

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VAT-KG: KNOWLEDGE-INTENSIVE MULTIMODAL KNOWLEDGE GRAPH DATASET FOR RETRIEVAL- AUGMENTED GENERATION

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Multimodal Knowledge Graphs (MMKGs), which represent explicit knowledge
014 across multiple modalities, play a pivotal role by complementing the implicit
015 knowledge of Multimodal Large Language Models (MLLMs) and enabling more
016 grounded reasoning via Retrieval Augmented Generation (RAG). However, existing
017 MMKGs are generally limited in scope: they are often constructed by augmenting
018 pre-existing knowledge graphs, which restricts their knowledge, resulting in
019 outdated or incomplete knowledge coverage, and they often support only a narrow
020 range of modalities, such as text and visual information. These limitations re-
021 strict applicability to multimodal tasks, particularly as recent MLLMs adopt richer
022 modalities like video and audio. Therefore, we propose the Visual-Audio-Text
023 Knowledge Graph (VAT-KG), the first concept-centric and knowledge-intensive
024 multimodal knowledge graph that covers visual, audio, and text information, where
025 each triplet is linked to multimodal data and enriched with detailed descriptions of
026 concepts. Specifically, our construction pipeline ensures cross-modal knowledge
027 alignment between multimodal data and fine-grained semantics through a series
028 of stringent filtering and alignment steps, enabling the automatic generation of
029 MMKGs from any multimodal dataset. We further introduce a novel multimodal
030 RAG framework that retrieves detailed concept-level knowledge in response to
031 queries from arbitrary modalities. Experiments on question answering tasks across
032 various modalities demonstrate the effectiveness of VAT-KG in supporting MLLMs,
033 highlighting its practical value in unifying and leveraging multimodal knowledge.

034 1 INTRODUCTION

035 Multimodal Knowledge Graphs (MMKGs) integrate heterogeneous data into a unified graph re-
036 presentation, supporting tasks such as retrieval Alberts et al. (2021); Zeng et al. (2023), reasoning Zhang
037 et al. (2023c); Gong et al. (2024), and question answering Zha et al. (2024). Recent works Zha et al.
038 (2024); Lee et al. (2024); Liu et al. (2025) have proposed Retrieval Augmented Generation (RAG)
039 based approaches that leverage explicit knowledge structures from MMKGs to reduce hallucination
040 in Multimodal Large Language Models (MLLMs). As shown in the upper part of Fig. 1, MLLMs
041 often fail to produce an accurate response in the knowledge-intensive scenario requiring fine-grained
042 facts, highlighting the need for external structured knowledge. Moreover, existing MMKG-based
043 RAG methods are limited to narrow modality pairs (*e.g.* image-text), and thus are not well-suited for
044 recent MLLMs designed for joint understanding of video, audio, and text Liu et al. (2023); Zhang
045 et al. (2023a); Tang et al. (2023); Hong et al. (2023).

046 The limitations of existing MMKGs are illustrated in Fig. 1. As shown in part (a), although some
047 MMKGs Wang et al. (2023) cover multiple modalities, they primarily focus on entity-to-entity
048 connectivity and do not organize knowledge around individual concepts. For example, in the upper
049 part of Fig. 1, simple triplets such as (quokka; RelatedTo; australia) or (quokka;
050 IsA; mammal) would fail to provide detailed knowledge about the concept. In part (b), a few
051 MMKGs Zha et al. (2024); Lee et al. (2023) adopt a concept-centric structure, where entities are
052 enriched with concept-level descriptions capturing their meaning and context. However, they support
053 only two modalities—image and text—which makes them insufficient for recent MLLMs designed to
jointly understand video, audio, and text.

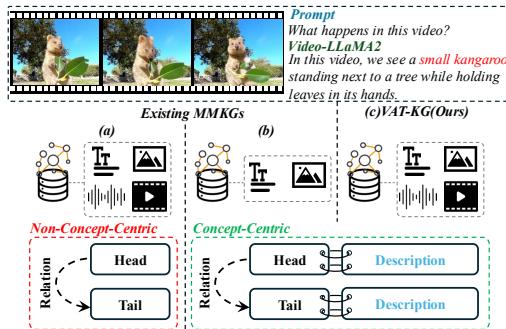


Figure 1: **Comparison with Existing MMKGs.** (a) A non-concept-centric case involving various modalities. (b) Concept-centric case with limited modalities. (c) Our proposed VAT-KG, which is concept-centric and covers four modalities.

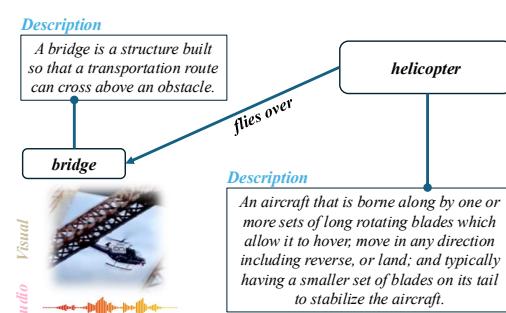


Figure 2: **Example triplet in VAT-KG.** A multimodal triplet from VAT-KG, composed of video, audio, and text. Each head and tail is linked to a detailed concept-level description.

To address these limitations of existing MMKGs, we present the Visual-Audio-Text Knowledge Graph (**VAT-KG**), the first concept-centric and knowledge-intensive multimodal knowledge graph dataset that covers visual, audio, and text, designed to provide explicit cross-modal knowledge to MLLMs. Our VAT-KG construction begins with a multimodal corpus comprising video, audio, and text, and follows a four-step pipeline. First, we perform **(1) Multimodal Alignment Filtering** to assure correspondence between modalities within the multimodal corpus. This step makes it possible to incorporate even those corpora lacking robust multimodal correlations into the construction of VAT-KG. Following alignment, we implement **(2) Knowledge-Intensive Recaptioning** and **(3) Multimodal Triplet Grounding** to extract knowledge-intensive triplets from textual data, leveraging advanced LLM. Finally, a **(4) Cross-Modal Description Alignment** step matches the multimodal concepts within the triplets to detailed descriptions crawled from diverse knowledge bases.

As illustrated in Fig. 2, VAT-KG links each concept to detailed descriptions and organizes its relations as multimodal triplets. This design of VAT-KG plays a pivotal role in multimodal RAG, as it enables the retrieval of detailed descriptions in response to queries from arbitrary modalities. To support this, we additionally introduce a multimodal RAG framework that leverages VAT-KG’s concept-centric and multimodal structure to retrieve detailed descriptions in response to queries from arbitrary modalities. Experimental results on question answering tasks across various modalities demonstrate that incorporating VAT-KG into the RAG pipeline leads to substantial and consistent performance gains, significantly boosting the capabilities of MLLMs in handling complex multimodal inputs.

Our contributions are summarized as follows:

- To the best of our knowledge, we present the first knowledge-intensive and concept-centric multimodal knowledge graph covering visual, audio, and text modalities, enriched with detailed descriptions of each concept.
- We introduce an effective pipeline for constructing multimodal knowledge graphs from arbitrary multimodal corpora, ensuring cross-modal alignment between data and fine-grained knowledge through rigorous filtering and alignment steps.
- We propose a multimodal RAG framework that retrieves semantically relevant knowledge in response to queries from arbitrary modalities and refines it using a Retrieval Checker module that filters out misaligned results.
- We demonstrate the effectiveness of VAT-KG with our Multimodal RAG framework, achieving consistent performance gains on Audio QA (AQA), Video QA (VQA), and Audio-Visual QA (AVQA), highlighting its utility in real-world multimodal scenarios.

2 RELATED WORKS

2.1 MULTIMODAL KNOWLEDGE GRAPH CONSTRUCTION

Multimodal knowledge graphs (MMKGs) have gained attention for semantically bridging text, image, audio, and video data to support cognitive understanding across modalities. A notable example is

108 Table 1: Overview of notable Multimodal Knowledge Graph (MMKG) constructions.
109

110	Dataset	Year	Modality				Concept centric	Downstream task	Data source
			Text	Image	Audio	Video			
111	IMGpedia Ferrada et al. (2017)	2017	✓	✓	✗	✗	✗	Link-prediction	Wikimedia Commons, DBpedia
112	ImageGraph Liu et al. (2017)	2017	✓	✓	✗	✗	✗	Local Ranking	FB15k
113	MMKG Liu et al. (2019)	2019	✓	✓	✗	✗	✗	Link-prediction, Reasoning	FB15k, DB15k, YAGO15k, Search Engine
114	Richpedia Wang et al. (2020)	2020	✓	✓	✗	✗	✗	Retrieval	Wikidata, Wikimedia, Search Engine
115	VisualSem Alberts et al. (2021)	2020	✓	✓	✗	✗	✗	Retrieval	BabelNet
116	MarKG Zhang et al. (2022)	2023	✓	✓	✗	✗	✗	Link-prediction, Reasoning	Wikipedia, Search Engine
117	AspectMMKG Zhang et al. (2023b)	2023	✓	✓	✗	✗	✗	Entity aspect linking	Wikipedia, Search Engine
118	VTKG Lee et al. (2023)	2023	✓	✓	✗	✗	✓	Link-prediction	ConceptNet, WordNet
119	TIVA-KG Wang et al. (2023)	2023	✓	✓	✓	✓	✗	Link-prediction	Wikipedia, Search Engine
120	UKnow Gong et al. (2024)	2024	✓	✓	✗	✗	✗	Reasoning, Retrieval	Wikipedia, News
121	M ² ConceptBase Zha et al. (2024)	2024	✓	✓	✗	✗	✓	VQA	Image-text Corpora, Encyclopedia, LLM
122	VAT-KG	2025	✓	✓	✓	✓	✓	AQA, VQA, AVQA	Video-Audio-Text Corpora, Encyclopedia, LLM

119 MMKG Liu et al. (2019), which aligns three knowledge graphs across FB15K Bordes et al. (2013),
120 DBpedia Auer et al. (2007), and YAGO Suchanek et al. (2007), enriching each entity with images and
121 numerical attributes to support multi-relational link prediction and entity matching. As summarized
122 in Tab. 1, recent studies have effectively leveraged visual information for multimodal reasoning,
123 enriching semantic representations and broadening knowledge coverage. Richpedia Wang et al.
124 (2020) and VisualSem Alberts et al. (2021) aim to establish high-quality multimodal knowledge
125 graphs by retrieving and filtering relevant visual and textual data. In addition, MarKG Zhang et al.
126 (2022) transfers MMKGs to analogical reasoning by constructing a multimodal benchmark grounded
127 in cross-modal relational patterns. Despite recent advances, MMKGs fall short of comprehending
128 entities holistically, as they often rely on narrowly scoped perspectives and overlook the diverse
129 attributes of entities. To tackle these problems, AspectMMKG Zhang et al. (2023b) designs the
130 first aspect-aware multimodal KG, linking entities to multiple aspect-specific images to capture
131 fine-grained semantic facets of each entity. VTKG Lee et al. (2023) attaches visual context to
132 both entities and relational triples while providing textual descriptions for each entity and relation.
133 TIVA-KG Wang et al. (2023) uniquely grounds multimodal data (*i.e.*, text, image, video, audio) at the
134 triple level to capture complex relations beyond simple entity-media links. UKnow Gong et al. (2024)
135 integrates entity- and concept-level knowledge from images and text under one framework, enabling
136 unified cross-modal reasoning beyond image-text pair corpora. Recently, M²ConceptBase Zha et al.
137 (2024) is to provide a concept-centric multimodal knowledge base designed for fine-grained alignment
138 between visual content and semantic concepts.

