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ABSTRACT

Multimodal Knowledge Graphs (MMKGs), which represent explicit knowledge
across multiple modalities, play a pivotal role by complementing the implicit
knowledge of Multimodal Large Language Models (MLLMs) and enabling more
grounded reasoning via Retrieval Augmented Generation (RAG). However, existing
MMKGs are generally limited in scope: they are often constructed by augment-
ing pre-existing knowledge graphs, which restricts their knowledge, resulting in
outdated or incomplete knowledge coverage, and they often support only a narrow
range of modalities, such as text and visual information. These limitations re-
strict applicability to multimodal tasks, particularly as recent MLLMs adopt richer
modalities like video and audio. Therefore, we propose the Visual-Audio-Text
Knowledge Graph (VAT-KG), the first concept-centric and knowledge-intensive
multimodal knowledge graph that covers visual, audio, and text information, where
each triplet is linked to multimodal data and enriched with detailed descriptions of
concepts. Specifically, our construction pipeline ensures cross-modal knowledge
alignment between multimodal data and fine-grained semantics through a series
of stringent filtering and alignment steps, enabling the automatic generation of
MMKGs from any multimodal dataset. We further introduce a novel multimodal
RAG framework that retrieves detailed concept-level knowledge in response to
queries from arbitrary modalities. Experiments on question answering tasks across
various modalities demonstrate the effectiveness of VAT-KG in supporting MLLMs,
highlighting its practical value in unifying and leveraging multimodal knowledge.

1 INTRODUCTION

Multimodal Knowledge Graphs (MMKGs) integrate heterogeneous data into a unified graph repre-
sentation, supporting tasks such as retrieval Alberts et al. (2021); Zeng et al. (2023), reasoning Zhang
et al. (2023c); Gong et al. (2024), and question answering Zha et al. (2024). Recent works Zha et al.
(2024); Lee et al. (2024); Liu et al. (2025) have proposed Retrieval Augmented Generation (RAG)
based approaches that leverage explicit knowledge structures from MMKGs to reduce hallucination
in Multimodal Large Language Models (MLLMs). As shown in the upper part of Fig. 1, MLLMs
often fail to produce an accurate response in the knowledge-intensive scenario requiring fine-grained
facts, highlighting the need for external structured knowledge. Moreover, existing MMKG-based
RAG methods are limited to narrow modality pairs (e.g. image-text), and thus are not well-suited for
recent MLLMs designed for joint understanding of video, audio, and text Liu et al. (2023); Zhang
et al. (2023a); Tang et al. (2023); Hong et al. (2023).

The limitations of existing MMKGs are illustrated in Fig. 1. As shown in part (a), although some
MMKGs Wang et al. (2023) cover multiple modalities, they primarily focus on entity-to-entity
connectivity and do not organize knowledge around individual concepts. For example, in the upper
part of Fig. 1, simple triplets such as (quokka; RelatedTo; australia) or (quokka;
IsA; mammal) would fail to provide detailed knowledge about the concept. In part (b), a few
MMKGs Zha et al. (2024); Lee et al. (2023) adopt a concept-centric structure, where entities are
enriched with concept-level descriptions capturing their meaning and context. However, they support
only two modalities—image and text—which makes them insufficient for recent MLLMs designed to
jointly understand video, audio, and text.
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Figure 1: Comparison with Existing MMKGs.
(a) A non-concept-centric case involving various
modalities. (b) Concept-centric case with limited
modalities. (c) Our proposed VAT-KG, which is
concept-centric and covers four modalities.
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Figure 2: Example triplet in VAT-KG. A multi-
modal triplet from VAT-KG, composed of video,
audio, and text. Each head and tail is linked to a
detailed concept-level description.

To address these limitations of existing MMKGs, we present the Visual-Audio-Text Knowledge
Graph (VAT-KG), the first concept-centric and knowledge-intensive multimodal knowledge graph
dataset that covers visual, audio, and text, designed to provide explicit cross-modal knowledge to
MLLMs. Our VAT-KG construction begins with a multimodal corpus comprising video, audio, and
text, and follows a four-step pipeline. First, we perform (1) Multimodal Alignment Filtering to
assure correspondence between modalities within the multimodal corpus. This step makes it possible
to incorporate even those corpora lacking robust multimodal correlations into the construction of
VAT-KG. Following alignment, we implement (2) Knowledge-Intensive Recaptioning and (3)
Multimodal Triplet Grounding to extract knowledge-intensive triplets from textual data, leveraging
advanced LLM. Finally, a (4) Cross-Modal Description Alignment step matches the multimodal
concepts within the triplets to detailed descriptions crawled from diverse knowledge bases.

As illustrated in Fig. 2, VAT-KG links each concept to detailed descriptions and organizes its relations
as multimodal triplets. This design of VAT-KG plays a pivotal role in multimodal RAG, as it enables
the retrieval of detailed descriptions in response to queries from arbitrary modalities. To support
this, we additionally introduce a multimodal RAG framework that leverages VAT-KG’s concept-
centric and multimodal structure to retrieve detailed descriptions in response to queries from arbitrary
modalities. Experimental results on question answering tasks across various modalities demonstrate
that incorporating VAT-KG into the RAG pipeline leads to substantial and consistent performance
gains, significantly boosting the capabilities of MLLMs in handling complex multimodal inputs.

Our contributions are summarized as follows:

• To the best of our knowledge, we present the first knowledge-intensive and concept-centric mul-
timodal knowledge graph covering visual, audio, and text modalities, enriched with detailed
descriptions of each concept.

• We introduce an effective pipeline for constructing multimodal knowledge graphs from arbitrary
multimodal corpora, ensuring cross-modal alignment between data and fine-grained knowledge
through rigorous filtering and alignment steps.

• We propose a multimodal RAG framework that retrieves semantically relevant knowledge in
response to queries from arbitrary modalities and refines it using a Retrieval Checker module that
filters out misaligned results.

• We demonstrate the effectiveness of VAT-KG with our Multimodal RAG framework, achieving
consistent performance gains on Audio QA (AQA), Video QA (VQA), and Audio-Visual QA
(AVQA), highlighting its utility in real-world multimodal scenarios.

2 RELATED WORKS

2.1 MULTIMODAL KNOWLEDGE GRAPH CONSTRUCTION

Multimodal knowledge graphs (MMKGs) have gained attention for semantically bridging text, image,
audio, and video data to support cognitive understanding across modalities. A notable example is
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Table 1: Overview of notable Multimodal Knowledge Graph (MMKG) constructions.

Dataset Year
Modality

Concept centric Downstream task Data sourceText Image Audio Video

IMGpedia Ferrada et al. (2017) 2017 ✓ ✓ ✗ ✗ ✗ Link-prediction Wikimedia Commons, DBpedia
ImageGraph Liu et al. (2017) 2017 ✓ ✓ ✗ ✗ ✗ Local Ranking FB15k

MMKG Liu et al. (2019) 2019 ✓ ✓ ✗ ✗ ✗ Link-prediction, Reasoning FB15k, DB15k, YAGO15k, Search Engine
Richpedia Wang et al. (2020) 2020 ✓ ✓ ✗ ✗ ✗ Retrieval Wikidata, Wikimedia, Search Engine

VisualSem Alberts et al. (2021) 2020 ✓ ✓ ✗ ✗ ✗ Retrieval BabelNet
MarKG Zhang et al. (2022) 2023 ✓ ✓ ✗ ✗ ✗ Link-prediction, Reasoning Wikipedia, Search Engine

AspectMMKG Zhang et al. (2023b) 2023 ✓ ✓ ✗ ✗ ✗ Entity aspect linking Wikipedia, Search Engine
VTKG Lee et al. (2023) 2023 ✓ ✓ ✗ ✗ ✓ Link-prediction ConceptNet, WordNet

