Under review as a conference paper at ICLR 2025

SELF-IMPROVING TRANSFORMERS OVERCOME EASY-
TO-HARD & LENGTH GENERALIZATION CHALLENGES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models often struggle with length generalization and solving
complex problem instances beyond their training distribution. We present a self-
improvement approach where models iteratively generate and learn from their own
solutions, progressively tackling harder problems while maintaining a standard
transformer architecture. Across diverse tasks including arithmetic, string manip-
ulation, and maze solving, self-improving enables models to solve problems far
beyond their initial training distribution—for instance, generalizing from 10-digit
to 100-digit addition without apparent saturation. We observe that in some cases
filtering for correct self-generated examples leads to exponential improvements
in out-of-distribution performance across training rounds. Additionally, starting
from pretrained models significantly accelerates this self-improvement process for
several tasks. Our results demonstrate how controlled weak-to-strong curricula
can systematically teach a model logical extrapolation without any changes to the
positional embeddings, or the model architecture.

1 INTRODUCTION

Despite the remarkable success of transformer-based language models (Vaswani et al.,|2017)) across a
wide range of tasks, these models exhibit significant limitations in length generalization—the ability
to extrapolate to longer sequences than those seen during training. Even in simple algorithmic tasks
such as arithmetic, standard transformer models trained with autoregressive objectives struggle to
generalize to longer problem instances (Dubois et al., 2019; Hupkes et al., |2020; Newman et al.,
2020} [Anil et al., [2022]).

To address this, prior work has explored various approaches, including changes to positional embed-
dings (Ruoss et al., 2023} |Li et al., 2023 [McLeish et al., [2024; Kazemnejad et al., 2024} |Sabbaghi
et al.,[2024; |Cho et al., 2024} Zhou et al., 2024), architectural modifications (Fan et al.| 2024} [Duan
et al.|[2023), and data format changes such as index hinting (Zhou et al.,2023};|2024). While effective
in controlled setups, these approaches are often incompatible with how large language models (LLMs)
are trained in practice, as they introduce task-specific modifications that are unclear how and to what
extent they would transfer to the general purpose settings.

In this work, we attempt to overcome length generalization challenges in the standard transformer
setting, by building around an interesting phenomenon that transformers exhibit, i.e., “transcen-
dence” (Zhang et al.,[2024])). Transcendence is the ability of a student model to generalize slightly
beyond the difficulty of the data provided by a teacher during training. Specifically, models trained
on simple instances of a task, say n digit arithmetic, can sometimes generate correct outputs for
slightly harder instances, e.g., n 4 1 digit arithmetic, with some accuracy. We leverage this property
by applying a self-improvement framework, where the model iteratively generates its own training
data and progressively learns from harder examples.

Self-improvement has been widely studied in various contexts (Singh et al., 2023} |Gulcehre et al.}
2023} [Liang et al., [2024), typically in settings where external verifiers, weak supervision, or filtering
mechanisms are used to ensure data quality. We demonstrate that extreme length generalization is
indeed possible under this framework, without any modification to the base transformer architecture.
For tasks like reverse addition and string copying, self-improvement succeeds with no explicit data
filtering. However, for harder problems such as multiplication and shortest-path finding in mazes,
self-improvement without data filtering fails due to error accumulation. We show that simple filtering

Under review as a conference paper at ICLR 2025

Forward Addition Maze-Solving Multiplication

10 Round 1 (5x5) Round7 (6x6)

111000 2.000 | 1000 | 2.000 | 1000 f 0927 2000 [1000 1,000 [1000 | 1.000 | 1000 |78

round-1

1
211000 [1000 | 1.000 | 1000 1000 | 054 2{ 2000 | 1000 [1.000 | 1000 [2000 | 1000 [0325
3

3{1000 | 1000 | 1000 | 1.000 | 1000 f 098 2000 | 1000 | 2.000 | 1000 | 1.000 | 1000 | 0520

06 round-1 H
~#- round-5 ' 2

411000 [1000 | 1.000 | 1000 | 1.000 0776

digit 1

2000 | 1000 | 1000 [1000 | 1.000 [0577

Accuracy

6 70

7 30 40 50 2000 | 1000 1000 | 1000 | 1000 1000 | 0383
Number of Digits

—#~ round-10
o s i 51000 1000 1000 | 1000 2000 s
10-digit (round 1) 19-digit (round 10) ' 6 {0525 0932 0897 0882 0863 6 {1000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
1687477129+1095477427= 3642507227842806162+491464396 0.2 | ; B
2782954556 5279623131=557151193122429293 1

: 12 3 4 5 6 7 T2 5 4 5 6 7

: aigit 2 aigit2

i i 0.0 p - Round 31 (9x9)
String Copying 3 To 3 20 2 E s
Number of Hops 5x5 (round 1)

1
107
N B 69173*19434=
08 round-0 9 H d 1 18 Hops (round 10) 3 =
806/ o~ round-20 4
3 04/ == round-30 s
& ~o~ round-40 E)
02{ —8= round-50 ° 6x6 (round 7)
00} . ’
3 2 4 &0 100 N 6785144157328~
Number of Digits 119
Length 10 (round 1) Length 19 (round 10) (6 13)+0008267421(6 Y+
10 [998091609200961 096305730966 03550903 QOIS NGB0 AT0R0) 00V BT
1095477427= 4914643965279623131= 33=678072875243
1095477427 4914643965279623131 P2aets e
) L J L digit 2 y,

Figure 1: Overview of self-improvement results. Models trained with self-improvement can tackle
increasingly complex tasks that extend far beyond their initial training distributions, achieving
significant generalization without any additional supervision.

techniques—such as length filtering and majority voting—suffice to maintain data quality and enable
self-improvement to extend far beyond the initial training distribution.

Our findings suggest that self-improvement is not limited to length generalization but also enables
easy-to-hard generalization, where a model trained on simpler tasks successfully learns harder tasks
without additional supervision. Notably, our approach does not introduce a new self-improvement
framework but instead demonstrates its effectiveness across diverse algorithmic tasks.

Furthermore, we investigate the dynamics of self-improvement and show that: (1) controlling the
weak-to-strong curriculum is crucial, as models require a structured difficulty schedule to avoid
catastrophic failure, (2) self-improvement accelerates over time, as models increasingly benefit from
harder examples, leading in some cases to exponential extrapolation, and (3) starting with a pretrained
models singificantly accelerates self-improvement, allowing to generalize further and faster than
models trained from scratch.

Our findings provide evidence that learn self-improvement is a general purpose and scalable solution
for length and easy-to-hard generalization. Our contributions can be summarized as:

1. We apply an iterative self-training framework to train transformers on the arithmetic, maze
and string manipulation tasks, and successfully tackle easy-to-hard generalization to extreme
out-of-distribution test data.

2. We motivate the importance of a carefully crafted self-improvement schedule and label filtering
based on length and majority voting, which are central to consistent self-improvement.

3. We show that the rate of self-improvement can be exponential and pretrained models can achieve
faster acceleration in easy-to-hard generalization.

4. We investigate some key failure modes of self-correction due to label noise leading to an error
avalanche, and discuss how they can be overcome through weak verification.

2 RELATED WORKS

Length and Easy-to-Hard Generalization. Length generalization is concerned with extrapolating
to longer sequence lengths than those seen during training 2022). Previous approaches to
improve length generalization includes architectural modifications, including specialized positional
embeddings (Li et al.| 2023; Ruoss et al.| 2023} McLeish et al.| 2024} [Kazemnejad et al., [2024;
[Sabbaghi et al.,[2024} |Cho et al.| [2024} Zhou et al., 2024), looping [Fan et al.|(2024), novel attention
mechanisms (Duan et al), [2023), and input format augmentation (Zhou et al), 2023} 2024). In
contrast, our approach adheres to the standard transformer architecture without introducing significant
modifications to architecture, positional encoding, or input structure. While prior approaches typically
rely on fixed-length training dataset, we alternate between training and generating training datasets.

Under review as a conference paper at ICLR 2025

Table 1: Examples of Tasks Considered

Task Type Input (Q: Prompt, A: label) Task Difficulty
Reverse Addition | Q: 31558491786=A: 232451 .
Forward Addition | Q: 85513+68719=" A: 154232 M;X digit lengthdof
e) _ A:348950+0273932(3653542) the two operands
Multiplication | Q: 34895*148= +00447874=36972305
Copy Q: 12345= A:12345 .
Reverse Q: 12345= A: 54321 Length of string
— Finding shortest path from node 2 to 19
@ m,fs:?:gi:‘::z;& (< example image for illustration) (1) Number of hops

between start & end
#B—@—6 | Q: 2>19#73:70,75-97:2,70-70:73,97,59

Maze Solving |] -75:73,30,19-2:97-30:75-59:70-19:75= | (2) Number of nodes

‘ A: 2>97>70>73>75>19

More generally, easy-to-hard generalization is the paradigm where human annotation is provided
for easier tasks but aiming to enable generalization to harder tasks with no additional supervi-
sion (Schwarzschild et al., 2021} [Bansal et al., 2022} [Burns et al., 2023; [Hase et al., 2024} |Sun et al.,
2024). For instance, |[Zhang et al.|(2024) study this franscendence phenomenon in chess, showing
that chess transformers can sometimes outperform all players in the training dataset. Similarly, |Sun
et al.| (2024) finds that a reward model trained on easier math problems can be effectively transferred
to harder problems, through reinforcement learning.

Self Improvement. When high-quality training labels are unavailable or costly to obtain, training on
self-generated labels provides an efficient way to enhance model capabilities. Typically, this involves
generating candidate labels, filtering or verifying them to prune errors, and retraining on the refined
self-generated data (Zelikman et al., 2022; |Wang et al., [2022bj [Huang et al., 2022} |Singh et al., | 2023}
Chen et al.| 2023} |Gulcehre et al., 2023 [Madaan et al.,|2024; Yuan et al., 2024; |Liang et al.,|2024)).
This approach has been successfully applied across various domains, including reasoning (Zelikman
et al., [2022; Huang et al., [2022; Singh et al., [2023)), mathematics (Zhang & Parkes, [2023; Charton
et al., 2024; Liang et al.| 2024), coding (Chen et al.l 2023)), and general instruction tuning (Wang
et al.| |2022b; [Yuan et al.l [2024).

Extensive discussion of related works is in Appendix

3 PRELIMINARIES AND EXPERIMENTAL SETUP

In this section, we describe the experimental setup, including the model architecture, tasks, training
methodology, evaluation criteria, and the self-improvement framework.

Models We adopt the LLaMA architecture with six layers, six attention heads, and an embedding
dimension of 384 and a total of 14M parameters. Positional embeddings are excluded, using the No
Positional Encoding (NoPE) method (Kazemnejad et al.,|2024). Character-level tokenization is used
across all tasks, except for the maze-solving task, where numbers (0-99) are tokenized individually.

Tasks We evaluate our approach on a diverse set of tasks, categorized into arithmetic operations,
string manipulation, and maze solving. All tasks we consider admit a straightforward notion of
difficulty. We denote the difficulty level of a problem instance x as an integer Difficulty(z). Table
provides examples, difficulty definitions, and relevant sections of each task.

* Arithmetic operations:

1. Addition : We consider both reverse and forward addition of two numbers of equal length. In
reverse addition, both operands and the answers are reversed, so they are written with the least
significant digit first. Forward addition, in contrast, follows the standard format.

2. Multiplication : Multiplication tasks are presented in a chain-of-thought (CoT) data for-
mat (Deng et al.,2024), which includes intermediate steps to guide the computation.

Under review as a conference paper at ICLR 2025

Train Dataset

Ul Train on initial difficulty

Repeat for r=1..Rself-

improvement rounds

Collect predictions on
00D data

Filter output based on

majority vote & length

Self-improvement Dataset

Continue training on ‘:\j’l
9 I_‘—L

expanded dataset Eﬁﬂ o

Figure 2: Illustration of our self-improvement procedure. At each round, the training data is updated
with the model’s predictions on progressively harder problems.

Iy

 String manipulation:
1. Copy : Copying the input sequence. 2. Reverse : Reversing the input sequence

* Maze solving: The task is to solve mazes represented as tree graphs. Given a tree graph and a
specified start node and end node, the goal is to find the shortest path.

Data Generation and Sampling We generate an initial supervised training dataset Dy of up to a
fixed difficulty level dy by uniformly sampling the difficulty level d < dy, followed by independent
sampling of the data conditioned on the difficulty. Denoting the input as x;, labels as y;,

Do = {(zi,y:)}Y°,, where Difficulty(z;) < do.

Details on data generation and sampling are provided in Appendix [C.2}

Self-Improvement Framework The self-improvement framework begins by training a model
using the labeled training dataset Dy, which gives us our base model M.

For each subsequent round r (r = 1,2, 3, . ..), we increase the problem difficulty, such as the number
of digits or string length for arithmetic and string manipulation tasks, or the number of hops for
maze-solving tasks, to d,.. Using the previous model M, _;, we generate N,. new self-improve data
samples D,. defined as:

D, = {(x, WY d,_y < Difficulty(z;) < d,

Instead of the true labels y;, we obtain the predicted labels M,._; (z;) from the output of the model.

At each self-improvement round 7, the model is trained on the combined dataset Dy UD; U- - -UD,._1,
which includes the initial labeled dataset and all subsequent self-improvement datasets. To ensure
sufficient training on the most recently generated data D,_;, we up-sample it with a sampling
probability of 50%. The remaining datasets Dy, . .., D,_o are sampled uniformly at random. This
iterative process allows the model to gradually tackle harder problems, leveraging its own predictions
to expand the training data and improve generalization.

Data Filtering We employ two unsupervised data-filtering methods to refine our self-improvement
dataset: 1) length filtering and 2) majority voting. For a given self-improved dataset D, =
{(xs, M, (;))} X7, at round , data is filtered based on specific criteria on the model-generated

outputs M, _;(z;), producing a smaller, refined dataset D, = {(x;, M,_1(z;))}7,.We provide
more details on the motivation and implementation in Section 3}

4

Under review as a conference paper at ICLR 2025

Relative Length Filtering

— ? Majority Vote Filtering

- Find max length in batch o - Train several parallel models @
) / : S
- Filter example shorter than o T - Admit example only if CID C:) ®
(max length - constant) — - : ;(*
gh predictions match f :
@D @D @D x

Figure 4: Overview of the two data-filtering methods employed.

Training and Evaluation Except for the experiments on pretrained Llama 3.2 models, all models
are trained from scratch using the conventional next-token prediction objective. The loss is computed
solely on the completion, meaning that the input prompt is masked, and only the model’s predictions
are included in the loss computation. Detailed settings, including hyperparameters and training
schedules, are provided in the Appendix [C.3]

During inference, we use greedy decoding and exact-match accuracy as the primary metric for
evaluation. A prediction is deemed correct if all tokens in the output sequence match the ground
truth; any discrepancy in the generated tokens is classified as an incorrect prediction.

4 WARM-UP: LENGTH GENERALIZATION ON REVERSE ADDITION

Reversed addition, where the
operands and output are written
with the least significant digit first,
has been shown to enhance sample
efficiency and performance (Lee
[2023). Reversed addition has
become a popular setting for studying
length generalization in arithmetic e

tasks (Lee et al. Shen et al.l

Zﬁou et a |,

: 2024} [Cho
et al.l 2024} McLeish et al, 2024).

Accuracy
Self-Improve Rounds

20 40 60
Number of Digits

Figure 3: Reverse addition task. The self-improvement
framework enables a model initially trained on 1-16 digit
examples to generalize perfectly to over 100-digit addition.
Each shade of color is a different self-improvement round.

Results Figure E] demonstrates that,
starting with a model trained on 1 to
16-digit reverse addition, the self-improvement framework enables near-perfect length generalization
up to 100 digits without any additional supervision or modifications to positional encodings, input
formats, or the Transformer architecture.

5 UNSUPERVISED DATA FILTERING

Our framework leverages models’ ability to generalize slightly beyond their training difficulty to sam-
ple increasingly hard examples. A critical component for success is the quality of the self-generated
data. Low-quality data can negatively impact the model’s generalization performance, leading to
even lower-quality data in subsequent rounds and ultimately causing a cascading degradation of the
self-improvement process as illustrated in Figure 22

While cascading error effects are analyzed in greater detail in Appendix [B.6]and Section [5] this
section focuses on two key data-filtering methods used in this work: length filtering and majority
voting (Figure d). And in Section [6] we apply the filtering methods to enable difficulty generalization
in forward addition, multiplication and mazes.

Relative Length Filtering. A common error in model-generated data is that the generated labels
are often shorter than the correct answers (Figure[I3). These observations motivate a filtering method
based on the relative lengths of model-generated predictions. Specifically, predictions shorter than a
predefined threshold—calculated relative to the maximum prediction length within their batch—are

Under review as a conference paper at ICLR 2025

filtered out. For a batch of model-predicted outputs, we identify the maximum length of the output
L = max |M,_1(z;)| and filter out predictions M, _1(z;) with lengths shorter than a predefined
threshold 7. This method is unsupervised, as it relies solely on comparing lengths within model-
generated outputs rather than referencing ground-truth labels. While particularly suited to length
generalization tasks, where harder problems are expected to yield longer answers, length-based
filtering shows broader potential for addressing similar challenges in other tasks.

Majority Voting Generating multiple candidate answers to ensure self-consistency is a widely
used approach for enhancing data quality (Huang et al., [2022; [Wang et al.,|[2022a} |Qu et al.| [2024;
Peng et al.,|2024). However, unlike the common practice of sampling multiple reasoning paths by
generating outputs with a non-zero temperature, our task of interest requires a single correct answer
for each instance. To address this, we train k£ models (Mr(lf)17 e »Mr@ﬂ using different random
seeds and self-improvement data, then apply a majority-voting mechanism with a threshold 7.

{(z4, M'Si)l (z:))}Yr, where s is the seed index, we filter the

data such that only pairs {(z;, M£?1 (x;))} where Mﬁi)l (x;) matches at least [7 x k| outputs among
the k£ models are retained. This ensures that only high-consensus data are preserved for training in
subsequent rounds, thereby significantly improving overall data quality and model performance. This

approach is conceptually similar to an iterative version of the bagging algorithm (Breiman) [1996).

