© © N O O A~ W N =

PipelineRL: Faster On-policy Reinforcement Learning
for Long Sequence Generation

Anonymous Author(s)
Affiliation
Address

email

Abstract

Reinforcement Learning (RL) is increasingly utilized to enhance the reasoning
capabilities of Large Language Models (LLMs). However, effectively scaling
these RL methods presents significant challenges, primarily due to the difficulty in
maintaining high Al accelerator utilization without generating stale, off-policy data
that harms common RL algorithms. This paper introduces PipelineRL, an approach
designed to achieve a superior trade-off between hardware efficiency and data
on-policyness for LLM training. PipelineRL employs concurrent asynchronous
data generation and model training, distinguished by the novel in-flight weight
updates. This mechanism allows the LLLM generation engine to receive updated
model weights with minimal interruption during the generation of token sequences,
thereby maximizing both the accelerator utilization and the freshness of training
data. Experiments conducted on long-form reasoning tasks using 32 H100 GPUs
demonstrate that PipelineRL achieves approximately ~ 2z faster learning com-
pared to conventional RL baselines while maintaining highly on-policy training
data. A scalable and modular open-source implementation of PipelineRL is also
released as a key contribution.

1 Introduction

Reinforcement Learning (RL) has recently become a popular tool to enhance the reasoning and
agentic capabilities of Large Language Models (LLMs) [Guo et al., 2025, Wei et al., 2025]. While
RL expands the range of training signals one can use to enhance LLMs, this advanced learning
paradigm comes with extra challenges, including being particularly hard to effectively scale to more
compute. The scaling difficulty arises from the fact that Al accelerators (like GPUs and TPUs) deliver
high throughput only when generating sequences at a large batch size. Hence, naively adding more
accelerators to an on-policy RL setup brings increasingly diminishing learning speed improvements
because the per-accelerator throughput decreases, while the overall generation latency reaches a
plateau. The common workaround of generating training data for multiple optimizer steps results
in a lag between the currently trained policy and the behavior policy that generates the training
data. The lagging off-policy data is known to harm the commonly used effective RL algorithms
[Noukhovitch et al., 2024], including, REINFORCE [Williams, 1992], PPO [Schulman et al., 2017]
and GRPO [Shao et al., 2024, Guo et al., 2025], because these algorithms were designed to be trained
with on-policy or near on-policy data, with the behavior and current policy being very close.

In this paper, we present the PipelineRL approach to RL for LLMs that achieves a better trade-off
between hardware utilization and on-policy learning. Like prior work on efficient RL [Espeholt et al.,
2018, 2019], PipelineRL features concurrent asynchronous data generation and training. PipelineRL
adapts prior asychronous RL ideas to long-sequence generation with LLMs by introducing in-flight
weight updates. As shown in Figure 1, during an in-flight weight update the LLM generation engine

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40

41
42
43
44
45

46

47

48
49
50
51
52

53
54
55
56
57

58
59
60

61
62

inference batch size decreases constant batch size inference
]] I I

- BN I
y | i, r/‘ g’ g - @ : I : I weightsthrough time
(G M— 1 £ = — & opim optim Optim %,
|2 ,I g & : | ~~ step0 step1 step2 GPU idle
Time Time
a) Conventional RL. b) Pipeline RL with inflight weight updates.

Figure 1: a) Conventional RL alternates between using all the GPUs for generation and then training.
b) PipelineRL runs generation and training concurrently, always using the freshest model weights for
generations thanks to the in-flight weight updates.

only briefly pauses to receive the model weights via a high-speed inter-accelerator network, and
then proceeds to continue the generation of in-progress token sequences. In-flight updates eliminate
the wasteful waits for the last sequence to finish, ensure high accelerator utilization at a constant
generation batch size, and maximize the policy adherence of the recently generated tokens.

Our experiments on RL training for long-form reasoning show that on 4 DGX-H100 nodes, PipelineRL
learns ~ 2z faster than the comparable conventional RL baseline. We also observe that PipelineRL
training data stays highly on-policy, and that models trained by PipelineRL perform comparably to
similarly trained models from the literature. Lastly, a key contribution of this work is a scalable and
modular PipelineRL implementation that we release as open-source software. !

