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Abstract. Uncertainty Quantification (UQ) is essential for enhancing
the trustworthiness of Deep Learning (DL) models in high-stakes med-
ical imaging applications. Monte Carlo Dropout (MCD) remains one of
the most widely used and foundational approaches for UQ, often serv-
ing as a baseline in comparative studies. In this work, we systematically
evaluate MCD in the context of DL-assisted glioma diagnosis, focusing
on a less-explored yet clinically relevant multi-task setting that combines
glioma subtyping and segmentation. We investigate how key parameters
of MCD, namely the number of MC samples and the dropout rate, may
affect the quality of uncertainty estimates. Additionally, we disentangle
epistemic and aleatoric uncertainty components to gain deeper under-
standing of model confidence. The results demonstrate that, when ap-
propriately tuned, MCD produces well-calibrated uncertainty estimates.
The segmentation task was primarily influenced by epistemic uncertainty,
whereas aleatoric uncertainty constituted the main source of uncertainty
in all classification tasks.

Keywords: Uncertainty quantification - Monte Carlo Dropout - Mag-
netic Resonance Imaging - Glioma

1 Introduction

Gliomas are among the most aggressive brain tumors, with high morbidity and
mortality worldwide [14]. The World’s Health Organization (WHO) classification
standards incorporate molecular markers such as isocitrate dehydrogenase (IDH)
mutation status and 1p19q co-deletion [11]. These features, together with tumor
grade, provide crucial information on tumor biology and patient prognosis.
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Accurate tumor segmentation in brain magnetic resonance imaging (MRI)
is also essential for treatment planning and patient monitoring [12]. Concur-
rently, DL methods have enabled automatic prediction of IDH mutation, 1p19q
co-deletion and tumor grade from imaging data with promising performance
[3,9]. Multi-task learning frameworks have shown strong potential in clinical
applications, often outperforming single-task models. For instance, authors in
[24] improved breast tumor classification using a multi-task approach combining
segmentation and classification from ultrasound images, while the study in [10]
achieved better results for brain tumor diagnosis through joint segmentation and
classification of gliomas, meningiomas, and pituitary tumors. Similarly, in [23], a
multi-task model was proposed to segment gliomas and classify their molecular
features and grade, demonstrating promising performance but struggling with
1p19q co-deletion and grade 3 prediction.

Nonetheless, the analysis of uncertainty in multi-task applications remains
limited. The study in [23] noted the absence of uncertainty estimates and em-
phasized the importance of including and rigorously evaluating them. Addressing
this gap is crucial since multi-task learning introduces challenges such as shared
representations and heterogeneous uncertainty sources, making reliable uncer-
tainty estimation essential for trustworthy clinical decision-making.

In this work, we build upon the multi-task framework from [23], which jointly
performs glioma segmentation and subtyping. We extend it by including UQ us-
ing Monte Carlo Dropout (MCD) [6]. Our study aims to systematically evaluate
how key MCD parameters, namely the number of MC samples and the dropout
rate, affect the quality of uncertainty estimates in this medical application. Ad-
ditionally, we disentangle epistemic and aleatoric uncertainty to (i) determine
which source dominates in each task and (ii) examine how each is influenced by
these parameters.

2 Materials and Methods

2.1 Uncertainty Quantification with Monte Carlo Dropout

Let N be a neural network with weights W. In MCD, Bayesian inference is
approximated by applying dropout at rate p at train time, and then performing 7'
stochastic forward passes with the same dropout rate enabled at test time. Given
some training data D and a new input x*, each forward pass samples a different
set of network weights W, yielding a collection of predictions {p(y*|z*, W)} ;.
The predictive distribution is then approximated by [6]:

T
p(y*|z*, D) Z py*|z*, Wy). (1)

The total predictive uncertainty can be quantified by computing the entropy of
this predictive distribution [5, 21]:
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where ¢ corresponds to the number of classes for the classification task.

