
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HICO-GT: HIDDEN COMMUNITY BASED TOKENIZED
GRAPH TRANSFORMER FOR NODE CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Transformers have been proven to be effective for the node classification
task, of which tokenized graph Transformer is one of the most powerful ap-
proaches. When constructing tokens, existing methods focus on collecting multi-
view node information as the Transformer’s input. However, if a type of tokens
only includes nodes having relations with a target node from one perspective, it
will not provide sufficient evidence for predicting unknown labels. Directly ap-
plying self-attention to all tokens may also produce contradictory information as
they are selected by distinct rules. Meanwhile, as an emerging concept on graphs,
hidden communities refer to those with relatively weaker structures and being
obscured by stronger ones. In this paper, inspired by the hidden community clus-
tering method, we design a new multi-view graph Transformer called HICO-GT.
We first reconstruct the input graph by merging the original topology and attribute
information. Through an iterative process of weakening dominant and hidden
communities in turn, we obtain two subgraphs both containing node information
of topological relation and attributed similarity, and then generate two token se-
quences correspondingly. Along with another neighborhood sequence produced
on the original graph, they are separately fed into the Transformer and fused after-
wards to form the final representations. Experimental results on various datasets
verify the performance of the proposed model, surpassing existing graph Trans-
formers.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has emerged as a crucial tool across various
domains of deep learning. More recently, graph Transformers (GTs) (Dwivedi & Bresson, 2020;
Kreuzer et al., 2021) provide a new perspective in solving various classical tasks such as node
classification. Given a set of labeled nodes on a graph, the goal of node classification is to predict
the unknown labels for other nodes. Early graph Transformers (Dwivedi & Bresson, 2020; Kreuzer
et al., 2021; Rampášek et al., 2022) address the task by applying the basic Transformer on the
whole input graph and obtaining attention scores among all nodes, which brings large computational
cost and badly affects the model’s efficiency. To overcome the scalability issue, various tokenized
GTs (Zhao et al., 2021; Zhang et al., 2022; Chen et al., 2023) are proposed. Instead of using the
whole graph, these models only focus on the sampled information related to the target node and
convert them into token sequences as the input of Transformer. This strategy allows the model to be
trained in a mini-batch manner (Chen et al., 2023), reducing the computational complexity, while it
still ensures adequate information for classifying the unlabeled nodes.

There are mainly two categories of tokens in tokenized GTs: neighborhood token and node token.
Neighborhood tokens are able to capture the local structural features around the target node, but it
is difficult for them to include some global information such as long-range dependencies. On the
contrary, node tokens are more flexible as we can focus on the nodes that share similar properties
with the target node no matter where they are located on the graph.

When designing node tokens, the key idea is to collect adequate and comprehensive information by
limited elements. A recent work (Fu et al., 2024) points out that a single type of token sequence
is insufficient to fully represent the graph and proposes VCR-Graphormer that constructs multi-
view tokens in the final sequence. To select node tokens, VCR-Graphormer creates topology-aware

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

or label-aware super nodes and adds a number of virtual edges to the original graph so that the
potential tokens become closer to the target node. However, nodes only carrying useful information
in one view are not enough to qualify as a token. The virtual edges with unit weight may not lead
to the accurate selection as they do not distinguishing the different importance of local and global
information. Moreover, the model mixes all types of tokens before sending them to the Transformer,
ignoring the potentially contradictory information learned from self-attention. The length of the final
sequence and the number choice of the super nodes both increase the complexity as well. To avoid
these disadvantages and make the model more capable, we want to design a multi-view tokenized
GT in which each type of tokens, with different meanings from each other, can all capture the graph’s
information from multiple perspectives, and control the computational cost at the same time.

Community detection is another popular topic in graph data mining, which aims to partition a non-
attributed graph into communities and the nodes’ connections in the same community are much
closer than those from different communities. Based on its original definition, He et al. (2018) find
that the communities in a graph may have varying strength, and the communities with relatively
weaker structures can be obscured by stronger ones. They correspondingly define the hidden com-
munity detection task and design a framework to solve it. By uncovering hidden communities, we
can obtain information that would otherwise be difficult to extract on graphs. Although this task
have different application scenarios from node classification, we can preprocess the input graph and
generate higher-quality tokens with the help of hidden community detection strategy.

