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ABSTRACT

The dominant paradigm for learning video-text representations – noise contrastive
learning – increases the similarity of the representations of pairs of samples that
are known to be related, such as text and video from the same sample, and pushes
away the representations of all other pairs. We posit that this last behaviour is too
strict, enforcing dissimilar representations even for samples that are semantically-
related – for example, visually similar videos or ones that share the same depicted
action. In this paper, we propose a novel method that alleviates this by leveraging
a generative model to naturally push these related samples together: each sample’s
caption must be reconstructed as a weighted combination of other support sam-
ples’ visual representations. This simple idea ensures that representations are not
overly-specialized to individual samples, are reusable across the dataset, and re-
sults in representations that explicitly encode semantics shared between samples,
unlike noise contrastive learning. Our proposed method outperforms others by a
large margin on MSR-VTT, VATEX, ActivityNet, and MSVD for video-to-text
and text-to-video retrieval.

1 INTRODUCTION

Noise contrastive learning (Gutmann & Hyvärinen, 2010) is emerging as one of the best ap-
proaches to learn data representations both for supervised (Khosla et al., 2020) and unsupervised
regimes (Chen et al., 2020c). The idea is to learn a representation that discriminates any two data
samples while being invariant to certain data transformations. For example, one might learn a repre-
sentation that identifies a specific image up to arbitrary rotations (Misra & van der Maaten, 2020). In
a multi-modal setting, the transformations can separate different modalities, for example, by extract-
ing the audio and visual signals from a video. The resulting noise contrastive representation asso-
ciates audio and visual signals that come from the same source video, differentiating others (Patrick
et al., 2020).

The noise contrastive approach is motivated by the fact that the transformations that are applied to
the data samples leave their ‘meaning’ unchanged. For example, rotating an image does not change
the fact that it contains a cat or not (Gidaris et al., 2018). However, in most cases, we expect to
find many data samples that share the same content without being necessarily related by simple
transformations (e.g. think of any two images of cats). Existing noise contrastive formulations are
unaware of these relationships and still try to assign different representations to these samples (Wu
et al., 2018), despite the fact that they are semantically equivalent. If the representation is learned
for a downstream task such as semantic video retrieval, this might degrade performance.

This suggest that there might be other learning signals that could complement and improve pure
contrastive formulations. In this paper, we explore this idea in the case of learning from two modali-
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Fig. 1: Cross-modal discrimination and cross-captioning. Our model learns from two comple-
mentary losses: (a) Cross-modal contrastive learning learns strong joint video-text embeddings,
but every other sample is considered a negative, pushing away even semantically related captions
(orange arrows). (b) We introduce a generative task of cross-captioning, which alleviates this by
learning to reconstruct a sample’s text representation as a weighted combination of a support-set,
composed of video representations from other samples.

ties: videos and text, in the form of video transcripts or captions. Given a state-of-the-art contrastive
formulation that learns from these two modalities, we investigate complementary pretext objectives
to improve it. First, we consider the (instance) captioning task, namely mapping a video to the
corresponding text, casting this as a conditional stochastic text generation problem. We show that
this brings only a modest benefit.

We observe that the captioning task is highly sample-specific, as the goal is to produce a caption
which describes a specific video and not any other video, and thus it suffers from the same disad-
vantages (discouraging concept sharing among samples) as contrastive learning. Thus, we propose
to address this issue by switching to a different text generation task. The idea is to modify the text
generator to take as input a learnable mixture of a support-set of videos, which we call cross-instance
captioning. The mixture weights are generated by comparing the learned video representations to
captions’ representations in an online way over the batch. The limited set of support samples acts
as a bottleneck that encourages extraction of shared semantics. In this manner, the embeddings can
associate videos that share similar captions even if the contrastive loss tries to push them apart.

We show that, when the captioning task is added in this manner, it brings a sensible improvement to
already very strong video representation learning results, further improving our own state-of-the-art
baseline by a significant margin.

2 RELATED WORKS

Learning data representations from unlabelled data has been a long standing goal of machine learn-
ing. These approaches are called “self-supervised learning” because the learning signals, termed
pretext tasks, are obtained from the data itself. In the image and video domain, pretext tasks include
colorization (Zhang et al., 2016), rotation (Gidaris et al., 2018), or clustering (Asano et al., 2020a;b;
Caron et al., 2018; Ji et al., 2018), while in the natural language domain, masked language model-
ing (Devlin et al., 2019), and next word prediction (Mikolov et al., 2013; Pennington et al., 2014)
are extremely popular. These pretext tasks can be broadly classified into two classes: generative and
discriminative.

Discriminative approaches learn representations by differentiating input samples, using objectives
such as the contrastive loss (Gutmann & Hyvärinen, 2010; Hadsell et al., 2006). Discriminative
approaches have proven to be particularly successful for image (Chen et al., 2020c; He et al., 2020;
Misra & van der Maaten, 2020; Wu et al., 2018) and video (Han et al., 2019; Morgado et al., 2020;
Patrick et al., 2020) representation learning. Generative approaches, on the other hand, try to re-
construct its input. GANs (Donahue & Simonyan, 2019; Goodfellow et al., 2014; Radford et al.,
2015), autoencoders (Hinton & Salakhutdinov, 2006) and sequence-to-sequence models (Huang
et al., 2020; Sutskever et al., 2014) are popular generative models. In this work, we show the im-
portance of combining both discriminative and generative objectives to learn effective video-text
representations.