The predictive uncertainty can be decomposed into two components. The aleatoric
uncertainty, representing the inherent noise in the data, is estimated by averaging
the entropy of the predictive distribution from all ¢ samples [5, 21]:

T

1 * * * *
Ualeatoric = T Z <_Zp(y =cC | x 7Wt)10gp<y =cC | T 7Wt)> . (3>

t=1

The epistemic uncertainty describes the uncertainty coming from the model
parameters. It is computed as the difference between the predictive and aleatoric
components [5, 21]:

T
Vs = (5 Tt ) - (Laoer ). @
t=1 c c

where p. represents the mean predicted probability for class ¢ across T stochastic
forward passes, and p; . describes the class c probability at step ¢.

2.2 Monte Carlo Dropout Evaluation

Multi-task subtyping framework: Asshown in figure 1, the pipeline operates
on four pre-operative structural MRI modalities: T1-weighted (T1w), contrast-
enhanced T1l-weighted (T1wCE), T2-weighted (T2w), and T2-weighted fluid-
attenuated inversion recovery (FLAIR). It includes a preprocessing module, an
encoder-decoder network [23] inspired by the U-net [17] for tumor segmentation,
and a classification branch composed of fully connected layers for the final tumor
suptying. The latter uses imaging features extracted from several resolution levels
of the segmentation pathway, and predicts the IDH status (wildtype, mutated),
1p19q co-deletion status (intact, co-deleted), and tumor grade (2, 3, and 4).

The model was trained and tested in a collection of both in-house data and
six publicly available datasets of adult-type glioma patients, including BraTS [1,
2,13], REMBRANDT [18], IvyGAP [20], CPTAC-GBM |[4], TCGA-GBM [19]
and TCGA-LGG [16]. Further information about the data and architecture im-
plementation are provided as supplementary material.

Evaluation Experiments: We performed a systematic evaluation of MCD,
varying the dropout rate p and the number of MC samples t. Specifically, we
explored values of p between 0.2 and 0.6 in increments of 0.05, and values of ¢
from 10 to 100 in steps of 10. These ranges were selected to analyze the effect of
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Fig. 1. Overview of the multi-task glioma subtyping framework with UQ. The in-
put scans are preprocessed by means of registration, bias field correction and skull-
stripping, followed by a DL model that performs both segmentation and tumor sub-
typing. For each of the tasks, the predictive (PU), aleatoric (AU) and epistemic un-
certainty (EU) are computed. In the segmentation task, a case-level uncertainty score
is computed by averaging the values of the uncertainty map comprised by either the
brain mask or the tumor mask predicted by the MCD model.

both parameters in a wide spectrum, covering both moderate and higher values,
and considering theoretical and empirical insights from the literature [6, 8, 22].

Importantly, we interpret the dropout rate as the probability of dropping out
units, meaning that higher rates reduce the network predictive capacity more
aggresively. Too low a dropout rate may lead to underestimation of uncertainty,
while excessively high values can harm predictive stability or lead to underfit-
ting. The upper bound of 0.6 is chosen such that even with aggressive dropout,
sufficient model capacity is retained without requiring network width scaling.
Likewise, the number of MC samples influences the fidelity of uncertainty es-
timates: too few may yield unstable approximations, but there is an optimal
value where the predictive distribution is approximate enough to the theoretical
Bayesian posterior.

Uncertainty quality in classification tasks was assessed using Expected Cal-
ibration Error (ECE) and Negative Log-Likelihood (NLL). ECE quantifies how
well predicted probabilities align with actual outcome frequencies, while NLL
penalizes confident but incorrect predictions, capturing both accuracy and cal-
ibration aspects. In addition, we computed the Receiver Operating Character-
istic Area Under the Curve (ROC-AUC) to contrast uncertainty estimates with
model accuracy, providing an alternative view of how uncertainty correlates with
predictive performance. In the segmentation task, the quality of the uncertainty
estimates was evaluated using the Pearson correlation coefficient p between case-
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level uncertainty scores and the Dice Similarity Coefficient (DSC). This analysis
was based on the assumption that higher uncertainty should generally be asso-
ciated with lower segmentation accuracy, resulting in a negative p.

