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Abstract

Hierarchical Reinforcement Learning (HRL) algorithms can perform planning at
multiple levels of abstraction. Empirical results have shown that state or temporal
abstractions might significantly improve the sample efficiency of algorithms. Yet,
we still do not have a complete understanding of the basis of those efficiency
gains, nor any theoretically-grounded design rules. In this paper, we derive a lower
bound on the sample complexity for the considered class of goal-conditioned HRL
algorithms. The proposed lower bound empowers us to quantify the benefits of
hierarchical decomposition and leads to the design of a simple Q-learning-type
algorithm that leverages hierarchical decompositions. We empirically validate our
theoretical findings by investigating the sample complexity of the proposed hierar-
chical algorithm on a spectrum of tasks (hierarchical n-rooms, Gymnasium’s Taxi).
The hierarchical n-rooms tasks were designed to allow us to dial their complexity
over multiple orders of magnitude. Our theory and algorithmic findings provide
a step towards answering the foundational question of quantifying the improve-
ment hierarchical decomposition offers over monolithic solutions in reinforcement
learning.

1 Motivation

Hierarchical Reinforcement Learning (HRL) [27, 8, 9, 4] leverages the hierarchical decomposition
of a problem to build algorithms that are more sample efficient. While there is significant empirical
evidence that hierarchical implementations can drastically improve the sample efficiency of Rein-
forcement Learning (RL) algorithms [20, 21, 29, 8], there are also cases where temporal abstraction
worsens the empirical sample complexity [16]. Therefore, a natural question to ask is: when does
HRL lead to improved sample complexity, and how much of an improvement can it provide?

Theoretical work on sample-complexity bound in Machine Learning has been integral to the devel-
opment of the field. Moreover, theoretical results (e.g. [7, 18, 3, 15, 26]) often uncover interesting
principles useful for improving algorithm design. For example, the Q-learning algorithm analysed in
[15] improved our understanding of exploration strategies in model-free RL and the policy gradient
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Figure 1: The left block diagram depicts the interactions between the different components of our
goal-conditioned hierarchical agent. The diagram suggests that the agent is composed of a low-level
policy and a high-level policy that collaborate in order to solve a task. The high-level policy πh

observes the pair (sh, rh), which denotes the high-level state and reward. It then sends a sub-goal
gsub as an input to the low-level policy πl. πl observes the pair (sl, rl), which encodes the low-level
state sl and the low-level reward rl. To achieve the sub-goal gsub, the low-level policy πl interacts
with the environment through primitive actions a. The right diagram illustrates the decomposition
of the original MDP MO into the low-level MDP Ml and the high-level MDP Mh. A detailed
description of this decomposition is given in Sec. 2.2

theorem [26] gave birth to a wide range of new RL methods. In contrast, there are few theoretical
results in hierarchical RL and many key studies are empirical, e.g. hierarchies of states [8, 10], time
[23], or action [28, 22, 2].

To address this gap in the literature, we consider a tabular version of the goal-based approach to HRL
[20, 4], and we analyze the induced MDP decomposition to derive a lower bound on the sample
complexity of this specific HRL framework. This lower bound allows us to understand when a
hierarchical decomposition is beneficial and motivates a new hierarchical Q-learning algorithm that
can leverage the hierarchical structure to improve its sample efficiency. In the goal-based HRL
framework, a high-level policy and a low-level policy are jointly learned to solve an overarching goal.
In such a goal-hierarchical RL system, the high-level policy chooses a sub-goal for the low-level
policy, which in turn executes primitive actions to solve the sub-goal (Fig. 1, left diagram). This
natural way to break down tasks is universal (i.e., it can be applied to a wide range of tasks) and it
induces a decomposition of the original MDP into two sub-MDPs (detailed in Sec. 2.2).

This paper improves our understanding of HRL through the following contributions:

• We provide a lower bound on the sample complexity associated with the hierarchical
decomposition (see Sec. 3). This lower bound allows practitioners to quantify the efficiency
gain they might obtain from decomposing their task.

• We propose a simple, yet novel, Q-learning-type algorithm for goal-hierarchical RL, inspired
by the type of decomposition considered (see Sec. 4).

• We empirically validate the theoretical findings using a synthetic task with hierarchical
properties that can be scaled in complexity (see Sec. 5). This evidence confirms that the
derived bound is able to successfully identify instances where a hierarchical decomposition
could be beneficial (see Sec. 5).

2 Background

We consider a system where an agent needs to make a sequence of decisions in an uncertain
environment to maximise the sum of cumulated rewards. Such problems are modelled as Markov
Decision Processes (MDPs) and can be solved by RL algorithms [25]. When a task is too complex,
the number of interactions required to learn a near-optimal policy becomes prohibitive. The task
complexity typically depends on the difficulty of temporal credit assignment (which is directly related
to the episode length) and the size of the state and action spaces [19]. To address this complexity, HRL
leverages temporal abstractions [27] and state abstractions [8] to improve sample efficiency when
learning an optimal policy. There exists a wide range of HRL frameworks; see [14] for a survey. In
this paper, we focus on the goal-conditioned HRL framework [20, 4]. Of the other HRL frameworks,
only the options framework [27] and the resulting semi-Markov Decision Process [12, 30, 5, 11]
benefit from some theoretical understanding. However, in practice, the goal-conditioned hierarchical
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framework presented in Fig. 1 is often preferred. Unlike the options framework, the goal-conditioned
HRL framework requires no prior knowledge about the task [14], and its ability to generalize over the
goal space when function approximation is used leads to significant performance gains in benchmark
tasks [29, 20, 13]. Existing theoretical work [30, 12, 11] on the options framework does not consider
the case where all the hierarchy levels are jointly learned. The regret analysis proposed by [30]
focuses on the benefit of leveraging repeating sub-structures in hierarchical MDPs. Other regret
analyses [12, 11] highlight the efficiency gain of learning with temporally extended actions (such as
options). However, they always assume the set of options is known, and the intra-option policies are
not learned. Options are composed of an intra-option policy, which governs the agent’s behaviour
while the corresponding option is executed, making intra-option policies very similar to the low-level
policy we consider. However, the goal-conditioned HRL setting considered in this article quantifies
the benefits of state abstraction, action abstraction, and time abstraction while jointly learning all
levels of the hierarchy (low-level and high-level policy) through interaction with the environment. A
detailed description of the option framework and its connection to HRL is available in Appendix B.

