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ABSTRACT

Graph Transformers have been proven to be effective for the node classification
task, of which tokenized graph Transformer is one of the most powerful ap-
proaches. When constructing tokens, existing methods focus on collecting multi-
view node information as the Transformer’s input. However, if a type of tokens
only includes nodes having relations with a target node from one perspective, it
will not provide sufficient evidence for predicting unknown labels. Directly ap-
plying self-attention to all tokens may also produce contradictory information as
they are selected by distinct rules. Meanwhile, as an emerging concept on graphs,
hidden communities refer to those with relatively weaker structures and being
obscured by stronger ones. In this paper, inspired by the hidden community clus-
tering method, we design a new multi-view graph Transformer called HICO-GT.
We first reconstruct the input graph by merging the original topology and attribute
information. Through an iterative process of weakening dominant and hidden
communities in turn, we obtain two subgraphs both containing node information
of topological relation and attributed similarity, and then generate two token se-
quences correspondingly. Along with another neighborhood sequence produced
on the original graph, they are separately fed into the Transformer and fused after-
wards to form the final representations. Experimental results on various datasets
verify the performance of the proposed model, surpassing existing graph Trans-
formers.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has emerged as a crucial tool across various
domains of deep learning. More recently, graph Transformers (GTs) (Dwivedi & Bresson, 2020;
Kreuzer et al., 2021) provide a new perspective in solving various classical tasks such as node
classification. Given a set of labeled nodes on a graph, the goal of node classification is to predict
the unknown labels for other nodes. Early graph Transformers (Dwivedi & Bresson, 2020; Kreuzer
et al., 2021; Rampášek et al., 2022) address the task by applying the basic Transformer on the
whole input graph and obtaining attention scores among all nodes, which brings large computational
cost and badly affects the model’s efficiency. To overcome the scalability issue, various tokenized
GTs (Zhao et al., 2021; Zhang et al., 2022; Chen et al., 2023) are proposed. Instead of using the
whole graph, these models only focus on the sampled information related to the target node and
convert them into token sequences as the input of Transformer. This strategy allows the model to be
trained in a mini-batch manner (Chen et al., 2023), reducing the computational complexity, while it
still ensures adequate information for classifying the unlabeled nodes.

There are mainly two categories of tokens in tokenized GTs: neighborhood token and node token.
Neighborhood tokens are able to capture the local structural features around the target node, but it
is difficult for them to include some global information such as long-range dependencies. On the
contrary, node tokens are more flexible as we can focus on the nodes that share similar properties
with the target node no matter where they are located on the graph.

When designing node tokens, the key idea is to collect adequate and comprehensive information by
limited elements. A recent work (Fu et al., 2024) points out that a single type of token sequence
is insufficient to fully represent the graph and proposes VCR-Graphormer that constructs multi-
view tokens in the final sequence. To select node tokens, VCR-Graphormer creates topology-aware
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or label-aware super nodes and adds a number of virtual edges to the original graph so that the
potential tokens become closer to the target node. However, nodes only carrying useful information
in one view are not enough to qualify as a token. The virtual edges with unit weight may not lead
to the accurate selection as they do not distinguishing the different importance of local and global
information. Moreover, the model mixes all types of tokens before sending them to the Transformer,
ignoring the potentially contradictory information learned from self-attention. The length of the final
sequence and the number choice of the super nodes both increase the complexity as well. To avoid
these disadvantages and make the model more capable, we want to design a multi-view tokenized
GT in which each type of tokens, with different meanings from each other, can all capture the graph’s
information from multiple perspectives, and control the computational cost at the same time.

Community detection is another popular topic in graph data mining, which aims to partition a non-
attributed graph into communities and the nodes’ connections in the same community are much
closer than those from different communities. Based on its original definition, He et al. (2018) find
that the communities in a graph may have varying strength, and the communities with relatively
weaker structures can be obscured by stronger ones. They correspondingly define the hidden com-
munity detection task and design a framework to solve it. By uncovering hidden communities, we
can obtain information that would otherwise be difficult to extract on graphs. Although this task
have different application scenarios from node classification, we can preprocess the input graph and
generate higher-quality tokens with the help of hidden community detection strategy.