TIVA-KG Wang et al. (2023) 2023 ✓ ✓ ✓ ✓ ✗ Link-prediction Wikipedia, Search Engine
UKnow Gong et al. (2024) 2024 ✓ ✓ ✗ ✗ ✗ Reasoning, Retrieval Wikipedia, News

M2ConceptBase Zha et al. (2024) 2024 ✓ ✓ ✗ ✗ ✓ VQA Image-text Corpora, Encyclopedia, LLM
VAT-KG 2025 ✓ ✓ ✓ ✓ ✓ AQA, VQA, AVQA Video-Audio-Text Corpora, Encyclopedia, LLM

MMKG Liu et al. (2019), which aligns three knowledge graphs across FB15K Bordes et al. (2013),
DBpedia Auer et al. (2007), and YAGO Suchanek et al. (2007), enriching each entity with images and
numerical attributes to support multi-relational link prediction and entity matching. As summarized
in Tab. 1, recent studies have effectively leveraged visual information for multimodal reasoning,
enriching semantic representations and broadening knowledge coverage. Richpedia Wang et al.
(2020) and VisualSem Alberts et al. (2021) aim to establish high-quality multimodal knowledge
graphs by retrieving and filtering relevant visual and textual data. In addition, MarKG Zhang et al.
(2022) transfers MMKGs to analogical reasoning by constructing a multimodal benchmark grounded
in cross-modal relational patterns. Despite recent advances, MMKGs fall short of comprehending
entities holistically, as they often rely on narrowly scoped perspectives and overlook the diverse
attributes of entities. To tackle these problems, AspectMMKG Zhang et al. (2023b) designs the
first aspect-aware multimodal KG, linking entities to multiple aspect-specific images to capture
fine-grained semantic facets of each entity. VTKG Lee et al. (2023) attaches visual context to
both entities and relational triples while providing textual descriptions for each entity and relation.
TIVA-KG Wang et al. (2023) uniquely grounds multimodal data (i.e., text, image, video, audio) at the
triple level to capture complex relations beyond simple entity-media links. UKnow Gong et al. (2024)
integrates entity- and concept-level knowledge from images and text under one framework, enabling
unified cross-modal reasoning beyond image-text pair corpora. Recently, M2ConceptBase Zha et al.
(2024) is to provide a concept-centric multimodal knowledge base designed for fine-grained alignment
between visual content and semantic concepts.

2.2 MULTIMODAL LARGE LANGUAGE MODEL

Recent advances in Multimodal Large Language Models (MLLMs) have proven that general-purpose
reasoning capabilities can be grounded beyond language, leveraging visual, auditory, and spatial
modalities in various open-ended tasks (e.g., Visual Question Answering, Image Captioning, among
others). Early models such as Flamingo Alayrac et al. (2022) and BLIP-2 Li et al. (2023b) pioneered
connecting frozen LLMs with vision encoders, laying the groundwork for multimodal reasoning.
Scaling efforts from LLaVA Liu et al. (2023) to GPT-4V Achiam et al. (2023) further advanced
generalist visual understanding through large-scale pre-training and instruction tuning. Beyond vision,
SALMONN Tang et al. (2023) incorporates audio inputs into an LLM by integrating speech and sound
encoders, allowing the model to handle speech recognition, auditory question answering, and music
understanding within one framework. For audio–visual understanding, Video-LLaMA Zhang et al.
(2023a) and its successor Video-LLaMA2 Cheng et al. (2024) incorporated temporal vision features
and audio cues, using a Video-Q-Former together with an ImageBind-based Girdhar et al. (2023)
Audio-Q-Former. Most recently, Qwen2.5-Omni Xu et al. (2025) exemplifies strong omni-input
reasoning, showcasing the shift toward models capable of seamlessly handling diverse modalities.

3 DATASET CONSTRUCTION METHOD

In this section, we provide a detailed explanation of how VAT-KG is constructed, along with key
statistics highlighting its quality. Sec. 3.1 outlines our four-step construction pipeline, while Sec. 3.2
presents detailed statistics. The overall construction process is illustrated in Fig. 3. Additional
implementation details for VAT-KG construction are provided in Appendix C.1.
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Figure 3: An overview of the VAT-KG construction pipeline. The construction of VAT-KG
involves four stages: (1) Multimodal Alignment Filtering, ensuring correlation across modalities;
(2) Knowledge-Intensive Recaptioning, which transforms base text into rich, knowledge-intensive
caption based on meta information; (3) Multimodal Triplet Grounding, which aligns triplets with
corresponding multimodal context; (4) Cross-Modal Description Alignment, which retrieves fine-
grained descriptions from external knowledge bases and matches them to each multimodal triplet.

3.1 VAT-KG CONSTRUCTION PIPELINE

Stage 1: Multimodal Alignment Filtering Inspired by Zha et al. (2024), our multimodal knowledge
graph construction begins with a multimodal corpus comprising video, audio, and text (caption or
label). Given that our MMKG is designed such that each triplet is represented by a set of multimodal
data, it is essential that all modalities are strictly aligned to a shared semantic context. Therefore, our
construction of VAT-KG must begin with multimodal corpus with strong alignment between audio,
visual, and textual modalities. However, while most existing multimodal datasets are constructed as
video-text datasets Wang et al.; Nan et al. (2025); Bain et al. (2021), they often overlook audio-visual
correlations. Although datasets used for audio classification Chen et al. (2020); Gemmeke et al.
(2017) or audio-visual tasks Sun et al. (2024) typically exhibit strong correlations between audio and
visual modalities, they often suffer from noise and overlook visual-textual alignment. Therefore, we
designed a Multimodal Alignment Filtering stage that measures the relevance between text captions
and other modalities, enabling the selection of well-aligned multimodal data. Following a similar
approach to Sun et al. (2024), we first perform Voice-over Filtering. We use a pretrained audio
tagging model Schmid et al. (2023) to predict tags of sound, and if the top-5 predictions contain
both speech and audio labels, we regard the sample as an explanatory video with background music
and remove it. Such data are excluded because the auditory information does not match the visual
and textual modalities. Next, we perform Audio-Text Relevance Filtering using the off-the-shelf
CLAP Wu et al. (2023) model. We extract audio and text features using CLAP and compute their
cosine similarity, filtering out samples with low scores. This step removes cases where the audio does
not align with the overall multimodal context–such as background music or sound effects in edited
videos. Finally, to ensure consistency between video and text, we perform Video-Text Relevance
Filtering leveraging ViCLIP Wang et al.. Following a similar approach to audio-text relevance
filtering, we extract video and text features with ViCLIP and compute their cosine similarity. We then
remove the bottom 10% of multimodal samples with the lowest similarity scores. After a rigorous
filtering process, we extract the center frame of each video, which serves as the visual representation
in VAT-KG.

Stage 2: Knowledge-Intensive Recaptioning Given curated multimodal corpora with strong cross-
modal correlations, we expect the corresponding textual data to exhibit knowledge-intensive prop-
erties. Since we extract triplets from textual data using an LLM, the text must contain fine-grained
details to construct knowledge-intensive MMKG. However, most existing large-scale multimodal
datasets Wang et al.; Xiong et al. (2024b); Chen et al. (2024) rely on automatic captioning using
MLLMs. While the generated text captions sufficiently capture the overall context, they are limited
by the knowledge of the MLLMs and often omit fine-grained details, such as object-level semantics.
To enrich the base text captions with knowledge-intensive content, we design a Knowledge-Intensive
Recaptioning stage that leverages additional metadata (video title and description) crawled from
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YouTube. During this stage, data for which such metadata could not be retrieved due to privacy
restrictions or limited availability are excluded. We reconstruct the original textual data using a
cutting-edge LLM Guo et al. (2025), which takes both the original text and the retrieved metadata as
input and generates refined captions, guided by a carefully designed prompt. Through this process,
the reconstructed text captions go beyond describing the overall context and begin to incorporate
background knowledge and fine-grained semantic details. As a result, the textual data becomes
significantly more knowledge-intensive and informative than the original one.