2 Background

2.1 Reinforcement Learning for Large Language Models

Reinforcement learning (RL) is commonly used to train Large Language Models (LLM) to respect
human preferences [Ouyang et al., 2022] for the LLM’s outputs or to perform long-form reasoning
to solve problems [Guo et al., 2025]. One can view LLM’s weights as parameterizing a multi-step
policy that assigns probabilities to the next token y; given the prompt = and the previously generated
tokens y;:

m(yle) = Hvr Yilz, y<i)- ¢))

Recent works have shown that variations of basm policy gradient algorithms such as REIN-
FORCE [Williams, 1992] are as effective for training LLMs as more sophisticated alternatives [Ah-
madian et al., 2024, Roux et al., 2025]. Given a set of prompts x1, . . ., Z,,, REINFORCE maximizes
the expected return J(7) of the policy = by following an estimate V.J () of the policy gradient
VJ(r):

1 m
= — > [Byrntiay Rz,)] @)
Jj=1
1 m
VJ(TI’) = E Z [Ey’\/ﬂ'("ﬂ?]‘)VIogﬂ.(y | Ij)R(xjay)] 3)
j=1
B 1 m K
—KZZ logm(y | @;) (R(xj,yx) — v (x)),)
j=1k=1

where vy (x;) is the control variate term that reduces the estimate’s variance, and K is the number of
samples per prompt x. In this study, we use the empirical mean vi(z;) = Zszl R(z;,yx)/K as the
control variate.

In most practical RL setups, the current policy m will often slightly differ from the behavior policy p
that generates y;. This difference is usually handled by either a trust region constraint [Schulman

'The code is available online under Apache 2 license, we will add the link to the camera-ready version

63
64

65
66
67
68

69
70
71
72

73

74
75
76
77
78

79

80
81
82
83
84
85
86
87
88

;

IS

m Wall-clock (s)
Throughput (x10° tok/s)

%
H

w
8
H

w

o
s
y

N

2
H
Time to finish (s)

5
3
8

o

Throughput (x103 tok/s)

Total number of sequences

®
2
&

J 1024 ; 0
. v 0 100 200 300 400 1024 896 768 640 512 384 256 128
Batch Size Seconds since generation starts Number of sequences per GPU

(a) Throughput vs batch size. (b) Inference batch size vs time. (c) Time vs Throughput.

Figure 2: Analysis of generation times and throughput. We perform all measurements using a
vLLM engine serving a Qwen 2.5 7B model on a H100 GPU. (a) Short prompt generation throughput
increases up to batch size 256. (b) Generation batch size gradually decreases to suboptimal values as
the engine finishes sequences (¢) Generation time reaches a plateau and throughput decreases as the
number of sequences per GPU goes down. We report the average of 5 runs and 95% CI.

et al., 2017] or using Importance Sampling (IS). In practice, the importance weights are truncated to
reduce the variance of the estimator [Munos et al., 2016, Espeholt et al., 2018]:

6[5\](77) = ﬁ min (c, m) (R(xj,yr) — vi(z;)) Vlogm(y | x). 5)

The Effective Sample Size (ESS) [Kong, 1992] is commonly used to quantify the quality of importance
sampling estimators in RL [Schlegel et al., 2019, Fakoor et al., 2020]. When using off-policy RL,
ESS measures how many samples from the current policy m would yield equivalent performance to
weighted samples from the behavior policy p. The (normalized) ESS is defined as:

N 2 N
ESS = <Z w,) /N Z w? (6)
i=1 i=1

where w; are importance weights for a sample of size N. This metric effectively ranges between 0
and 1 when normalized, with values closer to 1 indicating more efficient sampling, e.g. the ESS of
on-policy data is exactly 1. Small ESS will result in a high variance REINFORCE gradient estimate
and might destabilize the learning process.

2.2 Conventional RL

Most RL implementations alternate between generating sequences and training the policy on the
generated data. We refer to this approach as Conventional RL and describe it in detail in Algorithm 1.
When training involves doing G > 1 optimizer steps, the current policy 7 gets ahead of the behavior
policy u that was used to generate the data. We adopt the term lag to refer to the number of optimizer
steps between p and 7.

2.3 Efficient Sequence Generation with LLMs

Transformer models generate sequences one token at a time, left-to-right. To make this process
efficient, advanced generation (inference) engines such as vLLM and SGLang process a batch
of sequences at a time, while carefully managing their past keys and values in a paged structure
called KV cache [Kwon et al., 2023]. All modern generation engines support adding new generation
requests in-flight to the ones in progress without stopping the generation process. Based on accelerator
specifications, generation engines should achieve the maximum generation throughput at very large
batch sizes of several thousand sequences 2. In practice, at very large batch sizes, the per-sequence
latency can become prohibitively high, KV cache may grow too large to fit in accelerator memory, or
the request queue management overheads can dominate.