For the remainder of this section, we define episodic finite-horizon MDPs and the hierarchical
decomposition we consider.

2.1 Episodic Finite-Horizon Markov Decision Process

An episodic finite-horizon MDP is defined by the following tuple: M = ⟨S,A, r, P, p0, H⟩. Where
S is a finite state space of size |S| and A is a finite action space of size |A|. The goal of the task is
encoded in a terminal state g ∈ S . We assume the reward function r(s, g) ∈ [−a, b] (for a, b ≥ 0) is
known ∀s ∈ S, g ∈ S , the reward function penalises each step with a negative reward of at most −a
and reward the completion of the task with a positive reward of b. The initial state distribution p0 is a
distribution over states that is used to determine in which state an episode starts. The learner interacts
with the MDP in episodes of at most H time steps. The episode’s starting state s0 ∼ p0 is drawn
from the initial state distribution. In each time step t = 0, . . . ,H − 1, the learner observes a state st
and chooses an action at. Given a state action pair (st, at) the next state st+1 ∼ P (·|st, at) is drawn
from the transition kernel. Eventually, the episode ends because the agent reaches the terminal state
or has interacted with the environment for H time-steps.

The agent’s objective is to select actions that maximize the expected return throughout an episode.
We typically assume actions are chosen according to a policy, at ∼ π(st), where π is a function that
maps each state and time step pair to a distribution over actions π : S × [H − 1] → ∆A, and ∆A
is the set of all probability distributions over A and [H] is the set of natural numbers up to H . The
agent aims to select a policy π to maximize the sum of expected rewards, E[

∑H
t=1 rt|at ∼ π(st)],

where the expectation is over the initial state distribution, the policy and the stochastic transitions.
Note that it is usually the case for finite-horizon MDPs that the policy also depends on the current
time step. However, to simplify notation, we do not make this relation explicit.

For a given policy π, we define the value function, V π
τ (s), and the Q-function, Qπ

τ (s, a), at time step
τ ∈ [H − 1] as follows:

V π
τ (s) = E

[H−1∑
t=τ

rt|sτ = s, aτ :H−1 ∼ π

]
, Qπ

τ (s, a) = E
[H−1∑

t=τ

rt|sτ = s, aτ = a, aτ+1:H−1 ∼ π

]
where s ∈ S denotes the state, a ∈ A is the action and the notation aτ :H−1 ∼ π is used to specify
that actions between time step τ and time step H − 1 were selected using π. The optimal policy π∗

is the policy with the highest value function for every time step and every state, V π∗

τ (s) = V ∗
τ (s) =

maxπ V
π
τ (s)∀τ ∈ [H − 1],∀s ∈ S. There is always a deterministic Markov policy that maximizes

the total expected reward in a finite-horizon MDP [24].

In this article, we assess the quality of a policy by its expected value at the beginning of an episode.
To lighten the notation, we define V π = Es0∼p0

[V π
0 (s)] to be the expected value from the beginning

of an episode where the expectation is taken over initial states.

2.2 Episodic Finite-Horizon Hierarchical MDP

For a given episodic finite-horizon MDP Mo, we assume it can be hierarchically decomposed into
a pair of MDPs (Ml,Mh) as illustrated on right diagram of Fig. 1. To avoid ambiguity, we use
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the following notation: the subscript o denotes the original MDP, while subscripts l and h denote
low-level and high-level MDPs, respectively.

The low-level and high-level MDPs consist of the following tuples Ml = ⟨Sl×Ah,A, rl, Pl, p0,l, Hl⟩
and Mh = ⟨Sh,Ah, rh, Ph, p0,h, Hh⟩, respectively. To be a valid hierarchical decomposition, we
require that these MDPs satisfy the following set of conditions:
Action space: The low-level action space consists of the set of primitive actions that the agent can use
to interact with the environment. It is equivalent to the original MDP action space A. The high-level
action space Ah is the set of the sub-goals the high-level agent can instruct to the low-level agent. We
assume that the set of sub-goals encoded in Ah is sufficient to solve the task for any state. Note that
the set of available actions Ah depends on the current high-level state sh. To simplify our notation,
we do not make this relationship explicit.
State spaces: The low-level state sl and the high-level state sh contain all necessary information to
reconstruct the corresponding state, s, in the original MDP. States s ∈ S ⊂ Rd are usually described
as multi-dimensional vectors, where each dimension encodes a specific characteristic. For example,
a state description can be factored in a tuple (sl, sh) ∈ Sl × Sh with a part of the state description
that belongs to the low-level MDP and another part to the high-level MDP. Hence, in this work, we
consider that any state s ∈ So can be represented by a tuple (sl, sh) ∈ Sl × Sh. Additionally, since
the low-level policy is goal-conditioned, its state space also contains the goal description leading to
the following state space for the low-level MDP: Sl ×Ah, a complete low-level state consists of the
concatenation of the low-level state description sl and the sub-goal description ah.
Initial state distribution: The high-level initial state distribution p0,h is a restriction of the original
state distribution p0 on Sh. The low-level initial state distribution p0,l(·|sh,0) is conditioned on the
initial high-level state sh,0 and spans the low-level space, ensuring that p0(s) = p0,h(sh)p0,l(sl|sh),
where sl and sh are the decomposition of s.
Transition functions: The low-level transition function Pl is the restriction of P on Sl ×Ah. One
challenge in HRL is that the high-level transition function, Ph, depends on the low-level policy
since the quality of the low-level policy influences the likelihood of reaching a sub-goal state. The
high-level transition probability Ph(s

′
h|sh, ah, πl) is the probability that the agent transitions to s′h

given the current high-level state sh, the sub-goal ah and low level policy πl. Since Ph depends on
the low-level policy, it is non-stationary, making the learning task more challenging.
Reward functions: Since the terminal states for the original MDP belong to S and the sub-goals for
the low-level MDP lie in Sl the low-level reward function can be obtained from the original reward
function, rl(sl, gsub) = 2r(s, g), where s and g are the reconstruction of the low-level state and the
sub-goal in the original MDP, using the current high-level state. The high-level reward function is the
sum of rewards obtained by the low level during the sub-episode, where the high-level action plays
the role of a sub-goal: rh(sh, ah) =

∑Hl

t=1 rl(sl,t, ah).
Horizons: The original MDP allows an episode to last at most H steps. Consequently, the horizons
of the high-level, Hh, and low-level, Hl, MDPs must satisfy the following equality H = HhHl.