In this paper, we propose a new graph Transformer called HICO-GT for node classification. To
make all node tokens carry topology and attribute information, we first reconstruct the input at-
tributed graph to a non-attributed graph, where the potential node tokens have relations with the
target node of varying degrees and constitute dominant and hidden communities. We use an iter-
ative process to weaken their structures in turn and obtain two subgraphs, where the edge weights
are automatically decided to reflect the connection strengths among nodes. Then we perform Per-
sonalized PageRank on the subgraphs to construct two corresponding token sequences. Along with
another neighborhood token sequence produced on the original graph, all the three sequences are fed
into the Transformer architecture separately. Eventually, a novel readout function fuses the Trans-
former outputs to produce the final node representations for classification. Different to the existing
method that mainly utilizes the interactions within the detected clusters after adding virtual nodes
and edges, HICO-GT obtains two sets of clusters, and each of them enhances its inner connections
by weakening the other’s structure on the graph to construct the token sequences, which provides
a brand new way for designing tokenized GTs. We test the performance of HICO-GT by extensive
experiments and it yields satisfying results on both homophilic and heterophilic datasets.

Our main contributions are summarized as follows:

• We reconstruct a non-attributed graph containing dominant and hidden communities. In-
spired by the hidden community detection strategy, we obtain two subgraphs and generate
two corresponding token sequences both carrying topological and attributed information.

• We design a new tokenized graph Transformer called HICO-GT, in which two node to-
ken sequences and one neighborhood token sequence are separately fed into the standard
Transformer architecture and fused by a novel readout function afterwards.

• Comparative experiments on various datasets demonstrate the outstanding performance of
HICO-GT for node classification. Ablation study and parameter analysis discuss the effects
brought by important modules in the model and different values of key parameters.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORK

For node classification task, early GNNs obey the design of deep neural networks that stack sev-
eral GNN layers to learn node representations. Some researches (Kipf & Welling, 2017; Abu-El-
Haija et al., 2019; Zhu et al., 2020) focus on developing topology-aware neighborhood aggregation.
There are also a series of methods leveraging the attention mechanism (Veličković et al., 2018;
Bo et al., 2021; Kim & Oh, 2021) to strengthen the aggregation operation by introducing attribute
information. Meanwhile, popular techniques in advanced deep neural networks, such as residual
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connections, have been adopted to improve the performance of GNN (Chen et al., 2020; Xu et al.,
2018). Another strategy of designing GNNs attempts to decouple the aggregation operation and
feature transformation operation in each GNN layer (Dong et al., 2021; Chen et al., 2024; He et al.,
2022). Hence, a multi-layer GNN can be represented as a combination of a multi-hop neighborhood
aggregation module and a feature transformation module. In this way, the training cost could be
effectively controlled by removing the non-linear activation operation among GNN layers.

2.2 GRAPH TRANSFORMER

Graph Transformers have shown promising performance in node classification. Prior models have
developed approaches such as Laplacian eigenvector (Dwivedi & Bresson, 2020; Bo et al., 2023)
to encode the graph structural information. Some methods introduce linear attention-based strate-
gies (Wu et al., 2022; 2023) to reduce the computation expense of self-attention. More recent studies
transform the graph into independent token sequences as the model input, which effectively controls
the training cost. NAGphormer (Chen et al., 2023) utilizes the propagation operation to generate
neighborhood-wise token sequences. PolyFormer (Ma et al., 2024) combines the node tokens with a
node-wise filter through a tailored attention mechanism, achieving both scalability and expressive-
ness. These models generate tokens only in one view. VCR-Graphormer (Fu et al., 2024) combines
the node-wise and neighborhood-wise tokens to construct a hybrid token sequence. However, the
independent selection processes reduce the quality of tokens as they do not carry the multi-view in-
formation at the same time. In our model, we merge the topological relation and attributed similarity
and generate two token sequences from the new graph. These node tokens all have interactions with
the target node from two perspectives and can provide more reference for its label prediction.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Consider an undirected and unweighted graph G = (V,E,X) with |V | = n nodes and |E| = m
edges, where X ∈ Rn×d is the attributed matrix and d is the dimension of the node feature vector.
In the adjacency matrix A ∈ {0, 1}n×n, Aij = 1 denotes that there is an edge between nodes vi
and vj , and Aij = 0 otherwise. The normalized adjacency matrix is calculated as Â = (D +