Zhttps://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

89

90
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
17
118

Algorithm 1 Conventional RL

Require: Current policy 7.
Require: Optimizer state opt_state.
Require: Number of optimizer steps per RL step G.
Require: Training batch size B.
while True do
// generation > RL step starts
R > Initialize behavior policy p
sequences <— generate BG sequences from p
batches < split sequences in G batches of size B
// training
lag <+ 0 > lag between p and 7
for batch in batches do
T, opt_state <— optimizer_step(m, opt_state, batch)
lag + lag + 1
end for > RL step ends
end while

3 The learning speed ceiling of Conventional RL

Reinforcement learning for LLMs can be slow when the LLM is trained to generate long sequences of
tokens, e.g., long-form reasoning to solve mathematical problems, because each generation can take
up to several minutes. Here we explain why it is challenging to effectively scale up long sequence
RL, i.e. to effectively use a larger number of accelerators N to make average reward R(t) at time ¢
grow faster. As a mathematical function, one can view R(t) as a composition of the functions R(.S)
and S(t), where S is the number of samples the RL learner will have processed by time ¢. A faster
RL learner will have a higher learning speed % which we can express as the product of learning
effectiveness and learning throughput as follows:

dR dR ds
G~ 48, o ar @
~—~ ~— ~—
speed effectiveness throughput

The Conventional RL algorithm from Algorithm 1 has the highest % when it is fully on-policy, i.e.,

when one performs only one optimizer step per each RL step. Yet the throughput % in the pure
on-policy case can be low because the accelerators will be working on at most batch size B samples
at a time. Increasing the number of accelerators N will yield diminishing returns in increasing %,
because the throughput of each accelerator will decrease when the number of samples per accelerator
% goes below the optimal range (Figure 2c). For example, see Figure 2a for inference throughput for
a 7B Qwen model on a single H100 GPU. One can see that the throughput increases almost linearly
up to the generation batch size of 128. Hence, e.g. using 2N GPUs to generate 32 samples will not
be much faster than using N GPUs to generate 64. Furthermore, as the LLM finishes the shorter
generations, there will be fewer longer generations still in progress, see Figure 2b for an illustration.
Hence, to make good use of the hardware, one should use each accelerator to generate many times
more sequences than the optimal batch size.

Commonly, to increase the throughput, most practitioners perform multiple G > 1 optimizer steps
per RL step, which entails generating BG rollouts at each generation stage. This way, one can
often achieve a higher throughput % by increasing N up to a point when BTG becomes too small.
It is, however, known from the literature that going too off-policy by using a high value of G will
eventually decrease the learning effectiveness j—ﬁ [Noukhovitch et al., 2024]. Clearly, at some points,
the rollouts from the old policy become too stale and no longer useful as the source of learning signal
for the current policy. Hence, given a fixed optimizer batch size B, one scales up Conventional RL
by increasing G and N until the product % % no longer improves, and the hard ceiling of % for
the given number of accelerators NN is achieved.

119

120
121
122
123
124

125
126

127
128
129
130
131
132
133
134
135

137

138
139

Algorithm 2 PipelineRL

Require: Current policy weights 7.
Require: Generation batch size H.
Require: Training sequence queue Qyrqin.
1: function ACTOR(7)
2: sequences in progress Sprog + []
3 while True do
4: Stin, Sprog < pop finished sequences from Sy,;.¢
5: Qtrain-put(Sftin) > Send finished seqs to the trainer
6.
7
8

if len(Sproq < H) then
add H — len(Sprog) prompts to Sproq

: end if
9: if Trainer requests weight update then > In-flight check for new weights
10: 7 < receive_weight_update()
11: W > 0 lag between 7 and
12: end if
13: Sprog < generate next tokens with p

14: end while

15: end function

16: function TRAINER(7, opt_state)
17: batch + []

18: while True do

19: batch «+— get B sequences from Q¢,qin

20: ESS « get_effective_sample_size(mw, batch)

21: if ESS < threshold then

22: sleep(until Q4,4 contains on-policy data for 7)

23: continue

24: end if

25: T, opt_state <— optimizer_step(r, opt_state, batch)

26: request_actor_weight_update(r) > In-flight weight update

27: end while
28: end function

4 Pushing the learning speed ceiling with PipelineRL

The Pipeline RL method differs from Conventional RL in two aspects: (1) running training and
generation in parallel asynchronously, and (2) updating the generation weights after every optimizer
step in-flight, i.e. without stopping the sequence generation. Algorithm 2 provides an abstracted
formal description of PipelineRL in terms of two concurrent Actor and Trainer processes that
communicate via a sample queue and a high-bandwidth weight transfer network.