In this paper, we propose a new graph Transformer called HICO-GT for node classification. To
make all node tokens carry topology and attribute information, we first reconstruct the input at-
tributed graph to a non-attributed graph, where the potential node tokens have relations with the
target node of varying degrees and constitute dominant and hidden communities. We use an iter-
ative process to weaken their structures in turn and obtain two subgraphs, where the edge weights
are automatically decided to reflect the connection strengths among nodes. Then we perform Per-
sonalized PageRank on the subgraphs to construct two corresponding token sequences. Along with
another neighborhood token sequence produced on the original graph, all the three sequences are fed
into the Transformer architecture separately. Eventually, a novel readout function fuses the Trans-
former outputs to produce the final node representations for classification. Different to the existing
method that mainly utilizes the interactions within the detected clusters after adding virtual nodes
and edges, HICO-GT obtains two sets of clusters, and each of them enhances its inner connections
by weakening the other’s structure on the graph to construct the token sequences, which provides
a brand new way for designing tokenized GTs. We test the performance of HICO-GT by extensive
experiments and it yields satisfying results on both homophilic and heterophilic datasets.

Our main contributions are summarized as follows:

• We reconstruct a non-attributed graph containing dominant and hidden communities. In-
spired by the hidden community detection strategy, we obtain two subgraphs and generate
two corresponding token sequences both carrying topological and attributed information.

• We design a new tokenized graph Transformer called HICO-GT, in which two node to-
ken sequences and one neighborhood token sequence are separately fed into the standard
Transformer architecture and fused by a novel readout function afterwards.

• Comparative experiments on various datasets demonstrate the outstanding performance of
HICO-GT for node classification. Ablation study and parameter analysis discuss the effects
brought by important modules in the model and different values of key parameters.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORK

For node classification task, early GNNs obey the design of deep neural networks that stack sev-
eral GNN layers to learn node representations. Some researches (Kipf & Welling, 2017; Abu-El-
Haija et al., 2019; Zhu et al., 2020) focus on developing topology-aware neighborhood aggregation.
There are also a series of methods leveraging the attention mechanism (Veličković et al., 2018;
Bo et al., 2021; Kim & Oh, 2021) to strengthen the aggregation operation by introducing attribute
information. Meanwhile, popular techniques in advanced deep neural networks, such as residual

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

connections, have been adopted to improve the performance of GNN (Chen et al., 2020; Xu et al.,
2018). Another strategy of designing GNNs attempts to decouple the aggregation operation and
feature transformation operation in each GNN layer (Dong et al., 2021; Chen et al., 2024; He et al.,
2022). Hence, a multi-layer GNN can be represented as a combination of a multi-hop neighborhood
aggregation module and a feature transformation module. In this way, the training cost could be
effectively controlled by removing the non-linear activation operation among GNN layers.

2.2 GRAPH TRANSFORMER

Graph Transformers have shown promising performance in node classification. Prior models have
developed approaches such as Laplacian eigenvector (Dwivedi & Bresson, 2020; Bo et al., 2023)
to encode the graph structural information. Some methods introduce linear attention-based strate-
gies (Wu et al., 2022; 2023) to reduce the computation expense of self-attention. More recent studies
transform the graph into independent token sequences as the model input, which effectively controls
the training cost. NAGphormer (Chen et al., 2023) utilizes the propagation operation to generate
neighborhood-wise token sequences. PolyFormer (Ma et al., 2024) combines the node tokens with a
node-wise filter through a tailored attention mechanism, achieving both scalability and expressive-
ness. These models generate tokens only in one view. VCR-Graphormer (Fu et al., 2024) combines
the node-wise and neighborhood-wise tokens to construct a hybrid token sequence. However, the
independent selection processes reduce the quality of tokens as they do not carry the multi-view in-
formation at the same time. In our model, we merge the topological relation and attributed similarity
and generate two token sequences from the new graph. These node tokens all have interactions with
the target node from two perspectives and can provide more reference for its label prediction.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Consider an undirected and unweighted graph G = (V,E,X) with |V | = n nodes and |E| = m
edges, where X ∈ Rn×d is the attributed matrix and d is the dimension of the node feature vector.
In the adjacency matrix A ∈ {0, 1}n×n, Aij = 1 denotes that there is an edge between nodes vi
and vj , and Aij = 0 otherwise. The normalized adjacency matrix is calculated as Â = (D +

I)−1/2(A + I)(D + I)−1/2, where D and I represent the diagonal degree matrix and the identity
matrix, respectively. Each node’s one-hot label vector for c classes constitute the label matrix of the
graph Y ∈ Rn×c. For a node set Vl with known labels, the goal of node classification task is to
predict the labels for the nodes in its complementary set Vu = V − Vl.

3.2 MODULARITY AND HIDDEN COMMUNITY DETECTION

Modularity (Newman & Girvan, 2004) is a popular metric to evaluate the strength of a set of com-
munities (a partition). For a partition of a non-attributed graph, its modularity is defined as

Q =
1

2m

∑
ij

[Aij −
kikj
2m

]δ(i, j), (1)

where k is the degree of a node, and δ(i, j) = 1 if node vi and vj are in the same community,
otherwise δ(i, j) = 0. This metric can also be used for weighted graphs by replacing the numbers
of edges and degrees with their corresponding edge weight summation.