139 2.2 MULTIMODAL LARGE LANGUAGE MODEL

140 Recent advances in Multimodal Large Language Models (MLLMs) have proven that general-purpose
141 reasoning capabilities can be grounded beyond language, leveraging visual, auditory, and spatial
142 modalities in various open-ended tasks (*e.g.*, Visual Question Answering, Image Captioning, among
143 others). Early models such as Flamingo Alayrac et al. (2022) and BLIP-2 Li et al. (2023b) pioneered
144 connecting frozen LLMs with vision encoders, laying the groundwork for multimodal reasoning.
145 Scaling efforts from LLAVA Liu et al. (2023) to GPT-4V Achiam et al. (2023) further advanced
146 generalist visual understanding through large-scale pre-training and instruction tuning. Beyond vision,
147 SALMONN Tang et al. (2023) incorporates audio inputs into an LLM by integrating speech and sound
148 encoders, allowing the model to handle speech recognition, auditory question answering, and music
149 understanding within one framework. For audio-visual understanding, Video-LLaMA Zhang et al.
150 (2023a) and its successor Video-LLaMA2 Cheng et al. (2024) incorporated temporal vision features
151 and audio cues, using a Video-Q-Former together with an ImageBind-based Girdhar et al. (2023)
152 Audio-Q-Former. Most recently, Qwen2.5-Omni Xu et al. (2025) exemplifies strong omni-input
153 reasoning, showcasing the shift toward models capable of seamlessly handling diverse modalities.

154 3 DATASET CONSTRUCTION METHOD

155 In this section, we provide a detailed explanation of how VAT-KG is constructed, along with key
156 statistics highlighting its quality. Sec. 3.1 outlines our four-step construction pipeline, while Sec. 3.2
157 presents detailed statistics. The overall construction process is illustrated in Fig. 3. Additional
158 implementation details for VAT-KG construction are provided in Appendix C.1.

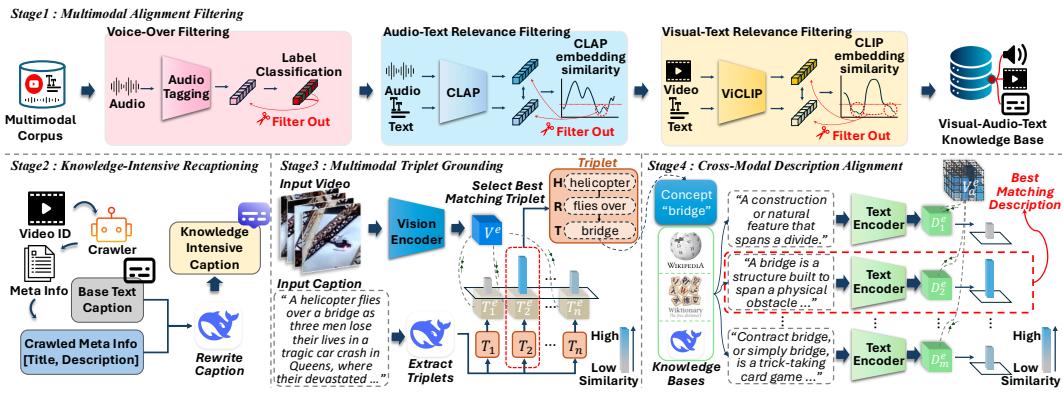


Figure 3: **An overview of the VAT-KG construction pipeline.** The construction of VAT-KG involves four stages: (1) Multimodal Alignment Filtering, ensuring correlation across modalities; (2) Knowledge-Intensive Recaptioning, which transforms base text into rich, knowledge-intensive caption based on meta information; (3) Multimodal Triplet Grounding, which aligns triplets with corresponding multimodal context; (4) Cross-Modal Description Alignment, which retrieves fine-grained descriptions from external knowledge bases and matches them to each multimodal triplet.

3.1 VAT-KG CONSTRUCTION PIPELINE

Stage 1: Multimodal Alignment Filtering Inspired by Zha et al. (2024), our multimodal knowledge graph construction begins with a multimodal corpus comprising video, audio, and text (*caption or label*). Given that our MMKG is designed such that each triplet is represented by a set of multimodal data, it is essential that all modalities are strictly aligned to a shared semantic context. Therefore, our construction of VAT-KG must begin with multimodal corpus with strong alignment between audio, visual, and textual modalities. However, while most existing multimodal datasets are constructed as video-text datasets Wang et al.; Nan et al. (2025); Bain et al. (2021), they often overlook audio-visual correlations. Although datasets used for audio classification Chen et al. (2020); Gemmeke et al. (2017) or audio-visual tasks Sun et al. (2024) typically exhibit strong correlations between audio and visual modalities, they often suffer from noise and overlook visual-textual alignment. Therefore, we designed a Multimodal Alignment Filtering stage that measures the relevance between text captions and other modalities, enabling the selection of well-aligned multimodal data. Following a similar approach to Sun et al. (2024), we first perform **Voice-over Filtering**. We use a pretrained audio tagging model Schmid et al. (2023) to predict tags of sound, and if the top-5 predictions contain both *speech* and *audio* labels, we regard the sample as an explanatory video with background music and remove it. Such data are excluded because the auditory information does not match the visual and textual modalities. Next, we perform **Audio-Text Relevance Filtering** using the off-the-shelf CLAP Wu et al. (2023) model. We extract audio and text features using CLAP and compute their cosine similarity, filtering out samples with low scores. This step removes cases where the audio does not align with the overall multimodal context—such as background music or sound effects in edited videos. Finally, to ensure consistency between video and text, we perform **Video-Text Relevance Filtering** leveraging ViCLIP Wang et al.. Following a similar approach to audio-text relevance filtering, we extract video and text features with ViCLIP and compute their cosine similarity. We then remove the bottom 10% of multimodal samples with the lowest similarity scores. After a rigorous filtering process, we extract the center frame of each video, which serves as the visual representation in VAT-KG.

Stage 2: Knowledge-Intensive Recaptioning Given curated multimodal corpora with strong cross-modal correlations, we expect the corresponding textual data to exhibit knowledge-intensive properties. Since we extract triplets from textual data using an LLM, the text must contain fine-grained details to construct knowledge-intensive MMKG. However, most existing large-scale multimodal datasets Wang et al.; Xiong et al. (2024b); Chen et al. (2024) rely on automatic captioning using MLLMs. While the generated text captions sufficiently capture the overall context, they are limited by the knowledge of the MLLMs and often omit fine-grained details, such as object-level semantics. To enrich the base text captions with knowledge-intensive content, we design a Knowledge-Intensive Recaptioning stage that leverages additional metadata (*video title and description*) crawled from

216 YouTube. During this stage, data for which such metadata could not be retrieved due to privacy
 217 restrictions or limited availability are excluded. We reconstruct the original textual data using a
 218 cutting-edge LLM Guo et al. (2025), which takes both the original text and the retrieved metadata as
 219 input and generates refined captions, guided by a carefully designed prompt. Through this process,
 220 the reconstructed text captions go beyond describing the overall context and begin to incorporate
 221 background knowledge and fine-grained semantic details. As a result, the textual data becomes
 222 significantly more knowledge-intensive and informative than the original one.

223 **Stage 3: Multimodal Triplet Grounding** Building on the knowledge-intensive captions from the
 224 previous stage, we designed the third stage leveraging LLM Guo et al. (2025) and ViCLIP Wang
 225 et al. to extract and associate fine-grained triplets with corresponding multimodal data. Extracting
 226 KG triplets from text using LLMs has been an active area of research, with studies demonstrating
 227 the effectiveness and applicability of this approach for automatic KG construction Pan et al. (2024);
 228 Zhang & Soh (2024). Inspired by these previous works, we utilize a cutting-edge LLM to generate
 229 multiple candidate triplets from each caption. In addition, motivated by prior work Brown et al. (2020)
 230 showing in-context learning, we thoughtfully design a prompt for triplet grounding that includes
 231 in-context examples. As the text caption mostly contains multiple knowledge elements, the LLM
 232 typically generates several candidate triplets for each caption. To select the triplet that best reflects
 233 the corresponding multimodal data, we leverage ViCLIP. Given n candidate triplets, we convert each
 234 triplet into a natural language sentence denoted as (T_1, T_2, \dots, T_n) by concatenating its head, relation,
 235 and tail. We then encode these sentences using ViCLIP’s text encoder to obtain their corresponding
 236 embeddings $(T_1^e, T_2^e, \dots, T_n^e)$. To determine which triplet best represents the multimodal input, we
 237 select the triplet with the highest inner product between its text embeddings and the corresponding
 238 video embedding V^e . This stage yields knowledge-intensive triplets that are best aligned with the
 239 multimodal data.