The effectiveness-throughput trade-off for PipelineRL is the opposite of that of Conventional RL.
Namely, adding more accelerators to a PipelineRL setup leads to a linear increase of %, but may

eventually harm %. In Figure 3a, we illustrate how PipelineRL produces mixed-policy sequences
in which earlier tokens are more off-policy than the recent ones. Doubling /N will double the lag of
the earliest tokens as well as the average lag in the PipelineRL batch. Notably, the off-policyness
profile is different for PipelineRL and its conventional counterpart. Taking the average token lag as a
proxy for off-policyness, in PipelineRL all batches are equally off-policy, whereas for Conventional
RL later batches become progressively more off-policy. This difference makes it hard to analytically
reason about the % improvement that PipelineRL can bring over the baseline, because % can
only be estimated empirically by running RL experiments. In supplementary material, we present
our simulation of how, for the same maximum lag ¢,,., PipelineRL can learn 1.5x faster than
Conventional RL. The empirical gains can be even larger, depending on how frequently one can make
dR

weight updates without hurting the learning effectiveness 7.

Configuring PipelineRL vs Conventional RL. For a fixed batch size B and a number of accelera-
tors IV, one can configure Conventional RL by choosing the number of optimizer steps G, trading off

140
141
142
143
144
145
146
147
148
149
150
151
152
153

154
155
156
157
158
159
160

™ = Maximum Throughput
=1 | \for N accelerators
‘ ‘ ‘ ‘ ‘ B PipelineRL achieves
Bl * higher learning speed
ol ?5/ | * dR/dt = dR/dS dS/dt than
Tokenlag % — s Conventional RL PipelineRL
FEmE £ See W =
& ‘ ‘ l ‘ g Py T training accelerators
o = \ N Conventional RL
2 % dRut=as f—]
— — c N
= G opt t
ol O ‘ & ‘ dRidt=ay optimizer steps
| [L1
— dRidt=a
a) Conventional RL G=3 b) PipelineRL N accelerators c) PipelineRL 2N accelerators Learning Effectiveness (dR/dS)

(a) Token lags. (b) Pareto curves.

Figure 3: (a) For Conventional RL, the token lag increases with the number of optimizer steps. In
PipelineRL with N accelerators, the token lag varies throughout the sequence, where earlier tokens
have higher lag. The lag structure in each batch is the same. Doubling the PipelineRL accelerators,
everything else constant, double the lag of early tokens. (b) Schematic illustration of PipelineRL’s
throughput-effectiveness trade-off as a function of training accelerators 7" and of Conventional RL as

a function of lag GG. PipelineRL achieves a higher % % for the same number V of accelerators.

)

POST /request_weight_update
Weight T
) —
POST /init_process_group) update Imﬁmba_nd
A ---> Streaming
A
— HTTP
/data/0/0 [~~~ ¥
Inference Inference Ref Ref) trainer 0
weights weights weights weights '
'
Ref LLMO RefLLM1 | / D Weights
'
'
POST v1/chat/completion POST V1/chat/completion h @ Stream
'
! O Process

A
'
actor0 [-#| /actor/0/0 |--» preprocessO | ---M /qata/o/N - - » G
trainer N

Figure 4: The three pipeline stages of PipelineRL implementation: actor, preprocessor and trainer.
Earlier stages stream the data to the latter ones using Redis as the streaming broker.

the learning effectiveness for the throughput. The PipelineRL configuration can likewise be mostly
reduced to a single parameter, namely the number of training accelerators 1" out of [V available ones.
Setting a higher 7" will almost linearly decrease the time %, that is needed for the trainer to process
B sequences and perform an optimizer step. T effectively determines the optimal generation batch
size H to be used at all N — T accelerators. Using a lower H leads to a lower maximum generation
latency t4.,,, which consequently reduces the maximum lag gia0 = [tgen/tirain |- Hence, it makes
sense to use the smallest H that suffices to produce enough training data. Consequently, the maximum
lag gmas for PipelineRL grows with the number of training accelerators T, as higher T requires a
higher H and leads to a lower %444, and a higher ?4,,. On the contrary, the sample throughput of
PipelineRL grows with 7" up to a point when N — 7" accelerators cannot generate enough data for the
over-powered trainer. We recommend avoiding extreme configurations with 7" too high (very high lag
(3) and T too low (bad hardware utilization, one can just as well scale down the compute). Figure 3b
visualizes how different configurations of PipelineRL and Conventional RL achieve different learning

effectiveness 3—? and throughput %, with PipelineRL setups reaching higher 4% = 45 4B jocyryes.