I)−1/2(A + I)(D + I)−1/2, where D and I represent the diagonal degree matrix and the identity
matrix, respectively. Each node’s one-hot label vector for c classes constitute the label matrix of the
graph Y ∈ Rn×c. For a node set Vl with known labels, the goal of node classification task is to
predict the labels for the nodes in its complementary set Vu = V − Vl.

3.2 MODULARITY AND HIDDEN COMMUNITY DETECTION

Modularity (Newman & Girvan, 2004) is a popular metric to evaluate the strength of a set of com-
munities (a partition). For a partition of a non-attributed graph, its modularity is defined as

Q =
1

2m

∑
ij

[Aij −
kikj
2m

]δ(i, j), (1)

where k is the degree of a node, and δ(i, j) = 1 if node vi and vj are in the same community,
otherwise δ(i, j) = 0. This metric can also be used for weighted graphs by replacing the numbers
of edges and degrees with their corresponding edge weight summation.

He et al. (2018) define that a partition with relatively higher modularity score is considered as the
dominant partition, while the other one is the hidden partition. They also propose a framework to
detect them, which weakens the structures of discovered communities to make those from the other
partition emerge, and uses an iterative process to strength both detection results. ReduceWeight is a
method to weaken the community structures. It considers the connections outside a community as
background noises, and calculates the interior density p and exterior noise density q of a community
C with nC nodes, i.e.,

p =
wCin

1
2nC(nC − 1)

, q =
wC − 2wCin

nC(n− nC)
, (2)
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where wCin
and wC denote the weight summation of the edges within C and edges having at least

one endpoint inside C, respectively. Then, ReduceWeight multiplies the interior edge weights by
the ratio of p and q, i.e.,

wuv = wuv ·
q

p
, (u, v) ∈ EC . (3)

In this way, the community’s density is reduced to the same level as background noises.

3.3 TRANSFORMER ARCHITECTURE

As a key component of graph Transformers, the Transformer architecture (Vaswani et al., 2017)
contains a number of Transformer layers, and each layer is composed of two modules named multi-
head self-attention and feed-forward network. For the input feature matrix H ∈ Rn×d, a single-head
self-attention module projects it into three subspaces, i.e.,

Q = HWQ,K = HWK ,V = HWV , (4)

where WQ ∈ Rd×dK ,WK ∈ Rd×dK and WV ∈ Rd×dV are learnable weight matrices. Then, the
processed feature matrix is calculated as

H′ = softmax
(
QKT

√
dK

)
V. (5)

Finally, the learned features from multi-head self-attention are concatenated and fed into the feed
forward network to generate the output of the current Transformer layer.

4 METHODOLOGY

In this section, we present our model HICO-GT. We first introduce graph reconstruction process
to merge the information of topology and attribute. Then, inspired by hidden community detection
task, we separate two partitions of this non-attributed graph and generate two corresponding token
sequences. These sequences, along with another one produced by propagation on the original graph,
are separately fed into the Transformer. Finally, a novel readout function fuses all processed features
to obtain the ultimate representations for classifying the nodes. The overall framework of HICO-GT
is shown in Fig. 1.

