52 —y? 82 z2 Ty
2
-6 —_— > —— 4 — — ==
x |m|+47 5ttt S vl
2 2 2
1 T x
=]yl — =0 +2a:y—5—y—2y2+5\y|+——xy+y—.
2 ly] 2 2

Recall, that f'(y) = 26 (Jy| — 50) (. Observe that we can factor the left-hand side of the inequality
and after multiplying both sides by 6% we get our result:

2 1.\? 2 1.\ 2 2 XY 2 2 3 522 2 522
5 |x\—§5 >4 |y\—§5 +25xy—6m—25y +5|y\—|—§x —5:z:y+?y

1)\ 1 1
=5 (1= 35) +28 (Il - 38) La =)+ 36— )

The case where |z| < 6, |y| > ¢ is similar to the previous cases. Using some elementary calculus,

one can show that

9 5222 53 0
—— — =94 - > 0.
1 + 9 1 zy 3 +0°x >

Rearranging the terms above directly leads to the result.

Now we show that f satisfies inequality (6) with Lc = 252. In the case where |y| > §, Lc +C(y) =
362 is the L-smoothness constant of f so the inequality holds. We consider the case where |y| < 4.

Case ||, |y| < 6. Then 2y < |zy| < 6% so 22 + 2y < 262, Adding y? to both sides and multiplying
by (z — y)? we obtain,

(z —9)*(y° +20°) = (z — y)*(=* + zy + )
= (2° —y°)(x —y).
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By Lemma [E.§| we have our result.
Case |z| > 6, |y| < . We must show that the following inequality holds:

y4 332:'-/2

4 2

We leave out the details of the calculations. The proof is similar to the same case for showing
the lower bound. We can define a polynomial in « for arbitrary |y| < 8. Then we show that this
polynomial is less than 0 for x > § by computing the value at § and show that the derivative is
negative for x > § We proceed similarly for x < —§. By rearranging and manipulating the terms in
the above inequality we can arrive at our result. These calculations are similar to the previous cases
so we exclude them for brevity. O

54
+ 20%zy — 6%y — 8% |x| + T <0.
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F Absolutely Convex Functions

Discussing the theory constructions derived from Assumption 2.1 we introduced a stand-alone class
of functions, satisfying an absolute convexity condition. In this section, we derive more properties
and examples. Let us remind that a function ¢ : R? — R is absolutely convex if and only if:

6(y) > () + (Vo(a),y — )|, Va,y €R™ (40)
Our first statement is a Lemma that establishes calculus in the spirit of Lemma5.1]in the main text.

Lemma F.1. Let ¢, ¢1, o : R — R be absolutely convex, and let A € R¥>*™, b € R% and o > 0.
Then

(i) ¢ + «is absolutely convex.
(ii) a¢ is absolutely convex.
(iii) ¢1 + @2 is absolutely convex.

(iv) ¢(Ax + b) is absolutely convex.

Proof. We prove each statement:

) ¥(x) = oz )+a > |o(y) +(Voy),z —y)| + a > [¢(y) + (Vo(y),z —y) + af =
[(y) + (Vi (y), z —y)l.

(i) ¢(z) = ad(z) > a(|é(y) + (Vé(y), w—y>|) > alp(y) +(Vo(y),z —y)| =
lad(y) + (aVo(y ) -yl =) + (Vo(y), = —y)l.

(iii) w< )z =y +1¢2(y) + (Voa(y), z — y)|

) := 01(z) + 6a(x) 2 |60 (y) + (Vonly
> | (y) (Vor(y). — y) +0a(y) + (Voa(y),a ~ )] = () + (Vo (), - )]
) = )

+
p(Az +b) > [¢p(Ay + ) + (VO(Ay +b), Ar +b— (Ay + b)) | = |[¢p(Ay +

< ((1; V¢§X‘y+b x—y) | = [p(Ay +b) + (ATVG(Ay +b),z —y) | = [¢(y) +
y

(iv) 11}(

O

F.1 Examples

Lemma F.2. Letp > 1. Then ¢ : R — R where ¢(z) = ||, is absolutely convex.

Proof. We already know that ¢ is convex so we show that

—9(y) — (Vo(y),z — y) < ¢(z),

9¢(y) _ wilwil®? d
where Dy Tyl for z,y € R°.
Observe that

d e P2
)7 ) =Y M)

