
PipelineRL: Faster On-policy Reinforcement Learning
for Long Sequence Generation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Reinforcement Learning (RL) is increasingly utilized to enhance the reasoning1

capabilities of Large Language Models (LLMs). However, effectively scaling2

these RL methods presents significant challenges, primarily due to the difficulty in3

maintaining high AI accelerator utilization without generating stale, off-policy data4

that harms common RL algorithms. This paper introduces PipelineRL, an approach5

designed to achieve a superior trade-off between hardware efficiency and data6

on-policyness for LLM training. PipelineRL employs concurrent asynchronous7

data generation and model training, distinguished by the novel in-flight weight8

updates. This mechanism allows the LLM generation engine to receive updated9

model weights with minimal interruption during the generation of token sequences,10

thereby maximizing both the accelerator utilization and the freshness of training11

data. Experiments conducted on long-form reasoning tasks using 32 H100 GPUs12

demonstrate that PipelineRL achieves approximately ∼ 2x faster learning com-13

pared to conventional RL baselines while maintaining highly on-policy training14

data. A scalable and modular open-source implementation of PipelineRL is also15

released as a key contribution.16

1 Introduction17

Reinforcement Learning (RL) has recently become a popular tool to enhance the reasoning and18

agentic capabilities of Large Language Models (LLMs) [Guo et al., 2025, Wei et al., 2025]. While19

RL expands the range of training signals one can use to enhance LLMs, this advanced learning20

paradigm comes with extra challenges, including being particularly hard to effectively scale to more21

compute. The scaling difficulty arises from the fact that AI accelerators (like GPUs and TPUs) deliver22

high throughput only when generating sequences at a large batch size. Hence, naively adding more23

accelerators to an on-policy RL setup brings increasingly diminishing learning speed improvements24

because the per-accelerator throughput decreases, while the overall generation latency reaches a25

plateau. The common workaround of generating training data for multiple optimizer steps results26

in a lag between the currently trained policy and the behavior policy that generates the training27

data. The lagging off-policy data is known to harm the commonly used effective RL algorithms28

[Noukhovitch et al., 2024], including, REINFORCE [Williams, 1992], PPO [Schulman et al., 2017]29

and GRPO [Shao et al., 2024, Guo et al., 2025], because these algorithms were designed to be trained30

with on-policy or near on-policy data, with the behavior and current policy being very close.31

In this paper, we present the PipelineRL approach to RL for LLMs that achieves a better trade-off32

between hardware utilization and on-policy learning. Like prior work on efficient RL [Espeholt et al.,33

2018, 2019], PipelineRL features concurrent asynchronous data generation and training. PipelineRL34

adapts prior asychronous RL ideas to long-sequence generation with LLMs by introducing in-flight35

weight updates. As shown in Figure 1, during an in-flight weight update the LLM generation engine36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Figure 1: a) Conventional RL alternates between using all the GPUs for generation and then training.
b) PipelineRL runs generation and training concurrently, always using the freshest model weights for
generations thanks to the in-flight weight updates.

only briefly pauses to receive the model weights via a high-speed inter-accelerator network, and37

then proceeds to continue the generation of in-progress token sequences. In-flight updates eliminate38

the wasteful waits for the last sequence to finish, ensure high accelerator utilization at a constant39

generation batch size, and maximize the policy adherence of the recently generated tokens.40

Our experiments on RL training for long-form reasoning show that on 4 DGX-H100 nodes, PipelineRL41

learns ∼ 2x faster than the comparable conventional RL baseline. We also observe that PipelineRL42

training data stays highly on-policy, and that models trained by PipelineRL perform comparably to43

similarly trained models from the literature. Lastly, a key contribution of this work is a scalable and44

modular PipelineRL implementation that we release as open-source software.145

2 Background46

2.1 Reinforcement Learning for Large Language Models47

Reinforcement learning (RL) is commonly used to train Large Language Models (LLM) to respect48

human preferences [Ouyang et al., 2022] for the LLM’s outputs or to perform long-form reasoning49

to solve problems [Guo et al., 2025]. One can view LLM’s weights as parameterizing a multi-step50

policy that assigns probabilities to the next token yi given the prompt x and the previously generated51

tokens y<i:52

π(y|x) =
n∏

i=1

π(yi|x, y<i). (1)

Recent works have shown that variations of basic policy gradient algorithms such as REIN-53

FORCE [Williams, 1992] are as effective for training LLMs as more sophisticated alternatives [Ah-54

madian et al., 2024, Roux et al., 2025]. Given a set of prompts x1, . . . , xm, REINFORCE maximizes55

the expected return J(π) of the policy π by following an estimate ∇̃J(π) of the policy gradient56

∇J(π):57

J(π) =
1

m

m∑
j=1

[
Ey∼π(·|xj)R(xj , y)

]
(2)

∇J(π) = 1

m

m∑
j=1

[
Ey∼π(·|xj)∇ log π(y | xj)R(xj , y)

]
(3)

∇̃J(π) = 1

mK

m∑
j=1

K∑
k=1

∇ log π(y | xj) (R(xj , yk)− vk(xj)) , (4)

where vk(xj) is the control variate term that reduces the estimate’s variance, and K is the number of58

samples per prompt x. In this study, we use the empirical mean vk(xj) =
∑K

k=1 R(xj , yk)/K as the59

control variate.60

In most practical RL setups, the current policy π will often slightly differ from the behavior policy µ61

that generates yk. This difference is usually handled by either a trust region constraint [Schulman62

1The code is available online under Apache 2 license, we will add the link to the camera-ready version

2

(a) Throughput vs batch size. (b) Inference batch size vs time. (c) Time vs Throughput.