240 **Stage 4: Cross-Modal Description Alignment** In the final stage, to make our knowledge graph
 241 concept-centric, which provides detailed information for each associated concept, we crawl rich
 242 textual descriptions from multiple knowledge bases and link them to their corresponding multimodal
 243 concepts. For knowledge bases, we utilize Wikipedia, Wiktionary, and LLM (e.g. DeepSeek-R1)
 244 to mine detailed encyclopedic descriptions. Since the meaning of a single text concept may vary
 245 significantly depending on the multimodal context (e.g. concept *goal* may refer to a personal ambition
 246 or a soccer score), we collect a maximum of 5 candidate descriptions per concept from external
 247 knowledge bases. As Wikipedia and Wiktionary are manually curated with high reliability, they
 248 are prioritized as primary sources during the crawling process. While two knowledge bases offer
 249 high-quality descriptions, they do not cover all textual concepts. To compensate for this limitation,
 250 we leverage the implicit knowledge of LLM to supplement missing descriptions, ensuring that each
 251 concept contains a detailed textual explanation. After obtaining detailed descriptions for all concepts,
 252 we select the description that best matches the semantic content for each multimodal data. Following
 253 a similar approach to Zha et al. (2024), we first compute an attention-weighted video that highlights
 254 regions relevant to the given concept. Among the triplet components, the head and tail are concepts
 255 that can be visually grounded in the data. By following the formulation of Chefer et al. (2021),
 256 we can localize their corresponding regions within the video. Unlike prior work Zha et al. (2024)
 257 that matches attention-weighted images with textual descriptions, we employ ViCLIP Wang et al.
 258 to compute attention-weighted video (V_a), enabling alignment between the full video context and
 259 corresponding concepts. After deriving the attention-weighted video, we feed each frame into ViCLIP
 260 to extract video embeddings (V_a^e), and compute their similarity with the text embeddings of candidate
 261 descriptions ($D_1^e, D_2^e, \dots, D_m^e$). The description with the highest similarity is selected as the one that
 262 best matches the multimodal context.

263 3.2 DATASET SPECIFICATIONS AND STATISTICS

264 In Tab. 1, we compare existing MMKGs with our proposed VAT-KG. Unlike other MMKGs, VAT-KG
 265 is the only knowledge graph that incorporates all four modalities(text, image, audio, video) and
 266 contains triplets enriched with concept-level descriptions at the same time. This enables VAT-KG to
 267 be applied to multiple downstream tasks across different modalities.

268 We leverage four datasets—InternVid-FLT Wang et al., AudioCaps Kim et al. (2019), AVQA Yang
 269 et al. (2022), and VALOR-32k Liu et al. (2024)—as the source multimodal corpora for constructing
 270 VAT-KG. Due to the high computational cost arising from the large scalability of InternVid, we

Table 2: Data sample counts at each stage of the filtering process.

Principle	InternVid-FLT(10%)	AudioCaps	AVQA	VALOR-32k	Total
Original	1,000,000	93,726	40,150	28,823	1,162,699
Audio Tagging	389,965	86,578	36,144	22,521	535,208
Audio-Text	15,490	77,964	27,864	16,945	136,568
Video-Text	13,941	70,167	25,077	15,250	124,295
Final	10,762	59,808	24,999	15,217	110,786

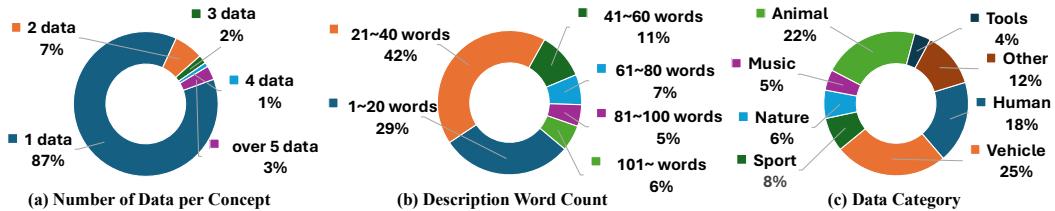


Figure 4: **Statistics of VAT-KG.** (a) VAT-KG contains diverse concepts that are represented through varied multimodal data. (b) Concept-level descriptions linked to VAT-KG concepts are sufficiently comprehensive and informative. (c) VAT-KG ensures diversity across categories.

sample 10% of the InternVid-FLT for VAT-KG construction. For all datasets, only the training split is used for construction. Tab. 2 presents the number of data filtered at each step of the Multimodal Alignment Filtering process. Unlike the other datasets, InternVid-FLT shows a larger reduction in data during the filtering process. This is expected, as InternVid is originally designed for video-text tasks and does not explicitly ensure strong audio associations, which naturally results in more samples being filtered in our audio-related alignment filtering steps. A carefully designed filtering process retains 124,295 high-quality instances with strong cross-modal correlation from an initial 1,162,699. Following the exclusion of samples without meta information in the Knowledge-Intensive Recaption stage, we finally use **110,786** multimodal data to construct VAT-KG. After completing the remaining construction stages, we obtain a total of **102,203** unique concepts and **110,786** triplets, each paired with corresponding multimodal data. We additionally validate the quality of VAT-KG through comprehensive human evaluation, with details provided in Appendix D.1.

Fig. 4 presents overall statistics of our VAT-KG, including the number of multimodal data per concept, description length distribution, and category distribution. Following a similar approach to Xiong et al. (2024a), we use BART Lewis et al. (2020) for categorization by first converting each triplet into a natural language sentence via concatenation and then providing it as input. We adopt the category taxonomy used in Geng et al. (2023).

4 MULTIMODAL RAG FRAMEWORK

Given that existing RAG frameworks Jian et al. (2024); Jeong et al. (2025) do not jointly consider video, audio, and text, we design a multimodal RAG framework tailored to the modality coverage of VAT-KG, supporting AQA, VQA, and AVQA tasks. As illustrated in Fig. 5, our model retrieves concept-level knowledge from VAT-KG in response to queries from arbitrary modalities and serves fine-grained, contextually aligned knowledge to MLLMs. Our framework is composed of three main components. Additional implementation details are provided in Appendix C.2.

4.1 MODALITY-AGNOSTIC RETRIEVAL

Given a query from an arbitrary modality, we first encode the input data using appropriate multimodal foundation models (*e.g.* ViCLIP for video and CLAP for audio) to obtain the corresponding query embedding (V^e or A^e). We then retrieve up to five relevant triplets by comparing the query embedding against triplet embeddings computed from linked data of the same modality as the query. Retrieval is restricted to candidates within a predefined L2 distance threshold in the VAT-KG embedding space. The embedding space of VAT-KG is indexed with FAISS Johnson et al. (2019) for fast retrieval. For

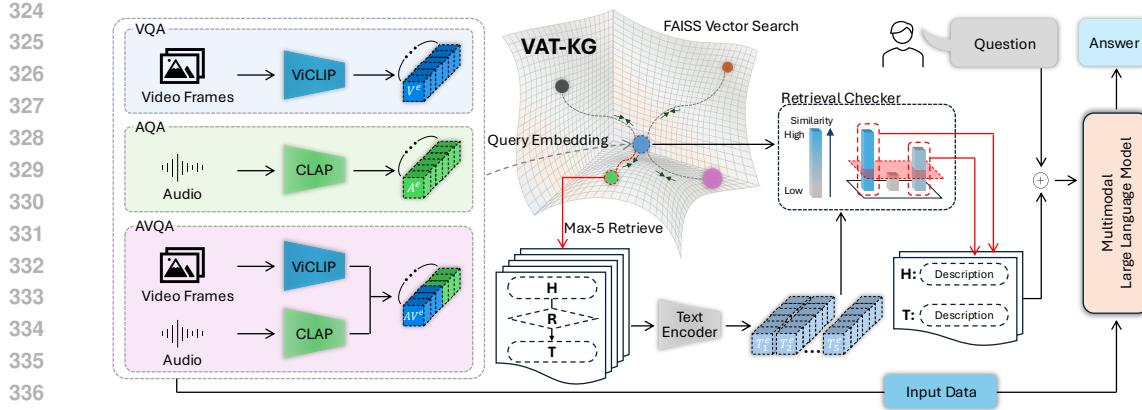


Figure 5: **An overview of Multimodal RAG Framework.** Given a query from any modality (audio, video, or text), (1) Modality-Agnostic Retrieval retrieves up to five semantically relevant triplets from VAT-KG based on embedding similarity; (2) Retrieval Checker filters out misaligned triplets by using the text encoder of the same multimodal foundation model; (3) Augmented Generation with MLLMs that support audio-visual understanding.

AVQA, which requires reasoning over both audio and video modalities, we simply concatenate the audio and video embeddings to form a joint query embedding (AV^e). Similarity-based retrieval is then performed in the VAT-KG embedding space using the same distance metric as used for single-modality queries.

4.2 RETRIEVAL CHECKER

Although we retrieve semantically relevant triplets by performing a similarity-based search using multimodal foundation models, these models often fail to capture fine-grained details despite capturing overall context well. As a result, the retrieved triplet may not precisely match the intent or specific semantics of the query. Inspired by recent re-ranking strategies Abootorabi et al. (2025); Mortahab et al. (2025) in multimodal RAG, we design a Retrieval Checker module to verify whether the retrieved triplets are semantically aligned with the input query. First, we convert each triplet into a natural sentence by simply concatenating its head, relation, and tail. Then, these sentences are encoded into text embeddings ($T_1^e, T_2^e, \dots, T_5^e$) using the text encoder of the same multimodal foundation model used during retrieval, in order to place them in the same embedding space as the query for comparison. Next, we measure the similarity between the query embedding and the text embeddings. If the similarity falls below a predefined threshold, indicating a mismatch with the query context, the triplet is discarded. This double-checking mechanism ensures more precise retrieval by filtering out triplets with subtle semantic mismatches, thereby mitigating potential hallucinations from loosely relevant retrievals.