The success of representation learning has also been due to advances in model architectures, such as
the Transformer (Vaswani et al., 2017). BERT (Devlin et al., 2019) demonstrated that a transformer
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Fig. 2: (a) Our cross-modal framework with the discriminative (contrastive) objective and the gen-
erative objective. The model learns to associate video-text pairs in a common embedding space with
text and video encoders (top). Meanwhile, the text must also be reconstructed as a weighted com-
bination of video embeddings from a support-set (bottom), selected via attention, which enforces
representation sharing between different samples. (b) Weights matrices (attention maps) used in
each cross-captioning objective (see section 3.1.2).

architecture pretrained on large-scale textual data can learn transferable text representations that can
be fine-tuned on a variety of downstream tasks. Subsequent works (Clark et al., 2020; Lewis et al.,
2020a;b; Radford et al., 2019; Raffel et al., 2019) have improved upon the transformer architecture
or training objective to learn even better representations. Inspired by the success of transformers in
the NLP domain, several works have leveraged transformers to learn transferable image (Chen et al.,
2020a; Desai & Johnson, 2020; Sariyildiz et al., 2020) or multi-modal image-text (Chen et al., 2019;
Li et al., 2020a; 2019; Lu et al., 2019; Su et al., 2019; Tan & Bansal, 2019) and video-multilingual
text (Huang et al., 2021) representations. In this work, we leverage the transformer architecture to
better encode and represent text and video.

Large-scale training data has enabled the more effective pretraining of image (Sun et al., 2017;
Yalniz et al., 2019), video (Ghadiyaram et al., 2019; Thomee et al., 2016) and textual representa-
tions (Raffel et al., 2019). The release of the HowTo100M dataset (Miech et al., 2019), a large-scale
instructional video dataset, has spurred significant interest in leveraging large-scale pretraining to
improve video-text representations for tasks such as video question-answering (Lei et al., 2018),
text-video retrieval (Liu et al., 2019) and video captioning (Zhou et al., 2018b) on smaller datasets
such as YouCookII (Zhou et al., 2018a), MSVD (Venugopalan et al., 2015a), MSR-VTT (Xu et al.,
2016), LSMDC (Rohrbach et al., 2017), DiDeMo (Hendricks et al., 2018) and ActivityNet (Krishna
et al., 2017). Although semantically rich and diverse, instructional videos from the web are super
noisy and therefore a few approaches have been proposed to combat this. A few works (Luo et al.,
2020; Sun et al., 2019a;b; Zhu & Yang, 2020) extend the BERT model to accept both visual and
textual tokens to learn high-level semantic video-text representations. Other works have leveraged
the contrastive loss (Miech et al., 2020) and show that using the raw audio (Alayrac et al., 2020;
Rouditchenko et al., 2020) and other modalities (Gabeur et al., 2020) can be used to better align
and improve video-text representations. While all these approaches rely on a contrastive objec-
tive, VidTranslate (Korbar et al., 2020) shows that a generative objective can also be used to learn
joint video-text representations. In contrast to Korbar et al. (2020), we show that combining con-
trastive and generative objectives to pre-train video-text representations on large-scale data such as
HowTo100M is very effective. The generative objective serves as regularizer to mitigate the strict-
ness of the instance discrimination task of the constrastive objective, showing benefits similar to
approaches such as clustering (Caron et al., 2020; Li et al., 2020b) and feature mixing (Kalantidis
et al., 2020) which have been applied in the image domain.
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3 METHOD

We consider the problem of learning multimodal representations from a corpus C of video-text pairs
(v, t), where v is a video and t is its corresponding text (caption or transcription). Our goal is to
learn a pair of representation maps cv = Ψ(v) and ct = Φ(t), with outputs in a d-dimensional
embedding space cv, ct ∈ Rd, where semantically similar instances are close to each other.

3.1 OBJECTIVE FOR LEARNING MULTIMODAL REPRESENTATIONS

We consider two learning objectives, also illustrated in Figure 1. The first is the contrastive objective,
pushing embeddings ct and cv to be close if text t and video v come from the same sample and push-
ing them apart otherwise. This assumes that every sample is its own class and does not benefit from
modelling similiarities across instances. The second objective is generative captioning. In its most
basic variant, it maximizes the probability of generating the text t given the corresponding video v.
However, we suggest that variants that explicitly promote concept sharing between instances will
result in better downstream performance, in tasks such as video retrieval. These variants, illustrated
in Figure 2, have in common that the caption t is reconstructed from a learned weighted combina-
tion over other videos v̂. This is a form of attention (Bahdanau et al., 2014) which encourages the
network to learn about which videos share similar semantics, compensating for the contrastive loss
and grouping them implicitly.

In the following, we denote with B ⊂ C a batch of multi-modal samples, i.e. a finite collection of
video-text pairs (t, v) ∈ C. For simplicity, we denote the batch as B = {(ti, vi)}Bi=1}.

3.1.1 CONTRASTIVE OBJECTIVE

To define the contrastive objective, let s(a, b) = a>b
‖a‖‖b‖ be the similarity measure between vectors

a and b. Following Faghri et al. (2018), we adopt the hinge-based triplet ranking loss with hard
negative mining:

Lcontrast =
1

B

B∑
i=1

[
max

j

[
α− s(cit, civ) + s(cit, c

j
v)
]
+

+ max
j

[
α− s(cit, civ) + s(cjt , c

i
v)
]
+

]
, (1)

where α is the correlation margin between positive and negative pairs and [·]+ = max{0, ·} is the
hinge function. In our experiments, we set α = 0.2.