For each self-improved dataset D; =

6 LENGTH AND DIFFICULTY GENERALIZATION ON FORWARD ADDITION,
MULTIPLICATION, MAZE

Forward Addition - vanilla Forward Addition - length filter

We extend our evaluation to a class of harder tasks,
including forward addition, multiplication, and
maze-solving. Our results demonstrate that the
framework is not limited to length generalization
but extends to difficulty generalization, where
the model incrementally learns to solve increas-
ingly difficult problems. By employing controlled

thidet

6 8 10 12 14
Number of Digits

sampling of problem difficulty and data filtering
techniques for each round, the model successfully
adapts to harder tasks, highlighting the versatility
and robustness of the self-improvement approach.

Figure 5: Models trained on forward addition
over 10 self-improvement rounds. (Left) Without
data filtering. (Right) With length-based filtering
using a threshold of 2. Data filtering significantly

enhances length generalization performance.

6.1 FORWARD ADDITION

Forward addition is a straightforward task, yet very challenging for transformer models to length
generalize on. In reverse addition, each step only requires processing a fixed-size subset of the input.
However, in the forward addition, the size of the relevant input required to generate correct tokens
increases, making the problem more complex (Zhou et al., [2023]).

10

Results. Figure [5] shows the results of
forward addition experiments, where the
model is initially trained on labeled data
of up to 10 digits and then undergoes 10
rounds of self-improvement.

Accuracy

=

Without any data filtering (Left), the ° 0 %
model’s performance begins to deteriorate
after a few rounds of training, leading to
a collapse in generalization. However, ap-
plying the length-based filtering approach
with a threshold length of 2 results in sig-

30 0
Number of Digits

Figure 6: Results on the forward addition task with
length filtering. The model is initially trained on la-
beled forward addition data of lengths 1 to 10. Using
the self-improvement framework over 60 rounds, with
nificant improvements in length general- incremental increases in digit length by 1 per round, the
ization performance (Right). By refining model achieves strong generalization to lengths up to 75.
the dataset at each round, the self-improvement framework remains robust across multiple rounds.

Under review as a conference paper at ICLR 2025

Vanilla Length Filtering Majority Voting Majority Voting + Length Filtering

11 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.904 14 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.923 14 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 11 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.758

21 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.820 2{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.920 24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 21 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.925

31 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [0.736 3 1.000 | 1.000 [1.000 | 1.000 | 1.000 | 0.858 31000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0750 3 {1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.920

411.000 | 1.000 [1.000 | 1.000 | 0.999 41.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.805

—
5,4 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.741 -2, 4 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.977
2 o

digit 1
digit 1

510999 | 1.000 | 0.999 | 1.000 | 0.998 541.000 | 0.999 | 1.000 | 1.000 | 0.999 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.980 51 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.983

6109340893 | 0912 | 0.920 | 0.903 610958 | 0.918 | 0.928 | 0.945 | 0.936 6 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.932 611000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

7 0787 0864 0892 0.887 7{0747 0800 0839 0.858 0.849 0.801

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
digit 2 digit 2 digit 2 digit 2

Figure 7: Comparison of filtering methods at round 7. From left to right: no filtering, length filtering,
majority voting, and a combination of majority voting and length filtering. Data filtering significantly
improves self-improvement performance, with the combined approach achieving the best results.

With continued training over 60 self-improvement rounds, the model maintains performance exceed-
ing 98% accuracy for sequences up to length 70 (Figure[6)). This demonstrates the effectiveness of
length-based filtering in sustaining the self-improvement process and enabling length generalization.

6.2 MULTIPLICATION

We also extend our approach on multiplication, which is a challenging task even in-distribution (Dziri
et al}2024). Fine-tuning large language models on datasets with chain-of-thought(CoT) steps has
shown limited success. We adopt a data format similar to|Deng et al.|(2024), where multiplication
is given a problem of multiplying two numbers, the label expands the multiplication into steps that
include partial products of multiplying the first operand with each digit of the second operand and the
intermediate results.

The model is initially trained on n-by-n multiplication examples with n = 5. Directly introducing
n + 1-by-n + 1 examples results in poor performance, hence, we adopt a more fine-grained difficulty
schedule where we sample n + 1-by-m and m-by-n + 1 examples with m growing from 1 to n + 1.
This gradual progression allows the model to adapt incrementally to larger operand sizes, making the
transition to harder examples more manageable.

Results. To improve the quality of self-generated training data, we apply three data filtering
methods: length filtering, majority voting, and a combination of both (Appendix [C.3).

Figure[7|compares the effectiveness of these filtering methods at round 7, where models are trained
on self-generated data for up to 6-by-6 multiplication. All three filtering methods enhance self-
improvement, with majority voting outperforming length filtering. Applying both majority voting
and length filtering achieves near-perfect generalization to 6-by-6 multiplication.

Training for additional rounds further extends this generalization. The combined filtering strategy
continues to yield near-perfect accuracy up to 9-by-9 multiplication (Figure [36), with the potential
for even further generalization in subsequent rounds. We further demonstrate that we can accelerate
the process, achieving perfect performance on 10-by-10 multiplication in just 19 rounds (Figure [20).

6.3 MAZE

We extend our evaluation from arithmetic to a more complex problem: finding the shortest path in a
maze. Pathfinding presents significant challenges for autoregressive models (Bachmann & Nagarajan),
2024). Our mazes can be represented by a tree graph in a 2-dimensional space and they do not have
loops. Figure [31] provides a visualization of this task and the corresponding input and output data
format. Details on maze generation are provided in Appendix [C.2.3]

We evaluate two generalization settings: 1) increasing the number of hops while keeping the number
of nodes fixed, and 2) increasing the number of nodes while keeping the number of hops fixed. In the
first setting, the input graph description remains constant in size, but the output length grows as the
difficulty increases. In the second setting, the input graph expands with more nodes, while the output
remains of fixed length.

Under review as a conference paper at ICLR 2025

Maze (Hops) - Vanilla Maze (Hops) - Majority Vote Maze (Hops) - Data Accuracy by Round
1 i f

-
o

°
o

o

©

round-1
round-5
=&~ round-10
~&- round-15
-~ round-19

round-1
0.6 round-5
=@~ round-10
—e— round-15
~e~ round-19

Accuracy
Accuracy
o
B
° o
Y >

°
Y
Data Accuracy

°
N

—8— Majority Voting
Vanilla

' &
20 25 3 0 5 25 3 2 4 6 8 10 12 14 16 18 20

10 15 10 15 20
Number of Hops Number of Hops Round

5

Figure 8: Maze-solving with increasing hops (/N = 30 nodes). Models are trained on graphs with up
to 9 hops and generalized by increasing hops by 1 in each self-improvement round. Results show
mean accuracy across 3 seeds. (Left) No filtering. (Middle) Majority voting. (Right) Self-improve
data accuracy per round. Filtering significantly enhances data accuracy and improves generalization.

6.3.1 INCREASING THE NUMBER OF HOPS

The difficulty of the maze-solving task increases with the number of hops required from the start
node to the end node. We begin by training the model on a labeled dataset containing paths of up to
h = 9 hops. In each self-improvement round, we increase h by one, progressively introducing longer
paths, while fixing the number of nodes N = 30.

Results. As shown in Figure [8] without data refinement, self-generated training data degrades
over successive rounds, leading to an eventual collapse in the self-improvement process. In contrast,
majority voting stabilizes data quality, allowing near-perfect data quality and the model continues to
successfully generalize to paths up to 30 hops.

Additional results on increasing the number of nodes (while fixing the number of hops), and using
external verifiers on the validity of moves or the end nodes are provided in the Appendix [B.3]
These results show that majority voting based filtering—without any external verification—performs
comparably with using oracle verifiers and allows difficulty generalization.

7 ABLATIONS

7.1 INCREASING OOD GENERALIZATION WITH MORE SELF-IMPROVEMENT

Sampling instances that are too difficult for the
current model is detrimental to the quality of self-
improvement data, which causes downstream per-
formance to break down. However, in tasks like
reverse addition and copy, we observe that the out-
of-distribution (OOD) extrapolation capabilities im-
prove progressively as the model undergoes more gure 9: Number of extra OOD digit
rounds of self-improvement, which means we can lengths achieving over 99% accuracy when
sample more and more difficulty levels every round. ¢ elf-improving with one additional digit per
Figure] illustrates how the number of additional round, on (Left) copy and (Right) reverse addi-
OOD lengths achieving over 99% accuracy grow tion ta;sks. The growing OOD capability sug-
with each round when the model is self-improved gests the potential to sample more digits per
using only one additional digit per round. The | 4. self-improvement progresses.
model’s OOD extrapolation capabilities expand as
it is trained on longer sequences.

g
®
2
o
S
o
2
3
3
®
o>
o
s
#*

°

20 60 80 [20 60 80 100

40 40
Round Round

7.2 ACCELERATING SELF-IMPROVEMENT

Since the amount of extra OOD generalization increases roughly linearly with each additional round
of self-improvement (Figure[J), sampling as many difficulty levels as possible per round could lead to
exponential improvements in performance. Therefore, we propose an accelerated self-improvement
schedule: At each round, the self-improvement dataset is uniformly sampled from all difficulty levels
achieving over 99% evaluation accuracy, instead of incrementally sampling by only one additional
length. As shown in Figure[I0} this approach allows the model to achieve 100 digit extrapolation

Under review as a conference paper at ICLR 2025

with less than half of the rounds. All other hyperparameters remain unchanged. We also provide
results in the multiplication setting in Figure 20}

7.3 PRETRAINED MODELS

Accelerated Copy Accelerated Addition

b

We extend our self-improvement frame-
work to pretrained models, specifically
Llama-1B and Llama-3B (Al@Meta,
2024), to explore scaling effects and the
impact of finetuning on larger models.
For consistency in tokenization, we use
character-level tokenization instead of the
default tokenizer of the Llama models, and

use LoRA (Hu et al., 2021). Figure 10: Maximum input length achieving over 99%
accuracy at different self-improvement rounds for (Left)
Results. Larger models achieve better ex- Reverse addition and (Right) Copy task. The dashed
trapolation performance, which leads to linear line represents the standard schedule of sam-
faster acceleration with larger models. Fig- pling one additional length per round. Faster self-
ure @] compares self-improvement acceler- improvement schedules allow the model to generalize to
ation between Llama-3B, Llama-1B, and a Jonger inputs with fewer rounds. Furthermore, finetun-
smaller 14M parameter model trained from ing from pretrained models enhances the acceleration.
scratch. The results demonstrate that larger
pretrained models can generalize to longer
sequences with fewer rounds of self-improvement.

&
g

S
&

25

Max Length Above 99% Accuracy
Max Length Above 99% Accuracy

40 50

10 20 30
Self-Improve Rounds

8 LIMITATIONS

In our framework, the model does not generate new input instances during self-improvement; it only
generates solutions (labels) for training. When it is unfeasible to generate the problems themselves,
modeling the input distribution conditioned on task difficulty becomes an additional challenge.

A key consideration in self-improvement is defining and quantifying task difficulty. In real-world
domains such as mathematics and natural language tasks, formalizing "difficulty" remains an
open question. Our experiments demonstrate that careful difficulty scheduling is crucial for ef-
fective self-improvement. However, we also find that models exhibit some robustness to difficulty
slack—especially when trained on harder tasks (Section[7.1)) and when leveraging pretrained models

(Section[7.3).

Another fundamental assumption in our framework is that models can handle slightly harder tasks
than those seen in training. While this holds in many structured tasks, there are cases where such
generalization is inherently difficult. For example, training on raw multiplication problems without
intermediate steps leads to poor OOD generalization, making self-improvement infeasible. However,
we show that breaking down tasks into intermediate steps enables slight OOD generalization, which
can be leveraged for self-improvement(Section[6.2)). This highlights the importance of designing task
representations that align with a model’s inherent generalization capabilities.

9 CONCLUSION

In this work, we have shown self-improvement training enables transformers to gradually generalize
from easy to hard problems without access to hard labels. One extension is to incorporate more
sophisticated verifiers as well as problem classes that is easy to verify but hard to solve. We expect
self-improve to synergize with strong verification to enable transformers to solve harder problems
beyond arithmetic or mazes.

REFERENCES

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta—1lama/llama3/
blob/main/MODEL_CARD.md.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Under review as a conference paper at ICLR 2025

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein Reza
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard Baraniuk. Self-consuming generative models
go mad. ArXiv, abs/2307.01850, 2023. URL https://api.semanticscholar.org/
CorpusID:259341801.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546-38556,
2022.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv preprint
arXiv:2403.06963, 2024.

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, and
Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Extrapolation without
overthinking. Advances in Neural Information Processing Systems, 35:20232-20242, 2022.

Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q Tran, and Mehran Kazemi. Smaller, weaker,
yet better: Training 1lm reasoners via compute-optimal sampling. arXiv preprint arXiv:2408.16737,
2024.

Reza Bayat, Mohammad Pezeshki, Elvis Dohmatob, David Lopez-Paz, and Pascal Vincent. The
pitfalls of memorization: When memorization hurts generalization. 2024. URL https://api!
semanticscholar.org/CorpusID:274610625.

Quentin Bertrand, Avishek Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gau-
thier Gidel. On the stability of iterative retraining of generative models on their own data.
ArXiv, abs/2310.00429, 2023. URL https://api.semanticscholar.org/CorpusID
263334017.

Leo Breiman. Bagging predictors. Machine learning, 24:123-140, 1996.

Martin Briesch, Dominik Sobania, and Franz Rothlauf. Large language models suffer from their
own output: An analysis of the self-consuming training loop. ArXiv, abs/2311.16822, 2023. URL
https://api.semanticscholar.org/CorpusID:265466007.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023.

Francois Charton, Jordan S Ellenberg, Adam Zsolt Wagner, and Geordie Williamson. Patternboost:
Constructions in mathematics with a little help from ai. arXiv preprint arXiv:2411.00566, 2024.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, and Chulhee
Yun. Position coupling: Improving length generalization of arithmetic transformers using task
structure. 2024. URL https://api.semanticscholar.org/CorpusID:273695226.

Gonzalo Martinez Ruiz de Arcaute, Lauren Watson, Pedro Reviriego, José Alberto Hernandez,
Marc Judrez, and Rik Sarkar. Combining generative artificial intelligence (ai) and the internet:
Heading towards evolution or degradation? ArXiv, abs/2303.01255, 2023. URL https://api.
semanticscholar.org/CorpusID:257280389.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize
cot step by step. arXiv preprint arXiv:2405.14838, 2024.

Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails:
Model collapse as a change of scaling laws. ArXiv, abs/2402.07043, 2024. URL https
//api.semanticscholar.org/CorpusID:267628004.

Shaoxiong Duan, Yining Shi, and Wei Xu. From interpolation to extrapolation: Complete length
generalization for arithmetic transformers. arXiv preprint arXiv:2310.11984, 2023.

10

https://api.semanticscholar.org/CorpusID:259341801
https://api.semanticscholar.org/CorpusID:259341801
https://api.semanticscholar.org/CorpusID:274610625
https://api.semanticscholar.org/CorpusID:274610625
https://api.semanticscholar.org/CorpusID:263334017
https://api.semanticscholar.org/CorpusID:263334017
https://api.semanticscholar.org/CorpusID:265466007
https://api.semanticscholar.org/CorpusID:273695226
https://api.semanticscholar.org/CorpusID:257280389
https://api.semanticscholar.org/CorpusID:257280389
https://api.semanticscholar.org/CorpusID:267628004
https://api.semanticscholar.org/CorpusID:267628004

Under review as a conference paper at ICLR 2025

Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Location attention for extrapolation
to longer sequences. arXiv preprint arXiv:1911.03872, 2019.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
generalization. arXiv preprint arXiv:2409.15647, 2024.

Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, and Julia Kempe. Beyond model col-
lapse: Scaling up with synthesized data requires reinforcement. arXiv preprint arXiv:2406.07515,
2024.

Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes,
Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromoyv, et al. Is model collapse in-
evitable? breaking the curse of recursion by accumulating real and synthetic data. arXiv preprint
arXiv:2404.01413, 2024.

Nate Gillman, Michael Freeman, Daksh Aggarwal, Chia-Hong Hsu, Calvin Luo, Yonglong Tian, and
Chen Sun. Self-correcting self-consuming loops for generative model training. arXiv preprint
arXiv:2402.07087, 2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effectiveness of easy
training data for hard tasks. arXiv preprint arXiv:2401.06751, 2024.

Ryuichiro Hataya, Han Bao, and Hiromi Arai. Will large-scale generative models corrupt future
datasets? In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pp- 20555-20565, October 2023.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685, 2021. URL
https://api.semanticscholar.org/CorpusID:2354580009.

Audrey Huang, Adam Block, Dylan J. Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz,
Jordan T. Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism, 2024. URL https://arxiv.org/abs/2412.01951.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757-795, 2020.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and Francois
Charton. Length generalization in arithmetic transformers. arXiv preprint arXiv:2306.15400,
2023.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers. Advances in Neural
Information Processing Systems, 36, 2024.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

11

https://api.semanticscholar.org/CorpusID:235458009
https://arxiv.org/abs/2412.01951

Under review as a conference paper at ICLR 2025

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
relative positions improves long context transformers. arXiv preprint arXiv:2310.04418, 2023.

Yiming Liang, Ge Zhang, Xingwei Qu, Tianyu Zheng, Jiawei Guo, Xinrun Du, Zhenzhu Yang,
Jiaheng Liu, Chenghua Lin, Lei Ma, et al. I-sheep: Self-alignment of 1lm from scratch through an
iterative self-enhancement paradigm. arXiv preprint arXiv:2408.08072, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do
arithmetic with the right embeddings. arXiv preprint arXiv:2405.17399, 2024.

Benjamin Newman, John Hewitt, Percy Liang, and Christopher D Manning. The eos decision and
length extrapolation. arXiv preprint arXiv:2010.07174, 2020.