He et al. (2018) define that a partition with relatively higher modularity score is considered as the
dominant partition, while the other one is the hidden partition. They also propose a framework to
detect them, which weakens the structures of discovered communities to make those from the other
partition emerge, and uses an iterative process to strength both detection results. ReduceWeight is a
method to weaken the community structures. It considers the connections outside a community as
background noises, and calculates the interior density p and exterior noise density q of a community
C with nC nodes, i.e.,

p =
wCin

1
2nC(nC − 1)

, q =
wC − 2wCin

nC(n− nC)
, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where wCin
and wC denote the weight summation of the edges within C and edges having at least

one endpoint inside C, respectively. Then, ReduceWeight multiplies the interior edge weights by
the ratio of p and q, i.e.,

wuv = wuv ·
q

p
, (u, v) ∈ EC . (3)

In this way, the community’s density is reduced to the same level as background noises.

3.3 TRANSFORMER ARCHITECTURE

As a key component of graph Transformers, the Transformer architecture (Vaswani et al., 2017)
contains a number of Transformer layers, and each layer is composed of two modules named multi-
head self-attention and feed-forward network. For the input feature matrix H ∈ Rn×d, a single-head
self-attention module projects it into three subspaces, i.e.,

Q = HWQ,K = HWK ,V = HWV , (4)

where WQ ∈ Rd×dK ,WK ∈ Rd×dK and WV ∈ Rd×dV are learnable weight matrices. Then, the
processed feature matrix is calculated as

H′ = softmax
(
QKT

√
dK

)
V. (5)

Finally, the learned features from multi-head self-attention are concatenated and fed into the feed
forward network to generate the output of the current Transformer layer.

4 METHODOLOGY

In this section, we present our model HICO-GT. We first introduce graph reconstruction process
to merge the information of topology and attribute. Then, inspired by hidden community detection
task, we separate two partitions of this non-attributed graph and generate two corresponding token
sequences. These sequences, along with another one produced by propagation on the original graph,
are separately fed into the Transformer. Finally, a novel readout function fuses all processed features
to obtain the ultimate representations for classifying the nodes. The overall framework of HICO-GT
is shown in Fig. 1.

4.1 GRAPH RECONSTRUCTION

In tokenized GTs, there are typically two types of tokens: neighborhood token and node token. We
want to select node tokens resembling the target node in the views of both topology and attribute so
that they can provide more reference for node classification. Therefore, we first merge the nodes’
original topology and attribute information, and reconstruct the input graph into a new non-attributed
one Gnew. Specifically, we calculate the cosine similarity of the feature vectors for every node pair
on G, i.e.,

cos(θij) =
Xi ·Xj

||Xi|| · ||Xj ||
=

∑d
k=1 XikXjk√∑d

k=1 Xik
2
√∑d

k=1 Xjk
2
, vi, vj ∈ V, vi ̸= vj . (6)

Then, we sort all the similarities and pick the highest m scores to create a set S containing their
corresponding node pairs. For a node pair in S, if there is not an edge connecting two nodes, we
add one with the weight equal to the similarity score. If there has already been an edge, we reset
its weight to the similarity score plus one. And for a node pair that is not in S, we keep its original
topological relation, i.e.,

Wij =

{
Aij + cos(θij), (vi, vj) ∈ S,

Aij , (vi, vj) /∈ S.
(7)

In this way, we construct a non-attributed graph Gnew to replace the input graph, and both the topol-
ogy and attribute information are transformed into topological connections. Then we can perform
the following process to generate the token sequences on this graph.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Weighted Sum

[···] [···]

[···]

[···]

[···]

L
inear

Projection

Transform
er

L
ayers [] MLP

[···]

[···]

[···]

[···] [] MLP
]

vi

vi vi

vi

vi

Input Graph (attributed) Reconstructed Graph (non-attributed)

Iterative Weakening

Topology and
Attribute Mergence

ZiNout

ZiDout

ZiHout

Zi=ZiNout+δ(ZiDout+ZiHout)

Figure 1: The overall framework of HICO-GT. There are three token sequences in total. The neigh-
borhood sequence is captured on the original input graph. The two series of node tokens are respec-
tively selected on two weakened graphs after an iterative hidden community detection for the recon-
structed graph. Weakened edges are represented with dashed lines. The token sequences (squares)
are separately fed into a standard Transformer, and the output features (octagons) are fused by a
weighted readout function to produce the final node representation.

