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ABSTRACT

Model-based offline reinforcement learning methods (RL) have achieved state-
of-the-art performance in many decision-making problems thanks to their sample
efficiency and generalizability. In this paper, we propose MoMA, a model-based
mirror ascent algorithm with general function approximations under partial cover-
age of offline data. Iteratively, MoMA conservatively estimates the value function
by a minimization procedure within a confidence set of transition models in the
policy evaluation step, then updates the policy with general function approxima-
tions instead of commonly-used parametric policy classes in the policy improve-
ment step. Under some mild assumptions, we establish theoretical guarantees of
the proposed algorithm by proving an upper bound on the suboptimality of the
returned policy. The effectiveness of the proposed algorithm is demonstrated via
numerical studies.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as an effective approach for optimizing sequential de-
cision making by maximizing the expected cumulative reward to learn an optimal policy through
iterative online interactions with the environment. RL algorithms have made significant advances
in a wide range of areas such as autonomous driving (Shalev-Shwartz et al., 2016), video games
(Torrado et al., 2018), and robotics (Kober et al., 2013). However, numerous real-world problems
require methods to learn only from pre-collected and static (i.e., offline) datasets because interacting
with the environment can be expensive or unethical, such as assigning patients to inferior or toxic
treatments in healthcare applications (Gottesman et al., 2019). Therefore, the development of offline
RL methods, which learn an optimal policy solely from offline data without further interactions with
the environment, has grown rapidly in recent decades (Wu et al., 2019; Kumar et al., 2020; Kidambi
et al., 2020; Levine et al., 2020; Zhan et al., 2022).

The performance of offline RL methods often relies on the coverage of offline data. Earlier theo-
retical studies of offline RL usually assume that offline data have full coverage, i.e., every possible
policy’s occupancy measure can be covered by the occupancy measure of the behavior policy that
generates offline data (Munos & Szepesvári, 2008; Ross & Bagnell, 2012; Uehara et al., 2020; Xie &
Jiang, 2021). To relax this restrictive assumption, a number of model-free offline RL methods with
theoretical guarantees have been developed recently to consider partial coverage of offline data by
incorporating the idea of pessimism (Liu et al., 2020; Xie et al., 2021; Zanette et al., 2021; Shi et al.,
2022; Lu et al., 2022). Yet, theoretical studies on the model-based counterparts are scarce. On the
practical side however, Yu et al. (2020) and Kidambi et al. (2020) proposed model-based offline RL
methods by modifying the Markov decision process (MDP) learned from offline data and introduc-
ing pessimism in terms of uncertainties of the transition model. Despite their empirical successes,
the uncertainties presented in their work were not analytically quantified in an exact manner. For
instance, the penalty term in Yu et al. (2020) was an upper bound of the point-wise estimation error
for the transition model, which was not theoretically studied with finite-sample analysis. Recently,
Uehara & Sun (2021) developed a constrained pessimistic policy optimization (CPPO) algorithm
with general function approximations and proved an upper bound for the suboptimality gap under
partial coverage with PAC (probably approximately correct) guarantees. Although CPPO considers
a general class of MDPs, it is difficult to design a practical implementation of CPPO due to the
computational complexities in solving the max-min optimization problem. Inspired by Uehara &
Sun (2021), Rigter et al. (2022) designed a computationally-tractable algorithm by reformulating

1



Under review as a conference paper at ICLR 2024

the max-min constrained optimization problem as a two-player zero-sum game against an adver-
sarial environment model. Recently, Rashidinejad et al. (2022); Bhardwaj et al. (2023) developed
practically implementable model-based algorithms for offline RL with statistical guarantee. How-
ever, they mainly consider parameterized policy classes which tend to be restrictive if the optimal
policy is not contained in the pre-specified policy class.

In this work, inspired by policy mirror ascent Lan (2022a) which does not need explicit policy pa-
rameterization, we design a model-based mirror ascent algorithm for offline RL, MoMA, which can
be efficiently implemented under general function approximations with theoretical guarantees. At
a high level, MoMA iteratively performs two steps: conservative policy evaluation and policy im-
provement. Such separation enables us to investigate the statistical complexity and computational
complexity independently. Specifically, in the conservative policy evaluation step, we find a pes-
simistic Q function of the current policy in each iteration t by minimizing the Q function over a
confidence set of transition models. As the true transition model P ∗ belongs to this confidence set
with high probability, the minimum value over the confidence set becomes a lower bound for the
value under P ∗. In the policy improvement step, given the pessimisticQ function from the first step,
we update the policy by mirror ascent with general function approximations.

Compared to existing works (Khodadadian et al., 2021; Zanette et al., 2021; Xie et al., 2021; Chen
et al., 2022; Rashidinejad et al., 2022; Bhardwaj et al., 2023) in offline RL, we incorporate general
function approximations into the algorithm without the need for a parametric policy class. Futher-
more, our approach allows for general function approximations without being constrained by the
offline sample size n. As a result, the proposed algorithm achieves an optimal rate O(1/

√
n) in the

suboptimality upper bound compared to the rate O(1/n1/5) in Xie et al. (2021).

2 RELATED WORK

Model-free offline RL: Model-free offline RL algorithms usually learn a near-optimal policy from
offline data by either constraining the policy space to a neighborhood of the behavior policy (Fuji-
moto et al., 2019; Wu et al., 2019; Liu et al., 2019; Nachum et al., 2019; Kostrikov et al., 2021), or
incorporating uncertainties as a notion of pessimism added to the value function during the training
process (Kumar et al., 2020; Xie et al., 2021; Kostrikov et al., 2021; Cheng et al., 2022). Compared
to hard constraining the policy space, the pessimistic methods allow the policy to explore actions
outside the constraints. On the theory side, earlier model-free offline RL methods often require
realizability and global coverage (Chen & Jiang, 2019; Duan et al., 2021). However, the global
coverage assumption is too strong and may not hold. Motivated by the pessimism idea, some recent
work proposed model-free RL methods considering the assumption of partial coverage in tabular or
linear MDPs (Jin et al., 2021; Rashidinejad et al., 2021; Zhang et al., 2022). In this work, we con-
sider an offline model-based policy optimization approach under the assumption of partial coverage.

Model-based offline RL: Model-based methods have been explored relatively sparsely in offline
RL. Ross & Bagnell (2012) proposed to learn the dynamics from offline data followed by planning,
and demonstrated that it could lead to arbitrarily large suboptimality. Several model-based online
RL methods have been explored in the offline setting by limiting model exploitation (Deisenroth &
Rasmussen, 2011; Chua et al., 2018). In recent years, model-based offline RL methods incorporated
pessimism into the value function by quantifying uncertainties of the learned dynamic model. Yu
et al. (2020) and Kidambi et al. (2020) introduced pessimism by modifying the MDP model learned
from offline data, provided analytic bounds, and demonstrated empirical successes compared to
state-of-the-art model-free offline RL algorithms. Uehara & Sun (2021) developed a model-based
offline algorithm called constrained pessimistic policy optimization and established its theoretical
PAC guarantee under the assumption of partial coverage for general MDPs. Yet, their work does not
have a practicable implementation. Rigter et al. (2022) designed a practical model-based algorithm
inspired by the max-min optimization framework from Uehara & Sun (2021), but its theoretical
guarantee has not been investigated. In our work, we design a practically implementable algorithm
with theoretical guarantees for model-based offline RL under general function approximations with-
out the need for explicit policy parameterization.
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Algorithm 1 MoMA: Model-based mirror ascent for offline RL

Input: The learning rate {ηt}Tt=1, a consistent estimate P̂ and its corresponding αn.
Initialization: Initialize π0(·|s) = Unif(A).
for t = 1 to T do

Conservative policy evaluation:
Let Pt = argminP∈Pn,αn

V πt

P , where Pn,αn = {P ∈ P : En(P ) ≤ αn}.

Policy improvement: πt+1(· | s) = argmax
p∈∆(A)

{
⟨Qπt

Pt
(s, ·), p⟩ − 1

ηt
D (πt(· | s), p)

}
,∀s.

end for

3 PRELIMINARIES

Markov decision processes and offline RL: We consider an infinite-horizon Markov decision
process (MDP) M = (S,A, P, r, γ, µ0), with continuous state space S, discrete action space
A = {A1, A2, ..., Am}, a transition dynamics P (s′ | s, a) with s, s′ ∈ S and a ∈ A, a reward
function r : S × A → [0, 1], a discount factor γ ∈ [0, 1), and an initial state distribution µ0. We
assume a model space P for the transition dynamic, i.e. P ∈ P . The reward function r is assumed
to be known throughout this work. A stochastic policy π maps from state space to a distribution over
actions, representing a decision strategy to pick an action with probability π(·|s) given the current
state s, i.e. π(· | s) ∈ ∆(A) := {p ∈ Rm :

∑m
i=1 pi = 1, pi ≥ 0,∀i} for all s ∈ S. Given a pol-

icy π and a transition dynamics P , the value function V π
P (s) := EP,π[

∑∞
t=0 γ

tr(st, at)|s0 = s]
denotes the expected cumulative discounted reward of π under the transition dynamics P with
an initial state s and a reward function r. We use V π

P := Es∼µ0
V π
P (s) to denote the expected

value integrated over S with an initial distribution µ0. The action-value function (i.e., Q func-
tion) is defined similarly: Qπ

P (s, a) = EP,π[
∑∞

t=0 γ
tr(st, at)|s0 = s, a0 = a]. Let dπP (s, a) :=

(1 − γ)
∑∞

t=0 γ
tPr(st = s, at = a|s0 ∼ µ0) be the occupancy measure of the policy π under

the dynamics P . Then V π
P can be expressed as E(s,a)∼dπ

P
[r(s, a)]. Assuming that a static offline

dataset Dn = {(si, ai, ri, s′i) : i = 1, ..., n} is generated by some behavior policy under the ground
truth transition dynamics P ∗, model-based offline RL methods aim to learn an optimal policy that
maximizes the value V π

P∗ through learning the dynamics from the offline dataset without any further
interactions with the environment.

Partial coverage: One fundamental challenge in offline RL is distribution shift (Levine et al., 2020):
the visitation distribution of states and actions induced by the learned policy inevitably deviates
from the distribution of offline data. The concept of coverage has been introduced to measure the
distribution shift using the density ratio (Chen & Jiang, 2019). Denote ρ(s, a) to be the offline
distribution that generates the state-action pairs (si, ai)

n
i=1 in offline data. Full coverage means

sups,a d
π
P∗(s, a)/ρ(s, a) < ∞ for all possible policies π, which may not hold in practice. In con-

trast, partial coverage only assumes that the offline distribution covers the visitation distribution
induced by some comparator policy π† (Xie et al., 2021), such that sups,a d

π†

P∗(s, a)/ρ(s, a) < ∞.
Our work aims to learn the optimal policy among all polices covered by offline data, i.e., Π := {π :
sups,a d

π
p∗(s, a)/ρ(s, a) <∞}.

4 MODEL-BASED MIRROR ASCENT FOR OFFLINE RL

We present MoMA in this section. MoMA can be separated into two steps in each iteration: 1) In
the policy evaluation step, we conservatively evaluate the updated policy through a minimization
procedure within a confidence set of transition models. 2) In the policy improvement step, we
update the policy based on mirror ascent (MA) (Beck & Teboulle, 2003) under the current transition
model. We provide more details for the policy evaluation and policy improvement in section 4.1 and
section 4.2 respectively, and summarize MoMA in Algorithm 1.

4.1 POLICY EVALUATION: CONSERVATIVE ESTIMATE OF Q

In the policy evaluation step, we first construct a confidence set Pn,αn = {P ∈ P : En(P ) ≤ αn}
for transition models. Here En(P ) := L̂n(P ) − L̂n(P̂ ), where L̂n : P → R+ is an empirical loss
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function for P , depending on the offline dataset Dn, and P̂ = argminP∈P L̂n(P ) is an estimator
based on L̂n. For example, if L̂n(P ) denotes the negative log-likelihood function of P , then P̂ is the
maximum likelihood estimator (MLE) for P . αn can be understood as the radius of the confidence
set. Then, we find Pt that minimizes the value function V πt

P within Pn,αn , which is formulated as
Pt =argminP∈Pn,αn

V πt

P . (1)

The minimizer Pt, combined with the current policy πt, can be used to evaluate Qπt

Pt
through Monte

Carlo methods. In section 5.3, we will provide an example using negative log-likelihood to illustrate
the implementation procedure.