4.3 AUGMENTED GENERATION WITH MLLMs

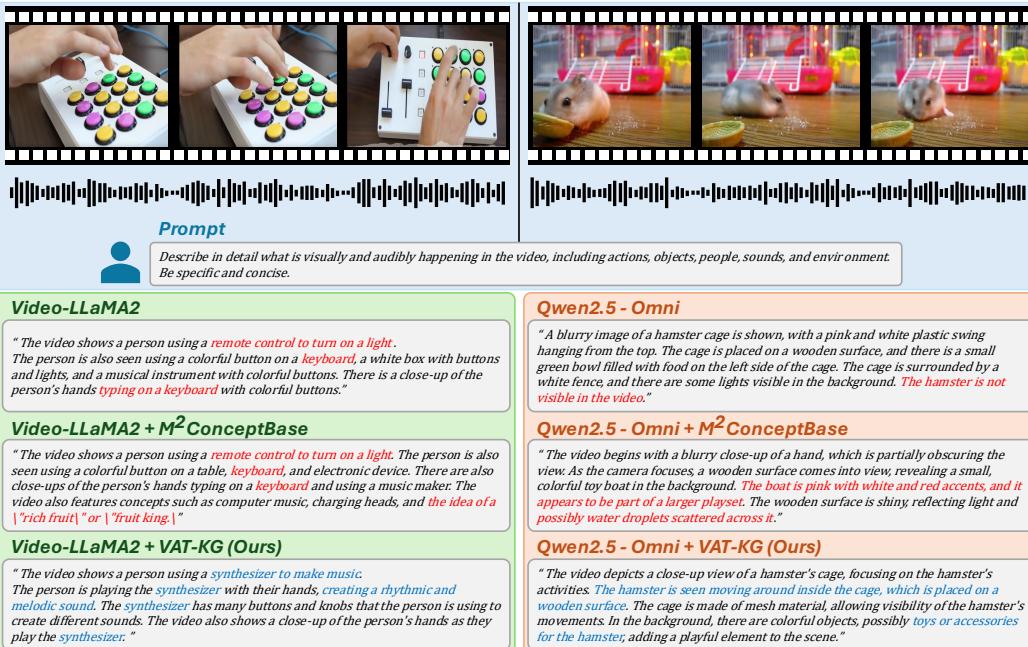
As our Multimodal RAG baseline model supports audio-visual retrieval, we adopt MLLMs that are designed to jointly understand both audio and video inputs. Following the retrieval of query-relevant triplets from VAT-KG, we utilize the descriptions linked with their head and tail concepts. We feed the input question along with the head and tail, as well as their corresponding descriptions, into MLLMs, enabling a multimodal RAG process that incorporates aligned concept-level knowledge.

5 EXPERIMENT

In this section, we evaluate the effectiveness of VAT-KG using our multimodal RAG framework. Sec. 5.1 describes the experimental setup, while Sec. 5.2 presents the performance of our model across various Question-Answering tasks. Additional ablation studies and extended experimental results are provided in Appendix E.

378 Table 3: **Overall performance.** We report M.J. (Model-as-Judge) Wang et al. (2025) scores; higher
 379 is better. VAT-KG yields the highest performance improvements, highlighted in **bold**.
 380

381 Method	382 Knowledge Graph	383 Audio QA		384 Video QA		385 Audio-Visual QA	
		386 AudioCaps-QA	387 VCGPT	388 AVQA	389 VALOR		
383 VideoLLaMA2	384 None	385 43.13	386 39.09	387 93.19	388 25.66		
383 VideoLLaMA2	384 Wikidata	385 43.58	386 38.58	387 92.70	388 26.43		
383 VideoLLaMA2	384 VTKG	385 43.02	386 38.88	387 90.52	388 25.92		
383 VideoLLaMA2	384 M ² ConceptBase	385 42.19	386 39.31	387 92.92	388 25.93		
383 VideoLLaMA2	384 VAT-KG	385 44.60	386 39.42	387 93.28	388 28.30		
383 Qwen2.5-Omni	384 None	385 49.00	386 42.21	387 93.05	388 32.42		
383 Qwen2.5-Omni	384 Wikidata	385 49.78	386 40.82	387 92.90	388 30.28		
383 Qwen2.5-Omni	384 VTKG	385 48.95	386 42.96	387 92.67	388 32.70		
383 Qwen2.5-Omni	384 M ² ConceptBase	385 49.78	386 42.78	387 92.28	388 32.31		
383 Qwen2.5-Omni	384 VAT-KG	385 51.30	386 43.50	387 93.07	388 35.44		



411 Figure 6: **Qualitative comparison on AVQA task.** Incorrect responses are highlighted in red, while
 412 correct answers are shown in blue.
 413

414 5.1 EXPERIMENTAL SETTINGS

415 **Datasets** We adopt a diverse set of QA benchmarks covering audio, visual, and audio-visual modalities
 416 to comprehensively evaluate the performance of our model across various modalities. For the AQA
 417 task, we evaluate our model on the AudioCaps-QA Wang et al. (2025). For the VQA task, we
 418 adopt the VideoChatGPT (VCGPT) benchmark Maaz et al. (2024). For the AVQA task, we select
 419 AVQA Yang et al. (2022) and VALOR Liu et al. (2024) for benchmark. While VALOR was originally
 420 designed for audio-visual captioning, we adopt it for evaluating the AVQA task, as in prior work Ye
 421 et al. (2024). For each benchmark except VCGPT, we use the subgraph of VAT-KG that is built
 422 upon the training set of the corresponding dataset to better match the knowledge domain with the
 423 benchmark. Only for VCGPT, we employ a subgraph of VAT-KG constructed from 10% of the
 424 InternVid-FLT dataset for multimodal RAG.

425 **Baseline MLLMs** For the baseline MLLMs, we employ VideoLLaMA2 Cheng et al. (2024) and
 426 Qwen2.5-Omni Xu et al. (2025), both of which are advanced models capable of jointly processing
 427 audio and visual inputs. These models have demonstrated strong performance in understanding
 428 multimodal data simultaneously across visual, auditory, and textual modalities. We further adopt
 429 commercial MLLMs (e.g. GPT-4o, Gemini-2.5); results are reported in Appendix E.2.

430 **Knowledge Graphs Comparison** To thoroughly examine the benefits that knowledge from VAT-KG
 431 brings to MLLMs, we conduct a comprehensive comparison against three knowledge graphs, namely

432 Wikidata5M Wang et al. (2021), VTKG Lee et al. (2023), and M²ConceptBase Zha et al. (2024). A
 433 detailed description of each knowledge graph and its integration into the multimodal RAG framework
 434 are provided in the Appendix C.3.

435 **Evaluation Metrics** Given that the majority of our benchmarks involve open-ended QA, we employ
 436 the Model-as-Judge (M.J.) approach as our evaluation metric. To avoid high cost and inconsistency
 437 caused by version changes in cloud-based commercial models like GPT-4 Achiam et al. (2023), we
 438 adopt the open-source M.J. methods proposed in recent work Wang et al. (2025). In addition, we
 439 complement this automatic evaluation with human assessment, as described in Appendix D.2.
 440

441 5.2 EXPERIMENTAL RESULTS

442 We evaluate our Multimodal RAG baseline by comparing the performance of baseline MLLMs with
 443 and without its integration, and also report comparisons with diverse knowledge graphs.
 444

445 **Quantitative Results** We summarize the overall performance on Audio QA (AQA), Video QA (VQA),
 446 and Audio-Visual QA (AVQA) tasks in Tab. 3. Our multimodal RAG framework, when leveraging
 447 VAT-KG, consistently yields the highest performance across all tasks, significantly improving the
 448 baseline capabilities of both VideoLLaMA2 Cheng et al. (2024) and Qwen2.5-Omni Xu et al.
 449 (2025). These improvements stem from VAT-KG’s capability to provide knowledge directly linked to
 450 multimodal content, enabling retrieval that is more relevant and contextually aligned with arbitrary
 451 multimodal queries. In contrast, knowledge retrieved from other knowledge graphs provides only
 452 marginal gains—or in some cases even degrades performance—highlighting their limited utility in
 453 multimodal tasks.

454 The advantage of VAT-KG is most pronounced in the AVQA task, where queries require knowledge
 455 retrieval considering both spatial and temporal features of audio and video inputs. In such settings,
 456 existing knowledge graphs often lead to performance degradation, whereas VAT-KG achieves notable
 457 and consistent improvements. These results underscore that existing large-scale KGs and MMKGs
 458 remain insufficient for real-world scenarios requiring both audio and visual understanding, as their
 459 knowledge grounding is restricted primarily to image or text modalities.
 460

461 **Qualitative Results** Fig. 6 shows qualitative comparison results on the AVQA task. Without RAG,
 462 both VideoLLaMA2 and Qwen2.5-Omni fail to generate appropriate responses, often misinterpreting
 463 the scene or hallucinating irrelevant content. For instance, VideoLLaMA2 fails to describe the
 464 musical instrument shown in the video, while Qwen2.5-Omni entirely misses the object depicted in
 465 the scene. When leveraging M²ConceptBase, the retrieved knowledge is often misaligned with the
 466 context of queries, leading to unrelated responses and reinforcing hallucination.
 467

468 In contrast, with VAT-KG, both models benefit from access to fine-grained, contextually aligned
 469 knowledge grounded in both video and audio. For example, in the case of VideoLLaMA2, knowledge
 470 retrieved from VAT-KG enables the model to accurately identify the object as a synthesizer producing
 471 music. For Qwen2.5-Omni, the knowledge retrieved from VAT-KG helps the model correctly interpret
 472 the scene, capturing the contextual status of the object more faithfully. These results demonstrate
 473 the effectiveness of VAT-KG in providing aligned, concept-centric knowledge across both visual and
 474 auditory modalities, ultimately reducing hallucination and improving response accuracy.
 475

476 6 CONCLUSION

477 In this work, we address the challenge that advanced MLLMs often hallucinate while lacking MMKGs
 478 with diverse modalities and fine-grained concept-level knowledge. We propose VAT-KG, the first
 479 knowledge-intensive and concept-centric MMKG that comprehensively covers visual, audio, and
 480 text modalities, constructed from carefully filtered datasets with strong cross-modal alignment. We
 481 also introduce a multimodal RAG framework that retrieves and delivers highly relevant, fine-grained
 482 knowledge in response to queries across different modalities. Experimental results on downstream
 483 tasks underscore the practical value of VAT-KG, demonstrating its ability to serve diverse and detailed
 484 knowledge. We believe that our VAT-KG and multimodal RAG framework will serve as valuable
 485 resources for future work on mitigating hallucinations in multimodal large language models and
 486 constructing aligned multimodal knowledge.