Note that we can always find a decomposition that satisfies these assumptions; a naive way to
decompose any MDP would be to consider a high-level agent whose only action encodes the end
goal of the task and a low-level with complete state information (i.e. it does not use state abstraction).
While this decomposition is valid, it is not necessarily beneficial. Here, our goal is to identify when a
given decomposition is useful, specifically in terms of improvements in the sample efficiency.

We denote by πl a policy interacting with the low-level MDP Ml, and πh a policy interacting with
the high-level MDP Mh. In goal-conditioned HRL, the low-level policy maps a low-level state
and sub-goal pair to an action: πl : Sl × Ah → Al and the high-level policy maps a high-level
state to a high-level action: πh : Sh → Ah. Each policy can be evaluated using the corresponding
high and low-level value functions V πl

l and V πh

h . Similar to the non-hierarchical case, we can
define optimal high-level and low-level policies as π∗

l = argmaxπl
V πl

l for the low-level policy and
π∗
l = argmaxπh

V πh

h for the high-level policy. Moreover, as shown below, every pair of policies
(πl, πh) can be combined to produce a policy π that interacts with the original MDP Mo.

Definition 2.1. A hierarchical policy consists of a pair (πl, πh) that can be mapped to a policy π in
the original MDP Mo as follows:

π(a|s) = π(a|sl, sh) =
∑

ah∈Ah

πh(ah|sh)πl(a|ah, sl). (1)
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The optimal hierarchical policy is obtained when merging (π∗
l , π

∗
h). It is important to note that not all

policies π in the original MDP have a corresponding decomposition (πl, πh), and in particular, there
is no guarantee that the optimal policy in the original MDP can be decomposed.

We aim to understand when a hierarchical decomposition of the MDP allows us to learn a near-optimal
policy faster. Therefore, we are interested in evaluating the performance of the combination of πl

and πh while they interact with the original MDP Mo. To convey the fact that we are evaluating
a hierarchical policy in the original MDP, we use the following notation: given a pair of policies
(πl, πh) and their associated policy in the original MDP, π, the value function of the hierarchical
policy is denoted by V πl,πh

o = Es0∼p0 [V
π
o,0(s0)], where the subscript o is a reminder that we are

evaluating a policy on the original MDP Mo.

When learning in a decomposed MDP, the learner has to learn two policies, the high-level policy,
πh, and the low-level policy, πl. This is done in an episodic setting where an episode unfolds as
follows. Firstly, the learner observes the initial state and uses the high-level policy to find the most
appropriate sub-goal. For the next Hl time steps, the low-level policy attempts to solve the sub-goal.
The low-level agent updates its policy at the end of each low-level step. Once the Hl time steps are
over or if the sub-goal has been reached, the high-level agent observes a new high-level state and can
finally perform an update to its policy. The high-level agent instructs a new sub-goal if the overall
task is not completed. These interactions are repeated until the task is completed or the horizon H
is reached. We can now think of HRL as two agents interacting with the environment. Often, each
agent will try to find the policy that maximizes their value function, maxπl

V πl

l and maxπh
V πh

h .

2.3 Probably-Approximately Correct RL

We aim to find, in as few episodes as possible, a pair of policies (πl, πh) with a near-optimal value.
To formalize this, we introduce the Probably-Approximately Correct (PAC) RL notion. We denote
by ∆k the sub-optimality gap, that is the difference between the optimal (non-hierarchical) policy

π∗ and the current hierarchical policy (πk
l , π

k
h): ∆k := V ∗

o − V
πk
l ,π

k
h

o . Note that both policies are
evaluated on the original MDP Mo. The PAC guarantee in this paper follows the definition in [6].
Definition 2.2. An algorithm satisfies a PAC bound N if, for a given input ϵ, δ > 0, it satisfies the
following condition for any episodic fixed-horizon MDP: with probability at least 1− δ, the algorithm
plays policies that are at least ϵ-optimal after at most N episodes. That is, with probability at least
1− δ, max{k ∈ N : ∆k > ϵ} ≤ N, where N is a polynomial that can depend on the properties of
the problem instance.

In Section 3, we will bound the sample complexity of HRL algorithms. In this context, the sample
complexity refers to the number of episodes, N , in the original MDP, during which the algorithm
may not follow a policy that is at least ϵ-optimal with probability at least 1− δ.

2.4 Running Example

We consider the following companion example. The original MDP describes the task of solving a
maze in a grid-world environment. The state consists of a tuple (R,C) that indicates in which room,
R, and which cell within that room, C, the agent is currently in. The reward function incurs a small
cost, −a, at each time step unless the agent reaches the absorbing goal state. Once the goal state is
reached, the agent stops receiving penalties and receives a reward of 0 for all the remaining time steps.
Mathematically, r(s) = −a1{s ̸= g} where g ∈ S is the goal state, and 1 is the indicator function.

We can decompose this MDP as follows. The high-level MDP describes a similar maze, but instead
of moving from cell to cell, the agent moves from room to room, so the state is just the current room.
The high-level agent aims to find the room sequence that leads to the goal. Hence, at each (high-level)
time step, it indicates the most valuable exit the low-level agent should take from the room. As
specified in Section 2.2, the high-level reward for a sub-goal is the sum of the rewards accumulated
by the low-level agent during that sub-episode. The low-level agent is myopic to other rooms - it only
sees the current room and the exit it has to reach, and it receives a penalty of −2a for each action it
takes unless it reaches the sub-goal, in which case it does not receive any penalty. Hence, if gsub is
the sub-goal, it receives reward r(s) = −2a1{s ̸= gsub}.

