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Reproducibility Summary

Scope of Reproducibility —We examine the main claims of the original paper [1], which
states that in an image classification task with imbalanced training data, (i) using pure
noise to augmentminority‐class images encourages generalizationby improvingminority‐
class accuracy. This method is paired with (ii) a new batch normalization layer that
normalizes noise images using affine parameters learned from natural images, which
improves the model’s performance. Moreover, (iii) this improvement is robust to vary‐
ing levels of data augmentation. Finally, the authors propose that (iv) adding pure noise
images can improve classification even on balanced training data.

Methodology —We implemented the training pipeline from the description of the paper
using PyTorch and integrated authors’ code snippets for sampling pure noise images
and batch normalizing noise and natural images separately. All of our experimentswere
run on amachine from a cloud computing service with oneNVIDIA RTXA5000 Graphics
Card and had a total computational time of approximately 432 GPU hours.

Results —We reproduced themain claims that (i) oversamplingwith pure noise improves
generalization by improving the minority‐class accuracy, (ii) the proposed batch nor‐
malization (BN) method outperforms baselines, (iii) and this improvement is robust
across data augmentations. Our results also support that (iv) adding pure noise images
can improve classification on balanced training data. However, additional experiments
suggest that the performance improvement from OPeN may be more orthogonal to the
improvement caused by a bigger network or more complex data augmentation.

What was easy — The code snippet in the original paper was thoroughly documented and
was easy to use. The authors also clearly documentedmost of the hyperparameters that
were used in the main experiments.

What was difficult — The repo linked in the original paper was not populated yet. As a re‐
sult, wehad to retrieve theCIFAR‐10‐LT dataset frompreviousworks [2, 3], re‐implement
WideResNet [4], and the overall training pipeline.

Copyright © 2023 S.R. Lee and S.B. Lee, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Seungjae Ryan Lee (ry@nlee.ai)
The authors have declared that no competing interests exist.
Code is available at https://github.com/seungjaeryanlee/pure-noise – DOI 10.5281/zenodo.7947264. – SWH
swh:1:dir:41b1ddbd87720da65e78d56dfc86b8eb81dbba56.
Open peer review is available at https://openreview.net/forum?id=ErBe4MnsVD.
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[Re] Pure Noise to the Rescue of Insufficient Data

Communication with original authors —We contacted the authors for clarifications on the
implementation details of the algorithm. Prior works had many important implemen‐
tation details such as linear learning rate warmup or deferred oversampling, so we con‐
firmed with the authors on whether these methods were used.

1 Introduction

Real‐world datasets oftenhave long‐tailed label distributions, for example because some
classes aremore rare in the real world, the acquisition source is innately biased towards
a few labels, or because some classes are easier to label than others. Deep neural net‐
works often perform poorly on less‐represented classes as the model is easily biased
towards majority classes and results in poor generalization for minority classes.
Well‐known approaches to mitigating the class imbalance problem are re‐weighting the
loss and re‐sampling during training. However, both approaches can encourage the
model to overfit to the minority class [1, 3, 5].
Zada, Benou, and Irani[1] proposedOversampling with Pure Noise Images (OPeN), a new
re‐sampling technique of replacing some oversampled images with pure noise images.
During training, OPeN replaces some images in a mini‐batch with pure noise images
generated at the beginning of each epoch. The probability of replacing an image x of
class i with a noise image xnoise is proportional to the rate of oversampling δ:

P(Replace x with xnoise |Class = i) =

(
1− ni

maxj nj

)
· δ (1)

where ni is the number of samples for each class i.
OPeNcreatesmini‐batches containing images from twodifferent distributions: theCIFAR‐
10 distribution and the pure noise distribution. Since batch normalization (BN) [6] in‐
trinsically assumes that the input comes from a single distribution, Zada, Benou, and
Irani[1] also propose Distribution Aware Routing Batch Normalization (DAR‐BN) that re‐
places the BN layers. DAR‐BN separates the pure noise images to normalize the activa‐
tion maps separately from the natural images.

2 Scope of reproducibility

We investigate the following claims from Zada, Benou, and Irani[1]. We list in parenthe‐
ses the figures in the original paper that correspond to each claim.

