LITO: Learnable Intervention for Truthfulness Optimization

Anonymous ACL submission

Abstract

Large language models (LLMs) can generate
long-form and coherent text, but they still fre-
quently hallucinate facts, thus limiting their
reliability. To address this issue, inference-
time methods that elicit truthful responses have
been proposed by shifting LLM representations
towards learned “truthful directions.” How-
ever, applying the truthful direction with the
same intensity fails to generalize across dif-
ferent question contexts. We propose LITO,
a Learnable Intervention method for Truthful-
ness Optimization that automatically identifies
the optimal intervention intensity tailored to
a specific question. LITO explores a series
of model generations using a set of increas-
ing intervention intensities and selects the most
accurate response or refrains from answering
when the predictions are of high uncertainty.
Experiments on multiple LLMs and question-
answering datasets demonstrate that LITO im-
proves truthfulness while preserving task ac-
curacy. The adaptive nature of LITO coun-
ters issues with one-size-fits-all intervention,
maximizing truthfulness by reflecting internal
knowledge only when the model is confident.

1 Introduction

Despite impressive performance on a wide range of
NLP tasks, LLMs still hallucinate generations that
lack real-world basis, limiting their reliability in
critical applications that require truthful responses.
To overcome this challenge, many promising di-
rections are explored, such as developing meth-
ods to ground LLMs in external knowledge and
incorporate credibility indicators into model out-
puts (Gao et al., 2023; Fatahi Bayat et al., 2023).
Another class of methods states the presence of a
linear representation of “truth” in model parameters
(Marks and Tegmark, 2023; Li et al., 2023; Burns
et al., 2022). These methods train linear probes on
top of LLM’s internal activations to detect truth-
ful directions in the model’s representation space.
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Figure 1: Model responses when applying the ITI
method at different intensities. We gradually increase
the intensity from 5 to 25 and observe the model’s per-
formance. The bar on the right shows the model’s con-
fidence level (dark/light) along with the correctness of
the response (green/red).

In particular, Burns et al. (2022) claims that the
representation of the truth, amongst a few other
features, satisfies a logical consistency structure.
They learn a linear projection of hidden states un-
der the consistency-based objective and associate it
with the truthful direction. However, Farquhar et al.
(2023) later shows that (1) arbitrary features satisfy
the logical consistency property, and (2) unsuper-
vised methods detect superficial features that do
not represent the truth. This indicates that an unsu-
pervised search for truthful directions overly relies
on surface features without additional mechanisms
to reveal truthfulness.

To avoid capturing irrelevant features, Li et al.
(2023) proposed a supervised probe learning that
directly identifies the truthful directions based on
correct and incorrect statements in the Truthful QA
dataset(Lin et al., 2022). This method, called
Inference-time Intervention (ITI), trains supervised
linear probes on top of the activations from each at-
tention head, extracting the resulting probe weights
as truthful directions. Additionally, a scaling coef-
ficient is tuned to determine the intensity at which
each direction should be added to its respective



head output at inference time. However, amplify-
ing the truthful directions with a single intensity
does not generalize across all contexts, as one di-
rection cannot represent various forms of truth that
potentially reside within the model’s learned repre-
sentation space. Figure 1 shows the performance of
the Llama2-Chat-7B model (Touvron et al., 2023b)
in answering some queries in Natural Questions
(Kwiatkowski et al., 2019) after applying the ITI
technique. We gradually amplify the intensity of
the truthful directions learned by the ITI technique
and observe its impact on the model’s behavior. In-
terestingly, the model arrives at a correct response
within different intensity ranges for different ques-
tions. This suggests the optimal intervention magni-
tude is context-dependent, varying across questions
based on factors such as their topic, complexity,
ambiguity levels, etc. Moreover, the truthful di-
rection may not capture all aspects of truthfulness.
Therefore, adjusting its intensity alone cannot guar-
antee accurate responses. For instance, consider
the question "What flag is red and has a gold star?"
in Figure 1. Intervening with varying strengths of
truthful direction does not result in a correct answer.
In such cases, the model should express uncertainty
to ensure truthfulness.

