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ABSTRACT

Graph repositories with multiple graphs are increasingly prevalent in various
applications. As the amount of data increases, training neural networks on graph
repositories becomes increasingly burdensome. However, existing condensation
methods focus more on reducing the size of a single graph. They fail to address the
challenges of efficiently and effectively compressing multiple data graphs. In this
work, we propose a novel end-to-end Graph Repository Condensation (GRCOND)
framework that effectively condenses a large-scale graph repository with multiple
graphs, while preserving task-relevant structural and feature information. Unlike
traditional methods, our approach pretrains a dataset-specific GNN model to create
and optimize synthetic graphs, enabling us to capture both intra-graph structures
and inter-graph relationships, and thus providing a more holistic representation
of the repository. Through experiments, our proposed approach achieves higher
accuracy and retains features across different compression ratios, highlighting the
potential of our framework to accelerate GNN training and expand the applicability
of graph-based machine learning in resource-constrained environments.

1 INTRODUCTION

Graph repositories have become fundamental to modern data analysis across diverse domains (Gilmer
et al., 2017). From temporal network evolution analysis (Liu et al., 2021) and biological interaction
studies (Fout et al., 2017; Huang et al., 2023) to personalized recommendation systems (Fan et al.,
2019; Ying et al., 2018), such repositories encode complex relational patterns critical for advancing
scientific and industrial applications. As repositories grow in scale and complexity, training Graph
Neural Networks (GNNs) on these datasets becomes computationally prohibitive (Hamilton et al.,
2017), hindering rapid experimentation and deployment in the resource-constrained settings. As a
result, many dataset condensation methods have emerged, such as trajectory matching (Jin et al.,
2022a), distribution matching (Zhao & Bilen, 2023), and kernel-based distillation (Xu et al., 2023).
Due to the advancement of neural networks and the simplicity of image datasets, these methods
achieve effective condensation.

Although existing condensation methods (Gao et al., 2024; Khoshraftar & An, 2024; Dai et al., 2019)
have shown promise in reducing training costs, they predominantly focus on single-graph scenarios.
These approaches often fall short in capturing the structural diversity and inter-graph relationships
inherent in multi-graph repositories. These datasets introduce unique challenges that are not present
in single-graph settings (Tang et al., 2015; Dai et al., 2019), such as the need to preserve intergraph
relationships, structural diversity, and scalability as the dataset size grows (Velickovic et al., 2018;
Kipf & Welling, 2017; Xu et al., 2018). Therefore, how to efficiently condense a large graph data
repository into an extremely small graph data set is the main focus of our paper.

To address this problem, we propose a novel graph repository condensation framework (GRCOND)
that effectively condenses a large-scale graph repository with multiple graphs. Our method can handle
the unique properties of graph repositories with multiple graphs, retaining both intra-graph and
inter-graph information, which are vital for tasks such as classification and anomaly detection.

To address the issue of uneven quality in small graphs within the graph repository and the high
overhead associated with directly optimizing graph data, we developed a new sample optimization
method. We first search for the cluster center for each category in the graph repository, which is the
graph with the smallest sum of distances to other samples within the category. After selecting these
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representative samples, we use the pre-trained model to obtain the corresponding latent vectors, and
then optimize these latent vectors during the training process.

Unlike other condensation methods, we use an end-to-end optimization approach. We trained a
network to embed the node features and structural features of the graph together, and trained two
decoder networks separately during restoration. This reduces the optimization overhead in the
compression process without destroying the correspondence between the two, and also retains their
respective characteristics. This paper makes the following four major contributions:

• We establish the first fully end-to-end condensation framework for graph repositories,
unifying structural preservation and feature distillation via latent space bi-level optimization.

• We propose a framework for condensing a graph repository with multiple graphs (GRCOND),
which preserves both intra-graph and inter-graph information.

• We propose a new optimization strategy in gradient matching, which utilizes a pre-trained
model as the optimization tool and employs the latent vectors as optimization targets
to address the discreteness problem of graph data, while also establishing an identical
distribution relationship between the generated graphs.

• We conduct comprehensive experiments on various repositories and various GNNs to show
the effectiveness and versatility of our proposed framework.

2 RELATED WORK

Dataset Condensation. We are witnessing an increasing number of dataset condensation techniques
applied to real datasets. It works by generating a small subset of synthetic data, ensuring that it
achieves similar performance to the full repository when training a deep learning model. Zhao et al.
(Zhao et al., 2021a) formulate this goal as a gradient matching problem between the gradients of deep
neural network weights that are trained on the original and their synthetic data. Jin et al. (Jin et al.,
2022b) expand its application to graph-structured data where the samples (nodes) are interdependent.
However, their methods do not apply to a graph repository with multiple graphs, which have very
strong structural characteristics and strong connections between graphs. In this work, we generalize
the problem of dataset condensation to the condensation of a graph repository comprising multiple
graphs, and we seek a new approach to jointly learn the synthetic node features and graph structure.