4.2 TOKEN SEQUENCE GENERATION

The task of hidden community detection aims to distinguish the partitions with different cohesive-
ness and find them separately on a non-attributed graph. On the graph after reconstruction, most of
the qualified node tokens tend to constitute communities as they have strong interactions. However,
there also exist nodes that share slight topological relation or attributed similarity with the target
node but are not included in these communities. Therefore, to dig out all the potential node tokens,
we generate a dominant partition and a hidden partition of the graph and construct two corresponding
token sequences with the help of the hidden community detection strategy.

Louvain (Blondel et al., 2008) is a classical community detection algorithm based on modularity
maximization. For Gnew, we first use Louvain to detect one partition, and it naturally resembles the
dominant partition as the communities have stronger structures. Once the partition is found, we
can calculate the interior and exterior edge density for each community and use ReduceWeight to
weaken them. By this means the structures of the hidden communities emerge. Now the community
detection operation can uncover more nodes that have relatively weaker connections with the target
node. So far we have obtained two partitions but they are not accurate enough. Note that while the
communities in the dominant partition cover that in the hidden one, the structures of the latter have
an impact on the former as well. Therefore, we also weaken the hidden communities and repeat
the above process iteratively to get refined detection results. In the last iteration, we extract the two
subgraphs after weakening the two partitions to select the tokens.

As the community weakening process eliminates the distraction from each other, the two sub-
graphs preserve distinct information, which helps us to select two series of node tokens. Now
the automatically-decided edge weights reflect their connection strengths and we use Personalized
PageRank (PPR) to compare the relations between all nodes and the target node. For a node vi, PPR

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

begins with the initial probability vector r(0) =
(
1
n ,

1
n , ...,

1
n

)⊤ ∈ Rn×1 and iterates as:

r(k) = µPr(k−1) + (1− µ)e, ej =

{
1, j = i,

0, j ̸= i,
(8)

where P = D− 1
2AD− 1

2 is the transition matrix and µ ∈ (0, 1) is a hyper-parameter to control the
probability to restart in each step, and we set µ = 0.85 in our model. Take the dominant nodes
as the example, after a certain numbers of steps, PPR gets a probability vector for each node, and
we pick the top QD highest values to compose a vector rDi in descending order, as well as its
corresponding node setRD

i . Then we concatenate the nodes’ features with their PPR values and put
them together to form the dominant token sequence. To prevent the loss of information on vi, we
set the first token in the sequence to the node itself and assign probability of 1. That is, we obtain
SD
i =

{
Xi||1,XRD

i,1
||rDi,1,XRD

i,2
||rDi,2, · · · ,XRD

i,QD
||rDi,QD

}
for vi. We construct the hidden token

sequence SH
i in the same way. The details of the whole generation process of these two sequences

are presented in A.1.

By constructing the above token sequences, we select the nodes sharing similar topology and at-
tribute information and aggregate them to the target node. However, during the graph weakening
process, we may lose some local structural information from the target node’s neighborhood on
the original graph. Therefore, we construct another sequence to collect the neighborhood features.
Specifically, we first add a self-loop edge with a weight of 1 for each node on graph G to pay more
attention to the node’s own features. Then, the neighborhood aggregation is performed by iteratively
multiplying the normalized adjacency matrix with the feature matrix, i.e.,

X(k) = ÂX(k−1), X(0) = X. (9)

For node vi, we put together its corresponding vectors from the matrices after each step
of propagation, forming the local feature tokens from its K-hop neighborhood SN

i ={
X

(0)
i ,X

(1)
i , · · · ,X(K)

i

}
, where K is the maximum steps.

4.3 TRANSFORMER BACKBONE AND FUSION OPERATION

After obtaining token sequences from three different perspectives to describe node vi’s features,
the next stage is to use the Transformer module to process them. To feed multiple sequences into
the Transformer, some existing methods (Fu et al., 2024) choose to combine them into a single
sequence, which mixes all types of information and prevents the model from learning self-attention
in each view. Moreover, the time complexity of self-attention mechanism is quadratic in the input
length (Keles et al., 2023), and thus it incurs a lower cost to process each token sequence separately
than putting the multi-view tokens together. Therefore, we apply the former strategy in our model.

We use a similar way to treat the three token sequences for node vi in the Transformer. Take SN
i as

an example, we first map it to a subspace, i.e.,

Z
N,(0)
i =

[
X

(0)
i W,X

(1)
i W, · · · ,X(K)

i W
]
, (10)

where W ∈ Rd×dm is a learnable projection matrix. A standard Transformer layer composes of
a multi-head self-attention (MSA) module and a feed-forward network (FFN) module, and they
process ZN,0

i ∈ R(K+1)×dm by

Z
N,(l′)
i = MSA

(
LN

(
Z

N,(l)
i

))
+ Z

N,(l)
i , (11)

Z
N,(l+1)
i = FFN

(
LN

(
Z

N,(l′)
i

))
+ Z

N,(l′)
i , (12)

where LN denotes the layer normalization. Through a same L-layer Transformer, we obtain the
learned representations in three views ZN,(L)

i , ZD,(L)
i and Z

H,(L)
i .