The conservative policy evaluation step is designed to provide a pessimistic estimate of the value
function given a policy. This idea has been employed in pessimistic model-free actor-critic algo-
rithms (Khodadadian et al., 2021; Zanette et al., 2021; Xie et al., 2021), where the critic lower
bounds the Q function. For example, Khodadadian et al. (2021) constructed the pessimism for Q
under the tabular setting. Zanette et al. (2021) assumed a linear Q function and conservatively es-
timated Q by minimizing Q within a confidence set of the coefficients for Q. Xie et al. (2021)
conservatively estimated Q in a general function approximation setting, however, the size of the
function class was limited by the sample size of offline data. Compared to these model-free meth-
ods, MoMA has several advantages. First, unlike Xie et al. (2021), the size of the function class
for approximation in MoMA can be arbitrarily large. Second, MoMA has no restriction on the
policy class, which is crucial when the optimal policy is not contained in a restricted parametric
policy class. See Appendix A for a detailed discussion about the comparisons between our work
and existing literature in the policy evaluation step.

4.2 POLICY IMPROVEMENT: MIRROR ASCENT

In the policy improvement step, we use mirror ascent, which maximizes the Q function with a
regularizer that penalizes the Bregman distance D(·, ·) between the next policy and the current
policy. We first introduce the definition of the Bregman distance. Let ∥ · ∥ be a given norm in ∆(A)
and ω : ∆(A) → R be a strongly convex function with respect to (w.r.t.) ∥ · ∥. Then D(·, ·) is a
Bregman distance if

D (p, p′) := ω (p′)− [ω (p) + ⟨∇ω (p) , p′ − p⟩] ≥ 1

2
∥p′ − p∥2 ,∀p, p′ ∈ ∆(A),

where ⟨·, ·⟩ denotes the inner product. For clarity, we consider Qπt

Pt
(s, ·) ∈ Rm with i-th element

Qπt

Pt
(s,Ai). Given a pre-specified learning rate ηt > 0, the proposed update rule is:

πt+1(· | s) = argmax
p∈∆(A)

{
⟨Qπt

Pt
(s, ·), p⟩ − 1

ηt
D (πt(· | s), p)

}
∀s. (2)

As the Bregman distance defines a general class of distance measures, one can design corresponding
algorithms based on specific distance measures if desired. Notably, natural policy gradient (NPG)
(Kakade, 2001) is a special case of policy mirror ascent when D(·, ·) is set to be KL divergence.

We remark that for a continuous state space S, it is impossible to enumerate equation 2 for infinitely
many states. To overcome this issue, in section 5.2 we provide a computationally efficient algo-
rithm through function approximation, which is one of the key advantages of this work compared to
existing literature (e.g., Algorithm 1 in Xie et al. (2021)).

5 A PRACTICAL ALGORITHM

In this section, we present an implementable algorithm that approximately solves the constrained
minimization problem (1), summarized in algorithm 2.

5.1 PRIMAL-DUAL (PD) FOR SOLVING THE CONSTRAINED OPTIMIZATION PROBLEM

In order to approximately solve the constrained minimization problem equation 1 in the policy eval-
uation step, we introduce its Lagrangian form:

max
λ>0

min
P∈P

V πt

P + λ(En(P )− αn). (3)
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Algorithm 2 MoMA: A Practical Algorithm
Input: The learning rate ηt, Pn,αn .
Initialization: Initialize π0 = Unif(A).
for t = 1 to T do

Conservative policy evaluation:
Compute Pt := Pϕ(K) , where ϕ(K) is the output from eq. (4).
Policy improvement:
Sample {sj}Nj=1 from dπt

Pt
.

for j = 1 to N do
Input {ft−1,i(s; β̂t−1,i)}mi=1 and sj into algorithm 4, and output {Q̃ω,t(sj , Ai)}mi=1.

end for
Find β̂t,i that solves eq. (6) for each i = 1, ...,m.
Save the parametric function {ft,i(s; β̂t,i)}mi=1 as an input for iteration t+ 1.

end for

Suppose the transition model P is parameterized by ϕ, denoted as Pϕ. To solve equation 3, we
design a model gradient primal-dual method with the following update rule:

ϕ(k+1) = ϕ(k) − κ1∇ϕLV,t(ϕ
(k), λ(k)), λ(k+1) = ProjΛ

(
λ(k) + κ2 (En(Pϕ)− αn)

)
. (4)

Here ProjΛ is the projection to a pre-specified interval Λ for λ, and LV,t(ϕ
(k), λ(k)) is the La-

grangian function: V πt

P
ϕ(k)

+ λ(k)(En(Pϕ(k)) − αn). We will show an example of calculating

∇ϕLV,t(ϕ
(k), λ(k)) in section 5.3.

5.2 FUNCTION APPROXIMATION IN MA

In the policy improvement step of algorithm 1, updating πt+1(· | s) for an infinite number of states
s is computationally impossible, as Qπt

Pt
can only be evaluated when πt(· | s) is known for all s.

Although Monte Carlo estimation may be utilized in evaluating Qπt

Pt
in eq. (2), the computational

complexity would grow exponentially with the number of iterations T , resulting in computational
inefficiency. This issue is also present in Algorithm 1 of Xie et al. (2021). As a sharp contrast,
our practical algorithm presented in this section exhibits polynomial dependence on T , which is
computationally efficient. A detailed justification for this claim is provided in Appendix A.

By the definition of D(πt(· | s), p), the objective function in the policy improvement step of al-
gorithm 1 is equivalent to ⟨Qπt

Pt
(s, ·), p⟩ + 1

ηt
⟨∇ω (πt(· | s)) , p⟩ − 1

ηt
ω(p). We define the aug-

mented action-value function as Q̃ω,t(s, p) :=
∑m

i=1 Q̃ω,t(s,Ai)pi =
〈
Q̃ω,t(s, ·), p

〉
, where

Q̃ω,t(s,Ai) := Qπt

Pt
(s,Ai) + 1

ηt
∇ω(πt(· | s))i and Q̃ω,t(s, ·) is a vector with its i-th ele-

ment as Q̃ω,t(s,Ai). Following Lan (2022b), we approximate Q̃ω,t(s, p) by a parametric func-
tion ft(s, p;βt) ∈ Ft such that ft(s, p;β∗

t ) ≈ Q̃ω,t(s, p) for some β∗
t , which is sufficient to

approximate Q̃ω,t(s,Ai) for each Ai according to Q̃ω,t(s, p) =
〈
Q̃ω,t(s, ·), p

〉
. To this end,

for each i = 1, ...,m, we introduce ft,i(s;βt,i) ∈ Ft,i to approximate Q̃ω,t(s,Ai), and thus
ft(s, p;βt) =

∑m
i=1 ft,i(s;βt,i)pi := ⟨ft(s;βt), p⟩. Here, Ft,i can be chosen as e.g. reproduc-

ing kernel Hilbert spaces (RKHS) or neural networks.

For each i = 1, ...,m, the optimal parameter β∗
t,i can be obtained as follows,

β∗
t,i ∈ argminβt,i

Es∼d
πt
Pt

[(
Q̃ω,t(s,Ai)− ft,i(s;βt,i)

)2]
. (5)

Specifically, we can generate {sj}Nj=1 ∼ dπt

Pt
, and then minimize the empirical version of equation 5:

β̂t,i ∈ argminβt,i

1

N

N∑
j=1

[(
Q̃ω,t(sj , Ai)− ft,i(sj ;βt,i)

)2]
, (6)
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where {Q̃ω,t(sj , Ai)}Nj=1 are output from algorithm 4 (see Appendix G). The computable β̂t,i sat-
isfies the property that ft,i(s; β̂t,i) ≈ ft,i(s;β

∗
t,i) ≈ Q̃ω,t(s,Ai) for each i = 1, ...,m.

With the obtained {ft,i(s; β̂t,i)}mi=1, the update rule in the policy improvement step can be written
as below and solved by standard optimization algorithms,

πt+1(· | s) = argmax
p∈∆(A)

{
m∑
i=1

ft,i(s; β̂t,i)pi −
1

ηt
ω(p)

}
,∀s ∈ S. (7)

Such a design of function approximation enjoys several benefits. 1) The objective function in equa-
tion 7 is concave which can be solved by standard first-order optimization methods. 2) Compared to
the commonly-used parametric policy classes, our policy class is unrestricted, which means it must
contain the optimal policy. 3) The function approximation error in eq. (5) can be made arbitrarily
small by enlarging the function classes Ft,i.

5.3 AN EXAMPLE

We provide a concrete example to illustrate the implementation procedure of the proposed practical
algorithm 2, though our framework is general and different settings may be considered if desired.

Policy evaluation step We consider the following empirical loss function L̂n for transition mod-
els: L̂n(Pϕ) = − 1

n

∑n
i=1 logPϕ(s

′
i | si, ai). Then P̂ = Pϕ̂ is exactly the MLE, and En(Pϕ) =

1
n

∑n
i=1 log

P
ϕ̂
(s′i|si,ai)

Pϕ(s′i|si,ai)
. The gradient of the Lagrangian function is: ∇ϕLV,t(ϕ, λ) = ∇ϕV

πt

Pϕ
+

λ∇ϕEn(Pϕ). Here the model gradient ∇ϕV
πt

Pϕ
can be calculated using the proposition 2 of Rigter

et al. (2022). Specifically, let Mϕ(s
′, s, a, πt) :=

(
r(s, a) + γV πt

ϕ (s′)
)
× ∇ϕ logPϕ (s

′ | s, a),
then ∇ϕV

πt

Pϕ
= Es,a∼d

πt
Pϕ

,,s′∼Pϕ(·|s,a)Mϕ(s
′, s, a, πt). For ∇ϕEn(Pϕ), we have ∇ϕEn(Pϕ) =

− 1
n

∑n
i=1 ∇ϕ logPϕ(s

′
i | si, ai). Then the expressions of ∇ϕLV,t(ϕ, λ), ∇ϕV

πt

Pϕ
, and ∇ϕEn(Pϕ)

can be plugged into (4) and output a Pt := Pϕ(K) .

Policy improvement step We consider ω(p) :=
∑m

i=1 pi log pi and introduce a multi-layer neural
network ft,i(s;βt,i) for approximating Q̃ω,t(s,Ai). For each i = 1, ...,m, in order to find the best
βt,i, we first sample {sj}Nj=1 i.i.d. from dπt

Pt
, then run any policy evaluation procedure such as

Monte Carlo (algorithm 4 in Appendix G) for Q̃ω,t(sj , Ai) for each j = 1, ..., N . Using training
data (sj , Q̃ω,t(sj , Ai))

N
j=1, we can obtain β̂t,i by standard neural network (NN) training procedure.

In addition, thanks to the form of ω, we have a closed form solution to (7) which is the update
rule πt+1 (Ai | s) ∝ exp(ηtft,i(s; β̂t,i)) for i = 1, . . . ,m. Besides NN for ft,i(s;βt,i) for each
i = 1, . . . ,m, alternative general function classes, such as infinite-dimensional RKHS, can also be
employed for function approximations.

6 THEORETICAL ANALYSIS

In this section, we present the upper bound on the suboptimality of the learned policy π̂ in Algorithm
2 in terms of sample size, number of iterations and all key parameters. All proofs are presented in
Appendix E. We first present the following assumptions.
Assumption 1. The following conditions hold.
(a) (Data generation). The dataset D = (si, ai, ri, s

′
i)

n
i=1 satisfies (si, ai)

i.i.d.∼ ρ with s′i ∼ P ∗(· |
si, ai), where ρ denotes the offline distribution induced by the behavior policy under P ∗.

(b) (Coverage of any comparator policy π†). Cπ† := sups,a
dπ†
P∗ (s,a)
ρ(s,a) <∞.

(c) (Realizability). P ∗ ∈ P.
(d) There exist c1

n ≤ αn = o(1), c2√
n
≤ δn = o(1) such that with high probabilities P∗ ∈ Pn,αn

and

εest := sup
P∈Pn,αn

E(s,a)∼ρ[∥P (· | s, a)− P ∗(· | s, a)∥1] ≤ δn. (8)
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Assumption 1(a) is related to offline data generation, common in offline RL theoretical literature.
Assumption 1(b) essentially requires the partial coverage of the offline distribution. The concen-
trability coefficient Cπ† measures the distribution mismatch between the offline distribution and the
occupancy measure induced by π†. Assumption 1(c) requires that the model class P is sufficiently
large such that there is no model misspecification error. Assumption 1(d) is needed to provide a
fast statistical rate uniformly over the confidence set. We note that assumption 1(d) is a mild condi-
tion. Indeed, commonly-used empirical risk functions (e.g. negative log-likelihood) satisfy it. See
proposition 1, corollary 1 for more details in Appendix D.

Now we provide a suboptimality upper bound for the practical algorithm 2 in the following theorem.
Theoretical results for algorithm 1, in which we assume no function approximation, are summarized
in Theorem 2 in Appendix D.