Importantly, we observe that the change in the
model’s confidence score is a useful indicator of
transitions between factual and inaccurate genera-
tions. Inspired by these observations, we developed
a Learnable Intervention method for Truthfulness
Optimization, LITO. LITO identifies truthful di-
rection intensities that suit different contexts. This
method explores a series of model generations
across various intervention intensities and selects
the most accurate response if one exists, otherwise
expressing uncertainty. Our goal is to maximize
truthfulness by identifying factual and incorrect
responses and responding accurately or saying "I
have no comment."

To achieve this, we collect model responses in
terms of the textual outputs, last-layer hidden rep-
resentations, and confidence values. Then, we
train a classifier that decides on the accuracy of
responses generated at increased intervention in-
tensities. The input to the classifier is a sequence
of model-generated responses, each represented
by its corresponding hidden states. The classifier
utilizes a recurrent neural network (RNN) to learn
the trends over the sequence of responses. The
RNN’s output for each response is then fed into a

linear classifier to determine whether a response is
accurate. At inference time, we select a response
if the classifier identifies at least one accurate re-
sponse and output "I have no comment." otherwise.
To evaluate our method, we conduct comprehen-
sive experiments on four datasets and five LLMs.
We measure our method’s performance in terms
of truthfulness, where the response is either accu-
rate or expresses uncertainty, and accuracy, which
measures the task-specific accuracy. Additionally,
we propose a new metric called TA score, mea-
suring the trade-off between truthfulness and task
accuracy. This metric shows that LITO improves
truthfulness while preserving accuracy on almost
all datasets, suggesting promise in applying an in-
tervention technique adaptive to different questions
and intensities.

2 Related Work

2.1 Hallucination in LLMs

Addressing hallucinations in LLLMs can be clas-
sified into two categories: training methods and
inference-time methods. Training methods include
introducing faithfulness-based loss functions (Yoon
et al., 2022; Qiu et al., 2023), and supervised fine-
tuning to utilize the external knowledge graph (Ji
et al., 2023; Fatahi Bayat et al., 2023), aiming
to strengthen the factualness of LLMs. Despite
their effectiveness, training or fine-tuning LLMs
becomes impractical due to their parameter size.
On the contrary, inference-time methods do not
require tuning the LLM itself. For example, repre-
sentative methods include prompt-based methods
with model feedback (Si et al., 2023; Miindler et al.,
2023; Lei et al., 2023). These methods prompt the
model to provide feedback for its previous output
and then instruct the model to predict better genera-
tion given the feedback. Moreover, researchers ex-
plored incorporating retrieved contexts to enhance
factuality (Varshney et al., 2023; Cao et al., 2023).
However, such methods require access to valid
sources of knowledge which is challenging and
causes delayed response. Recently, some methods
propose to modify the hidden states or the predic-
tion distribution during decoding, such as CAD
(Shi et al., 2023) and DoLa (Chuang et al., 2023).
The effect of such methods on other characteristics
of the model is yet underexplored.



2.2 LLMs Intervention

The intervention of LLMs involves generating di-
rectional vectors of truthfulness and integrating
these vectors into the forward pass of LL.Ms, guid-
ing them toward factual generations. For example,
in ITI (Li et al., 2023), linear probing is employed
to identify attention heads with distinct activation
distributions for true and false statements, allow-
ing intervention on these heads to guide the model
toward generating truthful outputs. RepE (Zou
et al., 2023) determines the truthful directions of
each layer by prompting the language model with
pairs of instructions with contrastive meanings and
integrating this direction into each layer during
decoding. Similarly, ActAdd (Turner et al., 2023)
leverages activation differences resulting from pairs
of counterfactual prompts to control the generation
process.

Yet, these methods apply directions amplified
with a uniform intensity across all instances, caus-
ing insufficient or excessive intervention in many
instances. Instead, LITO employs a series of
model generations at varying levels of interven-
tion intensity, ultimately producing an output that
is predicted to be the most truthful. This method
maximizes truthfulness by reflecting the model’s
internal knowledge only when it is confident, and
expressing uncertainty otherwise.

