

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CASCADED FLOW MATCHING FOR HETEROGENEOUS TABULAR DATA WITH MIXED-TYPE FEATURES

Anonymous authors

Paper under double-blind review

ABSTRACT

Advances in generative modeling have recently been adapted to heterogeneous tabular data. However, generating mixed-type features that combine discrete values with an otherwise continuous distribution remains challenging. We advance the state-of-the-art in diffusion-based generative models for heterogeneous tabular data with a cascaded approach. As such, we conceptualize categorical variables and numerical features as low- and high-resolution representations of a tabular data row. We derive a feature-wise low-resolution representation of numerical features that allows the direct incorporation of mixed-type features including missing values or discrete outcomes with non-zero probability mass. This coarse information is leveraged to guide the high-resolution flow matching model via a novel conditional probability path. We prove that this lowers the transport costs of the flow matching model. The results illustrate that our cascaded pipeline generates more realistic samples and learns the details of distributions more accurately.

1 INTRODUCTION

Advancements in the field of generative modeling – rooted in seminal contributions on diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), score-based modeling (Song et al., 2021) and flow matching (Albergo & Vanden-Eijnden, 2023; Lipman et al., 2023; Liu et al., 2023) – have yielded state-of-the-art results across a broad range of complex data modalities. However, progress in adapting these models to the domain of heterogeneous tabular data has remained limited. Given the ubiquity of tabular data in both research and industry – from the social sciences, medicine, to finance in the form of questionnaires, surveys, census data or electronic health records (Borisov et al., 2022; Hernandez et al., 2022; Assefa et al., 2021) – the ability to generate realistic tabular datasets is as crucial as generating images or videos.

Several diffusion-based models for heterogeneous tabular data generation have been introduced (Kim et al., 2023; Kotelnikov et al., 2023; Zhang et al., 2024b; Lee et al., 2023; Mueller et al., 2025; Shi et al., 2025), each with a different solution to the main challenge of integrating numerical and categorical features. However, none of them explicitly accommodates features that combine both categorical and continuous characteristics (Zhao et al., 2021). Such *mixed-type* features are unique to tabular data (Li et al., 2025) and hold significant practical relevance. Prominent examples include censored and inflated features, or numerical features with missing values. Particularly, in cases of informative absence of data, missing values can carry important signals for downstream statistical analysis. As such, a generative model should not merely impute or learn from missing values, but be able to generate them as part of realistic synthetic samples. Thus, the inability of existing approaches to faithfully generate mixed-type features significantly limits their practical utility.

In this paper, we propose TabCascade, a novel cascaded flow matching framework for heterogeneous tabular data with features exhibiting a mixture of categorical and continuous distributions. Within this cascaded framework, numerical details are generated conditional on a coarse-grained representation of the high-fidelity data. Accordingly, we conceptualize categorical variables as low-resolution and numerical features as high-resolution representations of a tabular data row. We explore discretization methods such as distributional regression and Gaussian mixture models to construct a categorical low-resolution approximation of the numerical features. TabCascade first learns the joint distribution of categorical and discretized numerical data as low-resolution information. Subsequently, numerical data is generated conditionally on the low-resolution model’s output. This allows TabCascade to focus its ca-

054 pacity to where it is mostly needed: to generate details, as opposed to coarse categorical data, which we
 055 show is relatively easy to learn. We base the high-resolution model on a conditional probability path
 056 guided by low-resolution information, thereby introducing a data-dependent coupling that reduces the
 057 transport costs between source and target distributions of high-resolution data. Further, we endow it
 058 with learnable time schedules conditioned on low-resolution information. Based on some criteria, we
 059 choose the categorical part of the CDTD model (Mueller et al., 2025) as our low-resolution component.

060 The cascaded pipeline gives a natural way of incorporating mixed-type features by letting the model
 061 first decide on their categorical part and filling in continuous values only when necessary. Our results
 062 show that this benefits the realism of the generated samples substantially and that TabCascade learns
 063 the details of the distributions much more accurately than the current state-of-the-art methods.

064 In sum, we make several contributions towards more efficient and effective models for tabular data:
 065

- 066 • To the best of our knowledge, we propose the first [diffusion-based model](#) to address mixed-type
 067 feature generation, i.e., features [that each follow](#) a mixture of categorical and continuous distributions.
 068 In practice, this includes inflated, censored, and – most importantly – missing values in numerical
 069 features. Our framework naturally extends to any value type that warrants distinct treatment from its
 070 continuous counterpart.
- 071 • We decompose the tabular data generation task into low- and high-resolution parts. From this, we
 072 propose a novel cascaded flow matching framework. We design a guided conditional probability path
 073 to model high-resolution data.
- 074 • The use of feature-type tailored models sidesteps the challenge of balancing type-specific losses,
 075 and thereby prevents the unintended weighting of features during training, prevalent in previous
 076 works altogether.
- 077 • Accounting for low-resolution information in the generation of numerical details not only boosts
 078 sample quality and fidelity but also improves model convergence.

080 2 RELATED WORK

081 **Diffusion models for tabular data.** The main challenge for tabular data generation is the effective
 082 integration of heterogeneous (i.e., numerical and categorical) features. TabDDPM (Kotelnikov
 083 et al., 2023) and CoDi (Lee et al., 2023) combine multinomial diffusion (Hoogeboom et al., 2021)
 084 and DDPM (Sohl-Dickstein et al., 2015; Ho et al., 2020); STaSY (Kim et al., 2023) treats one-hot
 085 encoded categorical data as numerical; and TabSyn (Zhang et al., 2024b) adopts latent diffusion
 086 to embed both feature types into a continuous space. Despite its popularity in other domains, latent
 087 diffusion has proven less effective for heterogeneous tabular data compared to models defined directly
 088 in data space (Mueller et al., 2025). More recent models, such as TabDiff (Shi et al., 2025) and CDTD
 089 (Mueller et al., 2025) learn noise schedules alongside the diffusion model to accommodate the feature
 090 heterogeneity in tabular data. These models integrate score matching (Song et al., 2021; Karras et al.,
 091 2022) with either masked diffusion (Sahoo et al., 2024) or score interpolation (Dieleman et al., 2022),
 092 respectively. While most of these models can be easily adapted to be *trainable* on data containing
 093 missing values, in their original state none of them can *generate* missing values in numerical features.
 094

095 **Exploitation of low-resolution information.** Cascaded diffusion models (Ho et al., 2022) for
 096 super-resolution images define a sequence of diffusion models, where higher resolution models
 097 are conditioned on the lower resolution model’s outputs. This divide-and-conquer strategy has
 098 been successfully used in Google’s Imagen model (Saharia et al., 2022) for the generation of
 099 high-fidelity images, and can be further refined with data-dependent couplings (Albergo et al., 2024).
 100 Instead, Tang et al. (2024) improve sample quality with the combination of a hybrid autoregressive
 101 transformer that encodes images into both categorical and continuous tokens. Sahoo et al. (2023)
 102 introduce auxiliary latent variables to learn a latent lower resolution structure among images in
 103 order to learn pixel-wise conditional noise schedules. This allows the model to adjust the noise in
 104 the forward process dependent on low-resolution information of an image. Neural flow diffusion
 105 models (Bartosh et al., 2024) generalize this by learning the entire forward process. More generally,
 106 Pandey et al. (2022) and Kouzelis et al. (2025) show that combining low-level image details with
 107 high-level semantic features improves training efficiency and sample quality. However, the lack of
 a clear notion of ‘resolution’ in tabular data makes it difficult to apply the same principle directly.

Figure 1: Overview of TabCascade for the task of generating missing values. We first derive a categorical, low-resolution representation z_{num} from x_{num} . We form $x_{\text{low}} = (x_{\text{cat}}, z_{\text{num}})$, and model x_{cat} and z_{num} jointly with p_{low} . Learning p_{high} , the distribution of high-resolution, numerical features, is simplified by conditioning on x_{low} , which benefits sample quality. During generation, the explicit availability of the discrete state z_{num} enables the model to naturally handle mixed-type feature distributions. This approach generalizes to arbitrary (and multiple) discrete states.

3 PROBLEM STATEMENT

Goal. Let $\mathcal{D}_{\text{train}} = \{\mathbf{x}_i\}_{i=1}^N$ denote a tabular dataset with i.i.d. observations $\mathbf{x} = (x_{\text{cat}}, x_{\text{num}})$ drawn from an unknown distribution $p_{\text{data}}(\mathbf{x}_{\text{cat}}, \mathbf{x}_{\text{num}})$. Further, let $x_{\text{cat}} = (x_{\text{cat}}^{(j)})_{j=1}^{K_{\text{cat}}}$ with $x_{\text{cat}}^{(j)} \in \{0, \dots, C_j\}$ represent the K_{cat} categorical (including binary) features; and $x_{\text{num}} \in \mathbb{R}^{K_{\text{num}}}$ the K_{num} numerical features. The objective is to learn a (parameterized) joint distribution $p^{\theta}(\mathbf{x}_{\text{cat}}, \mathbf{x}_{\text{num}}) \approx p_{\text{data}}(\mathbf{x}_{\text{cat}}, \mathbf{x}_{\text{num}})$ to generate new samples $\mathbf{x}^* = (x_{\text{cat}}^*, x_{\text{num}}^*) \sim p^{\theta}(\mathbf{x}_{\text{cat}}, \mathbf{x}_{\text{num}})$ that match the statistical properties of the training data. In practice, x_{num} can also be of mixed-type, e.g., a numerical feature including missing values, or a variable following a continuous distribution with point masses at certain outcomes. Such a mixed-type nature differs considerably from the purely continuous distributions typically considered in diffusion-based generative models.

Inflated values. Exemplary, let x_{mixed} be a mixed-type feature with a single inflated value at v . Its univariate density is $p(x_{\text{mixed}}) = \pi_v \cdot \delta_v(x_{\text{mixed}}) + (1 - \pi_v) \cdot p_{\text{cont}}(x_{\text{mixed}})$, where π_v is the probability mass at v , p_{cont} is a continuous density, and δ_v is the Dirac delta function centered at v . Zero-inflated features ($v = 0$) are common in practice and often carry contextual information: a working time of zero hours in economic survey data may indicate unemployment; in medical data, a drug dosage of zero may indicate the absence of treatment. While existing diffusion models can, in principle, generate such inflated values, they do not explicitly account for this structure. As the distribution becomes more complex, assigning precise probability mass exactly at v becomes increasingly difficult. **This setup trivially extends to multiple inflated values, making the discrete distribution categorical instead of binary.**

Missing values. Likewise, the discrete state in a mixed-type feature can represent missingness. Let $m = 1$ if feature x_{mixed} is missing, and $m = 0$ otherwise. Then, the observed data is $x_{\text{mixed}} = (1 - m) \odot x_{\text{num}}^{(\text{latent})} + m \odot \text{NaN}$ with a latent variable $x_{\text{num}}^{(\text{latent})}$. Generally, the missingness indicator m may depend on both observed and unobserved parts of the data row. The generative model must therefore also be able to infer $p(m | \mathbf{x}_{\text{num}}, x_{\text{num}}^{(\text{latent})})$ for all features (Little & Rubin, 2019). This formulation is particularly relevant in domains where missing values carry information: missing answers in psychological questionnaires may point towards certain personality traits; missing values in medical datasets might indicate reluctance to disclose information. Previous diffusion models for tabular data can be *trained* on numerical features with missing values, but are not designed to *generate* such instances.

Figure 2: Average detection scores across all datasets and ten sampling seeds (for a single training run) computed on categorical and numerical generated sample subsets.

173 Figure 3: Example from `adult` (`hours-per-week`, `years of education`) illustrating the effectiveness
 174 of low-resolution conditioning in guiding generation and improving details. (a) Samples from p_{data} .
 175 (b) Samples from the unconditional CDTD trained on the two features. (c) Samples from the
 176 CDTD conditional on categorical, low-resolution information learned from feature-specific, shallow
 177 distributional regression trees. The red dots indicate the means of the possible combinations of
 178 components. Shape and Trend metrics are estimated as an average over five sampling seeds.

180 **The simplicity of learning categorical features.** The premise of existing models for tabular data
 181 is to generate x_{cat} and x_{num} jointly. However, the generation performance is not equal across the
 182 two feature types. Empirical evidence in Figure 2 shows that the detection score (averaged over
 183 all datasets and diffusion-based models) estimated only on x_{cat} exceeds the score obtained for only
 184 x_{num} substantially. Thus, on average, x_{num} is more difficult to learn and accurately generate than
 185 x_{cat} . Figure 16 in the Appendix shows the detailed results per model. This observation motivates
 186 the divide-and-conquer approach of our model: first generating the easier component, x_{cat} , and
 187 afterwards the more difficult part x_{num} conditional on x_{cat} to improve sample quality, as shown in
 188 improved detection scores in Figure 2.

189 **The benefits of conditional generation.** Conditional generation is known to improve sample
 190 quality. Unlike images, for which text captions are available as conditioning information, tabular
 191 data lacks similar signals. In Figure 3, we investigate the use of distributional trees (Schlosser et al.,
 192 2019) to generate a feature-wise clustering of data points which is then used as the conditioning
 193 signal in a CDTD model that learns a bivariate distribution. Qualitatively, the conditional model
 194 learns the details, i.e., low density areas, of the distribution more accurately. This is also reflected
 195 in improved Shape and Trend metrics indicating improved sample quality.

196 **The pitfall of imbalanced losses.** The heterogeneity of tabular
 197 features requires careful alignment of different losses to avoid
 198 implicit weighting of feature importance (Ma et al., 2020). For
 199 tabular data, Mueller et al. (2025) derive the means of achieving
 200 such a balancing from first principles in their CDTD model. Yet,
 201 importance parity between x_{cat} and x_{num} does not necessarily
 202 translate into better overall sample quality. For illustration, we
 203 train CDTD on the `adult` data using a grid of 14 relative loss
 204 weights for categorical features. Figure 4 shows that the detection
 205 score can be improved by increasing the relative weight of the
 206 categorical losses. In practice, however, models tend to be too
 207 large to effectively tune such hyperparameters. Our novel cascaded
 208 flow matching model avoids such balancing issues entirely, without
 209 requiring any tuning of relative loss weights.

Figure 4: Detection score as a function of the relative loss weight of categorical features (from the `adult` dataset) in CDTD. The vertical line indicates the default.

4 CASCADED FLOW MATCHING FOR TABULAR DATA

211 In the following, we introduce TabCascade, a cascaded flow matching model for heterogeneous tabular
 212 data with mixed-type features. An overview is given in Figure 1. First, we outline the general frame-
 213 work and motivate the proposed decomposition into low- and high-resolution information. We lever-

age the low-resolution structure to learn feature-specific probability paths to improve the generation of \mathbf{x}_{num} . In addition to a high-resolution flow matching model, we adopt an efficient low-resolution model and demonstrate how a low-resolution representation of \mathbf{x}_{num} can be derived in practice.

4.1 CASCADED FRAMEWORK

Tabular data resolution. In images, resolution refers to the level of visual detail, typically expressed in terms of the total number of pixels. Tabular data lacks a comparable notion of resolution. Building on Figure 2 and the idea that coarse information is easier to learn than details, we link data resolution in tabular datasets to feature types, that is, we treat \mathbf{x}_{cat} as low-resolution information and \mathbf{x}_{num} as high-resolution information. We assume that there exists a low-resolution representation of $x_{\text{num}}^{(i)}$ denoted $z_{\text{num}}^{(i)}$. For each data row, $\mathbf{x} = (\mathbf{x}_{\text{cat}}, \mathbf{x}_{\text{num}})$, we construct a low-resolution counterpart, $\mathbf{x}_{\text{low}} = (\mathbf{x}_{\text{cat}}, \mathbf{z}_{\text{num}})$, where $\mathbf{z}_{\text{num}} = [z_{\text{num}}^{(i)}]_{i=1}^{K_{\text{num}}}$ and each $z_{\text{num}}^{(i)}$ is a categorical low-resolution latent representation of $x_{\text{num}}^{(i)}$.

Cascaded structure. Accordingly, we define the cascading pipeline (Ho et al., 2022) as a sequence of a low-resolution model followed by a high-resolution model:

$$p(\mathbf{x}_{\text{cat}}, \mathbf{x}_{\text{num}}) = \sum_{\mathbf{z}_{\text{num}} \in \mathcal{Z}} p_{\text{high}}(\mathbf{x}_{\text{num}} | \mathbf{z}_{\text{num}}, \mathbf{x}_{\text{cat}}) p_{\text{low}}(\mathbf{z}_{\text{num}}, \mathbf{x}_{\text{cat}}). \quad (1)$$

Thus, it resembles a latent variable model, with the latent variable \mathbf{z}_{num} generated jointly with \mathbf{x}_{cat} . This factorization simplifies learning the joint distribution: The generation of \mathbf{x}_{cat} is informed by coarse information about \mathbf{x}_{num} , which enables the model to capture dependencies across feature types effectively. Additionally, conditioning on the information in \mathbf{z}_{num} eases learning p_{high} and generating \mathbf{x}_{num} . From the chain rule of entropy, we know that $\mathbb{H}(\mathbf{x}_{\text{num}} | \mathbf{z}_{\text{num}}, \mathbf{x}_{\text{cat}}) < \mathbb{H}(\mathbf{x}_{\text{num}} | \mathbf{x}_{\text{cat}})$ if $\mathbf{x}_{\text{num}} \not\perp \mathbf{z}_{\text{num}}$. We therefore aim to infer an informative \mathbf{z}_{num} such that $p(\mathbf{x}_{\text{num}} | \mathbf{x}_{\text{low}})$ and $p(\mathbf{x}_{\text{low}})$ are easier to learn than the joint distribution $p(\mathbf{x}_{\text{num}}, \mathbf{x}_{\text{cat}})$.