1. OPeN improves model performance on CIFAR‐10/100‐LT by improving accuracies
on classes with lower frequencies. (Table 1, Figure 7)

2. DAR‐BN improves the performance ofOPeNonCIFAR‐10/100‐LT compared to base‐
line Batch Normalization methods. (Table 4)

3. The performance improvement of OPeN is robust under various data augmenta‐
tion methods. (Figure 3)

4. OPeN improves performance on the full CIFAR‐10/100 dataset. (Section 5)

3 Methodology

3.1 Model descriptions

For CIFAR‐10‐LT and CIFAR‐100‐LT datasets, Zada, Benou, and Irani[1] use the WideRes‐
Net‐28‐10 [4] architecture. Because the author’s code was not public, we modified the
implementation by Matsubara[7] by replacing batch normalization layers with DAR‐BN.
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[Re] Pure Noise to the Rescue of Insufficient Data

3.2 Datasets

Zada, Benou, and Irani[1] used 5datasets: CIFAR‐10‐LT, CIFAR‐100‐LT, CelebA‐5, ImageNet‐
LT, and Places‐LT. As the authors only reported results fromCIFAR‐10‐LT and CIFAR‐100‐
LT in their ablation studies, we also focus on these two datasets.
CIFAR‐10‐LT and CIFAR‐100‐LT are long‐tailed variants of the CIFAR‐10 and CIFAR‐100
datasets respectively, proposed by Cui et al.[8]. These long‐tailed training datasets are
created by reducing the number of training samples following an exponential function
ni ·IRi/(C−1), whereC is the number of classes in the dataset and i is a class index from 0
toC−1. IR denotes the imbalance ratio of the dataset, defined as the ratio of frequencies
of the largest and smallest classes.

Dataset Imbalance Ratio (IR) Number of training examples
CIFAR‐10‐LT 100 12406
CIFAR‐10‐LT 50 13996
CIFAR‐100‐LT 100 10847
CIFAR‐100‐LT 50 12608

Table 1. Different long‐tail variants of the CIFAR‐10/100 datasets. A higher imbalance ratio signifies
that the dataset is more imbalanced.

For evaluation, we compute the accuracy using the original CIFAR‐10/100 validation
dataset of 10000 images. This allows for evaluation on a balanced set of examples, pe‐
nalizing models that focus on majority classes during training.
Fornormalizing the input images, weused theper‐channelmeanof (0.4914, 0.4822, 0.4465)
and standard deviation of (0.2023, 0.1994, 0.2010) for both datasets, following Zhong et
al., Cao et al.[9,2]. However, we found them to differ from the values we computed, so
we conduct additional experiments in Section A.2.1 of the Appendix.

3.3 Hyperparameters
To provide a complete overview of the experiments, we use this section to list all the
hyperparameters. For all experiments in the paper, unless specified, the experiment
settings match that of Table 2.

Hyperparameters Values
Model WideResNet‐28‐10

Dropout rate 0.3
Batch size∗ 128
Optimizer SGD
Momentum 0.9
Weight decay 2× 10−4

Hyperparameters Values
Initial learning rate (lr) 0.1

lr decay epochs 160, 180
lr decay gamma 0.01

Linear warmup epochs∗ 5
OPeN noise image ratio (δ) 1/3

OPeN start epoch 160

Table 2. Default hyperparameters used for experiments. ∗ denote hyperparameters not described
in Zada, Benou, and Irani[1] but confirmed through email. Check Section 5.2 for more details.

3.4 Experimental setup and code
As the authors have not released the code yet, we re‐implementedmost of the code from
the description of the paper while using open‐source code from prior works. We im‐
ported long‐tailed dataset generation from Cao et al.[2], and the baseWideResNet model
from Matsubara[7], which we modified to use DAR‐BN. We used the code snippets from
the original paper for noise image generation and parts of DAR‐BN.
We used Weights and Biases [10] for tracking experiments, and OmegaConf, a subset of
Hydra [11], for configuring hyperparameters. All the code used to run experiments in
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this paper has been anonymized and submitted with the paper as supplementary ma‐
terial and available at https://anonymous.4open.science/r/pure-noise-4166/. It will be released
on GitHub once the Reproducibility Challenge is finished.