Theorem 1. Under assumption 1, if ηt = (1− γ)
√

2 log(|A|)
T for every fixed T , then we have

V π†

P∗ − V π̂
P∗ ≲ (

γ

(1− γ)2
+

γ

(1− γ)3
)Cπ† εest︸ ︷︷ ︸

model error

+
1

(1− γ)2
1√
T︸ ︷︷ ︸

policy optimization error

+
1

(1− γ)
3
2

|A|

√
sup
s

dπ
†

P∗(s)

µ0(s)
(εapprox +

√
maxt,i |Ft,i|√

N
)︸ ︷︷ ︸

function approximation error

with high probability. Here π̂ ∼ Unif(π0, π1, ..., πT−1) where {πt}T−1
t=0 are output by Algorithm 2,

and εapprox is defined in Definition C.3.

The upper bound in Theorem 1 includes three terms: a model error (depending on fixed n) com-
ing from using offline data for estimation of the transition model, an optimization error (depending
on iteration T ) from the policy improvement, and a function approximation error coming from us-
ing Monte Carlo samples approximating the augmented Q function. The model error is a finite-
sample term that cannot be reduced under the offline setting, while the optimization error can
be reduced when the number of iterations T increases. Typically, we have εest = OP (1/

√
n).

The function approximation error involves an approximation error εapprox that decreases as the
function class is enlarged maxt,i |Ft,i| → ∞, an estimation error that scales with OP (1/

√
N),

and a distribution mismatch sups d
π†

P∗(s)/µ0(s) between the initial distribution and the occupancy
measure induced by a single π† under P ∗. Indeed, if maxt,i |Ft,i| → ∞, then εapprox → 0
by Definition C.3. Consequently, the function approximation error can converge to 0 as long as
maxt,i |Ft,i| → ∞ and N → ∞ at the same speed based on its expression in Theorem 1. The func-
tion approximation error and the model error share similar intuitive interpretations. In the model
error, Cπ† measures the transfer of εest changing from the offline distribution to the target dis-
tribution dπ

†

P∗ . Analogously, sups d
π†

P∗(s)/µ0(s) in the function approximation error measures the

transfer of εapprox +

√
maxt,i |Ft,i|√

N
from the initial distribution to the target distribution dπ

†

P∗ .

7 NUMERICAL STUDIES

We perform numerical studies on both an illustrative synthetic dataset and MuJoCo (Todorov et al.,
2012) benchmark datasets, where we extend MoMA to the more practical continuous-action setting.

7.1 SYNTHETIC DATASET: AN ILLUSTRATION

We design a test environment based on a modified random walk with terminal goal states to serve as
proof of concept and get intuition for MoMA by answering the following questions: 1) can MoMA
compete against model-free and model-based baselines on a dataset with partial coverage? 2) how
does pessimism help MoMA avoid common pitfulls faced by model-based offline RL methods?

Environment and offline dataset For each episode that starts with an initial state s0 ∼ U(−2, 2),
at time n a particle undergoes a random walk and transits according to a mixture of Gaussian dy-
namics: sn+1 − sn =: ∆s ∼ ψaN (µ1,a, 0.1) + (1 − ψa)N (µ2,a, 0.1), where the discrete action

7
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a ∈ {−1, 0, 1} corresponds to Left, Stay, and Right, respectively. We generate a partially covered of-
fline dataset collected by a biased (to the left) behavioral policy β that penalizes over-exploitation of
the MLE. The full details for the environment and the behavioral policy are given in Appendix H.1.

MoMA performance The implementation follows Algorithm 2, with details in Appendix H.1. We
compare with 1) model-based NPG, which can be seen as a simplified version of MoMA without
the conservative policy evaluation; 2) model-free neural fitted Q-iteration (NFQ) (Riedmiller, 2005);
and 3) a uniformly random policy. All algorithms are offline trained to convergence, and then put
into the environment for 1000 online evaluation episodes. We choose the number of episode steps
as the metric for this shortest path problem, and report the means and standard deviations for the
scores of all 4 algorithms in Table 1. MoMA has significantly superior performance compared to
the baselines, while the model-based peer NPG achieves the second best performance. This is not
surprising since a learned dynamics model in general helps generalization in tasks with continuous
state spaces, and NFQ’s lack of generalization ability is exacerbated in this partial coverage setting.

Table 1: Average episode length (± std.) over 1000 online evaluation episodes; shorter is better.

MoMA NPG NFQ Uniform
2.63 ± 1.61 3.20 ± 2.33 4.39 ± 2.96 6.13 ± 5.07

Contribution from pessimism To understand pessimism empirically, We zoom into the state s =
0.1, whose optimal policy is consecutive Right, data-supported suboptimal policy is consecutive
Left, and faulty policy concentrates on Stay. Due to inaccurate MLE, a model-based algorithm
without pessimism over exploits the model and converges to the faulty action Stay. In contrast,
pessimism allows MoMA to trust the model on Left which has high coverage, while cautiously
modifying the model such that Stay does not lead to substantial Right movement, i.e., ψ̂0 increases
(see Figure 2). This behavior is clearly captured during the training process: shown in the right
plot of Figure 1, while the weight of the faulty action Stay monotonically increases for NPG, it
decreases from the 10th epoch for MoMA. As a result, the suboptimal action weight (shown middle)
eventually dominates for MoMA but vanishes for NPG, and NPG’s value function V (0.1) under the
true dynamics (shown left) decreases due to the over exploitation of the learned dynamics model.

Figure 1: MoMA vs NPG training behavior, zoomed in at state 0.1. Left: the value function V (0.1);
middle: the data-supported suboptimal action weight; right: the model-mislead faulty action weight.

7.2 CONTINUOUS ACTION D4RL BENCHMARK EXPERIMENTS

We now extend MoMA to handle complex RL tasks with nonlinear dynamics and continuous action
spaces by approximating Q̃ω,t(s, a), ∀a ∈ continuous A rather than approximating Q̃ω,t(s,Ai) for
discrete actions. See appendix B for more implementation details. We adjust the implmentation
accordingly, and evaluate on D4RL (Fu et al., 2020) MuJoCo benchmark datasets.

We consider the medium, medium-replay, and medium-expert datasets for the Hopper,HalfCheetah,
and Walker2D tasks (all v0), respectively. We compare against SOTA model-based baseline algo-
rithms MOPO (Yu et al., 2020) and RAMBO (Rigter et al., 2022), and model-free baseline algo-
rithms CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2021). With the exception of RAMBO
for which we cite the results reported in Rigter et al. (2022), we train all algorithms for 1E6 steps

8
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with early stopping and with 5 different random seeds; additional experimental details are given in
Appendix H.2. We summarize the scores (average returns of 10 evaluation episodes) in Table 2. Our
algorithm is generally at least comparable with all SOTA algorithms, and in 4 out of 9 cases our
algorithm achieves the best performance among the three model-based RL algorithms.

Table 2: D4RL benchmark averaged performance over 5 random seeds (± std.).

Ours Model-based Model-free
MoMA MOPO RAMBO IQL CQL

Hopper, medium 42.9 ± 12.9 58.2 ± 15.2 92.8 ± 6.0 101.1 ± 0.5 100.6 ± 1.0
Hopper, medium-replay 102.2 ± 0.8 101.2 ± 0.9 96.6 ± 7.0 66.0 ± 16.2 89.2 ± 9.3
Hopper, medium-expert 102.5 ± 3.4 46.3 ± 17.1 83.3 ± 9.1 106.7 ± 7.1 82.8 ± 19.0
HalfCheetah,medium 44.2 ± 0.8 26.5 ± 10.1 77.6 ± 1.5 42.5 ± 0.1 41.3 ± 0.3
HalfCheetah, medium-replay 55.4 ± 1.0 53.0 ± 2.0 68.9 ± 2.3 42.6 ± 0.1 45.9 ± 0.1
HalfCheetah, medium-expert 98.4 ± 12.6 95.5 ± 10.6 93.7 ± 10.5 96.9 ± 1.8 85.3 ± 7.9
Walker2D medium 36.8 ± 20.4 12.8 ± 7.1 86.9 ± 2.7 58.8 ± 4.4 83.1 ± 0.8
Walker2D, medium-replay 28.7 ± 5.8 67.9 ± 5.8 85.0 ± 15.0 22.5 ± 11.1 28.3 ± 9.3
Walker2D, medium-expert 98.5 ± 5.5 94.6 ± 16.0 68.3 ± 20.6 108.4 ± 1.8 106.3 ± 15.5

8 CONCLUSION

We developed MoMA, a model-based mirror ascent algorithm for offline RL, with general function
approximation under the assumption of partial coverage. MoMA can be practically implemented
with PAC guarantees. By separating the policy optimization from the policy evaluation, we theoret-
ically analyzed MoMA and proved an upper bound for the suboptimality of the policy returned by
MoMA. The proposed framework has several possible extensions. First, when incorporating prior
information (e.g., physical knowledge in mechanical applications, clinical information in medical
applications) into the transition model is desired, Bayesian estimators can be easily adapted to our
framework for estimating transition models. Second, we can consider model misspecification, e.g.,
P ∗ /∈ P , analyze both the estimation error and approximation error, and investigate how they affect
the suboptimality gap.
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A FURTHER DISCUSSIONS

A.1 COMPARISONS WITH EXISTING WORKS: THE POLICY EVALUATION STEP

In Section 4.1, we mentioned two fundamental advantages that can be attributed to the MoMA’s
design in the policy evaluation phase: 1) better expressiveness of the policy class, and 2) more
flexibility of function approximations. We add more explanations about these two points here. First,
we elaborate on better expressiveness of the policy class and more flexibility of the value function
class. Indeed, these two advantages mainly stem from the construction of a confidence set as well as
the separation of estimation and optimization under our model-based framework. Specifically, the
offline dataset is only used to infer the transition model rather than directly infer the value function
(which also depends on a policy). Thanks to this model-based feature and the framework for the
proposed algorithm, neither the size of the value function class nor that of the policy class is limited
by the size of the offline dataset. In fact, the policy class in our settings can be taken large enough
to contain the optimal policy, and the size of the value function class can keep growing until it
contains the true value as long as we run Algorithm 4 enough times to generate sufficient Monte
Carlo samples. These features result in an optimal rate of O(1/

√
n) as shown in Theorem 1, which

outperform the existing work (Xie et al., 2021). To illustrate this, we compare Corollary 5 of Section
4.1 in Xie et al. (2021) with Theorem 6.11 from our work, both discussing the suboptimality gaps
under general function approximation. Corollary 5 in Xie et al. (2021) presented a convergence
rate relative to the offline sample size n as O(1/n1/5), while Theorem 6.11 established a rate of
O(1/

√
n). Therefore, MoMA enjoys the benefits of possessing more general policy classes and

value function classes, while making no sacrifice on the data efficiency.

A.2 COMPARISONS WITH EXISTING WORKS: THE POLICY IMPROVEMENT STEP

For the policy improvement step, we have developed the first computationally efficient algorithm
under general function approximations (rather than linear approximations) with a theoretical guar-
antee. Existing literature is only computationally efficient either under linear approximation settings
(Zanette et al., 2021; Xie et al., 2021), or without a theoretical guarantee for the policy improvement
step (Cheng et al., 2022). We give detailed comparisons below.

Though Algorithm 1 of Xie et al. (2021) employs a mirror ascent method, it is not efficiently im-
plementable when |S| = ∞, since it is impossible to enumerate every s in a continuous state space
to update the policy when the ft in Algorithm 1 of Xie et al. (2021) actually needs the access to
πt(· | s) for every s. Even if finitely many πt(s) are employed for obtaining ft via Monte Carlo
methods, it still incurs an exponential complexity of at least Ω

(
CT
)
. To clearly show the difference,

we exhibit our proposed algorithm and the one in Xie et al. (2021):

• Our proposed update rule when ω(p) =
∑m

i=1 pi log pi:

πt+1 (Ai | s) ∝ exp
(
ηtft,i(s; β̂t,i)

)
for each i = 1, . . . ,m.
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• The update rule in Algorithm 1 in Xie et al. (2021):

πt+1 (Ai | s) ∝ exp
(
ηtf̃t

(
s; β̂t,i

))
πt (Ai | s)

for each i = 1, . . . ,m.

In the update rule of Xie et al. (2021), πt+1 (Ai | s) does not obtain a closed form without itera-
tively calling the previous iteration. In the continuous state space, this procedure is computationally
inefficient. Moreover, assuming that the number of calls of πt(·) used to approximate f̃t

(
·; β̂t,i

)
is C, then at least Ω

(
CT
)

number of operations related to policies are needed. (See A.3). In con-

trast, our algorithm’s cost related to evaluating policies is O
(
T
(

KL2

1−γ + NL
(1−γ)2

))
, evidently more

computationally efficient.