In node token sequences, the elements excluding the first one are all generated mainly from features
of other nodes, whose information has already been aggregated into the target node’s representation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Therefore, we abandon them and only send the first elements in Z
D,(L)
i and Z

H,(L)
i into a fully

connected layer, i.e.,

ZDout
i = FC

(
Z

D,(L)
i,0

)
, ZHout

i = FC
(
Z

H,(L)
i,0

)
. (13)

As for the neighborhood token sequence, every token, which corresponds to an aggregated feature
vector of one single hop in the neighborhood, has a strong correlation with the target node, and thus
should be included in the fusion stage. We follow the strategy in (Chen et al., 2023) to acquire the
coefficients for each element in Z

N,(L)
i , and calculate the weighted sum accordingly.

ωk =
exp

((
Z

N,(L)
i,0 ||ZN,(L)

i,k

)
W⊤

1

)
∑K

j=1 exp
((

Z
N,(L)
i,0 ||ZN,(L)

i,j

)
W⊤

1

) , (14)

ZNout
i = Z

N,(L)
i,0 +

K∑
j=1

ωkZ
N,(L)
i,j , (15)

where W1 ∈ R1×2dm is a learnable projection matrix. Eventually, we fuse the three processed
vectors by a summation operation and use a hyper-parameter δ to control the proportion of the
emphasis on node tokens or neighborhood tokens, i.e.,

Zi = δ(ZDout
i + ZHout

i) + ZNout
i . (16)

Zi is vi’s final representation and will be fed into the predictor to solve the classification task.

5 EXPERIMENTAL RESULTS

5.1 DATASETS

We conduct comparative experiments on ten widely used datasets. For homophilic graphs, we select
Pubmed, CoraFull, CS and Physics from Deep Graph Library (DGL) 1. For heterophilic graphs, we
select UAI2010 and BlogCatalog from (Wang et al., 2020), as well as Squirrel-filtered, Minesweeper,
Tolokers and Questions from (Platonov et al., 2023). We also follow the splitting strategy of the latter
four datasets in (Platonov et al., 2023), and apply 60%/20%/20% train/val/test random splits for the
others. We use ROC-AUC as the metric to evaluate the models’ results for Minesweeper, Tolokers
and Questions as there are only two classes for the nodes in these datasets, and use accuracy for the
other multi-class tasks. The statistic information of the datasets are summarized in A.2.

5.2 BASELINES

We select ten representative methods as the baselines, including GNN-based models, GCN (Kipf &
Welling, 2017), GAT (Veličković et al., 2018), APPNP (Klicpera et al., 2019), GPR-GNN (Chien
et al., 2021), and GT-based models, NodeFormer (Wu et al., 2022), SGFormer (Wu et al., 2023),
Specformer (Bo et al., 2023), NAGphormer (Chen et al., 2023), PolyFormer (Ma et al., 2024),
VCR-Graphormer (Fu et al., 2024). The implementation details for HICO-GT and the baselines are
introduced in A.3.

5.3 PERFORMANCE COMPARISON

We test all models’ performance for node classification task on ten datasets, and report the results
in Table 1. For the first four homophilic datasets, HICO-GT yields the highest accuracy on al-
most all the datasets, except for Corafull on which our model is the second best. For the last six
heterophilic datasets, HICO-GT outperforms all the GNN-based and GT-based baselines. On het-
erophilic graphs, neighbor nodes mostly do not share the same label, bringing more challenges for
node classification. In HICO-GT, we isolate a specific partition to enhance the hidden community
structures and pay more attention to the nodes having relatively weaker connections with the target
node, which expands the scope of node token selection. Compared to VCR-Graphormer, another

1https://www.dgl.ai/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of all models in terms of mean accuracy or ROC-AUC score ± stdev (%). The
best results appear in bold.

Model Pubmed Cora. CS Physics UAI. Blog. Squi. Mine. Tolo. Ques.