3.5 Computational requirements
All experiments were performed on a cloud computing service using virtual machines
with 12 vCPU, 62 GB RAM, and one NVIDIA RTX A5000 graphics card with 24 GB VRAM.
Using the default experiment setting specified in Table 2, Empirical Risk Minimization
(training the model without oversampling or OPeN) took approximately 1 hour and 50
minutes. Using the checkpoints saved after 160 epochs, training with deferred oversam‐
pling took 22 minutes, and training with OPeN took 45 minutes.

4 Results

4.1 Results reproducing original paper

OPeN encourages generalization by improving minority-class accuracy — To verify Claim 1, we
trained the model using four different oversampling schemes: (i) Empirical Risk Mini‐
mization (ERM): trainingwithout oversampling (ii) Resampling (RS): samplingbyweights
inverse of class frequency (iii) Deferred Resampling (DRS): deferring RS to last phase of
training (iv) OPeN: oversampling with pure noise during the same last phase of training.
For CIFAR‐10‐LT (IR=100) dataset, we reproduced the mean validation accuracy of the
DRS baseline and OPeN to within 0.6% of the reported value, which supports Claim 1.
For other datasets and IR ratios, the performance of DRSwas not reported in the original
paper. We measured the performance of DRS for those datasets because DRS is the fair
baseline for OPeN as both methods use the same deferred resampling schedule. OPeN
outperformed the baselines across all datasets.

Source Reported [1] Ours
ERM 79.6 81.18
RS 75.1 74.82
DRS 83.0 83.22
OPeN 84.6 85.04

Table 3. Comparing accuracy of resampling schemes on CIFAR‐10‐LT (IR=100) dataset. Reported
accuracy are from Table 1 in Zada, Benou, and Irani[1].

We also compute the per‐class accuracies to understand if the improvement is from
minority classes. Indeed, we confirm that compared to DRS, OPeN improves the perfor‐
mance of the two least frequent classes by 8.2%while sacrificing only 0.9% accuracy for
the two most frequent classes. For a complete comparison, we ask the readers to look
at Figure 5 and Figure 6 in the Appendix.

DAR-BN outperforms other batch normalization layers when used with OPeN — To verify Claim 2,
we trained three models with different batch normalization: (i) Standard BN [6]: nor‐
malizing pure noise and natural activation maps together using one BN layer (ii) Auxil‐
iary BN [12]: normalizing pure noise and natural activation maps separately using two
BN layers (iii) Distribution‐Aware Routing BN (DAR‐BN) [1]: using the affine parameters
learned from natural activation maps to normalize noise activation maps. For CIFAR‐
10‐LT (IR=100) and CIFAR‐100‐LT (IR=100) datasets, DAR‐BN outperformed Standard BN
andAuxiliary BN in terms ofmean validation accuracy (Table 4). This supports the claim
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and shows that DAR‐BN is essential to the success of OPeN, as without DAR‐BN, the ac‐
curacy is lower than the accuracy of DRS (83.22). In Table 8, we also perform the same
experiment on ResNet and come to the same conclusion, further validating the claim.

Dataset CIFAR‐10‐LT CIFAR‐100‐LT
Source Reported [1] Ours Reported [1] Ours

Standard BN [6] 81.45 81.81 49.18 49.26
Auxiliary BN [12] 83.38 82.23 50.13 51.27

DAR‐BN [1] 84.64 85.04 51.50 52.12

Table 4. Ablation experiment: comparing DAR‐BN with other Batch Normalization layers (IR=100).
Reported scores are from Table 4 in Zada, Benou, and Irani[1].

OPeN is robust to various data augmentation methods — To verify Claim 3, we compared ERM,
DRS, and OPeN on CIFAR‐10‐LT (IR=100) dataset using three data augmentations of in‐
creasing strength: (i) random horizontal flip and random 32x32 pixel crop with padding
of 4 (ii) add Cutout, [13] which zeros out one 16x16 pixel patch (iii) add SimCLR, [14]
which randomly applies color jitter, grayscale, and Gaussian blur. OPeN outperformed
DRS and ERM across all augmentations, which supports the claim. We forgo AutoAug‐
ment [15] for this ablation study because AutoAugment was optimized using the full bal‐
anced dataset and is an unfair augmentation strategy for the imbalanced sub‐dataset [1,
16].