Xiangyu Peng, Congying Xia, Xinyi Yang, Caiming Xiong, Chien-Sheng Wu, and Chen Xing.
Regenesis: Llms can grow into reasoning generalists via self-improvement. arXiv preprint
arXiv:2410.02108, 2024.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

Philip Quirke and Fazl Barez. Understanding addition in transformers. arXiv preprint
arXiv:2310.13121,2023.

D Rolnick. Deep learning is robust to massive label noise. arXiv preprint arXiv:1705.10694, 2017.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Rébert Csordds, Mehdi Bennani,
Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization of
transformers. arXiv preprint arXiv:2305.16843, 2023.

Mahdi Sabbaghi, George Pappas, Hamed Hassani, and Surbhi Goel. Explicitly encoding structural
symmetry is key to length generalization in arithmetic tasks. arXiv preprint arXiv:2406.01895,
2024.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. Advances in Neural Information Processing Systems, 34:6695-6706, 2021.

Ruogqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023.

Changho Shin, John Cooper, and Frederic Sala. Weak-to-strong generalization through the data-
centric lens. arXiv preprint arXiv:2412.03881, 2024.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Ander-
son. The curse of recursion: Training on generated data makes models forget. arXiv preprint
arXiv:2305.17493, 2023.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. Ai
models collapse when trained on recursively generated data. Nature, 631(8022):755-759, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jachoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

12

Under review as a conference paper at ICLR 2025

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham Kakade, Dean Foster, and Udaya Ghai. Mind
the gap: Examining the self-improvement capabilities of large language models. arXiv preprint
arXiv:2412.02674, 2024.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022b.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
warmup-stable-decay learning rates: A river valley loss landscape perspective. arXiv preprint
arXiv:2410.05192, 2024.

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local structures to
size generalization in graph neural networks. In International Conference on Machine Learning,
pp. 11975-11986. PMLR, 2021.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

E. Zelikman, Yuhuai Wu, and Noah D. Goodman. Star: Bootstrapping reasoning with reasoning.
2022. URL https://api.semanticscholar.org/CorpusID:247762790.

Edwin Zhang, Vincent Zhu, Naomi Saphra, Anat Kleiman, Benjamin L Edelman, Milind Tambe,
Sham M Kakade, and Eran Malach. Transcendence: Generative models can outperform the experts
that train them. arXiv preprint arXiv:2406.11741, 2024.

Hugh Zhang and David C Parkes. Chain-of-thought reasoning is a policy improvement operator.
arXiv preprint arXiv:2309.08589, 2023.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 3713-3722, 2019.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. arXiv preprint arXiv:2402.09371,
2024.

13

https://api.semanticscholar.org/CorpusID:247762790

Under review as a conference paper at ICLR 2025

A DETAILED DISCUSSION OF RELATED WORK

Length Generalization. While Transformers (Vaswani et al., [2017) have achieved remarkable
success, they often struggle with length generalization—where a model trained on problems of fixed
length fails to extrapolate to longer sequences (Anil et al., 2022)). Addressing this limitation is crucial,
as poor length generalization indicates that language models may not fully understand the underlying
task. [Zhou et al.|(2023)) hypothesize that Transformers are more likely to length generalize on tasks
with small RASP-L complexity. They demonstrate that tasks such as reverse addition and copying
have low RASP-L complexity, making them easier to length generalize, whereas forward addition
poses a greater challenge.

Several approaches have been proposed to improve length generalization, particularly in arithmetic
tasks. These include modifications to positional embeddings, such as Abacus embeddings (McLeish
et al., |2024), NoPE (Kazemnejad et al., [2024), FIRE (L1 et al., [2023)), and pairwise positional
encodings (Sabbaghi et al.,2024; (Cho et al., [2024)), randomized positional encodings (Ruoss et al.|
2023} Zhou et al.||2024). Other methods focus on architectural changes, such as introducing looping
mechanisms (Fan et al., [2024) or incorporating hand-crafted bias corrections in attention score
matrices (Duan et al.l |2023). Additionally, input modifications, such as index hinting, have been
explored to enhance generalization (Zhou et al.;[2023;[2024). Beyond arithmetic, length generalization
has also been studied in the context of size generalization in graph-based tasks (Yehudai et al.,2021)).

In contrast, our approach adheres to the standard transformer architecture without introducing
significant modifications to architecture, positional encodings, or input structure. A key distinction lies
in the training methodology. While prior approaches typically rely on fixed-length training datasets
without further updates to model weights, we iteratively update model weights on self-generated
datasets, enabling the model to progressively improve and extend its generalization capabilities.

Our multiplication results have relevance with findings by [Jelassi et al.| (2023)), who showed that
dataset priming (adding a small number of labeled long-sequence examples) can enable length
generalization'| for multiplication (although this is not strictly out-of-distribution). Our approach
of incorporating accurate, self-generated out-of-distribution data via filtering can be seen as an
automated form of dataset priming. Furthermore, while our approach uses chain-of-thought (CoT)
data for multiplication, we believe it is possible to length generalize on non-COT multiplication as
well, by incorporating methods like |Deng et al.|(2024) to help the model iteratively internalize the
CoT steps.

Easy-to-hard Generalization. Our self-improvement framework operates in a setting where human
annotation is provided for easier tasks, enabling generalization to harder tasks with no additional
supervision. This paradigm, often referred to as easy-to-hard generalization (Schwarzschild et al.
2021; Bansal et al., [2022; Burns et al., 2023; |Hase et al., |2024; |Sun et al., |2024), leverages the
transfer of learned policies or reward models from simpler problems to more challenging ones. For
instance, [Zhang et al.|(2024)) study this phenomenon in chess, showing that chess transformers can
sometimes outperform all players in the training dataset. Similarly, Sun et al.|(2024) finds that
a reward model trained on easier mathematical problems can be effectively transferred to harder
problems, facilitating generalization through reinforcement learning. |Shin et al.|(2024)) identifies
overlap data points—instances containing both easy and hard patterns—as a key mechanism for weak-
to-strong generalization, allowing weak models to pseudolabel easier patterns while stronger models
use these labels to learn harder patterns. Our work shows that a similar mechanism emerges naturally
within self-improvement, where progressively increasing difficulty enables models to generate useful
supervision signals for harder tasks without explicit human intervention.

Self Improvement. When high quality training labels are not available, training on self-generated
labels is an efficient way to extract more capabilities from the model. Usually, this involves gen-
erating candidate labels, pruning wrong labels through verification or filtering, and retraining with
self-generated data. ReST (Gulcehre et al.| [2023)) and I-SHEEP (Liang et al., [2024) propose self-
improvement as an general purpose alternative to reinforcement learning from human feedback
(RLHF), while [Yuan et al.|(2024) propose "self-rewarding" model that generates its own instruction
tuning set. The self-improvement framework has been applied to a wide range of tasks. For example,

'they consider encoder-decoder architecture which differs for our decoder-only model

14

Under review as a conference paper at ICLR 2025

Zhang et al.| (2019) replaces an expensive teacher distillation with self-distillation for image recogni-
tion tasks. In LLM reasoning domains, Singh et al.[|(2023), [Huang et al.|(2022) and [Zelikman et al.
(2022)) bootstrap complex reasoning capabilities by asking models to generate rationales for unlabeled
questions and training on self-generated rationals that yielded correct answers. Similarly,[Zhang &
Parkes| (2023)) shows self-improving using chain-of-thought (COT) data sampled from the model
allows generalization of the integer addition task to more digits. For coding tasks, |Chen et al.
(2023)) teaches LLMs to self-debug with feedback using self-generated code explanation and unit test
execution results. In mathematics, PatternBoost (Charton et al., [2024) shows that transformers can
discover unsolved mathematical constructions of various problems using an algorithm that alternates
between sampling constructions from the model (local search) and training on self-generated data
(global learning). Finally, aiming at understanding the self-improvement process, (Bansal et al.|
2024) emphasizes the effectiveness of smaller models; [Song et al.| (2024)) studies the generation-
verification gap as a key quantity governing the self-improvement process, while [Huang et al.[(2024)
introduces the "sharpening mechanism", where training on best-of-N responses from the model
amortizes maximum likelihood inference and leads to higher quality outputs.

Model Collapse Recent research has extensively investigated the phenomenon of model collapse,
where repeated training on a model’s own outputs leads to performance degeneration and a loss of
the true underlying data distribution (Shumailov et al., 2024; Hataya et al.,|2023}; |de Arcaute et al.,
2023 Shumailov et al., [2023; [Alemohammad et al.,[2023; [Briesch et al., [2023)).

Shumailov et al.|(2024) provide evidence that iterative training on model-generated data, without
filtering, results in rapid degeneration and forgetting of the true data distribution. They emphasize the
importance of preserving original data sources over time. Similarly, [Shumailov et al.|(2023)) show
that the tails of the original content distribution diminish after repeated self-training, while Zhang &
Parkes| (2023)) highlight the error avalanching effect, where errors compound as models are trained on
their own generated data.

Despite its apparent inevitability, several strategies have been proposed to mitigate model collapse.
Research shows that the risk of collapse diminishes when the initial model closely approximates
the true data distribution (Bertrand et al., [2023)), or when real data is retained throughout training
rather than being fully replaced (Gerstgrasser et al., [2024; |Dohmatob et al.| [2024; |Briesch et al.,
2023). Additionally, |Gillman et al.|(2024); |[Feng et al.| (2024) suggest using reliable verifiers during
self-training to ensure high-quality self-generated data, further reducing the likelihood of collapse.

Our approach addresses these challenges by maintaining a core labeled dataset throughout training,
consisting of examples of limited length or difficulty. Synthetic data, generated incrementally by the
model, is added in a controlled manner. By incorporating unsupervised filtering techniques such as
length filtering and majority voting, we ensure the quality of self-generated data. Our framework
builds upon prior findings by preserving clean data and selectively incorporating synthetic data.

Additionally, our results in Section align with findings from Rolnick| (2017, which demonstrate
that deep neural networks are robust to significant label noise in image classification tasks. Addition-
ally, [Bayat et al.|(2024) recently emphasized that memorization alone does not harm generalization;
rather, the combination of memorization with spurious correlations is what undermines learning. Our
results suggest that despite memorizing past mistakes, the self-improvement framework remains
effective, provided that incorrect samples do not dominate the training distribution.

15

Under review as a conference paper at ICLR 2025

B ADDITIONAL RESULTS

B.1 STRING COPY & STRING REVERSE

Copying and reversing a given input string is another task that is considered hard for vanilla trans-
formers (Anil et all, 2022} [Zhou et al, 2023)). The input string consists of digits from O to 9.

Accuracy
o o I
> m >

o
S

o
N

=4
o

Number of Digits

Reverse

Accuracy
o o =
o © o

o
IS

o
N

0.0
Number of Digits

Figure 11: Results on string manipulation tasks. (Top) Copying task. (Bottom) Reversing task. The
model, initially trained on strings of length 1 to 10, generalizes to strings of over 120 digits through
self-improvement.

Results. Similar to reverse addition task, Figure[TT]demonstrates that starting with strings of length
1 to 10, the self-improvement framework enables the model to perfectly generalize to string lengths
of over 120 after approximately 100 self-improvement rounds.

B.2 MOTIVATION FOR DATA FILTERING

B.2.1 IMPORTANCE OF DATA FILTERING

n-digit -» n+1-digit accuracy

1.0 11-digit
12-digit rrod |
oaf § L
o & 4qgl S me
© ® 15-digit x
3061 @ 1l6-digit -
¥ e
LA
T . n
3 0.4
= X 4
0.2
- . .
+
0.0@* © X
0.0 0.2 0.4 0.6 0.8 1.0

Self-lmprove Data Accuracy

Figure 12: Effect of self-generated data accuracy on length generalization performance in the reverse
addition task. Each data point represents the accuracy of the self-improve data D, (on n digit
addition) generated by model M,._1, and the resulting n + 1-digit performance of the trained model
M, at round r. The prevalence of points below the y = x line highlights the critical importance of
high-quality data for successful self-improvement.

16

Under review as a conference paper at ICLR 2025

Figure [I2]demonstrates this effect in the reverse addition task. The x-axis represents the accuracy
of the self-improve dataset D,., generated by model M,._; at round r, while the y-axis shows the
resulting n + 1-digit performance of model M,.. The prevalence of data points below the y = z
line indicates that low-quality data diminishes performance, underscoring the need for maintaining
high-quality data throughout the self-improvement process.

B.2.2 OOD RESULTS ARE OFTEN SHORT

Shorter Answer Ratio among Wrong Number of Incorrect and Short Answer Average A Length
52 2387386 261
80 H EEE |ncorrect 25/ EEE Short Answer SRR -
s 70 Z 2,0001- Short Answer W& Short CoT 220
5 60 5 520 200
S < = 180
= 50 L1, g 160
2 g 215
<40 2
P 5 g
£30 e BT
o - o
& 20 s z
5 ao1a01 5
* 19 o
3 I :
0 2 39235552564 0% 7 ol 1o 3120 ol 10 101010 10 10 9 L0 10
11 12 13 14 15 16 17 18 19 16 61 26 62 36 63 46 64 56 65 66 16 61 26 62 36 63 46 64 56 65 66
Digits Digit Pair Digit Pair

Figure 13: (Left) Reverse addition task: the proportion of shorter answers among incorrect predictions
increases with each round. (Mid & Right) CoT-multiplication task with majority voting: (Mid) The
majority of incorrect answers are short. (Right) The average length discrepancy of short answers
compared to the correct answer or the CoT reasoning part.

Figure [[3]illustrates this phenomenon for both the reverse addition and CoT-multiplication tasks. In
reverse addition (Left), as the number of digits in the training data increases (or as self-improvement
rounds progress), the proportion of incorrect self-generated data where the answer is shorter than the
correct label length also increases. Similarly, for CoT-multiplication (Mid and Right), most incorrect
answers are shorter than the correct ones. Furthermore, in cases where the answers are shorter, the
outputs often miss one or more reasoning steps in the chain-of-thought (CoT) reasoning process.

B.2.3 MAIJORITY VOTING LEVERAGES LABEL DIVERSITY

Self-improvement relies on the model’s ability to generalize to slightly harder problems. However, this
generalization is not always robust and can vary significantly across different training instances (Zhou
et al.,[2024). Majority voting mitigates this variability by aggregating predictions across multiple
independently trained models, thereby improving the reliability of self-generated labels.

To illustrate this variability, Figure [[4]shows test accuracy across five models trained with different
random seeds on the initial training dataset containing up to 5-by-5 multiplication. Even when
trained on identical training data, models exhibit substantial performance differences in extrapolation.
Similarly, Figure|15|demonstrates that this variability persists even when models are trained from the
same seed data.

Figure [I6] demonstrates the effectiveness of majority voting in the multiplication task across five
models trained with different seeds during the initial training phase on data Dy, which consists
of up to 5-by-5 multiplication problems. The mean accuracy (Left) is relatively low, with a high
standard deviation (Mid), indicating substantial variability among the models. By applying majority
voting with a consensus on at least 4 out of 5 model outputs, the generated dataset quality improves
significantly (Right). For example, while the 5-by-6 multiplication task achieves an average accuracy
of 31% across models, the majority-voting strategy generates a dataset with 93.3% accuracy.

In practice, datasets for larger multiplications, such as 5-by-6 digits, are created after multiple rounds
of self-improvement training, gradually incorporating m-by-6 and 6-by-m data with incrementally
increasing m at each round.

B.2.4 ABLATIONS FOR MAJORITY VOTING

Our majority voting method requires training multiple models in parallel. In our primary setting,
we train k£ models with different random seeds, allowing each to generate and train on its own
independent self-improved dataset at every round.

17

Under review as a conference paper at ICLR 2025

Seed 41 Seed 42 Seed 43
11 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0:830 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.926 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.922
21 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.830 241.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 241.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.971
3] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 [EXH 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.805
- - -
%4 1.000 | 1.000 | 1.000 | 1.000 | 1.000 gd 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.979 %4 1.000 | 1.000 | 1.000 | 1.000 | 1.000
5 5 S
51 1.000 | 1.000 | 1.000 | 1.000 | 1.000 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.898 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [BBU
610.979 0963 0.938 0939 0.891 610826 0.838 0809 0.773 0.766 610896 0.842 0.785 0.719
7 7 7
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6
digit 2 digit 2 digit 2
Seed 44 Seed 45
14 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.988 14 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.842 EWKVl]
21 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.889 21 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [
31000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.793 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [EREENEXIN
- -
‘574 1.000 | 1.000 | 1.000 | 1.000 | 1.000 ‘éA 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [EVNVERRVIL]
5 5
5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [EXRLREFLRS
610973 0924 0910 0.891 0.830 0,936 0.936 0.908 0.902 NNV
7 00 0 0.004 0.000 0.000 0.002 0.000 0.000

1 2 3 4 5 6 7
digit 2

4
digit 2

Figure 14: Test accuracy on 5 different seeds during the initial training phase. Models exhibit high
variance in performance.

Seed 41 Seed 42 Seed 43
11 1.000 | 1.000 | 1.000 | 1.000 | 1.000 0.000 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.914 1 1.000 | 1.000 | 1.000 | 1.000 | 0.996
21 1.000 | 1.000 | 1.000 | 1.000 | 0.998 0.000 241.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.943 21 1.000 | 1.000 | 1.000 | 1.000 | 0.996
31 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [311.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.832 311.000 | 0.998 | 1.000 | 0.998 | 0.969
- -
2 4{1.000 | 1.000 | 1.000 [1.000 | 1.000 EXR = 411000 | 1.000 [1.000 | 1.000 | 1.000 | 0:842 2 4099 | 0.998 [0.998 [0.939
5 S
5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [EREERENTNE 51 1.000 | 1.000 | 1.000 | 1.000 | 1.000 5 0.996 | 1.000 | 0.967 | 0.734
0,947 0930 0.902 0.902 [(ETEEENNI 610914 0.867 0842 0846 0.785 00! 6 0.188 0.0 0
0,000 0000 0.000 0000 0.000 0.000 JSH 7
4 5 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
digit 2 digit 2 digit 2
Seed 44 Seed 45
1{1.000 | 1.000 | 1.000 | 1.000 | 1.000 (XS 111000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998
24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 (XS 21 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.986
31 2.000 | 1.000 | 1.000 | 1.000 | 1.000 (XS 31 1.000 | 2.000 | 1.000 | 1.000 | 1.000 | 0.969
-
%4 1.000 | 1.000 | 1.000 | 1.000 | 1.000 NI 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.959
5
51 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [EXSERENS s { 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.920
610932 0891 0895 0855 0812 QXN 60984 0977 0971 0949 0.957
b8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7
1 2 3 4 5 6 7 1 2 3 4 5 6 7
digit 2 digit 2

Figure 15: Test accuracy on models trained with the same seed data but different training seeds.
Despite identical training data, models exhibit large variability.