4.1 GRAPH RECONSTRUCTION

In tokenized GTs, there are typically two types of tokens: neighborhood token and node token. We
want to select node tokens resembling the target node in the views of both topology and attribute so
that they can provide more reference for node classification. Therefore, we first merge the nodes’
original topology and attribute information, and reconstruct the input graph into a new non-attributed
one Gnew. Specifically, we calculate the cosine similarity of the feature vectors for every node pair
on G, i.e.,

cos(θij) =
Xi ·Xj

||Xi|| · ||Xj ||
=

∑d
k=1 XikXjk√∑d

k=1 Xik
2
√∑d

k=1 Xjk
2
, vi, vj ∈ V, vi ̸= vj . (6)

Then, we sort all the similarities and pick the highest m scores to create a set S containing their
corresponding node pairs. For a node pair in S, if there is not an edge connecting two nodes, we
add one with the weight equal to the similarity score. If there has already been an edge, we reset
its weight to the similarity score plus one. And for a node pair that is not in S, we keep its original
topological relation, i.e.,

Wij =

{
Aij + cos(θij), (vi, vj) ∈ S,

Aij , (vi, vj) /∈ S.
(7)

In this way, we construct a non-attributed graph Gnew to replace the input graph, and both the topol-
ogy and attribute information are transformed into topological connections. Then we can perform
the following process to generate the token sequences on this graph.
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Figure 1: The overall framework of HICO-GT. There are three token sequences in total. The neigh-
borhood sequence is captured on the original input graph. The two series of node tokens are respec-
tively selected on two weakened graphs after an iterative hidden community detection for the recon-
structed graph. Weakened edges are represented with dashed lines. The token sequences (squares)
are separately fed into a standard Transformer, and the output features (octagons) are fused by a
weighted readout function to produce the final node representation.

4.2 TOKEN SEQUENCE GENERATION

The task of hidden community detection aims to distinguish the partitions with different cohesive-
ness and find them separately on a non-attributed graph. On the graph after reconstruction, most of
the qualified node tokens tend to constitute communities as they have strong interactions. However,
there also exist nodes that share slight topological relation or attributed similarity with the target
node but are not included in these communities. Therefore, to dig out all the potential node tokens,
we generate a dominant partition and a hidden partition of the graph and construct two corresponding
token sequences with the help of the hidden community detection strategy.

Louvain (Blondel et al., 2008) is a classical community detection algorithm based on modularity
maximization. For Gnew, we first use Louvain to detect one partition, and it naturally resembles the
dominant partition as the communities have stronger structures. Once the partition is found, we
can calculate the interior and exterior edge density for each community and use ReduceWeight to
weaken them. By this means the structures of the hidden communities emerge. Now the community
detection operation can uncover more nodes that have relatively weaker connections with the target
node. So far we have obtained two partitions but they are not accurate enough. Note that while the
communities in the dominant partition cover that in the hidden one, the structures of the latter have
an impact on the former as well. Therefore, we also weaken the hidden communities and repeat
the above process iteratively to get refined detection results. In the last iteration, we extract the two
subgraphs after weakening the two partitions to select the tokens.

As the community weakening process eliminates the distraction from each other, the two sub-
graphs preserve distinct information, which helps us to select two series of node tokens. Now
the automatically-decided edge weights reflect their connection strengths and we use Personalized
PageRank (PPR) to compare the relations between all nodes and the target node. For a node vi, PPR
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begins with the initial probability vector r(0) =
(
1
n ,

1
n , ...,

1
n

)⊤ ∈ Rn×1 and iterates as:

r(k) = µPr(k−1) + (1− µ)e, ej =

{
1, j = i,

0, j ̸= i,
(8)

where P = D− 1
2AD− 1

2 is the transition matrix and µ ∈ (0, 1) is a hyper-parameter to control the
probability to restart in each step, and we set µ = 0.85 in our model. Take the dominant nodes
as the example, after a certain numbers of steps, PPR gets a probability vector for each node, and
we pick the top QD highest values to compose a vector rDi in descending order, as well as its
corresponding node setRD

i . Then we concatenate the nodes’ features with their PPR values and put
them together to form the dominant token sequence. To prevent the loss of information on vi, we
set the first token in the sequence to the node itself and assign probability of 1. That is, we obtain
SD
i =

{
Xi||1,XRD

i,1
||rDi,1,XRD

i,2
||rDi,2, · · · ,XRD

i,QD
||rDi,QD

}
for vi. We construct the hidden token

sequence SH
i in the same way. The details of the whole generation process of these two sequences

are presented in A.1.