GCN 86.54 61.76 92.92 96.18 74.68 93.56 41.30 72.23 77.22 76.28
± 0.12 ± 0.14 ± 0.12 ± 0.07 ± 0.82 ± 0.43 ± 0.94 ± 0.56 ± 0.73 ± 0.64

GAT 86.32 64.47 93.61 96.17 75.17 94.34 35.09 81.39 77.87 74.94
± 0.16 ± 0.18 ± 0.14 ± 0.08 ± 0.45 ± 0.64 ± 0.70 ± 1.69 ± 1.00 ± 0.56

APPNP 88.43 65.16 94.49 96.54 76.08 94.21 38.96 88.75 78.36 73.98
± 0.15 ± 0.28 ± 0.07 ± 0.07 ± 0.66 ± 0.32 ± 0.66 ± 0.74 ± 0.58 ± 0.81

GPR-GNN 89.34 67.12 95.13 96.85 76.32 95.02 41.09 90.10 77.25 74.36
± 0.25 ± 0.31 ± 0.09 ± 0.08 ± 0.59 ± 0.34 ± 1.18 ± 0.34 ± 0.61 ± 0.67

NodeFormer 89.24 61.82 95.68 97.19 73.87 93.33 37.07 86.91 78.34 74.48
± 0.14 ± 0.25 ± 0.08 ± 0.04 ± 1.39 ± 0.85 ± 9.16 ± 1.02 ± 0.98 ± 1.32

SGFormer 89.31 65.32 93.62 96.71 75.17 94.32 43.74 77.69 82.07 77.06
± 0.17 ± 1.08 ± 0.05 ± 0.06 ± 0.49 ± 0.21 ± 2.51 ± 0.96 ± 1.18 ± 1.20

Specformer 89.19 66.58 96.07 97.30 75.61 96.12 40.20 89.93 80.42 76.49
± 0.33 ± 0.86 ± 0.10 ± 0.05 ± 0.77 ± 0.23 ± 0.53 ± 0.41 ± 0.55 ± 0.58

NAGphormer 89.70 71.51 95.75 97.34 78.05 93.88 39.79 88.06 81.57 75.13
± 0.19 ± 0.13 ± 0.09 ± 0.03 ± 0.75 ± 0.64 ± 0.84 ± 0.43 ± 0.44 ± 0.70

PolyFormer 90.08 70.81 96.14 97.36 78.63 95.93 42.56 90.69 84.00 77.46
± 0.14 ± 0.19 ± 0.06 ± 0.03 ± 0.67 ± 0.30 ± 0.96 ± 0.38 ± 0.45 ± 0.65

VCR-G. 89.77 71.67 95.37 97.34 77.51 93.57 44.44 89.96 82.84 76.03
± 0.15 ± 0.10 ± 0.04 ± 0.04 ± 0.85 ± 0.42 ± 0.62 ± 0.52 ± 0.60 ± 0.49

HICO-GT 90.90 71.52 96.20 97.42 79.67 96.15 45.33 90.86 85.27 77.61
± 0.15 ± 0.12 ± 0.08 ± 0.03 ± 0.54 ± 0.18 ± 0.69 ± 0.32 ± 0.40 ± 0.59

Table 2: Comparison with the variants removing two types of tokens. DT and HT stand for
dominant token and hidden token, respectively.

Dataset HICO-GT Without DT Without HT
Pubmed 90.90 90.44 90.29
CoraFull 71.52 71.01 71.06
CS 96.20 95.69 95.61
Physics 97.42 97.12 97.09
UAI2010 79.67 78.05 77.89
BlogCatalog 96.15 95.28 95.38
Sqirrel-filtered 45.33 42.00 41.56
Minesweeper 90.86 90.24 90.52
Tolokers 85.27 84.79 85.01
Questions 77.61 76.48 76.61

multi-view tokenized GT, our model merges the topology and attribute information and uses hidden
community detection to produce two token sequences instead of independent topology-aware and
attribute-aware sequences. Moreover, we send the sequences to the Transformer separately rather
than combine them into a single one. The better classification results than VCR-Graphormer confirm
the efficacy of our strategy.

5.4 ABLATION STUDY

In HICO-GT, we reconstruct a new graph to obtain two partitions, and separately generate two token
sequences based on the dominant and hidden community structures, which are the most important
modules of the model. To explore how they affect the performance of HICO-GT, we conduct an
ablation study that removes each of them from the input of Transformer and rerun the model. The
results are shown in Table 2. The performance of each ablation model decrease to varying degrees
compared to the intact one. On half the datasets, the model without hidden tokens obtain better

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Pubmed Corafull Tolokers Questions
Datasets

70

80

90
A

cc
ur

ac
y

/ R
O

C
-A

U
C

 (%
)

|S| = 0.25m
|S| = 0.5m
|S| = m
|S| = 2m
|S| = 4m

Figure 2: The accuracy / ROC-AUC score of dif-
ferent reconstruction ratio.