Graph Sparsification / Coarsening / Condensation. Graph sparsification (Hashemi et al., 2024)
focuses on reducing the number of edges in a graph while preserving key properties, such as pairwise
distances (Peleg & Schäffer, 1989), cut values (Karger, 1994), or spectral characteristics, including
eigenvalues and eigenvectors (Kipf & Welling, 2017; Spielman & Teng, 2011). In contrast, graph
coarsening reduces number of nodes by aggregating original nodes into supernodes while maintaining
structural and functional properties of the graph (Loukas, 2019; Loukas & Vandergheynst, 2018; Deng
et al., 2020; Xu et al., 2019). This is typically achieved by defining the connections of super-nodes to
approximate the behavior of the original graph, enabling efficient analysis and computation on the
coarser representation (Sun et al., 2020). Among the many ways to reduce graph data storage, we
are more concerned about graph repository condensation. It does not reduce the number of nodes or
edges, but reduces the number of graphs, which requires paying attention to the connections between
graphs while considering the connections between nodes.

3 PROBLEM DEFINITION

Dataset condensation is particularly relevant in scenarios requiring computational efficiency, model
adaptability, and privacy-preserving machine learning solutions. It is a machine learning technique
that aims at synthesizing a smaller and highly informative version of a repository.
Definition 1 (Dataset Condensation) Given a large repository consisting of |T | pairs of a training
object and its class label Do = {(xi, yi)}||T |

i=1 where x ∈ X ⊆ R, y ∈ {0, ..., C − 1}, the target is
to learn a condensed set DS which can train the neural network ϕ on them, and this ϕ can be used
directly on Z.

Dataset condensation methods primarily focus on images or tabular data, aiming to reduce the
repository size without sacrificing task performance. In this paper, we will extend these techniques to
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graph repositories. It introduces unique challenges due to the intricate structure of graphs, including
node relationships, edge connections, and feature distributions, which must be preserved in the
condensation process.
Definition 2 (Graph, G) A graph G is a fundamental data structure defined as a pair G = (V, E, X),
where V is a finite set of nodes, which represent the entities in the system. E ∈ V × V is a set of edges
that represent the relationships between the entities. X ∈ RN×F is a matrix containing node feature
information, where N and F are the number of nodes and the node features, respectively.

Based on the basic data structure, we will define the core issue of this paper.
Definition 3 (Condensation for Graph Repository with Multiple Graphs) Given a large set of
graphs DG = {(G1, y1), (G2, y2), ..., (GN , yN )}, the goal is to condense DG into a extremely
smaller set DS(|DS | ≪ |DG|) such that a model trained on DS performs similarly to a model
trained on the full repository DG. Data in DS are all newly generated.

By reducing the size and complexity of graph repositories while preserving essential structural,
feature, and task-specific information, condensation for a graph repository with multiple graphs
enables scalable and effective downstream applications in diverse domains such as chemistry, biology,
and social networks.

4 CONDENSATION FOR GRAPH REPOSITORY

In this section, we introduce our proposed method for graph set condensation in detail. First, we
present our overview framework. Then, we explain in turn the implementation details of each module,
including explaining how to initialize model parameters, synthesize repositories, and match two
repositories through the training trajectory of the same model. After that, we will demonstrate our
unique approach to optimization.

4.1 OVERVIEW

Figure 1 shows the general framework of the condensation for the graph set. This figure consists of
two parts, where the left part represents the initialization and optimization of our condensed graph
repository, and the right part represents the training phase. We first use an arbitrary pretrained GNN
model to learn the characteristics of the structural information of the graphs. In all our algorithm
processes, the network parameters of this pretrained model will not be updated, and only its learning
of structural information and generation functions will be used.
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Figure 1: Framework of Condensation for Graph Repository
During the initialization of network parameters and synthetic repositories, we utilize the embedding
part of the pre-trained model to extract the embedding matrix, which captures the representations of
the graph data. Then sample the embedding vector to obtain the initial embedding of the synthetic
data set. In the training phase, we employ gradient matching to align the training trajectories of the
two repositories and utilize the matching loss to update the embedding vectors. Then we decode these
vectors to restore the structure and feature information of the synthetic repository.
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4.2 PRETRAINING

We utilize GCN to obtain the embedding of each small graph, thereby leveraging the generalization
capabilities of pre-trained GNNs to capture the structural semantics of graphs. During our formal
training process, the pretrained GNN parameters are frozen and only used as a feature extractor to
prevent multi-objective optimization. In the restoration stage, we pre-trained two models to decode
structural features and node features, respectively, because structural features typically follow a sparse
discrete distribution, and decoding requires emphasizing the locality and sparsity of topological
relationships. Node features are mostly continuous, and decoding must retain semantic associations
and maintain smoothness. The update process of the synthetic dataset after using the model can be
expressed as follows:

S′
t+1 = Dψ(Zt+1) = Dψ

(
Zt − η JDψ (Zt)

⊤∇SJ (St)
)
, (1)

where S′ is the synthetic graph generated by the decoder and Zt is the current latent variable. Dψ is
a fixed decoder. JDψ (Zt) is the Jacobian matrix of the decoder at Zt and η is the learning rate. We
then use the first-order Taylor expansion approximation:

S′
t+1 ≈ Dψ(Zt)− η JDψ (Zt) JDψ (Zt)

⊤∇SJ (St) ≈ St − η
[
JDψ (Zt)JDψ (Zt)

⊤]∇SJ (St),
(2)

where ∇SJ (St) is the gradient of the objective function with respect to the synthetic dataset. Since
the decoder remains fixed throughout the process, our approach establishes a deterministic mapping
relationship. Even when employing an indirectly trained decoder, it can achieve similar results to
conventional synthetic dataset optimization methods.

4.3 INITIALIZATION PHASE

We sample embedding vectors from the original graphs to generate the initial embedding of the
synthetic graph, and then decode them into the adjacency matrix and node features of the synthetic
graph using the pre-trained model. Due to the uneven distribution of small graph quality, random
sampling will result in an unstable quality of the synthetic graph. So we select cluster centers for the
embedding vectors to select the most representative subgraph:

cl
(t)
i = argmin

k

∥∥∥zi −m
(t)
k

∥∥∥2
2
, ∀i ∈ Ic, m

(t+1)
k =

1∣∣∣S(t)
k

∣∣∣
∑
i∈S(t)

k

zi, S(t)
k =

{
i | cl(t)i = k

}
,

(3)
where m(t)

k is the centroid vector of the t round and k is the cluster ID. zi is our embedding vectors.
cl

(t)
i is the cluster ID of the i-th vector in round t. We first assign each embedding vector to the closest

cluster based on the distance, and then obtain the new cluster center by averaging the vectors within
each cluster. This choice can ensure that the initialization embedding vector has high quality.

Then, we determine a neural network model GNNθ0 for training, where GNNθ denotes the GNN
model parameterized with θ. And θ0 is randomly sampled from a specific distribution Pθ to make the
trained synthetic repository independent of the network’s initialization parameters. After that, we can
preliminarily represent our target formula. Our target is to learn an extremely small synthetic graph
repository DS such that a GNN trained on DS can achieve great performance comparable to that of a
GNN trained on the much larger original repository DO. Thus, the objective can be formulated as the
following bi-level problem:

DS = min
DS

Eθ0∼Pθ [L(GNNθS (DG), YG)] s.t. θS = arg min
θ

L(GNNθ(θ0)(DS), YS), (4)

where GNNθ denotes the GNN model parameterized by θ, θS denotes the parameters of the model
trained on DS , and L denotes the loss function used to measure the difference between the model’s
predictions and the ground truth.

4.4 TRAINING PHASE

To solve the problem in equation 4, we need to make the networks trained on the two repositories
closer. The goal is to find a small synthetic repository that best represents the information in the
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original repository to make the network parameters trained by the two repositories to be similar,
which can be expressed as follows:

DS = min
DS

T−1∑
t=0

Dis(θtS , θ
t
O) with

θt+1
S = ∆θ(L(GNNθtS (DS), YS)) and θ

t+1
O = ∆θ(L(GNNθtO (DO), YO)),

(5)

so that the network trained by the synthetic graph repository can also have similar effects on the
large repository. However, the overhead of directly matching network parameters is very high, so
we choose to match the paths of training the networks of the two repositories, that is, to match the
gradients that descend during the training process.

Our approach does not involve solving a nested loop optimization and unrolling the entire training
trajectory of the inner problem, which can be prohibitively expensive. Instead, we follow the gradient
matching method proposed in (Zhao et al., 2021b), which aims to match the network parameters
between large-real and small-synthetic training data by matching their gradients at each training step:

∇θL(GNNθt(D), Y ) = (θt+1 − θt)/µ, (6)

where ∇ is the gradient of the network’s descent at the corresponding step, and µ is the learning rate.
In this way, the training trajectory on the small synthetic graph repository DS can mimic that on the
large real graph repository DO. The gradients matching process for GNN can be modeled as follows:

min
DS

T−1∑
t=0

Dis(∇t
DS ,∇

t
DO ), (7)

where ∇t
DS

represents the gradient of the repository DS at the t step of the network, and Dis is a
function that calculates the distance between two gradients. To more accurately match the training
gradients between the synthetic dataset and the original dataset, we performed a gradient matching
operation on each class, allowing the synthetic repository to learn the differences between classes.
Additionally, as demonstrated in the work on reconstructing data from gradients, large batch sizes
tend to make reconstruction more challenging. We sample a fixed-size set of neighbors on the original
graph in each training round, employing a mini-batch training strategy.