Mixed-type features. We use ancestral sampling to sample from $p(\mathbf{x}_{\text{cat}}, \mathbf{x}_{\text{num}})$: we first sample $\mathbf{z}_{\text{num}}, \mathbf{x}_{\text{cat}} \sim p_{\text{low}}^{\theta}(\mathbf{z}_{\text{num}}, \mathbf{x}_{\text{cat}})$, and then $\mathbf{x}_{\text{num}} \sim p_{\text{high}}^{\theta}(\mathbf{x}_{\text{num}} | \mathbf{z}_{\text{num}}, \mathbf{x}_{\text{cat}})$. Since we defined $z_{\text{num}}^{(i)}$ to be categorical, this procedure allows us to directly accommodate mixed-type features. Let NaN and v_{infl} be the missing and inflated states of $x_{\text{num}}^{(i)}$, respectively. We encode these as separate categories c_{miss} and c_{infl} in $z_{\text{num}}^{(i)}$. Thus, we construct

$$x_{\text{num}}^{(i)} = \mathbb{I}(z_{\text{num}}^{(i)} = c_{\text{miss}}) \cdot \text{NaN} + \mathbb{I}(z_{\text{num}}^{(i)} = c_{\text{infl}}) \cdot v_{\text{infl}} + \mathbb{I}(z_{\text{num}}^{(i)} \notin \{c_{\text{miss}}, c_{\text{infl}}\}) \cdot \tilde{x}_{\text{num}}^{(i)}, \quad (2)$$

where $\mathbb{I}(\cdot)$ is the indicator function and $\tilde{x}_{\text{num}}^{(i)} = [\tilde{\mathbf{x}}_{\text{num}}]_i$ with $\tilde{\mathbf{x}}_{\text{num}} \sim p_{\text{high}}^{\theta}(\mathbf{x}_{\text{num}} | \mathbf{z}_{\text{num}}, \mathbf{x}_{\text{cat}})$. Once z_{num} indicates a category of interest, we can substitute $\tilde{x}_{\text{num}}^{(i)}$ with the inflated or missing state. Intuitively, the model first decides on the coarse structure and only fills in the details when necessary. Therefore, inflatedness and missingness is entirely determined by p_{low}^{θ} . We can thus mask the corresponding instances when training p_{high}^{θ} to free up model capacity. This setup trivially extends to an arbitrary mixed-type structure, for instance, with multiple inflated values.

4.2 HIGH-RESOLUTION MODEL

We build our model top-down and first introduce the high resolution model p_{high}^{θ} . For brevity, let $\mathbf{x}_1 = \mathbf{x}_{\text{num}}$ and $\mathbf{z} = \mathbf{z}_{\text{num}}$ and assume \mathbf{z} is observed such that $\mathbf{x}_{\text{low}} = (\mathbf{x}_{\text{cat}}, \mathbf{z})$ and $\mathbf{x}_1, \mathbf{x}_{\text{low}} \sim p_{\text{data}}^*$. We rely on flow matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) to learn p_{high}^{θ} , i.e., we use an ODE $d\mathbf{x}_t = \mathbf{u}_t(\mathbf{x}_t)dt$, with a time-dependent vector field \mathbf{u}_t for $t \in [0, 1]$, to transform samples from a source distribution $\mathbf{x}_0 \sim p_0$ to the distribution of interest $\mathbf{x}_1 \sim p_1 = \sum_{\mathbf{x}_{\text{low}} \in \mathcal{X}_{\text{low}}} p_{\text{data}}^*$ via a probability path p_t . The goal of flow matching is to learn a vector field \mathbf{u}_t^{θ} which generates a flow $\Psi_t(\mathbf{x}_0) = \mathbf{x}_t \sim p_t$ such that $\Psi_0(\mathbf{x}_0) = \mathbf{x}_0 \sim p_0$ and $\Psi_1(\mathbf{x}_0) = \mathbf{x}_1 \sim p_1$. Below, we derive a novel *guided* conditional vector field $\mathbf{u}_t(\mathbf{x}_t | \mathbf{x}_1, \mathbf{x}_{\text{low}})$ which uses \mathbf{x}_{low} to simplify and improve the generation of \mathbf{x}_1 .

270 **Guided conditional probability path.** The construction of a suitable ODE requires to design a
 271 conditional probability path $p_t(\mathbf{x}_t|\mathbf{x}_1)$. Particularly popular is the linear path, i.e., $\mathbf{x}_t = t\mathbf{x}_1 + (1-t)\mathbf{x}_0$
 272 with $\mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. To account for the high feature heterogeneity, we introduce a novel conditional
 273 probability path which is guided by feature-specific time schedules and source distributions to exploit
 274 our knowledge of \mathbf{x}_{low} .

275 First, we define a time schedule $\gamma_t(\mathbf{x}_{\text{low}}) : t \rightarrow [0, 1]^{K_{\text{num}}}$ which uses \mathbf{x}_{low} to construct feature-specific
 276 non-linear paths of least resistance in t . We constrain $\gamma_t(\mathbf{x}_{\text{low}})$ to be monotonically increasing and
 277 to satisfy $\gamma_0 = 0$ and $\gamma_1 = 1$. As an efficient parameterization that allows for a closed-form time
 278 derivative $\dot{\gamma}_t$, we use a fifth-degree polynomial in t with the parameters provided by a neural network
 279 (Sahoo et al., 2023, see Appendix G for details).

280 Second, we utilize our knowledge of \mathbf{z} to move \mathbf{x}_0 closer to the target \mathbf{x}_1 with *data-dependent*
 281 *couplings* (Albergo et al., 2024). The coarse information about \mathbf{x}_1 in \mathbf{z} determines $\boldsymbol{\mu} \in \mathbb{R}^{K_{\text{num}}}$ and
 282 $\boldsymbol{\sigma}(\mathbf{z}) := (\sigma_1(z^{(1)}), \dots, \sigma_k(z^{(k)}))^T$ with $\sigma_i(z^{(i)}) \in \mathbb{R}_+$ of the feature-specific source distributions
 283 such that

$$284 \quad \mathbf{x}_0 = \boldsymbol{\mu}(\mathbf{z}) + \boldsymbol{\sigma}(\mathbf{z}) \odot \boldsymbol{\epsilon}, \text{ with } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad (3)$$

285 where \odot indicates element-wise multiplication.

287 We factorize feature-wise and thus, we re-write the induced coupling as

$$288 \quad p(\mathbf{x}_0, \mathbf{x}_1) = \sum_{\mathbf{z} \in \mathcal{Z}} p(\mathbf{x}_0|\mathbf{z}) p(\mathbf{z}|\mathbf{x}_1) p(\mathbf{x}_1) = \prod_i \sum_{z^{(i)} \in \mathcal{Z}^{(i)}} p(x_0^{(i)}|z^{(i)}) p(z^{(i)}|x_1^{(i)}) p(\mathbf{x}_1), \quad (4)$$

291 with $p(x_0^{(i)}|z^{(i)}) = \mathcal{N}(\mu(z^{(i)}), \sigma^2(z^{(i)}))$ similar to a Gaussian component in a mixture model and
 292 parameters selected based on $z^{(i)}$. Hence, we first draw $\mathbf{x}_1 \sim p(\mathbf{x}_1)$, retrieve $z^{(i)}$ for each $x_1^{(i)}$
 293 feature-wise, and then sample $x_0^{(i)}$ from the corresponding $p(x_0^{(i)}|z^{(i)})$. Intuitively, we use $z^{(i)}$ to
 294 construct a coupling such that each $x_0^{(i)}$ is already located in the proximity of its target $x_1^{(i)}$. These
 295 innovations induce a *guided conditional probability path* $p_t(\mathbf{x}_t|\mathbf{x}_1, \mathbf{x}_{\text{low}})$ such that

$$297 \quad \mathbf{x}_t = \gamma_t(\mathbf{x}_{\text{low}})\mathbf{x}_1 + (1 - \gamma_t(\mathbf{x}_{\text{low}}))[\boldsymbol{\mu}(\mathbf{z}) + \boldsymbol{\sigma}(\mathbf{z}) \odot \boldsymbol{\epsilon}] \sim p_t(\mathbf{x}_t|\mathbf{x}_1, \mathbf{x}_{\text{low}}). \quad (5)$$

299 This defines the probability path in an augmented space such that the samples take group-conditioned
 300 paths, with the groups defined by \mathbf{x}_{low} . Since we impose $\gamma_1 = 1$ and $\gamma_0 = 0$, we obtain
 301 $p_0(\mathbf{x}_t|\mathbf{x}_1, \mathbf{x}_{\text{low}}) = p(\mathbf{x}_0|\mathbf{z})$ and $p_1(\mathbf{x}_t|\mathbf{x}_1, \mathbf{x}_{\text{low}}) = \delta_{\mathbf{x}_1}(\mathbf{x}_t)$. Thus, $p_t(\mathbf{x}_t|\mathbf{x}_1, \mathbf{x}_{\text{low}})$ defines a valid
 302 conditional probability path.

303 **Guided conditional vector field.** Our knowledge of $p_t(\mathbf{x}_t|\mathbf{x}_1, \mathbf{x}_{\text{low}})$ allows us to apply Theorem 3
 304 from Lipman et al. (2023) to derive the guided conditional vector field (see Appendix A.1) as

$$306 \quad \mathbf{u}_t(\mathbf{x}_t|\mathbf{x}_1, \mathbf{x}_{\text{low}}) = \frac{\dot{\gamma}_t(\mathbf{x}_{\text{low}})(\mathbf{x}_1 - \mathbf{x}_t)}{1 - \gamma_t(\mathbf{x}_{\text{low}})}. \quad (6)$$

308 By substituting Equation (5) in Equation (6) (see Appendix A.1.1), we obtain the target in the
 309 conditional flow matching (CFM; Lipman et al., 2023) loss

$$311 \quad \mathcal{L}_{\text{CFM}} = \mathbb{E}_{t \sim [0, 1], (\mathbf{x}_1, \mathbf{x}_{\text{low}}) \sim p_{\text{data}}^*, \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [||\mathbf{u}_t^{\theta}(\mathbf{x}_t|\mathbf{x}_{\text{low}}) - \dot{\gamma}_t(\mathbf{x}_{\text{low}})(\mathbf{x}_1 - [\boldsymbol{\mu}(\mathbf{z}) + \boldsymbol{\sigma}(\mathbf{z}) \odot \boldsymbol{\epsilon}])||_2^2], \quad (7)$$

313 with the velocity field $\mathbf{u}_t^{\theta}(\mathbf{x}_t|\mathbf{x}_{\text{low}}) = \dot{\gamma}_t(\mathbf{x}_{\text{low}})F_{\theta}(\mathbf{x}_t, \mathbf{x}_{\text{low}}, t)$ parameterized by a neural network
 314 F_{θ} conditioned on \mathbf{x}_{low} . We mask missing or inflated value entries, as these are inferred from p_{low}^{θ}
 315 based on Equation (2). Hence, p_{high}^{θ} mostly learns feature dependencies and details. Note that, for
 316 $\gamma_t = t \cdot \mathbf{1}$, $\boldsymbol{\mu} = \mathbf{0}$ and $\boldsymbol{\sigma}(\mathbf{x}_{\text{low}}) = \mathbf{1}$, we recover the typical loss from a flow matching model with
 317 linear paths. Having trained \mathbf{u}_t^{θ} , we simulate $d\mathbf{x}_t = \mathbf{u}_t^{\theta}(\mathbf{x}_t|\mathbf{x}_{\text{low}})dt$ starting from $\mathbf{x}_0 \sim p(\mathbf{x}_0|\mathbf{z})$ to
 318 sample from p_1 . The cascaded pipeline ensures that \mathbf{x}_{low} will be available during generation.

319 4.3 LOW-RESOLUTION REPRESENTATION

322 So far, we have not discussed how we derive \mathbf{z} and how we determine $\boldsymbol{\mu}(\mathbf{z})$ and $\boldsymbol{\sigma}(\mathbf{z})$. First, we
 323 note that $z^{(i)}$ must be categorical and only summarizes information about $x_1^{(i)}$. Second, to minimize
 the noise introduced to the training process of the flow models, we aim to learn feature-specific

324 encoders $\text{Enc}_i(x_1^{(i)}) \forall i$ to output $z^{(i)}$ during data pre-processing. Finally, we want to learn μ and
 325 σ^2 of $p(x_0^{(i)}|z^{(i)})$ from $z^{(i)}$. Based on these requirements, we propose two different encoders, a
 326 Gaussian mixture model (GMM; Bishop, 2006) and a distributional regression tree (DT; Schlosser
 327 et al., 2019). For details on the encoders, we refer to Appendix F.
 328

329 Each model efficiently learns to approximate $p(x_1^{(i)})$ with K_i Gaussian components
 330 $p_k(x_1^{(i)}) = \mathcal{N}(\mu_k, \sigma_k^2) \forall k \in \{1, \dots, K_i\}$. For the GMM, we set $z^{(i)} = \arg \max_k \log w_k p_k(x_1^{(i)})$
 331 with mixture weights w_k ; for the DT, $z^{(i)} = \text{Tree}(x_1^{(i)})$ is the index of the terminal leaf node $x_1^{(i)}$
 332 is allocated to. Our encoder choices allow us to directly use μ_k and σ_k^2 to parameterize $p(x_0^{(i)}|z^{(i)})$ in
 333 Equation (4) without any additional learning. If $\sigma_k^2 \approx 0$, we treat μ_k as a inflated value and account
 334 for it explicitly. Missing values are removed before fitting the encoder but afterwards added as a
 335 separate category c_{miss} to $z^{(i)}$. Intuitively, we select $p(x_0^{(i)}|z^{(i)})$ to be the **Gaussian component** that
 336 the encoder suggests has most likely generated the data point $x_1^{(i)}$. This moves the source distribution
 337 $p(\mathbf{x}_0|\mathbf{z})$ closer to the target distribution $p(\mathbf{x}_1)$, which benefits both training and sampling by reducing
 338 the transport cost. We provide a proof below. Compared to, e.g., minibatch Optimal Transport
 339 couplings (Tong et al., 2024), our method comes at no additional costs, aside from obtaining \mathbf{z} .
 340

341 **Theorem 1** (Data-dependent coupling lowers transport costs). *Let \mathbf{z} be derived using a DT en-
 342 coder. Then, our data-dependent coupling (see Equation (4)) yields lower transport costs than an
 343 independent coupling.*

344 *Proof.* See Appendix A.1.2. □
 345

346 4.4 LOW RESOLUTION MODEL 347

348 The main requirements for the low-resolution model p_{low}^θ to learn p_{low} are that the model generates
 349 categorical data efficiently and accurately (and accommodates arbitrary cardinalities). A strength of
 350 our framework is that *any generative model for categorical can be used*. For comparative purposes
 351 we choose the CDTD model (Mueller et al., 2025), which has been shown to be both efficient and
 352 effective at modeling high cardinality features.
 353

354 5 EXPERIMENTS 355

356 5.1 EXPERIMENTAL SETUP 357

358 We evaluate TabCascade across a diverse set of generative models and on multiple popular benchmark
 359 datasets. Additionally, we conduct ablation studies to, among others, investigate the value of the
 360 individual components of our proposed framework. The implementation details for TabCascade
 361 are detailed in Appendix D.
 362

363 **Baselines.** We benchmark TabCascade against several state-of-the-art generative models for tabular
 364 data. These include CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019), the tree-based ARF Watson
 365 et al. (2023) as well as the diffusion-based architectures TabDDPM (Kotelnikov et al., 2023), TabSyn
 366 (Zhang et al., 2024b), TabDiff (Shi et al., 2025) and CDTD (Mueller et al., 2025).¹ ² ³ For a fair
 367 comparison, we align all models as consistently as possible. Since none of the models natively
 368 supports missing data generation, we augment each with a simple encoding-based mechanism for
 369 missing value simulation, as described in Section C. Results are aggregated over three training

370 ¹We do not consider ForestDiffusion (Jolicoeur-Martineau et al., 2024) due to its severe lack of efficiency.
 371 On `adult`, the default hyperparameters lead to a several hours long training time, which substantially exceeds
 372 the training budget of all other diffusion-based models. Similar to Mueller et al. (2025), we therefore deem it
 373 prohibitively expensive to include.

374 ²We do not benchmark against SMOTE (Chawla et al., 2002) as Mueller et al. (2025) showed their inefficiency
 375 and subpar performance for medium to large datasets compared to diffusion-based models. The reason is its
 376 reliance on identifying nearest neighbors.

377 ³We acknowledge the existence of additional model classes that could be used for the generative task, such
 378 as foundational models (e.g., Lin et al., 2025). However, due to our contribution being diffusion-specific, we aim
 379 for a fair, comprehensive comparison to *diffusion-based* models.