3.1.2 CROSS-CAPTIONING OBJECTIVES

In the conventional captioning, the decoder seeks to optimize the negative log-likelihood of a text
sequence t given its corresponding video v:

Lcaption = − 1

B

B∑
i=1

log p(ti|eiv). (2)

Here, the log-likelihood is obtained via auto-regressive decoding (Vaswani et al., 2017) from an
intermediate video embedding eiv = Φ′(vi). For the cross-captioning objective, we modify this loss
to condition the generation process on a weighted average of the embeddings of the other videos
in the batch, which we call the support-set. The weights themselves, which can be interpreted as a
batch-wise attention, are obtained as a softmax distribution with temperature T over batch indices
based on the video embeddings, as follows:

Lcross-captioning = − 1

B

B∑
i=1

log p(ti|ēiv), ēiv =
∑
j∈Si

exp 〈cit, cjv〉/T∑
k∈Si exp 〈cit, ckv〉/T

· ejv. (3)

By default, the summation in the softmax is conducted over a support set Si containing all indices
except i. In the experiments, we consider the following attention types for reconstruction. Iden-
tity captioning (Si = {i}) generates the caption from the corresponding video and reduces to the
standard captioning objective, eq. (2). Full support (Si = {1, . . . , B}) considers all videos as pos-
sible candidates for captioning. Hybrid captioning sets the weights in eq. (3) as the average of the
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weights for identity captioning and full support. Cross-captioning (Si = {j 6= i}) considers all
but the video that one wishes to caption. This variant forces the network to extract all information
required for captioning from other videos in the batch. Figure 2 compares graphically these attention
mechanisms.

Considering both discriminative and generative objectives for learning multimodal representations,
our full objective is L = Lcontrast +λLcross-captioning, where λ balances two objectives. We set λ = 10
to ensure similar magnitudes for both losses in our experiments. In the training phase, we use
Adam (Kingma & Ba, 2015) to minimize our loss. At inference time, we directly use Φ(t) and Ψ(v)
to encode video and text representations for retrieval.

3.2 MODEL ARCHITECTURE

We now discuss the details of the encoders and decoder components in our architecture, illustrated
in fig. 2. For the text decoder p(t|ev) in eq. (2) and (3), we use a pre-trained T-5 decoder (Raffel
et al., 2019).

For the video representation cv = Ψ(v) = Ψ′′(Ψ′(v)), we use a video encoder ev = Ψ′(v) followed
by a multi-layer transformer pooling head cv = Ψ′′(ev). The encoder Ψ′(v) concatenates the output
of pretrained ResNet-152 (He et al., 2016) and R(2+1)D-34 (Tran et al., 2018) networks applied to
individual video frames, resulting in a code ev = [ev1 · · · evM ] where M is the maximum duration
of a video clip. For the pooling head cv = Ψ′′(ev), we consider a transformer architecture to
attend to important context and summarize it into a fixed-length representation cv . For this, we
follow MMT (Gabeur et al., 2020), but with two important differences. First, while MMT uses
7 expert features that results in 7× the sequence length, we only use a transformer to attend to
early-fused motion and appearance features as the video representation, thus significantly reducing
the sequence length and computational cost. Second, instead of stacking 6 transformer layers to
encode the visual stream as in MMT, we only use a shallow two-layer transformer architecture with
additional pre-encoders, further increasing model efficiency. As temporal 1D-convolutional neural
networks (CNNs) (LeCun et al., 1998) were shown to effectively capture temporal dependencies in
videos (Dong et al., 2019), we integrate CNNs into our transformer pooling heads to better capture
video temporal signals. In more detail, we compute cv = Ψ′′(ev) by chaining two transformer
layers, each of the type:

ψ(e) = BN(FFN(eattn) + eattn), eattn = BN(MHA(f(e)) + f(e)). (4)

Here f is a pre-encoder that refines the video representation; we found empirically that a 1D
CNN works well for this purpose. Then, we apply multi-head self-attention (MHA) (Huang et al.,
2019; Vaswani et al., 2017) followed by a feed-forward network (FNN) with batch normalization
(BN) (Ioffe & Szegedy, 2015). The architecture maps the input sequence ev to a new ‘contextual-
ized’ sequence of representation vectors; we take the first one as cv .

The text representation decomposes in the same way as ct = Φ(t) = Φ′′(Φ′(t)). The text encoder
et = Φ′(t) uses a pretrained T-5 network resulting in a code et = [et1 · · · etN ], where N is the
maximum length of a sentence. The pooling head ct = Φ′′(et) follows the same design as the video
case, but f is set to a recurrent neural network (RNN) instead of a CNN. Please refer to the appendix
for details.

In practice, for computational reasons, we use eq. (3) to finetune the parameters of all networks
except the video encoder Ψ′(v), which is fixed.

4 EXPERIMENTS

We validate empirically the ability of our method to learn better representations for the downstream
tasks of text-to-video and video-to-text retrieval. First, in sec. 4.2 we ablate various model com-
ponents on the MSR-VTT dataset. Then, in sec. 4.3 we show that our best model significantly
outperforms state-of-the-art retrieval systems on three datasets, MSR-VTT, ActivtyNet and VATEX.
Finally, in sec. 4.4 we analyse qualitatively the effect of the attention mechanism used during train-
ing.
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Table 2: Model Architecture and Training Details Ablation. Text→Video retrieval performance
on MSR-VTT. Recall@1, 5, and Median Recall are shown.

(a) Video Encoder. Stronger features and combina-
tion improves performance.

Feature source R@1 ↑ R@5 ↑ MdR ↓
R-152 20.8 46.2 6.0
R(2+1)D-34 23.7 53.2 4.0
R(2+1)D-34 +R-152 27.2 55.2 3.0

(b) Feature Aggregation. Learning temporal atten-
tion yields strong gains over pooling.

Temporal reduction R@1 ↑ R@5 ↑ MdR ↓
Max 21.8 49.5 8.0
Mean 22.5 51.3 6.0
Multi-Head Attn 27.2 55.2 3.0

(c) Text Encoder. Stronger encoding of
text improves retrieval.

Text Encoder R@1 ↑ R@5 ↑ MdR ↓
W2V (GloVe) 22.1 49.8 6.0
T5-Small 24.5 51.2 3.0
T5-Base 27.2 55.2 3.0

(d) Text Decoder. Stronger decoding of text im-
proves retrieval.