5 10 15 20
Iteration

0.6

0.8

1.0

M
od

ul
ar

ity

Pubmed

5 10 15 20
Iteration

0.6

0.8

1.0

M
od

ul
ar

ity

Corafull

5 10 15 20
Iteration

0.4

0.6

0.8

M
od

ul
ar

ity

Questions

5 10 15 20
Iteration

0.4

0.6

0.8

M
od

ul
ar

ity

Tolokers

Dominant Partition Hidden Partition

Figure 3: The change in modularity value of the
two partitions during the iterative process.

results than that without dominant tokens, indicating that although the hidden tokens are selected
from relatively weaker community structures, they have the same necessity as the dominant ones.

5.5 PARAMETER ANALYSIS

5.5.1 THE RECONSTRUCTION RATIO

When reconstructing the non-attributed graph, we create a set S containing a number of node pairs
with highest cosine similarity, then add a new edge or reset the edge weight for each node pair.
The size of S controls the scale of the new graph, and naturally affects the process of the partition
production. We test different values of |S| on two homophilic and two heterophilic datasets, and
their corresponding accuracy or ROC-AUC scores are shown in Fig. 2. When |S| = m, the model
achieves the best results on all the four datasets. A lower value of |S| is insufficient to add adequate
attribute information to the new graph, while a higher value may include too many node pairs with
negative similarity, resulting in an offset to the original topological relations. Therefore, a set |S|
whose size equals to m is created for all datasets.

5.5.2 THE MAX ITERATION OF GRAPH WEAKENING

In the operation of token sequence generation, we perform an iterative process to weaken the recon-
structed graph and produce two partitions to select node tokens in two views. A higher upper limit
of the iteration may lead to more accurate partitions, but it takes greater computational expense at
the same time. We run a weakening process of 20 iterations on the same datasets as Fig. 2, and
plot the change in modularity in Fig. 3 as a higher modularity value indicates a better partition. On
all datasets, the modularity values of the two partitions increase rapidly in the first few iterations.
The values of the dominant partition keep basically stable since the 5th iteration, while those of the
hidden partition grow a little afterward. To balance the partition quality and the computational cost,
we choose the max iteration Tmax = 5 in the experiments.

6 CONCLUSION

In this paper, we proposed a new tokenized graph Transformer called HICO-GT for node classi-
fication task. We reconstructed a non-attributed graph by merging the topological relations and
attributed similarity from the original input graph. Using the strategy of hidden community detec-
tion, we produced two weakened subgraphs to separate the information in two views, and select two
types of tokens to form the sequences. Another token sequence neighborhood was captured from
the input graph. We separately fed all three sequences into the Transformer module and fused them
by a weighted readout function to get the final node representation for the classification predictor.
Extensive experiments demonstrated the outstanding performance of HICO-GT.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In Proceedings of the International Conference
on Machine Learning, volume 97, pp. 21–29, 2019.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, 2008.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
3950–3957, 2021.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
meet transformers. In Proceedings of the International Conference on Learning Representations,
2023.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph trans-
former for node classification in large graphs. In Proceedings of the International Conference on
Learning Representations, 2023.

Jinsong Chen, Boyu Li, Qiuting He, and Kun He. Pamt: A novel propagation-based approach via
adaptive similarity mask for node classification. IEEE Transactions on Computational Social
Systems, 11(5):5973–5983, 2024.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the International Conference on Machine Learning,
volume 119, pp. 1725–1735, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In Proceedings of the International Conference on Learning Representa-
tions, 2021.

Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui. On
the equivalence of decoupled graph convolution network and label propagation. In Proceedings
of the Web Conference, pp. 3651–3662, 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
ArXiv preprint arXiv:2012.09699, 2020.

Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich,
Jingrui He, and Bo Long. Vcr-graphormer: A mini-batch graph transformer via virtual connec-
tions. In Proceedings of the International Conference on Learning Representations, 2024.

Kun He, Yingru Li, Sucheta Soundarajan, and John E. Hopcroft. Hidden community detection in
social networks. Information Sciences, 425:92–106, 2018.

Qiuting He, Jinsong Chen, Hao Xu, and Kun He. Structural robust label propagation on homoge-
neous graphs. In Proceedings of the IEEE International Conference on Data Mining, pp. 181–190,
2022.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computa-
tional complexity of self-attention. In Proceedings of the International Conference on Algorithmic
Learning Theory, volume 201, pp. 597–619, 2023.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with
self-supervision. In Proceedings of the International Conference on Learning Representations,
2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations, 2015.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proceedings of the International Conference on Learning Representations, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In Proceedings of the International Con-
ference on Learning Representations, 2019.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Proceedings of the Advances in Neural Infor-
mation Processing Systems, 34:21618–21629, 2021.