Flip and Crop Add Cutout Add SimCLR
Source Reported Ours Reported Ours Reported Ours
ERM 74.3 74.6 77.7 78.7 79.6 80.7

DRS [2] 76.5 75.4 80.3 79.5 83.0 83.2
OPeN [1] 80.3 79.9 83.1 83.9 84.6 84.3

Table 5. Data augmentation ablation experiment. Reported accuracy are from Figure 3 in Zada,
Benou, and Irani[1].

Adding pure noise improves performance on balanced datasets — In Claim 4, the authors pro‐
pose that using pure noise is useful as a general data augmentation method beyond
imbalanced datasets. That is, given a balanced dataset, we can simply add a fixed num‐
ber of pure noise images to each class and train with DAR‐BN. Since this approach does
notmodify natural images, it can complement any existing data augmentations. The au‐
thors experiment by adding random noise images with a fixed noise‐to‐natural ratio of
1 : 4 in each batch and report percentage improvement over training without random
noise images. The authors used different hyperparameters, such as Adam optimizer
with β1 = 0.9, β2 = 0.999 and AutoAugment [15] for data augmentation. Furthermore,
we communicated with the authors to find that a fixed learning rate of 0.001 was used
without linear warmup [17]. Our results showed that adding pure noise images improve
the performance on the balanced dataset.

Source Improvement Baseline Accuracy Pure Noise Accuracy
Reported +0.9% ‐ ‐
Ours +1.6% 87.16 88.57

Table 6. Performance improvement of OPeN on the full balanced CIFAR‐10 dataset. The original
paper reported the percentage improvement but not the baseline and pure noise accuracy.
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4.2 Results beyond original paper

ResNet architecture — Zada, Benou, and Irani[1] used WideResNet‐28‐10 for their experi‐
ments with CIFAR‐10 and CIFAR‐100. However, prior works [2, 3, 9] used a smaller
ResNet‐32 network. To compare performance with results originally reported by prior
works, we train OPeN on the ResNet architecture. For these experiments, we used the
ResNet‐32 implementationby Idelbayev[18] and replacedbatchnormalization layerswith
DAR‐BN.
In Table 7, we compare OPeN with the performance reported by prior works. We find
that OPeN still shows improvement over ERM, RS, and DRS. However, the comparative
advantage of OPeN compared to LDAM‐DRW or M2m is less apparent in ResNet‐32 with
Flip and Crop augmentation, compared to the authors’ original result with WideResNet‐
28‐10 with SimCLR augmentation. This suggests that the performance improvement
from OPeNmay be more orthogonal to the improvement caused by a bigger network or
more complex data augmentation.

Source Method Accuracy

LDAM‐DRW [2] ERM 70.36
LDAM‐DRW 77.03

M2m [3]

ERM 68.7± 1.43
RS 70.4± 1.15
DRS 75.2± 0.26
M2m 78.3± 0.16

Source Method Accuracy

Ours

ERM 71.70
RS 70.09
DRS 75.78
OPeN 77.52

Table 7. Performance of ResNet‐32 models for CIFAR‐10‐LT (IR=100). Note that for M2m [3], a
different dataset variant has been used. Check Section 4.2.2 for more information.

Wealso perform ablation studies on the effect of DAR‐BN on the ResNet architecture and
find that DAR‐BN improves performance, supporting the central claim by the authors
(Table 4).

BN Layer Accuracy
Standard BN [6] 74.37
Auxiliary BN [12] 75.08

DAR‐BN [1] 77.52

Table 8. Batch normalization ablation experiment for OPeN. Same experiment setting as Table 4,
but with ResNet‐32 and Flip and Crop augmentation.

Finally, we experimentedwith theResNet‐32 network on a full, balancedCIFAR‐10 dataset.
Unlike when using WideResNet (Table 6), adding pure noise showed slightly lower per‐
formance.

Accuracy without pure noise Accuracy with pure noise Change
86.51 86.19 ‐0.37%

Table 9. Performance of adding pure noise to the full balanced CIFAR‐10 dataset when using
ResNet‐32 model.