486 ETHICS STATEMENT
487488 All datasets used in this work are publicly available multimodal resources that were originally released
489 as part of published academic work. Each dataset is distributed under permissive open-source licenses
490 (e.g., CC-BY-4.0, MIT), and we adhered to the respective licensing terms. During the construction
491 of VAT-KG, we exclude any YouTube videos that have been deleted, set to private, or otherwise
492 restricted, ensuring that only content explicitly made public by the uploader is included. This
493 procedure mitigates potential privacy risks and reduces the likelihood of unintentional user data
494 exposure. Following established practice in prior multimodal datasets, we release only YouTube
495 video IDs rather than raw multimedia content, in compliance with YouTube’s Terms of Service. To
496 further safeguard responsible use, we conducted a content safety analysis combining Google Cloud’s
497 SafeSearch API with manual inspection, which confirmed the absence of violent, adult, or otherwise
498 inappropriate material.499 REPRODUCIBILITY STATEMENT
500501 To ensure reproducibility, we release all resources associated with this work, including the dataset
502 construction pipeline, the multimodal RAG framework, and the curated VAT-KG dataset, through our
503 public HuggingFace repository. Implementation details are provided in the Appendix (see Section C).
504 In addition, we include a detailed description of the open-source datasets and codes used in our
505 work in the Appendix (See Section A). Together, these resources allow independent researchers to
506 reproduce our results and extend our framework with minimal effort.507 REFERENCES
508509

510 Amazon mechanical turk. <https://www.mturk.com/>, 2005.

512 Mohammad Mahdi Abootorabi, Amirhosein Zobeiri, Mahdi Dehghani, Mohammadali Mohammad-khani, Bardia Mohammadi, Omid Ghahroodi, Mahdieh Soleymani Baghshah, and Ehsaneddin Asgari. Ask in any modality: A comprehensive survey on multimodal retrieval-augmented generation. *arXiv preprint arXiv:2502.08826*, 2025.

516 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

520 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022.

524 Houda Alberts, Ningyuan Huang, Yash Deshpande, Yibo Liu, Kyunghyun Cho, Clara Vania, and Iacer Calixto. VisualSem: a high-quality knowledge graph for vision and language. In Duygu Ataman, Alexandra Birch, Alexis Conneau, Orhan Firat, Sebastian Ruder, and Gozde Gul Sahin (eds.), *Proceedings of the 1st Workshop on Multilingual Representation Learning*, pp. 138–152, Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.mrl-1.13. URL <https://aclanthology.org/2021.mrl-1.13/>.

531 Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In *international semantic web conference*, pp. 722–735. Springer, 2007.

534 Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video and image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1728–1738, 2021.

538 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. *Advances in neural information processing systems*, 26, 2013.

540 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 541 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 542 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

543

544 Hila Chefer, Shir Gur, and Lior Wolf. Generic attention-model explainability for interpreting bi-modal
 545 and encoder-decoder transformers. In *Proceedings of the IEEE/CVF international conference on*
 546 *computer vision*, pp. 397–406, 2021.

547 Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
 548 visual dataset. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and*
 549 *Signal Processing (ICASSP)*, pp. 721–725. IEEE, 2020.

550 Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan,
 551 Zhenyu Tang, Li Yuan, et al. Sharegpt4video: Improving video understanding and generation with
 552 better captions. *Advances in Neural Information Processing Systems*, 37:19472–19495, 2024.

553

554 Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
 555 Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and
 556 audio understanding in video-llms. *arXiv preprint arXiv:2406.07476*, 2024.

557 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 558 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 559 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 560 *arXiv preprint arXiv:2507.06261*, 2025.

561 Sebastián Ferrada, Benjamin Bustos, and Aidan Hogan. Imgpedia: a linked dataset with content-based
 562 analysis of wikipedia images. In *The semantic web-ISWC 2017: 16th international semantic web*
 563 *conference, vienna, Austria, October 21-25, 2017, proceedings, part II 16*, pp. 84–93. Springer,
 564 2017.

565

566 Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
 567 Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
 568 audio events. In *2017 IEEE international conference on acoustics, speech and signal processing*
 569 (*ICASSP*), pp. 776–780. IEEE, 2017.

570 Tiantian Geng, Teng Wang, Jinming Duan, Runmin Cong, and Feng Zheng. Dense-localizing audio-
 571 visual events in untrimmed videos: A large-scale benchmark and baseline. In *Proceedings of the*
 572 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22942–22951, 2023.

573 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
 574 Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In *Proceedings of the*
 575 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 15180–15190, 2023.

576

577 Biao Gong, Shuai Tan, Yutong Feng, Xiaoying Xie, Yuyuan Li, Chaochao Chen, Kecheng Zheng,
 578 Yujun Shen, and Deli Zhao. UKnow: A unified knowledge protocol with multimodal knowledge
 579 graph datasets for reasoning and vision-language pre-training. In *The Thirty-eight Conference on*
 580 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=LdRZ9SFbku>.

581

582 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 583 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 584 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

585

586 Ridong Han, Tao Peng, Chaohao Yang, Benyou Wang, Lu Liu, and Xiang Wan. Is information
 587 extraction solved by chatgpt? an analysis of performance, evaluation criteria, robustness and errors.
 588 *arXiv preprint arXiv:2305.14450*, pp. 48, 2023.

589

590 Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
 591 Gan. 3d-llm: Injecting the 3d world into large language models. *Advances in Neural Information*
 592 *Processing Systems*, 36:20482–20494, 2023.

593

594 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 595 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 596 *arXiv:2410.21276*, 2024.

594 Soyeong Jeong, Kangsan Kim, Jinheon Baek, and Sung Ju Hwang. Videorag: Retrieval-augmented
 595 generation over video corpus. *arXiv preprint arXiv:2501.05874*, 2025.
 596

597 Pu Jian, Donglei Yu, and Jiajun Zhang. Large language models know what is key visual en-
 598 tity: An LLM-assisted multimodal retrieval for VQA. In Yaser Al-Onaizan, Mohit Bansal, and
 599 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natu-
 600 ral Language Processing*, pp. 10939–10956, Miami, Florida, USA, November 2024. Associa-
 601 tion for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.613. URL <https://aclanthology.org/2024.emnlp-main.613/>.
 602

603 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE
 604 Transactions on Big Data*, 7(3):535–547, 2019.

605 Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Generating
 606 captions for audios in the wild. In *Proceedings of the 2019 Conference of the North American
 607 Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
 608 I (Long and Short Papers)*, pp. 119–132, 2019.

609 Jaejun Lee, Chanyoung Chung, Hochang Lee, Sungho Jo, and Joyce Whang. Vista: Visual-textual
 610 knowledge graph representation learning. In *Findings of the association for computational
 611 linguistics: EMNLP 2023*, pp. 7314–7328, 2023.

612 Junlin Lee, Yequan Wang, Jing Li, and Min Zhang. Multimodal reasoning with multimodal knowledge
 613 graph. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd
 614 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 615 10767–10782, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 616 10.18653/v1/2024.acl-long.579. URL [https://aclanthology.org/2024.acl-long.
 617 579/](https://aclanthology.org/2024.acl-long.579/).
 618

619 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
 620 Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
 621 natural language generation, translation, and comprehension. In *Proceedings of the 58th Annual
 622 Meeting of the Association for Computational Linguistics*, pp. 7871–7880, 2020.

623 Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei Ye, Wen Zhao, and Shikun Zhang. Evaluat-
 624 ing chatgpt’s information extraction capabilities: An assessment of performance, explainability,
 625 calibration, and faithfulness. *arXiv preprint arXiv:2304.11633*, 2023a.

626 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 627 pre-training with frozen image encoders and large language models. In *International conference
 628 on machine learning*, pp. 19730–19742. PMLR, 2023b.

630 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
 631 neural information processing systems*, 36:34892–34916, 2023.

632 Jing Liu, Sihan Chen, Xingjian He, Longteng Guo, Xinxin Zhu, Weining Wang, and Jinhui Tang.
 633 Valor: Vision-audio-language omni-perception pretraining model and dataset. *IEEE Transactions
 634 on Pattern Analysis and Machine Intelligence*, 2024.

636 Junming Liu, Siyuan Meng, Yanting Gao, Song Mao, Pinlong Cai, Guohang Yan, Yirong Chen, Zilin
 637 Bian, Botian Shi, and Ding Wang. Aligning vision to language: Text-free multimodal knowledge
 638 graph construction for enhanced llms reasoning. *arXiv preprint arXiv:2503.12972*, 2025.

639 Ye Liu, Hui Li, Alberto Garcia-Duran, Mathias Niepert, Daniel Onoro-Rubio, and David S Rosenblum.
 640 Mmkg: multi-modal knowledge graphs. In *The semantic web: 16th international conference,
 641 ESWC 2019, portorož, Slovenia, June 2–6, 2019, proceedings 16*, pp. 459–474. Springer, 2019.

642 Ziqiong Liu, Shengjin Wang, Liang Zheng, and Qi Tian. Robust imagegraph: Rank-level feature
 643 fusion for image search. *IEEE Transactions on Image Processing*, 26(7):3128–3141, 2017.

645 Muhammad Maaz, Hanooma Rasheed, Salman Khan, and Fahad Khan. Video-chatgpt: Towards
 646 detailed video understanding via large vision and language models. In *Proceedings of the 62nd
 647 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 12585–12602, 2024.

648 Matin Mortaheb, Mohammad A Amir Khojastepour, Srimat T Chakradhar, and Sennur Ulukus.
 649 Re-ranking the context for multimodal retrieval augmented generation. *arXiv preprint*
 650 *arXiv:2501.04695*, 2025.

651 Kepan Nan, Rui Xie, Penghao Zhou, Tiehan Fan, Zhenheng Yang, Zhijie Chen, Xiang Li, Jian
 652 Yang, and Ying Tai. Openvid-1m: A large-scale high-quality dataset for text-to-video generation.
 653 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=j7kdXSRISM>.

654 Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
 655 language models and knowledge graphs: A roadmap. *IEEE Transactions on Knowledge and Data
 656 Engineering*, 36(7):3580–3599, 2024.

657 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 658 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 659 models from natural language supervision. In *International conference on machine learning*, pp.
 660 8748–8763. PMLR, 2021.

661 Florian Schmid, Khaled Koutini, and Gerhard Widmer. Efficient large-scale audio tagging via
 662 transformer-to-cnn knowledge distillation. In *ICASSP 2023-2023 IEEE international Conference
 663 on acoustics, Speech and signal processing (ICASSP)*, pp. 1–5. IEEE, 2023.

664 Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge. In
 665 *Proceedings of the 16th international conference on World Wide Web*, pp. 697–706, 2007.

666 Luoyi Sun, Xuenan Xu, Mengyue Wu, and Weidi Xie. Auto-acd: A large-scale dataset for audio-
 667 language representation learning. In *Proceedings of the 32nd ACM International Conference on
 668 Multimedia*, pp. 5025–5034, 2024.

669 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and
 670 Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. *arXiv preprint*
 671 *arXiv:2310.13289*, 2023.