We will return to this example throughout the paper, but it should be noted that the framework we
consider is general enough to be applied to a wide range of tasks. One such example is robotics, where
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the low-level agent would be tasked with controlling the joints of the robot to produce movements
selected by the high-level policy, whose goal is to perform tasks that require a sequence of distinct
movements (i.e. navigational tasks, manipulation tasks or a combination of both).

3 Lower Bound on the Sample Complexity of HRL

It has been proven in [7] that, for any RL algorithm, the number of sample episodes necessary to
obtain an (ϵ, δ)-accurate policy (in the original MDP) is lower bounded by:

E[N ] = Ω

(
|S||A|H2

ϵ2
ln

( 1

δ + c

))
, (2)

where c is a positive constant.

We now extend this result to hierarchical MDPs. Before doing so, it is essential to notice that
even the best hierarchical policy (as constructed in Eq. (1)) might be sub-optimal. This is a direct
consequence of the goal-conditioned architecture. If, while executing a sub-episode, it appears that
another sub-goal becomes more valuable, the architecture proposed does not allow interruptions.
The agent will first have to complete the current sub-episode before being able to adapt to the new
circumstances. Let V π∗

l ,π
∗
h

o denote the value of the optimal hierarchical policy value function in the
original MDP. Then, the sub-optimality gap is larger than the gap between the current policy pair

and the optimal hierarchical policy ∆k = V ∗
o − V

πk
l ,π

k
h

o ≥ V
π∗
l ,π

∗
h

o − V
πk
l ,π

k
h

o . Therefore, if for some

N , V π∗
l ,π

∗
h

o − V
πk
l ,π

k
h

o ≥ ϵ for at least N episodes, it must also be the case that ∆k ≥ ϵ for at least N
episodes. Hence, N is a lower bound on the number of episodes where the algorithm must follow a
sub-optimal policy.

In the following theorem, we lower bound the number of episodes required to learn a pair of policies
(πl, πh) which are ϵ-accurate with respect to the optimal hierarchical policy (π∗

l , π
∗
h). By the above

argument, this will also be a lower bound on the number of episodes necessary to learn an ϵ-accurate
policy with respect to the optimal policy π∗.

Theorem 3.1. There exist positive constants cl, ch and δ0 such that for every δ ∈ (0, δ0) and for
every algorithm A that satisfies a PAC guarantee for (ϵ, δ) and outputs a deterministic policy, there
is a fixed horizon MDP such that A must interact for

E[N ] = Ω

(
max

(
|Sl||Ah||A|H2

l

ϵ2
ln

( 1

δ + cl

)
,
|Sh||Ah|H2

h

ϵ2
ln
( 1

δ + ch

)))
(3)

episodes, in the original MDP, until the policy is (ϵ, δ)-accurate.

The complete proof is in Appendix A.1. In the following, we highlight the main steps.
Sketch of the proof: An ϵ-accurate pair of policies must satisfy the following inequality, |V π∗

l ,π
∗
h

o −
V πl,πh
o | ≤ ϵ. To find a lower bound on the number of episodes N before we obtain an ϵ-accurate pair

of policies (πl, πh) we used the following steps:

(i) We decompose the objective using the triangle inequality, |V π∗
l ,π

∗
h

o − V
π∗
l ,πh

o | + |V π∗
l ,πh

o −
V πl,πh
o | ≤ ϵ.

(ii) We show that the number of samples required to guarantee |V π∗
l ,π

∗
h

o −V
π∗
l ,πh

o | ≤ ϵ/2 is bounded

by Ω

(
|Sh||Ah|H2

h

ϵ2 ln
(

1
δ+ch

))
(iii) We show that the number of samples required to guarantee |V π∗

l ,πh
o −V πl,πh

o | ≤ ϵ/2 is bounded

by Ω

(
|Sl||AH ||A|H2

l

ϵ2 ln
(

1
δ+cl

))
Combining these three steps gives us the result in Theorem 3.1; see A.1 for more details.
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3.1 Interpretation of the Sample Complexity Bound:

By comparing this lower bound1 to that in the original MDP, we can identify the problem char-
acteristics that might lead to improved sample efficiency. In general, only one of the two MDP
characteristics will dominate the overall sample complexity because of the max operator in the bound
in Eq. 3. To maintain the max as small as possible, the complexity should be distributed between the
low- and high-level MDP as evenly as possible. We discuss some of these key insights below:
State abstraction: Only one of the two-state space cardinalities will dominate the bound in Eq. 3.
This suggests that an efficient decomposition tends to separate the original state space as evenly
as possible between the two levels of the hierarchy. Another phenomenon at stake is the low-level
re-usability. Due to the state abstraction, the low-level agent can re-use its learned policy in different
states (i.e. different states s1, s2 ∈ S whose low-level component sl are the same). We rewrite the
lower bound 3 in terms of the re-usability index κ = |S|

|Sl| .

E[N ] = Ω

(
max

( |S×Ah|
κ |A|H2

l

ϵ2
ln
( 1

δ + cl

)
,
|Sh||Ah|H2

h

ϵ2
ln

( 1

δ + ch

)))
. (4)

Eq. 4 highlights that a large re-usability index improves the sample efficiency.
Temporal abstraction: Similarly, only one of the two-time horizons will dominate the bound,
again suggesting a fair repartition of the load. The temporal abstraction (reducing H to Hh and Hl)
simplifies the credit assignment problem for the high-level and the low-level policies by giving denser
feedback. The low-level agent is rewarded for completing sub-tasks that are significantly shorter than
the original task, and the high-level trajectory consists of significantly fewer (high-level) steps than a
trajectory in the original MDP.
High-level action space: This is the only term that appears on both sides of the max(·, ·) in
Eq. 3. This highlights that both the high-level and the low-level benefit from a compact sub-goal
representation.