Additionally, while Cheng et al. (2022) considers a parametric policy class, they do not provide a
theoretical analysis for the actor step. Further, Zanette et al. (2021) only focuses on linear approxi-
mations, which may not be applicable in more general settings.

In summary, MoMA can be utilized when policy classes and value function classes of greater gen-
erality are needed, with no sacrifice on computational efficiency.

A.3 EFFICIENT POLICY UPDATE

We provide a detailed discussion of the computational complexity for each step in our MoMA al-
gorithm here. We first consider the case ω(p) =

∑m
i=1 pi log pi, which leads to a closed function

form of πt+1 (Ai | s) ∝ exp
(
ηtft,i

(
s; β̂t,i

))
for each i = 1, . . . ,m. In the policy evaluation

step t, given β̂t−1 which is the output from the (t − 1)-th iteration, we can count the number of
calls of πt(s) from t to t + 1 as by realizing we need πt in the Monte Carlo evaluation of V πt

Pk

for k = 1, . . . ,K and the sampling from dπt

P in the policy evaluation step. Specifically, for each
sampling or Monte Carlo evaluation, the effective numbers of using πt is 1

1−γ , which is the effec-
tive trajectory length in an infinite-horizon discounted MDP. Therefore, for each t, in the policy
evaluation step, we need to use πt for a total of O

(
KL2

1−γ

)
times, where L denotes the number of

Monte Carlo trajectories. In the policy improvement step, we need πt in the sampling of (sj , Ai)
N
j=1

and Monte Carlo evaluation of Q̃ω,t(sj , Ai) for each j, i. Therefore, we need O
(

NL
(1−γ)2

)
Monte

Carlo trajectories starting from (sj , pj) for each j = 1, . . . , N . Therefore, collectively at each t

in algorithm 2, we need to evaluate the function πt (Ai | ·) = exp
(
ft−1,i

(
·; β̂t−1,i

))
/C approx-

imately O
(

KL2

1−γ + NL
(1−γ)2

)
times, which is independent of t. More generally, when ω does not

induce an explicit solution to equation 7), then I more steps for gradient descent of equation 7 may
be needed. In that case, running algorithm 2 costs O

(
IT
(

KL2

1−γ + NL
(1−γ)2

))
operations related to

policy updates, which is polynomial on all the key parameters.

B EXTENSION TO CONTINUOUS ACTION SPACE

We now extend MoMA to handle complex RL tasks with nonlinear dynamics and continuous action
spaces. Instead of considering p ∈ ∆(A) introduced in section 4.2 where A is assumed to be finite,
we consider a continuous action space A ⊂ RdA in this section. Here dA is the dimension of
the action space and A is assumed to be a compact convex set. In the continuous-action case, we
consider the deterministic policy π : S → A, i.e. π(s) ∈ A is a feasible action for each state s ∈ S.

In this case, a proposed update rule is

πt+1(s) = argmax
a∈A

{
Qπt

Pt
(s, a)− 1

ηt
D (πt(s), a)

}
∀s. (9)
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Algorithm 3 MoMA: A Practical Algorithm in the continuous-action case
Input: The learning rate ηt, Pn,αn .
Initialization: Initialize π0 = Unif(A).
for t = 1 to T do

Conservative policy evaluation:
Compute Pt := Pϕ(K) , where ϕ(K) is the output from eq. (4).
Policy improvement:
Sample {sj , aj}Nj=1 from dπt

Pt
.

for j = 1 to N do
Input ft−1(s, a; β̂t−1) and (sj , aj) into algorithm 5, and output Q̃ω,t(sj , aj).

end for
Find β̂t,i that solves eq. (11).
Save the parametric function ft(s, a; β̂t) as an input for iteration t+ 1.

end for

Still, since the update rule (9) is computationally infeasible for infinitely many s, we propose
a version with function approximation that is similar to section 5.2. Specifically, by expanding
D(πt(s), a), the objective function in (9) is equivalent to Qπt

Pt
(s, a)+ 1

ηt
⟨∇ω (πt(s)) , a⟩− 1

ηt
ω(a).

We also define Q̃ω,t(s, a) := Qπt

Pt
(s, a) + 1

ηt
⟨∇ω (πt(s)) , a⟩ as the augmented action-value

function. We then approximate Q̃ω,t(s, a) by a parametric function ft(s, a;βt) ∈ Ft such that
ft(s, a;β

∗
t ) ≈ Q̃ω,t(s, a) for some β∗

t . Here Ft can be RKHS or Neural Networks.

In particular, the optimal parameter β∗
t can be obtained as follows,

β∗
t ∈ argminβt

E(s,a)∼d
πt
Pt

[(
Q̃ω,t(s, a)− ft(s, a;βt)

)2]
. (10)

Specifically, we can generate {sj , aj}Nj=1 ∼ dπt

Pt
, and then minimize the empirical version of equa-

tion 5:

β̂t ∈ argminβt

1

N

N∑
j=1

[(
Q̃ω,t(sj , aj)− ft(sj , aj ;βt)

)2]
, (11)

where {Q̃ω,t(sj , aj)}Nj=1 are output from algorithm 5 (see Appendix G). The computable β̂t satisfies
the property that ft(s, a; β̂t) ≈ ft(s, a;β

∗
t ) ≈ Q̃ω,t(s, a).

Finally, the update rule involving function approximation can be written as

πt+1(s) = argmax
a∈A

{
ft(s, a; β̂t)−

1

ηt
ω(a)

}
,∀s ∈ S. (12)

A standard optimization procedure such as accelerated gradient descent method can be employed to
solve (12).

For completeness, we summarize the whole algorithm for the continuous-action case in algorithm 3.

C NOTATIONS AND DEFINITIONS

Definition C.1 (Integral Probability Metric (IPM)(Müller, 1997)). dF is an IPM defined by F if

dF (P,Q) := sup
f∈F

∣∣∣∣ E
x∼P

[f (x)]− E
x∼Q

[f (x)]

∣∣∣∣
where P and Q are two probability measures.

By considering different function class F , we have the relationships between IPM and several pop-
ular measures of distance, such as TV and Wasserstein distance.
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Definition C.2 (Slater’s condition). The problem satisfies Slater’s condition if it is strictly feasible,
that is:

∃x0 ∈ D : fi (x0) < 0, i = 1, . . . ,m, hi (x0) = 0, i = 1, . . . , p

The next definition essentially measures the size of the function classes Ft,i’s. If maxt,i |Ft,i| is
sufficiently large, then εapprox ≈ 0.
Definition C.3 (Approximation error).

εapprox := sup
P,π,t,i

inf
ft,i∈Ft,i

∥Q̃ω,t(s,Ai)− ft,i(s;βt,i)∥2,dπ
P
.

Definition C.4 (Localized Population Rademacher Complexity). (Wainwright, 2019, chap. 14).
For a given radius δ > 0 and function class F , a localized population Rademacher complexity is
defined as

R̄n(δ;F) = Eε,x

 sup
f∈F

∥f∥2≤δ

∣∣∣∣∣ 1n
n∑

i=1

εif (xi)

∣∣∣∣∣
 ,

where {xi}ni=1 are i.i.d. samples from some underlying distribution P, and {εi}ni=1 are i.i.d.
Rademacher variables taking values in {−1,+1} equiprobably, independent of the sequence
{xi}ni=1.
Definition C.5 (Star-shaped function class). (Wainwright, 2019, chap. 14). A function class F is
star-shaped around origin if for any f ∈ F and scalar α ∈ [0, 1], the function αf also belongs to
F .
Definition C.6 (Strongly convexity). f is strongly convex with modulus µ if the following holds:

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
∥y − x∥2. (13)

D ADDITIONAL THEORETICAL RESULTS

The following proposition shows that the commonly-used empirical risk functions satisfy Assump-
tion 1(d).
Proposition 1. Consider a uniformly bounded function class L(P) := {(s′, s, a) 7→
l(P, s′, s, a), P ∈ P} that is star-shaped (defined in Appendix C) around the true P ∗. Suppose
δ2n ≥ c1

n is a solution to the inequality R̄n(δ;L(P)) ≤ δ2 where R̄n(δ;L(P)) is the localized
Rademacher complexity (defined in appendix C) of the function class. Assume l(P, s′, s, a) is l0-
Lipschitz w.r.t. P , i.e.,

l(P1, s
′, s, a)− l(P2, s

′, s, a) ≤ l0|P1(s
′|s, a)− P2(s

′|s, a)|.
Assume further that l(P, s′, s, a) is also strongly convex w.r.t. P (s′, s, a) under the norm ∥ · ∥L2,P∗ .
Suppose H2(P ∗(· | s, a), P (· | s, a)) ≤ c3Es′∼P∗(·||s,a)l(P, s

′, s, a)− c3Es′∼P∗ l(P ∗, s′, s, a). Let
α = c1δ

2
n, then with high probabilities, we have P ∗ ∈ Pn,αn

and

sup
P∈Pn,αn

E(s,a)∼ρ[∥P (· | s, a)− P ∗(· | s, a)∥1] ≤ c2δn.

proposition 1 covers the commonly-used negative likelihood function classes, in which the empirical
risk minimizers are exactly MLEs. We show such a construction satisfies assumption 1(d) in the
following corollary.

Corollary 1. Consider l(P, s′, s, a) := − logP (s′ | s, a) and L̂n(P ) = − 1
n logP . Assume there

exist b > 0, ν > 0 such that

sup
P∈P

sup
s′,s,a

P (s′|s, a) < b, and, inf
s′,s,a

P ∗(s′|s, a) ≥ ν. (14)

If δ2n ≥ (1 + b
ν )

1
n solves the following inequality for the local Rademacher complexity of P:

R̄n(δ;P) ≤ δ2√
b+ ν

,

then assumption 1(d) holds with αn = c1δ
2
n and ϵest = c2δn for some constants c1, c2.
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In the following, we prove a suboptimality upper bound for the policy returned by algorithm 1.

Theorem 2. Under assumption 1, if ηt = (1− γ)
√

2 log(|A|)
T for every fixed T , then we have

V π†

P∗ − V π̂
P∗ ≤ (

γ

(1− γ)2
+

γ

(1− γ)3
)Cπ† εest︸ ︷︷ ︸

statistical error

+
1

(1− γ)2

√
2 log(|A|)

T︸ ︷︷ ︸
policy optimization error

with high probability, where π̂ ∼ Unif(π0, π1, ..., πT−1).

The upper bound in Theorem 2 includes two terms: a statistical error (depending on fixed n) coming
from using offline data for estimation, and an optimization error (depending on iteration T ) coming
from the policy improvement. Different from Theorem 1, function approximation is not involved in
this case. The sacrifice is that the update rule is computationally infeasible.

E TECHNICAL PROOFS

In this section, we present all the technical proofs of the main theoretical results. We first prove
theorem 2 in appendix E.1, which is a simplified version of theorem 1. Then we prove theorem 1 in
appendix E.2 by further analyzing the effect of function approximation.

E.1 PROOFS OF THEOREM 2

Proof of theorem 2. In this proof, we let ∆m=∆(A) and π(s) = π(· | s) for clarity. We first split
the average regret into the sum of three parts. We will deal with the three parts separately.

V π†

P∗ −
1

T

T−1∑
t=0

V πt

P∗ =
1

T

T−1∑
t=0

(
V π†

P∗ − V π†

Pt

)
+

1

T

T−1∑
t=0

(
V π†

Pt
− V πt

Pt

)
+

1

T

T−1∑
t=0

(
V πt

Pt
− V πt

P∗

)
. (15)

For the first term, we can upper bound V π†

P∗ − V π†

Pt
for each t. By the simulation lemma (1),

V π†

P∗ − V π†

Pt
=

γ

1− γ
E
(s,a)∼dπ†

P∗

[
Es′∼P∗(·|s,a)V

π†

Pt
(s′)− Es′∼Pt(·|s,a)V

π†

Pt
(s′)
]

≤ γ

1− γ
E
(s,a)∼dπ†

P∗

[∥∥∥V π†

Pt

∥∥∥
∞

∥P ∗(·|s, a)− Pt(·|s, a)∥1
]

≤ γ

(1− γ)2
E
(s,a)∼dπ†

P∗
∥P ∗(·|s, a)− Pt(·|s, a)∥1

≤ γ

(1− γ)2
Cπ†E(s,a)∼ρ ∥P ∗(·|s, a)− Pt(·|s, a)∥1

≤ γ

(1− γ)2
Cπ†εest

(16)

where we used the definitions of Cπ† and εest (see assumption 1).