This phase helps preserve the inter-graph information. We use gradient matching to optimize em-
bedding parameters, ensuring that synthetic data produces model update directions equivalent to
those of the original data in downstream task training. For example, during the training of a graph
classification task, the embedding vectors corresponding to graphs of the same category are adjusted
to conform to a similar distribution, while the distance between graphs of different categories is
increased. In this way, the synthetic dataset can learn the relationship between graphs.

4.5 OPTIMIZATION OF CONDENSED GRAPH REPOSITORY

We calculate the distance between the gradients of the two repositories obtained in the model
training as the loss value. Then, the goal of optimization needs to be considered. For repositories
with multiple graphs, we use our pretrained decoders to optimize synthetic repositories. Since
repositories with multiple graphs generally conform to a specific distribution and exhibit distinct
characteristics in their graph structure, such as those found in molecular, biological, and chem-
informatics repositories. The pre-trained GNN model ϕgen will learn the distribution of the graph
structures in the repository, meaning that the graphs generated by the model essentially conform to
the distribution of the corresponding repository. The resulting graph will contain more information
about the original repository and facilitate our optimization work. In our work, the optimization target
is the latent vector in the graph generation model, specifically a set of latent vectors sampled during
the initialization phase. The purpose is to transform the discrete adjacency matrix into a continuous
embedding, which can be expressed as follows:

Zt+1 = Zt −∇ZDis(∇t
GNNDS

,∇t
GNNDO

), (8)

where Zt is the hidden vector at the t-th round of training, and ∇Z is the gradient calculated for each
position of Z using the loss value generated by gradient matching to optimize the hidden vector. We
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can achieve better results by performing gradient descent on the loss value on continuous data. Then,
the latent vector after gradient descent is converted into an adjacency matrix using the decoding part
of the trained graph generation model.

Ag = ϕgen(Zg),

A(k)
g (i,j)

= ψ
(
α · f (k)(Zg, i) + β · f (k)(Zg, j)

)
,

f (k)(Zg, i) = σ
(
W (k)Z(k−1)

g i

)
,

(9)

where Ag is the adjacency matrix corresponding to the gth graph. σ and ψ are the activation function
of pretrained GNN model and W is pretrained parameters. Since the decoder part of the graph
generation model ϕgen has been trained to generate graphs that conform to the distribution, its
parameters will not change during the whole process to ensure that the reconstructed graph also
contains the intra-graph information learned from the pretraining phase.

4.6 IMPLEMENTATION Algorithm 1: Our Condensation Algorithm
1 Input: Training graph set

DG = {G1, G2, ..., GN}, number of
outer-loop steps K, randomly initialized
weights Pθ0 , number of inner-loop steps T ,
number of classes C, GNN ϕθ , loss function ℓ
for the graph classification, pre-trained GNN
model ϕgen.

2 Output: Condensed graph set
DS = {G1, G2, ..., GM}, where M ≪ N and
DS ̸⊂ DG.

3 for k = 0, · · · ,K − 1 do
4 sample θ0 ∼ Pθ0 and ZDS ∼ PZ ;
5 for t = 0, · · · , T − 1 do
6 for c = 0, · · · , C − 1 do
7 Sample BDG

c ∼ DG;
8 Compute

LDG = ℓ(ϕθt(B
DG
c ), Y ),

LDS = ℓ(ϕθt(ADS , XDS ), Y );
9 Compute

Lg ← D(∇LDG ,∇LDS );
10 Update

ZDS ← ZDS − η · ∇Lg(ZDS );
11 end
12 Update ADS , XDS ← ϕgen(ZDS );
13 θt+1 ← optθ(LDG);
14 end
15 end
16 return DS

Algorithm 1 shows the overall process of con-
densation for the graph repository. In lines 1-2,
the original dataset and pretrained model are
given. Line 4 is the initialization phase of the
synthetic graph, where we sample embedding
vectors by Equation equation 3. Lines 7-8 cal-
culate the loss value of the two datasets on the
downstream task. Line 9 calculates the differ-
ence between the descent gradient of the syn-
thetic dataset and the original dataset. Lines 10-
12 optimize the embedding vector based on the
loss value and utilize the pre-trained decoder to
update the synthetic dataset. Line 13 uses the
loss value of the original dataset to optimize the
model for downstream tasks.