Text Encoder Text Decoder R@1 ↑ R@5 ↑ MdR ↓
T5-Base T5-Small 26.2 54.2 3.0
T5-Base T5-Base 27.2 55.2 3.0

(e) Contrastive Loss. Inter-modal Triplet loss yields the best performance.

Contrastive R@1 ↑ R@5 ↑ MdR ↓
InfoNCE (inter+intra) 10.7 28.5 15.0
InfoNCE (inter) 10.8 29.0 14.5
Triplet (inter+intra) 26.8 56.2 3.0
Triplet (inter) 27.2 55.2 3.0

(f) Support-set Size. Retrieval degrades when reconstructing from too small and too large sets.

Batch-size Memory bank

Size 8 16 32 64 128 256 512 2k 8k

R@1/5 18.5/45.6 20.7/49.9 25.2/54.6 27.2/55.2 28.0/56.1 26.9/55.0 25.3/53.5 26.8/54.7 26.2/52.7

4.1 EXPERIMENTAL SETUP

Datasets. HowTo100M (Miech et al., 2019) is a large-scale instructional video collection of 1.2
million YouTube videos, along with automatic speech recognition transcripts. We use this dataset
for our pre-training experiments. MSR-VTT (Xu et al., 2016) contains 10,000 videos, where each
video is annotated with 20 descriptions. We report results on the 1k-A split (9,000 training, 1,000
testing) as in Liu et al. (2019). VATEX (Wang et al., 2019) is a multilingual (Chinese and English)
video-text dataset with 34,911 videos. We use the official training split with 25,991 videos and
report on the validation split as in HGR (Chen et al., 2020b). The ActivityNet Caption (Krishna
et al., 2017) dataset consists of densely annotated temporal segments of 20K YouTube videos. We
use the 10K training split to train from scratch/ finetune the model and report the performance on
the 5K ‘val1’ split. The MSVD (Chen & Dolan, 2011) dataset consists of 80K English descriptions
for 1,970 videos from YouTube, with each video associated with around 40 sentences each. We use
the standard split of 1,200, 100, and 670 videos for training, validation, and testing (Liu et al., 2019;
Venugopalan et al., 2015b; Xu et al., 2015).

Table 1: Effect of learning
objectives. Text→Video re-
trieval on MSR-VTT.

R@1↑ R@5↑ MdR↓
None 25.9 53.0 4.0
Identity 26.4 51.9 4.0
Full 25.8 53.9 3.0
Hybrid 26.0 54.8 3.0
Cross 27.2 55.2 3.0

Evaluation Metrics. To measure the text-to-video and video-to-
text retrieval performance, we choose Recall at K (R@K) and Me-
dian Rank (MedR), which are common metrics in information re-
trieval.

4.2 ABLATIONS

In Tab. 2, we first only ablate the cross-modal retrieval part of our
network architecture, while the generative objectives are analysed
in Tab. 1.

6



Published as a conference paper at ICLR 2021

Video Encoder. In Tab. 2a, we show the effect of the choice of
visual input features. We find that for text-to-video retrieval at Recall at 1 and 5 (R@1, R@5),
features obtained from a video R(2+1)D-34 ResNet achieve 2.9% and 7.0% higher performance
compared to only image-frame based features from a ResNet-152. A further 3.5% and 2.0% can be
gained by concatenating both features, yielding the strongest MdR of 3.0%.

Feature Aggregation. While the features from both video and image-based visual encoders have re-
duced spatial extent after a fully-connected layer, the temporal dimension can be reduced in various
ways. In Tab. 2b, we find that our multi-head, parameterized attention reduction yields strong gains
over the mean- or max-pooling baselines of over 4% for R@1. This shows that learning attention
over the temporal dimension of fixed feature sets can give strong gains even without fine-tuning the
encoder.

Text Encoder. In Tab. 2c, we find decent gains of 2.7% and 0.4% for R@1,5 for using T5-base,
instead of T5-small. We do not use the T-5-Large model, as in Korbar et al. (2020), due to the
prohibitively large relative model size increase of +220%.

Text Decoder. In Tab. 2d, we find that using a larger text decoder gives a 1% increase in performance
when using the cross-captioning objective.

Contrastive Loss. To validate the choice of a triplet loss in eq. (1), in Tab. 2e, we compare the
results of the InfoNCE contrastive loss (Oord et al., 2018) with a triplet loss, with both the intra and
inter-intra modality variants. We find that InfoNCE (Oord et al., 2018) loss does not work well in
our case, likely due to the difficulty in tuning this loss to have the right combination of temperature
and batch-size.

Support-Set Size. Lastly, in Tab. 2f, we show the effect of the size of the support set used for
cross-instance captioning. We find that our reconstruction loss indeed acts as a bottleneck, with both
smaller and very large sizes degrading the performance.

Captioning Objective. In Tab. 1, we show the effect of the different variants of our learning objec-
tive eq. (3). First, we find that the naive addition of a reconstruction objective (“Identity”) does not
improve the contrastive-only baseline (“None”) much. Considering reconstruction from other videos
improves the performance more. In particular, the “Hybrid” variant, which combines “Identity” and
“Full” (sec. 3.1.2) improves Recall at 1 and 5 from 25.9% and 53.0% to 26.0% and 54.8%, respec-
tively. However, the best result by far (27.2/55.2%) is obtained forcing captions to be reconstructed
only from other videos, via our cross-instance attention mechanism (“Cross”). This variant cannot
use information contained in a video to generate the corresponding caption and thus entirely relies
on the model to discover meaningful relationship between different videos. This newly-proposed
scheme seems to have the most beneficial effect for semantic retrieval.

Table 3: Retrieval performance on the MSR-VTT dataset. Models in the second group are
additionally pretrained on HowTo100M.