Figure 2: Analysis of generation times and throughput. We perform all measurements using a
vLLM engine serving a Qwen 2.5 7B model on a H100 GPU. (a) Short prompt generation throughput
increases up to batch size 256. (b) Generation batch size gradually decreases to suboptimal values as
the engine finishes sequences (c) Generation time reaches a plateau and throughput decreases as the
number of sequences per GPU goes down. We report the average of 5 runs and 95% CI.

et al., 2017] or using Importance Sampling (IS). In practice, the importance weights are truncated to63

reduce the variance of the estimator [Munos et al., 2016, Espeholt et al., 2018]:64

∇̃ISJ(π) =
1

mK
min

(
c,
π(y | x)
µ(y | x)

)
(R(xj , yk)− vk(xj))∇ log π(y | x). (5)

The Effective Sample Size (ESS) [Kong, 1992] is commonly used to quantify the quality of importance65

sampling estimators in RL [Schlegel et al., 2019, Fakoor et al., 2020]. When using off-policy RL,66

ESS measures how many samples from the current policy π would yield equivalent performance to67

weighted samples from the behavior policy µ. The (normalized) ESS is defined as:68

ESS =

(
N∑
i=1

wi

)2

/N

N∑
i=1

w2
i (6)

where wi are importance weights for a sample of size N . This metric effectively ranges between 069

and 1 when normalized, with values closer to 1 indicating more efficient sampling, e.g. the ESS of70

on-policy data is exactly 1. Small ESS will result in a high variance REINFORCE gradient estimate71

and might destabilize the learning process.72

2.2 Conventional RL73

Most RL implementations alternate between generating sequences and training the policy on the74

generated data. We refer to this approach as Conventional RL and describe it in detail in Algorithm 1.75

When training involves doing G > 1 optimizer steps, the current policy π gets ahead of the behavior76

policy µ that was used to generate the data. We adopt the term lag to refer to the number of optimizer77

steps between µ and π.78

2.3 Efficient Sequence Generation with LLMs79

Transformer models generate sequences one token at a time, left-to-right. To make this process80

efficient, advanced generation (inference) engines such as vLLM and SGLang process a batch81

of sequences at a time, while carefully managing their past keys and values in a paged structure82

called KV cache [Kwon et al., 2023]. All modern generation engines support adding new generation83

requests in-flight to the ones in progress without stopping the generation process. Based on accelerator84

specifications, generation engines should achieve the maximum generation throughput at very large85

batch sizes of several thousand sequences 2. In practice, at very large batch sizes, the per-sequence86

latency can become prohibitively high, KV cache may grow too large to fit in accelerator memory, or87

the request queue management overheads can dominate.88

2https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html

3

Algorithm 1 Conventional RL

Require: Current policy π.
Require: Optimizer state opt_state.
Require: Number of optimizer steps per RL step G.
Require: Training batch size B.

while True do
// generation ▷ RL step starts
µ← π ▷ Initialize behavior policy µ
sequences← generate BG sequences from µ
batches← split sequences in G batches of size B
// training
lag← 0 ▷ lag between µ and π
for batch in batches do

π, opt_state← optimizer_step(π, opt_state, batch)
lag← lag + 1

end for ▷ RL step ends
end while

3 The learning speed ceiling of Conventional RL89

Reinforcement learning for LLMs can be slow when the LLM is trained to generate long sequences of90

tokens, e.g., long-form reasoning to solve mathematical problems, because each generation can take91

up to several minutes. Here we explain why it is challenging to effectively scale up long sequence92

RL, i.e. to effectively use a larger number of accelerators N to make average reward R(t) at time t93

grow faster. As a mathematical function, one can view R(t) as a composition of the functions R(S)94

and S(t), where S is the number of samples the RL learner will have processed by time t. A faster95

RL learner will have a higher learning speed dR
dt which we can express as the product of learning96

effectiveness and learning throughput as follows:97

dR

dt︸︷︷︸
speed

=
dR

dS︸︷︷︸
effectiveness

× dS

dt︸︷︷︸
throughput

. (7)

The Conventional RL algorithm from Algorithm 1 has the highest dR
dS when it is fully on-policy, i.e.,98

when one performs only one optimizer step per each RL step. Yet the throughput dS
dt in the pure99

on-policy case can be low because the accelerators will be working on at most batch size B samples100

at a time. Increasing the number of accelerators N will yield diminishing returns in increasing dS
dt ,101

because the throughput of each accelerator will decrease when the number of samples per accelerator102
B
N goes below the optimal range (Figure 2c). For example, see Figure 2a for inference throughput for103

a 7B Qwen model on a single H100 GPU. One can see that the throughput increases almost linearly104

up to the generation batch size of 128. Hence, e.g. using 2N GPUs to generate 32 samples will not105

be much faster than using N GPUs to generate 64. Furthermore, as the LLM finishes the shorter106

generations, there will be fewer longer generations still in progress, see Figure 2b for an illustration.107

Hence, to make good use of the hardware, one should use each accelerator to generate many times108

more sequences than the optimal batch size.109

Commonly, to increase the throughput, most practitioners perform multiple G > 1 optimizer steps110

per RL step, which entails generating BG rollouts at each generation stage. This way, one can111

often achieve a higher throughput dS
dt by increasing N up to a point when BG

N becomes too small.112

It is, however, known from the literature that going too off-policy by using a high value of G will113

eventually decrease the learning effectiveness dR
dN [Noukhovitch et al., 2024]. Clearly, at some points,114

the rollouts from the old policy become too stale and no longer useful as the source of learning signal115

for the current policy. Hence, given a fixed optimizer batch size B, one scales up Conventional RL116

by increasing G and N until the product dR
dS

dS
dt no longer improves, and the hard ceiling of dR

dt for117

the given number of accelerators N is achieved.118

4

Algorithm 2 PipelineRL

Require: Current policy weights π.
Require: Generation batch size H .
Require: Training sequence queue Qtrain.