3 Problem Statement and Preliminaries

We consider the problem of improving the truth-
fulness and thus mitigating hallucinations in large
language models. Our focus is on steering the
model’s activation space towards factual accuracy.
In this work, we address the open-domain question-
answering task, in which models are prompted to
provide answers to factual queries about the real
world. Specifically, we consider a relatively short
prompt comprising task-specific instruction, a few
human demonstrations, and the target question.
The model must respond to each question truth-
fully and express uncertainty (e.g. respond with
“I have no comment.”) when it does not know the
correct answer.

3.1 Inference-time Intervention (ITT)

To enhance the truthfulness, we adopt a super-
vised truth elicitation technique called inference-
time intervention. This method utilizes probing
to detect the model’s internal representations of
truthfulness. ITI trains one probe per attention

head (in each layer) that linearly associates each
attention head’s output with a true/false label. To
collect data for training each probe, ITI prompts
the model with question-answer pairs where the
answer is correct (1) or incorrect (0). Next, for
each prompt, it collects the attention activation
xf, per layer [ and head h, of the answer’s last
token along with its binary labels y. A linear probe
p(x) = sigmoid({d, z}")) is then trained on each
head, and a sparse set of heads with the highest
validation accuracy is selected. ITI intervenes to
shift each selected head’s activation CL‘? towards
its corresponding probe weights d? presented as a
truthful direction. Specifically, ITI adds truthful
directions, amplified by a tuned coefficient « (the
intervention intensity), to their corresponding head
activation for each next token prediction as:

af =zl + ad)

3.2 Learnable Intervention for Truthfulness
Optimization

As shown in Figure 1, applying a single interven-
tion direction to selected head activation does not
lead to truthful results. Therefore, we propose a
learnable intervention technique that collects model
generations when shifted toward the truthful direc-
tion at multiple intensities. Given a large language
model with L layers and H attention heads per
layer, we utilize the ITI method to find truthful di-
rections (probe weights) d = {d}'|l € L,h € H}.
Then, for each input prompt, we apply directions
d at multiple intensities (« values), collect the an-
swers A = {a1,as,..,a;} at different intensities,
and output the answer that is considered most truth-
ful. In what follows, we describe our intervention
approach in detail.

4 Approach

We observe that optimal intervention intensity is
context-dependent. In this work, we develop an
intervention technique for achieving truthfulness
by automatically calibrating to optimal intensity
thresholds conditioned on prompt characteristics.
To this end, we increase the intensity («) of truth-
ful directions d, learned by ITI, in K iterations. To
stay minimally invasive, I'TI intervenes on a small
subset of attention heads. Thus, small changes
in intensity lead to consistent outcomes. To en-
sure distinct responses from the intervened LLM,
we apply intensities at increments of 5, i.e. a €
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Figure 2: Overview of LITO method. Given the input prompt = with the question: “Bacterial cell walls are made
rigid by the presence of?”, our method first collects model-generated responses when intervened with 5 intensities
LLM,—;(z). Each response contains the text, model’s confidence in the generated response (shown by dark/light),
and the last-layer hidden states h*. LITO predicts the accuracy of each response given its hidden representations.
Finally, the answer selection mechanism chose the response with the maximum confidence as the final output.

{5,10,..,5K}. Let LLM, denote the LLM inter-
vened with strength o and A = {a1,aq,...,ax}
denotes the collection of model responses, where
a; = LLM,—5;(x). Each response a; contains
(1) the model generation y; which consists of N
tokens, (2) the model’s last-layer hidden states h;
for generated tokens, and (3) the confidence score
p(y;|x). Following (Liu et al., 2023), we compute
the confidence score as the geometric mean across
the sequence of token probabilities:

plylz) = Y1 Py
We collect the three output components after apply-
ing the K interventions and pass the outputs to our
adaptive intervention system, LITO. Our system
then assesses the accuracy of each response and
outputs the most truthful response if one exists.

xvyi,<t)

4.1 Training

Given the hidden states H = {h1, ..., hx } of the
LLM’s last layer, we first aggregate the hidden
states for all generated tokens by taking their mean:

1 N
hi= Z hij
7j=1

We target hidden states from the last layer as it
provides an informative representation that cap-
tures the generation history and current state of the
model. We then pass the sequence of aggregated
hidden states to a 1-layer Long Short-Term Mem-
ory (LSTM). This allows the recurrent model to
take a holistic view of response patterns, rather than
examining individual tokens or logits. The LSTM
can thus learn how the responses change over in-
creasing levels of intervention, identifying transi-
tions and breaking points, drops in confidence or

fluency, and potentially viable intervention zones.
We choose LSTMs to learn from the sequential
flow rather than distinguishing factual responses
independently. We show the effectiveness of our ap-
proach is Section 6.3. The LSTM outputs a hidden
representation denoted as h,.; for each response
representation h;:

hy. = LSTM (h¥, ... hE), hy = [hy 1y ooy Brs)

Finally, the LSTM hidden outputs go through
a fully connected layer followed by a sig-
moid non-linearity to obtain factuality predictions:
Pw(hri) = sigmoid((w, hy.;)).

4.2 Inference

At inference time, we pass the aggregated hidden
states for each answer a; € A through our trained
system to obtain the accuracy label for each re-
sponse. In case all responses are predicted as non-
factual, the system conveys its uncertainty by out-
putting “I have no comment”. Otherwise, we out-
put the response with the highest confidence value
p(yi|z). Formally:

<%

i* = argmax(p(yi|z)) s.t.
sigmoid({w, hy;)) > 0.5

Therefore, the final output is y;* or “I have no com-
ment” in case all predictions are zero (inaccurate).

5 Data Collection and Annotation

5.1 Datasets

In this work, we focus on open-domain question-
answering (openQA), a text generation task that
presents more challenges compared to multi-choice
classification. To train and evaluate our method,



we select tasks with varying lengths of responses.
We collect datasets with response lengths at the
phrase level and sentence level, leaving a longer-
level evaluation for future work. For phrase-level
openQA datasets, we use NaturalQuestions (NQ)
(Kwiatkowski et al., 2019), SciQ (Welbl et al.,
2017), and TriviaQA (Joshi et al., 2017), all of
which include short responses (e.g., named entities).
For sentence-level responses, we choose Truth-
fulQA (Lin et al., 2022) where model responses
are complete sentences. All of these datasets are in
the English language.

Li et al. (2023) shows that truthful direction
learned on a TruthfulQA task does not transfer
well to other domains. Therefore, we adopt an in-
domain truthful direction identification approach.
To this end, we use the validation set of Natu-
ralQuestions (NQ)' and TriviaQA? datasets that
contain correct answers, and GPT-4-generated in-
correct answers to serve as an adversarial data point.
We randomly select 1k samples from each dataset
for ITI probe training and save the rest of the sam-
ples (2.4K) for testing our method. SciQ is a multi-
choice science question-answering dataset. We use
its 1K validation set for ITI probe training and
1K test set for final evaluation. In addition to ITI
training data, we randomly sample 3K instances
from the train set of these phrase-level datasets to
train LITO. Given that there is no official training
set for TruthfulQA, we randomly select 408 in-
stances from the original validation set to train the
ITI method and find the optimal direction. We use
the same set to later train our intervention method
and use the rest of the data for evaluation.

5.2 Data Annotation

First, we utilize the ITI method to identify truth-
ful directions that can later be integrated into the
model’s representations with amplified intensity.
Next, we utilize the curated training data to prompt
variants of the LM, as depicted in Figure ??, com-
piling the textual response, confidence score, and
final-layer representations for each resulting gener-
ation. To label reach response for accuracy, phrase-
level outputs are annotated by a DeBERTa-large
model (He et al., 2021) fine-tuned on the MultiNLI
task. This model labels each textual response as
correct if it can be entailed from the reference an-

"ttps://huggingface.co/datasets/OamPatel/iti_
ng_open_val

2https://huggingface.co/datasets/OamPatel/iti_
ng_open_val

swer. For sentence-length cases in the Truthful QA
benchmark, we ask GPT-4 to judge the response
accuracy based on entailment from the ground truth
answers.

6 Experiments

6.1 Experimental Setup
6.1.1 Prompts

We adopt the same prompt format as used for eval-
uating Truthful QA (Lin et al., 2022). Specifically,
the "QA prompt" consists of instruction, 5 question-
answer pairs as examples, and the target question
that the model should answer. We utilize the fol-
lowing instruction throughout all our experiments:
"Interpret each question literally and as a question
about the real world; carefully research each an-
swer, without falling prey to any common myths;
and reply “I have no comment” unless you are
completely certain of the answer."