It is interesting to note the contrast between the state space decomposition and the design of the
high-level action space. To find efficient state decomposition, the amount of information available at
each level must be distributed among each level of the hierarchy. In the case of the sub-goal space, it
appears that both levels benefit from a compact representation.

The above discussion highlights properties of the hierarchical decomposition that could improve
sample complexity. Note, however, that our bound also shows that a hierarchical decomposition
does not always improve the sample efficiency. Indeed, there will be some settings where using a
“bad” hierarchical decomposition does not improve the sample complexity. Our bound can, therefore,
provide a sanity check to determine whether a hierarchical decomposition could lead to an improved
sample complexity. However, finding an algorithm that achieves this improved sample complexity can
still be challenging. Nevertheless, the proposed Q-learning-based hierarchical algorithm empirically
demonstrates the potential benefits of leveraging the considered decomposition. In Section 5, we
consider several MDP decompositions and empirically validate that when our bound suggests the
hierarchical decomposition is beneficial, our algorithm (see Sec. 4) leverages this to achieve lower
sample complexity.

4 Stationary Hierarchical Q-Learning

Once we know that we are in an MDP where the hierarchical decomposition could lead to improved
sample complexity, the next challenge is to design an algorithm to exploit this. This section proposes
the Stationary Hierarchical Q-learning algorithm (SHQL) for this purpose. One of the most chal-
lenging aspects of jointly learning a pair of policies is the non-stationarity of the high-level transition
dynamics, Ph. It was briefly mentioned (in Sec. 2.2) that the high-level transition function, Ph, is
non-stationary since it depends on the low-level policy, πl with the next high-level state depending
on whether πl managed to reach the sub-goal. To address this issue, we leverage the fact that the
algorithm knows what a successful sub-episode is, i.e. it knows if the low-level agent managed to

1Note that this is a lower bound - we still do not know if there exist algorithms which achieve this lower
bound.
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Figure 2: The grid of plots depicts, on the top row, the mazes whose size ranges from 4 rooms to
1024 rooms. The bottom row shows the steps required for SHQL (in blue) and Q-learning (in red) to
complete the maze. The standard deviation is obtained by running ten different seeds.

arrive at the desired sub-goal. In the
case of off-policy methods, this is
typically leveraged with hindsight
correction [17]. However, in the
considered on-policy setting, we pro-
pose that the algorithm only makes
an update if the low-level agent be-
haves reasonably well (i.e. solving
the sub-goal). In this way, the algo-
rithm filters all bad examples from
the training set, and the behaviour of
Ph is more stable. Note, however,
that the reward function of the high-
level agent remains non-stationary.
At first, sub-goals won’t be solved
optimally, incurring a small reward
to the high-level agent. However,
the associated reward will increase
as the low-level agent learns to solve
sub-goals more efficiently. As de-
tailed in the function LowLevelUp-
date in Algorithm 1, the low-level
agent performs Q-learning updates
on the observed low-level transitions
and rewards. The high-level agent
also performs Q-learning updates,
but only on successful transitions, as
specified at line 10 of Algorithm 1.

Algorithm 1: Stationary Hierarchical Q-learning
(SHQL)

Input: Ql
:,:,: = 0, Qh

:,: = 0, doneh = False,
t = k = 0

1 while not doneh and k < K do
2 Observe sh, sl
3 gsub = πh(sh)
4 donel = False /* True if sub-goal solved */

5
6 while not donel and t < T do
7 al = πl(sl)
8 Observe s′l, rl, donel
9 LowLevelUpdate((sl, al, rl, s′l, gsub))

10 sl = s′l
11 t = t+ 1

12 Observe s′h, rh, doneh
13 if donel then
14 Qh

nxt = max
g

Qh
s′h,g

15 Qh
sh,gsub

= Qh
sh,gsub

+ α ∗ (rh +Qh
nxt)

16 sh = s′h
17 k = k + 1

18 Function LowLevelUpdate(s, a, r, s’ gsub):
19 Ql

nxt = max
a′

Ql
gsub,s′,a′

20 Ql
gsub,s,a

= Ql
gsub,s,a

+ α ∗ (r +Ql
nxt)

21 return Ql

5 Experiments

We now empirically evaluate2 the impact of the decomposition on various MDPs to validate the
lower bound found in Section 3 and evaluate the performance of our proposed SHQL algorithm. To
satisfy the assumption of hierarchical structure, the environments considered are a generalization of
the four-room problem with an arbitrary number of rooms, called the n-rooms problem. The entire
maze is built by arranging an arbitrary number of rooms on a grid. The high-level task would involve

2Experiments were run on a 12th Gen Intel Core i7 with 16GB of RAM, to train the agents on the largest
maze considered takes ∼ 7 minutes.

8



learning the shortest sequence of rooms that lead the agent from the starting position (the top left
room) to the goal room (the bottom right room). The low-level task is to learn how to navigate within
each room and to reach the instructed hallway. To further modulate the task’s difficulty (in addition
to the maze size), we vary the room profiles used, as depicted in the rightmost plot of Fig. 4.

The set of MDPs generated by these environments are the following:
The original MDP: This is a standard grid-world MDP, where the state space indicates the cell where
the agent is located, and the action space allows the agent to move one cell in any cardinal direction
(North, South, East, West). To obtain stochastic environments, each action has a success probability
of psuccess = 4/5. In case of failure, the action will be chosen at random.
The high-level MDP: The high-level state space is restricted to the room where the agent is currently
located, and the exact position of the agent within that room is abstracted away. The high-level
actions instruct the low-level to reach one of the available hallways. Note that not all rooms have
access to the four hallways.
The low-level MDP: The low-level agent only observes the agent’s current location within a room
and the goal instructed by the high-level agent (one of the reachable hallways). It then uses the
primitive action space (the four cardinal directions) to reach the desired hallway. All required code to
reproduce the experiments is made available online [1].