378 and ten sampling seeds. The training seeds also affect the missingness simulation. Details on the
 379 implementations are provided in Appendix C.
 380

381 **Evaluation metrics.** We evaluate all models on a broad set of standard metrics for synthetic tabular
 382 data (for details, see Appendix E). We consider Shape, Wasserstein distance (WD), Jensen-Shannon
 383 divergence (JSD), Trend and detection scores to illustrate the quality of the uni-, bi-variate and joint
 384 densities. In addition, we evaluate the performance of the synthetic relative to the real training data
 385 on downstream tasks, also known as machine learning efficiency (MLE). Further results on **fidelity**,
 386 **coverage** and **diversity** are provided by the α -Precision, β -Recall and DCR share metrics. Since our
 387 goal is to approximate the true distribution and provide a fair comparison to existing baselines, we
 388 are, similar to the baselines, not concerned with privacy considerations. For completeness, we do
 389 provide scores for a membership inference attack (MIA). However, any privacy guarantees would
 390 require the adoption of additional techniques, such as differential privacy, in practice. We provide
 391 modular code on all evaluation metrics to make future research on tabular data generation easier and
 392 more comparable.
 393

394 **Datasets.** We benchmark on a diverse set of six popular tabular datasets: `adult`, `beijing`,
 395 `default`, `diabetes`, `news` and `shoppers` (see also Kotelnikov et al., 2023; Zhang et al., 2024b;
 396 Mueller et al., 2025; Shi et al., 2025). The selected datasets include inflated values. The missing
 397 values are added (10%) via a simulated MNAR mechanism (Muzellec et al., 2020; Zhao et al., 2023;
 398 Zhang et al., 2024a). We utilize the associated regression or classification tasks to evaluate machine
 399 learning efficiency for each dataset. For details on the datasets and the simulation, see Appendix B.
 400

5.2 RESULTS

401 Table 1 summarizes all results averaged across all datasets as well as training and sampling seeds.
 402 TabDDPM produced NaNs for the `diabetes` and `news` datasets, in these cases, we assigned it the
 403 lowest (i.e., worst) score among the remaining models. Detailed results are given in Appendix J. We
 404 provide training and sampling times in Appendix L and the learned time schedules per dataset in
 405 Appendix H.
 406

407 Table 1: Average results across datasets and seeds. The best, row-wise result is indicated in **bold**, the
 408 second best is underlined. Shape (num) and Shape (cat) were computed on numerical and categorical
 409 features, respectively. Trend (mixed) only considers dependencies across feature types.
 410

Metric	ARF	TVAE	CTGAN	TabDDPM	TabSyn	TabDiff	CDTD	Ours (DT)
Detection Score	0.145 \pm 0.141	0.059 \pm 0.074	0.043 \pm 0.035	0.203 \pm 0.270	0.110 \pm 0.157	0.284 \pm 0.269	0.231 \pm 0.219	0.437 \pm 0.338
Shape	0.952 \pm 0.029	0.891 \pm 0.028	0.911 \pm 0.008	0.931 \pm 0.055	0.926 \pm 0.039	0.968 \pm 0.021	0.962 \pm 0.019	0.978 \pm 0.015
Shape (cat)	0.996 \pm 0.002	0.889 \pm 0.037	0.920 \pm 0.035	0.942 \pm 0.050	0.948 \pm 0.030	0.990 \pm 0.011	0.988 \pm 0.004	0.989 \pm 0.004
Shape (num)	0.921 \pm 0.031	0.887 \pm 0.033	0.909 \pm 0.008	0.924 \pm 0.064	0.920 \pm 0.045	0.959 \pm 0.027	0.943 \pm 0.027	0.974 \pm 0.020
WD (num)	0.026 \pm 0.026	0.027 \pm 0.012	0.024 \pm 0.010	0.119 \pm 0.268	0.127 \pm 0.264	0.011 \pm 0.016	0.017 \pm 0.018	0.007 \pm 0.008
JSD (cat)	0.020 \pm 0.009	0.174 \pm 0.076	0.118 \pm 0.031	0.090 \pm 0.086	0.075 \pm 0.037	0.023 \pm 0.012	0.029 \pm 0.009	0.025 \pm 0.010
Trend	0.961 \pm 0.010	0.853 \pm 0.073	0.847 \pm 0.062	0.915 \pm 0.084	0.910 \pm 0.048	0.969 \pm 0.018	0.957 \pm 0.026	0.969 \pm 0.019
Trend (mixed)	0.942 \pm 0.020	0.763 \pm 0.080	0.739 \pm 0.049	0.867 \pm 0.117	0.873 \pm 0.053	0.954 \pm 0.021	0.918 \pm 0.052	0.945 \pm 0.038
MLE	0.056 \pm 0.043	0.089 \pm 0.100	0.100 \pm 0.085	<u>0.577</u> \pm 1.328	0.597 \pm 1.318	0.034 \pm 0.029	0.046 \pm 0.052	0.025 \pm 0.019
α -Precision	0.953 \pm 0.033	0.595 \pm 0.319	0.861 \pm 0.057	0.661 \pm 0.365	0.880 \pm 0.140	0.954 \pm 0.063	<u>0.963</u> \pm 0.055	0.972 \pm 0.032
β -Recall	0.322 \pm 0.115	0.209 \pm 0.152	0.243 \pm 0.089	0.391 \pm 0.242	0.261 \pm 0.133	0.408 \pm 0.085	0.570 \pm 0.095	0.563 \pm 0.073
DCR Share	0.800 \pm 0.010	0.804 \pm 0.013	<u>0.781</u> \pm 0.003	0.817 \pm 0.025	0.779 \pm 0.002	0.783 \pm 0.004	0.858 \pm 0.050	0.850 \pm 0.051
MIA Score	0.987 \pm 0.008	0.987 \pm 0.006	0.991 \pm 0.002	0.981 \pm 0.008	<u>0.989</u> \pm 0.007	0.987 \pm 0.008	0.984 \pm 0.011	0.971 \pm 0.018

423 **Substantially improved realism.** The detection score is our main metric of interest since it
 424 evaluates the realism of the whole joint distribution of the synthetic data. TabCascade with a DT
 425 encoder leads to *substantially* more realistic samples. Figure 2 illustrates the benefit of our cascaded
 426 pipeline compared the average of the diffusion-based models.
 427

428 **Improved or competitive univariate densities.** Metrics reflecting the quality of the univariate
 429 densities, i.e., Shape, WD and JSD, indicate that TabCascade’s ability to explicitly incorporate
 430 mixed-type feature distributions improves the sample quality for numerical features over the baselines.
 431 For categorical features, it performs competitively and similar to CDTD, which is caused by our
 432 choice of using CDTD for p_{low}^{θ} . TabCascade achieves this performance despite p_{low}^{θ} being actually

432 much smaller in parameter count compared to the baselines, as we split parameters between p_{low}^{θ} and
 433 p_{high}^{θ} . This again supports our motivation that categorical data distributions tend to be easier to learn.
 434 We also want to highlight TabCascade yields better results than TabDiff with on average less than
 435 50% of the training costs (see Appendix L). In principle, further performance gains could be realized
 436 by using a different model, such as ARF, as p_{low}^{θ} .
 437

438 **Accurate dependencies despite cascaded pipeline.** A cascaded pipeline could make it more
 439 difficult for the model to learn dependencies across feature types. However, our introduction of \mathbf{z}_{num}
 440 alleviates this issues. This can be seen in the very competitive Trend scores. Despite a cascaded
 441 pipeline, the Trend (mixed) score, which evaluates the bivariate dependencies across feature types
 442 only, remains at a very high level. We provide qualitative comparisons of bivariate densities in
 443 Appendix I which further illustrate that TabCascade fits the details of distributions more accurately.
 444

445 **Improved downstream task performance.** The structure of TabCascade allows a great focus on
 446 the details of distributions (see Figure 3), this can benefit the utility of data. The achieved MLE score
 447 indicates that the utility of the synthetic data is very high when used as a drop-in replacement for the
 448 true data in a downstream task.
 449

450 **Competitive fidelity, diversity and coverage.** The greater focus on details naturally translates into
 451 greater sample fidelity, as highlighted by the α -Precision. The coverage, evaluated by the β -Recall
 452 score, remains competitive to CDTD. Moving samples to more precise areas in the data space comes
 453 with the downside of reduced diversity in terms of a lower DCR share. Still, it remains at the level of
 454 CDTD, while improving most other metrics considerably.
 455

456 **The privacy trade-off.** There is an obvious trade-off between more accurate samples and privacy.
 457 To make any privacy guarantees in practice, additional context-dependent mechanisms, like differen-
 458 tial privacy, are required. For completeness, we show that privacy, as measured by MIA, remains on a
 459 high level but is slightly lower than the baselines.
 460

5.3 ABLATION STUDIES

462 Table 2: Average ablation results over all datasets and seeds. The best, column-wise result is indicated
 463 in **bold**, the second best is underlined. Changing from CDTD to a flow matching (FM) high-resolution
 464 model implies *independent* coupling and *linear* paths. Grey represents the full TabCascade (DT).
 465

	Shape	Shape (num)	WD (num)	Trend	Trend (mixed)	Detection Score	MLE	α -Precision	β -Recall	DCR Share	MIA Score
CDTD	0.962 \pm 0.019	0.943 \pm 0.027	0.017 \pm 0.018	0.957 \pm 0.026	0.918 \pm 0.052	0.231 \pm 0.219	0.046 \pm 0.052	0.963 \pm 0.055	0.570 \pm 0.095	0.858 \pm 0.050	0.984 \pm 0.011
+ cascade	0.961 \pm 0.041	0.945 \pm 0.052	0.069 \pm 0.154	0.962 \pm 0.024	0.931 \pm 0.047	0.370 \pm 0.299	0.048 \pm 0.061	0.939 \pm 0.117	0.517 \pm 0.205	0.875 \pm 0.063	0.978 \pm 0.017
+ latents \mathbf{z}_{num} (DT)	0.917 \pm 0.057	0.873 \pm 0.096	0.018 \pm 0.010	0.882 \pm 0.073	0.767 \pm 0.105	0.138 \pm 0.202	0.074 \pm 0.063	0.973 \pm 0.034	0.486 \pm 0.116	<u>0.841</u> \pm 0.046	0.990 \pm 0.004
change to FM	0.975 \pm 0.016	0.971 \pm 0.020	<u>0.007</u> \pm 0.007	0.962 \pm 0.027	0.935 \pm 0.050	0.396 \pm 0.296	0.021 \pm 0.012	0.969 \pm 0.037	0.563 \pm 0.074	0.851 \pm 0.051	0.974 \pm 0.016
+ data dep. coupling	0.977 \pm 0.015	0.974 \pm 0.020	0.007 \pm 0.008	<u>0.969</u> \pm 0.016	<u>0.947</u> \pm 0.029	0.434 \pm 0.337	0.024 \pm 0.018	0.970 \pm 0.038	0.563 \pm 0.074	0.851 \pm 0.051	0.971 \pm 0.018
+ non-linear paths	0.978 \pm 0.015	<u>0.974</u> \pm 0.020	<u>0.007</u> \pm 0.008	<u>0.969</u> \pm 0.019	0.945 \pm 0.038	0.437 \pm 0.338	0.025 \pm 0.019	0.972 \pm 0.038	<u>0.563</u> \pm 0.073	0.850 \pm 0.051	0.971 \pm 0.018
switch DT to GMM	0.961 \pm 0.016	0.941 \pm 0.015	0.015 \pm 0.006	0.957 \pm 0.017	0.923 \pm 0.025	0.233 \pm 0.189	0.029 \pm 0.012	0.976 \pm 0.014	0.535 \pm 0.065	0.850 \pm 0.053	0.985 \pm 0.010

471 **Effect of cascaded pipeline and latents.** First, we investigate the benefit of our main innovations.
 472 Table 2 compares the average performances of the vanilla CDTD (Mueller et al., 2025), to a model
 473 that adds the cascaded pipeline, i.e., specifies $p(\mathbf{x}_{\text{cat}}) p(\mathbf{x}_{\text{num}} | \mathbf{x}_{\text{cat}})$, and a model that adds \mathbf{z}_{num} to define
 474 $p(\mathbf{x}_{\text{cat}}, \mathbf{z}_{\text{num}}) p(\mathbf{x}_{\text{num}} | \mathbf{x}_{\text{cat}}, \mathbf{z}_{\text{num}})$, including the relevant masking of losses. All hyperparameters were
 475 held constant. The results show that the CDTD model itself can already benefit from the cascaded
 476 structure. Adding the latents, however, without the further improvements of TabCascade, leads to a
 477 substantial drop in sample quality. This may be caused by CDTD relying on learnable noise schedules
 478 that aim for the diffusion losses to develop linearly in time. Adding highly informative signal, like
 479 \mathbf{z}_{num} makes this goal more difficult for the model, such that the learnable noise schedules actually
 480 become a hindrance.
 481

482 **Effect of data dep. coupling and learnable, non-linear paths.** To reap the benefits of introducing
 483 \mathbf{z}_{num} , the TabCascade adds data-dependent coupling and learnable, non-linear paths. Both improve
 484 the realism of the univariate and joint densities as well as the dependencies among features over a
 485 vanilla flow matching (FM) model with linear paths and independent coupling. The effect of adding
 486

486 non-linear paths can be interpreted as subtle. However, we want to emphasize that our specification
 487 is strictly more flexible than fixed, linear paths. If it benefits \mathcal{L}_{CFM} , the learnable time schedule can
 488 become linear, see Appendix H for illustrations.
 489

490 **DT vs. GMM encoder.** The DT encoder consistently outperforms the GMM encoder. This is
 491 because the DT encoder induces a finer granularity into \mathbf{z}_{num} , i.e., it estimates more Gaussian
 492 components. For instance, for the `adult` data, DT on average encodes 65.5 groups, whereas GMM
 493 only finds 12.5 on average. In addition, the reduced overlap in the Gaussian components estimated
 494 by the DT encoder (see Appendix F) may benefit the generative model by providing more effective
 495 clustering of samples.
 496

497 Table 3: Ablation results for changing the missingness rate averaged over all datasets, sampling
 498 seeds and a single training seed. WD cannot be estimated due to too many missings at the very high
 499 missingness rate of $p = 0.50$, so we excluded it here. The missingness rate of $p = 0.10$ was used for
 500 the main results.

	TabCascade			TabDiff		
	$p = 0.10$	$p = 0.25$	$p = 0.50$	$p = 0.10$	$p = 0.25$	$p = 0.50$
Shape	0.978 ± 0.015	0.973 ± 0.017	0.966 ± 0.024	0.968 ± 0.021	0.958 ± 0.031	0.950 ± 0.048
Shape (cat)	0.989 ± 0.004	0.988 ± 0.005	0.985 ± 0.006	0.990 ± 0.010	0.986 ± 0.018	0.985 ± 0.022
Shape (num)	0.975 ± 0.020	0.969 ± 0.022	0.958 ± 0.030	0.959 ± 0.027	0.947 ± 0.038	0.932 ± 0.061
WD (num)	0.006 ± 0.007	0.173 ± 0.405	-	0.010 ± 0.013	0.176 ± 0.404	-
JSD (cat)	0.025 ± 0.010	0.149 ± 0.267	0.248 ± 0.272	0.024 ± 0.011	0.155 ± 0.264	0.249 ± 0.271
Trend	0.969 ± 0.017	0.966 ± 0.018	0.966 ± 0.016	0.969 ± 0.018	0.961 ± 0.026	0.961 ± 0.034
Trend (mixed)	0.943 ± 0.037	0.942 ± 0.035	0.948 ± 0.030	0.954 ± 0.024	0.948 ± 0.029	0.952 ± 0.036
Detection Score	0.445 ± 0.349	0.454 ± 0.324	0.505 ± 0.301	0.281 ± 0.264	0.267 ± 0.227	0.352 ± 0.270
MLE	0.017 ± 0.013	0.021 ± 0.013	0.023 ± 0.016	0.034 ± 0.028	0.039 ± 0.031	0.035 ± 0.027
α -Precision	0.972 ± 0.035	0.956 ± 0.079	0.950 ± 0.056	0.955 ± 0.058	0.936 ± 0.106	0.920 ± 0.164
β -Recall	0.562 ± 0.077	0.572 ± 0.089	0.599 ± 0.069	0.408 ± 0.085	0.429 ± 0.098	0.419 ± 0.110
DCR Share	0.849 ± 0.050	0.852 ± 0.051	0.868 ± 0.057	0.784 ± 0.004	0.782 ± 0.004	0.786 ± 0.005
MIA Score	0.971 ± 0.019	0.972 ± 0.017	0.969 ± 0.017	0.986 ± 0.007	0.987 ± 0.005	0.982 ± 0.011

515
 516 **Effect of missingness rate.** To investigate the effect of increasing the rate of simulated missings
 517 from the default of $p = 0.10$ to $p = 0.25$ and $p = 0.50$, we compare TabCascade to TabDiff, which
 518 performs well overall in the main results. The results in Table 3 confirm the general pattern seen
 519 in Table 1. The relative performance gain of using TabCascade over TabDiff stays consistent as we
 520 increase p . In particular, most metrics barely worsen, despite the significant increase in missings in
 521 the training data.
 522

523 **Additional ablation on the DT encoder depth.** We provide ablation results for the effect of the
 524 maximum depth of DT encoder in Appendix K. This includes an analysis of the effect of an increase
 525 in encoder complexity on the proportion of masked inputs to p_{high}^{θ} .
 526

527 6 CONCLUSION

528 In this paper, we introduced TabCascade, a cascaded flow matching model that generates high-
 529 resolution, numerical features based on their low-resolution encoding and categorical features.
 530 The model builds on a novel conditional probability path guided by low-resolution information
 531 and combines it with feature-specific, learnable time schedules that enable non-linear paths. This
 532 framework allows the direct accommodation of mixed-type features and provably lowers the transport
 533 costs. The extensive experiments we conducted demonstrate TabCascade’s enhanced ability to
 534 generate realistic samples and learn the details of the distribution. **However, we emphasize that our**
 535 **benchmarks are mostly limited to diffusion-based models.** Other model classes, such as foundational
 536 models (e.g., Lin et al., 2025) or SMOTE (Chawla et al., 2002) are not included. Also, due to
 537 computational constraints, we only consider a set of six very popular benchmark datasets in the field.
 538 Hence, we suggest a more extensive comparison including additional model classes and additional,
 539 possibly more difficult to model datasets, e.g., based on those proposed by (McElfresh et al., 2024)

540 for regression / classification tasks, as future work. The latter may become even more important in
541 the future, since we already see near-ceiling performance of most models on some of our metrics. We
542 also leave questions about how to generalize the cascaded framework to other data modalities, how
543 to adopt it for data imputation, and how to integrate privacy guarantees for future work. To further
544 improve sample quality, our cascaded framework could also be combined with an autoregressive
545 low-resolution model. Lastly, for efficiency gains, the number of parameters in the high-resolution
546 model could be optimized depending on the number of numerical features and the proportion of their
547 masked entries.

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 REFERENCES
595

596 Ahmed M. Alaa, Boris van Breugel, Evgeny Saveliev, and Mihaela van der Schaar. How Faithful is
597 your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models. In *Proceedings*
598 of the 39th International Conference on Machine Learning, volume 162 of *Proceedings*
599 of Machine Learning Research, pp. 290–306. PMLR, 2022.

600 Michael S. Albergo and Eric Vanden-Eijnden. Building Normalizing Flows with Stochastic Inter-
601 polants. In *International Conference on Learning Representations*, 2023. doi: 10.48550/arXiv.
602 2209.15571.

603 Michael S. Albergo, Mark Goldstein, Nicholas M. Boffi, Rajesh Ranganath, and Eric Vanden-Eijnden.
604 Stochastic interpolants with data-dependent couplings. In *International Conference on Machine*
605 *Learning*, volume 41. PMLR, September 2024. doi: 10.48550/arXiv.2310.03725.

606 Samuel A. Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E. Tillman, Prashant Reddy, and
607 Manuela Veloso. Generating synthetic data in finance: Opportunities, challenges and pitfalls.
608 In *Proceedings of the First ACM International Conference on AI in Finance*. Association for
609 Computing Machinery, 2021.

610 Grigory Bartosh, Dmitry Vetrov, and Christian A. Naesseth. Neural Flow Diffusion Models: Learnable
611 Forward Process for Improved Diffusion Modelling. In *Advances in Neural Information Processing*
612 *Systems*, volume 37, pp. 73952–73985. Curran Associates, Inc., 2024. doi: 10.48550/arXiv.2404.
613 12940.

614 Barry Becker and Ronny Kohavi. Adult, 1996.

615 Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the Monge-
616 Kantorovich mass transfer problem. *Numerische Mathematik*, 84(3):375–393, 2000. doi: 10.1007/
617 s002110050002.

618 Sebastian Bischoff, Alana Darcher, Michael Deistler, Richard Gao, Franziska Gerken, Manuel
619 Gloeckler, Lisa Haxel, Jaivardhan Kapoor, Janne K. Lappalainen, Jakob H. Macke, Guy Moss,
620 Matthijs Pals, Felix Pei, Rachel Rapp, A. Erdem Sağtekin, Cornelius Schröder, Auguste Schulz,
621 Zinovia Stefanidi, Shoji Toyota, Linda Ulmer, and Julius Vetter. A Practical Guide to Sample-
622 based Statistical Distances for Evaluating Generative Models in Science. *Transactions on Machine*
623 *Learning Research*, 2024.