To derive the case-level uncertainty, we averaged voxel-wise uncertainty val-
ues with two aggregation methods: the average value within the whole brain
(generated with HD-BET [7]) and the tumor region predicted by the MCD
model. While focusing on the tumor localizes uncertainty to clinically relevant
areas, it may neglect broader anatomical or contextual details. In contrast, aver-
aging across the entire brain incorporates global information but may dilute the
focus on the target structure. Therefore, this setting allowed us to investigate
quantitatively which region yielded more informative uncertainty estimates.

3 Results

3.1 Effect of the number of Monte Carlo samples and dropout rate

As shown in Figure 2, uncertainty values stabilized consistently across all tasks
once the number of MC samples exceeds 20-30. Increasing dropout rates gener-
ally led to proportional increases in predictive and aleatoric uncertainties. Epis-
temic uncertainty followed this trend up to a dropout rate of 0.5, after which it
peaked at 0.55 and slightly declined at 0.6.

For the IDH and 1pl19q prediction tasks, both predictive and aleatoric un-
certainties rose with dropout rate, with some decrease at higher rates (between
0.55-0.6). In the tumor grade prediction, the same trend was observed, although
epistemic uncertainty reached its highest value at 0.55. In the tumor segmenta-
tion, all types of uncertainty increased comnsistently with dropout rate and the
epistemic component was the main contributor to the total uncertainty. Con-
versely, aleatoric uncertainty dominated in all the tumor subtyping tasks.

3.2 Calibration of uncertainty estimates

Based on the findings from figure 2, we chose 30 as the optimal ¢ value, since
it was the point where stabilization was most consistently achieved throughout
the tasks. Figure 3 summarizes calibration of the uncertainty estimates and
predictive accuracy across classification tasks. For the IDH prediction, both ECE
and NLL reached their lowest values at dropout 0.25, with subtle fluctuations
between 0.2 and 0.4 and then a steady increase thereafter. ROC-AUC was highest
at 0.2 and generally declined as dropout increased. In the 1p19q prediction, ECE
and NLL were minimized at 0.2 and generally rose with higher dropout rates.
ROC-AUC followed a similar decreasing pattern. For the tumor grade prediction,
ECE was lowest at 0.25 and gradually increased with dropout, while NLL rose
consistently. ROC-AUC also showed a decreasing trend for dropout rates higher
than 0.35. In the IDH and 1p19q predictions, the confidence intervals for the
ECE were the narrowest at the dropout rate where it was minimized.

Figure 4 presents the uncertainty quality analysis for the segmentation case.
In the brain mask-based approach, correlation values ranged from -0.1 to slighly
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Fig. 2. Predictive, aleatoric and epistemic uncertainty values accross all tasks as a
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Fig. 3. ECE, NLL and ROC-AUC values as a function of dropout rate p. For each
point, a 95% confidence interval is presented. This interval was obtained by 1000x
bootstrap resampling of the test set.

above 0.2, with stronger negative values observed at dropout rates of 0.2, 0.25,
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Fig. 4. Pearson correlation coefficient p between the segmentation case-level total un-
certainty score and the Dice Similarity Coefficient DSC. The correlation is presented
as a function of the number of MC samples ¢t and dropout rates p with two different
voxel-wise uncertainty score aggregation methods: (a) using a brain mask and (b) us-
ing the tumor mask predicted by the MCD model. (¢) DSC between the prediction of
different MCD models on the test set with varying number of MC samples ¢.

and 0.6. Conversely, in the tumor mask-based approach, the correlation scores
spanned from -0.55 to -0.15, which indicated stronger inverse relationship be-
tween the DSC and the uncertainty estimates. The most negative values were
found at dropout rates of 0.25, 0.3, and 0.6. Despite the high negative correlation
at dropout rate of 0.6 in both settings, it was noted that the average DSC of
the MCD model on the test set was lower than those at moderate dropout rates
such as 0.2, 0.25 and 0.3.

Our evaluation of the uncertainty estimates across tasks and metrics demon-
strated that the MCD model with a dropout rate of 0.25 offered the best trade-off
between predictive performance and uncertainty calibration, and was therefore
selected as the optimal configuration. Figure 5 further highlights the model’s
ability to produce calibrated uncertainty scores, where low quality predictions
consistenly exhibit higher uncertainty in all tasks.