1: function ACTOR(π)
2: sequences in progress Sprog ← []
3: while True do
4: Sfin, Sprog ← pop finished sequences from Sprog

5: Qtrain.put(Sfin) ▷ Send finished seqs to the trainer
6: if len(Sprog < H) then
7: add H − len(Sprog) prompts to Sprog

8: end if
9: if Trainer requests weight update then ▷ In-flight check for new weights

10: π← receive_weight_update()
11: µ← π ▷ 0 lag between π and µ
12: end if
13: Sprog ← generate next tokens with µ
14: end while
15: end function
16: function TRAINER(π, opt_state)
17: batch← []
18: while True do
19: batch← get B sequences from Qtrain

20: ESS ← get_effective_sample_size(π, batch)
21: if ESS < threshold then
22: sleep(until Qtrain contains on-policy data for π)
23: continue
24: end if
25: π, opt_state← optimizer_step(π, opt_state, batch)
26: request_actor_weight_update(π) ▷ In-flight weight update
27: end while
28: end function

4 Pushing the learning speed ceiling with PipelineRL119

The Pipeline RL method differs from Conventional RL in two aspects: (1) running training and120

generation in parallel asynchronously, and (2) updating the generation weights after every optimizer121

step in-flight, i.e. without stopping the sequence generation. Algorithm 2 provides an abstracted122

formal description of PipelineRL in terms of two concurrent Actor and Trainer processes that123

communicate via a sample queue and a high-bandwidth weight transfer network.124

The effectiveness-throughput trade-off for PipelineRL is the opposite of that of Conventional RL.125

Namely, adding more accelerators to a PipelineRL setup leads to a linear increase of dS
dt , but may126

eventually harm dR
dS . In Figure 3a, we illustrate how PipelineRL produces mixed-policy sequences127

in which earlier tokens are more off-policy than the recent ones. Doubling N will double the lag of128

the earliest tokens as well as the average lag in the PipelineRL batch. Notably, the off-policyness129

profile is different for PipelineRL and its conventional counterpart. Taking the average token lag as a130

proxy for off-policyness, in PipelineRL all batches are equally off-policy, whereas for Conventional131

RL later batches become progressively more off-policy. This difference makes it hard to analytically132

reason about the dR
dt improvement that PipelineRL can bring over the baseline, because dR

dS can133

only be estimated empirically by running RL experiments. In supplementary material, we present134

our simulation of how, for the same maximum lag gmax PipelineRL can learn 1.5x faster than135

Conventional RL. The empirical gains can be even larger, depending on how frequently one can make136

weight updates without hurting the learning effectiveness dR
dS .137

Configuring PipelineRL vs Conventional RL For a fixed batch size B and a number of accelera-138

tors N , one can configure Conventional RL by choosing the number of optimizer steps G, trading off139

5

(a) Token lags.

Learning Effectiveness (dR/dS)

Le
ar

ni
ng

 T
hr

ou
gh

pu
t (

dS
/d

t)

dR/dt = 1

dR/dt = 2

dR/dt = 3

Maximum Throughput
for N accelerators

PipelineRL achieves
higher learning speed
dR/dt = dR/dS dS/dt than
Conventional RL PipelineRL

T training accelerators
Conventional RL

G optimizer steps

(b) Pareto curves.

Figure 3: (a) For Conventional RL, the token lag increases with the number of optimizer steps. In
PipelineRL with N accelerators, the token lag varies throughout the sequence, where earlier tokens
have higher lag. The lag structure in each batch is the same. Doubling the PipelineRL accelerators,
everything else constant, double the lag of early tokens. (b) Schematic illustration of PipelineRL’s
throughput-effectiveness trade-off as a function of training accelerators T and of Conventional RL as
a function of lag G. PipelineRL achieves a higher dR

dS
dS
dt for the same number N of accelerators.

...

actor 0

Inference
weights

Inference
weights

Ref
weights

Ref
weights

preprocess 0

trainer 0

trainer N

/data/0/0

/data/0/N/actor/0/0

POST v1/chat/completion
...

POST /request_weight_update

POST /init_process_group
Streaming

HTTP

inifinibandWeight
update

Weights

Stream

Process

Actor LLM0 Actor LLM1 Ref LLM0 Ref LLM1

POST v1/chat/completion

Figure 4: The three pipeline stages of PipelineRL implementation: actor, preprocessor and trainer.
Earlier stages stream the data to the latter ones using Redis as the streaming broker.

the learning effectiveness for the throughput. The PipelineRL configuration can likewise be mostly140

reduced to a single parameter, namely the number of training accelerators T out of N available ones.141

Setting a higher T will almost linearly decrease the time ttrain that is needed for the trainer to process142

B sequences and perform an optimizer step. T effectively determines the optimal generation batch143

size H to be used at all N − T accelerators. Using a lower H leads to a lower maximum generation144

latency tgen, which consequently reduces the maximum lag gmax = ⌈tgen/ttrain⌉. Hence, it makes145

sense to use the smallest H that suffices to produce enough training data. Consequently, the maximum146

lag gmax for PipelineRL grows with the number of training accelerators T , as higher T requires a147

higher H and leads to a lower ttrain and a higher tgen. On the contrary, the sample throughput of148

PipelineRL grows with T up to a point when N − T accelerators cannot generate enough data for the149

over-powered trainer. We recommend avoiding extreme configurations with T too high (very high lag150

G) and T too low (bad hardware utilization, one can just as well scale down the compute). Figure 3b151

visualizes how different configurations of PipelineRL and Conventional RL achieve different learning152

effectiveness dR
dS and throughput dS

dt , with PipelineRL setups reaching higher dR
dt = dS

dt
dR
dS isocurves.153

PipelineRL Safety Mechanism While in-flight weight updates can be useful, on the flip side, the154

mixed-policy sequences generated by the in-flight behavior policy can present a risk to the stability155

of the training process, in particular because after an in-flight weight update, the generation server156

continues with the stale key and value vectors that were computed by a prior version of the model. To157

remediate these risks, we monitor the Effective Sample Size (ESS) of each training batch. Once ESS158

drops below a certain threshold, we stop updating the current policy until it accumulates a full batch159

of purely on-policy sequences, see lines 21-23 in Algorithm 2.160

6

(a) Learning speed (dR/dt) (b) System throughput (dS/dt)

Figure 5: Learning speed and throughput. PipelineRL achieves higher throughput and learning
speed than Conventional RL with G=4 optimizer steps per each RL step.