624 Christopher M. Bishop. *Pattern Recognition and Machine Learning*. Springer-Verlag, Berlin,
625 Heidelberg, 2006. ISBN 0-387-31073-8.

626 Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
627 Kasneci. Deep Neural Networks and Tabular Data: A Survey. *IEEE Transactions on Neural*
628 *Networks and Learning Systems*, pp. 1–21, 2022. ISSN 2162-237X, 2162-2388. doi: 10.1109/
629 TNNLS.2022.3229161.

630 Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
631 Synthetic Minority Over-sampling Technique. *Journal of Artificial Intelligence Research*, 16:
632 321–357, 2002.

633 Song Chen. Beijing PM2.5, 2015.

634 John Clore, Krzysztof Cios, Jon DeShazo, and Beata Strack. Diabetes 130-US Hospitals for Years
635 1999–2008, 2014.

636 Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
637 Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
638 Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data. *arXiv*
639 *preprint arXiv:2211.15089*, 2022.

640 Kelwin Fernandes, Pedro Vinagre, Paulo Cortez, and Pedro Sernadela. Online News Popularity,
641 2015.

648 Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data
 649 generation for tabular health records: A systematic review. *Neurocomputing*, 493:28–45, 2022.
 650 ISSN 09252312. doi: 10.1016/j.neucom.2022.04.053.

651

652 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In *Advances
 653 in Neural Information Processing Systems*, volume 33, pp. 6840–6851, 2020.

654

655 Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet, Mohammad Norouzi, and Tim Salimans.
 656 Cascaded Diffusion Models for High Fidelity Image Generation. *Journal of Machine Learning
 657 Research*, 23(47):1–33, 2022.

658

659 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax Flows
 660 and Multinomial Diffusion: Learning Categorical Distributions. In *Advances in Neural Information
 661 Processing Systems*, volume 34, pp. 12454–12465, 2021.

662

663 Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and Imputing Tabular Data
 664 via Diffusion and Flow-based Gradient-Boosted Trees. In *International Conference on Artificial
 665 Intelligence and Statistics*, pp. 1288–1296, 2024.

666

667 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-
 668 Based Generative Models. In *Advances in Neural Information Processing Systems*, volume 35, pp.
 669 26565–26577, 2022.

670

671 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
 672 Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In *Advances in Neural
 673 Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

674

675 Jayoung Kim, Chaejeong Lee, and Noseong Park. STaSy: Score-based Tabular data Synthesis. In
 676 *International Conference on Learning Representations*, 2023.

677

678 Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. TabDDPM: Modelling
 679 Tabular Data with Diffusion Models. In *International Conference on Machine Learning*, pp.
 680 17564–17579, 2023.

681

682 Theodoros Kouzelis, Efstathios Karypidis, Ioannis Kakogeorgiou, Spyros Gidaris, and Nikos Ko-
 683 modakis. Boosting Generative Image Modeling via Joint Image-Feature Synthesis, April 2025.

684

685 Anton D. Lautrup, Tobias Hyrup, Arthur Zimek, and Peter Schneider-Kamp. Syntheval: a framework
 686 for detailed utility and privacy evaluation of tabular synthetic data. *Data Mining and Knowledge
 687 Discovery*, 39(1), 2024. doi: 10.1007/s10618-024-01081-4.

688

689 Chaejeong Lee, Jayoung Kim, and Noseong Park. CoDi: Co-evolving Contrastive Diffusion Models
 690 for Mixed-type Tabular Synthesis. In *International Conference on Machine Learning*, pp. 18940–
 691 18956, 2023.

692

693 Zhong Li, Qi Huang, Lincen Yang, Jiayang Shi, Zhao Yang, Niki van Stein, Thomas Bäck, and
 694 Matthijs van Leeuwen. Diffusion Models for Tabular Data: Challenges, Current Progress, and
 695 Future Directions, February 2025.

696

697 Xiaofeng Lin, Chenheng Xu, Matthew Yang, and Guang Cheng. CTSyn: A Foundation Model for
 698 Cross Tabular Data Generation. In *International Conference on Learning Representations*. arXiv,
 699 2025. doi: 10.48550/arXiv.2406.04619.

700

701 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching
 702 for Generative Modeling. In *International Conference on Learning Representations*, 2023. doi:
 10.48550/arXiv.2210.02747.

703

704 Roderick J. A. Little and Donald B. Rubin. *Statistical Analysis with Missing Data, Third Edition*.
 705 John Wiley & Sons, Ltd, 2019. ISBN 978-0-470-52679-8.

706

707 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow Straight and Fast: Learning to Generate and
 708 Transfer Data with Rectified Flow. In *International Conference on Learning Representations*,
 709 2023. doi: 10.48550/arXiv.2209.03003.

702 Chao Ma, Sebastian Tschiatschek, José Miguel Hernández-Lobato, Richard Turner, and Cheng Zhang.
 703 VAEM: A Deep Generative Model for Heterogeneous Mixed Type Data. In *Advances in Neural*
 704 *Information Processing Systems*, volume 33, pp. 11237–11247, 2020.

705 Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Benjamin Feuer, Chin-
 706 may Hegde, Ganesh Ramakrishnan, Micah Goldblum, and Colin White. When Do Neural Nets
 707 Outperform Boosted Trees on Tabular Data? In *Proceedings of the 37th International Conference*
 708 *on Neural Information Processing Systems. Track on Datasets and Benchmarks*. Curran Associates
 709 Inc., 2024. doi: 10.48550/arXiv.2305.02997.

710 Markus Mueller, Kathrin Gruber, and Dennis Fok. Continuous Diffusion for Mixed-Type Tabular
 711 Data. In *International Conference on Learning Representations*, 2025.

712 Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing Data Imputation using Optimal
 713 Transport. In *International Conference on Machine Learning*, volume 119, pp. 7130–7140. PMLR,
 714 2020. doi: 10.48550/arXiv.2002.03860.

715 Kushagra Pandey, Avideep Mukherjee, Piyush Rai, and Abhishek Kumar. DiffuseVAE: Efficient,
 716 Controllable and High-Fidelity Generation from Low-Dimensional Latents. *Transactions on*
 717 *Machine Learning Research*, 2022. doi: 10.48550/arXiv.2201.00308.

718 Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The Synthetic Data Vault. In *IEEE In-*
 719 *ternational Conference on Data Science and Advanced Analytics*, pp. 399–410, 2016. doi:
 720 10.1109/DSAA.2016.49.

721 Zhaozhi Qian, Bogdan-Constantin Cebere, and Mihaela van der Schaar. Synthcity: Facilitating inno-
 722 vative use cases of synthetic data in different data modalities. In *Advances in Neural Information*
 723 *Processing Systems*, volume 36, pp. 3173–3188, 2023.

724 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
 725 Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
 726 Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic Text-to-Image
 727 Diffusion Models with Deep Language Understanding. In *Advances in Neural Information*
 728 *Processing Systems*, volume 35, pp. 36479–36494. Curran Associates, Inc., 2022. doi: 10.48550/
 729 arXiv.2205.11487.

730 Subham Sekhar Sahoo, Aaron Gokaslan, Chris De Sa, and Volodymyr Kuleshov. Diffusion Models
 731 With Learned Adaptive Noise. *arXiv preprint arXiv:2312.13236*, December 2023.

732 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T.
 733 Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and Effective Masked Diffusion Lan-
 734 guage Models. In *Advances in Neural Information Processing Systems*, volume 37, pp. 130136–
 735 130184. Curran Associates, Inc., 2024. doi: 10.48550/arXiv.2406.07524.

736 Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
 737 Generative Models via Precision and Recall. In *Advances in Neural Information Processing*
 738 *Systems*, volume 31. Curran Associates, Inc., October 2018.

739 C. Okan Sakar, S. Olcay Polat, Mete Katircioglu, and Yomi Kastro. Real-time prediction of online
 740 shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks.
 741 *Neural Computing and Applications*, 31(10):6893–6908, 2019. ISSN 0941-0643, 1433-3058. doi:
 742 10.1007/s00521-018-3523-0.

743 Lisa Schlosser, Torsten Hothorn, Reto Stauffer, and Achim Zeileis. Distributional Regression Forests
 744 for Probabilistic Precipitation Forecasting in Complex Terrain. *The Annals of Applied Statistics*,
 745 13(3):1564–1589, 2019. doi: 10.1214/19-AOAS1247.

746 Junting Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. TabDiff:
 747 A Mixed-type Diffusion Model for Tabular Data Generation. In *International Conference on*
 748 *Learning Representations*, 2025. doi: 10.48550/arXiv.2410.20626.

749 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership Inference
 750 Attacks against Machine Learning Models. In *Proceedings of the IEEE Symposium on Security*
 751 *and Privacy*, 3–18, 2017. doi: 10.1109/SP.2017.41.

756 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
 757 Learning using Nonequilibrium Thermodynamics. In *International Conference on Machine*
 758 *Learning*, pp. 2256–2265, 2015.

759

760 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
 761 Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
 762 *International Conference on Learning Representations*, 2021.

763

764 Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
 765 Han Cai, Yao Lu, and Song Han. HART: Efficient Visual Generation with Hybrid Autoregressive
 766 Transformer, 2024.

767

768 Paul Tiwald, Ivona Krchova, Andrey Sidorenko, Mariana Vargas Vieyra, Mario Scriminaci, and
 769 Michael Platzer. TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generat-
 770 ing High-Fidelity Synthetic Data, February 2025.

771

772 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 773 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 774 with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024.

775

776 David S. Watson, Kristin Blesch, Jan Kapar, and Marvin N. Wright. Adversarial random forests for
 777 density estimation and generative modeling. In *International Conference on Artificial Intelligence*
 778 and *Statistics*, pp. 5357–5375, 2023.

779

780 Lei Xu, Maria Skoulikidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling Tabular
 781 Data using Conditional GAN. In *Advances in Neural Information Processing Systems*, volume 32,
 782 pp. 7335–7345, 2019.

783

784 I-Cheng Yeh. Default of Credit Card Clients, 2009.

785

786 Hengrui Zhang, Liancheng Fang, and Philip S. Yu. Unleashing the Potential of Diffusion Models for
 787 Incomplete Data Imputation, May 2024a.

788

789 Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
 790 Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-Type Tabular Data Synthesis with
 791 Score-based Diffusion in Latent Space. In *International Conference on Learning Representations*,
 792 2024b.

793

794 He Zhao, Ke Sun, Amir Dezfouli, and Edwin Bonilla. Transformed Distribution Matching for
 795 Missing Value Imputation. In *International Conference on Machine Learning*, volume 202, pp.
 796 42159–42186. PMLR, 2023. doi: 10.48550/arXiv.2302.10363.

797

798 Zilong Zhao, Aditya Kunar, Hiek Van der Scheer, Robert Birke, and Lydia Y. Chen. CTAB-GAN:
 799 Effective Table Data Synthesizing. In *Asian Conference on Machine Learning*, pp. 97–112, 2021.

800

801

802

803

804

805

806

807

808

809

810 A APPENDIX
811812 A.1 DERIVATION OF THE GUIDED CONDITIONAL VECTOR FIELD FOR THE HIGH-RESOLUTION
813 MODEL
814815 Theorem 3 in Lipman et al. (2023) proves that if the Gaussian conditional probability path is of the
816 form $p_t(\mathbf{x}_t|\mathbf{x}_1) = \mathcal{N}(\boldsymbol{\mu}_t(\mathbf{x}_1), \sigma_t^2(\mathbf{x}_1)\mathbf{I})$ then the unique vector field that generates the flow Ψ_t has
817 the form:

818
$$\mathbf{u}_t(\mathbf{x}_t|\mathbf{x}_1) = \frac{\dot{\sigma}_t(\mathbf{x}_1)}{\sigma_t(\mathbf{x}_1)}(\mathbf{x}_t - \boldsymbol{\mu}_t(\mathbf{x}_1)) + \dot{\boldsymbol{\mu}}_t(\mathbf{x}_1). \quad (8)$$

819

820 In Equation (5), we implicitly define the guided conditional probability path as
821

822
$$\mathbf{x}_t = \gamma_t(\mathbf{x}_{\text{low}})\mathbf{x}_1 + (1 - \gamma_t(\mathbf{x}_{\text{low}}))[\boldsymbol{\mu}(\mathbf{z}) + \boldsymbol{\sigma}(\mathbf{z}) \odot \epsilon].$$

823 This induces the probability path
824

825
$$p_t(\mathbf{x}_t|\mathbf{x}_1, \mathbf{x}_{\text{low}}) = \mathcal{N}(\boldsymbol{\mu}_t(\mathbf{x}_1, \mathbf{x}_{\text{low}}), \text{diag}(\sigma_t^2(\mathbf{x}_1, \mathbf{x}_{\text{low}}))), \quad (9)$$

826 with
827

828
$$\boldsymbol{\mu}_t(\mathbf{x}_1, \mathbf{x}_{\text{low}}) = \gamma_t(\mathbf{x}_{\text{low}})\mathbf{x}_1 + (1 - \gamma_t(\mathbf{x}_{\text{low}}))\boldsymbol{\mu}(\mathbf{z}), \quad (10)$$

829 and
830

831
$$\boldsymbol{\sigma}_t(\mathbf{x}_1, \mathbf{x}_{\text{low}}) = (1 - \gamma_t(\mathbf{x}_{\text{low}}))\boldsymbol{\sigma}(\mathbf{x}_{\text{low}}), \quad (11)$$

832 since \mathbf{x}_1 and \mathbf{x}_{low} are fixed.833 With some abuse of notation, we let σ_t and $\dot{\sigma}_t$ be vectors and interpret any multiplication and division
834 operations element-wise. This is valid, since Theorem 3 would also apply to each element in \mathbf{x}_t
835 separately, and we are specifying a diagonal covariance matrix. The time-derivatives are given by
836

837
$$\dot{\boldsymbol{\mu}}_t(\mathbf{x}_1, \mathbf{x}_{\text{low}}) = \dot{\gamma}_t(\mathbf{x}_{\text{low}})(\mathbf{x}_1 - \boldsymbol{\mu}(\mathbf{z})) \text{ and } \dot{\boldsymbol{\sigma}}_t(\mathbf{x}_1, \mathbf{x}_{\text{low}}) = -\dot{\gamma}_t(\mathbf{x}_{\text{low}})\boldsymbol{\sigma}(\mathbf{z}). \quad (12)$$

838 Plugging into Theorem 3 and (for brevity) omitting the dependence of γ_t , $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}$ on \mathbf{x}_{low} (and
839 therefore also \mathbf{z}), we derive the conditional vector field as

840
$$\begin{aligned} \mathbf{u}_t(\mathbf{x}_t|\mathbf{x}_1, \mathbf{x}_{\text{low}}) &= \frac{-\dot{\gamma}_t \boldsymbol{\sigma}}{(1 - \gamma_t)\boldsymbol{\sigma}}(\mathbf{x}_t - [\gamma_t \mathbf{x}_1 + (1 - \gamma_t)\boldsymbol{\mu}]) + \dot{\gamma}_t(\mathbf{x}_1 - \boldsymbol{\mu}) \\ &= \frac{-\dot{\gamma}_t}{1 - \gamma_t}(\mathbf{x}_t - \gamma_t \mathbf{x}_1 - (1 - \gamma_t)\boldsymbol{\mu} - (1 - \gamma_t)\mathbf{x}_1 + (1 - \gamma_t)\boldsymbol{\mu}) \\ &= \frac{\dot{\gamma}_t(\mathbf{x}_1 - \mathbf{x}_t)}{1 - \gamma_t}. \end{aligned}$$

841

842 A.1.1 DERIVATION OF THE TRAINING TARGET FOR THE HIGH-RESOLUTION MODEL
843844 To derive the training target, We plug Equation (5) into Equation (6) to get
845

846
$$\begin{aligned} \mathbf{u}_t(\mathbf{x}_t|\mathbf{x}_1, \mathbf{x}_{\text{low}}) &= \frac{\dot{\gamma}_t(\mathbf{x}_{\text{low}})(\mathbf{x}_1 - \mathbf{x}_t)}{1 - \gamma_t(\mathbf{x}_{\text{low}})} \\ &= \frac{\dot{\gamma}_t(\mathbf{x}_{\text{low}})}{1 - \gamma_t(\mathbf{x}_{\text{low}})} \left((1 - \gamma_t(\mathbf{x}_{\text{low}}))\mathbf{x}_1 - (1 - \gamma_t(\mathbf{x}_{\text{low}}))[\boldsymbol{\mu}(\mathbf{z}) + \boldsymbol{\sigma}(\mathbf{z}) \odot \epsilon] \right) \\ &= \dot{\gamma}_t(\mathbf{x}_{\text{low}})(\mathbf{x}_1 - [\boldsymbol{\mu}(\mathbf{z}) + \boldsymbol{\sigma}(\mathbf{z}) \odot \epsilon]), \end{aligned}$$

847 which is the scaled difference between ground-truth sample \mathbf{x}_1 and source sample \mathbf{x}_0 from our
848 data-dependent source distribution.
849850 A.1.2 PROOF: DT ENCODER LOWERS TRANSPORT COST BOUND
851852 Proposition 3.1 by Albergo et al. (2024) shows that for a probability flow defined as
853

854
$$\Psi_t(\mathbf{x}_0) = \alpha_t \mathbf{x}_1 + \beta_t \mathbf{x}_0 \in \mathbb{R}^{K_{\text{num}}},$$

such that $\Psi_0(\mathbf{x}_0) = \mathbf{x}_0 \sim p_0$ and $\Psi_1(\mathbf{x}_0) = \mathbf{x}_1 \sim p_1$, the transport costs are upper bound by

$$\mathbb{E}_{\mathbf{x}_0 \sim p_0} [||\Psi_1(\mathbf{x}_0) - \mathbf{x}_0||^2] \leq \int_0^1 \mathbb{E}[||\dot{\Psi}_t||^2] dt < \infty. \quad (13)$$

Minimizing the left-hand side implies finding the optimal transport plan as defined by Benamou & Brenier (2000), corresponding to the minimum Wasserstein-2 distance between p_0 and p_1 . However, to show that a specific coupling $p^*(\mathbf{x}_0, \mathbf{x}_1)$ induces less transport costs, it suffices to show that $\mathbb{E}[||\dot{\Psi}_t||^2]$ is smaller under the new coupling than the original independent coupling $p(\mathbf{x}_0, \mathbf{x}_1)$.

Below, we show that our proposed data-dependent coupling leads to provable lower transport costs when using a distributional tree as the encoder.