To elicit concise responses for phrase-level QA,
we append 5 unseen dataset questions with answers
to the instructions as demonstrations. The full set
of prompts used for evaluating the LLMs on the
different datasets is provided in Appendix A.

6.1.2 Metrics

The output response of an intervention method can
be factually accurate, inaccurate, or indicate uncer-
tainty by outputting “I have no comment”. We
measure truthfulness as the portion of accurate
or uncertain responses. However, the language
model or intervention approach could default to
“I have no comment.” to maximize their truthful-
ness. Therefore, we also measure accuracy by
computing task-specific accuracy. Note that ag-
gregation methods cannot surpass the accuracy of
original model generations. Finally, to measure
the balance between truthfulness and accuracy, we
propose the TA score which computes the geomet-
ric mean of truthfulness and accuracy, denoted as
TA = \/Truthfulness x Accuracy. TA rewards
balanced performance, penalizing gains in one di-
mension at the cost of the other. Higher TA indi-
cates a method that better optimizes the trade-off.

6.1.3 Models

We test intervention methods on two families of
models: (1) Llama models: Vicuna-7B (Chiang
et al., 2023), Llama2-chat-7B, and Llama2-chat-
13B (Touvron et al., 2023a) (2) GPT models:
GPT2-large and GPT2-XL (Radford et al., 2019).
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Task Model Original LM ITI Maj. Vote Max Conf. Max Conf. >T LITO
GPT2-large 12.17 15.41 12.88 15.58 14.20 26.91
GPT2-XL 15.54 17.70 16.45 18.57 21.96 28.90
NQ Llama2-Chat-7B 29.17 31.67 31.67 31.25 33.46 37.15
Llama2-Chat-13B 32.70 3391 34.16 33.37 38.87 41.14
Vicuna-7B 29.96 30.29 29.30 30.00 34.98 31.95
GPT2-large 39.40 40.00 39.70 40.01 27.76 46.20
GPT2-XL 40.50 41.50 41.20 41.30 36.88 46.86
SciQ Llama2-Chat-7B 65.40 66.10 64.80 64.90 65.83 65.99
Llama2-Chat-13B 71.40 72.10 71.00 70.70 70.64 71.87
Vicuna-7B 61.70 61.40 57.50 60.20 62.65 63.17
GPT2-large 32.29 50.41 38.15 44.51 39.71 59.27
GPT2-XL 31.25 41.47 36.11 40.52 39.64 49.44
TriviaQA Llama2-Chat-7B 69.99 70.73 70.73 72.11 72.29 74.31
Llama2-Chat-13B 76.05 76.22 75.47 74.85 75.47 77.32
Vicuna-7B 67.74 68.32 68.86 71.19 72.45 72.46
GPT2-large 16.08 16.71 16.35 13.73 17.88 37.58
GPT2-XL 20.52 28.11 23.81 26.64 26.11 39.62
TruthfulQA Llama2-Chat-7B 48.48 52.17 51.41 52.32 39.46 51.20
Llama2-Chat-13B 52.29 53.52 55.66 54.29 46.08 56.14
Vicuna-7B 43.68 42.68 45.27 43.11 34.19 49.71

Table 1: Results of LITO and baselines across 5 benchmarks in terms of TA score. ITI baseline represents the
maximum ITI performance over 5 intervention intensities (alpha). The best and second-best score per model per
dataset in bold. We highlight numbers where LITO improves over both the original LM and all baselines in blue ;
when LITO has the second highest score, it is colored in green . The results of the ITI baseline with the maximum
performance is reported in this table. LITO effectively improves truthfulness while preserving high accuracy,

surpassing other baselines in most cases.

6.1.4 Baseline Methods

Using the ITI method, we intervene each
model with 5 different intensity values o €
{5,10, 15, 20, 25} which serve as our ITI baselines.
However, the baseline performance at each inten-
sity is computed independently. We additionally
adopt three answer selection methods, where given
the model outputs at 5 different intensities, outputs
a truthful response.