We make use of Holder’s inequality which is stated below for r, s > 0,

d r+s d T d s
<Z |xl|r|y1|9> < <Z xir-&-s) (Z inT”)
i=1 i=1 i=1

For any =,y € R% and with = 1 and s = p — 1 we have that ,

<ilxi|yi|p—1>p < (i |$i|p> @;W)“.
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Simplifying this expression we obtain,

p—1

d d P d 3
Sl < (z ) (zw)
=1 =1 =1
1\ p—1
d P
_Jal, (Dym)
=1

-1
= [zl llylly

‘We can obtain a lower bound on the term,
d d d
Z |zl = Z i lyallyi |~ = Z |yl |y P~
i=1 i=1 i=1
d
2 Z —(@iya)|ys["~*
i=1

d
- inyi|yi|p_2~
i=1

Therefore,

d
—1 _
lall, w2 = =3 wayilys .
i=1
Now add ||y} = Zle ly;|P to both sides of the inequality we get

d d d d
Il 2™+ 2 = "yl = wailwal? ™ =Y vyl =D iy
i=1 i=1 i=1 i=1
d d
=Y (Wil = wagililP %) =Y wilwilP (s — i)
=1

i=1

d
= wilwilP 7 (@i — ).
i=1
Now divide both sides of this inequality by ||y||§71,

d _
yilyi P2

]l + llyll, > — -
: SR 174

(zi — vi)-
By rearranging the terms we get our desired inequality

d _
yi\yz‘|p 2

— (wi —yi) <[],
=l !

—llwll, =

O

Lemma F.3. There exists an absolutely convex function ¢ : R — R such that the derivative of
f = ¢? is not Lipschitz continuous. Namely,

¢(z) =



Proof. Firstly, by a simple computation we can show that ¢" > 0 so ¢ is convex. Observe that
|f’| < 3 and z, = 0. Also notice that ¢ is bounded below by 2 |z|. Therefore, by Lemma|F.16} ¢ is
absolutely convex.

From a brief computation, we can obtain,
3@+ g a2l
f(x) =14 3(z2 +1)z2 0<z<1
3((—2)% +1)(—z)2 —1<z<0

Now suppose by contradiction that &’ is Lipschitz continuous. Then there exists an L > 0 such that
forall x,y € R4,
/() = f'(y)]

|z =yl
Specifically, this holds for 0 < z < 1 and y = 0 so we have

< L.

@) - Pl @) 33
v ] a B
32?4+ 323
o a

3
=3 — < L.
x+\/5_

We can find an x small enough such that % > L. Therefore, the inequality cannot hold. As a
consequence, f’ is not Lipschitz continuous. O

Lemma F.4. Let 6 > 0. Then f, ¢ : R — R defined below are absolutely convex.

[ a2 la24 & x| < 6
— 51 l;’ _ )2t T , =0
/(@) e oW {5(|x|g)+62 )

Note that f is the pseudo-Huber loss function and ¢ is the Huber loss function.
Proof. Both the Huber loss and pseudo-Huber loss functions are well-known examples of convex
loss functions. The minimizer of f and ¢ is z, = 0.

From a simple computation we obtain that |f/(x)| < 1 forall z € R,
x x

fl@) = ——=<
NET
Also, we know that for all x € R,

f(x):61/1+§§26\/§:\/372:|x.

Therefore, by Lemma[F.16] f is absolutely convex.

By computing the derivative of ¢, we can show that |¢'(x)| < § for all z € R. Now we show that
¢(x) > b zl.

When z > ¢, we can simply observe that ¢(z) = ¢ |z|. Now consider the case where x < §. We
have that,

1.

|8

(|| = 8)* > 0.
Expanding the square we get,
2% — 26 |z| + 6% > 0.

Rearranging the terms and dividing by 2 we see that,

1, &2
= — —> .
Bw) = 50° + 5 = 3]

Hence, by Lemmal[F.16] ¢ is absolutely convex. O
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Lemma F.5. Leta > 0and b > 0. Then ¢ : R — R where ¢(x) = vax? + b is absolutely convex.

Proof. Notice that x, = 0. Also by a simple computation we know can show that f is convex,
1 ab
)= — >
V@) = T 2

We can compute an upper bound on the derivative of f,

¢' ()

ax o _ax va
= =+a.
var:+b~ Vax?

é(x) = Vax? +b > Var? = ava? = /alz|.
Since ¢(z) > v/a|z|, by Lemmal|F.16] f is absolutely convex. O

Lemma F.6. The function ¢ : R — R, defined as follows

Then,

r4+1+-2- >0
— x+1 —
<Z>(x) {1—3:—&-1;3 z <0

is absolutely convex.

Proof. Observe that x, = 0. By a simple computation, we can show that ¢" () > 0 for all z € R,

2 __ >0
¢N(SL‘) — {( 21)3

Similarly to the previous examples, we compute an upper bound on ¢/,

11— —— >0
1 — (z+1)2 =
- {(1_1@2_1 z <0’

It is clear that |¢'(x)| < 1 for all z € R. It is easy to shoiw ¢(x) > |z|. For x > 0, we have

plz)=c+1+

> .
T+

For x < 0, we have
1
=1- —_— > .
o(x) 17+1 s T

Therefore, by Lemma[F.16] ¢ is absolutely convex. O

F.2 Functions with zero minimum

Absolutely convex functions have some interesting properties when their minimum is 0.