dt dt dS

PipelineRL Safety Mechanism While in-flight weight updates can be useful, on the flip side, the
mixed-policy sequences generated by the in-flight behavior policy can present a risk to the stability
of the training process, in particular because after an in-flight weight update, the generation server
continues with the stale key and value vectors that were computed by a prior version of the model. To
remediate these risks, we monitor the Effective Sample Size (ESS) of each training batch. Once ESS
drops below a certain threshold, we stop updating the current policy until it accumulates a full batch
of purely on-policy sequences, see lines 21-23 in Algorithm 2.

161
162

164
165
166
167
168
169
170
171
172

173

174
175
176
177
178
179

180
181
182
183

ConvRL G=4 ConvRL G=4
06 PipelineRL 2/ -t PipelineRL

02 — —
02 - -
0 50 100 150 200 250 300 00 0 - 50 100 150 200 250 300
Time (minute) Time (minutes)
(a) Learning speed (dR/dt) (b) System throughput (dS/dt)

Figure 5: Learning speed and throughput. PipelineRL achieves higher throughput and learning
speed than Conventional RL with G=4 optimizer steps per each RL step.

1ze

0.7 1.000

ConvRL G=1 EoanL G=4

(2] [L d A
0.6 PR \ 2 LA
: R et 7 Sl i e - £
» V- &0.990
@ 0.5 h'~_ & o
5 ‘ 5
X 0.4 £ 0,980
» w
2 _ o
g 0.3 8 1,000 ConvRL G=8 PipelineRL
= ConvRL G=1 n
D 0.2 o
ConvRL G=4 g
0.1 —— ConvRL G=8 3 0.990
PipelineRL 2
0.0]
00 02 04 06 08 1009, o5 1000 05 10
Samples e Samples ¢ Samples ¢
(a) Reward R after training on .S samples (b) ESS after S samples

Figure 6: (a) PipelineRL attains the same average rewards for each number of training samples as
pure on-policy G = 1 Conventional RL (b) PipelineRL stays mostly on-policy.

Architecture and Implementation Details Our PipelineRL implementation concurrently runs
many distributed VLLM generation engines and DeepSpeed training workers in a three stage
pipeline that we describe in Figure 4. The middle Preprocessor stage that we omitted from Al-
gorithm 2 for simplicity, computes reference model log-probabilities often used in Reinforce-
ment Learning from Human Feedback [Ouyang et al., 2022]. The PipelineRL architecture is
highly modular — any generation software that supports the three HTTP API endpoints that
PipelineRL requires can be easily integrated in the future. The three APIs are the popular
/v1/chat/completions for generation, /init_process_group for creating the weight trans-
fer process group, and /request_weight_update for initiating the in-flight weight update. Key
optimizations in PipelineRL include online sequence packing for fast training and using ring buffers
to minimize the lag when earlier pipeline stages run faster than the later ones, e.g. when the trainer
makes a checkpoint.

S Experiment

For the experimental validation of PipelineRL’s high learning effectiveness % and throughput %,

we have chosen the challenging task of training a base (i.e. not instruction-tuned) model to perform
long-form reasoning to solve mathematical problems. We find this task to be a great testbed for
PipelineRL because the policy undergoes rapid changes over the course of training. In particular,
the length of generated sequences grows dramatically [Guo et al., 2025], making it essential to stay
on-policy for effective learning.

Experimental setup. For each experiment, we train the Qwen 2.5 base model [Yang et al., 2024]
with 7B parameters on 17K math problems from the OpenReasoner Zero dataset [Hu et al., 2025] for
1000 optimizer steps with the batch size B = 1024. We use Adam optimizer [Kingma, 2014] with
the learning rate le-6. We run the PipelineRL experiments on 4 DGX-H100 nodes, using 16 GPUs

184
185
186
187
188
189

191

192
193
194
195
196
197

198
199
200
201
202
203
204

205

207
208
209

210
211
212
213
214
215
216
217
218
219
220
221
222

for generation at batch size H = 64 and 16 GPUs for training. We tweak PipelineRL to simulate
Conventional RL by accumulating and shuffling a buffer of BG samples at the Preprocessor stage
before the G optimizer steps of each RL step start. To estimate the Conventional RL throughput, we
use 4 nodes for generation at batch size H = 128 and 2 nodes for training, and then add a correction
for training on 2x fewer GPUs than what an efficient Conventional RL implementation with a quick
generation-training transition could use. We give reward 1 to any generated sequence with the correct
answer and 0 otherwise. We train every model with importance weighted REINFORCE as described
in Section 2 and clamp the importance weights to 5.