672 Bin Wang, Xunlong Zou, Geyu Lin, Shuo Sun, Zhuohan Liu, Wenyu Zhang, Zhengyuan Liu, AiTi
 673 Aw, and Nancy F. Chen. AudioBench: A universal benchmark for audio large language models.
 674 In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of
 675 the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
 Language Technologies (Volume 1: Long Papers)*, pp. 4297–4316, Albuquerque, New Mexico,
 676 April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL <https://aclanthology.org/2025.naacl-long.218/>.

677 Meng Wang, Haofen Wang, Guilin Qi, and Qiushuo Zheng. Richpedia: a large-scale, comprehensive
 678 multi-modal knowledge graph. *Big Data Research*, 22:100159, 2020.

679 Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi Li, and Jian
 680 Tang. Kepler: A unified model for knowledge embedding and pre-trained language representation.
 681 *Transactions of the Association for Computational Linguistics*, 9:176–194, 2021.

682 Xin Wang, Benyuan Meng, Hong Chen, Yuan Meng, Ke Lv, and Wenwu Zhu. Tiva-kg: A multimodal
 683 knowledge graph with text, image, video and audio. In *Proceedings of the 31st ACM international
 684 conference on multimedia*, pp. 2391–2399, 2023.

685 Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan
 686 Chen, Yaohui Wang, et al. Internvid: A large-scale video-text dataset for multimodal understanding
 687 and generation. In *The Twelfth International Conference on Learning Representations*.

688 Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
 689 Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
 690 image representation and processing for computer vision, 2020.

691 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
 692 Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
 693 augmentation. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and
 694 Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

702 Tianwei Xiong, Yuqing Wang, Daquan Zhou, Zhijie Lin, Jiashi Feng, and Xihui Liu. Lvd-2m:
 703 A long-take video dataset with temporally dense captions. In A. Globerson, L. Mackey,
 704 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural*
 705 *Information Processing Systems*, volume 37, pp. 16623–16644. Curran Associates, Inc., 2024a.
 706 URL https://proceedings.neurips.cc/paper_files/paper/2024/file/1df493ec1c2530c038d94d7300b5b368-Paper-Datasets_and_Benchmarks_Track.pdf.

709 Tianwei Xiong, Yuqing Wang, Daquan Zhou, Zhijie Lin, Jiashi Feng, and Xihui Liu. Lvd-2m: A long-
 710 take video dataset with temporally dense captions. *Advances in Neural Information Processing*
 711 *Systems*, 37:16623–16644, 2024b.

712 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 713 Fan, Kai Dang, et al. Qwen2. 5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025.

715 Pinci Yang, Xin Wang, Xuguang Duan, Hong Chen, Runze Hou, Cong Jin, and Wenwu Zhu. Avqa:
 716 A dataset for audio-visual question answering on videos. In *Proceedings of the 30th ACM*
 717 *international conference on multimedia*, pp. 3480–3491, 2022.

718 Qilang Ye, Zitong Yu, Rui Shao, Xinyu Xie, Philip Torr, and Xiaochun Cao. Cat: Enhancing
 719 multimodal large language model to answer questions in dynamic audio-visual scenarios. In
 720 *European Conference on Computer Vision*, pp. 146–164. Springer, 2024.

722 Yawen Zeng, Qin Jin, Tengfei Bao, and Wenfeng Li. Multi-modal knowledge hypergraph for diverse
 723 image retrieval. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 724 3376–3383, 2023.

725 Zhiwei Zha, Jiaan Wang, Zhixu Li, Xiangru Zhu, Wei Song, and Yanghua Xiao. M2conceptbase: A
 726 fine-grained aligned concept-centric multimodal knowledge base. In *Proceedings of the 33rd ACM*
 727 *International Conference on Information and Knowledge Management*, CIKM ’24, pp. 3113–3123,
 728 New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704369. doi:
 729 10.1145/3627673.3679852. URL <https://doi.org/10.1145/3627673.3679852>.

731 Bowen Zhang and Harold Soh. Extract, define, canonicalize: An llm-based framework for knowledge
 732 graph construction. In *Proceedings of the 2024 Conference on Empirical Methods in Natural*
 733 *Language Processing*, pp. 9820–9836, 2024.

734 Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
 735 model for video understanding. In *Proceedings of the 2023 Conference on Empirical Methods in*
 736 *Natural Language Processing: System Demonstrations*, pp. 543–553, 2023a.

738 Jingdan Zhang, Jiaan Wang, Xiaodan Wang, Zhixu Li, and Yanghua Xiao. Aspectmmkg: A multi-
 739 modal knowledge graph with aspect-aware entities. In *Proceedings of the 32nd ACM international*
 740 *conference on information and knowledge management*, pp. 3361–3370, 2023b.

741 Ningyu Zhang, Lei Li, Xiang Chen, Xiaozhuan Liang, Shumin Deng, and Huajun Chen. Multimodal
 742 analogical reasoning over knowledge graphs. *arXiv preprint arXiv:2210.00312*, 2022.

743 Ningyu Zhang, Lei Li, Xiang Chen, Xiaozhuan Liang, Shumin Deng, and Huajun Chen. Multimodal
 744 analogical reasoning over knowledge graphs. In *The Eleventh International Conference on Learning*
 745 *Representations*, 2023c. URL <https://openreview.net/forum?id=NRHajbzg8y0P>.

747
 748
 749
 750
 751
 752
 753
 754
 755

756 APPENDIX
757

758 In this appendix, we provide supplementary details and analyses to support the main paper. We begin
759 by outlining the usage of open-source datasets and codes (Appendix A), followed by a discussion of
760 the limitations of our approach (Appendix B). We then present additional implementation details for
761 both the VAT-KG construction pipeline and the multimodal RAG framework (Appendix C), describe
762 the setup and results of our human evaluation (Appendix D), and conclude with further experimental
763 analyses and ablations (Appendix E).

764
765 A USAGE OF OPEN SOURCE DATASETS AND CODES
766

767 We release the full implementation of the VAT-KG construction pipeline and the Multimodal RAG
768 framework at https://huggingface.co/iclr26/VATKG_CODE. The VAT-KG dataset is
769 publicly available at https://huggingface.co/datasets/iclr26/vat_kg. For more
770 details, please visit our project page at <https://iclrvatkg.github.io/>.

771 **Licenses** The dataset is provided under the CC BY-NC 4.0 license and is intended solely for non-
772 commercial research and educational use.

773
774 B LIMITATIONS
775

776 A limitation of our work is that our VAT-KG construction must be built upon multimodal corpora
777 containing video, audio, and text captions. As a result, the diversity of VAT-KG is inherently
778 dependent on the underlying multimodal datasets used during construction. VAT-KG has a smaller
779 data scale compared to other multimodal datasets. Nevertheless, all data included in VAT-KG undergo
780 a rigorous filtering process, ensuring high multimodal correlation and overall quality. We plan to
781 expand the scale of the dataset in future versions to improve coverage and generalization.

782
783 C IMPLEMENTATION DETAILS
784785 C.1 VAT-KG CONSTRUCTION
786

787 In this section, we provide additional implementation details for the VAT-KG construction process.

788 C.1.1 DETAILS OF CONSTRUCTION PIPELINE
789

790 During Audio-Text Relevance filtering in Stage 1, we filter out data samples whose cosine similarity
791 between CLAP Wu et al. (2023) audio embeddings and text embeddings falls below 0.2. In Stages 2
792 and 3 (Knowledge-Intensive Recaptioning and Multimodal Triplet Grounding), we use DeepSeek-R1-
793 Distill-Llama-70B Guo et al. (2025), the largest variant among the available DeepSeek-R1 distilled
794 models, to avoid the high cost of commercial APIs (e.g. GPT-4), which are commonly used in other
795 KG construction pipelines Zha et al. (2024); Zhang & Soh (2024).

796 The LLM prompt used in Knowledge-Intensive Recaptioning is shown in Fig. 7. Fig. 8 presents the
797 prompt employed for Multimodal Triplet Grounding, which includes in-context examples to guide
798 triplet extraction.

799 For description crawling in the Cross-Modal Description Alignment stage, we utilize DeepSeek-R1-
800 Distill-Llama-8B as the knowledge base. Since it is used as a sub-knowledge base supporting other
801 knowledge bases, we choose a lighter LLM to reduce inference overhead. The LLM is prompted with
802 the template shown in Fig. 9 to generate candidate descriptions for the given concept. All construction
803 stages use a single H100 GPU (80GB), except Stage 2 and Stage 3, which use two GPUs.

804
805 C.1.2 DATASETS FOR VAT-KG CONSTRUCTION
806

807 **InternVid-FLT** InternVid-FLT Wang et al. is a large-scale multimodal dataset consisting of 10 million
808 videos and their corresponding rich text captions with high video-text correspondence. The video
809 data is scraped from YouTube across diverse content categories, while the captions are synthesized
by an LLM from coarse to fine-grained levels.

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

Prompt Details for Knowledge-Intensive Recaptioning

You are a Video understanding expert specializing in refining video descriptions.

Given information about one video, your task is to rewrite its caption using additional metadata.

Here is the provided data:

- **Video Caption:** {video_caption}
- **YouTube Title:** {youtube_title}
- **YouTube Description:** {youtube_description}

Your goal is to create a new caption that combines the information from the video caption, YouTube title, and YouTube description. The new caption should be a single paragraph with full sentences in English and should be coherent and informative.

- Do not simply concatenate the inputs. Instead, synthesize them naturally.
- Verify the relevance of the YouTube title and description before using them. If they align with the video caption, incorporate useful details; otherwise, rely primarily on the video caption.
- The output must be a complete and well-structured sentence.
- Do not explain your reasoning. Do not include any extra text. Only output the final sentence.

The final rewritten caption is:

Figure 7: **Prompt Details for Knowledge-Intensive Recaptioning.** We prompt the LLM with YouTube metadata (*title* and *description*) to generate knowledge-intensive textual data.

Prompt Details for Triplet Grounding

You are an expert in extracting structured knowledge from text.

Given a video caption, extract all possible subject-relationship-object triples in the form (h, r, t).

Instruction

- Extract multiple (h, r, t) triples if applicable.
- Ensure each triple is meaningful and correctly represents the relationships in the text.
- Format the output as a list of triples.

Examples

Caption: “A man is kicking a soccer ball.”

Output: (man, kicks, soccer ball)

Caption: “A man is kicking a soccer ball while a dog is running nearby.”

Output:

(man, kicks, soccer ball)

(dog, runs, nearby)

Caption: “A chef is cutting vegetables on a wooden board, and a waiter is bringing a dish.”