Lemma F.7. If ¢ is absolutely convex, then the following statements are equivalent:

1. 6(0) =0,
2. ¢(x) =(Vo(z), ),

3. ¢ is homogeneous of degree 1.

Proof. We establish three implications:

(i) = (i) Pick any y. If ¢(0) = 0, then using Equation with z = 0 leads to
6(y) + (Vo(y), —y)| < 0, which implies ¢(y) = (Vé(y),y).

(1) = (i) We start by substituting ¢(y) = (Veo(y),y) and ¢(z) = (V¢(z),z) into
o(x) =2 o(y) + (Vo(y),z — y) to get,
¢(z) = (Vo(z),2) = (Vo(y),y) + (Ve(y),z —y) = (Vo(y), z) .
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This means that,

o(z) = max (9,7),

where Q := {V¢(y) : y € R%}. As a consequence, for any ¢t > 0 and = € R? we get

o(tw) = max (9,tz) = tmax (9,z) = to(x).

(iii) = (i) Choose any z € R? and t = 0. Then ¢(0) = ¢(tz) = to(x) = 0¢(x) = 0. O

Lemma E.8. Let ¢ : R — R be absolutely convex. Suppose there exists an x, € R® such that
¢(xy) = 0. Then

¢(x) = (Vo(z),x — z) .

Proof. From absolute convexity, we have that

0 < p(x) +(Vo(x), 20 —z) | < @(x4) =0.
So
6(z) + (Vo(x), . — ) = 0.
Simply rearranging we get our result,
¢(x) = = (Vo(z), 2, — ) = (Vo(2), 2 — z.) .
O

Lemma F.9. Let ¢ : R — R be absolutely convex. Suppose there exists an x, € R such that
¢(xx) = 0. Also, suppose that ¢ is differentiable everywhere but at x. Then it must be that

—m(x —xy) x < Xy

m(z—x.) T > T, “D

o) =mlo — 2 = §
for some m € Rx.

Proof. We have that f(x) = ¢(x + x,) is absolutely convex. It is also homogeneous of degree one
since f(0) = 0. DefineUy = {x € R|z >0}and Uz = {z € R |z < 0}.

By homogeneity, for any ¢ > 0 and x € U; we have that f(tx) = tf(x). Differentiating both sides
with respect to  we get f’(tx) = f'(x). This means that for any © € U; we have that f'(x) = m
for some m; € R. Since Uj is a connected open set, we have that f(x) = myx for z € Uj.

By similar reasoning, for € Us, f'(x) = mq for some mg € R. Also then, f(x) = maqx for
xr € U2.

Now consider x € U; and y € Us. By absolute convexity we know that

mix = f(z) 2 [f(y) + [' () (@ = y)| = [may +ma(z —y)| = [maz| = [mo]|z].

Then my > \mﬂﬁ = |mg| which comes from the fact that x € Uy so > 0 and thus 7 = L
Similarly,

may = f(y) = |f (@) + /(@) (y = 2)| = [maz + ma(y — 2)| = [may| = [ma]lyl.

Then |m;| < mngz‘ = —my because y € Us so y < 0 and thus ﬁ = —1.
Since 0 < |my| < —ma we get ma < 0. Also because |ms| < my it must be that my = —m; where
mi 2 0.
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For brevity, we set m = m; and so we have that

—_mx x<0
ma x>0

flz) =
By definition we have that ¢(x) = f(x — ). Therefore, we obtain our desired result
b(z) = —m(z —z,) T —x, <O.

m(z—x,) x—x,>0

O
Lemma F.10. Suppose that ¢ : R — R is absolutely convex and ¢(0) = 0. Then ¢ is sub-additive,
oz +y) < o(x) + o(y).

Proof. By Lemma [F7] we know ¢ is positively homogeneous of degree one. Also because ¢ is
convex we have that forany 0 < o < 1,

dlaz + (1 — a)y) < ad(z) + (1 — a)d(y).

. 1
Selecting o = 5

1

o (32+ 3v) < 3900 + 390 2)

By homogeneity of ¢,

1

— <

0+ <0 (504 30).
By combining the previous inequality with inequality (42) and multiplying by 2 we get our result. [
Lemma F.11. Suppose that ¢ : R? — R is absolutely convex and ¢(0) = 0. Then the epigraph of ¢
is a convex cone.

Proof. Now we show that epi ¢ is a convex cone. Suppose (x, 1) € epi¢ and (y, u2) € epio.
Suppose & > 0 and 5 > 0. Then

dlax + By) < dlazx) + ¢(By) = ad(x) + Bo(y) < apy + Bus.