Stage 3: Multimodal Triplet Grounding Building on the knowledge-intensive captions from the
previous stage, we designed the third stage leveraging LLM Guo et al. (2025) and ViCLIP Wang
et al. to extract and associate fine-grained triplets with corresponding multimodal data. Extracting
KG triplets from text using LLMs has been an active area of research, with studies demonstrating
the effectiveness and applicability of this approach for automatic KG construction Pan et al. (2024);
Zhang & Soh (2024). Inspired by these previous works, we utilize a cutting-edge LLM to generate
multiple candidate triplets from each caption. In addition, motivated by prior work Brown et al. (2020)
showing in-context learning, we thoughtfully design a prompt for triplet grounding that includes
in-context examples. As the text caption mostly contains multiple knowledge elements, the LLM
typically generates several candidate triplets for each caption. To select the triplet that best reflects
the corresponding multimodal data, we leverage ViCLIP. Given n candidate triplets, we convert each
triplet into a natural language sentence denoted as (T1, T2, ..., Tn) by concatenating its head, relation,
and tail. We then encode these sentences using ViCLIP’s text encoder to obtain their corresponding
embeddings (T e

1 , T
e
2 , ..., T

e
n). To determine which triplet best represents the multimodal input, we

select the triplet with the highest inner product between its text embeddings and the corresponding
video embedding V e. This stage yields knowledge-intensive triplets that are best aligned with the
multimodal data.

Stage 4: Cross-Modal Description Alignment In the final stage, to make our knowledge graph
concept-centric, which provides detailed information for each associated concept, we crawl rich
textual descriptions from multiple knowledge bases and link them to their corresponding multimodal
concepts. For knowledge bases, we utilize Wikipedia, Wiktionary, and LLM (e.g. DeepSeek-R1)
to mine detailed encyclopedic descriptions. Since the meaning of a single text concept may vary
significantly depending on the multimodal context (e.g. concept goal may refer to a personal ambition
or a soccer score), we collect a maximum of 5 candidate descriptions per concept from external
knowledge bases. As Wikipedia and Wiktionary are manually curated with high reliability, they
are prioritized as primary sources during the crawling process. While two knowledge bases offer
high-quality descriptions, they do not cover all textual concepts. To compensate for this limitation,
we leverage the implicit knowledge of LLM to supplement missing descriptions, ensuring that each
concept contains a detailed textual explanation. After obtaining detailed descriptions for all concepts,
we select the description that best matches the semantic content for each multimodal data. Following
a similar approach to Zha et al. (2024), we first compute an attention-weighted video that highlights
regions relevant to the given concept. Among the triplet components, the head and tail are concepts
that can be visually grounded in the data. By following the formulation of Chefer et al. (2021),
we can localize their corresponding regions within the video. Unlike prior work Zha et al. (2024)
that matches attention-weighted images with textual descriptions, we employ ViCLIP Wang et al.
to compute attention-weighted video (Va), enabling alignment between the full video context and
corresponding concepts. After deriving the attention-weighted video, we feed each frame into ViCLIP
to extract video embeddings (V e

a ), and compute their similarity with the text embeddings of candidate
descriptions (De

1, D
e
2, ..., D

e
m). The description with the highest similarity is selected as the one that

best matches the multimodal context.

3.2 DATASET SPECIFICATIONS AND STATISTICS

In Tab. 1, we compare existing MMKGs with our proposed VAT-KG. Unlike other MMKGs, VAT-KG
is the only knowledge graph that incorporates all four modalities(text, image, audio, video) and
contains triplets enriched with concept-level descriptions at the same time. This enables VAT-KG to
be applied to multiple downstream tasks across different modalities.

We leverage four datasets–InternVid-FLT Wang et al., AudioCaps Kim et al. (2019), AVQA Yang
et al. (2022), and VALOR-32k Liu et al. (2024)–as the source multimodal corpora for constructing
VAT-KG. Due to the high computational cost arising from the large scalability of InternVid, we
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Table 2: Data sample counts at each stage of the filtering process.

Principle InternVid-
FLT(10%) AudioCaps AVQA VALOR-32k Total

Original 1,000,000 93,726 40,150 28,823 1,162,699
Audio Tagging 389,965 86,578 36,144 22,521 535,208

Audio-Text 15,490 77,964 27,864 16,945 136,568
Video-Text 13,941 70,167 25,077 15,250 124,295

Final 10,762 59,808 24,999 15,217 110,786

Human
18%

Vehicle
25%

Sport
8%

Nature
6%

Music
5%

Animal
22%

Tools
4%

Other
12%

(c) Data Category

1~20 words
29%

21~40 words
42%

41~60 words
11%

61~80 words
7%

81~100 words
5%

101~ words
6%

(b) Description Word Count

1 data
87%

2 data
7%

3 data
2%

4 data
1%

over 5 data
3%

(a) Number of Data per Concept

Figure 4: Statistics of VAT-KG. (a) VAT-KG contains diverse concepts that are represented through
varied multimodal data. (b) Concept-level descriptions linked to VAT-KG concepts are sufficiently
comprehensive and informative. (c) VAT-KG ensures diversity across categories.

sample 10% of the InternVid-FLT for VAT-KG construction. For all datasets, only the training split
is used for construction. Tab. 2 presents the number of data filtered at each step of the Multimodal
Alignment Filtering process. Unlike the other datasets, InternVid-FLT shows a larger reduction in
data during the filtering process. This is expected, as InternVid is originally designed for video-
text tasks and does not explicitly ensure strong audio associations, which naturally results in more
samples being filtered in our audio-related alignment filtering steps. A carefully designed filtering
process retains 124,295 high-quality instances with strong cross-modal correlation from an initial
1,162,699. Following the exclusion of samples without meta information in the Knowledge-Intensive
Recaption stage, we finally use 110,786 multimodal data to construct VAT-KG. After completing the
remaining construction stages, we obtain a total of 102,203 unique concepts and 110,786 triplets,
each paired with corresponding multimodal data. We additionally validate the quality of VAT-KG
through comprehensive human evaluation, with details provided in Appendix D.1.

Fig. 4 presents overall statistics of our VAT-KG, including the number of multimodal data per concept,
description length distribution, and category distribution. Following a similar approach to Xiong
et al. (2024a), we use BART Lewis et al. (2020) for categorization by first converting each triplet into
a natural language sentence via concatenation and then providing it as input. We adopt the category
taxonomy used in Geng et al. (2023).

4 MULTIMODAL RAG FRAMEWORK

Given that existing RAG frameworks Jian et al. (2024); Jeong et al. (2025) do not jointly consider
video, audio, and text, we design a multimodal RAG framework tailored to the modality coverage
of VAT-KG, supporting AQA, VQA, and AVQA tasks. As illustrated in Fig. 5, our model retrieves
concept-level knowledge from VAT-KG in response to queries from arbitrary modalities and serves
fine-grained, contextually aligned knowledge to MLLMs. Our framework is composed of three main
components. Additional implementation details are provided in Appendix C.2.

4.1 MODALITY-AGNOSTIC RETRIEVAL

Given a query from an arbitrary modality, we first encode the input data using appropriate multimodal
foundation models (e.g. ViCLIP for video and CLAP for audio) to obtain the corresponding query
embedding (V e or Ae). We then retrieve up to five relevant triplets by comparing the query embedding
against triplet embeddings computed from linked data of the same modality as the query. Retrieval is
restricted to candidates within a predefined L2 distance threshold in the VAT-KG embedding space.
The embedding space of VAT-KG is indexed with FAISS Johnson et al. (2019) for fast retrieval. For
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Figure 5: An overview of Multimodal RAG Framework. Given a query from any modality (audio,
video, or text), (1) Modality-Agnostic Retrieval retrieves up to five semantically relevant triplets from
VAT-KG based on embedding similarity; (2) Retrieval Checker filters out misaligned triplets by using
the text encoder of the same multimodal foundation model; (3) Augmented Generation with MLLMs
that support audio-visual understanding.