(a) Reward R after training on S samples (b) ESS after S samples

Figure 6: (a) PipelineRL attains the same average rewards for each number of training samples as
pure on-policy G = 1 Conventional RL (b) PipelineRL stays mostly on-policy.

Architecture and Implementation Details Our PipelineRL implementation concurrently runs161

many distributed vLLM generation engines and DeepSpeed training workers in a three stage162

pipeline that we describe in Figure 4. The middle Preprocessor stage that we omitted from Al-163

gorithm 2 for simplicity, computes reference model log-probabilities often used in Reinforce-164

ment Learning from Human Feedback [Ouyang et al., 2022]. The PipelineRL architecture is165

highly modular — any generation software that supports the three HTTP API endpoints that166

PipelineRL requires can be easily integrated in the future. The three APIs are the popular167

/v1/chat/completions for generation, /init_process_group for creating the weight trans-168

fer process group, and /request_weight_update for initiating the in-flight weight update. Key169

optimizations in PipelineRL include online sequence packing for fast training and using ring buffers170

to minimize the lag when earlier pipeline stages run faster than the later ones, e.g. when the trainer171

makes a checkpoint.172

5 Experiment173

For the experimental validation of PipelineRL’s high learning effectiveness dR
dS and throughput dS

dt ,174

we have chosen the challenging task of training a base (i.e. not instruction-tuned) model to perform175

long-form reasoning to solve mathematical problems. We find this task to be a great testbed for176

PipelineRL because the policy undergoes rapid changes over the course of training. In particular,177

the length of generated sequences grows dramatically [Guo et al., 2025], making it essential to stay178

on-policy for effective learning.179

Experimental setup. For each experiment, we train the Qwen 2.5 base model [Yang et al., 2024]180

with 7B parameters on 17K math problems from the OpenReasoner Zero dataset [Hu et al., 2025] for181

1000 optimizer steps with the batch size B = 1024. We use Adam optimizer [Kingma, 2014] with182

the learning rate 1e-6. We run the PipelineRL experiments on 4 DGX-H100 nodes, using 16 GPUs183

7

for generation at batch size H = 64 and 16 GPUs for training. We tweak PipelineRL to simulate184

Conventional RL by accumulating and shuffling a buffer of BG samples at the Preprocessor stage185

before the G optimizer steps of each RL step start. To estimate the Conventional RL throughput, we186

use 4 nodes for generation at batch size H = 128 and 2 nodes for training, and then add a correction187

for training on 2x fewer GPUs than what an efficient Conventional RL implementation with a quick188

generation-training transition could use. We give reward 1 to any generated sequence with the correct189

answer and 0 otherwise. We train every model with importance weighted REINFORCE as described190

in Section 2 and clamp the importance weights to 5.191

Table 1: Success rate of models trained with PipelineRL compared to results in the literature.

Method Math 500 AIME24 # samples (·106) training data
Qwen 2.5 base 7b 31.6 3.3 - -

SimpleRL Zero
[Zeng et al., 2025] 78.2 20.0 0.82 Math Level 3-5

OpenReasoner Zero
[Hu et al., 2025] ∼ 82.0 ∼ 20.0 8.2 OpenReasoner

PipelineRL (batch size 1024) 81 17.5 2.0 OpenReasoner
PipelineRL (batch size 4096) 84.6 19.8 6.2 OpenReasoner

PipelineRL learns faster due to higher throughput. We compare the learning speed of PipelineRL192

to that of Conventional RL with G = 4 optimizer steps, as that was the maximum G for which193

Conventional RL training was stable. PipelineRL achieves the same reward values approximately194

∼ 2x faster than this baseline (Figure 5a) due to ∼ 2x faster sample throughput (Figure 5b). The195

main cause of the throughput increase is that GPU utilization for G = 4 experiment on 32 GPUs is196

relatively low for each GPU when it has to generate just 4096 / 32 = 256 sequences (see Figure 2b).197

PipelineRL learns effectively. To better measure learning effectiveness dR
dS of PipelineRL, we also198

run Conventional RL experiments with G = 1 and G = 8 optimizer steps. Notably, the R(S) curves199

are indistinguishable for all compared methods up to a point when high G runs diverge, likely because200

of going too far off-policy. This result validates that PipelineRL’s signature in-flight weight updates201

do no harm to the sequence generation process. For the PipelineRL run the ESS safety mechanism202

was never triggered, but in our preliminary experiments, it was sometimes activated and prevented203

the policy blow-up.204

PipelineRL matches comparable results on reasoning tasks. Table 1 compares the test perfor-205

mance of PipelineRL to similar experiments that start training from the same Qwen 2.5 7B model. In206

this experiment we used batch size 4096 because we found it leads to a higher performance. On the207

math reasoning benchmarks MATH500 [Hendrycks et al., 2021] and AIME2024 [Li et al., 2024].208

PipelineRL matches or exceeds the performance of Open Reasoner Zero and SimpleRL Zero.209

PipelineRL stays more on-policy. To gain a better understanding of which training methods stay210

more on-policy, we plot the evolution of the ESS on-policyness measure throughout the training.211

Figure 6b shows that for a purely on-policy run with G = 1, ESS stays close to 1.3 For G = 8,212

ESS generally decreases with the lag between the behavior and the current policy. We note that213

the magnitude of the ESS drop varies throughout training for G = 4 and G = 8 runs. The ESS214

of PipelineRL follows a different pattern. It stays close to ESS of G = 1 gold-standard run with215

some large drops when the current policy quickly shifts and the variance of the importance weights216

increases. These drops are the reason why we recommend using the ESS-based safety mechanism for217

PipelineRL. Notably, even though the maximum lag gmax in our PipelineRL experiment was around218

8 on average, Figure 6b shows that PipelineRL’s ESS curves look more like that of G = 1 on-policy219

run than that of G = 8 more off-policy experiment. We believe it is due to the lag being lower than220

gmax for a majority of tokens, since the average generated sequence length in our experiments ranged221

between 1K and 2K tokens, well below the 8K maximum.222

3The reason for ESS falling below 0.999 for G = 1 is the consistent small difference between the log-
probabilities produced by vLLM and Huggingface Transformers implementation of Qwen 2.5 model.