Jiahong Ma, Mingguo He, and Zhewei Wei. Polyformer: Scalable node-wise filters via polynomial
graph transformer. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 2118–2129, 2024.

Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69(2):026113, 2004.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? In
Proceedings of the International Conference on Learning Representations, 2023.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Proceedings of the
Advances in Neural Information Processing Systems, 35:14501–14515, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the Advances in
Neural Information Processing Systems, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations, 2018.

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. AM-GCN: adaptive multi-
channel graph convolutional networks. In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1243–1253, 2020.

Qitian Wu, Wentao Zhao, Zenan Li, David P. Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. In Proceedings of the Advances in Neural
Information Processing Systems, 2022.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian,
and Junchi Yan. Simplifying and empowering transformers for large-graph representations. In
Proceedings of the Advances in Neural Information Processing Systems, 2023.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings
of the International Conference on Machine Learning, volume 80, pp. 5449–5458, 2018.

Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with adap-
tive node sampling. In Proceedings of the Annual Conference on Neural Information Processing
Systems, volume 35, pp. 21171–21183, 2022.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and
Yanfang Ye. Gophormer: Ego-graph transformer for node classification. ArXiv preprint
arXiv:2110.13094, 2021.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In Proceedings of
the Advances in Neural Information Processing Systems, pp. 7793–7804, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PSEUDOCODE OF NODE TOKEN SEQUENCE GENERATION

Algorithm 1 Node Token Sequence Generation.
Require: Reconstructed Graph Gnew, target node vi, max iteration Tmax, size of dominant token

sequence QD, size of hidden token sequence QH .
Ensure: Token sequence SD

i and SH
i .

1: CD, CH ← ∅
2: for t = 1 : Tmax do
3: GD ← Gnew
4: if CH ̸= ∅ then
5: GD ← weaken CH by Eq.(3) on GD
6: end if
7: CD ← Louvain(GD)
8: GH ← weaken CD by Eq.(3) on GD
9: CH ← Louvain(GH)

10: end for
11: rDi ← PPR from vi on GD, rHi ← PPR from vi on GH
12: sort rDi and rHi in descending order,RD

i andRH
i are the corresponding node sequences

13: SD
i =

{
Xi||1,XRD

i,1
||rDi,1,XRD

i,2
||rDi,2, · · · ,XRD

i,QD
||rDi,QD

}
,

SH
i =

{
Xi||1,XRH

i,1
||rHi,1,XRH

i,2
||rHi,2, · · · ,XRH

i,QH
||rHi,QH

}

A.2 STATISTICS ON DATASETS

Table 3: Statistics on datasets.

Dataset # Nodes # Edges # Features # Classes

PubMed 19,717 88,651 500 3
CoraFull 19,793 126,842 8,710 70
CS 18,333 163,788 6,805 15
Physics 34,493 495,924 8,415 15
UAI2010 3,067 28,311 4,973 19
BlogCatalog 5,196 171,743 8,189 6
Squirrel-filtered 2,223 93,996 2,089 5
Minesweeper 10,000 39,402 7 2
Tolokers 11,758 519,000 10 2
Questions 48,921 153,540 301 2

A.3 IMPLEMENTATION DETAILS FOR EXPERIMENTS

We perform hyper-parameter tuning for the baselines by their official implementations. For the
model configuration of HICO-GT, we try the the projection dimension in {128, 256, 512}, the prop-
agation steps in {2, 3, · · · , 6}, the number of node tokens in {2, · · · , 20}. For the fusion coefficient
δ, we first make rough adjustments in {0.2, 0.5, 0.8, 1, 1.5, 2, 5}, and then make fine-grained adjust-
ments with a granularity of 0.1 in the highest-performance range. Parameters are optimized with
AdamW Kingma & Ba (2015) using a learning rate of {1e− 3, 5e− 4, 1e− 4} and a weight decay
of {1e− 4, 5e− 5, 1e− 5}. The batch size is set to 2000. The training process is early stopped
within 50 epochs. All experiments are performed on a Linux machine with eight NVIDIA RTX
3090 24GB GPUs.

12

	Introduction
	Related Work
	Graph Neural Network
	Graph Transformer

	Preliminaries
	Problem Definition
	Modularity and Hidden Community Detection
	Transformer Architecture

	Methodology
	Graph Reconstruction
	Token Sequence Generation
	Transformer Backbone and Fusion Operation

	Experimental Results
	Datasets
	Baselines
	Performance Comparison
	Ablation Study
	Parameter Analysis
	The Reconstruction Ratio
	The Max Iteration of Graph Weakening

	Conclusion
	Appendix
	Pseudocode of Node Token Sequence Generation
	Statistics on Datasets
	Implementation Details for Experiments