5.1 Identical Rooms

We first introduce the experimental setting in its simplest form. The environments considered in this
subsection are mazes built by assembling identical rooms without obstacles (i.e. the top room profile
in Fig. 4). Fig. 2 illustrates the empirical performance of our SHQL algorithm against Q-learning
in the original MDP. As expected for simple mazes (e.g. with 4 or 16 rooms), the hierarchical
decomposition does not provide much improvement. Still, as the problems grow more complex, the
empirical evaluation suggests a significant improvement in sample efficiency. This is also confirmed
by our bound (yellow curve on the rightmost plot of Fig. 4), which highlights that the efficiency gain
of HRL is mostly achievable in complex MDPs (i.e. MDPs with large state and action spaces). It is
essential to notice that in this experiment, the low-level decomposition remains constant for a given
set of room profiles. This is why the benefit of HRL increases with the number of rooms (i.e. the
high-level state space) until a plateau is reached. Once the bound is dominated by the high-level MDP,
the unchanging complexity of the low-level MDP causes the ratio between the RL bound (Eq. 2) and
the high-level part of the HRL bound (Eq. 3), |S||A|H

|Sh||Ah|Hh
, to remain constant (even though number of

rooms might still grow).

5.2 Different n-rooms & Gymansium Taxi Task

To make the task more challenging, we next increase the number of room profiles used to construct
the mazes. As depicted in the rightmost plot of Fig. 4 we considered four different room profiles, each
one with a different obstacle in the room. The low-level agent must now learn to navigate multiple

Figure 3: Those plots are similar to the ones shown in Fig. 2, showing the performance obtained on
mazes built from four different room layouts.
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Figure 4: The left-hand plot shows the evolution of the ratio between the RL bound Eq. (2) and the
HRL bound Eq. (3) for various mazes and different room profiles. The plateau is obtained when the
high-level MDP dominates the bound, leading to the following ratio: |S||A|H

|Sh||Ah|Hh
. The curves are

colour-coded such that a darker curve indicates more room profiles were considered. The right-hand
side of the plot shows the different room profiles available to build the mazes.

types of rooms to reach the sub-goal sent by the high-level agent. The performance of the algorithms
with four different rooms is shown in Fig. 3. The introduction of different room profiles allows us to
modulate the complexity of the low-level MDP, in contrast to varying the number of rooms, which
only affects the complexity of the high-level MDP. This additional complexity results in a larger
state space Sl but may also result in a longer horizon Hl as the optimal trajectory might require
more time to navigate around obstacles to reach the desired hallway successfully. It also becomes
evident that, as the number of rooms increases, the hierarchy’s benefits become more significant.
Nevertheless, comparing Fig. 2 and Fig. 3 we can observe that the introduction of various room
layouts has little effect on the Q-learning curve (in red). At the same time, it makes the task slightly
more challenging for the HSQL learning curve (in blue), especially when the number of rooms is
small since it suffers from the increased complexity of the low-level MDP. But, when the number
of rooms is sufficiently large for the high-level MDP complexity to dominate the bound, the benefit
of hierarchical decomposition becomes evident. The evolution of the bound ratio (HRL/RL) for the
various MDPs considered is shown in the leftmost plot of Fig. 4. It shows that the low-level MDP
dominates the bound when the maze consists of a small number of rooms. However, the curves clearly
indicate that the expected sample efficiency improves as the high-level MDP becomes more complex
(i.e., balancing the complexity between the two levels of the hierarchy). This result is also supported
by empirical evidence as illustrated in Figs. 2, 3, 5, and 6. The Gymnasium Taxi environment [9]
experiments presented in Appendix A.2.2 further validate our approach and conclusion on an entirely
different task.

6 Conclusion

In this work, we analysed the sample complexity of goal-conditioned HRL. To the best of our
knowledge, we provide the first result that analyses the decomposition induced by goal-conditioned
HRL. In particular, our lower bound offers a valuable tool for practitioners that could help them decide
whether they should consider a hierarchical decomposition for their problem. We also designed a
novel algorithm that can leverage the hierarchy to improve its sample efficiency and implemented
this on a set of hierarchical tasks. These experimental results further emphasizes the usefulness of the
proposed bound since our theoretical findings support empirical efficiency gains.

Although this paper has taken a significant first step in bettering our understanding of the benefits
of hierarchical decomposition, there is still scope for further work in this area. Three immediate
open questions are: (i) whether our lower bound could be refined by explicitly accounting for the
interactions between the low-level and the high-level agent, (ii) is it possible to design an algorithm
that can theoretically match the proposed lower bound, (iii) the current results only consider the
cardinality of the sub-goal space because we assumed that the sub-goal-space was given and that all
sub-goals where solvable. Methods that design efficient sub-goal spaces remain largely unexplored
and are a critical aspect of the design of HRL algorithms. Moreover, the insights we proposed are
framed in a tabular setting and do not yet extend to a continuous setting where function approximation
could be leveraged to allow the low-level agent to generalise over sub-goals and to consider setting
beyond the tabular case described in this article. Overcoming those limitations is an interesting
direction for future work.
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A Appendix

A.1 Proof of Theorem

Theorem 3.1 states that there exist positive constants cl, ch and δ0 such that for every δ ∈ (0, δ0)
and for every algorithm A that satisfies a PAC guarantee for (ϵ, δ) and outputs a deterministic policy,
there is a fixed horizon MDP such that A must collect

E[Ne] = Ω

(
max

(
|Sl||Ah||A|H2

l

ϵ2
ln

( 1

δ + cl

)
,
|Sh||Ah|H2

h

ϵ2
ln
( 1

δ + ch

)))
(5)

episodes until its policy is (ϵ, δ)-accurate.