Text→Video Video→Text

R@1↑R@5↑R@10↑MdR↓ R@1↑R@5↑R@10↑MdR↓
Random Baseline 0.1 0.5 1.0 500.0 0.1 0.5 1.0 500.0
JSFusion (Yu et al., 2018) 10.2 31.2 43.2 13.0 − − − −
HT100M (Miech et al., 2019) 12.1 35.0 48.0 12.0 − − − −
JPoSE (Wray et al., 2019) 14.3 38.1 53.0 9.0 16.4 41.3 54.4 8.7
CE (Liu et al., 2019) 20.9 48.8 62.4 6.0 20.6 50.3 64.0 5.3
MMT (Gabeur et al., 2020) 24.6 54.0 67.1 4.0 24.4 56.0 67.8 4.0
Ours 27.4 56.3 67.7 3.0 26.6 55.1 67.5 3.0

VidTranslate (Korbar et al., 2020) 14.7 − 52.8 − − − − −
HT100M (Miech et al., 2019) 14.9 40.2 52.8 9.0 16.8 41.7 55.1 8.0
NoiseEstimation (Amrani et al., 2020) 17.4 41.6 53.6 8.0 − − − −
UniVL (Luo et al., 2020) 21.2 49.6 63.1 6.0 − − − −
AVLnet (Rouditchenko et al., 2020) 27.1 55.6 66.6 4.0 28.5 54.6 65.2 4.0
MMT (Gabeur et al., 2020) 26.6 57.1 69.6 4.0 27.0 57.5 69.7 3.7

Ours-pretrained 30.1 58.5 69.3 3.0 28.5 58.6 71.6 3.0
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Table 4: Retrieval performance on the VATEX dataset

Text→Video Video→Text

R@1↑R@5↑R@10↑ MdR↓ R@1↑R@5↑R@10↑ MdR↓
Random Baseline 0.2 0.7 1.05 2000.5 0.02 0.1 1.02 2100.5
VSE (Kiros et al., 2014) 28.0 64.3 76.9 3.0 − − − −
VSE++ (Faghri et al., 2018) 33.7 70.1 81.0 2.0 − − − −
Dual (Dong et al., 2019) 31.1 67.4 78.9 3.0 − − − −
HGR (Chen et al., 2020b) 35.1 73.5 83.5 2.0 − − − −
Ours 44.6 81.8 89.5 1.0 58.1 83.8 90.9 1.0

Ours-pretrained 45.9 82.4 90.4 1.0 61.2 85.2 91.8 1.0

Table 5: Retrieval performance on ActivityNet

Text→Video Video→Text

R@1↑R@5↑R@50↑MdR↓ R@1↑R@5 ↑R@50↑MdR↓
Random Baseline 0.02 0.1 1.02 2458 0.02 0.1 1.02 2458
FSE(Zhang et al., 2018) 18.2 44.8 89.1 7.0 16.7 43.1 88.4 7.0
CE (Liu et al., 2019) 18.2 47.7 91.4 6.0 17.7 46.6 90.9 6.0
HSE (Zhang et al., 2018) 20.5 49.3 − − 18.7 48.1 − −
MMT (Gabeur et al., 2020) 22.7 54.2 93.2 5.0 22.9 54.8 93.1 4.3
Ours 26.8 58.1 93.5 3.0 25.5 57.3 93.5 3.0

MMT-pretrained (Gabeur et al., 2020) 28.7 61.4 94.5 3.3 28.9 61.1 94.3 4.0
Ours-pretrained 29.2 61.6 94.7 3.0 28.7 60.8 94.8 2.0

Table 6: Retrieval performance on the MSVD dataset

Text→Video Video→Text

R@1↑R@5↑R@10↑MdR↓ R@1↑R@5↑R@10↑MdR↓
VSE (Kiros et al., 2014) 12.3 30.1 42.3 14.0 − − − −
VSE++ (Faghri et al., 2018) 15.4 39.6 53.0 9.0 − − − −
Multi. Cues (Mithun et al., 2018) 20.3 47.8 61.1 6.0 − − − −
CE (Liu et al., 2019) 19.8 49.0 63.8 6.0 − − − −
Ours 23.0 52.8 65.8 5.0 27.3 50.7 60.8 5.0

Ours-pretrained 28.4 60.0 72.9 4.0 34.7 59.9 70.0 3.0

4.3 COMPARISON TO STATE-OF-THE-ART

In this section, we compare the results of our method to other recent text-to-video and video-to-text
retrieval approaches on various datasets. In Tab. 3 to 5, we show the results of our model applied
to text-to-video and video-to-text retrieval on MSR-VTT, VATEX, ActivityNet and MSVD with and
without pre-trainig on HowTo100M. Without pre-training, our method outperforms all others in all
metrics and datasets. In particular, for the VATEX dataset, our retrieval performance at recall at
1 and 5 is 45.9% and 82.4%, exceeding recent state-of-the-art methods (Chen et al., 2020b) by a
margin of 9%. For ActivityNet, our model outperforms MMT by a margin of 4% at recall at 1. With
pre-training on HowTo100M, our performance further increases across the board. Notably, unlike
MMT which uses 7 features, our model uses only 2 features and achieves state-of-the-art in most
metrics.

4.4 ANALYSIS

In order to better understand the effect of our learning objective, we visualize the soft attention of our
best-performing cross-instance reconstruction model in fig. 3. As we can see in the top-left square,
which shows the pairwise attention between all pairs of videos in the batch, it is highly focused, with
the model mostly attending one or two other instances in the batch.

8



Published as a conference paper at ICLR 2021

Fig. 3: Support-set attention map. At-
tention scores of all pairs in a batch (top-
left square) and a subset of rows/columns
(other squares) on VTT.