Table 1: Success rate of models trained with PipelineRL compared to results in the literature.

Method Math 500 AIME24 #samples (-10°) training data
Qwen 2.5 base 7b 31.6 33 - -
SimpleRL Zero 78.2 200 0.82 Math Level 3-5

[Zeng et al., 2025]
OpenReasoner Zero

[Hu et al., 2025] ~ 82.0 ~ 20.0 8.2 OpenReasoner
PipelineRL (batch size 1024) 81 17.5 2.0 OpenReasoner
PipelineRL (batch size 4096) 84.6 19.8 6.2 OpenReasoner

PipelineRL learns faster due to higher throughput. We compare the learning speed of PipelineRL
to that of Conventional RL with G = 4 optimizer steps, as that was the maximum G for which
Conventional RL training was stable. PipelineRL achieves the same reward values approximately
~ 2z faster than this baseline (Figure 5a) due to ~ 2z faster sample throughput (Figure 5b). The
main cause of the throughput increase is that GPU utilization for G = 4 experiment on 32 GPUs is
relatively low for each GPU when it has to generate just 4096 / 32 = 256 sequences (see Figure 2b).

PipelineRL learns effectively. To better measure learning effectiveness % of PipelineRL, we also
run Conventional RL experiments with G = 1 and G = 8 optimizer steps. Notably, the R(S) curves
are indistinguishable for all compared methods up to a point when high G runs diverge, likely because
of going too far off-policy. This result validates that PipelineRL’s signature in-flight weight updates
do no harm to the sequence generation process. For the PipelineRL run the ESS safety mechanism
was never triggered, but in our preliminary experiments, it was sometimes activated and prevented
the policy blow-up.

PipelineRL matches comparable results on reasoning tasks. Table 1 compares the test perfor-
mance of PipelineRL to similar experiments that start training from the same Qwen 2.5 7B model. In
this experiment we used batch size 4096 because we found it leads to a higher performance. On the
math reasoning benchmarks MATHS500 [Hendrycks et al., 2021] and AIME2024 [Li et al., 2024].
PipelineRL matches or exceeds the performance of Open Reasoner Zero and SimpleRL Zero.

PipelineRL stays more on-policy. To gain a better understanding of which training methods stay
more on-policy, we plot the evolution of the ESS on-policyness measure throughout the training.
Figure 6b shows that for a purely on-policy run with G = 1, ESS stays close to 1.> For G = 8,
ESS generally decreases with the lag between the behavior and the current policy. We note that
the magnitude of the ESS drop varies throughout training for G = 4 and G = 8 runs. The ESS
of PipelineRL follows a different pattern. It stays close to ESS of G = 1 gold-standard run with
some large drops when the current policy quickly shifts and the variance of the importance weights
increases. These drops are the reason why we recommend using the ESS-based safety mechanism for
PipelineRL. Notably, even though the maximum lag g,,,4, in our PipelineRL experiment was around
8 on average, Figure 6b shows that PipelineRL’s ESS curves look more like that of G = 1 on-policy
run than that of G = 8 more off-policy experiment. We believe it is due to the lag being lower than
JImae fOr a majority of tokens, since the average generated sequence length in our experiments ranged
between 1K and 2K tokens, well below the 8K maximum.

3The reason for ESS falling below 0.999 for G = 1 is the consistent small difference between the log-
probabilities produced by vLLM and Huggingface Transformers implementation of Qwen 2.5 model.