Our high resolution model defines $\Psi_t(\mathbf{x}_0) = \gamma_t \mathbf{x}_1 + (1 - \gamma_t) \mathbf{x}_0$ such that $\dot{\Psi}_t = \dot{\gamma}_t (\mathbf{x}_1 - \mathbf{x}_0)$.

We need to show that

$$\int_{\mathbb{R}^{2d}} ||\dot{\Psi}_t||^2 p(\mathbf{x}_0, \mathbf{x}_1) d\mathbf{x}_0 d\mathbf{x}_1 \leq \int_{\mathbb{R}^{2d}} ||\dot{\Psi}_t||^2 p(\mathbf{x}_0) p(\mathbf{x}_1) d\mathbf{x}_0 d\mathbf{x}_1,$$

where $p(\mathbf{x}_0, \mathbf{x}_1)$ is our data-dependent coupling from Equation (4) where \mathbf{z} is derived by the DT encoder.

First, for the independent coupling, i.e., $p(\mathbf{x}_0, \mathbf{x}_1) = p(\mathbf{x}_0)p(\mathbf{x}_1)$, the expectation is taken over $\mathbf{x}_0 \sim p(\mathbf{x}_0) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $\mathbf{x}_1 \sim p_1$ such that

$$\begin{aligned} \mathbb{E}[||\dot{\Psi}_t||^2] &= \mathbb{E}[||\dot{\gamma}_t(\mathbf{x}_1 - \mathbf{x}_0)||^2] \\ &= \dot{\gamma}_t^2 [\mathbb{E}[||\mathbf{x}_1||^2] + ||\mathbf{x}_0||^2 - 2\mathbf{x}_1^\top \mathbf{x}_0] \\ &= \dot{\gamma}_t^2 [\mathbb{E}[||\mathbf{x}_1||^2] + K_{\text{num}}], \end{aligned}$$

where we used that $\text{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ and $\text{Cov}[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$. We can deconstruct the expression into a sum over the K_{num} features $x_1^{(i)}$:

$$\mathbb{E}[||\dot{\Psi}_t||^2] = \dot{\gamma}_t^2 \sum_i^{K_{\text{num}}} [\mathbb{E}[(x_1^{(i)})^2]] + \dot{\gamma}_t^2 \sum_i^{K_{\text{num}}} [\mathbb{E}[1]]. \quad (14)$$

For our data-dependent coupling, we have $p(\mathbf{x}_0, \mathbf{x}_1) = \sum_{\mathbf{z} \in \mathcal{Z}} p(\mathbf{x}_0|\mathbf{z})p(\mathbf{z}|\mathbf{x}_1)p(\mathbf{x}_1)$ from Equation (4) such that (from Equation (3)):

$$\mathbf{x}_0 = \boldsymbol{\mu}(\mathbf{z}) + \boldsymbol{\sigma}(\mathbf{z}) \odot \boldsymbol{\epsilon} \text{ with } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

Since $\mathbf{z} = f(\mathbf{x}_1)$ is a deterministic function of \mathbf{x}_1 , we only take the expectation over \mathbf{x}_1 and $\boldsymbol{\epsilon}$ to derive

$$\begin{aligned} \mathbb{E}[||\dot{\Psi}_t||^2] &= \mathbb{E}[||\dot{\gamma}_t(\mathbf{x}_1 - \mathbf{x}_0)||^2] \\ &= \dot{\gamma}_t^2 \mathbb{E}[||(\mathbf{x}_1 - \boldsymbol{\mu}(f(\mathbf{x}_1)) - \boldsymbol{\sigma}(f(\mathbf{x}_1)) \odot \boldsymbol{\epsilon})||^2] \end{aligned}$$

We can deconstruct this expression as a sum over K_{num} features $x_1^{(i)}$ as

$$\begin{aligned} \mathbb{E}[||\dot{\Psi}_t||^2] &= \dot{\gamma}_t^2 \mathbb{E} \left[\sum_i^{K_{\text{num}}} \left(x_1^{(i)} - \boldsymbol{\mu}(f(x_1^{(i)})) - \boldsymbol{\sigma}(f(x_1^{(i)})) \boldsymbol{\epsilon}^{(i)} \right)^2 \right] \\ &= \dot{\gamma}_t^2 \mathbb{E} \sum_i^{K_{\text{num}}} \left[\left(x_1^{(i)} - \boldsymbol{\mu}(f(x_1^{(i)})) \right)^2 + \left(\boldsymbol{\sigma}(f(x_1^{(i)})) \boldsymbol{\epsilon}^{(i)} \right)^2 - 2 \left(x_1^{(i)} - \boldsymbol{\mu}(f(x_1^{(i)})) \right) \boldsymbol{\sigma}(f(x_1^{(i)})) \boldsymbol{\epsilon}^{(i)} \right] \\ &= \dot{\gamma}_t^2 \sum_i^{K_{\text{num}}} \left[\mathbb{E} \left(x_1^{(i)} - \boldsymbol{\mu}(f(x_1^{(i)})) \right)^2 + \mathbb{E} \left(\boldsymbol{\sigma}(f(x_1^{(i)}))^2 (\boldsymbol{\epsilon}^{(i)})^2 \right) \right], \end{aligned}$$

since $x_1^{(i)} \perp \boldsymbol{\epsilon}^{(i)}$ which implies

$$\begin{aligned} \mathbb{E} \left(x_1^{(i)} - \boldsymbol{\mu}(f(x_1^{(i)})) \right) \boldsymbol{\sigma}(f(x_1^{(i)})) \boldsymbol{\epsilon}^{(i)} &= \mathbb{E} [x_1^{(i)} \boldsymbol{\sigma}(f(x_1^{(i)})) \boldsymbol{\epsilon}^{(i)}] - \mathbb{E} [\boldsymbol{\mu}(f(x_1^{(i)})) \boldsymbol{\sigma}(f(x_1^{(i)})) \boldsymbol{\epsilon}^{(i)}] \\ &= \mathbb{E} [x_1^{(i)} \boldsymbol{\sigma}(f(x_1^{(i)}))] \mathbb{E} [\boldsymbol{\epsilon}^{(i)}] - \mathbb{E} [\boldsymbol{\mu}(f(x_1^{(i)})) \boldsymbol{\sigma}(f(x_1^{(i)}))] \mathbb{E} [\boldsymbol{\epsilon}^{(i)}] \\ &= 0, \end{aligned}$$

918 as $\mathbb{E}[\varepsilon^{(i)}] = 0$. Using $\text{Var}[\varepsilon^{(i)}] = \mathbb{E}[(\varepsilon^{(i)})^2] - \mathbb{E}[\varepsilon^{(i)}]^2 = 1$, we can further derive
 919

$$920 \mathbb{E}[||\dot{\Psi}_t||^2] = \dot{\gamma}_t^2 \sum_i^{K_{\text{num}}} \left[\mathbb{E}\left[(x_1^{(i)} - \mu(f(x_1^{(i)}))^2 \right] \right] + \dot{\gamma}_t^2 \sum_i^{K_{\text{num}}} \left[\mathbb{E}\left[\sigma(f(x_1^{(i)}))^2 \right] \right]. \quad (15)$$

923
 924 If we now compare Equation (14) and Equation (15), we recognize that to that $\mathbb{E}[||\dot{\Psi}_t||^2]$ is smaller
 925 under our data-dependent coupling, it suffices to show that feature-wise that
 926

$$927 \mathbb{E}\left[(x_1^{(i)} - \mu(f(x_1^{(i)}))^2 \right] \leq \mathbb{E}[(x_1^{(i)})^2] = 1, \quad (16)$$

928 since we standardize $x_1^{(i)}$ to zero mean, unit variance and
 929

$$930 \mathbb{E}\left[\sigma(f(x_1^{(i)}))^2 \right] \leq \mathbb{E}[1] = 1. \quad (17)$$

932 Note that if we are using the DT encoder, $f(x_1^{(i)})$ simply indicates in which of the K_i terminal leafs
 933 the observation falls. The k th terminal leaf reflects an interval $[\tau_{k-1}^{(i)}, \tau_k^{(i)}]$ on the real line. Based on
 934 all observations falling into the k th interval, DT learns a Gaussian distribution with parameters μ_k
 935 and σ_k . This allows us to rewrite Equation (16) as
 936

$$937 \mathbb{E}\left[(x_1^{(i)} - \mu(f(x_1^{(i)}))^2 \right] = \sum_{k=1}^{K_i} \Pr(\tau_{k-1}^{(i)} < x_1^{(i)} \leq \tau_k^{(i)}) \underbrace{\mathbb{E}_{x_1^{(i)} | x_1^{(i)} \in [\tau_{k-1}^{(i)}, \tau_k^{(i)}]} \left[(x_1^{(i)} - \mu_k)^2 \right]}_{\text{MSE in } k\text{th interval}}.$$

941 For each interval, the DT encoder learns the optimal μ_k by maximizing the likelihood, i.e., minimizing
 942 the mean squared error *within the kth interval*, which is equivalent to the expectation on the right-hand
 943 side. We assign the *optimal* μ_k , i.e., the MSE is necessarily lower than choosing $\mu_k = 0$ in the case
 944 of an independent coupling. This proves that Equation (16) holds.

945 For proofing the second condition in Equation (17), we only need to show $\sigma(f(x_1^{(i)}))^2 \leq 1$ for all $x_1^{(i)}$.
 946 That is, the variance of the terminal leaf in which $x_1^{(i)}$ falls should be at most one for all possible $x_1^{(i)}$.
 947 This directly follows from the fact that we separate observations into smaller groups based on the
 948 intervals determined by the DT encoder. Note that $[\tau_{k-1}^{(i)}, \tau_k^{(i)}] \subseteq \text{supp}(x_1^{(i)})$ for all k , which implies
 949 $\sigma_k^2 \leq 1$ for all k .
 950

951 Since both sufficient conditions in Equation (16) and Equation (17) are proven to hold, we conclude
 952 that

$$953 \dot{\gamma}_t^2 \mathbb{E}[||(\mathbf{x}_1 - \mu(f(\mathbf{x}_1)) - \sigma(f(\mathbf{x}_1)) \odot \epsilon)||^2] \leq \dot{\gamma}_t^2 [\mathbb{E}[||\mathbf{x}_1||^2] + K_{\text{num}}], \quad (18)$$

954 i.e., our data-dependent coupling based on the DT encoder is able to achieve a lower transport cost
 955 bound than the independent coupling.
 956

957 B BENCHMARK DATASETS

959 Our selected benchmark datasets are highly diverse, particularly in cardinality of categorical
 960 features (see Table 4), and have been used extensively in previous research (Kotelnikov et al., 2023;
 961 Mueller et al., 2025; Shi et al., 2025; Tiwald et al., 2025; Zhang et al., 2024b). All datasets are
 962 publicly accessible and licensed under creative commons. We randomly split each dataset into
 963 70/10/20 training, validation and test sets. Numerical features in \mathbf{x}_{num} are quantile transformed and
 964 standardized, following the usual practice for tabular data generation.
 965

966 **Missing value simulation.** First, we remove any rows with missing values in the target, to ensure
 967 that a valid estimation of the Machine Learning Efficiency metric, or in any of the numerical features.
 968 This gives us full control over the missingness proportion and mechanism. To simulate missingness,
 969 we adopt the approach from prior imputation studies (see e.g., Muzellec et al., 2020; Zhao et al.,
 970 2023; Zhang et al., 2024a). Note that missing values in categorical features are trivial to deal with by
 971 simply encoding them as a separate category. In the following, we therefore focus exclusively on
 972 generating missing values in numerical features.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 4: Overview of the selected experimental datasets. We count the target towards the respective
features. The minimum and maximum number of categories are taken over all categorical features.

Dataset	License	Prediction task	Total no. observations	No. of features categorical	No. of features continuous	No. of categories min	No. of categories max
adult (Becker & Kohavi, 1996)	CC BY 4.0	binary class.	48 842	9	6	2	42
beijing (Chen, 2015)	CC BY 4.0	regression	41 757	1	10	4	4
default (Yeh, 2009)	CC BY 4.0	binary class.	30 000	10	14	2	11
diabetes (Clore et al., 2014)	CC BY 4.0	binary class.	101 766	29	8	2	523
news (Fernandes et al., 2015)	CC BY 4.0	regression	39 644	14	46	2	2
shoppers (Sakar et al., 2019)	CC BY 4.0	binary class.	12 330	8	10	2	20

We choose to simulate missing values under a missing not at random (MNAR) mechanism, as it combines a missing at random (MAR), $p(\mathbf{m}|\mathbf{x}_{\text{num}}, \mathbf{x}_{\text{num}}^{(\text{latent})}) = p(\mathbf{m}|\mathbf{x}_{\text{num}})$, with a missing completely at random (MCAR), $p(\mathbf{m}|\mathbf{x}_{\text{num}}, \mathbf{x}_{\text{num}}^{(\text{latent})}) = p(\mathbf{m})$, mechanism (see Little & Rubin, 2019). Following prior work (Muzellec et al., 2020; Zhao et al., 2023; Zhang et al., 2024a), we simulate missing values using a two-step procedure. First, under a MAR mechanism, we randomly select 30% of the numerical and categorical features as inputs to a randomly initialized logistic model, to determine the missingness probabilities for the remaining numerical features. The model’s coefficients are scaled to preserve variance, and the bias term is adjusted via line search to achieve a 10% missing rate. Second, we apply an MCAR mechanism by setting 10% of the logistic model’s input features (including selected categorical ones) to missing. Thus, the missingness introduced by the MAR mechanism may be explained by values which now have been masked by the MCAR mechanism, making them latent to them model. Throughout, we ensure that we do not introduce any missings to the target, to ensure that we can determine the Machine Learning Efficiency metric. Introducing non-trivial missings increases the complexity of the joint distribution, both in terms of dimensions and dependencies, and makes the job for the generative models more difficult.

C IMPLEMENTATIONS

We benchmark TabCascade against recent state-of-the-art generative models, many of which are diffusion-based. To ensure that the benchmarks are fair, we align the models as much as possible. For diffusion-based models, we use the same MLP-based architecture with the same bottleneck dimension. The MLP contains a projection layer onto the bottleneck dimension (256-dimensional), five fully connected layers, and an output layer. The only differences stem from variations in the required inputs or outputs, which make certain minor model-specific changes to the MLP necessary, e.g., CDTD requires predicted logits for categorical features. For all models, we use the same time encoder based on positional embeddings with a subsequent 2-layer MLP. For non-diffusion-based models, we try to align the layer dimensions. In any case, similar to Mueller et al. (2025) we scale each model to a total of ≈ 3 million parameters on the adult dataset (when simulating missing values according to the MNAR mechanism) and train it for 30 000 steps with a batch size of 4096. For diffusion-based models, we limit the maximum training time to 30 minutes to increase model comparability. We use the same data pre-processing pipeline for all models and add model-specific pre-processing steps where necessary. For diffusion-based models, we mostly align the sampling steps to 200. One exception is TabDDPM, which builds on DDPM and therefore requires more sampling steps (default = 1000). A second exception is TabDiff, for which we adopt the authors’ suggestion of 50 sampling steps. Otherwise, TabDiff sampling will take an order of magnitude more time than other models, in particular for larger datasets. When available, we follow the default hyperparameters provided by the authors or the package / code documentation. We run all experiments using PyTorch 2.7.1 and TensorFloat32 using a MIG instance on an A100 GPU. All code and configuration files are made available to ensure reproducibility.

Below, we briefly elaborate on each baseline model and its implementation:

ARF (Watson et al., 2023) – a generative model that is based on a random forest for density estimation. The implementation is available at <https://github.com/bips-hb/arfpy> and licensed under the MIT license. We use package version 0.1.1. For training, we utilize 16 CPU cores and 20 trees as suggested in the paper.

1026 **CTGAN** (Xu et al., 2019) – one of the most popular GAN-based models for tabular data. The
 1027 implementation is available as part of the Synthetic Data Vault (Patki et al., 2016) at <https://github.com/sdv-dev/CTGAN> and licensed under the Business Source License 1.1. We use
 1028 package version 0.11.0. The architecture dimensions are adjusted to be comparable to MLP used for
 1029 the diffusion-based models. The model requires that the batch size is divisible by 10. Therefore, we
 1030 adjust the default batch size of 4096 downwards accordingly.
 1031

1032 **TVAE** (Xu et al., 2019) – a VAE-based model for tabular data. The implementation is available as
 1033 part of the Synthetic Data Vault (Patki et al., 2016) at <https://github.com/sdv-dev/CTGAN>
 1034 and licensed under the Business Source License 1.1. We use package version 0.11.0. The architecture
 1035 dimensions are adjusted to be comparable to MLP used for the diffusion-based models.
 1036

1037 **TabDDPM** (Kotelnikov et al., 2023) – a diffusion-based generative model for tabular data that
 1038 combines multinomial diffusion (Hoogeboom et al., 2021) and DDPM (Sohl-Dickstein et al., 2015;
 1039 Ho et al., 2020). We base our code on the official implementation available at <https://github.com/yandex-research/tab-ddpm> under the MIT license. However, we adjust the model to allow
 1040 for unconditional generation in case of classification tasks.
 1041

1042 **TabSyn** (Zhang et al., 2024b) – a latent diffusion model that first learns a transformer-based VAE
 1043 to map mixed-type data to a continuous latent space. The diffusion model is then trained on that
 1044 latent space. Note that despite TabSyn utilizing a separately trained encoder, this does *not* result in a
 1045 lower-dimensional latent space and therefore, does not speed up sampling. We use the official code
 1046 available at <https://github.com/amazon-science/tabsyn> under the Apache 2.0 license. We
 1047 leave the transformer-based VAE unchanged and scale only the MLP.
 1048

1049 **TabDiff** (Shi et al., 2025) – a continuous time diffusion model that combines score matching (Song
 1050 et al., 2021; Karras et al., 2022) with masked diffusion (Sahoo et al., 2024) and learnable, feature-
 1051 specific noise schedules. Originally, it relies on transformer-based encoder and decoder parts, which
 1052 we remove from the model to improve comparability. However, we keep the other parts, including the
 1053 tokenizer. We scale the bottleneck dimension down to 256 and adjust the hidden layers accordingly,
 1054 to align the architecture more with the other diffusion-based models. Otherwise, we use the official
 1055 implementation available at <https://github.com/MinkaiXu/TabDiff> under the MIT license.
 1056

1057 **CDTD** (Mueller et al., 2025) – a continuous time diffusion that combines score matching (Song
 1058 et al., 2021; Karras et al., 2022) with score interpolation (Dieleman et al., 2022) and learnable noise
 1059 schedules. Based on the performance results in the original paper, we use the *by type* noise schedule,
 1060 that is, we learn an adaptive noise schedule per feature type. We use the official implementation
 1061 available at https://github.com/muellermarkus/ctds_simple under the MIT license. To
 1062 align architectures and improve comparability, we adjust the MLP dimensions.
 1063

1064 None of the selected benchmark models accommodate the generation of missing values in numerical
 1065 features out of the box. Therefore, to achieve a fair comparison, we endow each model with the
 1066 simple means to generate missing values. To avoid manipulating a model’s internals and therewith
 1067 potentially disrupting the training dynamics, we confine ourselves to changing the data encoding. For
 1068 each numerical feature that contains missing values, we introduce an additional binary missingness
 1069 mask. We simply treat this mask as an additional categorical feature to be generated and mean-impute
 1070 the missing values. After sampling, we overwrite the generated numerical values with NaN based on
 1071 the generated missingness mask.
 1072

D TABCASCADE IMPLEMENTATION

1073 Since we make use of two separate models instead of a single model, we use the same MLP
 1074 architecture as for the baselines but scale various layers and components down to achieve ≈ 3 million
 1075 parameters on the adult dataset. We add the conditioning information about \mathbf{x}_{low} as an additive
 1076 embedding to the bottleneck layer. Instead of parameterizing $\mathbf{u}_t^\theta(\mathbf{x}_t | \mathbf{x}_{\text{low}})$ directly with a neural
 1077 network $f^\theta(\mathbf{x}_t, \mathbf{x}_{\text{low}}, t)$, we use the known form of the vector field to parameterize
 1078

$$\mathbf{u}_t^\theta(\mathbf{x}_t | \mathbf{x}_{\text{low}}) = \dot{\gamma}_t(\mathbf{x}_{\text{low}}) f^\theta(\mathbf{x}_t, \mathbf{x}_{\text{low}}, t). \quad (19)$$

1079 We train p_{low}^θ and p_{high}^θ simultaneously using teacher forcing. That is, we train p_{high}^θ using the real data
 1080 instances, instead of the ones generated by p_{low}^θ . This enables an end-to-end training of two separate
 1081

1080 models with a reduced time penalty. The training and generation processes are described in detail in
 1081 Algorithm 1 and Algorithm 2 below.
 1082

1083 For the DT encoder we set a max depth of 8 which on the `adult` dataset translates to an average
 1084 of 66 distinct groups for each feature that are captured by \mathbf{z}_{num} . For the GMM encoder, we set the
 1085 maximum number of components to 30 to keep the training time below 1 minute on the `adult`
 1086 dataset. Empirical evidence shows that this does not effectively limit the estimated number of
 1087 components, which typically lie below 30.