To evaluate the necessity of training multiple independent models and generating separate self-
improvement datasets, we compare our approach against the following baselines:

1. No majority voting, but larger self-improve data: Instead of using multiple models, we train
a single model while sampling k times more self-improve data per round, ensuring that the
total amount of generated data matches our main setting.

Shared self-improve data: We train k£ models with different initial seeds but subsequently
train all models on the same self-improved dataset.

Shared initial training seed: All models are initialized from the same seed but then trained
on separate self-improved datasets.

Our main setting: Each model is initialized with a different seed and trained on its own
independently generated self-improve dataset.

18

Under review as a conference paper at ICLR 2025

Majority Voted data accurac:
Mean Accuracy Accuracy Standard Deviation jortty Y

1 0.999
1{ 1000 1000 1000 1000 1000 0891 0000 0.000 0.00 8 030
08 08
2 0.990
2{ 1000 1000 1000 1000 1000 = 0811 0000 0000 0.0 025
> s 06
3] 1000 1.000 1.000 1000 1.000 o8¢ 0000 0000 0000 0.00 0s N2 0974
H & 5
§ R
g 015§
+f 1000 1000 1000 1000 1.000 H o 0000 0.000 H 4 0.989 s
042 &
o 0.930
s{ 1000 1000 1000 1000 1000 0000 0000 0.000 0.000 s
02
02
005
6] 0913 0926 0884 0853 0840 0.046 60 0.078 610999 0998 0998 0998 0.997 EOKIE]
3

3 3 1 2 3 4 3 o 000 T 2 3 1 3 6
digit 1 digit 1

digit 2

Figure 16: (Left & Mid): Mean and standard deviation of accuracy among five models trained
with different seeds on the initial training round. (Right): Accuracy of majority-voted data points.
Majority voting significantly boosts data quality, with 5-by-6 multiplication data accuracy increasing
from an average of 31% to 93.3%

Figure[T7] presents the performance of these variations, highlighting the importance of training on
independently generated self-improve datasets rather than simply increasing dataset size or sharing
training trajectories across models.

Table 2: Comparison of Data Cost Across Majority Voting Variants

Method Initial Training Data Cost Self-Improve Data Cost (Per Round)
No Majority Voting, Larger Data 1 k
Shared Selt-Improve Data k 1
Shared Initial Training Seed 1 k
Full Majority Voting (Ours) k k
Mean Accuracy for Round 7 Mean Accuracy for Round 7 Mean Accuracy for Round 7 Mean Accuracy for Round 7
111.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.891 14 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 14 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 11 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.808 241.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.714 24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998
3 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.739 341.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 34 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.827 34 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.750
- - - o
g 4 1.000 | 1.000 | 1.000 | 0.999 | 0.999 ‘é 441.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 a 441.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.967 % 4 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.741
° © ° ©
510.999 | 1.000 | 0.999 | 0.999 | 0.998 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.989 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.980 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.980
6 {0921 0866 | 0890 | 0889 | 0842 6 {0309 [1.000 [1000 | 1000 | 1.000 [0.930 XY 6 {0009 | 1.000 | 1000 | 1.000 | .00 | 1000|0297] 1.000 | 1000 | 100 | .00 |09 [0032
7 8 8 7 0.767 0.843 0.883 0.887 0.0 740.745 0.805 0.841 0.859 0.857 0.807 7 0.787 0.864 0.892 0.887
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
digit 2 digit 2 digit 2 digit 2

Figure 17: Ablations on majority voting. (Left) No majority voting, but larger self-improve data.
(Left-Center) Majority voting with shared self-improve data. (Right-Center) Majority voting with
shared initial training seed. (Right) Our primary setting with fully independent training and self-
improve datasets.

We set k£ = 5 and report the average performance across five models. Figure shows that
simply increasing the amount of self-improvement data without filtering leads to poor performance.
Surprisingly, using 5x more self-improvement data per round performs even worse than using less
data (Figure [32), consistent with our findings in Section[B.6.3]

Additionally, majority voting with shared self-improve data (second panel from the left) underper-
forms in OOD compared to models trained on separate self-improve datasets. This suggests that
model diversity—enabled by training on different self-improve data—may be important for majority
voting to be effective.

On the other hand, comparing the right two panels in Figure[T7] where the difference lies in whether
the base models were trained on different labeled data D, we find minimal differences in OOD
performance. This may be due to the large size of the initial training set (SM examples), which
provides sufficient diversity. Furthermore, as Figure [I5] shows, models trained on the same initial
dataset but with different training seeds still exhibit substantial variability, suggesting that model
diversity can emerge from different training trajectories alone.

19

Under review as a conference paper at ICLR 2025

B.3 ADDITIONAL RESULTS ON MAZES

B.3.1 INCREASING THE NUMBER OF NODES

Another approach to increasing task difficulty is to expand the number of nodes in the graph while
keeping the number of hops fixed at h = 9. We begin by training the model on a labeled dataset
containing paths of fixed number of hops & = 9, and nodes N = 10 to 30. In each self-improvement
round, the number of nodes is increased by 3.

Maze (Nodes) - Majority Vote Maze (Nodes) - Data Accuracy by Round

Maze (Nodes) - Vanilla

I
]
08 1
[}

0.6 round-1

round-5
~e— round-10
0.4{ =@= round-15

0.6 round-1

round-5
—e— round-10
0.4{ =@= round-15

Accuracy
Accuracy
Data Accuracy
o °
s >

o
N

—8— Majority Voting
Vanilla

o

H 1 0
10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 90 100 2 2 6 8 10 12 14 16
Number of Nodes Number of Nodes Round

Figure 18: Maze-solving with increasing nodes (h = 9 hops). Models are trained on graphs with
up to 30 nodes and generalized by incrementally increasing the number of nodes by 3 per round.
Majority voting improves generalization to larger graphs.

Results. As shown in Figure[T8] training without filtering leads to gradual performance degradation,
whereas majority voting preserves high-quality data, maintaining a self-improvement accuracy above
99.7% and enabling generalization to larger graphs with 9 hops.

While these experiments focus on fixing one dimension (number of hops or number of nodes) and
increasing the other, alternating between increasing the difficulty in both dimensions is expected to
generalize the maze-solving task to handle larger graphs and longer paths simultaneously.

B.3.2 VERIFICATION FILTERS ON MAZES

Solving the shortest path problem can be computationally expensive, but verifying the correctness of
a given solution is significantly simpler. A valid path can be verified by traversing the sequence and
ensuring three conditions: 1) each move is valid, meaning the path follows adjacency constraints; 2)
the final destination matches the intended goal; and 3) no nodes are repeated, confirming that the
solution is indeed the shortest path.

Self-improvement frameworks commonly incorporate verifiers to filter self-generated data, often
leveraging trained models or reward models (Zelikman et al., 2022} [Singh et al., 2023} |Hosseini et al.,
2024; Lightman et al.,|2023). While our primary focus is not on training or designing an additional
verification mechanism, we investigate the effectiveness of using an external verifier as a data-filtering
method.

To this end, we evaluate an oracle verifier that enforces two essential constraints: 1) move validity,
ensuring that every transition in the generated solution adheres to the adjacency constraints of the
maze, and 2) end validity, confirming that the final node in the solution corresponds to the correct
destination. We compare the effectiveness of this oracle-based filtering against self-improvement
without data filtering and majority-voting-based filtering to assess its impact on performance and
stability.

Results. Figure [T9) shows results for mazes with increasing hops, increasing nodes, and three
different verification strategies: checking moves, checking end validity, and checking both. As
expected, verification improves data quality and serves as an effective filtering technique in self-
improvement. Notably, verifying move validity proves to be significantly more effective than verifying
only the correctness of the end node. Interestingly, however, majority voting—a strategy that does
not rely on an external verifier—performs comparably to verification-based filtering. This suggests
that self-consistency mechanisms alone can be sufficient for maintaining high-quality training data.

Additional results, including finer-grained analysis of move validity and end validity beyond exact
match accuracy, are provided in Appendix

20

Under review as a conference paper at ICLR 2025

Maze (Hops) - Verifier (Moves & Ends) Maze (Hops) - Verifier (Moves) Maze (Hops) - Verifier (Ends)
1.0 v 10 R TR 1.0
I d 0\ I
] I
0.8 T 0.8 T 0.8 T
1 1 1
> round-1 | - round-1 | > round-1 |
g6 round-5 | 306 round-5 | g o6 round-5
E ~e— round-10 | E ~e— round-10 ! ! E ~e— round-10 |
g —8— round-15 : S —e— round-15 : ! g —e— round-15 |
<047 g~ round-19 i <041 _a— round-19 i : <047 _g— round-19 i
} } é }
02 1 0.2 1 A 02 1
1 1 I 1
1 1 i 1
0. 1 . o. 1 H . o. 1
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Number of Hops Number of Hops Number of Hops
Maze (Nodes) - Verifier (Move & Ends) Maze (Nodes) - Verifier (Moves) Maze (Nodes) - Verifier (Ends)
1.0 1 T 1.0 — T T
i i
i i
i i
| ’ |
0.8 08 1
1
To. o6 round-1 Toe round-1
e e =@~ round-5 e =@~ round-5
g 3 | -e round1o S ~8— round-10
< 0.4{ =@= round-15 < 0.4{ =@ round-15 < 0.4{ =@= round-15
I I I
| | |
1 0.2 1 0.2 1
1 1 1
)))
0! o. ! o. ! >
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Number of Nodes Number of Nodes Number of Nodes

Figure 19: (Top) Increasing hops. (Bottom) Increasing nodes. (Left) Verifier on both moves and ends.
(Middle) Verifier on moves only. (Right) Verifier on ends only. Verifier-based filtering improves
self-improvement performance, with move validation proving more effective than end validation
alone. Interestingly, majority voting performs on par with oracle verification, suggesting that self-
consistency mechanisms can serve as effective alternatives to explicit verification.

B.4 ACCELERATED SELF-IMPROVEMENT FOR MULTIPLICATION

We validate the accelerated self-improvement (Section[7.2) setting to the task of multiplication. For
the multiplication task, we observe similar enhancement using an accelerated schedule, as depicted in
Figure 20| Under the standard schedule, reaching 10-by-10 multiplication from 5-by-5 requires 41
self-improvement rounds, incrementally increasing one operand by 1 at a time. With the accelerated
schedule, we progressively sample more operand pairs as self-improvement proceeds, reducing the
required rounds to 19 while achieving perfect test performance (see Figure [37]for full results). The
settings for multiplication follow the setting in Section[§]

| 2 6 1 11.000/1.0001.000/1.000/1.0001.000/|1.000|1.000{1.000|1.000

N

1.000/1.000{1.000{1.000{1.000|1.000{1.000|1.000{1.000|1.000

Round |
5) (ID)

1.000{1.000{1.0001.000|1.0001.0001.0001.000|1.000|1.000!

w

G

4 11.000{1.000{1.000{1.0001.000{1.000|1.0001.000|1.0001.000|

S

51.000/1.0001.000{1.000{1.000|1.000|1.000|1.000|1.000{1.000

digit 1

61.000{1.000/1.000{1.000/1.000/1.000{1.000/1.000{1.000|1.000

1.000{1.000{1.0001.0001.0001.0001.0001.000|1.000|1.000!

~

1.000{1.000{1.000{1.0001.000{1.000{1.000/1.000|1.0001.000!

o

1.000{1.000{1.000|1.0001.0001.000|1.000/1.000|1.0001.000!

©o

101.000|1.000{1.000|1.000{1.000{1.000{1.000{1.000{1.000|1.000|

° : : 1 2 3 4 5 6 7 8 9 10
digit 2

Figure 20: Accelerated self-improvement in multiplication. (Left) Accelerated schedule for multipli-
cation. The rows and columns represent the number of digits in the two operands of the multiplication
task. The number within each cell indicates the self-improvement round in which the corresponding
digit pair is included for training. (Right) Results at round 19. Controlled scheduling progressively
incorporates more digit pairs in each round, accelerating the self-improvement process.

21

Under review as a conference paper at ICLR 2025

B.5 RESULTS ON PRETRAINED MODELS

Figure 21| shows the self-improvement results for LoRA finetuning Llama-1B and Llama-3B on the
reverse addition task. Pretrained models show more extrapolation than from-scratch models.

|
|
|
=
o

°
o
°
>

o
2
Accuracy

Accuracy

o
S

o
o
o
o

0.0 0.0

2 30 3 40 15 20 2 30 35 40
Number of Digits Number of Digits

Figure 21: Reverse addition results for pretrained models. (Left) Llama-1B model. (Right) Llama-3B
model. Larger models exhibit better extrapolation performance across rounds of self-improvement.

B.6 ANALYSIS ON ERRORS

B.6.1 ERROR AVALANCHES IN SELF-IMPROVEMENT

Out-of-distribution (OOD) generalization is highly sensitive to inaccuracies in self-generated data.
Figure [22] highlights a key challenge in this setting: errors in n-digit training data propagate to
n + 1-digit examples, degrading performance in later rounds. This is evident from data points falling
below the y = z line, indicating that self-improvement data is becoming progressively less reliable.

This cascading effect, known as an error avalanche, compounds over successive self-improvement
rounds, leading to a gradual collapse of the training process. As inaccuracies accumulate, the model’s
self-generated labels become increasingly erroneous, reducing the effectiveness of future training.
Without effective data filtering or correction mechanisms, this process eventually causes the model to
fail entirely.

B.6.2 SIMULATING THE ERROR AVALANCHE

A natural question to ask at this point is, how much error the model must accumulate to trigger an
avalanche? We investigate this question by first characterizing the model mistakes, and then injecting
synthetic wrong examples in the self-improvement data.

L0 & lLore—e o—0—0—0
,"/4.

0.9 e
> /’ 0.8
o / round-1
508 e 9 round-2
é("j round 7 706 round-3
2 0.7 2 —o— round-4
= o
g S 3 0.4| —® round-5

& .

2 0.6 & Y 2 —8— round-6
3 <& round 8 47
2 <® —e— round-

05 6@“/ 0.21 —@— round-8

& —e— round-9
i —e— round-10
041} ®round 9 0.0]
0.4 0.5 0.6 0.7 0.8 0.9 1.0 8 10 12 14 16 18 20
Current Digit Accuracy Number of Digits

Figure 22: Error avalanche is a common failure case for self-improvement. As inaccuracies in
self-generated data accumulate, they degrade future rounds of training, leading to eventual failure.
(Left) The impact of inaccuracies in n-digit data on n + 1-digit generalization. (Right) Gradual
performance degradation over successive self-improvement rounds

22

Under review as a conference paper at ICLR 2025

Error distribution Error distribution Position of dropped characters
18 W 120
200
600 16 100
> 14 150
2 512 g o
$ 400 =10 S o
S 3 8 100 &
[(9
= o s
- 6 w40
200 4 50
> 20
0 0 0 0
-9-7-5-3-11 3 5 7 9 -9-8-7-6-5-4-3-2-10123456789 0 2 4 6 8 10 12 14 16 18 20
Error Error Position

Figure 23: Patterns in model errors. (Left) Most incorrect digits are off by 1. (Middle) Errors cluster
near the end of the sequence. (Right) Digit drop errors are strongly location-dependent.

Patterns in Model Mistakes. We can categorize all mistakes into two bins. At each digit position,
either the model drop the digit, or outputs a wrong digit. Since these two kinds of mistakes are
entangled in practice, we use a string matching algorithm to compare the model output and predictions
and obtain the best guess. In figure 23] we find that digit drops by the model are concentrated near
the end of the sequence, and wrong digits are most often off by 1.

Additionally, Figure 24] shows that when models generate incorrect answers, the first mismatch with
the ground truth typically occurs near the final digits of the sequence (i.e., near the most significant
digit in reverse addition). These observations inform our systematic error simulations, which are used
to analyze the error avalanche phenomenon in Section[B.6

—8— First Incorrect Position

N
o
. o

H
[+
BN

-
o

H
=

Avg. First Incorrect Position
-
Y]

=
o
- ®

10 12 14 1 18 20

6
Digit Length

Figure 24: he first incorrect digit in model outputs tends to occur near the most significant digit in
reverse addition.

Injecting Synthetic Errors. Having characterized the model mistakes, we simulate them by
constructing four kinds of noises:

» Uniform: Replaces the label with a random number of the same length.
* Perturb: Randomly modifies the last three digits by +-1.
* Drop-Digits: Randomly removes 1, 2, or 3 digits from the last three positions.

* Drop-Perturb: Combines "perturb" and "drop-digits" by first modifying digits and then
randomly deleting some.

We inject these errors of varying noise levels in rounds 5 and 20 of the reverse addition task and
track their effects after five subsequent self-improvement rounds. As shown in Figure 23] injecting
sufficient noise into the training data causes performance on the next difficulty to crash. In particular,
we find that 1) structured noises (digit drops and perturbations) are more harmful than uniform noise
and 2) more rounds of self-improvement improve robustness against label noise. Additional results
on uniform errors are provided in Appendix [B.7]

Models can Generalize Despite Memorizing Past Mistakes Since self-improvement involves
recycling model predictions into training data, an important question is whether the model continues

23

Under review as a conference paper at ICLR 2025

round 5 round 20

-
o
t
>

o
[e5]
)

—&— uniform

—0— perturb

—8— drop-digits
drop-preturb

=
o

o
©

round 10 accuracy
o
(o)}

round 25 accuracy
o
()]

04 04 —&— uniform
\‘ 7| —e— perturb
0.2 \/ 0.2 =@ drop-digits
\ drop-preturb
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
noise_level noise_level

Figure 25: Simulating error avalanche. Synthetic mistakes of varying noise levels are injected at the
end of rounds 5 and 20. The self-improvement process continues for 5 more rounds, and the resulting
accuracy is recorded. The model tolerates errors up to a certain threshold, with greater tolerance
observed in later self-improvement rounds.

making mistakes on previously incorrect examples. To investigate this, we isolate incorrect self-
generated samples and evaluate the model’s performance on them. As shown in Figure 26] the model
struggles to rectify these errors. Accuracy on incorrect training examples decreases over successive
rounds, suggesting that repeated exposure to errors reinforces them rather than correcting them.