By constructing the above token sequences, we select the nodes sharing similar topology and at-
tribute information and aggregate them to the target node. However, during the graph weakening
process, we may lose some local structural information from the target node’s neighborhood on
the original graph. Therefore, we construct another sequence to collect the neighborhood features.
Specifically, we first add a self-loop edge with a weight of 1 for each node on graph G to pay more
attention to the node’s own features. Then, the neighborhood aggregation is performed by iteratively
multiplying the normalized adjacency matrix with the feature matrix, i.e.,

X(k) = ÂX(k−1), X(0) = X. (9)

For node vi, we put together its corresponding vectors from the matrices after each step
of propagation, forming the local feature tokens from its K-hop neighborhood SN

i ={
X

(0)
i ,X

(1)
i , · · · ,X(K)

i

}
, where K is the maximum steps.

4.3 TRANSFORMER BACKBONE AND FUSION OPERATION

After obtaining token sequences from three different perspectives to describe node vi’s features,
the next stage is to use the Transformer module to process them. To feed multiple sequences into
the Transformer, some existing methods (Fu et al., 2024) choose to combine them into a single
sequence, which mixes all types of information and prevents the model from learning self-attention
in each view. Moreover, the time complexity of self-attention mechanism is quadratic in the input
length (Keles et al., 2023), and thus it incurs a lower cost to process each token sequence separately
than putting the multi-view tokens together. Therefore, we apply the former strategy in our model.

We use a similar way to treat the three token sequences for node vi in the Transformer. Take SN
i as

an example, we first map it to a subspace, i.e.,

Z
N,(0)
i =

[
X

(0)
i W,X

(1)
i W, · · · ,X(K)

i W
]
, (10)

where W ∈ Rd×dm is a learnable projection matrix. A standard Transformer layer composes of
a multi-head self-attention (MSA) module and a feed-forward network (FFN) module, and they
process ZN,0

i ∈ R(K+1)×dm by

Z
N,(l′)
i = MSA

(
LN

(
Z

N,(l)
i

))
+ Z

N,(l)
i , (11)

Z
N,(l+1)
i = FFN

(
LN

(
Z

N,(l′)
i

))
+ Z

N,(l′)
i , (12)

where LN denotes the layer normalization. Through a same L-layer Transformer, we obtain the
learned representations in three views ZN,(L)

i , ZD,(L)
i and Z

H,(L)
i .

In node token sequences, the elements excluding the first one are all generated mainly from features
of other nodes, whose information has already been aggregated into the target node’s representation.
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Therefore, we abandon them and only send the first elements in Z
D,(L)
i and Z

H,(L)
i into a fully

connected layer, i.e.,

ZDout
i = FC

(
Z

D,(L)
i,0

)
, ZHout

i = FC
(
Z

H,(L)
i,0

)
. (13)

As for the neighborhood token sequence, every token, which corresponds to an aggregated feature
vector of one single hop in the neighborhood, has a strong correlation with the target node, and thus
should be included in the fusion stage. We follow the strategy in (Chen et al., 2023) to acquire the
coefficients for each element in Z

N,(L)
i , and calculate the weighted sum accordingly.

ωk =
exp

((
Z

N,(L)
i,0 ||ZN,(L)

i,k

)
W⊤

1

)
∑K

j=1 exp
((

Z
N,(L)
i,0 ||ZN,(L)

i,j

)
W⊤

1

) , (14)

ZNout
i = Z

N,(L)
i,0 +

K∑
j=1

ωkZ
N,(L)
i,j , (15)

where W1 ∈ R1×2dm is a learnable projection matrix. Eventually, we fuse the three processed
vectors by a summation operation and use a hyper-parameter δ to control the proportion of the
emphasis on node tokens or neighborhood tokens, i.e.,

Zi = δ(ZDout
i + ZHout

i ) + ZNout
i . (16)

Zi is vi’s final representation and will be fed into the predictor to solve the classification task.