Algorithm 1 Training

1088 **# Pre-Training**
 1089 Learn feature-wise encoder $z_{\text{num}}^{(i)} = \text{Enc}_i(x_{\text{num}}^{(i)})$
 1090
 1091 **# Training**
 1092 Sample $\mathbf{x}_{\text{num}}, \mathbf{x}_{\text{cat}} \sim p_{\text{data}}$
 1093 Retrieve $z_{\text{num}}^{(i)} = \text{Enc}_i(x_{\text{num}}^{(i)}) \forall i$ and construct $\mathbf{x}_{\text{low}} = (\mathbf{x}_{\text{cat}}, \mathbf{z}_{\text{num}}) = [x_{\text{low}}^{(j)}]_{j=1}^{K_{\text{low}}}$
 1094 Construct mask for inflated and missing values in \mathbf{x}_{num}
 1095
 1096 **# Low-Resolution Model**
 1097 Train CDTD model (Mueller et al., 2025)
 1098
 1099 **# High-Resolution Model**
 1100 Sample $t \sim \mathcal{U}(0, 1)$ and $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 1101 Compute \mathbf{x}_0 using Equation (3)
 1102 Compute $\mathbf{x}_t = \gamma_t(\mathbf{x}_{\text{low}})\mathbf{x}_1 + (1 - \mathbf{x}_{\text{low}})\mathbf{x}_0$
 1103 Form predictions $\mathbf{u}_t^{\theta}(\mathbf{x}_t | \mathbf{x}_{\text{low}}) = \dot{\gamma}_t(\mathbf{x}_{\text{low}})f^{\theta}(\mathbf{x}_t, \mathbf{x}_{\text{low}}, t)$
 1104 Compute MSE between $\mathbf{u}_t^{\theta}(\mathbf{x}_t | \mathbf{x}_{\text{low}})$ and the target (mask losses for missing and inflated values;
 1105 see Equation (7))
 1106 Backpropagate.
 1107

Algorithm 2 Generation

1108
 1109
 1110 **# Low-Resolution Model**
 1111 Sample $\mathbf{x}_0^{(j)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \forall j$
 1112 **for** t in t_{grid} with step size h **do**
 1113 Predict $\Pr(x_{\text{low}}^{(j)} = c | \{\mathbf{x}_t^{(j)}\}_{j=1}^{K_{\text{cat}}}, t) \forall c \in \{0, 1, \dots, C_j\} \forall j$
 1114 Compute $\mu_t^{(j)} = \sum_{c=1}^{C_j} \Pr(x_{\text{low}}^{(j)} = c | \{\mathbf{x}_t^{(j)}\}_{j=1}^{K_{\text{low}}}, t) \cdot \mathbf{x}_1^{(j)}(c) \forall j$
 1115 Compute $u_t^{(j)}(\mathbf{x}_t | \mathbf{x}_1) = \frac{\mu_t^{(j)} - \mathbf{x}_t^{(j)}}{\sigma^2(t)}$
 1116 Take update step $\mathbf{x}_t^{(j)} = \mathbf{x}_t^{(j)} + h \cdot u_t^{(j)}(\mathbf{x}_t | \mathbf{x}_1) \forall j$
 1117 **end for**
 1118 Assign classes based on $\arg \max_c \Pr(x_{\text{low}}^{(j)} = c | \{\mathbf{x}_1^{(j)}\}_{j=1}^{K_{\text{low}}}, t = 1 - h) \forall c \in \{0, 1, \dots, C_j\} \forall j$
 1119
 1120 **# High-Resolution Model**
 1121 Retrieve $\mu(\mathbf{z}_{\text{num}}), \sigma(\mathbf{z}_{\text{num}})$ and sample \mathbf{x}_0 using Equation (3)
 1122 Solve ODE $\mathbf{x}_{\text{num}} = \mathbf{x}_0 + \int_{t=0}^{t=1} \dot{\gamma}(\mathbf{x}_{\text{low}})f^{\theta}(\mathbf{x}_t, \mathbf{x}_{\text{low}}, t)dt$
 1123
 1124 **# Post-Process Samples**
 1125 Overwrite \mathbf{x}_{num} with inflated or missing values using Equation (2)
 1126 Return $\mathbf{x}_{\text{cat}}, \mathbf{x}_{\text{num}}$

E EVALUATION METRICS

1127 **Univariate densities (Shape, WD, JSD).** To evaluate the quality of the column-wise, univariate
 1128 densities, we mainly use the popular Shape metric, which is part of the SDMetrics library (version

1134 0.22.0) of the Synthetic Data Vault (Patki et al., 2016). For numerical features, we use the Kolmogorov-
 1135 Smirnov statistic $K_{\text{stat}} \in [0, 1]$ and compute the score as $1 - K_{\text{stat}}$ feature-wise. Note that K_{stat} cannot
 1136 be computed from observations with missing values. Therefore, we remove any rows with missing
 1137 values in the numerical features beforehand. For categorical features, we compute the Total Variation
 1138 Distance (TVD) based on the empirical frequencies of each category value, expressed as proportions
 1139 R_c and S_c in the real and synthetic datasets, respectively. The TVD between real and synthetic
 1140 datasets is then given as

$$1141 \quad \delta(R, S) = \frac{1}{2} \sum_{c \in \mathcal{C}} |R_c - S_c|. \\ 1142$$

1143 Again, we let $1 - \delta(R, S)$ to ensure that an increasing score (up to 1) indicates improved sample
 1144 quality. The average score over all features gives the Shape score reported in our results
 1145

1146 To get a more nuanced impression about the univariate densities, we additionally report the Wasser-
 1147 stein distance (WD) for numerical features and the Jensen-Shannon divergence (JSD) for categorical
 1148 features. Qualitatively, we expect them to convey the same information as the Shape metric.
 1149

1150 **Bivariate densities (Trend).** To get a better idea of the accuracy of feature interactions in the
 1151 synthetic data, we evaluate the Trend score, which is another metric provided by the SDMetrics
 1152 library (version 0.22.0) of the Synthetic Data Vault (Patki et al., 2016). This metrics focuses on the
 1153 sample quality in terms of accurate pair-wise correlations. Hence, the aim is to compute a score
 1154 between every pair of features. For two numerical features, we can simply compute the Pearson
 1155 correlation coefficient. We denote the score as

$$1156 \quad d_{i,j}^{\text{num}} = 1 - 0.5 \cdot |S_{i,j} - R_{i,j}|, \\ 1157$$

1158 where $S_{i,j}$ and $R_{i,j}$ represent the Pearson correlation between features i and j computed on the
 1159 synthetic and real data, respectively.

1160 For two categorical features, we derive the score from the normalized contingency tables, i.e., from
 1161 the proportion of samples in each possible combination of categories. To determine the difference
 1162 between real and synthetic data, we can use the Total Variation Distance (TVD) such that

$$1163 \quad d_{i,j}^{\text{cat}} = 1 - 0.5 \sum_{c_i \in \mathcal{C}_i} \sum_{c_j \in \mathcal{C}_j} |S_{c_i, c_j} - R_{c_i, c_j}|, \\ 1164$$

1165 where \mathcal{C}_i and \mathcal{C}_j are the set of categories of features i and j and $S_{i,j}, R_{i,j}$ are the cells from the
 1166 normalized contingency table corresponding to these categories.

1167 To be able to compute a comparable score when comparing features of different types, i.e., a numerical
 1168 and a categorical feature, we first discretize the numerical feature into ten bins and then compute the
 1169 TVD as explained above. For all scores, a higher score indicates better sample quality. The overall
 1170 Trend score is the average over all pair-wise scores. Since this metric cannot accommodate missing
 1171 values in numerical features, we again remove rows with such missing values beforehand.
 1172

1173 **Joint density (Detection score).** While the other metrics so far focus on the sample quality in terms
 1174 of univariate densities or pair-wise distributions, we are particularly interested in the overall quality
 1175 of the full joint distribution. Following the typical approach in the literature (Bischoff et al., 2024;
 1176 Mueller et al., 2025; Shi et al., 2025), we train a detection model to differentiate between fake and
 1177 real samples, which make up the training data in equal proportions. This approach is also called a
 1178 classifier two-sample test (C2ST) (Bischoff et al., 2024).

1179 To ensure that the detection model is sensitive to small changes in the distribution, we choose
 1180 LightGBM (Ke et al., 2017). Gradient-boosting models have shown remarkable performance on
 1181 tabular datasets (Borisov et al., 2022). LightGBM has been particularly designed for improved
 1182 efficiency, which is important for the evaluation of the detection score on larger datasets. Another
 1183 advantage is that it naturally accommodates missings in numerical features. This allows the detection
 1184 score to indirectly capture how well the generative model learned the missingness mechanism. To
 1185 train LightGBM, we sample a synthetic dataset of the same size as the training set used for the
 1186 generative model. The objective is to classify whether a given sample is real or synthetic. We use
 1187 5-fold cross-validation to estimate the out-of-sample performance, with a max depth = 5 and 500

1188 boosting iterations. To get the final detection score, we first use the highest average AUC obtained
 1189 over validation sets across boosting iterations, denoted by \bar{A} . The detection score is then computed as
 1190

$$1191 \text{Detection Score} = 1 - (\max(0.5, \bar{A}) \cdot 2 - 1),$$

1192 such that a score of 1 indicates that the model cannot distinguish fake and real samples at all. On the
 1193 other extreme, a score of 0 indicates that the model can perfectly classify the samples into fake and
 1194 real. This procedure mimics the detection metric in the SDMetrics library of the Synthetic Data Vault
 1195 (Patki et al., 2016) but uses a much more powerful detection model.
 1196

1197 **Downstream-task performance (Machine learning efficiency).** Machine learning efficiency
 1198 (MLE; sometimes also called efficacy or utility) measures the usefulness of the synthetic data for
 1199 the downstream prediction task, either binary classification or regression, associated with a given
 1200 dataset. This represents a train-synthetic-test-real strategy: We train a predictor on the synthetic data
 1201 and test the predictor’s out-of-sample performance on the real test data. Similarly, we get the test set
 1202 performance by training the predictor on the real training data. For regression tasks, we evaluate the
 1203 RMSE and for classification tasks the AUC. Since our goal is to generate a realistic and faithful copy
 1204 of the true data, we expect both models to perform similarly on the downstream task, regardless of
 1205 which data has been used for training. Thus, only the relative comparison of the model performances
 1206 matters, which we report using their absolute difference
 1207

$$1208 \text{MLE Score} = |M_S - M_R|, \text{ with } M \in \{\text{AUC, RMSE}\}.$$

1209 As the predictor, we again pick LightGBM (Ke et al., 2017) with a max depth of 5 and 500 boosting
 1210 iterations because of its efficiency and strong predictive performance on tabular data. It also auto-
 1211 matically accommodates missings in numerical features. Note that the generative model’s ability
 1212 to generate missing values is evaluated in two different ways: (1) LightGBM may rely directly on
 1213 missing values to infer the target and (2) the generative model may place missing values incorrectly
 1214 and thereby eradicates information that would be needed (and is available in the true training data)
 1215 for the prediction task. Hence, there is a twofold negative impact of a generative model that is not
 1216 able to accurately learn the missingness mechanism on the downstream task performance.
 1217

1218 **Diversity (Distance to closest record share).** Our goal is to approximate the true generative process
 1219 and provide a fair comparison to existing baselines. As such, we are, similar to previous work, not
 1220 concerned with any privacy considerations. To obtain privacy guarantees, context-specific choices, for
 1221 instance, with regards to the budget for differential privacy, must be made. Such in-processing privacy
 1222 mechanisms as well as pre-processing and post-processing techniques are typically model agnostic
 1223 but depend heavily on the dataset as well other considerations, such as legal and ethical questions.
 1224 Hence, we investigate the distance to closest record (DCR) **share only as a metric of diversity rather**
 1225 **than privacy. Most importantly, it can inform about models which simply copy training samples,**
 1226 **without actually learning the distribution**

1227 To ensure all features are on the same scale, we min-max-scale numerical features and one-hot encode
 1228 categorical features. We allow for missing values in numerical features by using mean imputation
 1229 and adding the missingness indicator to the one-hot encoded categorical features. For each synthetic
 1230 sample we then find the nearest neighbor in the training set in terms of their L_2 distance (Zhao et al.,
 1231 2021). Since the DCR is only meaningful when compared to some reference, we report the DCR
 1232 share (Zhang et al., 2024b; Shi et al., 2025). Let $d_{\text{train}}^{(i)}$ and $d_{\text{test}}^{(i)}$ be the L_2 distance of the i -th
 1233 synthetic sample to the closest training and test sample, respectively. Then we set
 1234

$$1235 S^{(i)} = \begin{cases} 1 & \text{if } d_{\text{train}}^{(i)} < d_{\text{test}}^{(i)}, \\ 0 & \text{if } d_{\text{train}}^{(i)} > d_{\text{test}}^{(i)}, \\ 0.5 & \text{if } d_{\text{train}}^{(i)} = d_{\text{test}}^{(i)}, \end{cases}$$

1236 such that synthetic samples being closer to the training samples than the test samples increase the
 1237 score. The DCR share is then computed as an average over the scores $S^{(i)}$ obtained all synthetic
 1238 samples. The optimal DCR share is 0.5.
 1239

1240 **Fidelity and coverage (α -Precision and β -Recall).** Precision and Recall metrics for generative
 1241 model evaluation have been proposed by Sajjadi et al. (2018) and refined for tabular data by Alaa

et al. (2022). α -Precision measures the probability that synthetic samples resides in the α -support of the true distribution and therefore measures sample fidelity. β -Recall, on the other hand, measures the sample diversity or coverage. That is, what fraction of real samples reside in the β -support of the generative distribution. For both metrics, higher values indicate better sample quality. For estimation, we rely on the official implementation in the synthcity package (Qian et al., 2023) available at <https://github.com/vanderschaarlab/synthcity>. However, we need to make some minor adjustments, in exactly the same way as for the DCR computation, to accommodate the missing values in numerical features.

Privacy (Membership inference attack). For completeness, we also provide scores of a membership inference attack (MIA; Shokri et al., 2017). We follow the implementation in the SyntheEval package (Lautrup et al., 2024) available at <https://github.com/schneiderkamplab/syntheval/>.

Let $\mathcal{D}_{\text{train}}$, $\mathcal{D}_{\text{test}}$ and \mathcal{D}_{gen} be the training set, test set, and generate data, respectively. First, we split $\mathcal{D}_{\text{test}}$ into $\mathcal{D}_{\text{test}}^{(\text{train})}$ (75%) and $\mathcal{D}_{\text{test}}^{(\text{test})}$ (25%). We then train a LightGBM classifier (Ke et al., 2017) on a training set made up of $\mathcal{D}_{\text{test}}^{(\text{train})}$ and an equally-sized subsample of \mathcal{D}_{gen} . The classifier is trained to predict which samples originated from the generative model. To retrieve score, we combine $\mathcal{D}_{\text{test}}^{(\text{test})}$ with an equally-sized subsample of $\mathcal{D}_{\text{train}}$, make the predictions, and compute the AUC score. We derive the MIA score as

$$\text{MIA Score} = 1 - (\max(0.5, \text{AUC}) \cdot 2 - 1),$$

such that a score of one indicates that an attack is not better than random guessing. The final score we report is an average over five repetitions of the above steps, to account for the uncertainty in the subsampling.

F ENCODERS

To encode each $x_{\text{num}}^{(i)}$ into its categorical low-resolution representation $z_{\text{num}}^{(i)}$, we propose two different encoder: (1) a Dirichlet Process Variational Gaussian Mixture Model and (2) a distributional regression tree. Below, we briefly elaborate on the respective implementations and explain our reasoning behind these choices as well as the differences between the two encoders.

