Revolutionize drug discovery with dense PPI data
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1 Overview

Drug development is costly, and the inherent tradeoff between efficacy, safety, and developability
demands exploration of a vast sequence space to identify candidates that excel across all three
dimensions [1]]. Yet this search is limited by the absence of an appropriate foundation model.

AlphaFold [2| 3] has advanced the field, but only partially: it can show how two proteins interact
once binding occurs, but it cannot reliably predict whether they will bind in the first place [4]]. This
distinction is critical for drug discovery, where the central challenge is to design molecules that bind
strongly to a desired epitope on a target antigen while avoiding unwanted off-target interactions.
Protein language models [5 6] capture the sequence landscape, but their focus is on intrinsic properties
such as stability rather than extrinsic properties like protein—protein interactions (PPI). The field
therefore urgently needs a model that can accurately capture PPI, but existing datasets are too sparse
[7] or too small 8] to support training at scale. A schematic illustrating the difference between sparse
and dense PPI data is shown in Fig.

We propose a solution to a fundamental challenge in drug discovery by creating a new kind of dataset:
a dense PPI dataset, which can be produced rapidly, at scale, and at a low cost. Instead of sparse,
memorization-prone data from natural protein pairs, our dense datasets will systematically sample
millions of mutated protein pairs. This isn’t just more data; it’s a new way of thinking. Our dense
datasets will enable the training of a PPI-specific foundation model that can learn the transferable
physics of PPIs and explore a much larger, interaction-aware sequence landscape. By making such
exploration possible, the model could help overcome the long-standing tradeoffs between efficacy,
developability, and safety, ultimately transforming drug development.

2 Al task definition

We frame the problem as a prediction task. In protein design, sequence generation faces the
fundamental challenge of lacking a ground-truth oracle, so benchmarking relies on indirect metrics
such as recovery rate, diversity, or surrogate model scores, which are intrinsically biased [9]. A
model with 100 percent recovery is not necessarily better, and very high diversity does not guarantee
quality. The only fair and informative way to evaluate generation is through prospective experiments,
but these are slow, costly, and introduce bias if reused for newer models. In contrast, a supervised
prediction task relies on fixed held-out labels and standard metrics, enabling clear and reproducible
comparisons without additional experiments.
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Task. Given the amino acid sequences of two proteins, for example an antibody and its antigen,
predict their binding affinity.

3 Dataset Rationale

Existing high-throughput PPI resources such as STRING [7] provide valuable breadth but are too
sparse to support learning transferable interaction physics. These datasets largely reflect natural
proteins paired with their native partners, offering limited signal for model training. A natural protein
typically interacts with only a few partners, and even those can differ substantially by binding to
different sites. As a result, the data is inherently sparse. In the extreme case where a protein binds
to only one partner, a model can appear to perform well by simply memorizing that sequence
rather than learning the underlying physics of protein—protein interactions. Binding affinity
measurements from such pairs thus contribute little to generalizable models, as the learning signal is
dominated by pair-specific identity rather than transferable interaction principles.

In contrast, dense PPI datasets systematically sample large mutational neighborhoods around a given
protein—protein pair, generating millions of related variants. Many mutations are benign and cause
little change to the protein, but some, even a single substitution, can alter affinity by hundreds of
folds and lead to unwanted, disease-causing interactions [10]. Dense PPI forces models to go beyond
memorizing pair identities and instead learn how sequence variation affects binding affinity. Such
datasets provide the foundation for building generalizable models of protein—protein interactions,
enabling more accurate affinity prediction and better modeling of the interaction-aware protein
sequence landscape. This is essential for drug design, since the therapeutic value of a molecule lies
not only in its intrinsic properties, but also in how it influences other proteins.

Because existing dense PPI data is so limited, no model can yet accurately predict binding affinity
between two proteins [11}[12]. AlphaFold’s confidence score and certain force fields show some
correlation with affinity, but the signal is not strong enough to support efficient exploration of large
sequence spaces. Training on dense PPI data could bridge this gap and deliver the long-awaited
capability for affinity prediction. As an added benefit, it may also enhance complex structure
prediction by providing a new data source, in the same way that sequence databases improved
structural modeling through multiple sequence alignments, since affinity and structure are inherently
intertwined.

4 Data Creation Pathway

The dataset will be created through new experiments. A non-profit can coordinate generation and
make the data openly available, prioritizing protein pairs of broad community interest. A common
protocol is desirable, although strict standardization is not essential because supervision relies
primarily on intra-assay comparisons among variants of the same pair.

Data Modality and Resolution We will combine fluorescence-activated cell sorting (FACS) with
long-read sequencing. Both are mature, widely accessible techniques. Libraries will introduce
variation in both proteins using random mutagenesis and designed combinatorial schemes. We can
build libraries on the order of 10® variants. Each FACS plus sequencing round can yield about 107
reads and ~ 106 labeled data points. In analyses of comparable assays [13]], technical repeats achieve
Spearman correlation > 0.8, indicating reliable resolution for learning.

Cost and Scalability Generating approximately 106 labeled data points is estimated to cost about
$1,000. The workflow relies on standard molecular biology and flow cytometry, with no specialized
technical barriers to scaling. As experimental volume grows, the cost per million data could drop
further, potentially to only a few hundred dollars. By running thousands of FACS sorting experiments
across hundreds of unique protein-protein pairs, we aim to accumulate at least 10° labeled data points,
sufficient to train PPI foundation models that can efficiently explore the interaction-aware sequence
space. Each data point consists of two protein sequences paired with an affinity value inferred from
sequencing results. The total cost for generating 10° labeled data points is expected to be within a
few million dollars.



5 Expected Impact

A robust interaction-aware foundation model trained on dense PPI data could revolutionize therapeutic
drug discovery (antibodies, peptides, etc.), from hit generation to lead optimization, while also
advancing virtual-cell modeling [14] by linking sequence, interaction, and phenotype. Beyond drug
development, such a resource would enable efficient design of interacting proteins and provide
mechanistic insights into cellular pathways and protein function. Ultimately, these capabilities could
reshape drug discovery, diagnostics, synthetic biology, and the life sciences more broadly.
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Figure 1: Comparison of sparse versus dense protein—protein interaction (PPI) datasets. Sparse
datasets, such as those derived from natural PPIs, provide limited interaction information. Because
each protein pair is typically unrelated to the others, models tend to memorize protein-pair identities
rather than learn the underlying physics of interaction. In contrast, dense datasets systematically vary
both partners, forcing models to learn mutational effects. This signal is more transferable and enables
the training of generalizable models that capture the principles of protein—protein interactions.
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