Random seed for long-tailed dataset generation — The CIFAR‐10‐LT dataset is a subset of the
CIFAR‐10 dataset, so different random seed creates a different dataset. This can be prob‐
lematic as different papers use different training data, resulting in an unfair comparison
of methods.
Cui et al.[8] did not set a random seed but saved their datasets in tfrecords format. Later
works implemented their own version of the long‐tailed dataset and set a random seed.
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We compared the downloaded images from Cui et al.[8] and ran the dataset generation
code from Cao et al.[2] and Kim, Jeong, and Shin[3] and discovered that the resulting
CIFAR‐10‐LT datasets have a considerable amount of different training images. On av‐
erage, each training dataset has around 25% unique images.1
To analyze the effect of this discrepancy in the training dataset, we trained the model
on each variant. We find that the long‐tail subset used to train the model results in
a noticeable change in performance. For our work, we use the subset by Cao et al.[2],
which gave accuracy scores closest to that reported by Zada, Benou, and Irani[1]. We ask
future researchers to specify the long‐tail subset they used for reproducibility, and we
list the indices of images used for each variant in our code.

Source ERM DRS OPeN
Cui et al.[8] 79.26 80.87 84.19

Kim, Jeong, and Shin[3] 78.37 81.64 87.11
Cao et al.[2] 81.18 83.22 85.04

Reported by Zada, Benou, and Irani[1] 79.6 83.0 84.6

Table 10. Performance of models trained on different CIFAR‐10‐LT (IR=100) datasets from various
sources.

Analysis of model priors — Zada, Benou, and Irani[1] hypothesized that the enhanced per‐
formance of OPeN may be due to the shift in model priors. We perform experiments to
understand to which degree OPeN influences themodel prior. We test three hypotheses:

1. OPeN encourages the model to encode noise and out‐of‐distribution images simi‐
lar to minority images.

2. OPeN results in noise and out‐of‐distribution images being classified as minority
images.

3. Model trained with OPeN predicts any image as a minority class more often.

Following Kim, Jeong, and Shin[3], we use t‐SNE [19] to visualize the embeddings gen‐
erated by the network. Embeddings are computed from 50 randomly chosen samples
from the validation set of CIFAR‐10 using the features from the penultimate layer of
the WideResNet network. To represent out‐of‐distribution (OOD) images, we sample 50
images from one class of the CIFAR‐100 validation dataset, as its classes are mutually
exclusive to CIFAR‐10 [20]. For noise images, we generate 50 new pure noise images. t‐
SNE is used on these embeddings and is visualized in Figure 1. For both noise and OOD
images, we do not see any noticeable proximity to any of the minority classes.
For the second hypothesis, we generate 1000 pure noise images and sample 1000 out‐
of‐distribution images across all 100 classes from CIFAR‐100 and pass them through a
trainedmodel. We compare the predictions of the ERM, DRS, and the OPeNmodel. The
model trained with OPeN is less likely to predict OOD images as a majority class and
more likely to be predicted as a minority class, confirming our hypothesis (Figures 8
and 9 in Appendix).
We note that all pure noise images are classified as classes 2, 4, or 6, whereas the OOD
images aremore dispersed. As seen in Figure 1, pure noise images aremore clustered to‐
gether, resulting in predictions gathered in a few classes, whereas for out‐of‐distribution
images not seen during training, the predictions are more evenly distributed.
To verify the final hypothesis, we plot the confusionmatrix of models trained with ERM,
DRS, and OPeN in Figure 2. We find that models trained in OPeN are less likely to have
images in the minority classes predicted as one of the majority classes.

1We refer the readers to the Appendix for a visualization the intersection of datasets (Figure 3) and for an
example of unique images for each dataset (Figure 4).
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(a) Each class colored differently (b) Only noise and OOD images colored differently

Figure 1. t‐SNE of 50 examples from each class in the CIFAR‐10 validation dataset, 50 out‐of‐
distribution images from the CIFAR‐100 validation dataset, and 50 random pure noise. Images
are embedded with a model trained with OPeN. Noise images are gathered into one cluster that is
separable from any other class clusters, whereas OOD images are more dispersed across multiple
classes. This phenomenon is not unique to OPeN, as it also appears with DRS (Figure 7).