223

224
225
226
227
228
229

231
232
233
234
235

236
237
238

240

241

242
243
244
245
246
247

248
249
250
251

252
253
254

256
257
258
259
260

261

262
263
264

265

267
268

269
270

271
272

6 Related work

Asynchronous and high-throughput RL has been extensively studied. IMPALA [Espeholt et al.,
2018] decoupled acting from learning to maximize GPU utilization. Like PipelineRL, IMPALA used
truncated importance weights to estimate the value function from off-policy samples. Furthermore,
IMPALA kept the policy weights constant for the length of an episode. SeedRL [Espeholt et al.,
2019] proposed to update the model’s parameters during an episode, resulting in trajectories where
different actions were sampled by different policies. OpenAl Five [OpenAl et al., 2019] was trained
using asynchronous PPO to achieve superhuman performance on Dota 2. These previous works
were focused on RL for video games. Closer to our work, [Noukhovitch et al., 2024] explores
asynchronous RL for LLMs. In their approach, data generation for the next G optimizer steps
is synchronized with training on the previous G optimizer steps, leading to higher off-policyness
than Conventional RL, unlike PipelineRL. The same study shows that offline methods such as
DPO [Rafailov et al., 2023] can better tolerate off-policyness.

There exist several other scalable open-source RL implementations. veRL [Sheng et al., 2024]
implements Conventional RL efficiently by using a sophisticated hybrid generation-training engine
that supports quick transitions between training and generation on the same GPUs. We believe
veRL’s throughput would be similar to our Conventional RL baseline. Without the hybrid engine, in
OpenRLHF [Hu et al., 2024] training GPUs idle during generation and vice-versa.

7 Conclusion and Discussion

We have shown how in-flight weight updates help PipelineRL break the learning speed ceiling of the
conventional two-stage RL approach. We believe that for long sequence generation, in particular, this
speedup would be very difficult to attain with another asynchronous RL approach, as synchronous
waits for generation to finish would hurt the throughput and/or learning effectiveness. The stale
KV-cache risk that in-flight updates introduce can be mitigated by recomputing the KV cache after
each update, which can be done fast at a high GPU utilization, but will still lower the throughput.

We believe PipelineRL may be particular useful for training LLMs to excel at agentic behaviors that
involve multiple LLM generations interspersed with environment interactions. Another promising
direction for future work is to study when the recent low lag tokens in PipelineRL are helpful, and on
the contrary, where PipelineRL’s constantly high lag of early tokens in long sequences hurts.

Limitations PipelineRL will only bring a limited throughput increase over Conventional RL if the
LLM is asked to generate the exact same number of tokens for the same prompt. In this unlikely
scenario, Conventional RL will be likewise capable of maintaining a constant generation batch size.
The PipelineRL’s stable average token lag and the low lag of recent tokens in each batch may, however,
still affect the learning effectiveness. The PipelineRL throughput advantages will likewise decrease
in setups with scarce or extensive compute resources. In the former case, each GPU will get enough
generation tasks for the GPU utilization to be high. In the latter, the learning speed will be bounded
not by the hardware utilization but by the best possible generation latency and by the environment
feedback delay.

References

Arash Ahrpadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International conference on machine learning, pages
1407-1416. PMLR, 2018.

Lasse Espeholt, Raphaél Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scalable
and efficient deep-rl with accelerated central inference. arXiv preprint arXiv:1910.06591, 2019.

Rasool Fakoor, Pratik Chaudhari, and Alexander J Smola. P3o: Policy-on policy-off policy optimiza-
tion. In Uncertainty in artificial intelligence, pages 1017-1027. PMLR, 2020.

273
274
275

276
277
278

279
280
281

282
283
284

285
286

287
288

289
290
291
292

293
294
295

297
298

299
300
301

303
304
305
306
307

308
309
310
311

312
313
314

315
316
317
318

320
321

n

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. OpenRLHF:
An Easy-to-use, Scalable and High-performance RLHF Framework, November 2024. URL
http://arxiv.org/abs/2405.11143. arXiv:2405.11143 [cs].

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Augustine Kong. A note on importance sampling using standardized weights. University of Chicago,
Dept. of Statistics, Tech. Rep, 348:14, 1992.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
Serving with PagedAttention, September 2023. URL http://arxiv.org/abs/2309.06180.
arXiv:2309.06180 [cs].

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
aidmaths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal, and
Aaron Courville. Asynchronous rlhf: Faster and more efficient off-policy rl for language models.
arXiv preprint arXiv:2410.18252, 2024.

OpenAl, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal J6zefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan
Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning, 2019. URL
https://arxiv.org/abs/1912.06680.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Nicolas Le Roux, Marc G Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves,
Alex Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sindor Toth, and Sam Work. Ta-
pered off-policy reinforce: Stable and efficient reinforcement learning for llms. arXiv preprint
arXiv:2503.14286, 2025.

Matthew Schlegel, Wesley Chung, Daniel Graves, Jian Qian, and Martha White. Importance
resampling for off-policy prediction. Advances in Neural Information Processing Systems, 32,
2019.