Output:

(chef, cuts, vegetables)

(chef, works_on, wooden board)

(waiter, brings, dish)

Caption: “{video_caption}”

Output Format: (h, r, t), no explanation.

Output:

Figure 8: **Prompt Details for Triplet Grounding.** To extract triplets from knowledge-intensive textual data, we provide in-context examples to guide LLM, facilitating accurate triplet grounding.

864

Prompt Details for Description Crawling from LLM

865

Instruction

866

Explain the concept of ‘{concept}’ in a formal and concise English sentence.

867

868

Response

869

870

Figure 9: **Prompt Details for Description Crawling from LLM.** This prompt is used to mine concept-level descriptions from the LLM-based knowledge base.

871

872

Multimodal Alignment Filtering

873

874

Retain

875

876

877

878

879

880

881

882

883

884

Filter Out

885

Filter Out

886

Filter Out

887

Filter Out

888

Filter Out

889

Filter Out

890

Filter Out

891

Filter Out

918
919**Prompt Details for Multimodal RAG Framework**

920

Question

921

Hint: You are provided with a set of concepts and their descriptions in the form of key-value pairs. These concepts may or may not be directly related to the given video.

923

When generating your answer, identify any concepts that appear to be relevant to the video's content, and incorporate their corresponding descriptions to enrich and elaborate your response.

925

Below are concepts and their descriptions (concept: description).

926

{concept_1}:{description_1}

927

{concept_2}:{description_2}

928

...

929

{concept_N}:{description_N}

930

Figure 11: **Prompt Details for Multimodal RAG Framework.** Our multimodal RAG framework provides MLLM with N concept-description pairs stringently selected through the retrieval checker.

931

C.2 MULTIMODAL RAG FRAMEWORK

932

In this section, we provide additional implementation details of the multimodal RAG framework. After retrieving N query-relevant triplets and descriptions via modality-agnostic retrieval and the checker, the retrieved knowledge is injected into MLLMs using the prompt template in Fig. 11.

933

934

C.3 KNOWLEDGE GRAPHS FOR COMPARISON

935

936

In this section, we provide a detailed description of each knowledge graph used in our comparison, together with their integration into our multimodal RAG framework.

937

938

Wikidata5M Wikidata5M Wang et al. (2021) is a large-scale knowledge graph derived from Wikidata, comprising about 5 million entities, 20 million triplets, and aligned entity descriptions from Wikipedia. Since it consists solely of textual information, we project its textual data into a shared representation space using a text encoder from multimodal foundation model Wu et al. (2023); Wang et al., enabling retrieval of knowledge relevant to a given multimodal query.

939

940

VTKG VTKG Lee et al. (2023) is a concept-centric multimodal knowledge graph that aligns visual evidence with textual descriptions for entities and relations. However, it releases only pre-computed image embeddings from a ViT-Base model Wu et al. (2020) without raw multimodal data. Accordingly, for visual queries, knowledge retrieval is performed in the ViT-Base embedding space, and for audio queries we project VTKG's textual data into an audio–text space using a text encoder from CLAP Wu et al. (2023) to perform retrieval.

941

942

M²ConceptBase M²ConceptBase is our primary baseline: a concept-centric MMKG that provides concept-level descriptions together with raw multimodal data. However, it supports only image–text modalities. Accordingly, retrieval for visual queries is conducted in the shared CLIP Radford et al. (2021) embedding space, while audio queries are handled in the same way as for VTKG.

943

944

D HUMAN EVALUATION

945

946

In this section, we report human evaluation results to assess both the quality and the practical utility of VAT-KG. We recruit participants through Amazon Mechanical Turk ama (2005), a widely-used platform for human assessment.

947

948

D.1 HUMAN EVALUATION ON VAT-KG QUALITY

949

950

To demonstrate the quality and factual integrity of VAT-KG, we conduct three user studies, each targeting different stages of the construction pipeline.

951

952

Specially, we sampled 50 outputs each from Stage 2 (Knowledge-Intensive Recaptioning) and Stage 3 (Multimodal Triplet Grounding). Since both stages employ LLM and may therefore introduce errors, we asked 50 human volunteers to evaluate their factual correctness.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 4: **Correctness for Stage 2 & Stage 3.**
Human assessment for intermediate outputs.

Stage	Correctness	Criterion	Correctness
Knowledge-Intensive Recapitulation	98.84%	Concept Accuracy	97.46%
Multimodal Triplet Grounding	98.40%	Content Capture Fidelity	95.26%
		Description Alignment	96.54%

Table 6: **Human Evaluation on Multimodal QA Benchmarks.** VAT-KG yields consistent improvements across all benchmarks, highlighted in **bold**.

Method	Knowledge Graph	Audiocaps-QA	VCGPT	AVQA	VALOR
Qwen2.5-Omni	None	72.25	72.79	68.78	76.47
Qwen2.5-Omni	VAT-KG	79.41	81.83	79.00	76.92

As shown in the Tab. 4, both stages achieved near-perfect correctness scores, which we attribute to the structured nature of the tasks—i.e., paraphrasing and extraction from grounded text—rather than open-ended generation. This aligns with recent studies Zhang & Soh (2024); Li et al. (2023a); Han et al. (2023) showing the effectiveness and reliability of LLMs as open information extractors.

Additionally, to directly evaluate the final graph output, we randomly sampled 30 triplets from VAT-KG and asked human annotators to assess each triplet along three criteria: (i) Concept Accuracy, measuring whether the each concept in the triplet is presented in the multimodal data; (ii) Content Capture Fidelity, evaluating whether the triplet captures the core semantics of the video/audio content; and (iii) Description Alignment, assessing the attached description are well-aligned with the underlying multimodal signals.

As shown in the Tab. 5, the evaluation results indicate that the triplets satisfy nearly all criteria, offering strong empirical evidence that the factual quality of VAT-KG is well-preserved across its construction stages.

D.2 HUMAN EVALUATION ON MULTIMODAL QA BENCHMARKS

As the Model-as-Judge (M.J.) evaluation may introduce bias, we complement it with human ratings to ensure the reliability of our experimental results. We randomly sampled 10 QA pairs from each of the four benchmarks used in the main experiments and asked 100 human participants to rate the model-generated answers on a 0-5 scale. The final score is computed by averaging the ratings and multiplying the mean by 20, following the same scoring scheme used in the Model-as-Judge (M.J.) evaluation. As summarized in Tab. 6, across all benchmarks, the multimodal RAG framework equipped with VAT-KG consistently achieved the highest human ratings.

These results provide evidence that the M.J. evaluation is aligned with human judgment and that our method yields consistent improvements across both evaluation protocols.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ABLATION STUDY

Modality-Wise Retrieval To evaluate the utility of VAT-KG’s multimodal coverage in our multimodal RAG framework, we conduct an ablation study on modality-wise retrieval. Specifically, we compare four retrieval strategies for the AVQA task: retrieving knowledge from VAT-KG based on audio only, image only (middle frame of the query video), video only, and both audio and video. This allows us to assess the impact of leveraging all available query modalities on RAG performance.

We perform this ablation on the VALOR benchmark, using the query audio, video, or both to retrieve relevant knowledge from the shared embedding space of VAT-KG. For the image-based retrieval condition, we extract the middle frame from each query video to use as an image query.

1026 **Table 7: Ablation study on Retrieval Checker.** Applying the Retrieval Checker yields the best
 1027 performance across all benchmarks, highlighted in **bold**.

Method	Retrieval Checker	Audio QA		Video QA		Audio-Visual QA	
		AudioCaps-QA	VCGPT	AVQA	VALOR		
VideoLLaMA2 + VAT-KG	✗	43.90	39.14	93.04	26.02		
VideoLLaMA2 + VAT-KG	✓	44.60	39.42	93.28	28.30		
Qwen2.5-Omni + VAT-KG	✗	50.69	43.48	93.08	33.25		
Qwen2.5-Omni + VAT-KG	✓	51.30	43.50	93.07	35.44		

1035 **Figure 12: Ablation study on Modality-Wise Retrieval.** We evaluate four retrieval strategies based
 1036 on the modality used: audio, image, video, and audio+video.

1037 As shown in Fig. 12, while each unimodal retrieval condition leads to improved performance over
 1038 the MLLM baseline without RAG, the knowledge retrieval that considers both audio and visual
 1039 modalities yields the most significant performance gain. These results highlight the importance
 1040 of leveraging a wide range of modalities in MMKGs, and underscore the value of VAT-KG as a
 1041 concept-centric, knowledge-intensive resource that contains rich multimodal information.

1042 **Retrieval Checker** To demonstrate the effectiveness of our proposed Retrieval Checker, we conduct
 1043 an ablation study on the retrieval checker. Tab. 7 demonstrates that the retrieval checker markedly
 1044 improves performance in our multimodal RAG framework. Although retrieved knowledge already
 1045 benefits the MLLM, applying the checker to filter for more query-relevant information yields addi-
 1046 tional gains across all QA tasks.

E.2 COMMERCIAL MLLMs WITH VAT-KG

1062 To further demonstrate that knowledge from VAT-KG also benefits advanced commercial MLLMs,
 1063 we evaluate GPT-4o Hurst et al. (2024) and Gemini-2.5 Comanici et al. (2025) within our multimodal
 1064 RAG framework.

1065 As shown in Tab. 8, incorporating VAT-KG leads to consistent performance improvements across
 1066 all state-of-the-art MLLMs. These findings suggest that VAT-KG is broadly effective: it enhances
 1067 relatively lightweight models by supplementing missing external knowledge, and it also improves the
 1068 response quality of strong commercial MLLMs, which can still suffer from fine-grained multimodal
 1069 grounding despite their scale.

1070 By providing detailed, query-specific multimodal context, VAT-KG helps close these gaps and
 1071 improves overall reliability.