8

6 Related work223

Asynchronous and high-throughput RL has been extensively studied. IMPALA [Espeholt et al.,224

2018] decoupled acting from learning to maximize GPU utilization. Like PipelineRL, IMPALA used225

truncated importance weights to estimate the value function from off-policy samples. Furthermore,226

IMPALA kept the policy weights constant for the length of an episode. SeedRL [Espeholt et al.,227

2019] proposed to update the model’s parameters during an episode, resulting in trajectories where228

different actions were sampled by different policies. OpenAI Five [OpenAI et al., 2019] was trained229

using asynchronous PPO to achieve superhuman performance on Dota 2. These previous works230

were focused on RL for video games. Closer to our work, [Noukhovitch et al., 2024] explores231

asynchronous RL for LLMs. In their approach, data generation for the next G optimizer steps232

is synchronized with training on the previous G optimizer steps, leading to higher off-policyness233

than Conventional RL, unlike PipelineRL. The same study shows that offline methods such as234

DPO [Rafailov et al., 2023] can better tolerate off-policyness.235

There exist several other scalable open-source RL implementations. veRL [Sheng et al., 2024]236

implements Conventional RL efficiently by using a sophisticated hybrid generation-training engine237

that supports quick transitions between training and generation on the same GPUs. We believe238

veRL’s throughput would be similar to our Conventional RL baseline. Without the hybrid engine, in239

OpenRLHF [Hu et al., 2024] training GPUs idle during generation and vice-versa.240

7 Conclusion and Discussion241

We have shown how in-flight weight updates help PipelineRL break the learning speed ceiling of the242

conventional two-stage RL approach. We believe that for long sequence generation, in particular, this243

speedup would be very difficult to attain with another asynchronous RL approach, as synchronous244

waits for generation to finish would hurt the throughput and/or learning effectiveness. The stale245

KV-cache risk that in-flight updates introduce can be mitigated by recomputing the KV cache after246

each update, which can be done fast at a high GPU utilization, but will still lower the throughput.247

We believe PipelineRL may be particular useful for training LLMs to excel at agentic behaviors that248

involve multiple LLM generations interspersed with environment interactions. Another promising249

direction for future work is to study when the recent low lag tokens in PipelineRL are helpful, and on250

the contrary, where PipelineRL’s constantly high lag of early tokens in long sequences hurts.251

Limitations PipelineRL will only bring a limited throughput increase over Conventional RL if the252

LLM is asked to generate the exact same number of tokens for the same prompt. In this unlikely253

scenario, Conventional RL will be likewise capable of maintaining a constant generation batch size.254

The PipelineRL’s stable average token lag and the low lag of recent tokens in each batch may, however,255

still affect the learning effectiveness. The PipelineRL throughput advantages will likewise decrease256

in setups with scarce or extensive compute resources. In the former case, each GPU will get enough257

generation tasks for the GPU utilization to be high. In the latter, the learning speed will be bounded258

not by the hardware utilization but by the best possible generation latency and by the environment259

feedback delay.260

References261

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,262

Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning263

from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.264

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,265

Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance266

weighted actor-learner architectures. In International conference on machine learning, pages267

1407–1416. PMLR, 2018.268

Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scalable269

and efficient deep-rl with accelerated central inference. arXiv preprint arXiv:1910.06591, 2019.270

Rasool Fakoor, Pratik Chaudhari, and Alexander J Smola. P3o: Policy-on policy-off policy optimiza-271

tion. In Uncertainty in artificial intelligence, pages 1017–1027. PMLR, 2020.272

9

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,273

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms274

via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.275

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,276

and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv277

preprint arXiv:2103.03874, 2021.278

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. OpenRLHF:279

An Easy-to-use, Scalable and High-performance RLHF Framework, November 2024. URL280

http://arxiv.org/abs/2405.11143. arXiv:2405.11143 [cs].281

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.282

Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base283

model. arXiv preprint arXiv:2503.24290, 2025.284

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,285

2014.286

Augustine Kong. A note on importance sampling using standardized weights. University of Chicago,287

Dept. of Statistics, Tech. Rep, 348:14, 1992.288

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.289

Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model290

Serving with PagedAttention, September 2023. URL http://arxiv.org/abs/2309.06180.291

arXiv:2309.06180 [cs].292

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif293

Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in294

ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,295

13:9, 2024.296

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy297

reinforcement learning. Advances in neural information processing systems, 29, 2016.298

Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal, and299

Aaron Courville. Asynchronous rlhf: Faster and more efficient off-policy rl for language models.300

arXiv preprint arXiv:2410.18252, 2024.301

OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,302

Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz,303

Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan304

Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,305

Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning, 2019. URL306

https://arxiv.org/abs/1912.06680.307

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong308

Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow309

instructions with human feedback. Advances in neural information processing systems, 35:27730–310

27744, 2022.311

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea312

Finn. Direct preference optimization: Your language model is secretly a reward model. Advances313

in Neural Information Processing Systems, 36:53728–53741, 2023.314

Nicolas Le Roux, Marc G Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves,315

Alex Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sándor Toth, and Sam Work. Ta-316

pered off-policy reinforce: Stable and efficient reinforcement learning for llms. arXiv preprint317

arXiv:2503.14286, 2025.318

Matthew Schlegel, Wesley Chung, Daniel Graves, Jian Qian, and Martha White. Importance319

resampling for off-policy prediction. Advances in Neural Information Processing Systems, 32,320