(a) ERM (b) Deferred oversampling (c) OPeN

Figure 2. Confusion matrices of models trained on CIFAR‐10‐LT (IR=100).

To conclude, we find that training the model with OPeN makes the model more likely
to classify any input image as a minority class. However, this is not done by embedding
the noise images to be similar to the minority classes.

5 Discussion

Our experiments support the four claims by Zada, Benou, and Irani[1]. First, our results
showed that OPeN improves the mean test accuracy over DRS and other baseline resam‐
pling methods across CIFAR‐10‐LT (IR=100, 50) and CIFAR‐100‐LT (IR=100, 50) datasets.
We confirmed that this improvement is driven by a significant improvement in the ac‐
curacy of minority classes. Also, our ablation study supports the claim that using the
affine parameters learned from natural activation to normalize the noise activations
(DAR‐BN) is crucial to the performance of OPeN. Moreover, our experiments showed
that OPeN is robust to various data augmentation methods, as OPeN outperforms base‐
line resampling methods across data augmentations of varying strengths. Finally, our
results showed that adding pure noise can be used as an additional data augmentation
method to improve the performance on a full, balanced CIFAR‐10 dataset.
Then, we ran experiments using a smaller ResNet‐32 network andFlip andCrop augmen‐
tations to compare with the performance reported by prior works. OPeN still showed
improvement over ERM, RS, and DRS, and DAR‐BN showed improvement over Standard
and Auxiliary BN. However, the comparative advantage of OPeN to preceding papers
was less apparent when using a smaller model and simpler data augmentations, which
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suggests that performance improvement from OPeNmay be more orthogonal to the im‐
provement caused by a bigger network or more complex data augmentation. Also, we
noticed that adding pure noise to the balanced CIFAR‐10 dataset slightly lowered the
performance when using ResNet‐32.
Beyond the original paper, we proposed three hypotheses to understand if the enhanced
performance of OPeN is due to a shift in model priors. Our analysis shows that OPeN
makes the model more likely to classify pure noise, OOD, and misclassified test images
as aminority class. However, our visualization suggests that this is not done by encoding
the pure noise or OOD images to be similar to the images from minority classes.
Furthermore, our investigation into the preceding papers in imbalanced classification
suggests directions to improve the reproducibility of future work in this domain. We
found that the images in two instances of the CIFAR‐10‐LT dataset can vary significantly
depending on the random seed used for sampling from the full, balanced CIFAR‐10
dataset. Also, prior work used varying mean and standard deviation, which are some‐
times computed from the full balanced dataset, for input normalization (Tables 12 and
13). Hence, more detailed documentation for generating the long‐tailed dataset and
computing the dataset statistics for input normalizationmay help improve reproducibil‐
ity and fair comparison across papers.

5.1 What was easy and what was difficult
The authors provided two functions that (i) given a batch, samples noise indices and
replaces corresponding natural images with pure noise (ii) given a batch, noise indices,
and a BN layer, applies DAR‐BN. These functions were clearly documented with doc‐
strings and were easy to use. The authors also clearly documented the key hyperparam‐
eters that were used in the main experiments.
Aside from the core functions, the authors’ code was not available, so we had to fully
implement it based on the description of the paper. Hence, reproducing the reported
performance on the first dataset took more time than we initially anticipated, as we
had to study available code from previous related papers, including Kim, Jeong, and
Shin[3] and Cao et al.[2]. For example, the paper described clipping the sampled noise
images to [0, 1], but we did not find a corresponding operation in the provided functions.
We found that the InputNormalize module from Kim, Jeong, and Shin[3] had clipping
already implemented, so we imported the module and fit it into our training workflow.
FollowingCao et al.[2], the authors used twodifferent resampling baselines: one baseline
started oversampling from the first epoch (Table 1 of [1]), and another baseline started
oversampling from the 160th epoch (Figure 3 of [1]). The difference between these two
baselines was unclear and needed clarification from the authors. Also, we verified a few
available implementations of WideResNet‐28‐10 [4] and ResNet‐32 [21] for correctness.
Yet, comparing prior related works revealed interesting discrepancies as well, such as
the differences in the generated long‐tailed dataset and input normalization.