4 Discussion

In this work, we systematically evaluated the effect of Monte Carlo sample size
and dropout rate on uncertainty estimates in a multi-task DL framework for
glioma segmentation and subtyping. Uncertainty values consistently stabilized
after 20-30 samples across all tasks, with no apparent variability between classi-
fication and segmentation. Increasing the dropout rate led to higher uncertainty
estimates. This is in line with the MCD theory, where higher dropout injects
greater variability into the network during test-time sampling, effectively broad-
ening the variational posterior used to approximate the true weight distribution,
and thus giving place to higher uncertainty values.

Minor deviations, such as some cases with higher epistemic uncertainty at
dropout 0.55 compared to 0.6, reflect instability of the model in the high dropout
regime, where it may begin to underfit or behave erratically due to excessive reg-
ularization. This is potentially exacerbated by limited supervision, especially in
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Fig. 5. Violin plots of the total uncertainty across different tasks, comparing the dis-
tributions of high quality (light green) and low quality (light blue) predictions. For the
classification tasks (IDH, 1p19q and tumor grade), high and low quality predictions
correspond to correctly and incorrectly classified cases, respectively. For the segmen-
tation task, high and low quality predictions represent cases with DSC > 0.8 and
DSC < 0.8, respectively. The label p < 0.05 indicates that the distributions were
found to be significantly different under Mann-Whitney U test.

the 1p19q and grade prediction tasks. Furthermore, aleatoric uncertainty dom-
inated in classification tasks, indicating data-driven ambiguity, which may be
amplified by label noise due to human error. These findings agree with current
discussions in neuro-oncology, where it has been noted that some tumor features,
such as the grade, can be very flexible given that there are no strict thresholds
to define it [15]. Epistemic uncertainty was more prominent in the segmentation
task, which may be attributed to the variability in tumor presentation across
patients, including differences in size, shape, and intensity profiles, making gen-
eralization more difficult.

The calibration results revealed distinct patterns across tasks that can be
interpreted in light of both the nature of each metric and the available training
data. ECE was lowest at dropout 0.25 for IDH and grade, and at 0.2 for 1p19q,
indicating better calibration at moderate dropout levels. These dropout rates
likely strike a balance between model stochasticity and stability, especially rele-
vant in low-data regimes. In contrast, NLL increased consistently across dropout
rates in all tasks, which relates to how it penalizes incorrect and overconfident
predictions. Higher dropout rates introduce greater variability and reduce predic-
tion confidence, thereby lowering the average predictive likelihood and resulting
in elevated NLL values.

The decrease in ROC-AUC with increasing dropout rates corresponds with
rising NLL and ECE values, indicating that higher uncertainty and poorer cali-
bration negatively impact the model’s discriminative performance. This suggests
that while moderate dropout improves both calibration and accuracy, excessive
dropout leads to less confident predictions and reduced predictive reliability.
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In the segmentation task, the tumor mask-based uncertainty showed a clear
negative correlation with the DSC, which aligns with theoretical expectations:
higher uncertainty should correspond to poorer segmentation performance. Such
an inverse relationship was stronger than in the brain mask-based approach,
where correlations fluctuated around zero. This could be due to the fact that
in most of the brain area the model is generally certain about it not being
a tumor, thus resulting in a very low case-level score. Future work could be
directed towards exploring alternative voxel-wise uncertainty score aggregation
methods that consider false positive and false negative cases.

In general, higher dropout corresponded to lower quality in the uncertainty
estimates for the tumor segmentation. Nonetheless, instability of the model was
also observed in the high dropout regime. Although the uncertainty estimates
had a negative correlation with the DSC at dropout of 0.6, the average DSC on
the test set was lower than those at moderate dropout, indicating lower practical
value of uncertainty estimates when derived from an erratic model.

In this work, we extended a multi-task DL-based framework for glioma sub-
typing by integrating and systematically evaluating Monte Carlo Dropout for
Uncertainty Quantification. Our analysis revealed that the dropout rate plays
a more critical role than the number of MC samples in determining the quality
of uncertainty estimates across all tasks. Notably, we demonstrated that, when
properly tuned, Monte Carlo Dropout yields well-calibrated predictive uncer-
tainty, thereby effectively enhancing model interpretability and trustworthiness.
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