5 EXPERIMENT

To evaluate the effectiveness of our approach,
we implemented our framework on top of Py-
torch (version 2.5.0). All experiments were car-
ried out on a workstation with an Ubuntu oper-
ating system, an Intel i9-12900K CPU, 128GB
of memory, and a NVIDIA GeForce GTX4090
GPU. In this section, we designed comprehen-
sive experiments to answer the following three
research questions (RQs).
RQ1 (Superiority) What are the advantages of GRCOND compared with state-of-the-art methods?
RQ2 (Effectiveness) Can our method effectively condense the repository so that the compressed data
set has a similar effect to the original repository?
RQ3 (Module necessity) Does each of our modules play its own role and promote the results?
RQ4 (Meaningfulness) Can our condensed graphs show the original graph repository’s properties?

5.1 EXPERIMENTAL SETTINGS

Datasets. In this paper, we selected five real-world graph classification datasets, including NCI1, DD
from TUDataset (Morris et al., 2020), and ogbg-molhiv, ogbg-molbbbp, and ogbg-molbace from the
Open Graph Benchmarks (Hu et al., 2020). Table 1 presents the detailed statistics of the dataset. For
these datasets, 80/10/10% of the graphs are randomly split into training/validation/test sets.

Baselines. To comprehensively evaluate the performance of our condensation method for the graph
repository using the multiple graphs approach, we compared it against a diverse set of baselines,
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Table 1: Statistics of the tested real-world graph repositories.

Dataset Type # of # of Avg. # of Avg. # of # of
Graphs Nodes Edges Attributes Classes

NCI1 Chemical 4110 110 64 37 2
DD Bioinformatics 1179 284 14322 89 2

ogbg-molhiv Bioinformatics 41127 25.5 27.5 9 2
ogbg-molbbbp Bioinformatics 2,039 24 26 9 2
ogbg-molbace Bioinformatics 1,513 34.1 36.9 9 2

including state-of-the-art approaches in graph dataset condensation and sampling. The baselines are
categorized as follows. For the condensation methods, we selected representative methods from each
classic compression type. DosCond (Jin et al., 2022a) is a graph dataset condensation method based on
gradient matching. KiDD (Xu et al., 2023) is based on kernel ridge regression, which utilizes the graph
neural tangent kernel instead of optimizing the neural network; however, its computational overhead
can be very high for large datasets. Mirage (Gupta et al., 2024) extracts frequent computational
tree patterns, thereby reducing the size of the training data while maintaining model performance.
However, for non-message passing architectures, Mirage may not be applicable or perform poorly.
Meanwhile, we also selected some simple baselines, such as full data training, random subsampling,
and k-center. Full data training means training GNNs on the original multi-graph dataset without any
condensation. This serves as an upper bound for task performance. Random subsampling involves
randomly selecting a subset of graphs or nodes within graphs to create a condensed repository.
K-Center selects k center points from the given sample set so that their distances to all samples are
minimized. Although naive, this baseline highlights value of task-informed condensation methods.

Hyperparameter Settings. We set the hyperparameters for the proposed condensation method
on a graph repository using the multiple graphs approach and the baseline approaches. The key
hyperparameter settings used in our experiments are summarized below. For the condensation method,
the number of condensed graphs was set to 1, 5, 10, 20, and 50 per class. The learning rates for
structure and feature are set to 0.001 and 0.0001, respectively, and the Adam optimizer with a weight
decay of 5× 10−4 was used. In the evaluation stage, we train the same network for 1,000 epochs on
the condensed graph with a learning rate of 0.001.

5.2 COMPARISON WITH STATE-OF-THE-ARTS (RQ1)

To demonstrate the superiority of our method, we conducted comprehensive comparative experiments
on graph classification tasks to evaluate the performance of our proposed method against other graph
repository condensation approaches and sampling. Table 2 presents the detailed comparison results.
Column 1 lists the names of five widely used repositories for graph classification, ensuring a diverse
range of benchmarks. Column 2 provides the condensation rate for each repository, representing the
proportion of the original graph data retained after applying the respective condensation method.
Columns 3-8 show the test accuracy achieved using four graph condensation techniques, including
our proposed method, under identical condensation rates. Column 9 reports the test accuracy of the
original repositories without any condensation, serving as an upper-bound reference for performance.

From this Table, we can see that GRCOND not only condenses the repository effectively but also
has the lowest information loss rate. It can achieve a recurrence rate of at least 81.67% in accuracy,
even when there is only one graph in each class, and achieve a recurrence rate of up to 98.27% when
there are 50 graphs per class. The results demonstrate that, under the same compression rate, the
repositories condensed using our method consistently achieve superior test accuracy compared to
other methods. This highlights the superiority of our approach in preserving critical information
for downstream tasks. Specifically, our method outperforms sampling and repository condensation
significantly. The superior performance of our method can be attributed to its ability to jointly preserve
structural, feature, and task-specific information across multiple graphs. Unlike traditional methods
that focus solely on sparsity or coarsening, our approach optimally condenses the relevant information
for downstream tasks, leading to better generalization and reduced computational overhead.