The first inequality is from sub-additivity and the first equality is from homogeneity, Therefore,
(ax + By, apr + Bus) € epi @ so epi¢ is a convex cone. O

Lemma F.12. Suppose that ¢ : R — R is absolutely convex and ¢(0) = 0. Then ¢ is even, i.e.
¢(z) = ¢(-z),  VreR? (43)

Proof. By absolute convexity we have that for any z,y € R

(Vo(x), x) = o(z) = [6(y) + (Vo (y),z — y)|

=o(y) + (Vo(y),z) + (Vo(y), —y)|
= |o(y) +(Vo(y), ) — ¢(v)]
=|(Vo(y),x)]. (44)
Similarly,
o(y) = (Vo(y),y) > [(Vo(z),y)|. (45)

Now subtitute y = —zx into (@4),
o(x) > [(Vo(—12),7)| = (Vo(~2), —2)| = |¢(—2)| = ¢(~2)

where the last equality is because absolutely convex functions are non-negative. Substituting y = —x
into (@3],

¢(—z) =2 [(Vo(z), —2)| = [(Vo(z), )| = [6(2)| = o().
Therefore, ¢(z) = ¢(—x). O
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F.3 Real valued functions

Simple absolutely convex functions from the real numbers to the real numbers are an instructive
playground to understand how to finalize the generalized proofs. Below, we report some properties of
such sub-class. In particular, we prove bounded subgradients in Lemma[F-T5]and a useful result for
validating examples in Lemma [F.16]

Lemma F.13. Let f : R — R defined as follows, f(x) = |a + b(x — x)| for some a,b,zy € R
with b # 0. Then for any ¢ > 0. There exists x1,x2 € R with xo9 > x1, f(x1) = f(x2) = ¢
|ze — 21| = I%CI and f'(x2) > 0and f'(x1) <O0.

Proof. By simply solving the equation f(z) = ¢, we get that

c—a
To = b + Zo;
—c—a
I = b +£L'().
Thus,
| | a —c—a c—a+c+a 2c
XTo — X = — X e [ —— —
S b b 0 b b

Suppose without loss of generality that b > 0. Then f’(x2) = ¢b > 0and f'(z1) = —cb< 0. O

Lemma F.14. Suppose ¢ : R — R is a convex function that is not constant with minimizer x.
Suppose ¢ lower bounded by f(x) = |a + b(x — x0)|f0r a,b,xg € Randb # 0. For any ¢ > ¢(x,)
there exists an &' such that ¢(z') = c and |z’ — | < 2

Proof. By Lemma , there exists x1, 25 € R such that |z — 21| = 75 and f(21) = f(z2) = ¢

We also know that 25 > x; and that f'(x2) > 0 and f/(z1) < 0. We will show that z; < z, < za.
Suppose by contradiction that 2, > xo. Since f is a linear function with slope f’(x2) on the interval

[2,00) we get

fo) = f(x2) + [(w2) (2 — 22) = f(2) = ¢ > B(a,),
which is a contradiction because f is supposed to be a lower bound on ¢. The first inequality follows
from the fact that f'(x2)(z, — z2) > 0. A similar argument follows if the assumption z, < x7 is
made.

Soc= f(x1) < ¢(x1) and ¢(x,) < c. By the Intermediate Value Theorem, there exists ' € (x1, x4 )
such that ¢(z') = ¢

Thus 21 < 2’ < x4 < x3. Therefore, |2/ — x| < |xg — 21| = I%i with ¢(2') = c. O

Lemma F.15. Suppose ¢ : R — R is absolutely convex and has a minimizer x. Then there exists an
M € R such that |¢' (z)| < M for all z € Ri.e. |¢'| is bounded.

Proof. 1f ¢ is constant then its derivative is bounded so we consider the case where ¢ is not constant.
We will do a proof by contradiction. Let ¢ € R such that ¢ > ¢(x,). Let e = %(x*) Note that
|p(z4) — | > €.

By continuity of ¢ at x, there must be a & > 0 such that if |z — x,| < § then |p(x) — ¢(z4)] < e

Suppose that |¢’| is unbounded. Therefore, there exists a sequence of numbers y,, € R such that
lim |¢'(yn)| = o0
n—oo

For any n, let f,,(x) = |<b + &' (yn)(x — yn)|. Since ¢ is absolutely convex, f,, must be a lower
bound on ¢. By Lemma there exists an x,, such that ¢(z,) = cand |z, — x| < EXomI] (yn)l

any yp,.

Since |¢’| is unbounded we can choose a N such that | 4),(7
6(zs) = d(an)| = [d(as) —c| <e

But this contradicts the fact that |¢(x,) — ¢| > €. O

1 < 6. Thus |z — 24| < 6. Therefore,
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Lemma F.16. Suppose ¢ : R — R is convex and has a minimizer at v, = 0. Suppose ¢’ is bounded.
If ¢ can be lower bounded by h(x) = m |x| where |¢'(y)| < m forall y € R then ¢ is absolutely
convex.