5 EXPERIMENTAL RESULTS

5.1 DATASETS

We conduct comparative experiments on ten widely used datasets. For homophilic graphs, we select
Pubmed, CoraFull, CS and Physics from Deep Graph Library (DGL) 1. For heterophilic graphs, we
select UAI2010 and BlogCatalog from (Wang et al., 2020), as well as Squirrel-filtered, Minesweeper,
Tolokers and Questions from (Platonov et al., 2023). We also follow the splitting strategy of the latter
four datasets in (Platonov et al., 2023), and apply 60%/20%/20% train/val/test random splits for the
others. We use ROC-AUC as the metric to evaluate the models’ results for Minesweeper, Tolokers
and Questions as there are only two classes for the nodes in these datasets, and use accuracy for the
other multi-class tasks. The statistic information of the datasets are summarized in A.2.

5.2 BASELINES

We select ten representative methods as the baselines, including GNN-based models, GCN (Kipf &
Welling, 2017), GAT (Veličković et al., 2018), APPNP (Klicpera et al., 2019), GPR-GNN (Chien
et al., 2021), and GT-based models, NodeFormer (Wu et al., 2022), SGFormer (Wu et al., 2023),
Specformer (Bo et al., 2023), NAGphormer (Chen et al., 2023), PolyFormer (Ma et al., 2024),
VCR-Graphormer (Fu et al., 2024). The implementation details for HICO-GT and the baselines are
introduced in A.3.

5.3 PERFORMANCE COMPARISON

We test all models’ performance for node classification task on ten datasets, and report the results
in Table 1. For the first four homophilic datasets, HICO-GT yields the highest accuracy on al-
most all the datasets, except for Corafull on which our model is the second best. For the last six
heterophilic datasets, HICO-GT outperforms all the GNN-based and GT-based baselines. On het-
erophilic graphs, neighbor nodes mostly do not share the same label, bringing more challenges for
node classification. In HICO-GT, we isolate a specific partition to enhance the hidden community
structures and pay more attention to the nodes having relatively weaker connections with the target
node, which expands the scope of node token selection. Compared to VCR-Graphormer, another

1https://www.dgl.ai/
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Table 1: Comparison of all models in terms of mean accuracy or ROC-AUC score ± stdev (%). The
best results appear in bold.

Model Pubmed Cora. CS Physics UAI. Blog. Squi. Mine. Tolo. Ques.

GCN 86.54 61.76 92.92 96.18 74.68 93.56 41.30 72.23 77.22 76.28
± 0.12 ± 0.14 ± 0.12 ± 0.07 ± 0.82 ± 0.43 ± 0.94 ± 0.56 ± 0.73 ± 0.64

GAT 86.32 64.47 93.61 96.17 75.17 94.34 35.09 81.39 77.87 74.94
± 0.16 ± 0.18 ± 0.14 ± 0.08 ± 0.45 ± 0.64 ± 0.70 ± 1.69 ± 1.00 ± 0.56

APPNP 88.43 65.16 94.49 96.54 76.08 94.21 38.96 88.75 78.36 73.98
± 0.15 ± 0.28 ± 0.07 ± 0.07 ± 0.66 ± 0.32 ± 0.66 ± 0.74 ± 0.58 ± 0.81

GPR-GNN 89.34 67.12 95.13 96.85 76.32 95.02 41.09 90.10 77.25 74.36
± 0.25 ± 0.31 ± 0.09 ± 0.08 ± 0.59 ± 0.34 ± 1.18 ± 0.34 ± 0.61 ± 0.67

NodeFormer 89.24 61.82 95.68 97.19 73.87 93.33 37.07 86.91 78.34 74.48
± 0.14 ± 0.25 ± 0.08 ± 0.04 ± 1.39 ± 0.85 ± 9.16 ± 1.02 ± 0.98 ± 1.32

SGFormer 89.31 65.32 93.62 96.71 75.17 94.32 43.74 77.69 82.07 77.06
± 0.17 ± 1.08 ± 0.05 ± 0.06 ± 0.49 ± 0.21 ± 2.51 ± 0.96 ± 1.18 ± 1.20