AVQA, which requires reasoning over both audio and video modalities, we simply concatenate the
audio and video embeddings to form a joint query embedding (AV e). Similarity-based retrieval
is then performed in the VAT-KG embedding space using the same distance metric as used for
single-modality queries.

4.2 RETRIEVAL CHECKER

Although we retrieve semantically relevant triplets by performing a similarity-based search using
multimodal foundation models, these models often fail to capture fine-grained details despite capturing
overall context well. As a result, the retrieved triplet may not precisely match the intent or specific
semantics of the query. Inspired by recent re-ranking strategies Abootorabi et al. (2025); Mortaheb
et al. (2025) in multimodal RAG, we design a Retrieval Checker module to verify whether the
retrieved triplets are semantically aligned with the input query. First, we convert each triplet into
a natural sentence by simply concatenating its head, relation, and tail. Then, these sentences are
encoded into text embeddings (T e

1 , T
e
2 ...T

e
5 ) using the text encoder of the same multimodal foundation

model used during retrieval, in order to place them in the same embedding space as the query for
comparison. Next, we measure the similarity between the query embedding and the text embeddings.
If the similarity falls below a predefined threshold, indicating a mismatch with the query context, the
triplet is discarded. This double-checking mechanism ensures more precise retrieval by filtering out
triplets with subtle semantic mismatches, thereby mitigating potential hallucinations from loosely
relevant retrievals.

4.3 AUGMENTED GENERATION WITH MLLMS

As our Multimodal RAG baseline model supports audio-visual retrieval, we adopt MLLMs that are
designed to jointly understand both audio and video inputs. Following the retrieval of query-relevant
triplets from VAT-KG, we utilize the descriptions linked with their head and tail concepts. We feed
the input question along with the head and tail, as well as their corresponding descriptions, into
MLLMs, enabling a multimodal RAG process that incorporates aligned concept-level knowledge.

5 EXPERIMENT

In this section, we evaluate the effectiveness of VAT-KG using our multimodal RAG framework.
Sec. 5.1 describes the experimental setup, while Sec. 5.2 presents the performance of our model
across various Question-Answering tasks. Additional ablation studies and extended experimental
results are provided in Appendix E.
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Table 3: Overall performance. We report M.J. (Model-as-Judge) Wang et al. (2025) scores; higher
is better. VAT-KG yields the highest performance improvements, highlighted in bold.

Method Knowledge Graph
Audio QA Video QA Audio-Visual QA

AudioCaps-QA VCGPT AVQA VALOR

VideoLLaMA2 None 43.13 39.09 93.19 25.66
VideoLLaMA2 Wikidata 43.58 38.58 92.70 26.43
VideoLLaMA2 VTKG 43.02 38.88 90.52 25.92
VideoLLaMA2 M2ConceptBase 42.19 39.31 92.92 25.93
VideoLLaMA2 VAT-KG 44.60 39.42 93.28 28.30
Qwen2.5-Omni None 49.00 42.21 93.05 32.42
Qwen2.5-Omni Wikidata 49.78 40.82 92.90 30.28
Qwen2.5-Omni VTKG 48.95 42.96 92.67 32.70
Qwen2.5-Omni M2ConceptBase 49.78 42.78 92.28 32.31
Qwen2.5-Omni VAT-KG 51.30 43.50 93.07 35.44

Video-LLaMA2 + M2ConceptBase

Video-LLaMA2

Video-LLaMA2 + VAT-KG (Ours)

“ The video shows a person using a remote control to turn on a light . 
The person is also seen using a colorful button on a keyboard, a white box with buttons 
and lights, and a musical instrument with colorful buttons. There is a close-up of the 
person’s hands typing on a keyboard with colorful buttons.” 

“ The video shows a person using a remote control to turn on a light. The person is also 
seen using a colorful button on a table, keyboard, and electronic device. There are also 
close-ups of the person's hands typing on a keyboard and using a music maker. The 
video also features concepts such as computer music, charging heads, and the idea of a 
\"rich fruit\" or \"fruit king.\” 

“ The video shows a person using a synthesizer to make music. 
The person is playing the synthesizer with their hands, creating a rhythmic and 
melodic sound. The synthesizer has many buttons and knobs that the person is using to 
create different sounds. The video also shows a close-up of the person's hands as they 
play the synthesizer. ”

Qwen2.5 - Omni + M2ConceptBase

Qwen2.5 - Omni

Qwen2.5 - Omni + VAT-KG (Ours)

“ A blurry image of a hamster cage is shown, with a pink and white plastic swing 
hanging from the top. The cage is placed on a wooden surface, and there is a small 
green bowl filled with food on the left side of the cage. The cage is surrounded by a 
white fence, and there are some lights visible in the background. The hamster is not 
visible in the video.”

“ The video begins with a blurry close-up of a hand, which is partially obscuring the 
view. As the camera focuses, a wooden surface comes into view, revealing a small, 
colorful toy boat in the background. The boat is pink with white and red accents, and it 
appears to be part of a larger playset. The wooden surface is shiny, reflecting light and 
possibly water droplets scattered across it.”

“ The video depicts a close-up view of a hamster's cage, focusing on the hamster's 
activities. The hamster is seen moving around inside the cage, which is placed on a 
wooden surface. The cage is made of mesh material, allowing visibility of the hamster's 
movements. In the background, there are colorful objects, possibly toys or accessories 
for the hamster, adding a playful element to the scene.”

Prompt
Describe in detail what is visually and audibly happening in the video, including actions, objects, people, sounds, and envir onment. 
Be specific and concise.

Figure 6: Qualitative comparison on AVQA task. Incorrect responses are highlighted in red, while
correct answers are shown in blue.
5.1 EXPERIMENTAL SETTINGS

Datasets We adopt a diverse set of QA benchmarks covering audio, visual, and audio-visual modalities
to comprehensively evaluate the performance of our model across various modalities. For the AQA
task, we evaluate our model on the AudioCaps-QA Wang et al. (2025). For the VQA task, we
adopt the VideoChatGPT (VCGPT) benchmark Maaz et al. (2024). For the AVQA task, we select
AVQA Yang et al. (2022) and VALOR Liu et al. (2024) for benchmark. While VALOR was originally
designed for audio-visual captioning, we adopt it for evaluating the AVQA task, as in prior work Ye
et al. (2024). For each benchmark except VCGPT, we use the subgraph of VAT-KG that is built
upon the training set of the corresponding dataset to better match the knowledge domain with the
benchmark. Only for VCGPT, we employ a subgraph of VAT-KG constructed from 10% of the
InternVid-FLT dataset for multimodal RAG.

Baseline MLLMs For the baseline MLLMs, we employ VideoLLaMA2 Cheng et al. (2024) and
Qwen2.5-Omni Xu et al. (2025), both of which are advanced models capable of jointly processing
audio and visual inputs. These models have demonstrated strong performance in understanding
multimodal data simultaneously across visual, auditory, and textual modalities. We further adopt
commercial MLLMs (e.g. GPT-4o, Gemini-2.5); results are reported in Appendix E.2.

Knowledge Graphs Comparison To thoroughly examine the benefits that knowledge from VAT-KG
brings to MLLMs, we conduct a comprehensive comparison against three knowledge graphs, namely

8
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Wikidata5M Wang et al. (2021), VTKG Lee et al. (2023), and M2ConceptBase Zha et al. (2024). A
detailed description of each knowledge graph and its integration into the multimodal RAG framework
are provided in the Appendix C.3.