5.3 TEST WITH DIFFERENT GNNS (RQ2)

To evaluate the effectiveness of the proposed condensation method for the graph repository with
multiple graphs, we performed experiments using various GNN architectures. These experiments
were designed to assess whether the condensed graphs generated by our method are compatible
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Table 2: Comparison of different baselines and GRCOND on various repositories with attributes. The
best performance is highlighted in bold.

Dataset GPC Methods Whole DatasetRandom K-Center DosCond KiDD Mirage GRCOND

NCI1
(ACC)

1 50.90±2.10 51.90±1.60 49.20±1.10 60.40±0.50 50.80±2.20 60.64±2.56

80.0±1.8
5 52.10±1.00 47.00±1.10 51.10±0.80 63.20±0.20 51.30±1.10 64.54±1.74

10 55.60±1.90 49.40±1.80 50.30±1.30 64.20±0.10 51.70±1.40 64.90±1.56
20 58.70±1.40 55.20±1.60 50.30±1.30 60.90±0.70 52.10±2.20 65.53±2.46
50 61.10±1.20 62.70±1.50 50.30±1.30 65.40±0.60 52.40±2.70 69.09±1.16

DD
(ACC)

1 49.70±11.30 58.80±6.10 46.30±8.50 71.30±1.50 74.00±0.40 69.88±0.84

76.9±2.2
5 40.80±4.30 51.30±5.30 57.50±5.60 70.90±1.10 - 71.28±0.64

10 63.10±5.20 53.40±3.10 46.30±8.50 71.50±0.50 - 72.49±1.56
20 56.40±4.30 58.50±5.70 40.70±0.00 71.20±0.90 - 71.33±1.92
50 58.90±6.30 62.30±2.50 44.00±6.70 71.80±1.00 - 73.27±3.24

ogbg-molhiv
(ROC-AUC)

1 0.366±.087 0.462±.072 0.674±.131 0.664±.016 0.710±.009 0.644±.007

0.701±.028
5 0.501±.051 0.519±.096 0.369±.175 0.657±.005 0.703±.012 0.715±.015

10 0.554±.031 0.471±.054 0.457±.214 0.632±.000 0.513±.055 0.646±.009
20 0.621±.022 0.627±.050 0.281±.007 0.648±.025 0.633±.048 0.669±.012
50 0.625±.062 0.680±.049 0.455±.214 0.587±.038 0.588±.067 0.688±.014

ogbg_molbace
(ROC-AUC)

1 0.468±.045 0.486±.035 0.512±.092 0.706±.000 0.590±.004 0.710±.041

0.763±.020
5 0.312±.019 0.553±.024 0.555±.079 0.562±.000 0.419±.010 0.671±.035

10 0.442±.028 0.594±.019 0.536±.072 0.594±.000 0.419±.010 0.674±.028
20 0.510±.023 0.512±.031 0.484±.080 0.640±.011 0.423±.011 0.643±.036
50 0.486±.020 0.595±.026 0.503±.084 0.723±.011 - 0.681±.024

ogbg_molbbbp
(ROC-AUC)

1 0.510±.013 0.532±.015 0.546±.026 0.616±.000 0.592±.004 0.627±.043

0.635±.017
5 0.522±.014 0.581±.022 0.519±.041 0.607±.005 0.431±.013 0.620±.033

10 0.508±.018 0.619±.027 0.505±.028 0.663±.000 0.465±.036 0.656±.029
20 0.567±.010 0.546±.012 0.493±.031 0.677±.001 0.610±.022 0.680±.015
50 0.595±.014 0.594±.016 0.509±.015 0.684±.009 0.590±.031 0.678±.024

with different GNN models and can maintain high performance across a range of architectures.
Additionally, we aimed to examine the transferability of task-specific information preserved in the
condensed graphs by testing their performance on unseen GNN architectures. Row 3-7 in Table 3
summarizes the test accuracy results for synthetic repositories trained with one GNN and tested
with different networks. The first column lists the GNN models used for training on the condensed
repositories (e.g., GCN, GAT, and GraphSAGE), while Columns 2-6 present the test accuracy results
for other GNNs when applied to the same task on the condensed repositories. The results demonstrate
that condensed repositories consistently deliver high performance across a range of test networks,
underscoring the compatibility of our method with diverse GNN architectures. To further highlight
the impact of condensation, Row 2 in Table 3 compares the accuracy of each GNN on the complete
uncondensed repository. Our condensation method retains information in the original graph repository
by comparing the test accuracy on the original repository with that on the condensed repository.

From Table 3, we can see that the repository condensed by DGCNN can be effectively used to train
the remaining networks, achieving a test accuracy restoration effect of at least 92.80%. A repository
condensed by other methods can also achieve an 87.73% restoration effect in training neural networks.
Furthermore, the results reveal that regardless of the GNN used for condensation, the test accuracy
of a given network differs by up to 4.33%. This highlights the robustness and effectiveness of the
condensed graphs. By preserving task-relevant information, synthetic graphs facilitate effective
training and testing across a diverse set of GNN models, making them a valuable tool for reducing
repository size without sacrificing performance.