E.3 DIAGNOSTIC EVALUATION ON KNOWLEDGE-INTENSIVE CASES

1072 While our approach yields consistent performance gains across diverse multimodal benchmarks,
 1073 most of these benchmarks are not designed to test knowledge-intensive scenarios. As a result, the
 1074 improvements enabled by VAT-KG may appear modest. To more directly evaluate this setting, we

1080 Table 8: **Performance on Commercial MLLMs.** Even in advanced state-of-the-art models, VAT-KG
 1081 provides consistent improvements across benchmarks, highlighted in **bold**.
 1082

Method	Knowledge Graph	Audiocaps-QA	VCGPT	VALOR
GPT-4o	None	56.74	49.68	46.02
GPT-4o	VAT-KG	57.70	51.49	55.86
Gemini2.5-Flash	None	49.51	51.00	67.18
Gemini2.5-Flash	VAT-KG	50.07	51.12	69.17

1089 Table 9: **Performance on Knowledge-Intensive Scenario.** Incorporating VAT-KG yields substantial
 1090 performance gains on challenging QA pairs sampled from VALOR, even for commercial MLLMs.
 1091

Method	Knowledge Graph	Knowledge-Intensive QA
Qwen2.5-Omni	None / VAT-KG	26 / 46
Gemini2.5-Flash	None / VAT-KG	58 / 68
GPT-4o	None / VAT-KG	44 / 74

1098 constructed a diagnostic set of 10 knowledge-intensive QA pairs featuring challenging concepts
 1099 sampled from the VALOR benchmark (e.g., *tiltrotor*, *locomotive*, *electric organ*).
 1100

1101 As shown in Tab. 9, incorporating VAT-KG produces substantial performance gains in these challenging
 1102 scenarios, even for advanced commercial MLLMs. This result underscores the value of VAT-KG
 1103 in enhancing multimodal reasoning under knowledge-intensive conditions.
 1104

E.4 STATISTICAL VALIDATION OF THE MODEL AS JUDGE

1106 To rigorously examine whether the performance gains from VAT-KG are not merely within the noise
 1107 range of the M.J. scoring framework, we conducted 10 independent trials across benchmarks. Tab. 10
 1108 reports the mean M.J. scores across 10 runs, along with the standard deviation (σ) for each setting
 1109 and p-value (p) from a t-test.
 1110

1111 As shown in the Tab. 10, while minor fluctuations were observed, the difference remained consistently
 1112 lower than the magnitude of the average performance improvements. Crucially, the mean scores
 1113 consistently indicate clear performance improvements with VAT-KG, providing strong evidence that
 1114 the gains are not attributable to judge noise.
 1115

1116 To further validate this, we conducted a t-test between the baseline method and the scores with
 1117 VAT-KG applied. The resulting p-value was below 0.10, confirming that the performance gains are
 1118 statistically significant and not attributable to measurement noise.
 1119

E.5 MORE QUALITATIVE RESULTS

1120 We provide additional qualitative comparisons between the base MLLMs and our multimodal RAG
 1121 framework equipped with either M²ConceptBase or VAT-KG, on downstream tasks across modalities,
 1122 including AQA, VQA, and AVQA.
 1123

1124 For AQA, Fig. 13 illustrates a qualitative comparison between the base MLLMs and our multimodal
 1125 RAG framework using VAT-KG. Our framework effectively retrieves knowledge relevant to the query
 1126 audio from VAT-KG and provides contextually appropriate information, guiding MLLMs toward
 1127 more accurate responses.
 1128

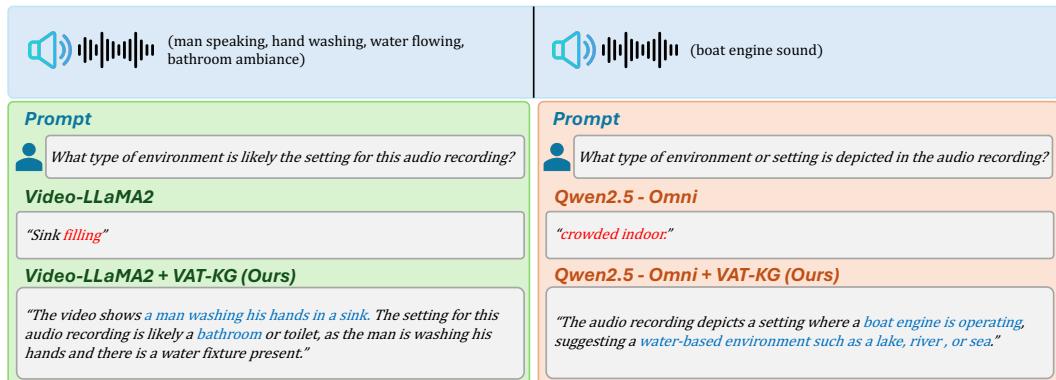
1129 For VQA, as illustrated in Fig. 14, MLLMs struggle to capture knowledge-intensive concepts such
 1130 as “discus” or “Tai Chi”. Concept-level knowledge provided by M²ConceptBase often fails to assist
 1131 the MLLMs and, in some cases, introduces misleading information that exacerbates hallucination. In
 1132 contrast, our framework retrieves contextually relevant knowledge from VAT-KG based on the query
 1133 video, helping the MLLMs better understand and reason about complex concepts present in the scene.
 1134

1135 Similarly, in the AVQA task, MLLMs struggle to capture knowledge-intensive concepts in the scene
 1136 that also require joint understanding over both audio and visual modalities. Furthermore, image-based
 1137

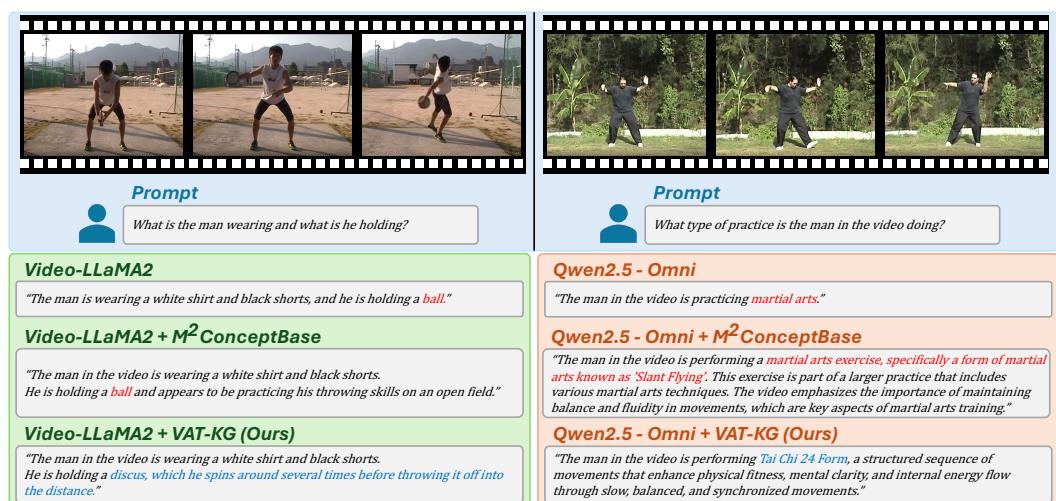
1134
 1135 **Table 10: Statistical Validation of M.J. Evaluation.** Mean scores across 10 independent trials with
 1136 standard deviation (σ) and t-test p-values (p), showing consistent performance gains with VAT-KG
 1137 beyond judge noise, highlighted in **bold**.

1138 Method	1139 Knowledge Graph	1140 Audiocaps-QA	1141 VCGPT	1142 AVQA	1143 VALOR
Qwen2.5-Omni	None	49.18 ($\sigma=0.29$)	43.01 ($\sigma=0.19$)	93.01 ($\sigma=0.02$)	32.51 ($\sigma=0.15$)
Owen2.5-Omni	M ² ConceptBase	49.28 ($\sigma=0.35$)	43.06 ($\sigma=0.21$)	92.59 ($\sigma=0.02$)	32.70 ($\sigma=0.19$)
Qwen2.5-Omni	VAT-KG	50.09 ($\sigma=0.21, p=1.4e-4$)	43.19 ($\sigma=0.23, p=0.08$)	93.03 ($\sigma=0.02, p=0.037$)	35.45 ($\sigma=0.26, p=2.2e-14$)

1144 retrieval from M²ConceptBase fails to enhance the MLLMs’ answers, primarily because the retrieved
 1145 knowledge lacks grounding in an audio-visual context. However, knowledge retrieved from VAT-KG
 1146 exhibits strong relevance to the multimodal query and helps MLLMs to better understand complex
 1147 concepts such as excavator and hail, as illustrated in Fig. 15.



1162 **Figure 13: Qualitative comparison on AQA task.** Incorrect responses are highlighted in red, while
 1163 correct answers are shown in blue.



1184 **Figure 14: Qualitative comparison on VQA task.** Incorrect responses are highlighted in red, while
 1185 correct answers are shown in blue.

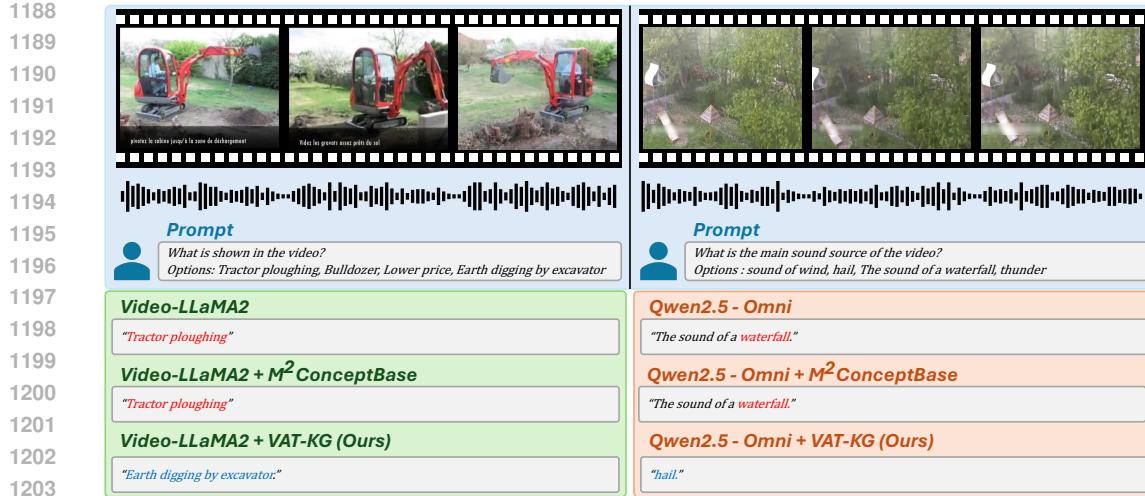


Figure 15: **Qualitative comparison on AVQA task.** Incorrect responses are highlighted in red, while correct answers are shown in blue.

THE USE OF LARGE LANGUAGE MODELS (LLMs)

We use large language models (LLMs) solely to aid and polish writing (e.g., grammar, wording, and minor stylistic edits of author-written text). LLMs are not used for research ideation, experiment design, or substantive drafting.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241