Evaluation Metrics Given that the majority of our benchmarks involve open-ended QA, we employ
the Model-as-Judge (M.J.) approach as our evaluation metric. To avoid high cost and inconsistency
caused by version changes in cloud-based commercial models like GPT-4 Achiam et al. (2023), we
adopt the open-source M.J. methods proposed in recent work Wang et al. (2025). In addition, we
complement this automatic evaluation with human assessment, as described in Appendix D.2.

5.2 EXPERIMENTAL RESULTS

We evaluate our Multimodal RAG baseline by comparing the performance of baseline MLLMs with
and without its integration, and also report comparisons with diverse knowledge graphs.

Quantitative Results We summarize the overall performance on Audio QA (AQA), Video QA (VQA),
and Audio-Visual QA (AVQA) tasks in Tab. 3. Our multimodal RAG framework, when leveraging
VAT-KG, consistently yields the highest performance across all tasks, significantly improving the
baseline capabilities of both VideoLLaMA2 Cheng et al. (2024) and Qwen2.5-Omni Xu et al.
(2025). These improvements stem from VAT-KG’s capability to provide knowledge directly linked to
multimodal content, enabling retrieval that is more relevant and contextually aligned with arbitrary
multimodal queries. In contrast, knowledge retrieved from other knowledge graphs provides only
marginal gains—or in some cases even degrades performance—highlighting their limited utility in
multimodal tasks.

The advantage of VAT-KG is most pronounced in the AVQA task, where queries require knowledge
retrieval considering both spatial and temporal features of audio and video inputs. In such settings,
existing knowledge graphs often lead to performance degradation, whereas VAT-KG achieves notable
and consistent improvements. These results underscore that existing large-scale KGs and MMKGs
remain insufficient for real-world scenarios requiring both audio and visual understanding, as their
knowledge grounding is restricted primarily to image or text modalities.

Qualitative Results Fig. 6 shows qualitative comparison results on the AVQA task. Without RAG,
both VideoLLaMA2 and Qwen2.5-Omni fail to generate appropriate responses, often misinterpreting
the scene or hallucinating irrelevant content. For instance, VideoLLaMA2 fails to describe the
musical instrument shown in the video, while Qwen2.5-Omni entirely misses the object depicted in
the scene. When leveraging M2ConceptBase, the retrieved knowledge is often misaligned with the
context of queries, leading to unrelated responses and reinforcing hallucination.

In contrast, with VAT-KG, both models benefit from access to fine-grained, contextually aligned
knowledge grounded in both video and audio. For example, in the case of VideoLLaMA2, knowledge
retrieved from VAT-KG enables the model to accurately identify the object as a synthesizer producing
music. For Qwen2.5-Omni, the knowledge retrieved from VAT-KG helps the model correctly interpret
the scene, capturing the contextual status of the object more faithfully. These results demonstrate
the effectiveness of VAT-KG in providing aligned, concept-centric knowledge across both visual and
auditory modalities, ultimately reducing hallucination and improving response accuracy.

6 CONCLUSION

In this work, we address the challenge that advanced MLLMs often hallucinate while lacking MMKGs
with diverse modalities and fine-grained concept-level knowledge. We propose VAT-KG, the first
knowledge-intensive and concept-centric MMKG that comprehensively covers visual, audio, and
text modalities, constructed from carefully filtered datasets with strong cross-modal alignment. We
also introduce a multimodal RAG framework that retrieves and delivers highly relevant, fine-grained
knowledge in response to queries across different modalities. Experimental results on downstream
tasks underscore the practical value of VAT-KG, demonstrating its ability to serve diverse and detailed
knowledge. We believe that our VAT-KG and multimodal RAG framework will serve as valuable
resources for future work on mitigating hallucinations in multimodal large language models and
constructing aligned multimodal knowledge.
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ETHICS STATEMENT

All datasets used in this work are publicly available multimodal resources that were originally released
as part of published academic work. Each dataset is distributed under permissive open-source licenses
(e.g., CC-BY-4.0, MIT), and we adhered to the respective licensing terms. During the construction
of VAT-KG, we exclude any YouTube videos that have been deleted, set to private, or otherwise
restricted, ensuring that only content explicitly made public by the uploader is included. This
procedure mitigates potential privacy risks and reduces the likelihood of unintentional user data
exposure. Following established practive in prior multimodal datasets, we release only YouTube
video IDs rather than raw multimedia content, in compliance with YouTube’s Terms of Service. To
further safeguard responsible use, we conducted a content safety analysis combining Google Cloud’s
SafeSearch API with manual inspection, which confirmed the absence of violent, adult, or otherwise
inappropriate material.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we release all resources associated with this work, including the dataset
construction pipeline, the multimodal RAG framework, and the curated VAT-KG dataset, through our
public HuggingFace repository. Implementation details are provided in the Appendix (see Section C).
In addition, we include a detailed description of the open-source datasets and codes used in our
work in the Appendix (See Section A). Together, these resources allow independent researchers to
reproduce our results and extend our framework with minimal effort.
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APPENDIX

In this appendix, we provide supplementary details and analyses to support the main paper. We begin
by outlining the usage of open-source datasets and codes (Appendix A), followed by a discussion of
the limitations of our approach (Appendix B). We then present additional implementation details for
both the VAT-KG construction pipeline and the multimodal RAG framework (Appendix C), describe
the setup and results of our human evaluation (Appendix D), and conclude with further experimental
analyses and ablations (Appendix E).

A USAGE OF OPEN SOURCE DATASETS AND CODES

We release the full implementation of the VAT-KG construction pipeline and the Multimodal RAG
framework at https://huggingface.co/iclr26/VATKG_CODE. The VAT-KG dataset is
publicly available at https://huggingface.co/datasets/iclr26/vat_kg. For more
details, please visit our project page at https://iclrvatkg.github.io/.

Licenses The dataset is provided under the CC BY-NC 4.0 license and is intended solely for non-
commercial research and educational use.

B LIMITATIONS

A limitation of our work is that our VAT-KG construction must be built upon multimodal corpora
containing video, audio, and text captions. As a result, the diversity of VAT-KG is inherently
dependent on the underlying multimodal datasets used during construction. VAT-KG has a smaller
data scale compared to other multimodal datasets. Nevertheless, all data included in VAT-KG undergo
a rigorous filtering process, ensuring high multimodal correlation and overall quality. We plan to
expand the scale of the dataset in future versions to improve coverage and generalization.

C IMPLEMENTATION DETAILS

C.1 VAT-KG CONSTRUCTION

In this section, we provide additional implementation details for the VAT-KG construction process.

C.1.1 DETAILS OF CONSTRUCTION PIPELINE

During Audio-Text Relevance filtering in Stage 1, we filter out data samples whose cosine similarity
between CLAP Wu et al. (2023) audio embeddings and text embeddings falls below 0.2. In Stages 2
and 3 (Knowledge-Intensive Recaptioning and Multimodal Triplet Grounding), we use DeepSeek-R1-
Distill-Llama-70B Guo et al. (2025), the largest variant among the available DeepSeek-R1 distilled
models, to avoid the high cost of commercial APIs (e.g. GPT-4), which are commonly used in other
KG construction pipelines Zha et al. (2024); Zhang & Soh (2024).

The LLM prompt used in Knowledge-Intensive Recaptioning is shown in Fig. 7. Fig. 8 presents the
prompt employed for Multimodal Triplet Grounding, which includes in-context examples to guide
triplet extraction.

For description crawling in the Cross-Modal Description Alignment stage, we utilize DeepSeek-R1-
Distill-Llama-8B as the knowledge base. Since it is used as a sub-knowledge base supporting other
knowledge bases, we choose a lighter LLM to reduce inference overhead. The LLM is prompted with
the template shown in Fig. 9 to generate candidate descriptions for the given concept. All construction
stages use a single H100 GPU (80GB), except Stage 2 and Stage 3, which use two GPUs.