For the first video’s caption reconstruction (second
row), we find that the model solely attends to another
musical performance video that is in the batch, ignor-
ing the others. For the second video (third row), the
model focuses on another sample that shows the sea
but differs in most other aspects since there are no
semantically-equivalent clips in the batch. The third
video shares a similar scenario. These examples show
that the bottleneck is effective at forcing the model
to avoid memorising the video-caption association of
each clip in isolation, and attempt to match other clips
more broadly, since an exact (or very close) match is
not guaranteed.

5 CONCLUSION

In this work, we studied classic contrastive learning methods such as the triplet loss to learn video-
text representations for cross-model retrieval. We suggested that the contrastive approach might pull
apart videos and captions even when they are semantically equivalent, which can hinder downstream
retrieval performance. To mitigate this effect, we propose to consider a captioning pretext task as an
additional learning objective. In particular, we show that cross-instance captioning can encourage
the representation to pull together videos that share a similar caption, and are thus likely to be
equivalent for retrieval. Leveraging these ideas, our model achieves state-of-the-art performance on
the text-to-video and video-to-text retrieval tasks, on three datasets.

While we demonstrated these ideas in the specific case of text-to-video retrieval, they can in principle
generalize to any setting that utilizes a contrastive loss, including self-supervised learning, provided
that it is possible to learn reasonable conditional generators of a modality or data stream given
another.
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6 APPENDIX

The appendix is organized as follows: First, we provide more details about our model. Then we
introduce the datasets and the experimental setup. Finally, we provide additional qualitative and
quantitative experimental results for video-text retrieval and captioning.

6.1 MODEL DETAILS

Implementation details and hyper parameters. For our text encoder, we use the T5-base model
pre-trained on the “Colossal Clean Crawled Corpus” (C4) (Raffel et al., 2019). We use its corre-
sponding text tokenizer and encode a sentence into a sequence of 1024 dimensional vectors.

For our visual encoder, our model utilizes only the motion and the appearance features. For the mo-
tion feature, we use a 34-layer, R(2+1)-D (Tran et al., 2018) model pre-trained on IG65M (Ghadi-
yaram et al., 2019) and apply a spatial-temporal average pooling over the last convolutonal layer,
resulting in a 512-dimensional vector. For the appearance feature, we use the 2048-dimension flat-
tened pool-5 layer of the standard ResNet152 (He et al., 2016) pre-trained on Imagenet (Deng et al.,
2009). We extract features at a rate of 1 feature per second and simply concatenate the two features,
resulting in a 2560-dimension visual input stream. Noteworthily, instead of using 9 and 7 different
types of visual features as in CE (Liu et al., 2019) and MMT (Gabeur et al., 2020), we use only the
above 2 features and achieve on par or superior performance. Also, with early fusion, our model
does not suffer from additional computation required for the extended sequence length in MMT. For
the text decoder, we use the T5-base model decoder, also pre-trained on C4.

Add & Norm

FFN

Add & Norm

MHA

CNN/RNN

Q V

x L

Fig. 4: Transformer
pooling head.

As illustrated in Fig. 4, our transformer pooling head is composed of a
pre-encoder, a multi-head self-attention (MHA), and a feed-forward layer
(FFN). For pre-encoders, we use a one-layer MLP with a d-dimensional
output for mapping video features into the common embedding space. We
use 1024-dimension bi-directional GRU as the text pre-encoder. For the
1D-CNN prior, we use kernels with size [2, 3, 4, 6] as the visual and text
pre-encoders. We set the embedding dimension to 1024 and use 4 attention
heads in the transformer pooling layers. The hidden dimension of FFN is
2048.

Training and Inference time. Pre-training on 1.2 million HowTo100M
videos takes around 160 GPU hours (NVIDIA V100) for 20 epochs. We
speed up the pre-training process by distributing the workload over 8 GPUs.
We use 1 GPU for the fine-tuning or training from scratch experiments. For
the MSR-VTT 1k-A split, it takes 12 GPU hours to train our full model on
180K video-text pairs for 20 epochs. For Vatex, it takes 32 GPU hours to
train on 260K video-text pairs for 30 epochs. For ActivityNet, it takes 2.5
GPU hours to train on 10K video-text paris for 28 epochs.

For inference, the encoding speed is around 250-300 video/sec and 200-250 text query/sec. The
overall text-to-video search speed on 5,000 video-text pairs (5,000 text queries over 5,000 videos)
is 30-34 seconds including encoding. The speed of text-to-video retrieval is similar to video-to-text
retrieval.

6.2 EXPERIMENT DETAILS

The margin α of the max-margin loss is 0.2, and the temperature T is set to 0.1 as used in Sim-
CLR Chen et al. (2020c). We use the Adam (Kingma & Ba, 2015) optimizer with a initial learning
rate 5 · 10−5 and clip gradients greater than 0.2 during the training phase. Dropout rate is 0.3 for all
datasets besides ActivityNet (0.0).

As the average video/text lengths and videos available are quite different across datasets, we adjust
our training scheme accordingly. When training on MSR-VTT, ActivtyNet and Vatex, batch-size is
set to 64. For MSR-VTT training, we sample and truncate videos to 32 seconds, text to 100 tokens
and train for 20 epochs. For Vatex, videos are at most 64 seconds and we train for 30 epochs. For
ActivtityNet training, videos are at most 512 seconds and 256 tokens for the text part. We train
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for 28 epochs on ActivityNet. For fine-tuning HowTo100M pre-trained model, we reduce training
epochs into quarters.

6.3 DATASET DETAILS

HowTo100M (Miech et al., 2019) is a large-scale instructional video collection of 1.2 million
Youtube videos, along with automatic speech recognition transcripts. There are more than 100
million clips (ASR segments) defined in HowTo100M. We use this dataset for pretraining.