Proof. Suppose without loss of generality y < x, = 0. Since ¢ is convex we have that ¢’(y) < 0 by
monotoncity of |¢|. Since m is a bound on ¢’ we get

m > —¢'(y) > 0. (46)
Since h is a lower bound on ¢ we also know that .

¢(y) = —my > 0. (47)

Now let f(x ) |o(y) + ¢'(y)(z — y)|- Denote =V as the point where f(z¥) = 0. On the interval
(—o0, 2], f is equal to the line tangent to ¢ at point y. So by convexity, f is a lower bound on ¢ on
the interval (—oo, 2"]. It remains to show that f lower bounds ¢ on the interval [z7, c0).

First, we show that ¥ = — (f,(é)) +y > x, = 0. We can take the reciprocal of inequality (@6)) to
obtain, = S m Multiply this inequality by @7) to get, —y < — (f,(é)). We can do this because

the terms on both sides of the inequalities are positive. Rearranging we can see that ¥ > 0.

Suppose z € [zV,00). On this interval, f is a line with slope —¢’(y) passing through the point
(¥, 0). Thus we can rewrite f as f(z) = —¢'(y)(x — z"). Since ¥ > 0 we know that z — z¥ < z.
Multiply this inequality by m > —¢'(y) > 0 to get that —¢'(y)(z — z¥) < ma. Since h(x) = mz
is a lower bound on ¢ we have that —¢'(y)(z — z¥) < ¢(x). Therefore, f is a lower bound on ¢ for
arbitrary y < 0 so we are done.

A similar argument can be made for y > 0, the signs will be flipped at each step. O

A direction of potential interest for future developments is how to “absolutely-convexify” a given
function. Below, we prove the propotypical case of functions from R to R. In words, any convex

function lifted high enough is absolutely convex.
Lemma F.17. Suppose f : R — R is a convex function. Then ¢(x) = f(x) + B is non-negative for

):
© € [a,b] with o = maz{| f'(a), |f/ ()]} and = 52 — [OLIE]

Proof. 1Tt is sufficient to show that ¢(z) > 0 for = € [a, b]:

ab—a)  fla)+ f(b)

$z) = f(z) + — 5
:f(w)—f(a)Jra(w—a)+f(£v)—f(b)—a(w—b)
2 2
> Df(;ﬂ,a) n Df(;,b)
> 0.

O

Lemma F.18. Suppose f : R — R is a convex function. Then for any interval [a, b] there exists 3,
such that ¢(x) = f(x) + B is absolutely convex on [a, b].

Proof. As ¢ is convex by convexity of f, it is sufficient to show that for every z,y € [a, b]:

—¢(z) < d(y) + ¢'(y)(x — y).
From Lemmal[F.17]we have ¢(z) > 0, so it is sufficient to consider the case when ¢/ (y)(z — y) < 0.
Having «, 8 from Lemma[F.17]
Case 1: ¢'(y) <Oand z > y.
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From the convexity of ¢ it follows that:

o(y) +¢'(y)(x —y) — (¢(a) + ¢'(a)(x — a)) = Dy(y,a) + (¢'(y) — ¢'(a))(z — y)
> D¢(y>a)
> 0.

Hence, — f'(a) < a by construction, implying:

¢(a) — a(z —a) < (y) + ¢'(y)(x — y).

It remains to show that:

o(x) + ¢(a) — a(z — a) = f(x) + f(a) + 28 — a(z — a)
= f(x) = f(b) + (b — a) — a(z — a)
= f(x) = f(b) =z — b)
> Dy(x,b)
> 0.

Case2: ¢'(y) > O0and z < y.

In analogy with the previous case:

$(b) + oz —b) < é(y) + &' (y)(z —y).
Therefore, it is sufficient to show that:
¢(x) + ¢(b) + a(x — b) = f(z) + f(b) + 2B + a(z — b)
f(z) = f(a) + a(b — a) + a(z — b)
f(z) = fla) + a(z — a)
Dy(z,a)
0.

AVARLVS

O

It is useful to remind the fllowing standard result for sub-gradients. The proof is in the referenced
book.

Lemma F.19 (Lebourg Mean Value Theorem [Clarke, [1990]). Suppose ¢ : R — R is Lipschitz on
any open set containing the line segment [x, y|. Then there exists an a € (x,y) such that

d(z) — d(y) € (09(a),x —y) .

Lemma F.20. Suppose ¢ : R — R is absolutely convex. Let M € R be the bound on the subgradient
of ¢, i.e. |¢'(x)] < M. Fixay € R. Then for any x > y we have that

o(y) + M(z —y) > ¢().

Similarly, for any x < y,

P(y) — M(z —y) > d(z).