C.1.2 DATASETS FOR VAT-KG CONSTRUCTION

InternVid-FLT InternVid-FLT Wang et al. is a large-scale multimodal dataset consisting of 10 million
videos and their corresponding rich text captions with high video-text correspondence. The video
data is scraped from YouTube across diverse content categories, while the captions are synthesized
by an LLM from coarse to fine-grained levels.

15

https://huggingface.co/iclr26/VATKG_CODE
https://huggingface.co/datasets/iclr26/vat_kg
https://iclrvatkg.github.io/
https://creativecommons.org/licenses/by-nc/4.0/


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

You are a Video understanding expert specializing in refining video descriptions.
Given information about one video, your task is to rewrite its caption using additional metadata.
Here is the provided data:
- Video Caption: {video_caption}
- YouTube Title: {youtube_title}
- YouTube Description: {youtube_description}
Your goal is to create a new caption that combines the information from the video caption, YouTube 
title, and YouTube description. The new caption should be a single paragraph with full sentences in 
English and should be coherent and informative.

- Do not simply concatenate the inputs. Instead, synthesize them naturally.
- Verify the relevance of the YouTube title and description before using them. If they align with 

the video caption, incorporate useful details; otherwise, rely primarily on the video caption.
- The output must be a complete and well-structured sentence.
- Do not explain your reasoning. Do not include any extra text. Only output the final sentence.

The final rewritten caption is:

Prompt Details for Knowledge-Intensive Recaptioning

Figure 7: Prompt Details for Knowledge-Intensive Recaptioning. We prompt the LLM with
YouTube metadata (title and description) to generate knowledge-intensive textual data.

You are an expert in extracting structured knowledge from text.
Given a video caption, extract all possible subject-relationship-object triples in the form (h, r, t).

Instruction
- Extract multiple (h, r, t) triples if applicable.
- Ensure each triple is meaningful and correctly represents the relationships in the text.
- Format the output as a list of triples.

Examples
Caption: “A man is kicking a soccer ball.”
Output: (man, kicks, soccer ball)

Caption: “A man is kicking a soccer ball while a dog is running nearby.”
Output:
(man, kicks, soccer ball)
(dog, runs, nearby)

Caption: “A chef is cutting vegetables on a wooden board, and a waiter is bringing a dish.”
Output:
(chef, cuts, vegetables)
(chef, works_on, wooden board)
(waiter, brings, dish)

Caption: “{video_caption}”
Output Format: (h, r, t), no explanation.
Output:

Prompt Details for Triplet Grounding

Figure 8: Prompt Details for Triplet Grounding. To extract triplets from knowledge-intensive
textual data, we provide in-context examples to guide LLM, facilitating accurate triplet grounding.
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Instruction

Explain the concept of ‘{concept}’ in a formal and concise English sentence.

Response

Prompt Details for Description Crawling from LLM

Figure 9: Prompt Details for Description Crawling from LLM. This prompt is used to mine
concept-level descriptions from the LLM-based knowledge base.

Visual :

Text: “In the dark, an owl stood 
on the rock and muttered, its 
feathers shaking in the wind.”

Audio : Sound of owl cuckoo

Visual :

Text: “a screen shows a 
computer with a script on.”

Audio : Explanation with BGM
Text: “three kittens eating from 
bowls with food on.”

Audio : Only BGM

Visual :

Audio : People speaking & siren
Text: “high pitched squeaking 
with people speaking and 
sirens in the distance.”

Visual :

Multimodal Alignment Filtering
Filter Out

Knowledge-Intensive Caption: In the dark of night, a rare desert tawny owl (strix hadorami) 
stands on a rock, its feathers ruffled by the wind, captured in the Judean Desert, Israel.

Triplet: “desert tawny owl” ; “stands_on” ; “rock” 

Description: 
• desert tawny owl: The desert owl or desert tawny owl (Strix hadorami) formerly known as 

Hume’s owl, is a species of owl. It is..
• rock: In geology, rock (or stone) is any naturally occurring solid mass or aggregate of 

minerals or mineraloid matter. It is..

Retain

Figure 10: Qualitative visualization of the VAT-KG pipeline stages. Given a raw multimodal
corpus, our construction pipeline filters out samples with cross-modal mismatches and builds a
knowledge-intensive, concept-centric multimodal knowledge graph through the subsequent stages.

AudioCaps AudioCaps Kim et al. (2019) is a large-scale audio-text dataset built upon AudioSet Gem-
meke et al. (2017), consisting of human-written captions that describe audio events in detail. While
AudioCaps was originally developed for the audio captioning task, its underlying dataset, AudioSet,
is built upon YouTube crawled videos, which we leverage as the visual modality in VAT-KG.

AVQA AVQA Yang et al. (2022) is a question answering dataset designed to reflect real-world
scenarios that require both audio and visual modalities for accurate reasoning. Built upon VGG-
Sound Chen et al. (2020), which includes 309 class-level text labels, we incorporate these labels as
textual inputs during VAT-KG construction.

VALOR VALOR Liu et al. (2024) is a multimodal dataset designed for audio-visual-language
pretraining, containing rich audio-visual captions annotated by humans. For VAT-KG construction,
we utilize VALOR-32k, which offers a more balanced distribution of audio classes compared to the
larger VALOR-1M variant.

C.1.3 VISUALIZATION OF VAT-KG CONSTRUCTION

In Fig. 10, we visualize the intermediate outputs from each stage of VAT-KG construction. Our
Multimodal Alignment Filtering stage strictly filters out samples with mismatches among visual,
audio, and textual modalities, ensuring that only highly aligned multimodal data are retained for
VAT-KG construction. In the second stage, Knowledge-Intensive Recaptioning, the coarse concepts
(owl) are transformed into more knowledge-intensive ones (desert tawny owl). The third stage,
Multimodal Triplet Grounding, generates candidate triplets and selects one that best aligns with the
multimodal context. Finally, in the Cross-Modal Description Alignment stage, we mine and align
concept-level descriptions that are semantically consistent with the given multimodal data.
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Question

Hint: You are provided with a set of concepts and their descriptions in the form of key-value pairs.

These concepts may or may not be directly related to the given video.

When generating your answer, identify any concepts that appear to be relevant to the video's content, 

and incorporate their corresponding descriptions to enrich and elaborate your response.

Below are concepts and their descriptions (concept: description).

{concept_1}:{description_1}

{concept_2}:{description_2}

...

{concept_N}:{description_N}

Prompt Details for Multimodal RAG Framework

Figure 11: Prompt Details for Multimodal RAG Framework. Our multimodal RAG framework
provides MLLM with N concept-description pairs stringently selected through the retrieval checker.

C.2 MULTIMODAL RAG FRAMEWORK

In this section, we provide additional implementation details of the multimodal RAG framework.
After retrieving N query-relevant triplets and descriptions via modality-agnostic retrieval and the
checker, the retrieved knowledge is injected into MLLMs using the prompt template in Fig. 11.

C.3 KNOWLEDGE GRAPHS FOR COMPARISON

In this section, we provide a detailed description of each knowledge graph used in our comparison,
together with their integration into our multimodal RAG framework.

Wikidata5M Wikidata5M Wang et al. (2021) is a large-scale knowledge graph derived from Wikidata,
comprising about 5 million entities, 20 million triplets, and aligned entity descriptions from Wikipedia.
Since it consists solely of textual information, we project its textual data into a shared representation
space using a text encoder from multimodal foundation model Wu et al. (2023); Wang et al., enabling
retrieval of knowledge relevant to a given multimodal query.

VTKG VTKG Lee et al. (2023) is a concept-centric multimodal knowledge graph that aligns
visual evidence with textual descriptions for entities and relations. However, it releases only pre-
computed image embeddings from a ViT-Base model Wu et al. (2020) without raw multimodal data.
Accordingly, for visual queries, knowledge retrieval is performed in the ViT-Base embedding space,
and for audio queries we project VTKG’s textual data into an audio–text space using a text encoder
from CLAP Wu et al. (2023) to perform retrieval.