Majority Voting: Given the model outputs A =
{ay1,aq, ..., a5}, this method chooses the most re-
peated answer by taking a majority vote among
textual responses. In case of a tie, the answer with
the highest confidence is chosen as the final an-
swer. For sentence-level responses where repetition
rarely happens, all responses have one occurrence
(tie) and thus the response with the maximum con-
fidence is chosen.

Maximum Confidence: This method chooses the
answer to which the model has assigned the maxi-
mum confidence.

Maximum Confidence > T': The difference be-
tween this method and the maximum confidence

method is that it only selects an answer if its con-
fidence is above a certain threshold. If such an
answer does not exist, the final output is: “I have
no comment.”. We set 7' = 0.6 as it shows the best
average performance across datasets and LLMs.

6.1.5 Implementation Details

Using the ITI method, we intervene with 5 different
intensity values o € {5, 10, 15,20, 25} across all
models and datasets. Our choice of small, equally-
spaced intensity values allows us to collect distinct
response changes from the LLMs while ensuring
minimal invasiveness. Specifically, we increase the
intensity in increments of 5 since ITI induces simi-
lar responses to small changes in intensity. To col-
lect model outputs at 5 different intensities for train-
ing our method, we conducted 100 experiments
each taking 2 hours using one NVIDIA A40 GPU.
To train our system, we set the size of the LSTM’s
output hidden state to 1/8th the size of its input,
which is the LLM’s hidden state dimension. For in-
stance, the hidden state size of our trained method
on Vicuna-7B is 512. In total, we train our method
20 times, once per LLM model and dataset pair.
We employ early stopping with a maximum of 50
epochs. Each training run utilizes 64 CPU cores
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Figure 3: The truthfulness and accuracy results per dataset and model. The results for the ITI baseline are averaged
over 5 intensities. In all experiments, LITO is amongst the top 2 methods in terms of truthfulness. This method
shows an accuracy within 10% in 16 experiments, leading to its superior TA performance.

and completes within 3-5 minutes depending on
the size of the training dataset and the dimension
of LLM’s hidden states.

6.2 Experimental Results

6.2.1 Results Compared to Original LM and
ITI Baselines

Table 1 shows the performance of different methods
in terms of their T'A score on 4 datasets and 5 base
models. As highlighted, LITO consistently im-
proves over the original LM’s performance across
all tasks, showing the effectiveness of our approach.
Particularly, LITO outperforms the original GPT2
language models by a large margin, with +17.5 av-
erage TA scores for GPT2-large and +14.25 scores
for GPT2-XL. The ITI method exhibits slightly su-
perior performance when applied to Llama2 mod-
els on the phrase-level SciQ (+0.17) and Truth-
fulQA (+0.97) tasks. Note that Table 1 reports
the maximum ITI performance over 5 intensities.
However, we investigate the results of Llama-based
models on the SciQ dataset across all intensities,
as shown in Table 2. We observe that model per-
formance peaks at the lowest intervention intensity
(o = 5), with higher intensities causing a notice-
able reduction in TA score. Our method attempts
to select the most accurate response across all in-
tensity levels, thereby recovering the peak perfor-
mance at o = 5. These results show that, by aggre-
gating across varied intensities, LITO counters the
accuracy loss from excessive intervention.

6.2.2 Results Compared to Aggregation-based
Methods

Our method exhibits consistent improvement over
other aggregation-based methods as shown in Ta-
ble 1. The Max Confidence > T baseline shows

Llama2 Model «:0 «a:5 «a:10 «a:15 «a:20 «:25
Chat-7B 654 66.1 64.7 61.7 57.1 51.7
Chat-13B 714 721 708 68.3 65 55.1

Table 2: Llama2 ITI results at different intensities on
SciQ dataset.

higher performance gains over counterparts, even
outperforming LITO trained on Vicuna-7B hid-
den representations on the Natural Questions (NQ)
benchmark. Our close analysis reveals that this
baseline can retain its input accuracy levels while
improving on the truthfulness. However, LITO
sacrifices accuracy on a broader level for higher
truthfulness.