MSR-VTT (Xu et al., 2016) contains 10,000 videos, where each video is annotated with 20 descrip-
tions. For retrieval experiments and ablation studies, we follow the training protocol and defined
in Gabeur et al. (2020); Liu et al. (2019); Miech et al. (2019) and evaluate on text-to-video and
video-to-text search tasks on the 1k-A testing split with 1,000 video or text candidates defined by Yu
et al. (2018). For captioning task, we evaluate on the standard testing split with 2,990 videos.

VATEX (Wang et al., 2019) is a multilingual (Chinese and English) video-text dataset with 34,911
videos. We use the official split with 25,991 videos for training. As the testing annotations are
private in VATEX, we follow the protocol in Chen et al. (2020b) to split the validation set equally
(1,500 validation and 1,500 testing videos) for model selection and testing. For each video, 10
English and 10 Chinese descriptions are available, and we only use the English annotations.

ActivityNet Dense Caption dataset consists densely annotated temporal segments of 20K YouTube
videos. Following Gabeur et al. (2020); Zhang et al. (2018), we concatenate descriptions of seg-
ments in a video to construct “video-paragraph” for retrieval and captioning. We use the 10K training
split to train from scratch/ finetune the model and report the performance on the 5K ’val1’ split.

MSVD dataset consists of 80K English descriptions for 1,970 videos from YouTube, with each
video associated with around 40 sentences each. We use the standard split of 1200, 100, and 670
videos for training, validation, and testing (Liu et al., 2019; Venugopalan et al., 2015b; Xu et al.,
2015).

6.4 VIDEO CAPTIONING EXPERIMENTS

To measure captioning/text generation performance, we report BLEU4 (Papineni et al., 2002), ME-
TEOR (Denkowski & Lavie, 2014), Rogue-L (Lin, 2004) and CIDEr (Vedantam et al., 2015) met-
rics. We report results on the MSR-VTT, VATEX and ActivityNet datasets.

Table 7: Captioning performance on the MSR-VTT dataset

Captioning

BLUE4 METEOR Rogue-L CIDEr

VidTranslate (Korbar et al., 2020) 41.7 28.5 − −
POS+VCT (Hou et al., 2019) 42.3 29.7 62.8 49.1
ORG (Zhang et al., 2020) 43.6 28.8 62.1 50.9

Ours, MSR-VTT only 39.7 28.3 60.5 46.5
Ours, HT100M + MSR-VTT 38.9 28.2 59.8 48.6

Table 8: Captioning performance on the VATEX dataset

Captioning

Blue@4 METEOR Rogue-L CIDEr

Shared Enc-Dec (Wang et al., 2019) 28.4 21.7 47.0 45.1
ORG (Zhang et al., 2020) 32.1 22.2 48.9 49.7

Ours, VATEX only 32.8 24.4 49.1 51.2
Ours, HT100M + Vatex 32.5 24.1 48.9 50.5
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Table 9: Captioning performance on the ActivtyNet dataset

Captioning

Blue@4 METEOR Rogue-L CIDEr

DENSE (Krishna et al., 2017) 1.6 8.9 − −
DVC-D-A (Li et al., 2018) 1.7 9.3 − −
Bi-LSTM+TempoAttn (Zhou et al., 2018b) 2.1 10.0 − −
Masked Transformer (Zhou et al., 2018b) 2.8 11.1 − −
Ours, ActivityNet only 1.5 6.9 17.8 3.2
Ours, HT100M + ActivityNet 1.4 6.9 17.5 3.1

6.5 ZERO-SHOT RETRIEVAL EXPERIMENTS

We also evaluate our model in the zero-shot setting on MSR-VTT, Vatex, ActivityNet and MSVD,
after pre-training on HT100M. While we are able to get reasonable results on MSR-VTT and MSVD,
our results are not great on Vatex and Activity-Net due to significant domain gap.

Table 10: Zero-shot Retrieval performance on VATEX, MSR-VTT, MSVD and ActivityNet.

Text→Video Video→Text

R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓
Zero-Shot
ActivityNet 0.06 0.2 0.5 1907.0 0.0 0.2 0.3 2238.0
VATEX 0.07 0.4 0.7 682.0 0.07 0.4 0.9 697
MSVD 8.9 26.0 37.9 18.0 21.4 46.2 57.7 6.0
MSR-VTT 8.7 23.0 31.1 31.0 12.7 27.5 36.2 24.0