Proof. We prove the first claim. Suppose = > y.
Since ¢ is convex, it is locally Lipschitz i.e. Lipschitz on [y, z]. By Lebourg’s MVT we know there
exists a ¢ € (y,z) such that ¢(x) — ¢(y) = g(x — y) where g € 9¢(c). Note that g < M. So,
g(z —y) < M(z — y) because x — y > 0. Therefore,

o(z) — ¢(y) < M(z —y).
Rearranging this expression we obtain ¢(x) < ¢(y) + M (zo — y).

The proof of the second claim follows the same format and uses the fact that g > —M instead. [J
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Lemma F.21. Suppose ¢ : R — R is absolutely convex. Let M € R be such that |¢'| < M. Then
the following limits exist and are equal

lim [¢(2) = lim_|¢/(x)].

r—r00 Tr—r—00

Proof. First, we show that lim,_, . |¢’ ()| exists.

Let {x,} be an arbitrary sequence such that z,, — oo. Since ¢ is convex the sequence {|¢'(z,)|}
is monotonically increasing. Also, it is bounded above. Therefore, by the Monotone Convergence
Theorem there exists an L, € R

lim |¢(2,)] = L1 and Ly > |¢/].

n— oo

Since x,, is arbitrary it must be that lim, _, o |¢’(x)| = L;. A similar argument can demonstrate that
there exists an Ly € R with |Lo| > |¢/| and lim,—, oo |¢'(z)| = | La|.

Now we show that L; = |Lo|. We will do this by contradiction. Suppose without loss of generality
that Ly > |Lo| and that Ly < 0.

There exists an € > 0 such that L; — € > |Ly|. Now there also exists an IV such that for any y > N
we have that |¢'(y) — L1] < €. So L1 — e < ¢'(y).

By absolutely convexity of ¢, function f(x) = |¢(y) + ¢'(y)(z — y)| is a lower bound on ¢. Let x,,
be the value where f(z,) =0

Define [(x) = —¢'(y)(x — x,), which is the line passing through the point (z,,, 0) with slope —¢'(y).
Observe that for © € (—o0, ], I(x) = f(x) so ! is a lower bound on ¢ in that interval. Define
hi(x) = —(L1 —€)(x — x, ) to be the line passing through (z,,, 0) with slope —(L; —¢). For z < x,,
hi(z) < l(x) because L — € < ¢'(y). Therefore, hi(x) < @(x) for z € (—o0, zy).

Define hy(z) = ¢(2y) + Lo(x — ). Since Ly < 0, by Lemmal|F.20] the function A is an upper
bound on ¢ for any = < z,,.

By calculation we can determine an x; such that hq(x;) = ho(x;) where

v = Ty(Ly + L1 — €) — ¢(xy)
¢ L2—|—L1—6 '

Now we show that z; < z,. Note that ¢ is absolutely convex so —¢(zp) < 0. By adding
(Lo 4+ L1 — €)x,, to both sides of this inequality we obtain

ZL’U(LQ + L1 - 6) - ¢(.’E0) S CL’v(LQ + L1 — 6)‘
Dividing by L, + L1 — € we get
et L0~ ()
¢ L2 + L1 — €

< x,.

Letx < Zj. So hl (33) = hl(xz) — (Ll — 6)(JC — Z‘L) and hg(l‘) = h1($z) + LQ(JE — Z‘L) Observe
that —(L; — €) < Lo because Ly < 0 and Ly — € > | Lo|. Multiplying both sides of this inequality
by & — x; which is less than 0 and then adding h(x;) to both sides again we see that hy(x) > ha(x).

Therefore, for any < z; < x,, we have that hq(z) > ho(x). This is a contradiction because
on the interval (—oo,x,), hy is a lower bound so ¢(x) > hq(x) and hy is an upper bound so

ha(x) = ¢().

Lemma F.22. Suppose ¢ : R — R is absolutely convex. Suppose it has a minimum point x. Suppose
there exists a y1,ys € R such that y; < x, < yo and for every y < y1, ¢'(y) = m and for every
Yy > ya, &' (y') = ma. Then my = mo.

Proof. Note that since ¢ is convex it has monotonicly increasing derivative. Therefore, m; < 0
since y < x, and mg > 0 since y’' > x,. Let f(z) = |¢p(y1) + m1(z — y1)| be the tangent cone to

y1. Then define line h(z) = |mq| (z + %yll) — y1) which is a line that has the same slope as f and
intersects the vertex of f. Note that & is a lower bound on ¢ by absolute convexity. O
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Lemma F.23. Suppose ¢ : R — R be absolutely convex and assume ¢* = inf, cg ¢(x) < oo. Then
there exists an x, € R such that ¢p(xy) < ¢(x) for any x € R.