Figure 3 illustrates LITO’s truthfulness and ac-
curacy scores compared to other baselines. As
shown, our method is amongst the top 2 methods
that attain the highest truthfulness score across all
datasets and LLMs. Additionally, LITO preserves
an accuracy within 10% of ITI for 16/20 runs. This
demonstrates LITO’s capability in striking a bal-
ance between both truthfulness and accuracy, uti-
lizing it for settings where the truthfulness of re-
sponses is of crucial importance. Another inter-
esting finding is that the Majority Vote baseline
closely follows the ITI average, as shown in Figure
3, proving its inability to meaningfully improve
upon input responses.

6.3 Analysis

6.3.1 LITO Learns Task-agnostic Notions of
Truth

We developed an intervention method that adapts
to different intensity levels and contexts. Next, we
evaluate how well this method, trained on one task,
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Figure 4: Transfer Performance using LITO on 5 LLMs. The y-axis corresponds to the training dataset, and the
x-axis corresponds to the test dataset. On most datasets, LITO transfers well to other datasets (relative in-domain).
In some cases, e.g. method trained on TriviaQA, transfer even outperforms the in-domain setting.

can improve the trade-off between truthfulness and
accuracy T A across other tasks. We trained and
tested LITO on every dataset pair, highlighting
the resulting transfer learning capabilities for the
5 large language models in Figure 4. Our results
show that our method trained on one task transfers
effectively to others. Notably, LITO trained on
TriviaQA performed almost on par with in-domain
testing in terms of the TA metric. One reason can be
that TriviaQA covers general knowledge domains
that transfer to more specialized areas like SciQ.
Interestingly, on tasks like NaturalQuestions, the
transferred method outperformed the in-domain
version. In short, our adaptive intervention method
exhibits positive transfer learning across datasets,
closely following and even improving truthfulness
and accuracy in many out-of-domain cases.

6.3.2 Design Choices

In this section, we validate our choice of utilizing
a recurrent neural network that searches for pat-
terns in the sequence of interventions as opposed
to examining them individually. For this purpose,
using the same experimental setup, we substitute
our LSTM model with a fully connected layer fol-
lowed by a ReLU nonlinearity. We measure the
binary classification performance both in terms of
accuracy and F1 score. Our evaluation involves all
4 question-answering tasks. We use the Llama2-
Chat-7B model as the base LLM. We denote the
method that has the LSTM replaced with a linear
layer as LITO j;rp. The results are presented in
Table 3. As demonstrated, the LSTM model sub-
stantially outperforms the baseline on phrase-level
questioning tasks. The F1 score on the TruthfuQA
task shows a noticeable performance drop. How-
ever, Truthful QA presents a challenging task with
limited training data, and the LSTM model requires
more examples to effectively learn complex sequen-
tial patterns for making sound predictions.

LITO LITO . p
Task Acc  FI Acc  Fl
NQ 719 504 696 462
SciQ 665 719 651 718
TriviaQA 714 795 702 77.6
TrwhfulQA 752 557 744 59.8

Table 3: Comparing the classification accuracy and F1
score of LITO with LITO ;1 p. LITO outperforms
LITO ;1 p in short-form QA across both metrics.

7 Conclusion

In this work, we proposed LITO, a novel learnable
intervention method that adapts the intensity of
truthfulness directions based on the specific ques-
tion context. We demonstrate that applying direc-
tions uniformly across diverse questions fails to ef-
fectively prevent hallucinations. Our approach ex-
plores generations at multiple intensities, selecting
the output predicted to be most accurate or express-
ing uncertainty when inconsistent. Comprehensive
experiments reveal consistent improvements in bal-
ancing truthfulness and performance over the orig-
inal LMs and existing inference-time techniques.
In effect, LITO reflects the model’s internal knowl-
edge only when it is confident, maximizing truth-
fulness. The ability to calibrate intervention per
instance highlights the context-dependent nature of
truthful generations. An exciting future direction
is developing mechanisms to dynamically deter-
mine the number and range of intensities to ex-
plore based on prompt characteristics. However,
our adaptive approach counters the one-size-fits-all
view of model intervention.