However, memorizing past mistakes does not necessarily cause an error avalanche. The model
under self-improvement often generalize to higher difficulties while treating the incorrect samples
as outliers. For example, Figure 23]shows that after 20 rounds of self improvement, the model can
tolerate a surprisingly large amount of label noise, from both uniform noise and structured noise. This
suggests that while individual mistakes persist, they do not necessarily hinder overall generalization.

0.200

=@~ seed 41 (0.998)

—@— seed 42 (0.984)

=8 seed 43 (0.999)
seed 44 (0.617)
seed 45 (0.928)
h |

0.175

0.150

Accuracy
o o
BB
o N
o v

0.075

0.050

0.025 V\.,\
—3

10 11 12 13 14
Rounds

Figure 26: Models memorize their mistakes. Accuracy on incorrect training examples (of Dg)
decreases with additional self-improvement rounds, indicating that repeated exposure reinforces
memorization of errors instead of correcting them.

B.6.3 OTHER ANALYSIS

Effect of Self-Improvement Dataset Size. = We investigate how the quantity of self-generated
training data impacts model performance. We first train 10 base models Més) (s=1,...,10)ona
supervised 1-10 digit reverse addition dataset Dg, each using a different random seed. These models
are categorized based on their accuracy on 11-digit addition: low-performing models (less than
98% accuracy) are represented with yellow colors, while high-performing models (more than 98%
accuracy) are depicted with blue colors.

To study the effect of dataset size, we generate self-improvement datasets D = {(x;, Més) (z) 1
of varying sizes (N7 = 10,000, 50, 000, 100, 000, 500, 000, 1, 000, 000). Each model is then trained
on the combined dataset D U Di. The number of incorrect examples in each self-generated dataset
is approximately N7 x (1 — (11-digit accuracy of Mp)).

24

Under review as a conference paper at ICLR 2025

11-Digit 12-Digit
1.0{ @ A RSN e O _ %% ®
v

® 4 ““"“l"’l ST A

seed 41 (0.903)
seed 42 (0.995)
seed 43 (1.000)
seed 44 (0.999)
seed 45 (0.997)
seed 46 (0.997) v

seed 47 (0.988) 02 =
seed 48 (0.906)

seed 49 (0.992)

0-90 10° 10t 102 103 104 10° 00 10° 10t 102 103 104 10°
Number of Wrong Samples Number of Wrong Samples

=
=]
S

o
©
©

Accuracy
o
©
o
Accuracy
o
S

o

©

R
)
'S

>

*
o

e o <« > o m

o
©
N

Figure 27: Effect of self-generated training data quantity and quality on model performance. Each
model is trained on Dy (1-10 digit addition) and self-generated D; (11-digit addition), then evaluated
on 11-digit (in-distribution) and 12-digit (out-of-distribution) test performance. For low-performing
models, increasing the quantity of self-generated data leads to degraded performance. For high-
performing models, the impact of dataset size is less clear.

Results in Figure 27 show that for low-performing models, increasing the quantity of self-generated
data (which is of lower quality) degrades performance on both in-distribution (11-digit) and out-of-
distribution (12-digit) addition. In contrast, for high-performing models, the relationship between
the number of self-generated examples and performance is less clear. The total number of 11-digit
examples seen during training remains constant across experiments, with smaller datasets being
repeated more often. This suggests that exposure to a greater diversity of incorrect examples can bias
the model more negatively.

B.7 ADDITIONAL EXPERIMENTS ON LABEL NOISE AND ROBUSTNESS

Robustness against Random Labels To further examine the model’s resilience to errors in data,
we introduce randomization into the labels during training. Correct labels are replaced with random
numbers of the same length with probabilities 1, 0.8, 0.5, 0.2, 0.1, and 0. A probability of 1
corresponds to entirely incorrect labels, while O indicates fully correct data.

The model is initially trained on 1-10 digit reverse addition and further trained across 8 self-
improvement rounds, using self-generated data of lengths 11-18 digits. We then construct a dataset
of 19-digit data with randomized labels, denoted as D{f“d. The model is fine-tuned on a combined
dataset consisting of the original dataset Dy, self-improved datasets Dy, .. ., Dg, and D,

Results in Figure 28] show that the models can tolerate substantial random label noise, maintaining
robust performance even when up to 80% of the training data is corrupted. This demonstrates the
model’s resilience to random errors in the training data and its ability to self-correct such mistakes
during learning.

Model Bias vs. Random Labels. Interestingly, biases in self-generated data are more detrimental
than uniformly random label noise. As shown in Figure[28] models trained with self-improved data
perform worse than random-labeled data of comparable accuracy, given the same dataset size and
fine-tuning steps. This suggests that the inherent biases in self-generated data hinder generalization
more than randomly introduced noise.

These observations align with findings from Bayat et al.| (2024), which highlight that memorization
alone does not harm generalization; instead, the combination of spurious correlations undermines
learning. Despite memorizing mistakes in self-generated data, the model’s overall performance at the
same difficulty level often exceeds the quality of the training data.

B.8 DOES THE MODEL TRULY LEARN ADDITION?

When the two operands are sampled randomly, the probability of encountering an instance with a
carry chain length of NV decays exponentially with /N. Under this sampling strategy, the model may

25

Under review as a conference paper at ICLR 2025

1.0

0.8

Accuracy
o
Y

I
IS

0.2

0.0

With Random Labels, 19-digit With Random Labels, 20-digit
L 2 L o o X 1.0 ° ¥
X X
0.8
L]
X go.s ‘

e .
o
foa X

[® o5 @ o ® 05

® o1 ® o8 02{ ® 01 ® o8

® o2 1 @® o2 1

X self-improve X self-improve

rs 0.01¢

0.0

0.2 0.4 0.6 1.0

Correct Label Probability

0.8

0.0

0.2 0.4 0.6 1.0

Correct Label Probability

0.8

Figure 28: Effect of training on randomized labels. The model is trained on 1-10 digit data, further
fine-tuned on 11-18 digit self-generated data over 8 self-improvement rounds, and additionally fine-
tuned on 19-digit data with varying probabilities of random label replacement. (Left) Accuracy on
19-digit data. (Right) Accuracy on 20-digit data. The results demonstrate that while the model can
self-correct random errors, biases from self-improved data can result in worse performance compared
to models trained on random-labeled data of similar accuracy.

rarely, if ever, see “harcﬂ’ instances of addition, as illustrated in Figure To address this, we
manually construct a test dataset to include at least 500 examples for each maximum cascading carry
length. This ensures that the evaluation captures the model’s ability to handle harder instances of
addition.

The results in Figure [30] show that the model is capable of performing additions with up to 20
cascading carries, even though it has never encountered such cases during training. This demonstrates
that the model can generalize to harder instances of addition despite being trained predominantly on
easier examples.

8000

7000

v o
S o
S o
S o

4000

Number of data points

Noow
o o
S o
S o

1000

7.5
Total Carry

-7 I\lumber of data points

a2 28 s
10.0 12,5 15.0 17.5 20.0

14000

12000

ints

10000

8000

6000

4000

Number of data po

2000

N Number of data points

R Lsi78 42 1911 4 3 1 0 0

2.5 7.5 10.0 125 15.0 17.5 20.0

5.0
Max Cascading Carries

Figure 29: Number of carries in the self-improve dataset of 20-digits. The models does not see
examples of high numbers of carry during training.

2we define hard instance of addition to be cases with multiple numbers of cascading carries (Quirke & Barez,
2023)

26

Under review as a conference paper at ICLR 2025

Accuracy by Max Cascading Carries, 20-digits 14000 75

098 /\M

—— Seed 41
—e— Seed 42
0.92 Seed 43 2000
=@= Average

15
. 0
09G0.0 25 5.0 7.5 100 125 15.0 17.5 20.0 0.0 2.5 5.0 7.5 100 125 150 17.5 20.0

Max Cascading Carries Max Cascading Carries

Emm Number of data points

12000

;
S
ints

10000

8000

6000

Accuracy

14
o
B

4000

Number of data po

Figure 30: Performance of the model at round 10 (trained with self-generated data up to 20 digits).
(Left) Accuracy as a function of the maximum cascading carries. (Right) Number of examples with
each maximum cascading carry length in the self-improve training dataset. Models can successfully
perform hard - with a high number of cascading carries - addition tasks even without encountering
such examples in the training dataset.

C EXPERIMENTAL SETUP

C.1 MODEL

For all experiments, we use a Decoder-only Transformer architecture. Specifically, for all experiments
except for pretrained models settings, we use the Llama architecture (Al@Meta, [2024])), except we
remove the rotary positional encoding. For the inputs format, we have one example per line, and
stack all example on the batch dimension. Since the examples can have variable length, we pad each
line on the right to the maximum length in the batch. We exclusively use a character level tokenizer.
For pretrained models, we replace the default tokenizer with our character tokenizer, while keeping
the embedding component of the pretrained model unchanged.

Table 3: Model Parameters
Model Self-Attn Layers Num Heads Embedding Dim

From-Scratch 6 6 384
Llama 3 1B 24 16 1024
Llama 3 3B 32 32 2048

C.2 DATA FORMATS AND DATA SAMPLING

C.2.1 DATA GENERATION AND SAMPLING

We generate an initial supervised training dataset D of up to a fixed difficulty level dy by uniformly
sampling the difficulty level d < d, followed by independent sampling of the data conditioned on
the difficulty. Denoting the input as x;, labels as y;,

Do = {(zi,y:)}Y°,, where Difficulty(z;) < do.

For arithmetic tasks such as addition or multiplication, each problem instance is represented as a tuple
x; = (a4, b;), with Dy containing problems of up to dy-digit numbers. The digit lengths (d,,, dp,)
are uniformly sampled from {1, ..., dy}?, and the numbers a; and b; are uniformly sampled from
the ranges [10%: 1, 10%: — 1] and [10%:~1 10%: — 1], respectively.

For string manipulation tasks (e.g., copying or reversing), we uniformly sample string lengths up
to dp and generate random sequences. Similarly, for maze-solving tasks, we uniformly sample the
number of hops or total nodes in the maze and generate random graphs that satisfy these constraints.
This strategy ensures balanced coverage across all difficulty levels up to d.

27

Under review as a conference paper at ICLR 2025

Example Maze (N=30, Hops=4) Example Maze (N=30, Hops=13) Example 1 - ID (N=30, Hops=4)
. Start . Start Input:
2>52#55:78-49:1,10-1:2,49,21,95-3:83,59-84:65,81-68:65-
. End . End 21:1-4:90-34:6,10-2:1,69-54:64,40-64:54,90-83:3,88-59:3,

78-95:1-99:80,52-90:4,64,16-40:54-80:99,16,12,69-6:34-8
8:83,14,52-52:99,88-65:68,14,84-16:80,90-12:80-14:88,65-
81:84-69:80,2-10:49,34-78:55,59=

Label:

2>69>80>99>52

Example 2 - OOD (N=30, Hops=13)

Input:

4I>2‘J#"$7 0&4&44 85-44:48,96,13-98:50,78,89-8:42,26-3
93

5-42
,6-41:78,74- 7?» 41,49,98-
89:22,98- 7(» 8, ‘)713:44—‘):2(1—6: 85:48,22=

Label:
41>78>98>89>22>85>48>44>96>37>28>25>14>29

Figure 31: Maze-solving task with NV = 30 nodes. (Left & Middle) Visualization of the maze task
with 4 hops (ID) and 13 hops (OOD). (Right) Example of the data format: the input specifies the
start and end nodes along with the graph structure, and the output lists the shortest path as hops. The
labeled training dataset includes paths of up to 9 hops, with difficulty increased by adding one hop in
each subsequent round.

C.2.2 MULTIPLICATION

We adopt a data format similar to Deng et al| (2024), where the input prompt
is 9172%9431=, and the Ilabel expands the multiplication into steps, such as:
17442+067801(132331)+0075180(1398490)+00091720=13976630. Each step
includes the intermediate results (in parentheses) representing partial products formed by multiplying
the first operand with each digit of the second operand.

The data format is inherently asymmetrical. For example, an m-by-n multiplication requires n
intermediate steps, where each step corresponds to multiplying the m-digit number by one digit of the
n-digit number. Conversely, an n-by-m multiplication involves m intermediate steps of multiplying
the n-digit number by each digit of the m-digit number.

C.2.3 MAZE

28

Under review as a conference paper at ICLR 2025

def

def

create_tree_with_hops_wilson (total_nodes, num_hops) :
import networkx as nx

Step 1: Create the main path with num_hops
graph = nx.path_graph (num_hops + 1)

Step 2: Add extra nodes to the tree with random walk
current_nodes = list (graph.nodes())
new_nodes = list (range (num_hops + 1, total_nodes))

while new_nodes:
new_node = new_nodes.pop ()
random walk to reach graph
walk = [new_node]
while walk[-1] not in current_nodes:
choose random node from current & new nodes
random_node = random.choice (current_nodes + new_nodes)
walk.append (random_node)
if random_node in new_nodes:
new_nodes.remove (random_node)
add edges
for i in range(len(walk) - 1):
graph.add_edge (walk([i], walk[i + 1]
current_nodes.append (new_node)

Step 3: Set the start and end nodes for the main path
start_node = 0
end_node = num_hops

return graph, start_node, end_node

format_graph (graph, start_node, end_node):
Assign random labels to nodes
node_labels = assign_labels (graph.nodes (), label range=(1, 99))

Get the shortest path (in terms of edge count) from start_node to end_node
shortest_path = nx.shortest_path(graph, source=start_node, target=end_node)

Format the path as a string
path_labels = [node_labels[node] for node in shortest_path]
path_string = ">".Jjoin (map(str, path_labels))

Format start and end nodes

start_label = node_labels[start_node]
end_label = node_labels[end_node]
start_end_str = f"{start_label}>{end_label}#"

Build graph_str with end _node connections at the end

graph_str = ""
start_node_str = "" # Temporary storage for the start_node part
end_node_str = "" # Temporary storage for the end _node part

randomize the order of nodes
random_nodes = list (graph.nodes())
random.shuffle (random_nodes)
for node in random_nodes:
node_label = node_labels[node]
randomize the order of neighbors
random_neighbors = list (graph.adj[node])
random. shuffle (random_neighbors)
neighbor_labels = [node_labels[neighbor] for neighbor in random_neighbors]
graph_str += f"{node_label}:" + ",".join (map(str, neighbor_labels)) + "-"

Combine everything, placing the end _node last
graph_str = start_node_str + graph_str + end_node_str

return start_end_str + graph_str([:-1] + "=", path_string, node_labels

Listing 1: Code for the maze format generation used

29

Under review as a conference paper at ICLR 2025

C.3 EXPERIMENTAL SETTINGS

C.3.1 HYPERPARAMETER CONFIGURATIONS

In this section, we provide a detailed overview of the hyperparameter configuration used in our
experiments in Table[d and[5] To enhance memory efficiency and training speed, we employ flash
attention and tf32, bfloat16. Our experiments are run using PyTorch 2.4 and CUDA 12.1. Detailed
dependencies are provided in our github repositoryﬂ We use Warmup stable decay (Wen et al., [2024)
as the learning rate schedule. In tabled]and [5] the number of constant LR steps is equal to the total
training steps minus the sum of warmup and decay steps. We use AdamW optimizer with betas (0.9,
0.99) and epsilon 1le — 12. Weight decay is fixed to 0.1 and we do not use dropout.

Table] shows the training hyperparameters for the initial training phase on labeled data Dy. Table[5]
shows the hyperparameters for each the self-improve training rounds on D1 g.

Table 4: Hyperparameters for initial training on labeled data

Task Batch Size LR Iterations Warmup Iter Decay Iter
Reverse Addition 1024 Se-4 10000 1000 2000
Reverse Addition (Llama 3 3Bg 128 le-4 1200 120 600
Reverse Addition (Llama 3 1B 128 le-4 1200 120 600
Copy/Reverse 1024 Se-4 5000 500 1000
Forward Addition 1024 S5e-4 10000 1000 1000
Multiplication 1024 S5e-5 10000 1000 2000
Maze (hO(fS) 1024 Se-4 25000 2500 3500
Maze (nodes) 512 Se-4 12000 1200 2800

Table 5: Hyperparameters for self-improvement rounds

Input Format Batch Size LR Iterations Warmup Iter Decay Iter

Reverse Addition 1024 Se-4 1500 0 1500
Reverse Addition (Llama 3 3B) 128 le-4 600 0 600
Reverse Addition (Llama 3 1B) 128 le-4 600 0 600
Copy/Reverse 1024 Se-4 500 0 500

Forward Addition 1024 Se-4 3000 0 1000

Multiplication 1024 S5e-5 3000 0 1000

Maze (ho&)s) 1024 2e-4 5000 500 1000

Maze (nodes) 512 2e-4 4000 400 1000

C.3.2 SELF-IMPROVEMENT SETTING FOR EACH TASK

Reverse Addition. The initial supervised dataset Dy contains 2 million examples of reverse addition,
with operand lengths ranging from 1 to 16 digits. This dataset is used to train the model for 10,000
steps. In subsequent self-improvement rounds, we sample 50,000 additional training examples at
each round, extending the operand length by one digit. Specifically, at self-improvement round r, the
self-generated data D,. consists of length-16 4 examples produced by the model M,.. The model is
fine-tuned on the combined dataset Dy U Dy U - - - U D, for 1,500 steps, resulting in an improved
model M, .