10

http://arxiv.org/abs/2405.11143
http://arxiv.org/abs/2309.06180
https://arxiv.org/abs/1912.06680

322
323

324
325
326

327
328
329

330
331
332

333
334

335
336
337

338
339
340

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv:2409.19256, 2024.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

11

341

342

343
344

345

346
347
348
349

350

351
352
353
354
355
356
357
358
359

360

361

362

363

364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

391

392
393

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper, we propose a new asynchronous system for RL training. Our
main contribution is that our system is efficient and stable, as explained in both the abstract
and Section 1 (Introduction). Throughout the paper, our goal is to provide empirical evidence
and theoretical justification to corroborate this contribution.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitations of PipelineRL in Section 7.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

12

394

395
396
397

398

399

400
401

402

403
404
405
406
407

408

410
411
412

413

414
415
416
417

418

419

420
421
422

423
424

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

Answer: [Yes]

Justification: We do not have theorems or conjectures in the paper. However, we justify
our design decisions through theoretical explanations, where all the details, including the
assumptions, are clearly specified.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the "Experimental Setup" section (Section 5), we provide the details required
to reproduce our experiments. We also plan to release our codebase (upon acceptance) that
includes all the configurations we used for our experiments (an anonymized version of our
codebase is provided along with the submission).

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

13

448
449

450

451
452
453

454

455
456

457

458

459
460

461
462
463
464

465
466
467

469

470
471
472

473
474

475
476

477

478
479
480

481

482
483

484

485

486
487

488

490

491
492

493

494
495

497

498

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets used in the paper are already publicly available. We plan to
release our codebase with detailed documentations upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This is thoroughly discussed in the "Experimental Setup" section (Section 5)
and in our codebase.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experiments are too costly to repeat multiple times for measuring error
bars and statistical significance metrics. However, we observed that throughput (the most
important metric in this study) remains stable and does not vary dramatically across different
runs.

Guidelines:

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

499

500
501
502

503
504
505

506
507

508

509
510

511
512
513

514
515
516

517
518
519

520
521
522

523

524
525
526

527

528

529
530

531

533
534
535

536

537
538

539

540
541

542

543

544
545

546
547

548

549
550

8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All our experiments were conducted on at most 4 DGX-H100 nodes (8 GPUs
per node). We also thoroughly explain the runtime details including the throughput and
other efficiency measures.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics guidelines. In the paper, we use publicly
available datasets that are well-known in the community.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

15

https://neurips.cc/public/EthicsGuidelines

551

552
553

554

555

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

577

578
579
580

581

582
583
584
585

586

587

588
589
590
591

592
593
594
595
596

597

598
599
600

601

602
603

11.

12.

Answer: [NA]

Justification: PipelineRL is a general tool to speed up LLM training. It does not have
positive or negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not introduce new data or models. Nonetheless, we plan to
release our codebase — along with detailed instructions for using our reinforcement learning
training method — under the Apache 2.0 License to promote fair and open access for the
community.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The main artifacts used in this paper include the OpenReasoner Zero
dataset [Hu et al., 2025], Qwen-2.5 model checkpoints [Yang et al., 2024], both properly

16

604
605

606

607
608

609
610

611
612

614
615
616
617

618
619
620
621

622

624

625

626
627

629

630

631
632
633
634
635
636
637

638

639
640
641

642

643

644

645

646

647
648
649
650
651
652

653
654

13.

14.

15.

attributed through citation. Other open-source libraries that we used in our implementation
are listed as dependencies in the configuration files of our codebase.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our submission is accompanied by the source code of our implementation,
which includes a README with detailed documentation and pre-defined configuration files
to facilitate the reproduction of our experiments.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No experiments involving human participants were conducted in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

17

paperswithcode.com/datasets

655
656
657
658

659

660

661

662

663

664
665
666
667
668
669
670
671

672

673
674
675
676

677

678
679
680

681

682
683

685

16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No experiments involving human participants were conducted in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our case study in this paper focuses on fine-tuning LLMs. Details about the
models used, relevant hyperparameters, and hardware specifications are provided in the
"Experimental Setup" section (Section 5).

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Reinforcement Learning for Large Language Models
	Conventional RL
	Efficient Sequence Generation with LLMs

	The learning speed ceiling of Conventional RL
	Pushing the learning speed ceiling with PipelineRL
	Experiment
	Related work
	Conclusion and Discussion