2019.321

10

http://arxiv.org/abs/2405.11143
http://arxiv.org/abs/2309.06180
https://arxiv.org/abs/1912.06680

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy322

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.323

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,324

Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical325

reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.326

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,327

Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint328

arXiv:2409.19256, 2024.329

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,330

Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via331

reinforcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.332

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement333

learning. Machine learning, 8:229–256, 1992.334

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,335

Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint336

arXiv:2412.15115, 2024.337

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-338

zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv339

preprint arXiv:2503.18892, 2025.340

11

NeurIPS Paper Checklist341

1. Claims342

Question: Do the main claims made in the abstract and introduction accurately reflect the343

paper’s contributions and scope?344

Answer: [Yes]345

Justification: In this paper, we propose a new asynchronous system for RL training. Our346

main contribution is that our system is efficient and stable, as explained in both the abstract347

and Section 1 (Introduction). Throughout the paper, our goal is to provide empirical evidence348

and theoretical justification to corroborate this contribution.349

Guidelines:350

• The answer NA means that the abstract and introduction do not include the claims351

made in the paper.352

• The abstract and/or introduction should clearly state the claims made, including the353

contributions made in the paper and important assumptions and limitations. A No or354

NA answer to this question will not be perceived well by the reviewers.355

• The claims made should match theoretical and experimental results, and reflect how356

much the results can be expected to generalize to other settings.357

• It is fine to include aspirational goals as motivation as long as it is clear that these goals358

are not attained by the paper.359

2. Limitations360

Question: Does the paper discuss the limitations of the work performed by the authors?361

Answer: [Yes]362

Justification: We discussed the limitations of PipelineRL in Section 7.363

Guidelines:364

• The answer NA means that the paper has no limitation while the answer No means that365

the paper has limitations, but those are not discussed in the paper.366

• The authors are encouraged to create a separate "Limitations" section in their paper.367

• The paper should point out any strong assumptions and how robust the results are to368

violations of these assumptions (e.g., independence assumptions, noiseless settings,369

model well-specification, asymptotic approximations only holding locally). The authors370

should reflect on how these assumptions might be violated in practice and what the371

implications would be.372

• The authors should reflect on the scope of the claims made, e.g., if the approach was373

only tested on a few datasets or with a few runs. In general, empirical results often374

depend on implicit assumptions, which should be articulated.375

• The authors should reflect on the factors that influence the performance of the approach.376

For example, a facial recognition algorithm may perform poorly when image resolution377

is low or images are taken in low lighting. Or a speech-to-text system might not be378

used reliably to provide closed captions for online lectures because it fails to handle379

technical jargon.380

• The authors should discuss the computational efficiency of the proposed algorithms381

and how they scale with dataset size.382

• If applicable, the authors should discuss possible limitations of their approach to383

address problems of privacy and fairness.384

• While the authors might fear that complete honesty about limitations might be used by385

reviewers as grounds for rejection, a worse outcome might be that reviewers discover386

limitations that aren’t acknowledged in the paper. The authors should use their best387

judgment and recognize that individual actions in favor of transparency play an impor-388

tant role in developing norms that preserve the integrity of the community. Reviewers389

will be specifically instructed to not penalize honesty concerning limitations.390

3. Theory assumptions and proofs391

Question: For each theoretical result, does the paper provide the full set of assumptions and392

a complete (and correct) proof?393

12

Answer: [Yes]394

Justification: We do not have theorems or conjectures in the paper. However, we justify395

our design decisions through theoretical explanations, where all the details, including the396

assumptions, are clearly specified.397

Guidelines:398

• The answer NA means that the paper does not include theoretical results.399

• All the theorems, formulas, and proofs in the paper should be numbered and cross-400

referenced.401

• All assumptions should be clearly stated or referenced in the statement of any theorems.402

• The proofs can either appear in the main paper or the supplemental material, but if403

they appear in the supplemental material, the authors are encouraged to provide a short404

proof sketch to provide intuition.405

• Inversely, any informal proof provided in the core of the paper should be complemented406

by formal proofs provided in appendix or supplemental material.407

• Theorems and Lemmas that the proof relies upon should be properly referenced.408

4. Experimental result reproducibility409

Question: Does the paper fully disclose all the information needed to reproduce the main ex-410

perimental results of the paper to the extent that it affects the main claims and/or conclusions411

of the paper (regardless of whether the code and data are provided or not)?412

Answer: [Yes]413

Justification: In the "Experimental Setup" section (Section 5), we provide the details required414

to reproduce our experiments. We also plan to release our codebase (upon acceptance) that415

includes all the configurations we used for our experiments (an anonymized version of our416

codebase is provided along with the submission).417

Guidelines:418

• The answer NA means that the paper does not include experiments.419

• If the paper includes experiments, a No answer to this question will not be perceived420

well by the reviewers: Making the paper reproducible is important, regardless of421

whether the code and data are provided or not.422

• If the contribution is a dataset and/or model, the authors should describe the steps taken423

to make their results reproducible or verifiable.424

• Depending on the contribution, reproducibility can be accomplished in various ways.425

For example, if the contribution is a novel architecture, describing the architecture fully426

might suffice, or if the contribution is a specific model and empirical evaluation, it may427

be necessary to either make it possible for others to replicate the model with the same428

dataset, or provide access to the model. In general. releasing code and data is often429

one good way to accomplish this, but reproducibility can also be provided via detailed430

instructions for how to replicate the results, access to a hosted model (e.g., in the case431

of a large language model), releasing of a model checkpoint, or other means that are432

appropriate to the research performed.433

• While NeurIPS does not require releasing code, the conference does require all submis-434

sions to provide some reasonable avenue for reproducibility, which may depend on the435

nature of the contribution. For example436

(a) If the contribution is primarily a new algorithm, the paper should make it clear how437

to reproduce that algorithm.438

(b) If the contribution is primarily a new model architecture, the paper should describe439

the architecture clearly and fully.440

(c) If the contribution is a new model (e.g., a large language model), then there should441

either be a way to access this model for reproducing the results or a way to reproduce442

the model (e.g., with an open-source dataset or instructions for how to construct443

the dataset).444

(d) We recognize that reproducibility may be tricky in some cases, in which case445

authors are welcome to describe the particular way they provide for reproducibility.446