The third term in (15) is negative with high probability: by assumption 1(d), P ∗ ∈ Pn,αn
with high

probability. Recall the updating rule in (1), Pt = argminP∈Pn,αn
V πt

P . So V πt

Pt
≤ V πt

P∗ for all t with
high probability. Then the following holds with high probability:

1

T

T−1∑
t=0

(
V πt

Pt
− V πt

P∗

)
≤ 0. (17)

16



Under review as a conference paper at ICLR 2024

Then it remains to upper bound V π†
Pt

− V πt

Pt
. By performance difference lemma,

1

T

T−1∑
t=0

(
V π†

Pt
− V πt

Pt

)
=

1

T (1− γ)

T−1∑
t=0

E
(s,a)∼dπ†

Pt

[
Aπt

Pt
(s, a)

]
=

1

T (1− γ)

T−1∑
t=0

E
(s,a)∼dπ†

P∗

[
Aπt

Pt
(s, a)

]
+

1

T (1− γ)

T−1∑
t=0

(E
(s,a)∼dπ†

Pt

− E
(s,a)∼dπ†

P∗
)
[
Aπt

Pt
(s, a)

]
.

(18)

To further deal with the term above, we will first establish an upper bound for the advantage function
Aπt

Pt
(s, a).

Recall the policy update rule in (2),

πt+1(s) = argmax
p∈∆m

{
⟨Qπt

Pt
(s, ·), p⟩ − 1

ηt
D (πt(s), p)

}
or equivalently,

πt+1(s) = argmin
p∈∆m

{
−⟨Qπt

Pt
(s, ·), p⟩+ 1

ηt
D (πt(s), p)

}
. (19)

By the optimality condition of (19), we have for any p ∈ ∆m,〈
−Qπt

Pt
(s, ·) + 1

ηt
∇pD (πt(s), p = πt+1(s)) , p− πt+1(s)

〉
≥ 0.

Note that D(πt, p) = ω(p) − ω(πt) − ⟨∇ω(πt), p − πt⟩. We can explicitly write out the gradient
term in the inequality above, then we get〈

−Qπt

Pt
(s, ·) + 1

ηt

(
∇ω(πt+1(s))−∇ω(πt(s))

)
, p− πt+1(s)

〉
≥ 0. (20)

By definition of D(·, ·), we can derive that

D(πt(s), p)−D(πt(s), πt+1(s))−D(πt+1(s), p) = ⟨∇ω(πt+1(s))−∇ω(πt(s)), p− πt+1(s)⟩ .

So (20) becomes

〈
Qπt

Pt
(s, ·), p− πt+1(s)

〉
≤ 1

ηt

(
D(πt(s), p)−D(πt(s), πt+1(s))−D(πt+1(s), p)

)
.

We can rewrite it in terms of advantage function:〈
Aπt

Pt
(s, ·), p

〉
=
〈
Qπt

Pt
(s, ·), p

〉
− V πt

Pt
(s)

≤
〈
Qπt

Pt
(s, ·), πt+1(s)

〉
− V πt

Pt
(s) +

1

ηt

(
D(πt(s), p)−D(πt(s), πt+1(s))−D(πt+1(s), p)

)
=
〈
Qπt

Pt
(s, ·), πt+1(s)− πt(s)

〉
+

1

ηt

(
D(πt(s), p)−D(πt(s), πt+1(s))−D(πt+1(s), p)

)
.

17
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Let p = π†(s):〈
Aπt

Pt
(s, ·), π†(s)

〉
≤
〈
Qπt

Pt
(s, ·), πt+1(s)− πt(s)

〉
+

1

ηt

(
D(πt(s), π

†(s))−D(πt(s), πt+1(s))−D(πt+1(s), π
†(s))

)
≤
〈
Qπt

Pt
(s, ·), πt+1(s)− πt(s)

〉
− 1

2ηt
∥πt+1(s)− πt(s)∥21

+
1

ηt

(
D(πt(s), π

†(s))−D(πt+1(s), π
†(s))

)
≤ ∥Qπt

Pt
(s, ·)∥∞∥πt+1(s)− πt(s)∥1 −

1

2ηt
∥πt+1(s)− πt(s)∥21

+
1

ηt

(
D(πt(s), π

†(s))−D(πt+1(s), π
†(s))

)
≤ ηt

2
∥Qπt

Pt
(s, ·)∥2∞ +

1

ηt

(
D(πt(s), π

†(s))−D(πt+1(s), π
†(s))

)
≤ ηt

2(1− γ)2
+

1

ηt

(
D(πt(s), π

†(s))−D(πt+1(s), π
†(s))

)
(21)

where the third line above is because D(p′, p) ≥ 1
2∥p − p′∥2 (see section 4.2). For simplicity, we

assume the norm is L1-norm here. Even in the general case, recall that this norm ∥ · ∥ is defined on
Rm, and by a well known result in functional analysis, all norms on a finite dimension linear space
are equivalent. So we can still establish a step similar to the third line in (21), replacing the second
term by − C

2ηt
∥πt+1(s) − πt(s)∥21 for some constant C. Then in the last line in (21), the first term

changes to ηt

2C ∥Q∥2∞ and the remaining are the same. We will see this difference does not affect the
general form of the theorem, while it only changes some constant.

Then we can use (21) to upper bound the first term in (18):

T−1∑
t=0

E
(s,a)∼dπ†

P∗

[
Aπt

Pt
(s, a)

]
=

T−1∑
t=0

E
s∼dπ†

P∗

〈
Aπt

Pt
(s, ·), π†(s)

〉
≤

T−1∑
t=0

E
s∼dπ†

P∗

[
ηt

2(1− γ)2
+

1

ηt

(
D(πt(s), π

†(s))−D(πt+1(s), π
†(s))

)]

=
1

2(1− γ)2

T−1∑
t=0

ηt + E
s∼dπ†

P∗

T−1∑
t=0

(
D(πt(s), π

†(s))−D(πt+1(s), π
†(s))

)
.

(22)

The second term in (22) can be bounded by the following telescoping technique. By assumption,
{ηt} is non-decreasing. Also note that the Bregman divergence is non-negative, so we have

T−1∑
t=0

(
1

ηt
D
(
πt(s), π

†(s)
)
− 1

ηt
D(πt+1(s), π

†(s))

)

=
1

η0
D
(
π0(s), π

†(s)
)
+

T−1∑
t=1

(
1

ηt
− 1

ηt−1
)D
(
πt(s), π

†(s)
)
− 1

ηT−1
D(πT (s), π

†(s))

≤ 1

η0
D
(
π0(s), π

†(s)
)

≤ 1

η0
D0.

(23)
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Then (22) becomes

T−1∑
t=0

E
(s,a)∼dπ†

P∗

[
Aπt

Pt
(s, a)

]
≤ 1

2(1− γ)2

T−1∑
t=0

ηt +
D0

η0
. (24)

The second term in (18) can be handled with simulation lemma: Let r̃(s, a) = Aπt

Pt
(s, a). Consider

two modified MDPs, M̃t = (S,A, Pt, r̃, γ) and M̃∗ = (S,A, P ∗, r̃, γ). We still focus on the
policy π† and evaluate it under both modified MDPs. Since the visitation measure only depends
on the transition probabilities and the discounting factor, we can rewrite the expectation of r̃ under
visitation measure as the value function of modified MDP. Then directly apply simulation lemma:

1

1− γ

(
E
(s,a)∼dπ†

Pt

− E
(s,a)∼dπ†

P∗

)
Aπt

Pt
(s, a)

= V π†

M̃t
− V π†

M̃∗

=
γ

1− γ
E
(s,a)∼dπ†

P∗

[
Es′∼Pt(·|s,a)V

π†

M̃t
(s′)− Es′∼P∗(·|s,a)V

π†

M̃t
(s′)
]
.

Note that the original reward function satisfies r ∈ [0, 1], so both Qπt

Pt
(·, ·) and V πt

Pt
(·) are bounded

in [0, 1
1−γ ]. Then |r̃| ≤ 1

1−γ , |V π†

M̃t
(s′)| ≤ 1

(1−γ)2 . So

1

1− γ

(
E
(s,a)∼dπ†

Pt

− E
(s,a)∼dπ†

P∗

)
Aπt

Pt
(s, a)

=
γ

1− γ
E
(s,a)∼dπ†

P∗

[
Es′∼Pt(·|s,a)V

π†

M̃t
(s′)− Es′∼P∗(·|s,a)V

π†

M̃t
(s′)
]

≤ γ

1− γ
E
(s,a)∼dπ†

P∗

[∥∥∥V π†

M̃t

∥∥∥
∞

∥Pt(·|s, a)− P ∗(·|s, a)∥1
]

≤ γ

(1− γ)3
E
(s,a)∼dπ†

P∗
∥Pt(·|s, a)− P ∗(·|s, a)∥1

≤ γ

(1− γ)3
Cπ†E(s,a)∼ρ ∥Pt(·|s, a)− P ∗(·|s, a)∥1

≤ γ

(1− γ)3
Cπ†εest

(25)

where the penultimate line comes from assumption 1(b), and the last step is by the definition of εest
(see assumption 1(d)).

So now we can use (24) and (25) to control the two terms in (18):

1

T

T−1∑
t=0

(
V π†

Pt
− V πt

Pt

)
=

1

T (1− γ)

T−1∑
t=0

E
(s,a)∼dπ†

P∗

[
Aπt

Pt
(s, a)

]
+

1

T (1− γ)

T−1∑
t=0

(E
(s,a)∼dπ†

Pt

− E
(s,a)∼dπ†

P∗
)
[
Aπt

Pt
(s, a)

]
≤ 1

2T (1− γ)3

T−1∑
t=0

ηt +
D0

T (1− γ)η0
+

γ

(1− γ)3
Cπ†εest.

(26)
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Finally, we use (16), (17), (26) to upper bound the three terms in (15):

V π†

P∗ − 1

T

T−1∑
t=0

V πt

P∗

=
1

T

T−1∑
t=0

(
V π†

P∗ − V π†

Pt

)
+

1

T

T−1∑
t=0

(
V π†

Pt
− V πt

Pt

)
+

1

T

T−1∑
t=0

(
V πt

Pt
− V πt

P∗

)
≤ γ

(1− γ)2
Cπ†εest +

1

2T (1− γ)3

T−1∑
t=0

ηt +
D0

T (1− γ)η0
+

γ

(1− γ)3
Cπ†εest + 0

≤ c1Cπ†εest +
1

2T (1− γ)3

T−1∑
t=0

ηt +
D0

T (1− γ)η0
.

E.2 PROOFS FOR THEOREM 1

Proof of theorem 1. We first focus on V
π†
Pt

− V πt

Pt
. Let A = {A1, A2, ..., Am}, and

the goal is to find an optimal randomized policy in the probability simplex ∆m :=
{p ∈ Rm :

∑m
i=1 pi = 1, pi ≥ 0, i = 1, . . . ,m}. Then, for a given πt(s) ∈ ∆m, we use

Qπt

Pt
(s,Ai) := R (s,Ai) + γ

∫
V πt

Pt
(s′)P (s′ | s,Ai) ds

′, i = 1, . . . ,m,

Q̃ω,t(s,Ai) := Qπt

Pt
(s,Ai) +

1

ηt
∇iω (πt(s)) , i = 1, . . . ,m

(27)

to denote the action value function and the augmented action value function evaluated at the action
Ai.
Then for any p ∈ ∆m

Q̃ω,t(s, p) = Qπt

Pt
(s, p) + ⟨∇ω (πt(s)) , p⟩ /ηt

=

m∑
i=1

Qπt

Pt
(s,Ai) pi + ⟨∇ω (πt(s)) , p⟩ /ηt

:=
〈
Q̃ω,t(s, ·), p

〉 (28)

where Q̃ω,t(s, ·) is defined as an m-dimensional vector with its i-th element as Q̃ω,t(s,Ai).

That means, if we want to approximate Q̃ω,t(s, p) which is a linear function of Q̃ω,t(s, ·), then we
only need to approximate Q̃ω,t(s,Ai) for each i = 1, ...,m.
For each i = 1, ...,m, we consider the approximation

ft,i(s;βt,i) ≈ Q̃ω,t(s,Ai) (29)

where ft,i(s;βt,i) denotes some function class parameterized by β.