F.1 GAUSSIAN MIXTURE MODEL

An obvious choice for an encoder is a Gaussian Mixture Model (GMM) because it can approximate any density arbitrarily close. However, its classical variant requires pre-specification of the number of components K . This is not desirable, since it would require setting a potentially different K for each feature. Instead, we rely on the Dirichlet Process Variational Gaussian Mixture Model (Bishop, 2006) as provided by the sklearn package. The combination with Dirichlet Process leads to a mixture of a theoretical infinite number of components. For practical purposes, this allows us to avoid specifying the number of components per feature and instead infer them directly from the data. We specify a weight concentration prior of 0.001, following settings in Synthetic Data Vault (Patki et al., 2016) package RDT (see <https://github.com/sdv-dev/RDT>). A low prior encourages the model to put most weight on few components, leading to fewer estimated components after training.

During training, the Variational GMM maximizes a variational lower bound to the maximum likelihood objective and does soft clustering of the data points. To assign a value $x_{\text{num}}^{(i)}$ to a discrete category $z_{\text{num}}^{(i)}$ after training and achieve a hard clustering, we let

$$z_{\text{num}}^{(i)} = \arg \max_k w_k \log p_k(x_{\text{num}}^{(i)}) = \arg \max_k \log w_k \mathcal{N}(x_{\text{num}}^{(i)}; \mu_k, \sigma_k^2),$$

where the w_k are the mixture weights. A potential drawback for the GMM is that its components may substantially overlap (see Figure 5). For instance, it is possible that a small variance Gaussian lies in the middle of a high variance Gaussian if this benefits the overall fit. This can make the group derived from hard clustering disconnected on the real line. Also, it can lead to component mean to deviate from the actual mean within the cluster. To address these downsides, we investigate the use of a distributional regression tree instead.

Figure 5: Gaussian components found by the GMM encoder (max components = 7, to align with the number of components found by DT) for two features in the `adult` dataset. The red vertical lines indicate the component means.

F.2 DISTRIBUTIONAL REGRESSION TREE

Trees split the data into more homogeneous subgroups via binary splits. This can capture abrupt shifts and non-linear functions. Distributional trees (DT; Schlosser et al., 2019) utilize the non-parametric nature of trees and combine it with parametric distributions. The goal is to find homogeneous groups with respect to a parametric distributions such that the model captures abrupt changes in any distributional parameters, such as the mean and variance of a Gaussian distribution.

Training a DT can be interpreted as maximizing a weighted likelihood over n observations:

$$\hat{\theta}(x_{\text{num}}^{(i)}) = \max_{\theta \in \Theta} \sum_{j=1}^n w_j(x_{\text{num}}^{(i)}) \cdot \ell(\theta_j; x_{\text{num}}^{(i)}), \quad (20)$$

where $\theta_j = (\mu_j, \sigma_j)$ are the parameters of the j th Gaussian component. Note that unlike the GMM, the tree-based approach leads to a hard clustering since $w_j(x_{\text{num}}^{(i)}) \in \{0, 1\}$ simply indicates the allocated terminal leaf for that data point. For each $x_{\text{num}}^{(i)}$, the fitting algorithm goes through the following steps:

- estimate $\hat{\theta}$ via maximum likelihood,
- test for associations or instabilities of the score $\frac{\partial \ell}{\partial \theta}(\hat{\theta}; x_{\text{num}}^{(i)})$,
- choose split of $\text{supp}(x_{\text{num}}^{(i)})$ that yields the highest improvement in the log likelihood,
- repeat until convergence.

The DT exhibits various benefits when compared to the GMM encoder. It searches for a partitioning of $\text{supp}(x_{\text{num}}^{(i)})$ such that values falling into a given segment are more homogeneous with respect to the moments of the Gaussian distribution. Hence, it directly optimizes a hard clustering of data points and defines a Gaussian component only within the clusters. This substantially reduces the possible overlap of the Gaussian components compared to GMM, a feature which allows us to prove Theorem 1. For empirical evidence, compare Figure 6 to Figure 5. This is also an attractive property when determining a suitable Gaussian-based source distribution for flow matching: Sampling from the same Gaussian component guarantees samples being close in data space.

The level of granularity captured by $x_{\text{num}}^{(i)}$ is governed by the complexity of the encoder. DT allows us to specify a maximum tree depth but otherwise learns optimal number of components from the data. Thereby, it is also much faster to train than GMM. We investigate the effect of increasing max depth in additional ablation experiments in Appendix K.

Since no Python implementation of DT is available, we use the `disttree` R package and combine it with `rpy2` to make it callable with Python.

Figure 6: Gaussian components found by the DT encoder (max depth = 3) for two features in the adult dataset. The red vertical lines indicate the component means.

F.3 PRACTICAL CONSIDERATIONS

In practice, σ_k^2 is never actually zero due to numerical precision. Therefore, if $\sigma_k^2 < \epsilon$, we check empirically whether $\text{Var}[x_{\text{num}}^{(i)} | z_{\text{num}}^{(i)} = k] = 0$. If this is the case, we confirm μ_k to represent an inflated value.

Furthermore, many features may actually be integers instead of truly continuous values. To keep this ordinal structure, even integers with a smaller number of unique values are often treated as “continuous”. In this case, since the granularity of $z_{\text{num}}^{(i)}$ is governed by the complexity of the encoder, if we choose a complex encoder, it can happen that $z_{\text{num}}^{(i)}$ recovers all unique values. But this is *not* a failure case. The consequence is only that the low resolution model already has access to *all* information about that feature and the high resolution model does not need to generate the feature at all. [We can interpret this as a data-informed way of deciding when to treat an integer-valued feature as discrete versus \(partially\) continuous.](#)

1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
1405

G POLYNOMIAL PARAMETERIZATION OF TIME SCHEDULE

1406
1407 We parameterize the feature-specific time schedules using the polynomial form proposed by Sahoo
1408 et al. (2023). Let $f_\phi : \mathbb{R}^m \times [0, 1] \rightarrow \mathbb{R}^d$, where d is the number of features and $\mathbf{c} \in \mathbb{R}^m$ be a vector
1409 with conditioning information. We define f_ϕ as

1410
1411
$$f_\phi(\mathbf{c}, t) = \frac{\mathbf{a}_\phi^2(\mathbf{c})}{5}t^5 + \frac{\mathbf{a}_\phi(\mathbf{c})\mathbf{b}_\phi(\mathbf{c})}{2}t^4 + \frac{\mathbf{b}_\phi^2(\mathbf{c}) + 2\mathbf{a}_\phi(\mathbf{c})\mathbf{d}_\phi(\mathbf{c})}{3}t^3 + \mathbf{b}_\phi(\mathbf{c})\mathbf{d}_\phi(\mathbf{c})t^2 + \mathbf{d}_\phi(\mathbf{c})t, \quad (21)$$

1412

1413 where multiplication and division operations are defined element-wise. The parameters $\mathbf{a}_\psi(\mathbf{c})$, $\mathbf{b}_\psi(\mathbf{c})$
1414 and $\mathbf{d}_\psi(\mathbf{c})$ are outputs of a neural network with parameters ψ that maps $\mathbb{R}^m \rightarrow \mathbb{R}^d \rightarrow \mathbb{R}^d$ to
1415 construct a common embedding which is the input to separate linear layers that map to $\mathbf{a}_\psi(\mathbf{c})$, $\mathbf{b}_\psi(\mathbf{c})$
1416 and $\mathbf{d}_\psi(\mathbf{c})$, respectively. The network uses SiLU activation functions. We can then normalize to get
1417

1418
1419
$$\gamma_t(\mathbf{c}) = \frac{f_\phi(\mathbf{c}, t)}{f_\phi(\mathbf{c}, 1)}, \quad (22)$$

1420

1421 such that $\gamma_t(\mathbf{c})$ is monotonically increasing for $t \in [0, 1]$ and has end points $\gamma_0(\mathbf{c}) = 0$ and $\gamma_1(\mathbf{c}) = 1$.
1422 Note that its time-derivative $\dot{\gamma}_t(\mathbf{c})$ is available in closed form.1424

H LEARNED TIME SCHEDULES

1427 Below we display the learned feature-specific time schedules $\gamma_t(\mathbf{x}_{low})$ for each dataset for the
1428 TabCascade model with DT encoder (one line per feature). Since the time schedule is conditioned on
1429 \mathbf{x}_{low} we picture $\mathbb{E}_{\mathbf{x}_{low}}[\gamma_t(\mathbf{x}_{low})]$ and $\text{Var}_{\mathbf{x}_{low}}[\gamma_t(\mathbf{x}_{low})]$. While on average a linear time schedule seems
1430 beneficial, the model does capture some heterogeneity across features.1443 Figure 7: Learned time schedule for the `adult` dataset.
14441455 Figure 8: Learned time schedule for the `beijing` dataset.
1456

Figure 9: Learned time schedule for the `default` dataset.Figure 10: Learned time schedule for the `diabetes` dataset.Figure 11: Learned time schedule for the `news` dataset.Figure 12: Learned time schedule for the `shoppers` dataset.

1512
1513 **I QUALITATIVE COMPARISONS**
1514
1515
1516
1517
1518
15191520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
Figure 13: Example of bivariate density from the `adult` dataset.1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
Figure 14: Example of bivariate density from the `shoppers` dataset.

Figure 15: Example of bivariate density from the news dataset. TabDDPM produces NaNs for this dataset.

J DETAILED MAIN RESULTS

Table 5: Comparison of **Detection scores**. **Bold** indicates the best and underline the second best result. We report the average across 3 training runs and 10 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
ARF	0.350 ± 0.011	0.061 ± 0.002	0.052 ± 0.004	0.288 ± 0.009	0.000 ± 0.000	0.118 ± 0.004
TVAE	0.120 ± 0.015	0.014 ± 0.011	0.038 ± 0.006	0.005 ± 0.004	0.000 ± 0.000	0.179 ± 0.007
CTGAN	0.077 ± 0.026	0.024 ± 0.003	0.022 ± 0.006	0.090 ± 0.041	0.000 ± 0.000	0.042 ± 0.007
TabDDPM	0.725 ± 0.013	<u>0.103 ± 0.064</u>	0.225 ± 0.004	-	-	0.162 ± 0.005
TabSyn	0.424 ± 0.022	0.070 ± 0.009	0.027 ± 0.004	0.090 ± 0.004	0.000 ± 0.000	0.047 ± 0.023
TabDiff	<u>0.747 ± 0.014</u>	0.099 ± 0.008	<u>0.227 ± 0.023</u>	<u>0.430 ± 0.005</u>	0.000 ± 0.000	<u>0.200 ± 0.010</u>
CDTD	0.622 ± 0.009	0.080 ± 0.002	0.190 ± 0.008	0.310 ± 0.052	0.000 ± 0.000	0.181 ± 0.005
TabCascade (DT)	0.891 ± 0.016	0.111 ± 0.003	0.579 ± 0.009	0.654 ± 0.030	0.001 ± 0.000	0.389 ± 0.016

Table 6: Comparison of **Shape scores**. **Bold** indicates the best and underline the second best result. We report the average across 3 training runs and 10 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
ARF	0.985 ± 0.000	0.946 ± 0.001	0.948 ± 0.001	<u>0.978 ± 0.000</u>	0.905 ± 0.001	0.948 ± 0.001
TVAE	0.893 ± 0.008	0.891 ± 0.030	0.905 ± 0.007	0.869 ± 0.012	0.856 ± 0.018	0.934 ± 0.010
CTGAN	0.902 ± 0.012	0.909 ± 0.002	0.908 ± 0.012	0.925 ± 0.012	0.916 ± 0.001	0.908 ± 0.003
TabDDPM	0.983 ± 0.001	0.968 ± 0.003	0.968 ± 0.001	-	-	0.944 ± 0.003
TabSyn	0.972 ± 0.003	0.958 ± 0.003	0.938 ± 0.005	0.917 ± 0.005	0.863 ± 0.011	0.910 ± 0.012
TabDiff	0.991 ± 0.001	<u>0.971 ± 0.002</u>	<u>0.975 ± 0.003</u>	0.969 ± 0.001	<u>0.927 ± 0.001</u>	<u>0.975 ± 0.001</u>
CDTD	0.984 ± 0.000	0.962 ± 0.001	0.963 ± 0.002	0.968 ± 0.004	0.926 ± 0.002	0.969 ± 0.002
TabCascade (DT)	0.989 ± 0.001	0.976 ± 0.001	0.985 ± 0.002	0.986 ± 0.002	0.948 ± 0.001	0.981 ± 0.001

1620 Table 7: Comparison of **Shape (cat)** scores, which evaluate categorical univariate densities only.
 1621 **Bold** indicates the best and underline the second best result. We report the average across 3 training
 1622 runs and 10 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
ARF	0.996 ± 0.000	0.996 ± 0.002	0.996 ± 0.001	0.996 ± 0.000	0.998 ± 0.000	0.992 ± 0.001
TVAE	0.896 ± 0.004	0.839 ± 0.022	0.883 ± 0.025	0.875 ± 0.012	0.888 ± 0.009	0.952 ± 0.008
CTGAN	0.893 ± 0.008	0.912 ± 0.022	0.899 ± 0.017	0.929 ± 0.010	0.988 ± 0.002	0.902 ± 0.014
TabDDPM	0.981 ± 0.002	0.988 ± 0.002	0.978 ± 0.002	-	-	0.939 ± 0.007
TabSyn	0.975 ± 0.008	0.990 ± 0.006	0.949 ± 0.005	0.916 ± 0.004	0.941 ± 0.020	0.916 ± 0.038
TabDiff	0.995 ± 0.001	<u>0.995</u> ± 0.002	<u>0.992</u> ± 0.003	0.969 ± 0.001	<u>0.997</u> ± 0.001	<u>0.991</u> ± 0.001
CDTD	0.988 ± 0.001	0.994 ± 0.002	0.987 ± 0.003	0.982 ± 0.002	0.990 ± 0.001	0.989 ± 0.001
TabCascade (DT)	0.989 ± 0.001	0.995 ± 0.002	0.987 ± 0.003	<u>0.986</u> ± 0.002	0.993 ± 0.000	0.984 ± 0.002

1634 Table 8: Comparison of **Shape (num)** scores, which evaluates numerical univariate densities only.
 1635 **Bold** indicates the best and underline the second best result. We report the average across 3 training
 1636 runs and 10 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
ARF	0.969 ± 0.001	0.941 ± 0.001	0.914 ± 0.002	0.913 ± 0.001	0.877 ± 0.001	0.913 ± 0.002
TVAE	0.890 ± 0.016	0.896 ± 0.032	0.921 ± 0.008	0.847 ± 0.011	0.846 ± 0.021	0.920 ± 0.012
CTGAN	0.915 ± 0.024	0.909 ± 0.001	0.914 ± 0.009	0.911 ± 0.018	0.894 ± 0.002	0.914 ± 0.008
TabDDPM	<u>0.985</u> ± 0.001	0.966 ± 0.004	0.960 ± 0.001	-	-	0.948 ± 0.002
TabSyn	0.968 ± 0.006	0.955 ± 0.003	0.929 ± 0.005	0.921 ± 0.011	0.840 ± 0.015	0.905 ± 0.017
TabDiff	0.984 ± 0.001	<u>0.968</u> ± 0.002	<u>0.962</u> ± 0.002	<u>0.971</u> ± 0.002	0.906 ± 0.001	<u>0.962</u> ± 0.002
CDTD	0.978 ± 0.001	0.959 ± 0.001	0.946 ± 0.002	0.918 ± 0.016	0.906 ± 0.002	0.953 ± 0.004
TabCascade (DT)	0.989 ± 0.002	0.975 ± 0.002	0.984 ± 0.001	0.986 ± 0.001	0.935 ± 0.002	0.978 ± 0.001

1649 Table 9: Comparison of **Wasserstein (WD) distances**, which we use to evaluate numerical univariate
 1650 densities only. **Bold** indicates the best and underline the second best result. We report the average
 1651 across 3 training runs and 10 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
ARF	0.007 ± 0.000	0.017 ± 0.001	0.017 ± 0.002	0.021 ± 0.000	0.079 ± 0.031	0.017 ± 0.001
TVAE	0.021 ± 0.003	0.036 ± 0.005	0.014 ± 0.003	0.026 ± 0.003	0.047 ± 0.006	0.019 ± 0.006
CTGAN	0.022 ± 0.003	0.034 ± 0.006	0.011 ± 0.002	0.020 ± 0.004	<u>0.036</u> ± 0.013	0.019 ± 0.003
TabDDPM	0.002 ± 0.000	<u>0.005</u> ± 0.001	0.004 ± 0.000	-	-	0.010 ± 0.001
TabSyn	0.006 ± 0.001	0.009 ± 0.001	0.012 ± 0.003	0.027 ± 0.010	0.666 ± 0.627	0.040 ± 0.027
TabDiff	0.002 ± 0.000	0.005 ± 0.001	<u>0.004</u> ± 0.000	<u>0.007</u> ± 0.001	0.043 ± 0.015	<u>0.006</u> ± 0.001
CDTD	0.004 ± 0.000	0.007 ± 0.001	0.006 ± 0.001	0.025 ± 0.006	0.050 ± 0.023	0.010 ± 0.001
TabCascade (DT)	<u>0.002</u> ± 0.000	0.004 ± 0.001	0.004 ± 0.001	0.004 ± 0.000	0.023 ± 0.010	0.004 ± 0.001

1663 Table 10: Comparison of **Jensen-Shannon divergences (JSD)**, which we use to evaluate categorical
 1664 univariate densities only. **Bold** indicates the best and underline the second best result. We report the
 1665 average across 3 training runs and 10 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
ARF	0.010 ± 0.001	0.018 ± 0.007	0.020 ± 0.002	0.013 ± 0.001	0.036 ± 0.006	0.024 ± 0.003
TVAE	0.144 ± 0.008	0.295 ± 0.019	0.141 ± 0.023	0.194 ± 0.017	0.203 ± 0.007	0.068 ± 0.006
CTGAN	0.148 ± 0.015	0.097 ± 0.031	0.147 ± 0.030	0.112 ± 0.013	0.068 ± 0.028	0.134 ± 0.019
TabDDPM	0.027 ± 0.003	0.012 ± 0.003	0.033 ± 0.004	-	-	0.073 ± 0.010
TabSyn	0.041 ± 0.010	0.022 ± 0.009	0.079 ± 0.010	0.112 ± 0.003	0.088 ± 0.020	0.110 ± 0.033
TabDiff	<u>0.011</u> ± 0.001	0.015 ± 0.006	0.019 ± 0.002	0.042 ± 0.001	0.031 ± 0.005	0.022 ± 0.002
CDTD	0.022 ± 0.001	0.009 ± 0.003	0.032 ± 0.004	0.032 ± 0.002	<u>0.033</u> ± 0.006	0.024 ± 0.003
TabCascade (DT)	0.018 ± 0.002	<u>0.011</u> ± 0.002	0.033 ± 0.006	<u>0.026</u> ± 0.002	0.038 ± 0.006	0.026 ± 0.003