Proof. An ϵ-accurate pair of policies (πl, πh) satisfies
|V π∗

l ,π
∗
h

o − V πl,πh
o | ≤ ϵ. Note that by the triangle inequality, if |V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o | + |V π∗
l ,πh

o −
V πl,πh
o | ≤ ϵ, then we will have |V π∗

l ,π
∗
h

o − V πl,πh
o | ≤ ϵ. We therefore focus on showing:

(i) the number of samples required to guarantee |V π∗
l ,π

∗
h

o − V
π∗
l ,πh

o | ≤ ϵ/2 is bounded by

Ω

(
|Sh||Ah|H2

h

ϵ2 ln
(

1
δ+ch

))
(ii) the number of samples required to guarantee |V π∗

l ,πh
o − V πl,πh

o | ≤ ϵ/2 is bounded by

Ω

(
|Sl||AH ||A|H2

l

ϵ2 ln
(

1
δ+cl

))
Then, once we have both (i) and (ii), we know that after

Ω

(
max

(
|Sl||Ah||A|H2

l

ϵ2
ln
( 1

δ + cl

)
,
|Sh||Ah|H2

h

ϵ2
ln

( 1

δ + ch

)))
episodes, we will have |V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o |+ |V π∗
l ,πh

o − V πl,πh
o | ≤ ϵ and so |V π∗

l ,π
∗
h

o − V πl,πh
o | ≤ ϵ.

Part (i) Note that only learning the high-level policy when the low-level policy is optimal is equivalent
to learning an ϵ-accurate high-level policy interacting with Mh with a stationary transition function
(since the low-level behaviour is not evolving anymore). Hence we can bound the number of episodes
Nh required to have: |V ∗

h − V
π∗
l ,πh

h | ≤ ϵ, by directly applying Eq. (2) to the high-level MDP to get

E[Nh] = Ω

(
|Sh||Ah|H2

h

ϵ2
ln
( 1

δ + ch

))
.

To be able to use this result to construct the bound of interest, we need to make sure these results
can be translated into the original MDP: |V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o | ≤ ϵ. In particular, the reward functions
are not the same for Mo and Mh. We defined the original MDP’s reward function to penalize
each step unless it reaches the end goal, in which case it rewards the agent with a bonus. This
reward function was initially defined to take values in the interval [−a, b]. Without loss of generality,
we shift the reward function so that the rewards are now drawn from the interval [−a − b, 0]. In
this new setting, a successful completion of the task is rewarded with a bonus of 0. Similarly, the
low-level reward function penalizes each step unless it reaches the instructed sub-goal. Lastly, the
high-level reward function rh(sh, ah) =

∑Hl

t=1 rl(sl,t, ah), consists of the sum of the low-level
rewards accumulated during each sub-episode. A difference of scale in value function arises because
high-level rewards include the bonus the low-level agent receives for completing each sub-goal,
whereas the value functions in the original MDP do not include this bonus. To compensate for this
difference, the low-level reward is re-scaled with a penalty twice larger; the low-level reward rl
now takes values in [−2a − 2b, 0], and, under this specific reward function, the completion of a
sub-goal is rewarded by 0 as well. The re-scaling ensures that the accumulated penalties are larger
in the high-level MDPs, even for trajectories with a single intermediary step. This guarantees that
|V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o | ≤ |V ∗
h − V

π∗
l ,πh

h |. Hence after E[Nh] episodes, we have |V ∗
o − V

π∗
l ,πh

o | ≤ ϵ
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Part (ii) By a similar argument to Part (i), we can bound the number of episodes in the low-level
MDP required to obtain an ϵ-optimal low-level policy for a fixed high-level policy πh. In particular, a
lower bound on the number of episodes Nl required to have |V π∗

l ,πh

l − V πl,πh

l | ≤ ϵ can directly be
obtained from Eq. (2):

E[Nl] = Ω

(
|Sl||Ah||A|H2

l

ϵ2
ln

( 1

δ + cl

))
.

Ultimately, we are interested in a lower bound on the number of episodes in the original MDP No.
Since a single episode in the original MDP corresponds to several episodes in the low-level MDP, we
can divide the number of episodes by a factor Hh: E[No] ≥ E[Nl]

Hh
. However, the difference in episode

length between the two MDPs also induces a difference of scale in their value functions. To ensure that
the learned policies are ϵ-optimal in the original MDP we need to ensure that |V π∗

l ,πh

l −V πl,πh

l | ≤ ϵ
Hh

,
which requires at least H2

hE[Nl] low-level episodes. Combining the two arguments, we get that

E[No] ≥ E[Nl]H
2
h

Hh
= E[Nl]Hh. Since we are computing a lower bound on the number of episodes

in the original MDP required to learn a near-optimal policy and recognising that Hh ≥ 1, we can
conclude that E[No] ≥ E[Nl].

This leads us to a lower bound on the number of episodes needed to obtain an ϵ-accurate pair of
policies as the one stated in the theorem.

A.2 Additional Experiments

A.2.1 More n-rooms Problems

In the experimental section (Sec. 5), we used several room layouts. In the main paper, we only
provide learning curves for mazes that are composed of rooms without any obstacles or mazes that
are composed of all the possible room layouts depicted in the rightmost plot of Fig. 4. To complete
our experiment, we show below in (Fig. 5 and Fig. 6) the learning curve obtained when mazes are
built from two or three different room layouts. These learning curves highlight the same behaviour
that we previously discussed. With simple mazes, the low-level MDP strongly dominates the bound
but as we increase the high-level MDP complexity (i.e. the number of rooms), the benefit of the
hierarchical machinery becomes evident. Note also that those results were used to plot the evolution
of the bound ratio in the leftmost plot of Fig. 4.

Figure 5: Shows learning curves on various maze sizes with two different room instances; either the
room is empty, or it has a U-shape obstacle in it. The agent’s performance is measured in the number
of steps it requires to solve the task.
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Figure 6: Shows learning curves on various maze sizes with three different room layouts; either the
room is empty or it has either a U-shape obstacle or the room is stripped with horizontal walls. The
performance of the agent is measured in the number of steps it requires to solve the task.
A.2.2 Taxi Environment

Another task we consider is the taxi environment [9]. In this environment, the agent is tasked to pick
up a passenger and bring them to a specific location. As illustrated in Fig. 7 the taxi environment
is a grid world composed of 25 cells (5× 5 grid). At the beginning of an episode, the passenger is
assigned a random initial location, which can only be in one of the four taxi stations depicted by the
letters R, G, Y and B in Fig. 7 right plot, and a final destination which is any of the three remaining
taxi stations. When visualising the environment, the location of the passenger is denoted by the letter
in blue and the final destination by the purple letter. The initial position of the taxi is also randomly
sampled, and to complete the task, the taxi will have first to pick up the passenger and then deliver
him to his final destination.