Proof. Suppose z € R is arbitrary. Choose a y € R and by absolute convexity we have that
|o'(y) + &' (y)(x — y)| < ¢(x). We can rearrange the terms on the left side and take the limit to see

that
lim |p(y) — &' (y)y + ¢ (y)z| = co.

|z] =00

since only the last term which is linear depends on z. Therefore, we have that lim |, ¢(x) = o0.

This demonstrates that ¢ is coercive. Now let x,, be a sequence such that ¢(z,) — f*. Suppose
that lim,, o [2,| = oco. Then by coercivity, we get that lim, | o ¢(2,) = infty which is
a contradiction with the fact that ¢* < oo. Thus it must be that lim,_, |z,| = r for some
r € R. Let B, = {z € R| |z| < r} which is compact because it is closed and bounded. Since
Ty, € B, and every sequence in a compact set has a convergent subsequence, so there exists
an x, € B, s.t. z,, — z.. By continuity of ¢ (because it is a convex function) we obtain

F.4 Multivariable functions

Having analyzed the easy case, we move to general instances of absolutely convex functions. In
particular, we prove that gradients of absolutely convex functions are bounded. The first statement is
a rewriting of Lemma [7.1]in the main text.

Lemma F.24. Suppose ¢ : R? — R is absolutely convex and has a minimizer x,. Then there exists a
M € R such that |Vé(z)||l, < M forall z € R%.

Proof. If ¢ is the constant function then its gradient is bounded so we consider the case where ¢ is
not constant.

We will do a proof by contradiction. Let ¢ > ¢(x,). Let € = 67%& Note that |¢(z,) — ¢| > €.
Suppose § > 0. Observe that since ¢ is convex on R it is continuous on R? and in particular it is
continuous at x,. Therefore, there exists a 0 > 0 such that if |z, — x| < § then |p(z,) — ¢(x)] < e.
Suppose that | V| is unbounded. So, there exists a sequence of points 3,, € R? such that

lim [ V()] = oo.

Let fr(2) = |6(yn) + (Vo (yn), z — yn)|. Since ¢ is absolutely convex, f, must be a lower bound
on ¢. We can proceed similarly to the proof of bounded gradients in R (Lemma [F.15)) by considering
the restriction of f and ¢ to specific lines. This allows us to find a sequence of points z,, that lie on
those lines and z,, — x,.

Define L,, to be the line that passes through x, in the direction of V¢(y,,). Let qS’ ;. R —Rbe
| Lo R — R be the restriction of f,, to L,,. Note
that the function f”‘L is of the form |a + b(z — x0)| where b = ||V ¢(yn)||* for some a, z¢ € R.
Let z* € R be the minimizer of qb’ Lo Then by Lemma, there exists a point, Z,, € R such that

= _ 7% m 2¢

qS’Ln(:rn) =cand |T* — ZT,| < ZIRIEE
mapped to a point z,, € R? which lies on the line L,, and ¢(x,,) = c and |z, — z,,| <
This holds for each ,,.

Since [|[V¢(yn)||, is unbounded we can find an N such that |z, —zx| < 6. Therefore,
|p(z4) — P(zn)| = |@(z4) — ¢| < e. However, this contradicts the fact that |¢(z,) — ¢| > e. O

the restriction of ¢ to the line L,, and similarly, f,

Observe that £* corresponds to x,. Also, Z,, can be

2c
”v¢(yn)”2 ’

Lemma F.25. The maximum of a constant and an absolutely convex function is absolutely convex.

Proof. Let a € R and f be absolutely convex and ¢ := max{ f, a}. We split the argument in some
sub-steps.

(Trivial case) Since absolutely convex functions are always positive, it follows that if o < 0 then
g(x) = max{f(z),a} = f(x) and f = g is absolutely convex.
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(Second case) Let « > 0. Since f is absolutely convex, it is convex and g is by construction.
Therefore, the positive side of the inequality in absolute convexity needs not to be verified. It
reamains to show that:

wis  g(y) = —g(x) = (Vg(y),z —y) Va,y <= g(y) +9(z)+ (Vg(y), 2 —y) =0 Va,y.

(48)
For convenience, we will show the last version is positive for different choices of x, y. Recall that f
is always positive so for arbitrary (z, y)there are four regions identified by the strips [0, o); [, 00)
iover which the values f(x), f(y) can fall.

Additionally, recognize that for z € R? we have Vg(z) = Vmax{f(z),a} = 1;(;)>,V f(2). Let
us treat all the cases in separate waysﬂ

If f(x) < aand f(y) < a we have the expression 2« > 0 by construction.
If f(x) > aand f(y) < o we have the expression:

fl@)+a>0; (49)
again, by construction.

If f(z) < aand f(y) > awehave a+ f(y)+(Vf(y),z —y) > f(x)+f(y)+(Vf(y),z—y) >0
since we assumed f is absolutely convex.