6.6 ACTION RECOGNITION

Lastly, we evaluate our model on the video action recognition task on HMDB-51 (Kuehne et al.,
2011) and UCF-101 (Soomro et al., 2012). For this, we use the R(2+1)D-34 (pretrained on IG65M)
model as well as a ResNet-152 model (pretrained on Imagenet), as in our method. We extract a
feature per second per video by concatenating the features from each model (2560-D), and obtain
an average representation per video using either average pooling (2560-D) or our proposed trans-
former pooling head (1024-D) pre-trained on HT100M using cross-captioning objective. We then
train a linear classifier for 1500 epochs for HMDB-51 (500 for UCF-101) on these features using
Adam (Kingma & Ba, 2015) optimizer with learning rate of 1e−4 and weight decay 1e−4 with early
stopping. We also drop the learning rate by 10 at epochs 200, 400 for UCF-101 and 1000, 1200
for HMDB-51. In Table 11, we show the results of training only a linear-layer on features extracted
from our fixed backbone with or without a learned transformer-pooling head. We find that our trans-
former temporal pooling head provides significant benefits over the baseline of simply average pool-
ing the features, demonstrating the effectiveness of building contextualized representations using our
proposed transformer. In particular, we see improvements of over 7% on HMDB-51 and 34% on
UCF-101 by replacing average pooling with our transformer pooling head to aggregate features. We
observe that naive average pooling performs significantly worse than our transformer pooling under
evaluation protocol. This is likely because 1) the average pooling collapses temporal information,
making the linear layer based classification difficult 2) compared to the transformer pooling, it does
not benefit from large-scale pretraining on a wide variety of action videos of HT100M. We further
compare very favorably to the current state-of-the-art approaches. In particular, we outperform all
other approaches, both supervised and self-supervised, except the recently introduced Omni (Duan
et al., 2020) which was finetuned on both UCF-101 and HMDB-51, while we only trained a linear
classifier on extracted features. However, it should be noted that it is very difficult to fairly com-
pare all these different approaches because they may use different modalities (images, RGB video,
optical flow, audio, ASR outputs), pretraining datasets (Kinetics-400, HT100M, IG65M, Imagenet),
architectures (S3D, I3D, R(2+1)D, R3D), pre-training (supervised, self-supervised) and downstream
training (frozen, finetuned) strategies.
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Table 11: Action recognition. Results of training only a linear-layer, on features extracted from our
fixed backbone with or without a learned transformer-pooling head. We compare to the state-of-art
supervised and self-supervised pretrainig methods on the HMDB-51 and UCF-101 action recogni-
tion task, for different downstream training protocols (“FT?” stands for finetuned). We report aver-
age Top-1 accuracy across all 3 folds. Dataset abbreviations: AudioSet, HMDB51, HowTo100M,
Instagram65M, IMagenet-1000, Kinetics400, OmniSource Images + Videos, Sports1M, UCF101,
YouTube8M. Other abbreviations: Video modality, Flow modality, Image modality, Audio modal-
ity, Transformer pooling, Average pooling

Method Mod Dataset Model FT? H51 U101

Self-Supervised Pre-training
MIL-NCE (Miech et al., 2020) V,T HM S3D-G 7 53.1 82.7
MIL-NCE (Miech et al., 2020) V,T HM S3D-G 3 61.0 91.3
MMV (Alayrac et al., 2020) V,T,A HM+AS TSM-50x2 7 67.1 91.8
ELo (Piergiovanni et al., 2020) V,F,A YT8M R(2+1)D-50x3 3 67.4 93.8
XDC (Alwassel et al., 2020) V,A IG65M R(2+1)D-18 3 68.9 95.5
GDT (Patrick et al., 2020) V,A IG65M R(2+1)D-18 3 72.8 95.2
MMV (Alayrac et al., 2020) V,T,A HM+AS TSM-50x2 3 75.0 95.2

Supervised Pre-training
P3D (Qiu et al., 2017) V,I S1M+IM P3D 3 − 88.6
TSN (Wang et al., 2018) V,I IM TSN 3 69.4 94.2
I3D (Carreira & Zisserman, 2017) V,I K400+IM I3D 3 74.8 95.6
R(2+1)D (Tran et al., 2018) V K400 R(2+1)D-34 3 74.5 96.8
S3D-G (Xie et al., 2018) V,I K400+IM S3D-G 3 75.9 96.8
I3D (Carreira & Zisserman, 2017) V,I K400+IM I3D 3 77.1 96.7
R(2+1)D (Tran et al., 2018) V K400 R(2+1)D-34 3 76.4 95.5
R(2+1)D (Tran et al., 2018) V,F K400 R(2+1)D-34x2 3 78.7 97.3
Omni (Duan et al., 2020) V,I K400+OS Slow-8x8-R101 3 79.0 97.3
I3D (Carreira & Zisserman, 2017) V,F,I K400+IM I3Dx2 3 80.7 98.0
Omni (Duan et al., 2020) V,F,I K400+OS Slow-8x8-R101x2 3 83.8 98.6

Ours (Avg-pooling) V,I IG65M+IM R(2+1)D-34+R152 7 73.7 64.3
Ours (T-pooling) V,I HM+IG65M+IM R(2+1)D-34+R152 7 81.3 98.0

6.7 STATISTICAL SIGNIFICANCE

In Table 12, we show the results of finetuning our pretrained model for 3 times on the VATEX
dataset. We find that the variance is quite low and our model consistently beats the state of the art.

Table 12: Retrieval performance on the VATEX dataset

Text→Video Video→Text

R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓
Random Baseline 0.2 0.7 1.05 2000.5 0.02 0.1 1.02 2100.5
VSE (Kiros et al., 2014) 28.0 64.3 76.9 3.0 − − − −
VSE++ (Faghri et al., 2018) 33.7 70.1 81.0 2.0 − − − −
Dual (Dong et al., 2019) 31.1 67.4 78.9 3.0 − − − −
HGR (Chen et al., 2020b) 35.1 73.5 83.5 2.0 − − − −
Ours 44.9±0.2 82.1±0.2 89.7±0.2 1.0 58.4±0.1 84.4±0.2 91.0±0.3 1.0
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6.8 ADDITIONAL QUALITATIVE RESULTS

We provide addition qualitative text-to-video retrieval results on MSR-VTT, VATEX, ActivityNet in
Fig. 5. Given a text query, in most cases, our model successfully retrieves the correct videos marked
in green.
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(a) MSR-VTT
a kid riding on a horse while a woman is talking
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a man is snow skiing down the mountain slope smoothly 
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(b) VATEX
A woman is seen speaking to the camera while holding an 
accordion and moving her hands around . She 
demonstrates how to play the instrument while still 
speaking to the camera and moving all around

1

2

3

A close up of nails are seen followed by a shot of brushes 
and nail polish . A person is then seen wiping polish onto a 
pad and rubbing the object all over her nails . She then 
puts a coating over the nail and shows it off again

1
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3

(0.74)

(0.73)

(0.68)

(0.68)

(0.67)
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(c) ActivityNet

Fig. 5: Examples of top-3 Text→Video retrieval results and similarities on the MSR-VTT, VATEX,
and ActivityNet testing set. Only one correct video (colored in green) for each text query on the top.
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