String Copy & String Reverse. The initial training set D, consists of 2 million examples of strings
of length 1 to 10. The vocabulary of the string is the digits O to 9. For each subsequent round r, we
sample D, consisting of 50, 000 examples of length 10 + r from the model M,.. Then we continue
training M,. on the combined dataset Dy U - - - U D,. for 500 steps to obtain M, 1.

Forward Addition The models are initially trained on a dataset Dy containing 2 million labeled
examples of forward addition, with operand lengths ranging from 1 to 10 digits. This initial training
phase spans 10,000 steps. In each subsequent self-improvement round, we generate 50,000 additional
training examples, incrementally extending the operand length by one digit. Specifically, at self-
improvement round r, the self-generated dataset D,. contains length-10 + r examples produced by the

*https://github.com/JackCail206/arithmetic-self-improve/

30

https://github.com/JackCai1206/arithmetic-self-improve/

Under review as a conference paper at ICLR 2025

model M,.. The model is then fine-tuned for 3,000 steps on the combined dataset Dy UD; U ---UD,,
resulting in an updated model M, .

Multiplication The model is initially trained on 5 million n-by-n multiplication examples with
n = 5. Directly introducing n 4 1-by-n 4 1 examples results in poor performance, hence, we adopt
a more fine-grained difficulty schedule. In each self-improvement round, we incrementally increase
one operand by one digit, sampling n + 1-by-m and m-by-n + 1 examples, where m grows from 1
to n + 1. This gradual progression allows the model to adapt incrementally to larger operand sizes,
making the transition to harder examples more manageable.

For data filtering, we use the following setting: for length filtering, we remove self-generated samples
where the output length is shorter than the longest output in the batch by more than 10 tokens. This
helps eliminate incorrect solutions that omit intermediate steps. For majority voting, we train five
models in parallel using different random seeds and retain only those data points where at least 4 out
of the 5 models produce the same output. This strategy ensures that only high-consensus, reliable
data points are used for training.

Maze Solving - Increasing Hops. The model is first trained on a dataset D containing 5 million
labeled maze-solving examples, where the number of nodes is fixed at N = 30 and paths range from
h =1to h =9 hops. This initial training phase spans 25,000 steps. In subsequent self-improvement
rounds, we generate 50,000 additional training examples, increasing h by 1, and fine-tune the model
for 5,000 steps per round. We experiment with both unfiltered training data and majority voting,
where only outputs agreed upon by all 3 models are retained.

Maze Solving - Increasing Nodes. The model is first trained on a dataset Dy containing 5 million
labeled maze-solving examples, with a fixed hop count i = 9 and node counts ranging from N = 10
to N = 30. This initial training lasts 12,000 steps. In self-improvement rounds, the number of
nodes N is increased by 3 per round, generating 50,000 additional training examples at each step
and fine-tuning for 4,000 steps. We compare training without filtering against majority voting, where
only outputs agreed upon by all 3 models are kept.

Ablation Task - Pretrained Models To maintain consistency in tokenization, we use character-
level tokenization instead of the default tokenizer of the Llama models. We use LoRA (Hu et al.|
2021) with » = 64 and o = 128 for Llama-1B, and » = 32 and o = 128 for Llama-3B. In the initial
round, we train for 1200 steps with a learning rate schedule that includes 10% warm-up steps to a
constant learning rate of le-4, followed by 20% cosine decay steps to a final learning rate of le-6.
For subsequent rounds, we train for 600 steps per round using a cosine decay learning rate schedule
without warm-up, starting at 1e-4 and decaying to le-6.

31

Under review as a conference paper at ICLR 2025

Mean Accuracy for Round 1 Mean Accuracy for Round 2 Mean Accuracy for Round 3 Mean Accuracy for Round 4
1{1.000 | 1000 | 1.000 | 1.000 | 1.000 | 0.902 1{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.508 172.000 | 1.000 | 1.000 | 1.000 | 1.000 171.000 | 1.000 | 1.000 | 1.000 | 1.000
241000 | 1000 | 1.000 | 1.000 | 1.000 | 0763 241000 | 1.000 | 1.000 | 1.000 | 1.000 | 0814 241000 | 1.000 | 1.000 | 1.000 | 1.000 241000 | 1.000 | 1.000 | 1.000 | 1.000
312,000 | 1000 | 1.000 [1.000 | 1.000 3]2.000| 1000 | 1000 [1.000 | 1.000 3]2.000| 1000 [1.000 [1.000 | 1.000 372.000| 1000 [1.000 | 1.000 | 2.000
541000 | 1.000 | 1.000 | 1.000 | 1.000 541000 | 1.000 | 1.000 | 1.000 | 1.000 540,999 | 0.999 | 1.000 [1.000 | 1.000 RRELHNIRY 5 | 0.996 | 0.99 | 1.000 [1.000 | 0908
610918 0500 0875 0845 0818 6]0932| 0876 0870 0855 0818 610929 | 095 0801 0878 6{0.930| 0896 | 0912 [0.903 0815 8
7 7 0,000 0,000 0,000 0048 0000 0.000

12 3 4 6 7 12 4 6 7 1 2 3 4 1 2 3 4

digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 5 Mean Accuracy for Round 6 Mean Accuracy for Round 7
171000 | 1.000 [1.000 | 1.000 | 1.000 | 0:902 171000 | .000 | 1.000 | 1.000 | 1.000 111000 | 1.000 | 1.000 | 1.000 | 1.000
24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0820 241,000 | 1.000 | 1.000 | 1.000 | 1.000 2] 1000 | 1.000 | 1.000 | 1.000 | 1.000

3{12.000 | 1.000 | 1.000 | 2.000 3{1.000 | 1.000 | 1.000 | 1.00 3{1.000 | 1000 | 1.000 | 1.00

1000 1000 [.000 | 1000 1000 1000 [1.000 | 1000 % 4] 2000 [.00 [1.000 | 1.000

digit 1
=

5099 | 0.999 | 1.000 | 1.000 5099 | 1.000 | 0:999 | 1.000 5] 0.999 | 1.000 | 0.999 | 1.000

610933 | 0.893 | 0.011 | 0.921 | 0370 [LRIMS 60932 | 0.895 | 0.912 | 0917 610934 | 0.893 | 0.912 | 0920

i QO

a a 4
digit 2 digit 2 digit 2

Figure 32: Results for multiplication without filtering. Each cell represents the accuracy on n-digit
by m-digit multiplication. Red boxes indicate labeled in-distribution examples, while magenta boxes
indicate evaluations after training on self-improved data. The model is initially trained on up to
5-by-b multiplication. Generalizing to larger multiplications is challenging without data filtering.

Mean Accuracy for Round 1 Mean Accuracy for Round 2 Mean Accuracy for Round 3 Mean Accuracy for Round 4
172.000 | 1.000 | 1.000 | 1.000 | 1.000 [0:507. 171000 | 1000 [1.000 | 1.000 | 1.000 [0:932 171000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.929 172.000 | 1.000 | 1.000 | 1.000 | 0.999
241000 | 1.000 | 1.000 | 1.000 | 1.000 | 0021 241,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0014 271000 | 1.000 | 1.000 | 1.000 | 1.000 | 0:016 241000 | 1.000 | 1.000 | 1.000 | 1.000
341000 | 1.000 | 1.000 | 1.000 | 1.000 | 0832 341,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0769 3] 1000 | 1.000 | 1.000 | 1.000 | 1.000 | 01853 3{2.000| 1000 | 1000 [1.000 | 1.000
S S b 3

541.000 | 1.000 | 1.000 | 1.000 | 1.000 54 1.000 | 1.000 | 1.000 | 2.000 | 1.000 5099 | 0999 | 1.000 | 1.000 | 1.000 541,000 | 1.000 | 1.000 [0.899

610938 0932 08ss 0873 0sas 610563 0896 0890 0839 0840 610964 | 0928 [0.919 0918 0856 60966 | 0927 | 0.934 [0.938
7 7 7 0.095 0.002 0000 0000
1 2 3 4 5 6 7 1 2 3 4 5 6 1 12 3 4 5 6 7 2 3 a
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 5 Mean Accuracy for Round 6 Mean Accuracy for Round 7 lean Accuracy for Round 8

141000 | 1.000 | 1.000 | 1.000 | 1.000 141,000 | 1.000 | 1.000 | 1.000 | 1.000 11 2.000 | 1.000 | 1.000 | 1.000 | 1.000 141,000 | 1.000 | 1.000 | 1.000 | 1.000

21,000 | 1.000 | 1.000 | 1.000 | 1.000 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 21 1.000 | 1.000 | 1.000 | 1.000 | 1.000 21.000 | 1.000 | 1.000 | 1.000 | 1.000

3 12.000 | 1.000 | 1.000 | 2.000 | 2.000 34 1.000 | 1.000 | 2.000 | 2.000 | 1.000 3] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 31.000 | 1.000 | 1.000 | 1.000 | 0.999

41.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000

% a{ 1000 1000 [000 .00 [.000

digit 1
digit 1
>
digit 1
E

541,000 | 1.000 | 1.000 | 1.000 5 1.000 | 1.000 | 0.999 | 2.000 | 0999 5 1.000 | 0999 | 1.000 | 1.000 | 0.909 541.000 | 1.000 | 1.000 [0.899

60964 | 0.927 [0.936 | 0.950 610963 | 0926 | 0.935 | 0.952 60964 0927 | 0936 [0.051 60964 [0926 | 0.935 | 0.952

2 3 4 1 2 3 4 5 6 1 2 3 4 5 6
digit 2 digit 2
lean Accuracy for Round 9 Mean Accuracy for Round 10

digit 2 digit 2
Mean Accuracy for Round 12 Mean Accuracy for Round 14

141000 | 1.000 | 1.000 | 1.000 | 1.000 111,000 | 1.000 | 1.000 | 1.000 141,000 1.000 | 1.000 | 1.000 | 1.000 111,000 | 1.000 | 1.000 | 1.000 | 1.000

21.000 | 1.000 | 1.000 | 1.000 | 1.000 2{1.000 | 1.000 | 1.000 | 1.000 2] 1.000| 1.000 | 1.000 | 2.000 | 0990 21000 | 1.000 | 1.000 | 0.999 | 1.000

341,000 | 1.000 | 1.000 | 1.000 | 1.000 3{1.000 | 1.000 | 1.000 | 1.000 341000 | 1.000 | 1.000 | 1.000 | 0990 341000 | 1.000 | 1.000 | 1.000 | 1.000

1.000 | 1.000 | 0:99 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 2.000 | 1.000

digit 1
>

41.000 | 1.000 | 1.000 | 1.000 | 1.000

digit 1

54 1.000 | 0.999 | 0.999 | 0.999 | 0990 5{1.000| 0.999 | 1.000 | 2.000 54 1.000| 0.998 | 1.000 | 2.000 | 0990 541000 | 0.999 | 0.999 | 0.999 | 0.098

60960 [0.920 | 0:933 [0.950

60962 | 0.922 | 0.935 [0.954 60961 | 0923 | 0.937 [0954 610962 [0921 | 0.935 | 0,955

3 4
digit 2

3 4 3 4
digit 2 digit 2

Figure 33: Results for multiplication with length filtering with length threshold of 10.

D FULL RESULTS

D.0.1 RESULTS ON MULTIPLICATION

Each figure represents the average over 5 different models.

D.0.2 RESULTS ON MAZES

We provide additional evaluation on mazes, based on the validity of moves and correctness of end
nodes.

32

Under review as a conference paper at ICLR 2025

Mean Accuracy for Round 1 Mean Accuracy for Round 2 Mean Accuracy for Round 3 Mean Accuracy for Round 4
1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0913 141000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 141000 1.000 | 1.000 | 1000 | 1.000 | 1.000 0835 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
241,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.783 241000 | 1.000 | 1.000 | 1.000 | 1.000 [0987 241,000 1.000 | 1.000 | 1.000 | 1.000 [0.998 241,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 0775
341,000 | 1.000 | 1.000 | 1.000 | 1.000 341000 | 1.000 | 1.000 | 1.000 | 1.000 0831 341000 1.000 | 1.000 | 1.000 | 1.000 | 0.083 341,000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
2 441000 | 1.000 | 1.000 [1.000 | 1.000 < 4] 1000 1.000 [1.000 [1.000 [1000 2 441000 1000 | 1000 | 1.000 [1.000 | 018 2 441000 | 1.000 | 1000 [1.000 [1.000 [009
52000 [1.000 [1.000 | 1.000 | 1.000 51,000 | 1.000 [1.000 f 1.000 | 1.000 52000 | 1.000 [1.000 | 1.000 | 1.000 5{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.822
6{0926 0913 0883 0853 0825 6{1000[0.047 0943 0918 0834 61000 0999 0.098 0998 077 61000 [0.998 f 0.999 | 1000 0989
7 7 7 7
1 2 3 4 5 6 1 1 2 3 4 5 6 1 1 2 3 4 5 6 7 1 2 3 4 5 6 1
2 digit 2 digit 2 digit 2
Mean Accuracy for Round 5 Mean Accuracy for Round 6 Mean Accuracy for Round 7 Mean Accuracy for Round 8
171000 | 1000 | 1.000 [2.000 | 1.000 | 1.000 [0823| 11.000 | 1.000 | 1.000 f 2.000 | 2.000 | 1.000 141000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 11000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.950
241,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.005 [0.860| 21000 | 1.000 | 1.000 | 1.000 | 1.000 | 0098 241000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.088 241,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.598 [0.043
341,000 | 1.000 | 1.000 | 1.000 | 1.000 | 2.000 3{2.000| 1.000 | 1.000 | 1.000 | 1.000 | 1.000 f07701 31 1.000 [1.000 [2.000 | 1.000 | 1.000 | 1.000 3{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [0.954
2.4{2.000 | .000 | 1000 1000 [1.000 | 3 1.000 | 1.000 [1000 [1.000 | .000 [394 2 4{ 1000 1.000 | .000 | 000 [1.000 [0998 2 4{2.000 | 2.000 | 1000 1000 [1.000 | 0994 | o866
i 3 S
541,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.076 541000 | 1.000 | 1.000 | 1.000 | 1.000 [0981 541,000 1.000 | 1.000 | 1.000 | 1.000 | 0.980 541,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.080
641,000 [0.999 | 1.000 | 1.000 | 0.997 6 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0928 641,000 1.000 | 1.000 | 1.000 | 0.098 | 0.032 641,000 | 0.999 | 1.000 | 1.000 | 0.998 | 0.031
7 7 0764 0782 0764 7 0787 0864 0892 0887 7{0984 0965 0965 0964 046
1 2 3 4 5 6 7 1 2 3 4 5 6 71 1 2 3 4 5 6 1 i 2 3 2 5 6 71
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 9 Mean Accuracy for Round 10 Mean Accuracy for Round 12 Mean Accuracy for Round 14

111,000 | 1.000 | 1.000 [1.000 | 1.000 | 0.098 [0950 12000 | 1.000 | 1.000 | 1.000 | 1.000 | 0999 | 0.946| 1] 1.000 | 1.000 | 1.000 [1.000 | 1.000 | 0:999 [0949 | 1 {1.000 | 1.000 | 1.000 | 1.000 [1.000 | 0.995 | 0.948

21000 | 1.000 | 1.000 | 1.000 | 1.000 [0.998 [0.047| 2] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.098 [0944 21000 | 1.000 | 1.000 | 1.000 | 1.000 | 0998 | 0.08| 2] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.098 [098

311000 | 1.000 | 1.000 | 1.000 | 1.000 f 1.000 [0.972 | 3] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [0974 31000 |1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.974 | 3] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [0973

1,000 | 1.000 [1.000 | 1.000 | 0.994 | 0.938 1000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.095 1000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 [0.089 1000 | 1,000 | 1.000 | 1.000 | 1.000 | 0.994 [0.089

digit 1
>

1.000 | 1.000 [1.000 | 1.000 | 0.980 | 0.878| 51 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.976 [0.899 | 5§ 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.978 | 0.922| 5] 1.000 | 1.000 | 1.000 | 1.000 [1.000 | 0976 | 0.023

611000 | 0.998 | 0.999 | 1.000 | 0.999 | 0932 611000 | 0.999 [1.000 | 1.000 | 0.999 | 0931 611000 | 1.000 | 1.000 | 1.000 | 0:998 | 0920 611000 | 0.998 | 1.000 | 1.000 | 0.998 | 0932
74088 [0992| 0.893 0996 0977 0822 7] 088 | 0993 0.097 0996 0970 0837 7] 0.983 | 0.992 [0.997 [0.997 | 0.075 | 0.891 70989 | 0.994 [0.996 [0.998 | 0.076 | 0.801
i 2 3 a2 5 6 71 i 2 3 a 6 7 1 2 a 6 7 i 2 a 6 7
digit 2 digit 2 digit 2 digit 2

Figure 34: Multiplication with majority voting where filtering is based on agreement of at least 4 out
of 5 models. Applying majority voting enables effective generalization from n-by-n to (n + 1)-by-
(n + 1) multiplication tasks.