Then the update rule in (7) is reduced to

πt+1(s) = argmax
p∈∆m

{
⟨ft(s;βt), p⟩ −

1

ηt
ω(p)

}
,∀s ∈ S. (30)

For simplicity, we consider an equivalent rule of (30):

πt+1(s) = argmin
p∈∆m

{
−⟨ft(s;βt), p⟩+

1

ηt
ω(p)

}
,∀s ∈ S. (31)

Here we notice that since ω is assumed to be strongly convex with modulus 1, and ⟨ft(s;β), p⟩ is a
convex function of p, we have a strongly convex objective function in (31) with modulus 1

ηt
. Also,

∆m is a convex space. Therefore the optimization procedure in (31) is meaningful.
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Then, by the optimality condition of (31), we have

⟨∇
{
−⟨ft(s;βt), πt+1(s)⟩+

1

ηt
ω(πt+1(s))

}
, p− πt+1(s)⟩ ≥ 0

for any p ∈ ∆m. By expanding this inequality, we get

⟨−ft(s;βt), p− πt+1(s)⟩ ≥ − 1

ηt
⟨∇ω(πt+1(s)), p− πt+1(s)⟩

=
1

ηt

(
D(πt+1(s), p))− ω(p) + ω(πt+1(s)

)
.

We rewrite it as

−
〈
Q̃ω,t(s, ·), p

〉
+
〈
Q̃ω,t(s, ·)− ft(s;βt), p

〉
≥−

〈
Q̃ω,t(s, ·), πt+1(s)

〉
+
〈
Q̃ω,t(s, ·)− ft(s;βt), πt+1(s)

〉
+

1

ηt
ω(πt+1(s))−

1

ηt
ω(p) +

1

ηt
D(πt+1(s), p).

(32)

We notice that
〈
Q̃ω,t(s, ·), p

〉
is exactly Q̃ω,t(s, p). For clarity, we denote

δt(s) := Q̃ω,t(s, ·)− ft(s;βt)

which represents the error in the approximation step in algorithm 2. By previous notations,
δt(s) is also an m-dimension vector. Plugging

〈
Q̃ω,t(s, ·), p

〉
= Q̃ω,t(s, p) = Qπt

Pt
(s, p) +

⟨∇ω (πt(s)) , p⟩ /ηt for any p, and δt(s) = Q̃ω,t(s, ·)− ft(s;βt) into (32), then we have

−Qπt

Pt
(s, p)− ⟨∇ω (πt(s)) , p⟩ /ηt + ⟨δt(s), p⟩

≥ −Qπt

Pt
(s, πt+1(s))− ⟨∇ω (πt(s)) , πt+1(s)⟩ /ηt + ⟨δt(s), πt+1(s)⟩

+
1

ηt
ω(πt+1(s))−

1

ηt
ω(p) +

1

ηt
D(πt+1(s), p).

(33)

By definition of D(·, ·), we have

ω (πt+1(s))− ω(p)− ⟨∇ω (πt(s)) , πt+1(s)− p⟩ = D (πt(s), πt+1(s))−D (πt(s), p) . (34)

Then (33) becomes

Qπt

Pt
(s, πt+1(s))−Qπt

Pt
(s, p)

≥⟨δt(s), πt+1(s)− p⟩+ 1

ηt
D(πt+1(s), p) +

1

ηt
D (πt(s), πt+1(s))−

1

ηt
D (πt(s), p) .

(35)

Therefore we have

Aπt

Pt
(s, πt+1(s))−Aπt

Pt
(s, p)

=Qπt

Pt
(s, πt+1(s))− V πt

Pt
(s)−Qπt

Pt
(s, p) + V πt

Pt
(s)

=Qπt

Pt
(s, πt+1(s))−Qπt

Pt
(s, p)

≥⟨δt(s), πt+1(s)− p⟩+ 1

ηt
D(πt+1(s), p) +

1

ηt
D (πt(s), πt+1(s))−

1

ηt
D (πt(s), p) .

(36)
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Reorganize it and we have

Aπt

Pt
(s, p)

≤ Aπt

Pt
(s, πt+1(s))− ⟨δt(s), πt+1(s)− p⟩+ 1

ηt
D (πt(s), p)−

1

ηt
D(πt+1(s), p)

− 1

ηt
D (πt(s), πt+1(s))

≤ Aπt

Pt
(s, πt+1(s))− ⟨δt(s), πt+1(s)− p⟩+ 1

ηt
D (πt(s), p)−

1

ηt
D(πt+1(s), p)

− 1

2ηt
∥πt+1(s)− πt(s)∥21

= ⟨Qπt

Pt
(s), πt+1(s)− πt(s)⟩ −

1

2ηt
∥πt+1(s)− πt(s)∥21

− ⟨δt(s), πt+1(s)− p⟩+ 1

ηt
D (πt(s), p)−

1

ηt
D(πt+1(s), p)

≤ ∥Q∥∞∥πt+1(s)− πt(s)∥1 −
1

2ηt
∥πt+1(s)− πt(s)∥21

− ⟨δt(s), πt+1(s)− p⟩+ 1

ηt
D (πt(s), p)−

1

ηt
D(πt+1(s), p)

≤ ηt
2
∥Q∥2∞ − ⟨δt(s), πt+1(s)− p⟩+ 1

ηt
D (πt(s), p)−

1

ηt
D(πt+1(s), p)

(37)

where the third line above is because D(p′, p) ≥ 1
2∥p − p′∥2 (see section 4.2). The reason we

assume L1-norm was already explained in the proof of theorem 2 (see the remark after (21) in
section appendix E.1).

Now we return to the analysis for V π†

Pt
− V πt

Pt
:

1

T + 1

T∑
t=0

(V π†

Pt
− V πt

Pt
)

=
1

T + 1

T∑
t=0

1

1− γ
E
(s,a)∼dπ†

Pt

Aπt

Pt
(s, a)

=
1

T + 1

T∑
t=0

1

1− γ
E
(s,a)∼dπ†

P∗
Aπt

Pt
(s, a) +

1

T + 1

T∑
t=0

1

1− γ

(
E
(s,a)∼dπ†

Pt

− E
(s,a)∼dπ†

P∗

)
Aπt

Pt
(s, a).

(38)
For the first term in (38), we can let the randomized policy p in (37) be π†(s):

1

T + 1

T∑
t=0

1

1− γ
E
(s,a)∼dπ†

P∗
Aπt

Pt
(s, a)

=
1

T + 1

T∑
t=0

1

1− γ
E
s∼dπ†

P∗
Aπt

Pt
(s, π†(s))

≤ 1

(T + 1)(1− γ)

T∑
t=0

E
s∼dπ†

P∗

[
ηt
2
∥Q∥2∞ −

〈
δt(s), πt+1(s)− π†(s)

〉
+

1

ηt
D
(
πt(s), π

†(s)
)
− 1

ηt
D(πt+1(s), π

†(s))

]
≤ 1

2(T + 1)(1− γ)3

T∑
t=0

ηt +
1

(T + 1)(1− γ)

T∑
t=0

E
s∼dπ†

P∗

〈
δt(s), π

†(s)− πt+1(s)
〉

+
1

(T + 1)(1− γ)
E
s∼dπ†

P∗

T∑
t=0

(
1

ηt
D
(
πt(s), π

†(s)
)
− 1

ηt
D(πt+1(s), π

†(s))

)
.

(39)
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The second term in (39) is bounded by approximation error:

E
s∼dπ†

P∗

〈
δt(s), π

†(s)− πt+1(s)
〉

= E
s∼dπ†

P∗

〈
Q̃ω,t(s, ·)− ft(s;βt), π

†(s)− πt+1(s)
〉

≤ E
s∼dπ†

P∗

〈
|Q̃ω,t(s, ·)− ft(s;βt)|, π†(s)

〉
+ E

s∼dπ†
P∗

〈
|Q̃ω,t(s, ·)− ft(s;βt)|, πt+1(s)

〉
≤ 2|A|max

i
E
s∼dπ†

P∗

∣∣∣Q̃ω,t(s,Ai)− ft,i(s;βt,i)
∣∣∣

≤ 2|A|max
i

√
E
s∼dπ†

P∗

(
Q̃ω,t(s,Ai)− ft,i(s;βt,i)

)2
≤ 2|A|max

i

∥∥∥∥∥dπ
†

P∗(s)

dπt

Pt
(s)

∥∥∥∥∥
1
2

∞

√
Es∼d

πt
Pt

(
Q̃ω,t(s,Ai)− ft,i(s;βt,i)

)2

≤ 2|A|maxi√
1− γ

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

√
Es∼d

πt
Pt

(
Q̃ω,t(s,Ai)− ft,i(s;βt,i)

)2
.

By the updating rule in (6),

Es∼d
πt
Pt

(
Q̃ω,t(s,Ai)− ft,i(s;βt,i)

)2
≤ min

βt,i

Es∼d
πt
Pt

(
Q̃ω,t(s,Ai)− ft,i(s;βt,i)

)2
+ c

|Ft,i|
N

,w.h.p.

≤ sup
P,π

inf
βt,i

Es∼dπ
P

(
Q̃ω,t(s,Ai)− ft,i(s;βt,i)

)2
+ c

|Ft,i|
N

,w.h.p.

= ε2approx + c
|Ft,i|
N

,w.h.p.

where the second step follows from the analysis of standard M-estimator (Van de Geer & van de
Geer, 2000) and the last step is because of definition C.3.

Combine the previous two inequalities, then we get

E
s∼dπ†

P∗

〈
δt(s), π

†(s)− πt+1(s)
〉
≤ 2|A|√

1− γ

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

(εapprox + c

√
maxt,i |Ft,i|

N
). (40)

The third term in (39) can be bounded by the same method from appendix E.1. (see (23)). So we
have

T∑
t=0

(
1

ηt
D
(
πt(s), π

†(s)
)
− 1

ηt
D(πt+1(s), π

†(s))

)
≤ 1

η0
D0. (41)
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By (39), (40), (41), we obtain the following inequality, which is an upper bound for the first term in
(38):

1

T + 1

T∑
t=0

1

1− γ
E
(s,a)∼dπ†

P∗
Aπt

Pt
(s, a)

≤ 1

2(T + 1)(1− γ)3

T∑
t=0

ηt +
1

(T + 1)(1− γ)

T∑
t=0

E
s∼dπ†

P∗

〈
δt(s), π

†(s)− πt+1(s)
〉

+
1

(T + 1)(1− γ)
E
s∼dπ†

P∗

T∑
t=0

(
1

ηt
D
(
πt(s), π

†(s)
)
− 1

ηt
D(πt+1(s), π

†(s))

)

≤ 1

2(T + 1)(1− γ)3

T∑
t=0

ηt +
1

1− γ

2|A|√
1− γ

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

(εapprox + c

√
maxt,i |Ft,i|

N
)

+
D0

(T + 1)(1− γ)η0
.

(42)

The second term in (38) can be handled by the same method from appendix E.1. (see (25)). So we
have

1

1− γ

(
E
(s,a)∼dπ†

Pt

− E
(s,a)∼dπ†

P∗

)
Aπt

Pt
(s, a) ≤ γ

(1− γ)3
Cπ†εest. (43)

So now we can use (42) and (43) to control the two terms in (38) respectively:

1

T

T−1∑
t=0

(V π†

Pt
− V πt

Pt
)

=
1

T

T−1∑
t=0

1

1− γ
E
(s,a)∼dπ†

P∗
Aπt

Pt
(s, a) +

1

T

T−1∑
t=0

1

1− γ

(
E
(s,a)∼dπ†

Pt

− E
(s,a)∼dπ†

P∗

)
Aπt

Pt
(s, a)

≤ 1

2T (1− γ)3

T−1∑
t=0

ηt +
1

1− γ

2|A|√
1− γ

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

εapprox +
D0

T (1− γ)η0
+

γ

(1− γ)3
Cπ†εest.

(44)

Finally, we consider V π†

P∗ − V πt

P∗ :

V π†

P∗ −
1

T

T−1∑
t=0

V πt

P∗ =
1

T

T−1∑
t=0

(
V π†

P∗ − V π†

Pt

)
+

1

T

T−1∑
t=0

(
V π†

Pt
− V πt

Pt

)
+

1

T

T−1∑
t=0

(
V πt

Pt
− V πt

P∗

)
. (45)

The second term in (45) is already upper bounded by (44).