In the case of closed-source models, it may be that access to the model is limited in447

13

some way (e.g., to registered users), but it should be possible for other researchers448

to have some path to reproducing or verifying the results.449

5. Open access to data and code450

Question: Does the paper provide open access to the data and code, with sufficient instruc-451

tions to faithfully reproduce the main experimental results, as described in supplemental452

material?453

Answer: [Yes]454

Justification: All the datasets used in the paper are already publicly available. We plan to455

release our codebase with detailed documentations upon acceptance.456

Guidelines:457

• The answer NA means that paper does not include experiments requiring code.458

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/459

public/guides/CodeSubmissionPolicy) for more details.460

• While we encourage the release of code and data, we understand that this might not be461

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not462

including code, unless this is central to the contribution (e.g., for a new open-source463

benchmark).464

• The instructions should contain the exact command and environment needed to run to465

reproduce the results. See the NeurIPS code and data submission guidelines (https:466

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.467

• The authors should provide instructions on data access and preparation, including how468

to access the raw data, preprocessed data, intermediate data, and generated data, etc.469

• The authors should provide scripts to reproduce all experimental results for the new470

proposed method and baselines. If only a subset of experiments are reproducible, they471

should state which ones are omitted from the script and why.472

• At submission time, to preserve anonymity, the authors should release anonymized473

versions (if applicable).474

• Providing as much information as possible in supplemental material (appended to the475

paper) is recommended, but including URLs to data and code is permitted.476

6. Experimental setting/details477

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-478

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the479

results?480

Answer: [Yes]481

Justification: This is thoroughly discussed in the "Experimental Setup" section (Section 5)482

and in our codebase.483

Guidelines:484

• The answer NA means that the paper does not include experiments.485

• The experimental setting should be presented in the core of the paper to a level of detail486

that is necessary to appreciate the results and make sense of them.487

• The full details can be provided either with the code, in appendix, or as supplemental488

material.489

7. Experiment statistical significance490

Question: Does the paper report error bars suitably and correctly defined or other appropriate491

information about the statistical significance of the experiments?492

Answer: [No]493

Justification: Our experiments are too costly to repeat multiple times for measuring error494

bars and statistical significance metrics. However, we observed that throughput (the most495

important metric in this study) remains stable and does not vary dramatically across different496

runs.497

Guidelines:498

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.499

• The authors should answer "Yes" if the results are accompanied by error bars, confi-500

dence intervals, or statistical significance tests, at least for the experiments that support501

the main claims of the paper.502

• The factors of variability that the error bars are capturing should be clearly stated (for503

example, train/test split, initialization, random drawing of some parameter, or overall504

run with given experimental conditions).505

• The method for calculating the error bars should be explained (closed form formula,506

call to a library function, bootstrap, etc.)507

• The assumptions made should be given (e.g., Normally distributed errors).508

• It should be clear whether the error bar is the standard deviation or the standard error509

of the mean.510

• It is OK to report 1-sigma error bars, but one should state it. The authors should511

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis512

of Normality of errors is not verified.513

• For asymmetric distributions, the authors should be careful not to show in tables or514

figures symmetric error bars that would yield results that are out of range (e.g. negative515

error rates).516

• If error bars are reported in tables or plots, The authors should explain in the text how517

they were calculated and reference the corresponding figures or tables in the text.518

8. Experiments compute resources519

Question: For each experiment, does the paper provide sufficient information on the com-520

puter resources (type of compute workers, memory, time of execution) needed to reproduce521

the experiments?522

Answer: [Yes]523

Justification: All our experiments were conducted on at most 4 DGX-H100 nodes (8 GPUs524

per node). We also thoroughly explain the runtime details including the throughput and525

other efficiency measures.526

Guidelines:527

• The answer NA means that the paper does not include experiments.528

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,529

or cloud provider, including relevant memory and storage.530

• The paper should provide the amount of compute required for each of the individual531

experimental runs as well as estimate the total compute.532

• The paper should disclose whether the full research project required more compute533

than the experiments reported in the paper (e.g., preliminary or failed experiments that534

didn’t make it into the paper).535

9. Code of ethics536

Question: Does the research conducted in the paper conform, in every respect, with the537

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?538

Answer: [Yes]539

Justification: We follow the NeurIPS Code of Ethics guidelines. In the paper, we use publicly540

available datasets that are well-known in the community.541

Guidelines:542

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.543

• If the authors answer No, they should explain the special circumstances that require a544

deviation from the Code of Ethics.545

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-546

eration due to laws or regulations in their jurisdiction).547

10. Broader impacts548

Question: Does the paper discuss both potential positive societal impacts and negative549

societal impacts of the work performed?550

15

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]551

Justification: PipelineRL is a general tool to speed up LLM training. It does not have552

positive or negative societal impact.553

Guidelines:554

• The answer NA means that there is no societal impact of the work performed.555

• If the authors answer NA or No, they should explain why their work has no societal556

impact or why the paper does not address societal impact.557

• Examples of negative societal impacts include potential malicious or unintended uses558