If f(z) > aand f(y) > « one has:

f@)+ fy) +(Vf(y),z—y) >0, (50)
which follows by the assumed strong convexity of f. [

remark Let z, = arg min f, for an absolutely convex function f. Observe that one can always use,

for any y # T, T # Ty
f@) 2 fy) + (V) z —y) | (51)

Lemma F.26. Suppose v € R%. A function ¢ : R® — R is absolutely convex if and only if the
function f : R — R defined as f(t) = ¢(x + tv) is absolutely convex for all x € R%.

Proof.

(=) Suppose f(t) is an absolutely convex function for any x,v € R?. We already know that ¢ will
be convex so we only need to show that for all y, z € R4,

—¢(z) < d(y) + (Vo(y), 2 —y) .

Note that f'(t) = (V¢(z + tv),v). Select x = y and v = z — y. Since f is absolutely convex, the
following inequality will hold,

—f(1) < f(0) + f(0)(1 —0) = f(0) + £'(0)
o(y) +(Vo(y), z —y) .

We have our result because f(1) = ¢(y +v) = ¢(2)

(<) Suppose ¢ is absolutely convex. Let x, v € R be arbitrary. We know already that f is convex.
So we just need to show that for any s,¢ € R we have that

—f(t) < f(s)+ f1(9)(t = 5).

By absolute convexity of ¢ we know that,

—p(x +tv) < p(z + sv) + (Vo(z + sv),z + tv — (x + sv))
= ¢(x + sv) + (Vo(z + sv),tv — sv))
= ¢z + sv) + (Vo(z + sv),0) (t = 5)
= f(s) + f'(s)(t = 3).
Since f(t) = ¢(x + tv) we have our result. O

*“In principle, at z = a there is a singularity, we avoid doing this computation since the non-differentiable
definition of absolute convexity is satisfied for the max function.
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G Extra Experiments

G.1 Regression with squared Huber loss

In this experiment we optimize the function
1 n
$) = 3 2 Hilasw = b0
i—

where a; € R, b; € R are the data samples associated with a regression problem, and h; is the
Huber loss function. We run the experiments with C(x) for absolutely convex functions

=== Polygk === |[CD1 === [CD2 === LCD3

Figure 5: Regression on housing dataset.
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Figure 6: Regression on mpg dataset.
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Figures show that the algorithms using the C(z) matrix perform much better than the Polyak
method. We observe very fast convergence of both LCD3 and LCD2, regardless of 4. Contrary, as ¢
increases LCD1 loses in comparison with the other two matrix methods. The most likely reason is
increasing part of the objective, which is quartic, as it requires extra adaptiveness on the smoothness

constant.

G.2 Ridge regression

We consider the following objective function:
1o ) 5
f(z) = - Z(aix —b;)" + Allz||
i=1
where a; € R?, b; € R are the data samples associated with a regression problem. By L we
understand the smoothness constant of a linear regression instance, excluding the regularizer.

In Figures C(x) is associated with the regularizer, and it becomes a multiple of I. As discussed
in the main text, in this case LCD2 has closed-form solution, which coincides with LCD3. The LCD1
algorithm becomes GD. We can see, similar behavior to logistic regression with Lo regularizer that is
consistent improvement of LCD2 over the Polyak’s method.

Figures g show the results with C(z) = %ATA, which is a lower bound on the main part of the
objective. In this circumstance, LCD1 becomes the Newton’s method, and converges in one step. As
anticipated in the main text, LCD3 can diverge. Finally, LCD2 performs in a very consistent way, and
converges in exactly 15 steps across all the setups.
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Figure 7: Ridge regression on housing dataset; C(x) = 2.
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Figure 8: Ridge regression on mpg dataset; C(z) = 2.
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Figure 9: Ridge regression on housing dataset; C(z) = 2ATA.
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Figure 10: Ridge regression on mpg dataset; C(x) = %ATA.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
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follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1a€‘2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract about our methods have proofs and our
empirical results are encouraging.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We point out assumptions and limitations in the conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are stated in the introduction and proofs are provided in
appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a thorough description of the experimental setup including
the type of model that was used and all of the hyperparameters.
Guidelines:

* The answer NA means that the paper does not include experiments.

» If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Although we don’t provide code, we use common and standard experimental
setups in ML such as logistic regression. Additionally, we provide a thorough description of
our methods and the experimental setup so the results can be faithfully reproduced.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so &€SNoa€t is an acceptable answer. Papers cannot be rejected simply for
not including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
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6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are in the experiments section and additional technical
details are in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our paper focuses on convex optimization algorithms, which typically do
not employ statistical significant tests. We demonstrate the empirical performance of our
methods across various ML setups against baselines.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute resources used are provided in the experiments section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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0.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is in convex optimization theory and adheres to the NeurIPS code
of conduct.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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13.

14.

Justification: Not applicable to our research.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use existing assets.
Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]
Justification: Our work does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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