The third term in (45) is negative with high probability: by assumption 1(c), P ∗ ∈ Pn,αn
with high

probability. Recall the updating rule in (1), Pt = argminP∈Pn,αn
V πt

P . So V πt

Pt
≤ V πt

P∗ for all t with
high probability. Then the following holds with high probability:

1

T

T−1∑
t=0

(
V πt

Pt
− V πt

P∗

)
≤ 0. (46)

The first term in (45) can be dealt by simulation lemma, which is same to (16) in appendix E.1:

V π†

P∗ − V π†

Pt
≤ γ

(1− γ)2
Cπ†εest. (47)
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By (44), (45), (46), (47),

V π†

P∗ − 1

T

T−1∑
t=0

V πt

P∗ ≤ γ

(1− γ)2
Cπ†εest +

1

2T (1− γ)3

T−1∑
t=0

ηt

+
1

1− γ

2|A|√
1− γ

∥∥∥∥∥dπ
†

P∗(s)

µ0(s)

∥∥∥∥∥
1
2

∞

(εapprox + c

√
maxt,i |Ft,i|

N
)

+
D0

T (1− γ)η0
+

γ

(1− γ)3
Cπ†εest + 0

≤ c1Cπ†εest + c2|A|

√
sup
s

dπ
†

P∗(s)

µ0(s)
(εapprox + c

√
maxt,i |Ft,i|

N
)

+
1

2T (1− γ)3

T−1∑
t=0

ηt +
D0

T (1− γ)η0
.

E.3 PROOFS OF PROPOSITION 1

Proof. Here we adapt a result from theorem 3. Specifically, given the conditions in proposition 1,
we have

∥P̂ − P ∗∥2 ≤ c1δn

and

E(l(P̂ )− l(P ∗)) ≤ c2δ
2
n.

Now we prove the first result in proposition 1, i.e., P ∗ ∈ Pn,αn with high probability. Consider
L̂n(P

∗) − L̂n(P̂ ) where P̂ minimize L̂n(P ), and L̂n(P ) =
1
n

∑n
i=1 l(P )(si, ai, s

′
i). We also use

the notion L(P ) := El(P ) which is an population counterpart of L̂n. Then we have

L̂n(P
∗)− L̂n(P̂ )

=L̂n(P
∗)− L(P ∗) + L(P ∗)− L(P̂ ) + L(P̂ )− L̂n(P̂ )

=(L̂n(P
∗)− L̂n(P̂ ) + L(P̂ )− L(P ∗)) + L(P ∗)− L(P̂ )

≤|(L̂n(P
∗)− L̂n(P̂ ) + L(P̂ )− L(P ∗))|.

(48)

as the third term is less than 0.

By (b) of theorem 3, we have

|(L̂n(P
∗)− L̂n(P̂ ) + L(P̂ )− L(P ∗))|

∥P̂ − P ∗∥2
≤ sup

P

|(L̂n(P
∗)− L̂n(P ) + L(P )− L(P ∗))|

∥P − P ∗∥2
≤ c3δn.

Then we get

|(L̂n(P
∗)− L̂n(P̂ ) + L(P̂ )− L(P ∗))| ≤ c3δn∥P̂ − P ∗∥2 ≤ c4δ

2
n.

Therefore we get L̂n(P
∗)− L̂n(P̂ ) ≤ c4δ

2
n, and it implies

P ∗ ∈ Pn,αn

where α is set to be cδ2n.
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Next, we show that Es,a∼ρ∥P (·|s, a)− P ∗(·|s, a)∥1 ≤ cδn for every P ∈ Pn,αn
. Here we incorpo-

rate an assumption that Es,a∼ρH
2(P, P ∗) ≤ L(P )− L(P ∗) for every P. Then we have

Es,a∼ρH
2(P, P ∗)

≤ L(P )− L(P ∗)

= L(P )− L̂n(P ) + L̂n(P )− L̂n(P
∗) + L̂n(P

∗)− L(P ∗)

≤ |L(P )− L̂n(P ) + L̂n(P
∗)− L(P ∗)|+ |L̂n(P )− L̂n(P

∗)|
≤ |L(P )− L̂n(P ) + L̂n(P

∗)− L(P ∗)|+ |L̂n(P )− L̂n(P̂ )|+ |L̂n(P̂ )− L̂n(P
∗)|

≤ c1δ
2
n + c2αn + c2αn

≤ cδ2n.

(49)

Since H2 is an upper bound for TV distance, we have
sup

P∈Pn,αn

Es,a∼ρ∥P (·|s, a)− P ∗(·|s, a)∥1 ≤ cδn.

And the proof is done.

E.4 PROOFS OF COROLLARY 1

Proof. Let

L̂n(P ) =
1

n

n∑
i=1

P ∗(s′i | si, ai)
P (s′i | si, ai)

and its population counterpart:

L(P ) = E(s,a)∼ρ,s′∼P∗(·|s,a)
P ∗(s′ | s, a)
P (s′ | s, a)

= DKL(P
∗∥P ).

We prove P ∗ ∈ Pn,αn first. Consider L̂n(P
∗)− L̂n(P̂ ) where P̂ minimize L̂n(P ). Then we have

L̂n(P
∗)− L̂n(P̂ )

=L̂n(P
∗)− L(P ∗) + L(P ∗)− L(P̂ ) + L(P̂ )− L̂n(P̂ )

=(a) + (b) + (c)

(50)

Terms (a)(c) can be bounded by
sup
P∈P

|(L̂n − L)(P )|.

Again, we use theorem 3 to show that supP∈P |(L̂n − L)(P )| ≤ δ2n.

For term (b), we notice that L(P ∗) − L(P̂ ) = DKL(P
∗∥P̂ ). Combining lemma 3 which shows

convergence rate of MLE under Hellinger distance and lemma 4, which upper bounds KL divergence
by Hellinger distance when P has a lower bound, then we have

(b) = DKL(P
∗∥P̂ ) ≤ δ2n

with high probability.

Then we have shown that
L̂n(P

∗)− L̂n(P̂ ) ≤ cδ2n = α

with probability at least 1− δ. This implies that P ∗ ∈ Pα with probability at least 1− δ.

For the second part, we show

sup
P∈Pn,αn

(E(s,a)∼ρ[df (P (· | s, a), P ∗(· | s, a))2]) 1
2 ≤ c2δn. (51)

To see this, we bound the Hellinger distance by KL divergence (lemma 4), specifically, for any
P ∈ Pn,αn

we have

H2(P, P ∗) ≤ KL(P∥P ∗)

= L(P )− L(P ∗)

= L(P )− L̂n(P ) + L̂n(P )− L̂n(P̂ ) + L̂n(P̂ )− L(P̂ ) + L(P̂ )− L(P ∗).

(52)
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Again, the first and the third terms are bounded by

sup
P∈P

|(L̂n − L)(P )| ≤ δ2n.

The second term is bounded by α = cδ2n because P ∈ Pn,αn
. The fourth term is equal to

KL(P̂∥P ∗) ≤ c3δ
2
n by consistency of MLE in KL-divergence. And the proof is done.

F SUPPORTING LEMMAS

Lemma 1 (A generalization of simulation lemma). Suppose S, A, r, γ, µ0 are all fixed. Here S and
A can be infinite sets, and r : S → R can be any real value function. For two arbitrary transition
models P and P̂ , and any policy π : S → ∆(A), we have

V π
P − V π

P̂
=

γ

1− γ
E(s,a)∼dπ

P

[
Es′∼P (·|s,a)

[
V π
P̂
(s′)
]
− Es′∼P̂ (·|s,a)

[
V π
P̂
(s′)
]]
.

If V π
P̂
(s) is bounded, i.e. −C ≤ V π

P̂
(s) ≤ C, ∀s ∈ S, then we further have∣∣∣V π

P − V π
P̂

∣∣∣ ≤ 2C
γ

1− γ
E(s,a)∼dπ

P

[
TV(P (·|s, a), P̂ (·|s, a))

]
.

If V π
P̂
(s) is positive and bounded, i.e. 0 ≤ V π

P̂
(s) ≤ C, ∀s ∈ S, then∣∣∣V π

P − V π
P̂

∣∣∣ ≤ C
γ

1− γ
E(s,a)∼dπ

P

[
TV(P (·|s, a), P̂ (·|s, a))

]
.

Proof. We first prove the first part of the lemma.

Let dπP (·, ·|s0, a0) denote the visitation measure over (s, a) conditioning on (S0 = s0, A0 = a0)
under transition model P , i.e. dπP (·, ·|s0, a0) = (1− γ)

∑∞
t=0 γ

tPπ(St = · , At = · |s0, a0).
Then we have for any (s0, a0),

Qπ
P (s0, a0) =

1

1− γ
E(s,a)∼dπ

P (·,·|s0,a0)[r(s, a)]. (53)

By Bellman equation, for any (s, a),

Qπ
P (s, a) = r(s, a) + γEs′∼P (·|s,a),a′∼π(·|s′) [Q

π
P (s

′, a′)] . (54)

Qπ
P̂
(s, a) = r(s, a) + γEs′∼P̂ (·|s,a),a′∼π(·|s′)

[
Qπ

P̂
(s′, a′)

]
. (55)

Substitute the r(s, a) in (53) by the r(s, a) in (55):

Qπ
P (s0, a0) =

1

1− γ
E(s,a)∼dπ

P (·,·|s0,a0)

[
Qπ

P̂
(s, a)− γEs′∼P̂ (·|s,a),a′∼π(·|s′)Q

π
P̂
(s′, a′)

]
. (56)

By (53) and (54), we first apply (54) to the Qπ
P (s0, a0) in (53), then apply (53) iteratively:

1

1− γ
E(s,a)∼dπ

P (·,·|s0,a0)[r(s, a)]

= Qπ
P (s0, a0)

= r(s0, a0) + γEs∼P (·|s0,a0),a∼π(·|s) [Q
π
P (s, a)]

= r(s0, a0) + γEs∼P (·|s0,a0),a∼π(·|s)

[
1

1− γ
E(s′,a′)∼dπ

P (·,·|s,a)[r(s
′, a′)]

]
.
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Rearrange it as

−r(s0, a0) =
γ

1− γ
Es∼P (·|s0,a0),a∼π(·|s)

[
E(s′,a′)∼dπ

P (·,·|s,a)[r(s
′, a′)]

]
− 1

1− γ
E(s,a)∼dπ

P (·,·|s0,a0)[r(s, a)].

Note that the equation above holds for any real function r : S × A → R, so we can replace r(·, ·)
by Qπ

P̂
(·, ·)

−Qπ
P̂
(s0, a0) =

γ

1− γ
Es∼P (·|s0,a0),a∼π(·|s)

[
E(s′,a′)∼dπ

P (·,·|s,a)[Q
π
P̂
(s′, a′)]

]
− 1

1− γ
E(s,a)∼dπ

P (·,·|s0,a0)[Q
π
P̂
(s, a)].

(57)

(56)+(57):

Qπ
P (s0, a0)−Qπ

P̂
(s0, a0) =

γ

1− γ
Es∼P (·|s0,a0),a∼π(·|s)

[
E(s′,a′)∼dπ

P (·,·|s,a)Q
π
P̂
(s′, a′)

]
− γ

1− γ
E(s,a)∼dπ

P (·,·|s0,a0)

[
Es′∼P̂ (·|s,a),a′∼π(·|s′)Q

π
P̂
(s′, a′)

]
.

(58)

Consider the first term on right hand side:

Es∼P (·|s0,a0),a∼π(·|s)E(s′,a′)∼dπ
P (·,·|s,a)[·] = E(s′,a′)∼d̃π

P (·,·|s0,a0)
[·]

= E(s,a)∼dπ
P (·,·|s0,a0)Es′∼P (·|s,a),a′∼π(·|s′)[·]

where d̃πP (s, a|s0, a0) := (1− γ)
∑∞

t=0 γ
tPπ(St+1 = s,At+1 = a|S0 = s0, A0 = a0).

So (58) can be rewritten as

Qπ
P (s0, a0)−Qπ

P̂
(s0, a0)

=
γ

1− γ
E(s,a)∼dπ

P (·,·|s0,a0)

[
Es′∼P (·|s,a),a′∼π(·|s′)Q

π
P̂
(s′, a′)− Es′∼P̂ (·|s,a),a′∼π(·|s′)Q

π
P̂
(s′, a′)

]
=

γ

1− γ
E(s,a)∼dπ

P (·,·|s0,a0)

[
Es′∼P (·|s,a)V

π
P̂
(s′)− Es′∼P̂ (·|s,a)V

π
P̂
(s′)
]
.

Finally, consider V π
P (s0), V π

P̂
(s0) and the initial distribution µ. Recall that dπP is the visitation

measure conditioning on the initial distribution µ. So we have

V π
P − V π

P̂
= Es0∼µ

[
V π
P (s0)− V π

P̂
(s0)

]
= Es0∼µ,a0∼π(·|s0)

[
Qπ

P (s0, a0)−Qπ
P̂
(s0, a0)

]
=

γ

1− γ
Es0∼µ,a0∼π(·|s0)E(s,a)∼dπ

P (·,·|s0,a0)

[
Es′∼P (·|s,a)V

π
P̂
(s′)− Es′∼P̂ (·|s,a)V

π
P̂
(s′)
]

=
γ

1− γ
E(s,a)∼dπ

P

[
Es′∼P (·|s,a)V

π
P̂
(s′)− Es′∼P̂ (·|s,a)V

π
P̂
(s′)
]
,

which finishes the first part of the lemma.