Mean Accuracy for Round 1 Mean Accuracy for Round 2 Mean Accuracy for Round 3 Mean Accuracy for Round 4
171000 | 1.000 | 1.000 | 1.000 | 1.000 | 0913 111000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 171000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 {076 | 11 1.000 | 1.000 [1.000 | 1.000 | 1.000 | 1.000
241000 | 1.000 | 1.000 | 1.000 | 1.000 | 0:783 241.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.080 241,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.098 2] 1000 | 1.000 | 1.000 | .00 | 1.000 | 0.098
3{1.000 | 1.000 | 1.000 | 1.000 | 1.000 3{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0:824 3{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.095 3{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
%2 42,000 | 1.000 | 1000 [1.000 | .000 2 {2,000 | 1.000 | 1000 1.000 [.000 2 4{2.000 | 1.000 | 1.000 1.000 [.000 | 536 2 4{1.000 | 1.000 | .00 [1.000 [1.000 | 093
3 S S S
541,000 | 1.000 | 1.000 | 1.000 | 1.000 541,000 | 1.000 | 1.000 | 1.000 | 1.000 52000 [1.000 | 1.000 | 1.000 | 1.000 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000
610926 0913 0883 0853 0825 610999 [0962 0961 0957 0934 6{1.000 [1.000] 0997 095 0350 611,000 | 1.000 | 1.000 | 1000 0966
7 7 7 7
12 3 4 5 6 1 12 3 4 5 6 1 1 2 3 4 5 6 1 1 2 3 4 5 6 1
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 5 Mean Accuracy for Round 6 Mean Accuracy for Round 7 Mean Accuracy for Round 8
[000 [.00 .00 00 00 ,m. [000 [.00 .00 00 [00 [000 1000 [.00 .00 00 [00 [1000 1000 .00 000 00 [a0 [00 [oaas
241,000 | 1.000 | 1.000 | 1.000 | 1.000 usgslu.nl 241,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.098 241,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.098 241,000 | 1.000 | 1.000 | 1.000 | 1.000 [0.998 [0:842
3] 2.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 31000 | 1.000 | 2.000 | 1.000 | 1.000 | 1.000 341,000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 34 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [0794
%,471.000 | 1000 [1.000 | 1.000 | 1.000 | 0995 %,471.000 | 1.000 [1.000 | 1.000 [1.000 | 0994 %,471.000 | 1000 [1.000 | 1.000 [1.000 | 0994 % 471000 | 1000 | 1.000 | 1.000 [1.000 | 0994
541,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.980 541,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.092 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.080 51000 [1.000 | 1.000 | 1.000 | 1.000 | 0.090
641,000 | 1.000 | 1.000 | 1.000 [0.097 641,000 | 1.000 | 1.000 | 1.000 | 1.000 [0.034 640.999 | 1.000 | 1.000 | 1.000 | 1.000 | 0:030 64 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.043
7 7 0795 0789 7 0767 0843 0883 0887 7{0898[0872 0912 0913 0894
1 2 3 4 5 6 1 1 2 3 a4 5 6 1 1 2 3 a4 5 6 1 1 2 3 a4 5 6 1
digit 2 digit 2 2 digit 2
Mean Accuracy for Round 9 Mean Accuracy for Round 10 Mean Accuracy for Round 11 Mean Accuracy for Round 12

141,000 | 1000 | 1.000 [1.000 | 1.000 | 0.098 [0824 | 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 0:820| 1 1.000 | 1.000 | 1.000 [1.000 | 1000|0995 fo.816f 11000 |1.000 | 1.000 | 1.000 [1.000 | 090 o817

211000 | 1.000 | 1.000 | 1.000 | 1.000 [0.998 [0:858| 2] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.098 [0.857(21000 |1.000 | 1.000 | 1.000 | 1.000 | 0998 | 0:856| 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 f 0,854,

341000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [0:893 3] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [0.906 | 31000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0:906| 3] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 [0.903.

2.000 | 2.000 | 1.000 | 1.000 | 1.000 | 0.994 [0.867 1.000 | 1.000 | 2.000 | 1.000 | 1.000 | 0.994 | 0:896 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.898 2000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.993 | 0:896

digit 1
>
digit 1
>
digit 1
=
g
digit 1
S

511000 | 1.000 | 1.000 | 1.000 | 1.000 | 0989 |0.788| 5 1.000 [1.000 | 1.000 | 1.000 | 1.000 | 0.990 [0:853 | 5{2.000 | 1.000 | 1.000 | 1.000 [1.000 | 0.991 | 0.882 | 51.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 | 0:885

6 12.000 | 1.000 | 2.000 | 1.000 | 1.000 | 0.943 61000 | 1.000 | 2.000 | 1.000 | 1.000 | 0.943 6099 | 1.000 | 1.000 | 1.000 | 1.000 | 0.942 6099 | 1.000 | 1.000 | 1.000 | 1.000 | .42

7{0914 | 0951 | 0962 0978 0954 0812 7{0912 | 0.960 | 0.072 | 0989 0.972 0849 7{0910 | 0.955 | 0.975 | 0.992 [0.979 0869 740507 | 0956 [0.872 | 0.952 | 0.977 | 0.897 CXE

1 2 3 4 5 6 1 i 2 3 a2 5 6 1 1 2 3 5 6 7 1 2 3 5 6 7
digit 2

Figure 35: Multiplication task with majority voting with shared self-improve data (See Section[B.2.4).

33

Under review as a conference paper at ICLR 2025

Mean Accuracy for Round 1

Mean Accuracy for Round 3

Mean Accuracy for Round 5

Mean Accuracy for Round 7

1 Jr.000]r.000ft 0odfr.00dfs 00ofo.017] 1 Jr.000]1 000t 000z 00 m.mm.lm 1 ft.0odx 00dfr.00d]x aoofr. 000 00d]o 036} 1 Jr-000]1.000ft 0odf1.0od]x ooofr.cocfor7

2 Ti.000ft.0001.000]1.000f1.000o.054 2 11.000]1.000f1.000ft 0001001 0ot 2 h.00d1.000f1.001.a00f1.000f1.00clo 093} 2 f1.000}1.0001.000]2.000}1.000]1.c0olo 01

3 h1.000[1.000h.000]1.000}1.000f0.894 3 }1.000}1.0001.000[1.000h.000/0.995) 3 h.000l1.000}1.00)1.000}1.000f1.00clo 970} 3 h.000[1.0001.000]2.000}1. 000}1.000}0.920}

4 .000[1.0001.000]2.000}1.000f0.77 4 1.000[1.0001.000[1.0001.000/0.918 4 f1.000]1.00012.000}1 0001 000f1.00r 4 h.000[1.0001.000]2.000}1.000}1.000}0.9771
5 11.000}1.0001.000]1 000} 0o 0 5 10001 000]1.000fr 00of.00 5 1.000]1.000}1.000]1.000f1.000.000] P~ 5 1.000f1.000]1.000f1.000]1 0001 0oclo.05:

)) =3 =)

2 6 loe2s0932080708520.63) 2 6 1.000]1.000/1.0000.990 .83 2 6 f1.0od1.000]1.000f1.0001.000) 2 6 |1.00oft.000f1.00df1.000]1 000} 00
7 7 7 710.7470.800 0,839 0.858 0.849 0,801,

8 8 8 8

9 9 9 9

10 0 10 0 10 10 0
12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 9 Mean Accuracy for Round 11 Mean Accuracy for Round 13 Mean Accuracy for Round 15

1 Jr000f1.00 nn1nn1nnwmv|rmnlnnnk 1 Jr.000]1.000fr.000]r.00cft o0ofr.00dfr ooofo.sa: 1 ft.0odx 00dfr.00d]1 000t 000ft.o0dfr.000fo.0e4 1 Jr-000]1.000fr 00df1.00d]r 00ofr.oocfr oot mmlf.u

2 hoooft oo nn|nn1nn1nn|nnnll\un 2 11.000f1.000]1.000}1.000}.00d]1.000f1. 000lo 006 2 h.00d]1.000f1.000]1.000f1. 000} 00df1.000]o.aes) 2 f.000ft.0001.000]1.000f1.000]1.0001.000[1.000

3 h.000[1.0001.000]2. 0001 000f1.000}1 000} 3 J1.000}1.0001.000f1.0001.000]1. 000} 000080 3 h.000]1.000}1.000]1.000}1.000f1.000}1.000]1.000) 3 h1.000[1.0001.000]2.000]1.000[1.0001.000[1.000

4 h.000[1.0001.000]2.000}1.000f1.000}0.999) 4 .000}1.000]1.000}1 000000} 0001 00 4 }1.00d]1.00012.000}1.000]1.000}1 0001 0vclo 9} 4 .000[1.0001.000]2.000f1.000[1.0001.000[1.000

51.000[1.000}1.000]2.000}1. 000z, 000}o 99313 5 11.000]1.000]1.000}1.0001.000}1.000}1.000) BPLSY ~ 5 {1.000}1.000]2.000f1.000f2.000}r.0001 00clo.9saf B~ 5 11.000]2.000}1.00012.000]1 0001 000f1.000]1. 000}

o o o

6 1.000f1.0001.000]2 0001 0001 0000 843} £ 6 f1.00d1.000f1.000}r.000ft oodr.ooclo.7e 2 6 {r00d1.0001.000}1.000]1.000ft 001001 2 6 1.000f1.0001.0001.00011.000f1.000f1.000o.90|

7 1.00000.993}0.994 1.0000.998 0.994 7 Jo.999|0.994l0.995[1.0000.998 0.996 7 b0.9990.90340.994]1.a00}o 0. o080 008} 7 J.000(0.9940.994]1.000}0.998f0.998}1 000f0.961

80815 810.8790.9000.8750.793 8 10.888 0.945 0.954 0.943 0.924 0.855| 8 10.978{0.989 0.988 0.989 0.991 0.990 0.967)

9 9 9 910752

10 0) 10)) 10 X000 0 0 ™ 10 0 0
12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 17 Mean Accuracy for Round 19 Mean Accuracy for Round 21 Mean Accuracy for Round 23

1 Jr.000]1.000}t 000t 0001 000fr. 000t o0or.00dlo.ce] 1 Jr-0001.000fr.000]1. 000}t o0ofr.00d]r o0ofr.00c]o.oce 1 ft.oodx 00dfr.00dfo.asc)o 2.0 1 Jr-000]1.000fr 00df1.00d]r 00ofr. oocfr oot rm1nnrllnnm

2 11.000}1.0001.000]1.000}1.000]x.000ft 00o.ooclo 966§ 2 11.000]1.000]1.000}1.0001.00d]1.000f1. 0001000} 000} 2 Tr.0od1.00df1.000]o.962J0.933f0.0: 21nnHm|m||nn|nn\nn\nn|nn|!\nnn.1u{

3 h.000[1.0001.000]2.000}1. 0001 000fr 000 ooclo.73af 3 J1.000[1.000]1.000}1.0001.000]1.000]1 000f1.000}o.999} 3 h.000l1.000}0.999]0.98e}0 9a0f0.912]o 3 h.000[1.0001.000]2.000}1.000f1.000}1. 000 000}1.000)

4 1.000[1.0001.000]1.000}1.000[1.0001.000[1. 000 4 1.000[1.000]1.000}1.0001.000]1.000}1 000f1.000}0.979| 4 {1.00d1.00012 0000 ssslo 0470 o 4 h.000[1.000}1.000]2.000}1.000}1.000}1. 0001 000f1.000)
~ 511.000/1.000/1.000f1.000}1. 000f1.000f1.000f1.000) ~ 5 $1.00011.00011.0001.000}2.000f1. 000} 00oft 00olo.748| ~ 5 11.000/1.000[1.000/0.988}0.955/0.94 ~ 51.00011.000/1.000}1.000f1.000f1.000f1.000[1.000(1.000)
)) =3 o
2 6 J1.000f1.000ft.00df1.000]1.aoofr.000f.000}o.000f 2 6 f1.000]o.999]1.000f1.000f.00d]1 0001.000]1 000 2 6 fo.00d0.009)0.00e]o 00200710 o 2 6 |1.000f1.000f1.00d]1.000]2.000fr.000]1.00cfr.00djo.03]

7 Jo.99900.994k.994]1.000}0.998f0.9981.000[0.895 7 J1.000[0.994l0.994}1.000o.998l0.998h.000f0.989 7 b0.99900.993}0.993)0.998}0.992)0.992]0.996]0.981{0 764} 7 1.000}o.993}0.994)1.000}o.99J0.998f1. 0001.00d]o.09:

80.980}0.98 0.9910.9990.992| 8 991§0.9920.9910.998 0.996| 80.97900.989)0.991f0.989}0.984f0.988}0.98300.931. 8 0.980}0.98810.991/0.992]0.993{0.998}0.998{0.996{0.966

910.8340.8630.8440.751 910.8690.9200.9290.9220.8760.763) 9 10.8450.904 0.9290.896 0.857 0,803 910.968(0.9650.984 0,975 0.975 0,970 0.965 0,951

10 10 10 10 860

12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 25 Mean Accuracy for Round 27 Mean Accuracy for Round 29 Mean Accuracy for Round 31

1 000t 00dfr.00d]x a0ofr.000fx.000r.00ofr.00dfr.000fo.003 1 [1.000fr.000]r.000fr-00fr.000]r 000000 00ofr.00dlo.e0 1 fr-00dfr.00d]x.000ft.000fx.000f.00d]x.000fr.000fr.000fpess 1 fr.o00ft.00dr.000ft.00d]r-000fr.000f: 00dfr.00dx 000fr.000

2 h.00of1.000}1.000]1.000}1 000f1. 000t 00012 00c}r.000fo.985 2 f1.000}1.000f1.000}r 0001000} 000]1.000}r.000f1.000f1.000 2 J1.0001.000}1.0001.000}1. 0001 000]2. 0001 000f1.000}o.06: 2 h.000f1.000}1.000]1.000}1. 000f1.0001. 0002000} 0000.998

3 h1.00oft.000}1.000]1.a00}1.000f1 000t 0001 0ocfr.00ojo.988 3 }1.000}1.0001.000}s 0001 000[1.000h.000}1.000f1.000/0.999 3 J1.000f1.000]1.000}1.000}1.000h.000]2.000}r.000f1 0000980 3 J1.000f1.000]1.000r. 000} 000]1.000fr 000l 000]1.000lo 998

4-J1.000f1.000]2.000]1 000]1.000fr 000f.000]1 0001 000) 4 1.000]1.000f1. 000}t 000f1.000]1.000ft 0001 000t o0 4 -J1.00d]1.000]1.000fr 0001000}t 00ofr.000]r.00oft.000jo.083 4 J1.0001.000]2.000}1.000]2.000fr.000f.00d]1 0001 000} 000
5 1.000}1.00df1.0001.000f1.000f1.0ooft 001000l 000} 5 11.000]1.000fr. 000}t 00df1.000]1.00oft. 000}t 000f.000/0748 ~ 5 J1.000f1.000]1.000ft.000fr.000fr.000]2.000fr.0001.000lo.002 5 11.000f1.000]1.000]1.000]r 0001000}t 0001 00d]r 00ojo e
=3) =3)

2 6 J1.000.9991.000]1.000]1.000fr.000r.00d]1.000}1.000] 2 6 fr.0oo]o.99s1.000}1.00df1.000]1.000f1. 0001 000}r.000) 2 6 f.oodo.99e]1.000fr 0001000}t 00of1.000]1.000ft.000f0.087 2 6 J1.000k.99911.000f1.000]1.000f1 0000001 000f1.000}1 000
7 J0.99900.99400.994)1.000}0.993f0.9981.00011.000(0.99: 7 1.000}0.994}0.9941.0000.99810.9981.000]1.000 0.9 7 0.99900.994}0.994}1.000}0 998f0.998f1.00011.000f0.9980.870 7 .999}0.994]0.994}1.000}0.998{0.9981.000]2.000}0.998f0.99:
8097 99200.99 8 0.97900.989.990}0.992J0.99200.998}0.998}0 996 0.1 8 {0.979]0.9880.991§0.9920.993}0.998]0.993}0.996]0.993| 8 10.97900.98940.9910.992]0.9920.998}0.99:

9 o7 0.9820.9820.985 0,986 9 lo.s71lo.sseo 0 9840.993) 971 98700.977)0.982)0.984J0.936)0.996 9 Jo.973p0.96dl0.05: 982J0.984)0.935]0.996J0.993j0.78:

10{07520.760 10 {0.7800.832 0.864 0.854 0.790; 10 {0.806.0.885 0.905 0.927 0.930 0.923 0,861} 10{0.848.0.916 0.930 0.961 0.965 0.975 0.966 0.955 0.905|
12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2

Figure 36: Combining majority voting with length filtering. This approach achieves near-perfect
length generalization up to 9 x 9, and potentially achieving further generalization.