Specformer 89.19 66.58 96.07 97.30 75.61 96.12 40.20 89.93 80.42 76.49
± 0.33 ± 0.86 ± 0.10 ± 0.05 ± 0.77 ± 0.23 ± 0.53 ± 0.41 ± 0.55 ± 0.58

NAGphormer 89.70 71.51 95.75 97.34 78.05 93.88 39.79 88.06 81.57 75.13
± 0.19 ± 0.13 ± 0.09 ± 0.03 ± 0.75 ± 0.64 ± 0.84 ± 0.43 ± 0.44 ± 0.70

PolyFormer 90.08 70.81 96.14 97.36 78.63 95.93 42.56 90.69 84.00 77.46
± 0.14 ± 0.19 ± 0.06 ± 0.03 ± 0.67 ± 0.30 ± 0.96 ± 0.38 ± 0.45 ± 0.65

VCR-G. 89.77 71.67 95.37 97.34 77.51 93.57 44.44 89.96 82.84 76.03
± 0.15 ± 0.10 ± 0.04 ± 0.04 ± 0.85 ± 0.42 ± 0.62 ± 0.52 ± 0.60 ± 0.49

HICO-GT 90.90 71.52 96.20 97.42 79.67 96.15 45.33 90.86 85.27 77.61
± 0.15 ± 0.12 ± 0.08 ± 0.03 ± 0.54 ± 0.18 ± 0.69 ± 0.32 ± 0.40 ± 0.59

Table 2: Comparison with the variants removing two types of tokens. DT and HT stand for
dominant token and hidden token, respectively.

Dataset HICO-GT Without DT Without HT
Pubmed 90.90 90.44 90.29
CoraFull 71.52 71.01 71.06
CS 96.20 95.69 95.61
Physics 97.42 97.12 97.09
UAI2010 79.67 78.05 77.89
BlogCatalog 96.15 95.28 95.38
Sqirrel-filtered 45.33 42.00 41.56
Minesweeper 90.86 90.24 90.52
Tolokers 85.27 84.79 85.01
Questions 77.61 76.48 76.61

multi-view tokenized GT, our model merges the topology and attribute information and uses hidden
community detection to produce two token sequences instead of independent topology-aware and
attribute-aware sequences. Moreover, we send the sequences to the Transformer separately rather
than combine them into a single one. The better classification results than VCR-Graphormer confirm
the efficacy of our strategy.

5.4 ABLATION STUDY

In HICO-GT, we reconstruct a new graph to obtain two partitions, and separately generate two token
sequences based on the dominant and hidden community structures, which are the most important
modules of the model. To explore how they affect the performance of HICO-GT, we conduct an
ablation study that removes each of them from the input of Transformer and rerun the model. The
results are shown in Table 2. The performance of each ablation model decrease to varying degrees
compared to the intact one. On half the datasets, the model without hidden tokens obtain better

8
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Figure 3: The change in modularity value of the
two partitions during the iterative process.

results than that without dominant tokens, indicating that although the hidden tokens are selected
from relatively weaker community structures, they have the same necessity as the dominant ones.

5.5 PARAMETER ANALYSIS

5.5.1 THE RECONSTRUCTION RATIO

When reconstructing the non-attributed graph, we create a set S containing a number of node pairs
with highest cosine similarity, then add a new edge or reset the edge weight for each node pair.
The size of S controls the scale of the new graph, and naturally affects the process of the partition
production. We test different values of |S| on two homophilic and two heterophilic datasets, and
their corresponding accuracy or ROC-AUC scores are shown in Fig. 2. When |S| = m, the model
achieves the best results on all the four datasets. A lower value of |S| is insufficient to add adequate
attribute information to the new graph, while a higher value may include too many node pairs with
negative similarity, resulting in an offset to the original topological relations. Therefore, a set |S|
whose size equals to m is created for all datasets.