Then we prove the second part: first note that
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∣∣∣V π
P − V π

P̂

∣∣∣ = γ

1− γ

∣∣∣E(s,a)∼dπ
P

[
Es′∼P (·|s,a)V

π
P̂
(s′)− Es′∼P̂ (·|s,a)V

π
P̂
(s′)
]∣∣∣

≤ γ

1− γ
E(s,a)∼dπ

P

∣∣∣Es′∼P (·|s,a)V
π
P̂
(s′)− Es′∼P̂ (·|s,a)V

π
P̂
(s′)
∣∣∣ . (59)

Suppose q1, q2 are two arbitrary probability distributions, and C is a constant satisfying −C ≤
f(x) ≤ C. By property of total variation distance, TV(q1, q2) =

1
2∥q1 − q2∥1.

By Hölder inequality

|Ex∼q1f(x)− Ex∼q2f(x)| =
∣∣∣∣∫ f(x)(q1(x)− q2(x))dx

∣∣∣∣
= ∥f(q1 − q2)∥1 ≤ ∥f∥∞∥q1 − q2∥1 ≤ 2CTV(q1, q2).

(60)

Apply (60) to the right hand side of (59):

∣∣∣V π
P − V π

P̂

∣∣∣ ≤ 2C
γ

1− γ
E(s,a)∼dπ

P

[
TV(P (·|s, a), P̂ (·|s, a))

]
,

which concludes the second part.

Third part: Consider the special case that 0 ≤ f(x) ≤ C, then we can improve the upper bound in
(60)

|Ex∼q1f(x)− Ex∼q2f(x)|

=

∣∣∣∣∫ f(x)(q1(x)− q2(x))dx

∣∣∣∣
=

∣∣∣∣∫ f(x)(q1(x)− q2(x))1{q1(x) > q2(x)}dx−
∫
f(x)(q2(x)− q1(x))1{q1(x) ≤ q2(x)}dx

∣∣∣∣ .
Note that on the right hand side, the two terms inside the absolute value sign are both non-negative,
so

|Ex∼q1f(x)− Ex∼q2f(x)|

≤ max

{∫
f(x)(q1(x)− q2(x))1{q1(x) > q2(x)}dx,

∫
f(x)(q2(x)− q1(x))1{q1(x) ≤ q2(x)}dx

}
≤ Cmax

{∫
(q1(x)− q2(x))1{q1(x) > q2(x)}dx,

∫
(q2(x)− q1(x))1{q1(x) ≤ q2(x)}dx

}
= CTV(q1, q2),

where the last step is an equivalent definition of total variation distance (for two probability distri-
butions).

So the factor 2 on the right hand side in (60) can be improved to 1 in this case.

Lemma 2. If f is strongly convex with modulus µ and differentiable, i.e.,

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
∥y − x∥2, (61)

suppose g is a convex differentiable function, then f + g is a strongly convex function with modulus
µ.
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Proof. Since g is a convex function, we have

g(y) ≥ g(x) +∇g(x)T (y − x). (62)

Then
f(y) + g(y) ≥ f(x) + g(x) + (∇f(x)T +∇g(x)T )(y − x) +

µ

2
∥y − x∥2, (63)

Theorem 3. Theorem 14.20 of (Wainwright, 2019, chap. 14) (Uniform law for Lipschitz cost func-
tions) Given a uniformly 1bounded function class F that is star-shaped around the population min-
imizer f∗, let δ2n ≥ c

n be any solution to the inequality

Rn (δ;F∗) ≤ δ2.

(a) Suppose that the cost function is L-Lipschitz in its first argument. Then we have

sup
f∈F

|Pn (Lf − Lf )− P (Lf − Lf )|
∥f − f∗∥2 + δn

≤ 10Lδn

with probability greater than 1− c1e
−c2nδ

2
n .

(b) Suppose that the cost function is L-Lipschitz and γ-strongly convex. Then for any function f̂ ∈ F
such that Pn

(
Lf̂ − Lf

)
≤ 0, we have∥∥∥f̂ − f∗

∥∥∥
2
≤
(
20L

γ
+ 1

)
δn

and

P
(
Lf̂ − Lf

)
≤ 10L

(
20L

γ
+ 2

)
δ2n,

where both inequalities hold with the same probability as in part (a).
Lemma 3. Corollary 14.22 of (Wainwright, 2019). Given a class of densities satisfying the previous
conditions, let δn be any solution to the critical inequality (14.58) such that δ2n ≥

(
1 + b

v

)
1
n . Then

the nonparametric density estimate f̂ satisfies the Hellinger bound

H2
(
f̂∥f∗

)
≤ c0δ

2
n

with probability greater than 1− c1e
−c2

v
b+nnδ2n .

Lemma 4. Lemma B.2 of Ghosal & Van der Vaart (2017). For every b > 0, there exists a constant
ϵb > 0 such that for all probability densities p and densities q with 0 < d2H(p, q) < ϵbP (p/q)

b,

K(p; q) ≲ d2H(p, q)

(
1 +

1

b
log− dH(p, q) +

1

b
log+ P

(
p

q

)b
)

+ 1−Q(X),

V2(p; q) ≲ d2H(p, q)

(
1 +

1

b
log− dH(p, q) +

1

b
log+ P

(
p

q

)b
)2

.

Furthermore, for every pair of probability densities p and q and any 0 < ϵ < 0.4,

K(p; q) ≤ d2H(p, q)
(
1 + 2 log− ϵ

)
+ 2P

[(
log

p

q

)
I{q/p ≤ ϵ}

]
,

V2(p; q) ≤ d2H(p, q)
(
12 + 2 log2− ϵ

)
+ 8P

[(
log

p

q

)2

I{q/p ≤ ϵ}

]
.

Consequently, for every pair of probability densities p and q,

K(p; q) ≲ d2H(p, q)

(
1 + log

∥∥∥∥pq
∥∥∥∥
∞

)
≤ 2d2H(p, q)

∥∥∥∥pq
∥∥∥∥
∞
,

V2(p; q) ≲ d2H(p, q)

(
1 + log

∥∥∥∥pq
∥∥∥∥
∞

)2

≤ 2d2H(p, q)

∥∥∥∥pq
∥∥∥∥
∞
.
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Algorithm 4 A Monte Carlo algorithm for evaluating Q̃ω,t(s,Ai) at t

Input: The parametric function ft−1,i(s; β̂t−1,i).
Initialization: Let s0 = s, a0 = Ai, h = 0, and q = r(s0, Ai)
while TRUE do

Generate U ∼ unif[0, 1].
if U < 1− γ then

Break.
else

Sample sh ∼ Pt(· | sh−1, ah−1).
Solve

πt(sh) = argmax
p′∈∆(A)

{
m∑
i=1

ft−1,i(s; β̂t−1,i)p
′
i −

1

ηt
ω(p′)

}
(64)

Generate ah ∼ πt(sh).
q = q + r(sh, ah).
h = h+ 1.

end if
end while
Let Q̂πt

Pt
(s,Ai) := q.

Let Q̃ω,t(s,Ai) := Q̂πt

Pt
(s,Ai) +

1
ηt
∇ω (πt(s))i

Algorithm 5 A Monte Carlo algorithm for evaluating Q̃ω,t(s, a) for the continuous-action settings

Input: The parametric function ft−1(s, a; β̂t−1).
Initialization: Let s0 = s, a0 = a, h = 0, and q = r(s0, a0)
while TRUE do

Generate U ∼ unif[0, 1].
if U < 1− γ then

Break.
else

Sample sh ∼ Pt(· | sh−1, ah−1).
Solve

πt(sh) = argmax
a′∈A

{
ft−1(s, a

′; β̂t−1)−
1

ηt
ω(a′)

}
(65)

Generate ah ∼ πt(sh).
q = q + r(sh, ah).
h = h+ 1.

end if
end while
Let Q̂πt

Pt
(s, a) := q.

Let Q̃ω,t(s, a) := Q̂πt

Pt
(s, a) + 1

ηt
∇ω (πt(s))i

G SUPPORTING ALGORITHMS

Monte Carlo algorithms 4, 5 for evaluating Q̃ω,t(s,Ai) at t for each i = 1, ...,m and Q̃ω,t(s, a) are
provided.

H ADDITIONAL RESULTS AND DETAILS FOR THE NUMERICAL STUDIES

H.1 SYNTHETIC DATASET: AN ILLUSTRATION

Environment and behavioral policy details For each episode that starts with an initial state s0 ∼
U(−2, 2), at time n a particle undergoes a random walk and transits according to a mixture of
Gaussian dynamics: sn+1 − sn =: ∆s ∼ ψaN (µ1,a, 0.1) + (1 − ψa)N (µ2,a, 0.1), where the
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discrete action a ∈ {−1, 0, 1} corresponds to Left, Stay, and Right, respectively. We choose the
random walk steps µ1,−1 = −2, µ2,−1 = 0, µ1,0 = µ1,1 = 0, µ2,0 = µ2,1 = 2 as known
parameters, and ψ−1 = ψ0 = 0.6, ψ1 = 0.4 as the ground truth unknown model parameters that
we estimate with expectation maximization (EM). We generate a partially covered offline dataset
collected by a biased (to the left) behavioral policy β, and define a goal-reaching reward function,
respectively given by:

β(a|s) =


0.05 a = 1,

0.05 a = 0,

0.9 a = −1,

r(s′) =


−2 −3 ≤ s′ ≤ 0,

−1.8 3 > s′ > 0,

0 s′ < −3,

0 s′ ≥ 3,

for all s ∈ R. Thus, the particle is encouraged to reach either the positive or negative terminal state
with the shortest path possible, with a slight favor towards the positive end if the particle starts off
near 0. The offline dataset contains 50 episodes, which are sufficient for an accurate estimation of
ψ−1 but may lead to misetimation of ψ0 and ψ1. Indeed, for our particular dataset, while the MLE
ψ̂−1 is accurate, ψ̂0 is underestimated and ψ̂1 is overestimated, which could make over-exploitation
of the MLE a problem.

Implementation details We implement MoMA strictly following Algorithm 2. We chooseD(·, ·)
to be KL divergence, reducing the policy improvement steps to natural policy gradient (NPG) as
mentioned in Section 4.2. We parameterize by ft,i(s, βt,i) = β⊤

t,ie(s,Ai),∀i = 1, ...,m where the
features e(s,Ai) are chosen to be exponential functions.

Contribution from pessimism: accompanying figure The accompanying figure referenced in
the study of Contribution from Pessimism in Section 7.1 is given in Figure 2.

0 10 20 30 40
Epoch

0.4

0.6

0.8

0

Model Parameter value vs Epoch

Figure 2: The estimated model parameter ψ̂0 modified by the pessimism updates. As a result,
MoMA policy shifts away from the faulty action Stay.

Hyperparameters and compute information The hyperparameters of MoMA used in the ran-
dom walk experiment are summarized in table 3. The entire run (training and evaluation) of MoMA
on a standard CPU takes less than one hour.

Table 3: Hyperparameters for the random walk experiment

Hyperparameter Value
actor steps 150
model steps 150
η 0.1
κ1 0.1
λ 3.0
MC number 300
γ 0.4
iterations 40
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H.2 CONTINUOUS ACTION D4RL BENCHMARK EXPERIMENTS

Hyperparameters and compute information The hyperparameters of MoMA used in the D4RL
experiments are summarized in Table 4. We train and evaluate MoMA on one A100 GPU for less
than 18 hours per single run.

Table 4: Hyperparameters for the D4RL experiments

Hyperparameter Value
η 3E-4
κ1 3E-4
λ 5E-5
γ 0.99

Alternative evaluation metrics As a supplement to the standard mean of evaluation scores re-
ported in Table 2, we further consider the evaluation scheme proposed in Agarwal et al. (2021).
Specifically, for our MoMA, model-based baseline MOPO, and model-free baseline CQL, we plot
the aggregate metrics including interquartile mean (IQM), mean, and optimality gap together with
95% CIs for each one of the 9 tasks in Figure 3. We also give the performance profiles of the three
algorithms based on score distributions in Figure 4.

Fill in: details and comments. specifically, in which scenarios, under which metrics is MoMA
better? Also explain a bit the metrics, i.e., higher the better or lower the better? Redo the plots after
new results of MoMA are obtained.

Figure 3: Aggregate metrics on D4RL tasks with 95% bootstrapped CIs.

33



Under review as a conference paper at ICLR 2024

Figure 4: Performance profiles based on score distributions.
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