34

Under review as a conference paper at ICLR 2025

Mean Accuracy for Round 1

Mean Accuracy for Round 2

Mean Accuracy for Round 3

Mean Accuracy for Round 4

1 Jr.000ft 000t oodr aodfr oodp o1 1 [r-o0dx.000fr 000t 000t aodfr oot 1 Jr00dr.00dr 000 000t 000ft.000f1.00 e e 0 1400
2 11000}t 000r.000]1 000} 000 54| 2 110001 0001000}t 0001001 oot 2 10001 000f1.000]1 a0oft. 0001 0odlo 00} 2 1.000f1.000t.00df1.000f1.000f1.000]o.090
3 110001 0001 000}1.000]1.000jo 84 3 100010001000}t 00or.0odfo.o 3 110001 00df1.001.00oft 0oof. ooclo.67: 3 J1.000]1.000f1.000}1.000]1 0001 000jo.931
4 {10001 0001 000f1 0001 0000 77 4 1.000]1.0001.000[1.0001.000]0.843 4 J1.00d1.00011.000]1.000]1. 00fr 0ot 4 J1-000f1.000f1.000}1.000]1. 0001 000jo.01
5 J1.000}1 000}t 0o0dr 0ocfr 00 5 [1.000]1 000} 000fr 000t 0o ~ 5J1.00d1.000]1.000]1 000} ooch 5 }1.000]1.000}1.00d]x 00dr 0ocfr 00
= El = o
T 60.9250.9320.8970.8820.863) T 61.00000.9940.9910.986 0.957) 5 61.000/1.000(1.00011.0001.000) 3 6 {1.000f1.000f1.00012.0002.000]1.00
7 7 {0176} 7 10.943 0,826 0.788! 710.9640.9290.9230.898 0.854)
8 8 8 8
9 9 9 9
10 10 10 10
12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 910 1 2 3 45 6 7 8 9 10 12 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 5 Mean Accuracy for Round 6 Mean Accuracy for Round 7 Mean Accuracy for Round 8
1 Jt.000]x.00c]: o0dx o0dfr aocfr oocfr oo) 1 [r-o0dx.00cfr oocfr oo nn]nn'\nnnlnmﬁ 1 Jr00d1 001 0001000t 000fr.00f1. 0001000} 1 [r-000]x.000fr o0dr a0dr 00dfr 0ot 000fr.000
2 1.000ft.0001.000]1 0001 0001.000}o.09: 2 f1.000]1.000]1.000fr 000f.000]1.00ofr. o0 0 2 h.000]2.000f1.000]1.000f1 000} 00df1.000]1.000) 0 2 h.000fr.0001.000]2.000]1.000]1.000f1.000}o.96
3 1100010001 000}1.000]1 0001 00olo 08 3 J1.000]1.000f1.000}1.000}1.000}1. 00010 3 J1-000]1.000[1 000} 000f1 000t 000} 000}o 001 3 J1.000]1.000]1.000]1.000]1.000}1.000]1.000}.999)
4 1100010001 000}1.000f1.000f1.000}0.973 4 {1.0001.000f1.000f1.000]1. 0001 000]o 99 4 1.000f1.00011.000]1.0001.000}1.000]2.000lo 739) 4 J1.000f1.0001.000]1.000]1.000]1.000]1.000.000)
5 h.000[1.0001.000]1.000}1.000f1.000}0.671} 5 |1.000]1.000}1.000fr 000t 00df1 00olo 974 ~ 5J1.00d1.000]1.00]1.000]1.00fr.ood]1 oo 5 |1.000]1.000}1 0001 000} 000fr 000t 000}o 006
= El = o
2 10001000 000f1.000f1. 0001009 2 6 [1.000]1.000}1.000fr 000t 0odfr 0o 2 6 J1.00d1.000]1 0001 00010001 00fo o 2 J1.0001.000f.0001.0001. 0001 000]1. 0000863}
7 boosgazso 0921/93 7 fr.00ofo.ssefo.ssalp.ssap.sss 0967 0 7 110001 000f1.000]z.00ofr.o0o]r.00 0 7 1.000f1.0001.000f1.000f1.000f1.000fr. 009
8 8 {0752 8098109710915 0852 81{0.9980.9970.988 0.975 0.958 0.913
9 9 9 9
10 10 10 10
12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 12 3 45 6 7 8 9 10 12 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 9 Mean Accuracy for Round 10 Mean Accuracy for Round 11 Mean Accuracy for Round 12
1 Jt.000]x 000t o0dx aodfr 000 000t 00 0ot \nn|nn|nnlnn1nn\nnnlnnnn 1 Jr00d1 0001 0001 000t 000t 00df1.000fr.00ofo.003 1 [1-000]x.000]x.00dx a0dr 000 000000t 0001 00
2 J.000f1.0001.00df1.000f1. 000100010001 o0 1 000ftoo nnmnmnmnnlnm. 2 Jr.00d1.000]1.000f1 0001000t 000f1.000f1. 0001 000 I3 2 J1000f1.000ft.00df1.000f1.0001.000f1. 00010001000}
3 110001 0001.000}1.000l1.000}1.000]1.000}.89) 1 000f1 000}t 000}1.000}1.000]1 009 3 J1-000]1.000]1.000}1.000f1 0001 000}1.000]1.000j0.99} 3 J1-000]1.000f1.000}1.000]1.00011.000]1.000]1.000}1.000}
4 J1.000]1.0001.000]1.000]1.000]1.000]1.000f.69) 1 000f1 000}t 000}1.000f1.000}o.09¢ 4 110001100011 000]1.0001.000}1.000].000]1.0oolo.081 4 11.000]1.000f1.000}1.000]1.00011.000]1.000]1.000}1.000}
5 J1.000]1.000f.000]1.000f1.000f1.000]1. 0000934} 1 000f1 000t 000} 0001 000}o.04 5 J1-000]1.000]1 000f1 00010001 000]1. 000100 5 |1.000]1.000}r.000]2 0001 000} 000fr 000t 000} 000
6 J1.000]1.0001.000]1.000f1. 0001 000]1.000.929) 1 000}t 000ft 0001 000} 0000 901 6 J1.000]1.000]1.000f1 0001 0001 000f1. 0001 00 2 11.000}1.0001.000f1.000]1.000f1. 0001 000f1.000l0.99)
7 1000f1.0001.000]1.000f1. 00010001 000609} 10001000}t 0001000} 000jo. 765 RS 7 h1.00dl1.000}1.000]1.000}1.0001. 0001 00ojo.se: 0 7 10001000t 00df1.000f1.0001. 0001 000fr.0oolo 609}
8 o671}0.879}0.820 0820 0.879 0.884 0864 8 11.000]1.000]1000]1 0001 000]o.999 0.998] 5 1.000]1.000f1.000]1.000ft 00of.ood]o 0o 8 11.000]1.000]1.000}1.000]1.000]1.000]1.000p.99
9 9109500849 9196009520935 0.907 0.868 0.750 9{0.945 0966 0.980 0.9640.954 0.930 0886
10 10 10 10
12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 910 12 3 45 6 7 8 9 10 12 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 13 Mean Accuracy for Round 14 Mean Accuracy for Round 15 Mean Accuracy for Round 16
T T e A I 1 [1-000]x.000]r. 000}t 000t a0dr 000 000t 000t 0000 90 1 fr.0odx.00d]1.000]x.000f1.000fx.00d]1.00of1.00c]r.00ofo.994 1 .000}r.000]r.00d]1.000fr.000]1.000fr.000]1.00df1.00do.g6¢
2 1100010001000} 00010001 0001000100010 2 J1.000f1.000f1.000f1.00f.000f1.00d]x. ooz ooofr.oocfo.0o 2 J.00d1.00d]1.000f1 0001 0001.000f1.000f1.000f1.000f1.000 2 J1.000f1.000]1.000f1.0001.000]1. 000 000f1.00dl1 0000
3 .000ft.0001.000]2 0001000z 00oft.00of. oodo 05 3 1.000]1.000]1.000}r.000f.000]2 0001 00ofr 000100l 06 3 110001 000f1.0001.000fr.000f1.00d]1.000f1.000fr 000fr.000 3 f1.000fr.000f.000]1 0001 000]1 000fr.000]r 00dfr 0000
4 {10001 0001 000}1.000]1.000}1. 00010001 000]o 05 4 {1.000]1.000]1.000]1.000f1.00011.000]1. 0001 000f1.000j0.991] 4}1.000/2.000]2.000}1.000}1.000fz.000]2.000]r a00}r 000}1.000 4 J1-000}1.000f1 000} 000}1. 000100010001 000f1.000]o 05
— 5.J1.000}1.000}x 00| 0001 000} 000fr 000t 00cfo 997 5 [1.000]1.000}1 000} 000}t 000} 000} 000t 000t 0000826 ~ 5 r.000}1.0001.0001.000]1.000f1.00011.000l1.000f1.000f1.000 5 J1.000f1.000[1.000]x 00| 000]r-a00fr 000}t 00d]r 0oclo 5o
= El 2 =
2 6 }1.000}1.000}1.000}1.000]1.000}1.000f. 000}t 000]o.o94 LY = 6 J1.0001.000[1.000]1.000}s 000l 000}1.000]1.000[1. 000 BEE = 6 r.000l2.000}1.000]1.000}1.000f.000]1.0001. 000}t 000f1.000 2" 6 .000}1.000]1.000]1.000f1.000}1.0001.000[1.000}1. 00,90
7 100010001 000f1. 00010001 0001 000fr.000jo.03} 7 J1.000]1.000}1.000f1 000t 0001 000fr 000t 000p.054 7 100d1.000]1.000f1 0001 000.000f1.00011.000.000f0.098 7 J1.000f1.0001.000f.001.000]1.00a.c00fr.00dlx.0odlo.989
g 1.000}1.0001.000]2.000f1.000]1.000ft 00ofr.ooclo.asef A g 11.000]1.000f1.000]1.000f1.000fr.00d]1.000f1.0o0dfr oooo:sss g .000fr.000f.000]2 0001000} 000t 000}t 00dfr.000fo.0e3
9 o9sslp oo 9830.989 0.986) 9 1.000]1.000]1.000}1.000}.00d]1 00ofr. ooch oz 9 1.000]1.000f1.000]1.a00f1.000f1.00df1.000]1.0ocfr oo 9 {1.000]1.000f1.000}1.000]1.000}1.000]1.000]1.000]1.000j0 946
10 01770 10 {0.946 0.922 0868 0.865 0.821 0.761 10 10.986 0.994 0.990 0.988 0.981 0.979 0.976 0.942' 10 {0.978}0.984§0.97900.992§0.996}0.992{0.989 0.985 0.985|
12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 910 1 2 3 45 6 7 8 9 10 12 3 4 56 7 8 910
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 17 Mean Accuracy for Round 18 Mean Accuracy for Round 19
1 [1-000]1.000]x 000 o0dfr aodr aocfr 000t 000t 0odfr oo 1 Jr-00d1 000fr 000} 000fr 000t 00dfr 000t 00t 000t 0o T e e e e
2 1000100010001 000f1. 0001 0001 0o oot oo oo 2 h.000h.0001.000]1. 000 00ofr.o0dlx 001 ooo]r oo} oo 2 J1.000f1.00d]1.000f1.000f1. 00010001000l 000f1. 0001 o
3 1.000f1.0001.000}r 0001 000]1 000t 00}z 00or.00. a0t 3 11.000]1.000f1.000]z.000ft. 000 0odfr.000]z. 000}t 000 00 3 1000}t 00df1.000]2 000t 000]1.000r.000]2 0001000l 00
4 11.000]1.000]1.0001.000]1.000]1.000]1.0001.00of.00ol. oo 4 -J1.00df1.000]1.000fr.0001.000ft 0001 00c]r o0ofr. oot oo 4 -J1.000f1.000]1.000f1.000]1.000fr. 000 00df1 0001 0ocfr oo
5 |1.000]1.000}r 000}r 000} 000} 000} 000t 0001 000f1.000| ~ 5 r-000f1.000f1.000}1.000f1.000f.0001.000]1.00f1.000f1.000 ~ 5 fr.000}1.000/2.000]x.000]x- 000} 000} 000 000 000}t 0o
)))
2 6 |1.000]1.000}1.000}r 0001 000} 000fr 000t 000h.000f1.000] 2 6 r.000]1.0001.000f1.000f1.000f.000f1.000]1.000f1.000f1.00d| 2 fr.000fr.000]x.000]x.000]1.000}r.00cfr 000 a0dfr 0o} 0o
7 1000100010001 000f1. 0001 000100 ooafr.ood]x oo 7 J1.00d]1.000}1.000}r.000f1 000t 000} 000t 000t 00000 7 J1.000f1.00d]1.000f1 00010001000t 000l 00010001 o
8 1.000]1.0001.000}r 0001 000]1.000ft. 00}z 000100l oot 8 J1.00d]1.000]1.000f1.000f.000fr 00ofr.000fr o001 oocfr oo 5 .000}1.00df1.000]2 0001 000]1.000r.000]2 a0df1. 000l 00
9 1.000f1.0001.000ft 00df1.000]1.000ft.00ofr.00of.0odfo.es1 g J1.00dfr.000]1.000fr.000f1.000ft 000f1.000]r o0ofr.00cfr 0o 9 1.000ft.00df1.000]1 000t 000f1.000ft.000]2 0001000l 00
10 J1.000}1.000fr.000fr 000} 000} 000fr 000fr 000 90: 10 Jr.000J1.000}1.000]1.000fr 000}t 000l aoofr 000}t 00ofr.00d 10 {r-000fr 0001 000} 000fr 000t 000t 000}1.000f1. 000100
1 2 3 4 56 7 8 910 1 2 3 4 5 6 7 8 9 10 1 2 3 45 6 7 8 9 10
digit 2 digit 2 digit 2

Figure 37: Accelerated multiplication. We can significantly reduce the self-improvement rounds
by carefully sampling a wider range of difficulties at every round. Perfect length generalization is
achieved up to 10-by-10 multiplication with 19 self-improvement rounds.

35

Under review as a conference paper at ICLR 2025

Maze (Hops) - Vanilla Maze (Hops) - Majority Vote WMaze (Hops) - Verifier (Moves & Ends) Maze (Hops) - Verifier (Moves) Maze (Hops) - Verifier (Ends)
10 - 10 ; v 10 : = 10
T o X W
08 08 m on os
. roune1 N rouna1 > round-1 > und1 > unc
08} o rounas o6 - raunds Zosf o ranas Zosf o raunas Zosf o rounas
3 =&~ round-10 3 =~ round-10 3 =~ round-10 3 ~#~ round-10 3 =8~ round-10
g, | rounaas g ,| == rounais § | rounass g |~ rounass § | runeis
<041 o= round19 T04| gm round 19 <04 o= round19 <04 o= round-19 <041 o= round19
02 02 02 0z 0z
3 3 3 ER— F B]
Number of Hops Number of Hops Number of Hops Number of Hops Number of Hops
ze (Hops) - Vanilla Maze (Hops) - Majority Vote Maze (Hoj Maze (Hops) - Verifier (Moves) Maze (Hops) - Verifier (Ends)
10 - Lo e SR 10 10 ; 10
< T
o o8 Zos Zos oo
] rouna 1 3 wouna1 H a1 H a1
Lo 06| o~ rounas £08] o rounas Zo6f o rounas Zo6f o rounss
] o round10 g | im0 g |- ner0 g |- wne10
H = founas %, = s [[epies £, .|~ s
20 041 @~ round-19 =047 g~ round-19 2047 g round-19 £ 047 g~ round-19.
S0z 02 202 202 202
5 10 20 25 5 0 T % B3 5 10 D B B 0 15 20 25
Number of Hops Number of Hops Number of Hops Number of Hops
Maze (Hops) - Vanilla Maze (Hops) - Majority) - Verifier (Move & Ends) Maze (Maze (Hops) - Verifier (Ends)
R ™ 10 : 4 10 10 10
oo on 30 ' Zos Zos
3 found-1 N found-1 3 I 2 round-1 2 rouna-1
05| o raunds o] o ranas 2o | 28] o unes 206) o rounas
4| e raunsio R []] g | e e £ | e muns10
&, .| o rounaas g |~ rounass 5] &,] e s | o rounaas
4041 a= round-19 <041 _g= round-19 o i i 047 = round-19 5 041 &= round-19
£ h £ P g £
Soz 02 + So. + + Soz Soz
5 10 15 20 B3 30 5 10 15 20 E3 30 10 15 20 E3 30 s 10 LD E3 30 H 10 D B3 30
Number of Hops Number of Hops Number of Hops ‘Number of Hops ‘Number of Hops

Figure 38: Maze solving task with increasing hops. (Top to bottom) Exact match accuracy, move
validation accuracy, and end validation accuracy. (Left to right) No data filtering, majority voting
based filtering, verifier on both moves and ends, verifier on moves only, verifier on ends only.

Maze (Nodes) - Vanilla
Lo - AT 10 e
' | 1 .
as. ! 0 !
! ! k
Foof © rna1 LR g Zos| = rowa1
g ~#~ round-5 £ g ~#- round-s
g | g 3 | e
L] o= ounsrs / K Zoaf o ranars LR
T 0 T ¥
i { i {
02 ¢ LR 0z ¢ 1Al
i ! i 4
| i | |
ag, og
SO T o EE o TW @ S @ s % B I I N R Y
Number of Nodes Number of Nodes

EOEIEIN]
Number of Nodes Number of Nodes
Maze (Nodes) - Verifier (Ends)

Maze (Nodes) - Vanilla Maze (Nodes) - Verifier (Move & Ends)

10 - . . 101 0 S 10 10 T T
2] L > > 2 B] " L
gos ! gos gos zo gos !

H ! 5 H H H ! X

Bos o muns : Bos oe g Goe| o munts I

2% o= raunas H 2 M 2% o runas

§ | rounan0 ¢ g g § | ns10

§ 0.af o= rouna1s ; Soa Sos 2o S04 o= rounais. L :

z H ¥ z z = z H %

3 ! 3 3 3 3 3 !)

202 ! BRiq 202 202 EN 2oz ! R
! " i \

o0, o, o 0,

% 3 @ % w o @ % 0 T 0 @ S @ M s %0 10 EORE T s %0 100 O @ 0 100 F O R I R R
Number of Nodes Number of Nodes Number of Nodes Number of Nodes Number of Nodes
Maze (Nodes) - Vanilla Maze (Nodes) - Verifier (Move & Ends) Maze (Nodes) - Verifier (Ends)

10 10 10 p 10
Fos o Zos ‘ 2o Zos
Zogf roundz Zo Zos 2o Zos
377 o raunas ¢ 3 3 B
B | -e= roundi0 3 2 2 2
G .af o= raundas Zo.af o raundss Soa S Do
14 4 4 4
Soz 02 Soz So Soz

0, 00, 0, 0, 0,

Figure 39: Maze solving task with increasing nodes. (Top to bottom) Exact match accuracy, move
validation accuracy, and end validation accuracy. (Left to right) No data filtering, majority voting
based filtering, verifier on both moves and ends, verifier on moves only, verifier on ends only.

36

	Introduction
	Related Works
	Preliminaries and Experimental Setup
	Warm-up: Length Generalization on Reverse Addition
	Unsupervised Data Filtering
	Length and Difficulty Generalization on Forward Addition, Multiplication, Maze
	Forward Addition
	Multiplication
	Maze
	Increasing the Number of Hops

	Ablations
	Increasing OOD generalization with more self-improvement
	Accelerating self-improvement
	Pretrained Models

	Limitations
	Conclusion
	Detailed Discussion of Related Work
	Additional Results
	String Copy & String Reverse
	Motivation for Data Filtering
	Importance of Data Filtering
	OOD results are often Short
	Majority Voting Leverages Label Diversity
	Ablations for Majority Voting

	Additional Results on Mazes
	Increasing the Number of Nodes
	Verification Filters on Mazes

	Accelerated Self-Improvement for Multiplication
	Results on Pretrained Models
	Analysis on Errors
	Error Avalanches in Self-Improvement
	Simulating the Error Avalanche
	Other analysis

	Additional Experiments on Label Noise and Robustness
	Does the Model Truly Learn Addition?

	Experimental Setup
	Model
	Data Formats and Data Sampling
	Data Generation and Sampling
	Multiplication
	Maze

	Experimental Settings
	Hyperparameter Configurations
	Self-Improvement Setting for each Task

	Full Results
	Results on Multiplication
	Results on Mazes