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations559

(e.g., deployment of technologies that could make decisions that unfairly impact specific560

groups), privacy considerations, and security considerations.561

• The conference expects that many papers will be foundational research and not tied562

to particular applications, let alone deployments. However, if there is a direct path to563

any negative applications, the authors should point it out. For example, it is legitimate564

to point out that an improvement in the quality of generative models could be used to565

generate deepfakes for disinformation. On the other hand, it is not needed to point out566

that a generic algorithm for optimizing neural networks could enable people to train567

models that generate Deepfakes faster.568

• The authors should consider possible harms that could arise when the technology is569

being used as intended and functioning correctly, harms that could arise when the570

technology is being used as intended but gives incorrect results, and harms following571

from (intentional or unintentional) misuse of the technology.572

• If there are negative societal impacts, the authors could also discuss possible mitigation573

strategies (e.g., gated release of models, providing defenses in addition to attacks,574

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from575

feedback over time, improving the efficiency and accessibility of ML).576

11. Safeguards577

Question: Does the paper describe safeguards that have been put in place for responsible578

release of data or models that have a high risk for misuse (e.g., pretrained language models,579

image generators, or scraped datasets)?580

Answer: [NA]581

Justification: This paper does not introduce new data or models. Nonetheless, we plan to582

release our codebase – along with detailed instructions for using our reinforcement learning583

training method – under the Apache 2.0 License to promote fair and open access for the584

community.585

Guidelines:586

• The answer NA means that the paper poses no such risks.587

• Released models that have a high risk for misuse or dual-use should be released with588

necessary safeguards to allow for controlled use of the model, for example by requiring589

that users adhere to usage guidelines or restrictions to access the model or implementing590

safety filters.591

• Datasets that have been scraped from the Internet could pose safety risks. The authors592

should describe how they avoided releasing unsafe images.593

• We recognize that providing effective safeguards is challenging, and many papers do594

not require this, but we encourage authors to take this into account and make a best595

faith effort.596

12. Licenses for existing assets597

Question: Are the creators or original owners of assets (e.g., code, data, models), used in598

the paper, properly credited and are the license and terms of use explicitly mentioned and599

properly respected?600

Answer: [Yes]601

Justification: The main artifacts used in this paper include the OpenReasoner Zero602

dataset [Hu et al., 2025], Qwen-2.5 model checkpoints [Yang et al., 2024], both properly603

16

attributed through citation. Other open-source libraries that we used in our implementation604

are listed as dependencies in the configuration files of our codebase.605

Guidelines:606

• The answer NA means that the paper does not use existing assets.607

• The authors should cite the original paper that produced the code package or dataset.608

• The authors should state which version of the asset is used and, if possible, include a609

URL.610

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.611

• For scraped data from a particular source (e.g., website), the copyright and terms of612

service of that source should be provided.613

• If assets are released, the license, copyright information, and terms of use in the614

package should be provided. For popular datasets, paperswithcode.com/datasets615

has curated licenses for some datasets. Their licensing guide can help determine the616

license of a dataset.617

• For existing datasets that are re-packaged, both the original license and the license of618

the derived asset (if it has changed) should be provided.619

• If this information is not available online, the authors are encouraged to reach out to620

the asset’s creators.621

13. New assets622

Question: Are new assets introduced in the paper well documented and is the documentation623

provided alongside the assets?624

Answer: [Yes]625

Justification: Our submission is accompanied by the source code of our implementation,626

which includes a README with detailed documentation and pre-defined configuration files627

to facilitate the reproduction of our experiments.628

Guidelines:629

• The answer NA means that the paper does not release new assets.630

• Researchers should communicate the details of the dataset/code/model as part of their631

submissions via structured templates. This includes details about training, license,632

limitations, etc.633

• The paper should discuss whether and how consent was obtained from people whose634

asset is used.635

• At submission time, remember to anonymize your assets (if applicable). You can either636

create an anonymized URL or include an anonymized zip file.637

14. Crowdsourcing and research with human subjects638

Question: For crowdsourcing experiments and research with human subjects, does the paper639

include the full text of instructions given to participants and screenshots, if applicable, as640

well as details about compensation (if any)?641

Answer: [NA]642

Justification: No experiments involving human participants were conducted in this work.643

Guidelines:644

• The answer NA means that the paper does not involve crowdsourcing nor research with645

human subjects.646

• Including this information in the supplemental material is fine, but if the main contribu-647

tion of the paper involves human subjects, then as much detail as possible should be648

included in the main paper.649

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,650

or other labor should be paid at least the minimum wage in the country of the data651

collector.652

15. Institutional review board (IRB) approvals or equivalent for research with human653

subjects654

17

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether655

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)656

approvals (or an equivalent approval/review based on the requirements of your country or657

institution) were obtained?658

Answer: [NA]659

Justification: No experiments involving human participants were conducted in this work.660

Guidelines:661

• The answer NA means that the paper does not involve crowdsourcing nor research with662

human subjects.663

• Depending on the country in which research is conducted, IRB approval (or equivalent)664

may be required for any human subjects research. If you obtained IRB approval, you665

should clearly state this in the paper.666

• We recognize that the procedures for this may vary significantly between institutions667

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the668

guidelines for their institution.669

• For initial submissions, do not include any information that would break anonymity (if670

applicable), such as the institution conducting the review.671

16. Declaration of LLM usage672

Question: Does the paper describe the usage of LLMs if it is an important, original, or673

non-standard component of the core methods in this research? Note that if the LLM is used674

only for writing, editing, or formatting purposes and does not impact the core methodology,675

scientific rigorousness, or originality of the research, declaration is not required.676

Answer: [Yes]677

Justification: Our case study in this paper focuses on fine-tuning LLMs. Details about the678

models used, relevant hyperparameters, and hardware specifications are provided in the679

"Experimental Setup" section (Section 5).680

Guidelines:681

• The answer NA means that the core method development in this research does not682

involve LLMs as any important, original, or non-standard components.683

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)684

for what should or should not be described.685

18

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Reinforcement Learning for Large Language Models
	Conventional RL
	Efficient Sequence Generation with LLMs

	The learning speed ceiling of Conventional RL
	Pushing the learning speed ceiling with PipelineRL
	Experiment
	Related work
	Conclusion and Discussion