1674 Table 11: Comparison of **Trend scores**. **Bold** indicates the best and underline the second best result.
 1675 We report the average across 3 training runs and 10 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
1678 ARF	0.969 \pm 0.001	0.977 \pm 0.001	0.952 \pm 0.003	0.962 \pm 0.000	0.951 \pm 0.004	0.956 \pm 0.001
1679 TVAE	0.782 \pm 0.012	0.925 \pm 0.016	0.835 \pm 0.008	0.761 \pm 0.024	0.881 \pm 0.016	0.934 \pm 0.006
1680 CTGAN	0.765 \pm 0.017	0.943 \pm 0.005	0.816 \pm 0.006	0.818 \pm 0.016	0.885 \pm 0.009	0.855 \pm 0.010
1681 TabDDPM	0.971 \pm 0.002	0.991 \pm 0.001	0.953 \pm 0.009	-	-	0.931 \pm 0.005
1682 TabSyn	0.943 \pm 0.006	0.984 \pm 0.003	0.903 \pm 0.010	0.848 \pm 0.019	0.905 \pm 0.004	0.879 \pm 0.018
1683 TabDiff	0.982 \pm 0.001	<u>0.991</u> \pm 0.001	0.968 \pm 0.008	<u>0.940</u> \pm 0.002	0.958 \pm 0.003	<u>0.972</u> \pm 0.001
1684 CDTD	0.971 \pm 0.002	0.988 \pm 0.001	0.936 \pm 0.019	0.916 \pm 0.008	<u>0.958</u> \pm 0.005	0.971 \pm 0.002
1685 TabCascade (DT)	0.976 \pm 0.003	0.992 \pm 0.001	0.964 \pm 0.006	0.936 \pm 0.003	0.971 \pm 0.003	0.975 \pm 0.002

1685
 1686
 1687
 1688 Table 12: Comparison of **Trend (mixed) scores**, which evaluate only the dependencies across feature
 1689 types. **Bold** indicates the best and underline the second best result. We report the average across 3
 1690 training runs and 10 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
1692 ARF	0.959 \pm 0.001	0.924 \pm 0.002	0.964 \pm 0.006	<u>0.928</u> \pm 0.001	0.919 \pm 0.010	0.958 \pm 0.001
1693 TVAE	0.705 \pm 0.021	0.726 \pm 0.054	0.759 \pm 0.019	0.716 \pm 0.032	0.749 \pm 0.031	0.921 \pm 0.011
1694 CTGAN	0.685 \pm 0.024	0.797 \pm 0.015	0.715 \pm 0.019	0.708 \pm 0.038	0.728 \pm 0.021	0.803 \pm 0.018
1695 TabDDPM	0.966 \pm 0.002	0.963 \pm 0.003	0.928 \pm 0.018	-	-	0.909 \pm 0.006
1696 TabSyn	0.932 \pm 0.005	0.943 \pm 0.006	0.867 \pm 0.019	0.830 \pm 0.047	0.813 \pm 0.009	0.852 \pm 0.025
1697 TabDiff	0.977 \pm 0.001	<u>0.967</u> \pm 0.004	<u>0.957</u> \pm 0.015	0.937 \pm 0.004	<u>0.919</u> \pm 0.008	<u>0.965</u> \pm 0.001
1698 CDTD	0.960 \pm 0.004	0.953 \pm 0.006	0.892 \pm 0.038	0.829 \pm 0.019	0.914 \pm 0.011	0.962 \pm 0.002
1699 TabCascade (DT)	0.968 \pm 0.006	0.974 \pm 0.002	0.948 \pm 0.013	0.872 \pm 0.003	0.939 \pm 0.009	0.968 \pm 0.003

1700
 1701
 1702 Table 13: Comparison of **MLE**. Per dataset, **bold** indicates the best and underline the second best
 1703 result. We report the average (and standard deviation) across 3 training runs and 10 different generated
 1704 samples each.

	adult	beijing	default	diabetes	news	shoppers
1706 ARF	0.019 \pm 0.003	0.102 \pm 0.007	0.014 \pm 0.003	<u>0.031</u> \pm 0.014	0.115 \pm 0.045	0.052 \pm 0.014
1707 TVAE	0.077 \pm 0.018	0.288 \pm 0.060	0.017 \pm 0.007	0.063 \pm 0.015	0.061 \pm 0.067	0.026 \pm 0.011
1708 CTGAN	0.094 \pm 0.016	0.256 \pm 0.018	0.039 \pm 0.007	0.081 \pm 0.030	0.013 \pm 0.003	0.116 \pm 0.015
1709 TabDDPM	0.018 \pm 0.005	0.046 \pm 0.003	0.007 \pm 0.005	-	-	0.014 \pm 0.007
1710 TabSyn	0.029 \pm 0.003	0.097 \pm 0.015	0.034 \pm 0.019	0.093 \pm 0.017	3.286 \pm 2.633	0.044 \pm 0.013
1711 TabDiff	<u>0.015</u> \pm 0.002	0.054 \pm 0.004	<u>0.009</u> \pm 0.004	0.023 \pm 0.018	0.082 \pm 0.026	0.021 \pm 0.006
1712 CDTD	0.016 \pm 0.003	<u>0.037</u> \pm 0.004	0.009 \pm 0.005	0.053 \pm 0.016	0.147 \pm 0.036	<u>0.011</u> \pm 0.006
1713 TabCascade (DT)	0.007 \pm 0.001	0.035 \pm 0.004	0.009 \pm 0.004	0.036 \pm 0.015	<u>0.054</u> \pm 0.046	0.009 \pm 0.005

1714
 1715
 1716 Table 14: Comparison of **α -Precision scores**. Per dataset, **bold** indicates the best and underline the
 1717 second best result. We report the average (and standard deviation) across 3 training runs and 10
 1718 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
1721 ARF	0.991 \pm 0.003	0.933 \pm 0.003	0.957 \pm 0.004	0.976 \pm 0.002	0.898 \pm 0.005	0.964 \pm 0.006
1722 TVAE	0.766 \pm 0.021	0.697 \pm 0.165	0.772 \pm 0.078	0.261 \pm 0.070	0.139 \pm 0.061	0.938 \pm 0.025
1723 CTGAN	0.804 \pm 0.077	0.806 \pm 0.009	0.825 \pm 0.006	0.878 \pm 0.055	<u>0.930</u> \pm 0.008	0.922 \pm 0.075
1724 TabDDPM	0.928 \pm 0.012	0.964 \pm 0.005	0.907 \pm 0.007	-	-	0.767 \pm 0.017
1725 TabSyn	0.970 \pm 0.023	<u>0.982</u> \pm 0.013	0.941 \pm 0.040	0.926 \pm 0.047	0.611 \pm 0.172	0.851 \pm 0.070
1726 TabDiff	0.995 \pm 0.001	0.973 \pm 0.004	0.975 \pm 0.007	0.826 \pm 0.010	0.972 \pm 0.008	<u>0.983</u> \pm 0.006
1727 CDTD	0.993 \pm 0.002	0.993 \pm 0.003	<u>0.978</u> \pm 0.005	<u>0.979</u> \pm 0.013	0.851 \pm 0.012	0.982 \pm 0.006
1728 TabCascade (DT)	0.981 \pm 0.003	0.980 \pm 0.007	0.986 \pm 0.003	0.993 \pm 0.004	0.907 \pm 0.008	0.987 \pm 0.007

1728 Table 15: Comparison of **β -Recall scores**. Per dataset, **bold** indicates the best and underline the
 1729 second best result. We report the average (and standard deviation) across 3 training runs and 10
 1730 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
1732 ARF	0.420 \pm 0.004	0.285 \pm 0.006	0.362 \pm 0.007	0.329 \pm 0.006	0.114 \pm 0.003	0.423 \pm 0.006
1733 TVAE	0.196 \pm 0.018	0.098 \pm 0.058	0.247 \pm 0.032	0.179 \pm 0.079	0.049 \pm 0.025	0.483 \pm 0.010
1734 CTGAN	0.162 \pm 0.039	0.148 \pm 0.013	0.304 \pm 0.032	0.178 \pm 0.063	0.339 \pm 0.031	0.326 \pm 0.016
1735 TabDDPM	0.525 \pm 0.008	0.396 \pm 0.007	0.553 \pm 0.004	-	-	0.664 \pm 0.024
1736 TabSyn	0.397 \pm 0.014	0.311 \pm 0.019	0.346 \pm 0.026	0.176 \pm 0.024	0.035 \pm 0.016	0.301 \pm 0.056
1737 TabDiff	0.477 \pm 0.003	0.373 \pm 0.007	0.482 \pm 0.005	0.274 \pm 0.010	0.366 \pm 0.018	0.476 \pm 0.007
1738 CDTD	0.573 \pm 0.004	0.441 \pm 0.006	0.603 \pm 0.008	0.561 \pm 0.017	0.517 \pm 0.010	0.728 \pm 0.007
1739 TabCascade (DT)	0.595 \pm 0.009	0.540 \pm 0.004	<u>0.562</u> \pm 0.006	<u>0.517</u> \pm 0.004	<u>0.478</u> \pm 0.010	<u>0.688</u> \pm 0.007

1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749 Table 16: Comparison of **DCR share scores**. Per dataset, **bold** indicates the best and underline the
 1750 second best result. We report the average (and standard deviation) across 3 training runs and 10
 1751 different generated samples each.

	adult	beijing	default	diabetes	news	shoppers
1753 ARF	0.815 \pm 0.002	0.801 \pm 0.002	0.793 \pm 0.004	0.806 \pm 0.002	0.785 \pm 0.003	0.800 \pm 0.004
1754 TVAE	0.800 \pm 0.004	0.816 \pm 0.019	0.792 \pm 0.016	0.787 \pm 0.009	0.815 \pm 0.015	0.817 \pm 0.006
1755 CTGAN	<u>0.781</u> \pm 0.003	0.777 \pm 0.013	<u>0.783</u> \pm 0.003	0.778 \pm 0.004	0.783 \pm 0.002	0.784 \pm 0.006
1756 TabDDPM	0.799 \pm 0.005	0.795 \pm 0.002	0.800 \pm 0.003	-	-	0.856 \pm 0.020
1757 TabSyn	0.780 \pm 0.003	<u>0.780</u> \pm 0.003	0.780 \pm 0.004	0.775 \pm 0.002	0.780 \pm 0.005	0.780 \pm 0.005
1758 TabDiff	0.786 \pm 0.003	0.787 \pm 0.003	0.786 \pm 0.003	<u>0.777</u> \pm 0.002	<u>0.782</u> \pm 0.002	<u>0.782</u> \pm 0.005
1759 CDTD	0.863 \pm 0.002	0.823 \pm 0.002	0.851 \pm 0.005	0.837 \pm 0.002	0.818 \pm 0.004	0.955 \pm 0.004
1760 TabCascade (DT)	0.871 \pm 0.006	0.845 \pm 0.002	0.839 \pm 0.004	0.799 \pm 0.002	0.805 \pm 0.003	0.937 \pm 0.004

1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770 Table 17: Comparison of **MIA scores**. Per dataset, **bold** indicates the best and underline the second
 1771 best result. We report the average (and standard deviation) across 3 training runs and 10 different
 1772 generated samples each.

	adult	beijing	default	diabetes	news	shoppers
1775 ARF	0.977 \pm 0.009	0.994 \pm 0.005	0.978 \pm 0.010	<u>0.995</u> \pm 0.004	<u>0.993</u> \pm 0.006	0.985 \pm 0.008
1776 TVAE	<u>0.987</u> \pm 0.006	0.991 \pm 0.006	<u>0.980</u> \pm 0.010	0.994 \pm 0.004	0.990 \pm 0.008	0.980 \pm 0.012
1777 CTGAN	0.994 \pm 0.004	0.992 \pm 0.005	0.988 \pm 0.006	0.992 \pm 0.004	0.991 \pm 0.005	<u>0.988</u> \pm 0.012
1778 TabDDPM	0.971 \pm 0.010	0.992 \pm 0.006	0.975 \pm 0.010	-	-	0.979 \pm 0.012
1779 TabSyn	0.985 \pm 0.007	<u>0.994</u> \pm 0.005	0.978 \pm 0.008	0.995 \pm 0.003	0.993 \pm 0.005	0.990 \pm 0.008
1780 TabDiff	0.981 \pm 0.006	0.993 \pm 0.005	0.975 \pm 0.009	0.995 \pm 0.003	0.991 \pm 0.005	0.985 \pm 0.010
1781 CDTD	0.969 \pm 0.010	0.992 \pm 0.005	0.979 \pm 0.008	0.996 \pm 0.003	0.992 \pm 0.005	0.974 \pm 0.011
1782 TabCascade (DT)	0.960 \pm 0.008	0.991 \pm 0.006	0.949 \pm 0.010	0.980 \pm 0.004	0.990 \pm 0.006	0.956 \pm 0.014

Figure 16: Detection scores for all diffusion-based models and all datasets. The Cat. score considers only categorical features, the Num. score only numerical features.

K FURTHER ABLATION EXPERIMENTS ON THE DT ENCODER COMPLEXITY

We thoroughly investigate the effect of the complexity of the DT encoder. Specifically, we vary the maximum depth of the DT encoder from 3 to 9. Figure 18 shows the impact of increasing max depth on the proportion of masked inputs to the high-resolution model. For comparison, Figure 17 shows the same for increasing the complexity of the GMM encoder. For features that are integer-valued with few unique values, increasing max depth can lead to cases where each unique value is treated as a separate component. In these cases, the feature would be entirely generated by the low-resolution model.

Further, we investigate the effect of max depth on various sample quality metrics. Table 18 gives the average results over all datasets with 10 different synthetic samples each. For each setting, we adjusted the model parameters to ≈ 1 million parameters for the high-resolution model and ≈ 2 million parameters for the low-resolution model on the `adult` dataset. We emphasize that the effect of max depth may be different for different architectures but an exhaustive evaluation of all combinations is prohibitively expensive.

Increasing max depth increases the number of Gaussian components. This appears to make samples substantially more realistic in the eyes of the gradient-boosting-based detection model whereas it has a less pronounced effect on the other metrics. The best choice for max depth also depends on which metrics are deemed to be most relevant in a given modeling context. If, for instance, α -Precision and β -Recall are presumed to be important than the Detection Score, than more favorable results could be achieved by lowering max depth to 5.

Figure 17: Effect of increasing the maximum possible number of Gaussian components on the average (over three training seeds) proportion of masked inputs to p_{high}^{θ} and the average number of completely masked features.

Figure 18: Effect of increasing the maximum tree depth on the average (over three training seeds) proportion of masked inputs to p_{high}^{θ} and the average number of completely masked features.

Table 18: The effect of max depth for the DT encoder on various evaluation metrics averaged over datasets. The standard deviation captures variance across the datasets. Grey indicates the max depth used for the main results.

Max. Depth	Shape (num)	WD (num)	Trend	Trend (mixed)	Detection Score	MLE	α -Precision	β -Recall	DCR Share
3	0.969 ± 0.021	0.007 ± 0.006	0.964 ± 0.029	0.937 ± 0.050	0.391 ± 0.308	0.019 ± 0.014	0.974 ± 0.024	0.583 ± 0.068	0.866 ± 0.062
4	0.972 ± 0.019	0.006 ± 0.006	0.962 ± 0.029	0.935 ± 0.051	0.391 ± 0.301	0.018 ± 0.015	0.985 ± 0.011	0.579 ± 0.069	0.859 ± 0.058
5	0.973 ± 0.018	0.006 ± 0.006	0.962 ± 0.026	0.934 ± 0.048	0.391 ± 0.295	0.027 ± 0.020	0.986 ± 0.012	0.575 ± 0.072	0.851 ± 0.052
6	0.974 ± 0.017	0.006 ± 0.006	0.962 ± 0.025	0.933 ± 0.048	0.418 ± 0.322	0.026 ± 0.019	0.985 ± 0.010	0.566 ± 0.074	0.848 ± 0.052
7	0.974 ± 0.019	0.006 ± 0.006	0.967 ± 0.019	0.939 ± 0.042	0.416 ± 0.322	0.027 ± 0.023	0.981 ± 0.014	0.568 ± 0.073	0.849 ± 0.052
8	0.975 ± 0.020	0.006 ± 0.007	0.969 ± 0.018	0.943 ± 0.037	0.446 ± 0.350	0.017 ± 0.013	0.972 ± 0.035	0.563 ± 0.077	0.849 ± 0.050
9	0.973 ± 0.020	0.006 ± 0.006	0.968 ± 0.018	0.942 ± 0.038	0.436 ± 0.337	0.016 ± 0.014	0.966 ± 0.042	0.559 ± 0.079	0.849 ± 0.049

1890 L TRAINING AND SAMPLING TIMES

1892 Table 19: Training times in minutes. For diffusion-based models, the training time was capped at 30
 1893 minutes.

	ARF	TVAE	CTGAN	TabDDPM	TabSyn	TabDiff	CDTD	TabCascade (DT)	TabCascade (GMM)
adult	11.4	20.0	36.2	9.5	14.4	30.0	6.0	10.7	11.2
beijing	10.6	21.5	35.3	8.1	13.2	30.0	5.6	11.4	11.2
default	14.7	25.1	44.1	11.9	19.4	30.0	6.6	11.7	11.9
diabetes	56.0	29.5	101.8	30.0	16.2	30.0	8.0	12.6	13.7
news	38.7	41.7	68.2	21.1	30.0	30.0	9.2	17.1	16.9
shoppers	3.6	24.1	39.2	10.4	14.3	30.0	6.2	11.1	11.1

1903 Table 20: Sample times in seconds per 1000 samples. TabDDPM produces NaNs for diabetes
 1904 and news datasets.

	ARF	TVAE	CTGAN	TabDDPM	TabSyn	TabDiff	CDTD	TabCascade (DT)	TabCascade (GMM)
adult	1.55	0.14	0.24	7.08	0.53	3.62	2.55	0.69	2.06
beijing	1.09	0.14	0.23	5.32	0.55	2.24	3.76	0.62	2.09
default	2.43	0.18	0.29	10.19	0.56	3.47	6.38	0.76	2.14
diabetes	4.46	0.22	0.32	-	0.53	24.11	3.54	0.87	2.26
news	6.76	0.34	0.44	-	0.60	7.69	5.26	1.17	2.52
shoppers	1.71	0.18	0.25	7.45	0.54	3.20	2.90	0.70	2.05