5.5.2 THE MAX ITERATION OF GRAPH WEAKENING

In the operation of token sequence generation, we perform an iterative process to weaken the recon-
structed graph and produce two partitions to select node tokens in two views. A higher upper limit
of the iteration may lead to more accurate partitions, but it takes greater computational expense at
the same time. We run a weakening process of 20 iterations on the same datasets as Fig. 2, and
plot the change in modularity in Fig. 3 as a higher modularity value indicates a better partition. On
all datasets, the modularity values of the two partitions increase rapidly in the first few iterations.
The values of the dominant partition keep basically stable since the 5th iteration, while those of the
hidden partition grow a little afterward. To balance the partition quality and the computational cost,
we choose the max iteration Tmax = 5 in the experiments.

6 CONCLUSION

In this paper, we proposed a new tokenized graph Transformer called HICO-GT for node classi-
fication task. We reconstructed a non-attributed graph by merging the topological relations and
attributed similarity from the original input graph. Using the strategy of hidden community detec-
tion, we produced two weakened subgraphs to separate the information in two views, and select two
types of tokens to form the sequences. Another token sequence neighborhood was captured from
the input graph. We separately fed all three sequences into the Transformer module and fused them
by a weighted readout function to get the final node representation for the classification predictor.
Extensive experiments demonstrated the outstanding performance of HICO-GT.

9
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A APPENDIX

A.1 PSEUDOCODE OF NODE TOKEN SEQUENCE GENERATION

Algorithm 1 Node Token Sequence Generation.
Require: Reconstructed Graph Gnew, target node vi, max iteration Tmax, size of dominant token

sequence QD, size of hidden token sequence QH .
Ensure: Token sequence SD

i and SH
i .

1: CD, CH ← ∅
2: for t = 1 : Tmax do
3: GD ← Gnew
4: if CH ̸= ∅ then
5: GD ← weaken CH by Eq.(3) on GD
6: end if
7: CD ← Louvain(GD)
8: GH ← weaken CD by Eq.(3) on GD
9: CH ← Louvain(GH)

10: end for
11: rDi ← PPR from vi on GD, rHi ← PPR from vi on GH
12: sort rDi and rHi in descending order,RD

i andRH
i are the corresponding node sequences

13: SD
i =

{
Xi||1,XRD

i,1
||rDi,1,XRD

i,2
||rDi,2, · · · ,XRD

i,QD
||rDi,QD

}
,

SH
i =

{
Xi||1,XRH

i,1
||rHi,1,XRH

i,2
||rHi,2, · · · ,XRH

i,QH
||rHi,QH

}

A.2 STATISTICS ON DATASETS

Table 3: Statistics on datasets.

Dataset # Nodes # Edges # Features # Classes

PubMed 19,717 88,651 500 3
CoraFull 19,793 126,842 8,710 70
CS 18,333 163,788 6,805 15
Physics 34,493 495,924 8,415 15
UAI2010 3,067 28,311 4,973 19
BlogCatalog 5,196 171,743 8,189 6
Squirrel-filtered 2,223 93,996 2,089 5
Minesweeper 10,000 39,402 7 2
Tolokers 11,758 519,000 10 2
Questions 48,921 153,540 301 2

A.3 IMPLEMENTATION DETAILS FOR EXPERIMENTS

We perform hyper-parameter tuning for the baselines by their official implementations. For the
model configuration of HICO-GT, we try the the projection dimension in {128, 256, 512}, the prop-
agation steps in {2, 3, · · · , 6}, the number of node tokens in {2, · · · , 20}. For the fusion coefficient
δ, we first make rough adjustments in {0.2, 0.5, 0.8, 1, 1.5, 2, 5}, and then make fine-grained adjust-
ments with a granularity of 0.1 in the highest-performance range. Parameters are optimized with
AdamW Kingma & Ba (2015) using a learning rate of {1e− 3, 5e− 4, 1e− 4} and a weight decay
of {1e− 4, 5e− 5, 1e− 5}. The batch size is set to 2000. The training process is early stopped
within 50 epochs. All experiments are performed on a Linux machine with eight NVIDIA RTX
3090 24GB GPUs.
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