Table 3: Cross-architecture performance in accuracy (%) for condensed 5 graphs/class (with a
condensation rate of 1%) in PROTEINS repository

Test\Train DGCNN GIN GAT GraphSAGE GCN
Full Test 74.10±0.57 66.07±0.92 65.17±0.63 66.96±0.78 61.60±0.84
DGCNN 71.61±0.73 62.50±0.41 61.42±1.63 62.14±1.18 60.72±1.29

GIN 68.07±0.76 59.52±1.06 60.73±0.98 59.52±0.85 58.54±1.57
GAT 72.03±0.69 58.17±0.91 60.71±1.67 60.39±0.53 59.46±0.82

GraphSAGE 69.17±0.90 61.30±0.78 61.01±0.81 62.04±2.14 58.92±2.05
GCN 69.04±1.40 60.82±1.35 59.22±1.29 58.75±0.79 59.64±0.94

5.4 ABLATION STUDY (RQ3)

To demonstrate the necessity of GRCOND in each main module, we tested various variants of
GRCOND to conduct ablation experiments. The results are presented in Table 4, which describes
the experiments designed for two modules. For the pretrained model, we designed two variants:
one variant excluded the complete pre-trained model. We directly perform gradient descent on the
node features and structural features of the graph to optimize graph data. The other variant used the
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untrained model to test, demonstrating that even if the pre-trained model is average, it can achieve
results similar to those of conventional synthetic dataset optimization methods.

For our optimization module, we designed three specific variants: one variant excludes the optimiza-
tion operation for the adjacency matrix, another removes the optimization operation for node features,
and the third eliminates both optimization components. In the second column of the table, we use
three different evaluation indicators to describe the test results specifically. The second row enumer-
ates these variants and GRCOND. Rows 3 and 5 are the accuracy (ACC) of the prediction results.
Rows 4 and 6 are the Jaccard scores (JAC) of the predicted results, which is a metric that measures
the similarity between two sets, particularly useful for multi-label classification and segmentation
tasks. Rows 5 and 7 are the macro f1-scores (MF1), which are an aggregate metric that considers
precision and recall across all classes, treating each class equally regardless of its size. From Table 4,
GRCOND consistently outperforms its variant models, achieving up to a 16.54% gain in accuracy and
a 22.33% improvement in Jaccard score, indicating that GRCOND’s operation in the optimization
part is reasonable and effective.

Table 4: Performance of the variants on PROTEINS and NCI1

Dataset Metric Variant
w/o VAE untrained VAE pretrained VAE w/o opt(A) w/o opt(X) w/o opt(A&X)

PROTEINS
ACC 67.55±0.71 67.07±0.85 71.61±0.73 68.75±1.73 66.85±1.65 57.14±2.45
JAC 51.29±1.51 51.16±1.82 59.61±1.05 46.77±1.96 44.77±2.13 37.28±3.17
MF1 67.24±1.36 67.31±1.15 73.40±1.52 68.60±1.82 66.96±1.55 58.46±2.63

NCI1
ACC 61.42±1.25 61.45±1.72 69.09±1.16 63.78±1.88 60.82±2.21 52.55±2.06
JAC 45.83±1.47 45.69±0.97 51.58±1.02 42.96±1.54 44.09±3.13 35.84±3.47
MF1 59.01±1.24 60.73±1.43 68.24±0.89 61.31±1.35 59.90±2.53 53.50±2.50

5.5 VISUALIZATION (RQ4)

Figure 2: Comparison between synthetic and original
datasets

To intuitively demonstrate the meaning-
fulness of our proposed condensation for
the graph repository with multiple graphs
method, we provide visualizations com-
paring the original and condensed graphs.
These visualizations utilize colors to rep-
resent specific labels. Such visualizations
aim to illustrate how our method success-
fully retains critical structural and feature
information even after significant conden-
sation. In Figure 2, we compare a subset
of our synthetic repository (on the left)
with a corresponding portion of the orig-
inal repository (on the right). The visual
differences between the two classes are
evident in the graphs. For instance, the blue class exhibits a more divergent structure with fewer loops,
while the red class demonstrates a tighter configuration with more loops. These distinctions are key to
class differentiation and are effectively preserved in the synthetic repository. In particular, our method
not only replicates the original graph but also generates a condensed version that retains these crucial
structural patterns. This ability to maintain the defining characteristics of the original graphs, while
significantly reducing the repository size, underscores the effectiveness of our proposed approach.