5.2 Communication with original authors
Overall, we found the paper to be reproducible, as we were able to validate the effec‐
tiveness of OPeN before contacting the authors for clarification. However, we struggled
to match the performance of baseline methods. We were able to contact the authors
through email to confirm the following details:

• A batch size of 128 was used during training.
• Learning rate warm‐up [17] was used for the first 5 epochs.
• Effective number of samples [8] was not used for calculating oversamplingweights.
• Oversampling did not increase the number of examples seen per epoch.
• A fixed learning rate of 0.001 was used for training on the full CIFAR‐10 dataset.
• A dropout rate of 0.3 was used for WideResNet.
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A Additional results beyond original paper

A.1 Performance of OPeN on additional dataset and imbalance ratios
In addition to CIFAR‐10‐LT (IR=100) dataset, we compared the performance of OPeN [1]
to DRS [2], RS, and ERM on CIFAR‐10‐LT (IR=50) and CIFAR‐100‐LT (IR=100,50) datasets.
Consistentwith claim 1, OPeNoutperformed the baseline resampling schemes across all
datasets. The original paper did not report the accuracy of deferred resampling (DRS)
[2] for these additional datasets. Nonetheless, we compared OPeN with DRS because
DRS provides a fair baseline, as OPeN uses the same deferred resampling schedule.

Dataset CIFAR‐10‐LT CIFAR‐100‐LT
IR 50 100 50

Reported [1] Ours Reported [1] Ours Reported [1] Ours
ERM 84.9 84.9 47.0 47.1 52.4 52.7
RS 82.2 80.9 42.5 41.6 48.0 46.5
DRS ‐ 86.9 ‐ 50.8 ‐ 55.8
OPeN 87.9 87.8 51.5 52.1 56.3 56.5

Table 11. Comparison of accuracy on CIFAR‐10‐LT (IR=50) and CIFAR‐100‐LT (IR=100,50).

A.2 Hyperparameter Search

Input normalization values — The authors did not specify the mean and standard deviation
used to normalize the dataset. We explored various prior works [2, 3, 9] and discov‐
ered that they differed from the values we computed (Tables 12 and 13). Surprisingly,
we found that many prior works use mean values from the full CIFAR‐10/100 datasets
instead of the values from the long‐tailed variants. This could result in an unfair evalua‐
tion, as the statistics from the full training dataset may resemble the validation dataset,
as they are both balanced.

Source Mean Std
Zhong et al.[9] (0.4914, 0.4822, 0.4465) (0.2023, 0.1994, 0.2010)
Cao et al.[2] (0.4914, 0.4822, 0.4465) (0.2023, 0.1994, 0.2010)

Kim, Jeong, and Shin[3] (0.4914, 0.4822, 0.4465) (0.2023, 0.1994, 0.2010)
CIFAR‐10† (0.4914, 0.4822, 0.4465) (0.2470, 0.2435, 0.2616)

CIFAR‐10‐LT (IR=50)† (0.4978, 0.5003, 0.4840) (0.2505, 0.2477, 0.2722)
CIFAR‐10‐LT (IR=100)† (0.4989, 0.5044, 0.4926) (0.2513, 0.2485, 0.2734)

Table 12. Per‐channel mean and standard deviations for experiments on CIFAR‐10‐LT. Values cal‐
culated in this paper are marked by †.

Source Mean Std
Zhong et al.[9] (0.4914, 0.4822, 0.4465) (0.2023, 0.1994, 0.2010)
Cao et al.[2] (0.4914, 0.4822, 0.4465) (0.2023, 0.1994, 0.2010)

Kim, Jeong, and Shin[3] (0.5071, 0.4867, 0.4408) (0.2675, 0.2565, 0.2761)
CIFAR‐100† (0.5071, 0.4866, 0.4409) (0.2673, 0.2564, 0.2762)

CIFAR‐100‐LT (IR=50)† (0.5202, 0.4916, 0.4415) (0.2676, 0.2609, 0.2778)
CIFAR‐100‐LT (IR=100)† (0.5228, 0.4929, 0.4420) (0.2677, 0.2617, 0.2780)

Table 13. Per‐channel mean and standard deviations for experiments on CIFAR‐100‐LT. Values cal‐
culated in this paper are marked by †.
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We train a WideResNet network with the default experiment setting in Section 3.3 to
investigate the effect of these values. As shown in Table 14, using the calculated mean
and standard deviation from the long‐tailed dataset reduced performance. Regardless,
we do find that OPeN still improves performance over ERM and DRS, supporting the
central claim of Zada, Benou, and Irani[1].