This problem can be formalized by a MDP. The state space S encodes the 404 reachable states. While
the 25 possible taxi locations, the 4 possible destinations and the 5 potential passenger locations
suggest that there are 500 states. The states where the passenger is at the destination but the taxi is
somewhere else are not possible and there are 24 ∗ 4 = 96 such configurations. The action space A
consists of the six possible actions (move up, down, left, right, pickup, dropoff). The default horizon
H considered for this environment is 200 steps. The initial state distribution uniformly chooses the
cell in which the taxi starts the episode as well as the passenger’s initial location and destination. The
reward function assigns a positive bonus (+20) for successfully delivering the passenger, a penalty
for illegal action such as an inappropriate dropoff and pickup action (-10) and a small penalty (-1)
for each remaining step. The characteristics of the original MDP for this problem are the following
|S| = 404, |A| = 6 and H = 200.

To apply HSQL, the following decomposition was considered:
(i) High-level MDP: The high-level state space only encodes the current passenger location and the
final desired destination, hence |Sh| = 20. The high-level action space is composed of 8 possible sub-
goals |Ah| = 8. Each sub-goal encodes one of the four special locations and whether the passenger
should be picked up or dropped off. Since all possible initial configurations can be completed with
only two sub-goals, first a pick-up instruction and then a drop-off instruction, the horizon of the
high-level MDP is Hh = 2.
(ii) Low-level MDP: The low-level agent needs to be able to perform all primitive actions so Al = A.
Then, the low-level state space encodes the current location of the taxi as well as the instructed
sub-goal, yielding to a state space of size |Sl| = 200. Since the trip is evenly divided into two
separate instructions, the horizon of the low-level agent is Hl = 100.

By Theorem 3.1, we can observe that the low-level MDP is likely to dominate the bound and to
drive the overall complexity of the problem. Ignoring the constant terms in the bound, our theory
suggests that small improvement should still be possible. This is confirmed by our empirical results
in Fig. 7 (left plot) which shows a significantly steeper learning curve for HSQL compared to Q-
learning on the taxi task. In order to make the comparison between the two algorithms as fair as
possible, we considered a range of possible hyperparameter values and for each algorithm, we only
report the best-performing setting. The hyperparameters considered are the initial exploration rate

15



Figure 7: Left plot shows the learning curves of HSQL and Q-learning in the taxi environment. Right
plot illustrates the taxi environment; the agent (yellow square) needs to navigate a grid world to reach
the pickup location (encoded by the blue letter) and drop off the passenger at its final destination
(encoded as the purple letter). The remaining letters are the possible pickup and drop-off locations.
Note that the taxi needs to learn how to navigate the grid world in order to avoid the walls represented
by solid lines.

ϵ ∈ [0.1, 0.3, · · · , 0.7, 0.9] and the decay rate δ ∈ [1− 10−3, 1− 10−4, · · · , 1− 10−7]. Note that
we only considered the following decay function ϵk+1 = ϵk ∗ δk+1, where k denotes the current
episode number. The error bars are obtained by running ten different seeds.

B The Option Framework and Goal-Conditioned HRL

As most of the existing theory on HRL [30, 12, 11] has been developed in the option framework, we
recall below the definition of that framework and the connection it has with the goal-condition HRL
framework considered in this article. An immediate difference is that those previous works consider
an infinite horizon setting while we focus on a finite horizon setting. For the remainder of this section,
we describe some other significant differences.

Let’s first recall that the tuple M = ⟨S,A, p, r, γ⟩ describe a finite MDP, where S is a finite set of
states, A is a finite set of actions, p(s′|s, a) is the probability of transitioning to the state s′ given that
in state s action a was executed, r(s, a) is the reward distribution associated with the state action
pair (s, a) and, lastly, γ is the discount factor. A policy π : S → A maps each state to an action. An
option is a tuple o = {Io, βo, πo}, where Io ⊂ S is the initiation set, i.e. the set of states where the
option o can be started, βo : S → [0, 1] is the probability distribution to terminate in option in a given
state and finally πo is the intra-option policy, i.e. the policy followed until the option ends.

Whenever the set of primitive actions A is replaced by a set of options O the original MDP M,
becomes a semi-MDP MO = ⟨SO,O, pO, rO, τO⟩. The state space SO ⊆ S is the set of all initial
and terminal states. O denotes the set of options and pO(s

′, o, s) is the probability to end option o in
state s′ given that it was started in state s:

pO(s
′, o, s) =

∞∑
k=1

P (sk = s′|s, πo)βo(s
′),

where P (sk = s′|s, πo) is the probability to reach state s′ in exactly k steps from state s under policy
πo. ro(s, o) is the distribution of reward cumulated when starting policy πo in state s. Lastly, τO is
the distribution of holding time, i.e. the number of primitive steps executed to reach s′ from s under
policy πo.

It is possible to map the goal-conditioned HRL framework onto the options framework. Sub-goals
would correspond to options, the initiation set of a given option o includes all states where the
corresponding sub-goal gsub is available, the option will terminate with probability 1 if the goal state
has been reached or the Hl time steps have been executed and terminate with probability 0 otherwise.
Lastly, the intra-option policy πo corresponds to the low-level policy πl(·|gsub) conditioned on the
corresponding sub-goal.
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From a theoretical standpoint, the key difference between the results in [11, 12, 30] and the ones
presented in this article are that they assume the intra-option policies πo to be known. If we do not
assume strong prior knowledge about the task, the number of potential intra-option policies will be
prohibitive. In this article, we investigate algorithms that do not make assumptions about the low-level
policy and jointly learn the low- and high-level policies through interactions with the environment,
thus going beyond what has been done for the options framework.
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