M2ConceptBase M2ConceptBase is our primary baseline: a concept-centric MMKG that provides
concept-level descriptions together with raw multimodal data. However, it supports only image–text
modalities. Accordingly, retrieval for visual queries is conducted in the shared CLIP Radford et al.
(2021) embedding space, while audio queries are handled in the same way as for VTKG.

D HUMAN EVALUATION

In this section, we report human evaluation results to assess both the quality and the practical utility
of VAT-KG. We recruit participants through Amazon Mechanical Turk ama (2005), a widely-used
platform for human assessment.

D.1 HUMAN EVALUATION ON VAT-KG QUALITY

To demonstrate the quality and factual integrity of VAT-KG, we conduct three user studies, each
targeting different stages of the construction pipeline.

Specially, we sampled 50 outputs each from Stage 2 (Knowledge-Intensive Recaptioning) and Stage
3 (Multimodal Triplet Grounding). Since both stages employ LLM and may therefore introduce
errors, we asked 50 human volunteers to evaluate their factual correctness.
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Table 4: Correctness for Stage 2 & Stage 3.
Human assessment for intermediate outputs.

Stage Correctness

Knowledge-Intensive Recaptioning 98.84%
Multimodal Triplet Grounding 98.40%

Table 5: Correctness for Final Triplets.

Criterion Correctness

Concept Accuracy 97.46%
Content Capture Fidelity 95.26%
Description Alignment 96.54%

Table 6: Human Evaluation on Multimodal QA Benchmarks. VAT-KG yields consistent improve-
ments across all benchmarks, highlighted in bold.

Method Knowledge Graph Audiocaps-QA VCGPT AVQA VALOR

Qwen2.5-Omni None 72.25 72.79 68.78 76.47
Qwen2.5-Omni VAT-KG 79.41 81.83 79.00 76.92

As shown in the Tab. 4, both stages achieved near-perfect correctness scores, which we attribute to
the structured nature of the tasks—i.e., paraphrasing and extraction from grounded text—rather than
open-ended generation. This aligns with recent studies Zhang & Soh (2024); Li et al. (2023a); Han
et al. (2023) showing the effectiveness and reliability of LLMs as open information extractors.

Additionally, to directly evaluate the final graph output, we randomly sampled 30 triplets from
VAT-KG and asked human annotators to assess each triplet along three criteria: (i) Concept Accuracy,
measuring whether the each concept in the triplet is presented in the multimodal data; (ii) Content
Capture Fidelity, evaluating whether the triplet captures the core semantics of the video/audio
content; and (iii) Description Alignment, assessing the attached description are well-aligned with the
underlying multimodal signals.

As shown in the Tab. 5, the evaluation results indicate that the triplets satisfy nearly all criteria,
offering strong empirical evidence that the factual quality of VAT-KG is well-preserved across its
construction stages.

D.2 HUMAN EVALUATION ON MULTIMODAL QA BENCHMARKS

As the Model-as-Judge (M.J.) evaluation may introduce bias, we complement it with human ratings
to ensure the reliability of our experimental results. We randomly sampled 10 QA pairs from each
of the four benchmarks used in the main experiments and asked 100 human participants to rate
the model-generated answers on a 0-5 scale. The final score is computed by averaging the ratings
and multiplying the mean by 20, following the same scoring scheme used in the Model-as-Judge
(M.J.) evaluation. As summarized in Tab. 6, across all benchmarks, the multimodal RAG framework
equipped with VAT-KG consistently achieved the highest human ratings.

These results provide evidence that the M.J. evaluation is aligned with human judgment and that our
method yields consistent improvements across both evaluation protocols.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ABLATION STUDY

Modality-Wise Retrieval To evaluate the utility of VAT-KG’s multimodal coverage in our multimodal
RAG framework, we conduct an ablation study on modality-wise retrieval. Specifically, we compare
four retrieval strategies for the AVQA task: retrieving knowledge from VAT-KG based on audio only,
image only (middle frame of the query video), video only, and both audio and video. This allows us
to assess the impact of leveraging all available query modalities on RAG performance.

We perform this ablation on the VALOR benchmark, using the query audio, video, or both to retrieve
relevant knowledge from the shared embedding space of VAT-KG. For the image-based retrieval
condition, we extract the middle frame from each query video to use as an image query.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Ablation study on Retrieval Checker. Applying the Retrieval Checker yields the best
performance across all benchmarks, highlighted in bold.

Method Retrieval
Checker

Audio QA Video QA Audio-Visual QA
AudioCaps-QA VCGPT AVQA VALOR

VideoLLaMA2 + VAT-KG ✗ 43.90 39.14 93.04 26.02
VideoLLaMA2 + VAT-KG ✓ 44.60 39.42 93.28 28.30
Qwen2.5-Omni + VAT-KG ✗ 50.69 43.48 93.08 33.25
Qwen2.5-Omni + VAT-KG ✓ 51.30 43.50 93.07 35.44

25.66

27.65 27.43 27.85 28.30

24.00

28.00

32.00

36.00

Ablation Study on Modality-Wise Retrieval

Video-LLaMA2

Base w/o RAG Audio Image Video Audio+Video

32.42

34.08

32.59

34.23

35.70

Qwen2.5-Omni

Figure 12: Ablation study on Modality-Wise Retrieval. We evaluate four retrieval strategies based
on the modality used: audio, image, video, and audio+video.

As shown in Fig. 12, while each unimodal retrieval condition leads to improved performance over
the MLLM baseline without RAG, the knowledge retrieval that considers both audio and visual
modalities yields the most significant performance gain. These results highlight the importance
of leveraging a wide range of modalities in MMKGs, and underscore the value of VAT-KG as a
concept-centric, knowledge-intensive resource that contains rich multimodal information.

Retrieval Checker To demonstrate the effectiveness of our proposed Retrieval Checker, we conduct
an ablation study on the retrieval checker. Tab. 7 demonstrates that the retrieval checker markedly
improves performance in our multimodal RAG framework. Although retrieved knowledge already
benefits the MLLM, applying the checker to filter for more query-relevant information yields addi-
tional gains across all QA tasks.

E.2 COMMERCIAL MLLMS WITH VAT-KG

To further demonstrate that knowledge from VAT-KG also benefits advanced commercial MLLMs,
we evaluate GPT-4o Hurst et al. (2024) and Gemini-2.5 Comanici et al. (2025) within our multimodal
RAG framework.

As shown in Tab. 8, incorporating VAT-KG leads to consistent performance improvements across
all state-of-the-art MLLMs. These findings suggest that VAT-KG is broadly effective: it enhances
relatively lightweight models by supplementing missing external knowledge, and it also improves the
response quality of strong commercial MLLMs, which can still suffer from fine-grained multimodal
grounding despite their scale.

By providing detailed, query-specific multimodal context, VAT-KG helps close these gaps and
improves overall reliability.

E.3 DIAGNOSTIC EVALUATION ON KNOWLEDGE-INTENSIVE CASES

While our approach yields consistent performance gains across diverse multimodal benchmarks,
most of these benchmarks are not designed to test knowledge-intensive scenarios. As a result, the
improvements enabled by VAT-KG may appear modest. To more directly evaluate this setting, we
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Table 8: Performance on Commercial MLLMs. Even in advanced state-of-the-art models, VAT-KG
provides consistent improvements across benchmarks, highlighted in bold.

Method Knowledge Graph Audiocaps-QA VCGPT VALOR

GPT-4o None 56.74 49.68 46.02
GPT-4o VAT-KG 57.70 51.49 55.86

Gemini2.5-Flash None 49.51 51.00 67.18
Gemini2.5-Flash VAT-KG 50.07 51.12 69.17

Table 9: Performance on Knowledge-Intensive Scenario. Incorporating VAT-KG yields substantial
performance gains on challenging QA pairs sampled from VALOR, even for commercial MLLMs.