Source ERM DRS OPeN
Baseline [9, 2, 3] 81.18 83.22 85.04

CIFAR‐10† 80.50 82.39 84.72
CIFAR‐10‐LT (IR=100)† 79.28 81.03 84.12

Table 14. Performance on different input normalization values on CIFAR‐10‐LT (IR=100). Values
calculated in this paper are marked by †.

Batch size — Beforewe communicatedwith the authors and confirmed that the batch size
used was 128, we performed a hyperparameter search ourselves. In Table 15, we list the
batch sizes and their respective performance. Experiments show that 128 is the best
batch size for the set of hyperparameters.

Batch size Accuracy
ERM DRS OPeN

32 74.38 80.15 80.50
64 78.69 82.89 83.89
128 81.18 83.22 85.04
256 79.11 75.28 82.36
512 75.19 71.39 79.22

Table 15. Hyperparameter search for batch size. Experiment was done on CIFAR‐10‐LT (IR=100)
with the default setting in Table 2 except for the batch size. Results with highest accuracy for
each method are boldfaced.

Noise ratio — The noise ratio is the hyperparameter that defines the probability of replac‐
ing an oversampled image with pure noise. The authors used a noise ratio of 1

3 across
all datasets. We compared the performance of OPeN across increasing levels of noise
ratios. Surprisingly, replacing up to 2

3 of the oversampled images with pure noise contin‐
ued to provide higher validation accuracy than DRS, while the train accuracy dropped
with increasing noise ratio, as expected.

Noise ratio 1/6 2/6 3/6 4/6 5/6 6/6
Accuracy 83.23 85.04 84.34 84.23 83.31 80.01

Table 16. Hyperparameter search for noise ratio. Experiment was done on CIFAR‐10‐LT (IR=100)
with the default setting in Table 2 except for the noise ratio. Result with highest accuracy is bold‐
faced.
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B Additional Figures

Figure 3. Venn diagram showing the intersections of training dataset used by Cui et al.[8] (denoted
Cui), Cao et al.[2] (LDAM), and Kim, Jeong, and Shin[3] (M2m) for CIFAR‐10‐LT (IR=100).

(a) Image used only by Cui et
al.[8] for training

(b) Image used only by Kim,
Jeong, and Shin[3] for training

(c) Image used only by Cao et
al.[2] for training

Figure 4. Examples of automobile images only found in one but not the other 2 CIFAR‐10‐LT
(IR=100) datasets.
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(a) CIFAR‐10‐LT (IR=100) (b) CIFAR‐100‐LT (IR=100)

Figure 5. Validation accuracy for CIFAR‐10‐LT and CIFAR‐100‐LT with IR=100. Classes partitioned
into 5 groups, where Group 1 is the least frequent and Group 5 is themost frequent. Reproduction
of Figure 6.

Figure 6. Figure from Zada, Benou, and Irani[1] reporting validation accuracy for CIFAR‐10‐LT and
CIFAR‐100‐LTwith IR=100where classes are partitioned into 5 groups. Group 1 is the least frequent
and Group 5 is the most frequent.

(a) Each class colored differently (b) Only noise and OOD images colored differently

Figure 7. t‐SNE of 50 examples from each class in the CIFAR‐10 validation dataset, 50 out‐of‐
distribution images from CIFAR‐100 validation dataset, and 50 random pure noise. Images are
embedded with model trained with DRS.
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(a) ERM (b) DRS (c) OPeN

Figure 8. Histogram of predicted classes for 1000 noise images.

(a) ERM (b) DRS (c) OPeN

Figure 9. Histogram of predicted classes for 1000 out‐of‐distribution images.
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