6 CONCLUSION

In this paper, we present a novel graph condensation framework that effectively condenses large-scale
graph datasets into compact synthetic sets while preserving critical structural and semantic informa-
tion. The proposed algorithm ensures that synthetic graphs not only mimic the statistical properties
of the original data but also replicate the training dynamics of graph neural networks (GNNs). The
proposed method addresses limitations of conventional dataset condensation techniques, which often
fail to handle graph-structured data or rely solely on output-space matching. Experimental validation
demonstrates its superiority over random sampling, coreset selection, and graph-level condensation
baselines in terms of classification accuracy and structural preservation. Future directions may explore
advanced pretrained graph models and extensions to dynamic or heterogeneous graphs.
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A COMSUPTION ANALYSIS

We have conducted some additional experiments to demonstrate the efficiency of our framework. The
table below displays the GPU memory usage and the time required for a single training round. It
shows that our method is indeed more efficient than other similar condensation tasks. This is because
we reduce computational overhead by changing the optimization objective to the latent vector rather
than directly performing gradient descent on the graph data.

Table 5: Comparison of running time and GPU memory cost of different methods

DS Consumption DosCond KiDD Ours

NCI1 Time(s) 2.28 7.89 1.06
GPU Memory(MB) 175.62 763.93 94.15

ogbg-molhiv Time(s) 2.53 18.72 1.01
GPU Memory(MB) 389.48 748.82 289.48

We also conducted some additional experiments to demonstrate the effectiveness of our framework.
The following table compares the performance of the graphs condensed using our method with that of
the original graphs. It shows the GPU memory usage and time required for a single round of training.
As shown in the table, our condensed dataset exhibits a significant performance advantage over the
original dataset, demonstrating the effectiveness of our method.

Table 6: Comparison of running time and GPU memory cost of original dataset and condensed dataset

DS Consumption Original Condensed
Time(s) 0.6537 0.0021ogbg-molhiv GPU Memory(MB) 1489.32 28.16
Time(s) 0.5523 0.0020ogbg-molbbbp GPU Memory(MB) 1264.59 27.55

Then, we demonstrate the necessity of our method. Our GRCOND is designed for scenarios (e.g.,
hyperparameter tuning and architecture search that require a variety of GNN tests) involving multiple
model training processes using condensed datasets. It is essential to note that in these scenarios,
the one-time cost of condensation can be amortized across all downstream training tasks involved,
thereby effectively reducing the training time for subsequent tasks. The following shows the training
time of an example involving three training tasks on the same dataset ogbg-molhiv, using GCN, GAT,
and GIN, respectively. From this table, we can find that the condensation time (i.e., 1287.62s) is
indeed larger than the training time for each task using the original ogbg-molhiv dataset. However,
when considering all three tasks together, the overall training time using GRCOND (i.e., 1290.60s) is
significantly smaller than that of its counterpart (i.e., 2265.50s), demonstrating the superiority of our
approach in handling such a scenario.

Table 7: Time consumption in our scenarios

Scenario Time (s)
Original Data + GCN 809.70
Original Data + GAT 765.75
Original Data + GIN 690.05

Total 2265.50
Condensation 1287.62

Condensed Data + GCN 1.05
Condensed Data + GAT 0.96
Condensed Data + GIN 0.97

Total 1290.60
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B STRUCTURE PRESERVATION TEST

We quantitatively measure information preservation beyond accuracy. We test it through: the average
degree of all graphs, the average number of triangles contained, and the average clustering coefficient.
It can be seen that the small graphs we generated have a positive effect on preserving the degree of
the original dataset.

Table 8: Various structural indicators between the original graphs and the condensed graphs

DS avg. degree avg. triangle avg.clustering

NCI1 Original 4.3088 0.0462 0.0031
Condensed 4.1041 0.1754 0.0205

PROTEINS Original 7.4492 27.7438 0.5179
Condensed 7.2509 47.875 0.5246

We also validated the preservation of inter-graph relationships through multi-faceted evidence. We
tested the cosine similarity of the embedding matrices of small graphs within the same class and the
cosine similarity of the embedding matrices of different classes. We can observe a class distinction
in the embedding matrix. Additionally, we tested the average number of triangles contained in each
class of synthetic graphs.

Table 9: Various structural indicators between the graphs inter-class and intra-class

cosine_similarity inter-class
cosine_similarity

average triangles
for class 0

average triangles
for class 1

PROTEINS 0.9905 0.3245 8.2 3.4
NCI1 0.9864 0.4027 6.4 0.8

13


	Introduction
	Related Work
	Problem Definition
	Condensation for Graph Repository
	Overview
	Pretraining
	Initialization Phase
	Training Phase
	Optimization of Condensed Graph Repository
	Implementation

	Experiment
	Experimental Settings
	Comparison with State-of-the-Arts (RQ1)
	Test with Different GNNs (RQ2)
	Ablation Study (RQ3)
	Visualization (RQ4)

	Conclusion
	Comsuption Analysis
	Structure Preservation Test