Method Knowledge Graph Knowledge-Intensive QA

Qwen2.5-Omni None / VAT-KG 26 / 46
Gemini2.5-Flash None / VAT-KG 58 / 68
GPT-4o None / VAT-KG 44 / 74

constructed a diagnostic set of 10 knowledge-intensive QA pairs featuring challenging concepts
sampled from the VALOR benchmark (e.g., tiltrotor, locomotive, electric organ).

As shown in Tab. 9, incorporating VAT-KG produces substantial performance gains in these challeng-
ing scenarios, even for advanced commercial MLLMs. This result underscores the value of VAT-KG
in enhancing multimodal reasoning under knowledge-intensive conditions.

E.4 STATISTICAL VALIDATION OF THE MODEL AS JUDGE

To rigorously examine whether the performance gains from VAT-KG are not merely within the noise
range of the M.J. scoring framework, we conducted 10 independent trials across benchmarks. Tab. 10
reports the mean M.J. scores across 10 runs, along with the standard deviation (σ) for each setting
and p-value (p) from a t-test.

As shown in the Tab. 10, while minor fluctuations were observed, the difference remained consistently
lower than the magnitude of the average performance improvements. Crucially, the mean scores
consistently indicate clear performance improvements with VAT-KG, providing strong evidence that
the gains are not attributable to judge noise.

To further validate this, we conducted a t-test between the baseline method and the scores with
VAT-KG applied. The resulting p-value was below 0.10, confirming that the performance gains are
statistically significant and not attributable to measurement noise.

E.5 MORE QUALITATIVE RESULTS

We provide additional qualitative comparisons between the base MLLMs and our multimodal RAG
framework equipped with either M2ConceptBase or VAT-KG, on downstream tasks across modalities,
including AQA, VQA, and AVQA.

For AQA, Fig. 13 illustrates a qualitative comparison between the base MLLMs and our multimodal
RAG framework using VAT-KG. Our framework effectively retrieves knowledge relevant to the query
audio from VAT-KG and provides contextually appropriate information, guiding MLLMs toward
more accurate responses.

For VQA, as illustrated in Fig. 14, MLLMs struggle to capture knowledge-intensive concepts such
as “discus” or “Tai Chi”. Concept-level knowledge provided by M2ConceptBase often fails to assist
the MLLMs and, in some cases, introduces misleading information that exacerbates hallucination. In
contrast, our framework retrieves contextually relevant knowledge from VAT-KG based on the query
video, helping the MLLMs better understand and reason about complex concepts present in the scene.

Similarly, in the AVQA task, MLLMs struggle to capture knowledge-intensive concepts in the scene
that also require joint understanding over both audio and visual modalities. Furthermore, image-based
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Table 10: Statistical Validation of M.J. Evaluation. Mean scores across 10 independent trials with
standard deviation (σ) and t-test p-values (p), showing consistent performance gains with VAT-KG
beyond judge noise, highlighted in bold.

Method Knowledge
Graph Audiocaps-QA VCGPT AVQA VALOR

Qwen2.5-Omni None 49.18 (σ=0.29) 43.01 (σ=0.19) 93.01 (σ=0.02) 32.51 (σ=0.15)
Qwen2.5-Omni M2ConceptBase 49.28 (σ=0.35) 43.06 (σ=0.21) 92.59 (σ=0.02) 32.70 (σ=0.19)
Qwen2.5-Omni VAT-KG 50.09 (σ=0.21, p=1.4e-4) 43.19 (σ=0.23, p=0.08) 93.03 (σ=0.02, p=0.037) 35.45 (σ=0.26, p=2.2e-14)

retrieval from M2ConceptBase fails to enhance the MLLMs’ answers, primarily because the retrieved
knowledge lacks grounding in an audio-visual context. However, knowledge retrieved from VAT-KG
exhibits strong relevance to the multimodal query and helps MLLMs to better understand complex
concepts such as excavator and hail, as illustrated in Fig. 15.

(boat	engine	sound)	(man	speaking,	hand	washing,	water	flowing,	
bathroom	ambiance)

Video-LLaMA2

“Sink	filling”

Video-LLaMA2 + VAT-KG (Ours)

“The	video	shows a	man	washing	his	hands	in	a	sink.	The	setting	for	this	
audio	recording	is	likely	a	bathroom	or	toilet,	as	the	man	is	washing	his	
hands	and	there	is	a	water	fixture	present.”

Prompt

What	type	of	environment	is	likely	the	setting	for	this	audio	recording?

Qwen2.5 - Omni

“crowded	indoor.”

Qwen2.5 - Omni + VAT-KG (Ours)

“The	audio	recording	depicts	a	setting	where	a	boat	engine	is	operating,	
suggesting	a	water-based	environment	such	as	a	lake,	river	,	or	sea.”

Prompt

What	type	of	environment	or	setting	is	depicted	in	the	audio	recording?

Figure 13: Qualitative comparison on AQA task. Incorrect responses are highlighted in red, while
correct answers are shown in blue.

Prompt
What	is	the	man	wearing	and	what	is	he	holding?

Prompt
What	type	of	practice	is	the	man	in	the	video	doing?

Video-LLaMA2
“The	man	is	wearing	a	white	shirt	and	black	shorts,	and	he	is	holding	a	ball.”

Video-LLaMA2 + M2ConceptBase

“The	man	in	the	video	is	wearing	a	white	shirt	and	black	shorts.	
He	is	holding	a	ball	and	appears	to	be	practicing	his	throwing	skills	on	an	open	field.”

Video-LLaMA2 + VAT-KG (Ours)
“The	man	in	the	video	is	wearing	a	white	shirt	and	black	shorts.	
He	is	holding	a	discus,	which	he	spins	around	several	times	before	throwing	it	off	into	
the	distance.”

Qwen2.5 - Omni
“The	man	in	the	video	is	practicing	martial	arts.”

Qwen2.5 - Omni + M2ConceptBase
“The	man	in	the	video	is	performing	a	martial	arts	exercise,	specifically	a	form	of	martial	
arts	known	as	'Slant	Flying'.	This	exercise	is	part	of	a	larger	practice	that	includes	
various	martial	arts	techniques.	The	video	emphasizes	the	importance	of	maintaining	
balance	and	fluidity	in	movements,	which	are	key	aspects	of	martial	arts	training.”

Qwen2.5 - Omni + VAT-KG (Ours)
“The	man	in	the	video	is	performing	Tai	Chi	24	Form,	a	structured	sequence	of	
movements	that	enhance	physical	fitness,	mental	clarity,	and	internal	energy	flow	
through	slow,	balanced,	and	synchronized	movements.”

Figure 14: Qualitative comparison on VQA task. Incorrect responses are highlighted in red, while
correct answers are shown in blue.
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Prompt
What	is	shown	in	the	video?	
Options:	Tractor	ploughing,	Bulldozer,	Lower	price,	Earth	digging	by	excavator

Video-LLaMA2
“Tractor	ploughing”

Video-LLaMA2 + M2ConceptBase
“Tractor	ploughing”

Video-LLaMA2 + VAT-KG (Ours)
“Earth	digging	by	excavator.”

Qwen2.5 - Omni
“The	sound	of	a	waterfall.”

Qwen2.5 - Omni + M2ConceptBase
“The	sound	of	a	waterfall.”

Qwen2.5 - Omni + VAT-KG (Ours)
“hail.”

Prompt
What	is	the	main	sound	source	of	the	video?
Options	:	sound	of	wind,	hail,	The	sound	of	a	waterfall,	thunder

Figure 15: Qualitative comparison on AVQA task. Incorrect responses are highlighted in red, while
correct answers are shown in blue.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use large language models (LLMs) solely to aid and polish writing (e.g., grammar, wording, and
minor stylistic edits of author-written text). LLMs are not used for research ideation, experiment
design, or substantive drafting.
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