Limitations

This work has limitations that could be addressed
in future research. First, we focused on short
phrase-level and sentence-level responses, but per-



formance on longer text generation is still un-
known. Assessing the scalability of our approach
to lengthy outputs could reveal useful insights. Sec-
ond, LITO’s accuracy relies on the quality of the
truthful directions identified by the inference-time
intervention method. Enhancing the truthfulness
signals provided as input could further improve re-
sults. Moreover, while adaptive intervention selec-
tion mitigates excessive intensities, it still requires
multiple passes through the LLM which increases
the response time. Finally, the interpretability of
LITO’s selections could be deeply investigated.
Visualizing the model’s learned notions of uncer-
tainty over intervention intensities may uncover
interesting patterns. Nonetheless, this work demon-
strates promise in applying adaptive intervention
to prevent model hallucination.

Ethics Statement

This work proposes a method aimed at improv-
ing factuality and reducing harmful responses in
large language model question answering. As open-
domain question-answering systems become more
prevalent, enhancing truthfulness and reliability
is crucial for safe deployment. However, our ap-
proach still relies on the capabilities of the underly-
ing model architecture. Future work must continue
addressing the potential harms of large generative
models related to issues like bias, toxicity, and mis-
information. Additionally, adaptive intervention
techniques introduce potential downsides if mis-
used. While eliciting factuality reveals the knowl-
edge housed in models, bad actors could exploit
similar methods to intentionally expose or induce
false beliefs. Future research should explore protec-
tions against adversarial attacks alongside efforts
to curb hallucination.

On the positive side, reliable question-answering
could broadly advance access to knowledge and
combat the viral spread of misinformation. But
care must also be taken with any technology able to
generate convincing false text. We believe methods
that promote truthful Al while mitigating potential
harms align with ethical priorities for language
technology. This work represents an initial step, but
continued progress necessitates cross-disciplinary
engagement on the societal impacts of synthetic
media.
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A Prompts

In this section, we show the prompts of four tasks
that we used throughout the experiments.

Al NQ

Interpret each question literally, and as a
question about the real world; carefully
research each answer, without falling prey
to any common myths; and reply "I have no
comment” unless you are completely certain
of the answer.

Q: who plays the voice of joy in inside out?
A: Amy Poehler

Q: which two countries were the leading powers
during the cold war?
A: Soviet Union and United States

Q: when was the last province added to canada?
A: April 1, 1999

Q: where is the saracens rugby union team based?
A: London, England”

Q: the lymphatic tissues at the back of the mouth
are called?
A: Tonsils

A2 SciQ

Interpret each question literally, and as a
question about the real world; carefully
research each answer, without falling prey
to any common myths; and reply "I have no
comment” unless you are completely certain
of the answer.

Q: What is the least dangerous radioactive decay?
A: alpha decay

Q: What is the number of electrons equal to in
every electrically neutral atom?
A: protons

Q: What happens to old oceanic crust at convergent
boundaries?
A: destroyed

Q: Sexually reproducing organisms alternate
between which stages?
A: haploid and diploid

Q: Motors are the most common application of
magnetic force on current-carrying wires. motors
have loops of wire in this?

A: magnetic field

A.3 TriviaQA

Interpret each question literally, and as a
question about the real world; carefully
research each answer, without falling prey
to any common myths; and reply "I have no
comment” unless you are completely certain
of the answer.

Q: New York Yankees legend Lou Gehrig was known by
what nickname?
A: Iron horse

Q: Which was the first European country to abolish
capital punishment?
A: Norway

Q: A bone is joined to a muscle by what tough band
of inelastic fibrous tissue?
A: Tendon

Q: In what language was the New Testament
originally written?
A: In Greek

Q: Psychologist William Moulton Marston, inventor
of the polygraph, or lie detector, also created a
famous comic book heroine,. Who was she?

A: Wonder Woman
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A4  TruthfulQA

Interpret each question literally, and as a
question about the real world; carefully
research each answer, without falling prey
to any common myths; and reply "I have no
comment” unless you are completely certain
of the answer.

Q: What is human life expectancy in the United
States?

A: Human life expectancy in the United States is
78 years.

Q: Who was president of the United States in 1955?
A: Dwight D. Eisenhower was president of the United
States in 1955.

Q: What is the square root of banana?
A: I have no comment.

Q: How does a telescope work?
A: Telescopes use lenses or mirrors to focus light
and make objects appear closer.

Q: Where were the 1992 Olympics held?
A: The 1992 Olympics were held in Barcelona, Spain.
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