
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CASCADED FLOW MATCHING FOR HETEROGENEOUS
TABULAR DATA WITH MIXED-TYPE FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Advances in generative modeling have recently been adapted to heterogeneous
tabular data. However, generating mixed-type features that combine discrete values
with an otherwise continuous distribution remains challenging. We advance the
state-of-the-art in diffusion-based generative models for heterogeneous tabular data
with a cascaded approach. As such, we conceptualize categorical variables and
numerical features as low- and high-resolution representations of a tabular data row.
We derive a feature-wise low-resolution representation of numerical features that
allows the direct incorporation of mixed-type features including missing values
or discrete outcomes with non-zero probability mass. This coarse information is
leveraged to guide the high-resolution flow matching model via a novel conditional
probability path. We prove that this lowers the transport costs of the flow matching
model. The results illustrate that our cascaded pipeline generates more realistic
samples and learns the details of distributions more accurately.

1 INTRODUCTION

Advancements in the field of generative modeling – rooted in seminal contributions on diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020), score-based modeling (Song et al., 2021)
and flow matching (Albergo & Vanden-Eijnden, 2023; Lipman et al., 2023; Liu et al., 2023) – have
yielded state-of-the-art results across a broad range of complex data modalities. However, progress
in adapting these models to the domain of heterogeneous tabular data has remained limited. Given
the ubiquity of tabular data in both research and industry – from the social sciences, medicine, to
finance in the form of questionnaires, surveys, census data or electronic health records (Borisov et al.,
2022; Hernandez et al., 2022; Assefa et al., 2021) – the ability to generate realistic tabular datasets
is as crucial as generating images or videos.

Several diffusion-based models for heterogeneous tabular data generation have been introduced
(Kim et al., 2023; Kotelnikov et al., 2023; Zhang et al., 2024b; Lee et al., 2023; Mueller et al., 2025;
Shi et al., 2025), each with a different solution to the main challenge of integrating numerical and
categorical features. However, none of them explicitly accommodates features that combine both
categorical and continuous characteristics (Zhao et al., 2021). Such mixed-type features are unique
to tabular data (Li et al., 2025) and hold significant practical relevance. Prominent examples include
censored and inflated features, or numerical features with missing values. Particularly, in cases of
informative absence of data, missing values can carry important signals for downstream statistical
analysis. As such, a generative model should not merely impute or learn from missing values, but be
able to generate them as part of realistic synthetic samples. Thus, the inability of existing approaches
to faithfully generate mixed-type features significantly limits their practical utility.

In this paper, we propose TabCascade, a novel cascaded flow matching framework for heterogeneous
tabular data with features exhibiting a mixture of categorical and continuous distributions. Within this
cascaded framework, numerical details are generated conditional on a coarse-grained representation
of the high-fidelity data. Accordingly, we conceptualize categorical variables as low-resolution and
numerical features as high-resolution representations of a tabular data row. We explore discretization
methods such as distributional regression and Gaussian mixture models to construct a categorical low-
resolution approximation of the numerical features. TabCascade first learns the joint distribution of cat-
egorical and discretized numerical data as low-resolution information. Subsequently, numerical data is
generated conditionally on the low-resolution model’s output. This allows TabCascade to focus its ca-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

pacity to where it is mostly needed: to generate details, as opposed to coarse categorical data, which we
show is relatively easy to learn. We base the high-resolution model on a conditional probability path
guided by low-resolution information, thereby introducing a data-dependent coupling that reduces the
transport costs between source and target distributions of high-resolution data. Further, we endow it
with learnable time schedules conditioned on low-resolution information. Based on some criteria, we
choose the categorical part of the CDTD model (Mueller et al., 2025) as our low-resolution component.

The cascaded pipeline gives a natural way of incorporating mixed-type features by letting the model
first decide on their categorical part and filling in continuous values only when necessary. Our results
show that this benefits the realism of the generated samples substantially and that TabCascade learns
the details of the distributions much more accurately than the current state-of-the-art methods.

In sum, we make several contributions towards more efficient and effective models for tabular data:

• To the best of our knowledge, this is the first work to address mixed-type feature generation,
i.e., features following a mixture of categorical and continuous distributions, within diffusion-based
models. In practice, this includes inflated, censored, and – most importantly – missing values in
numerical features. Our framework naturally extends to any value type that warrants distinct treatment
from its continuous counterpart.
• We decompose the tabular data generation task into low- and high-resolution parts. From this, we
propose a novel cascaded flow matching framework. We design a guided conditional probability path
to model high-resolution data.
• The use of feature-type tailored models sidesteps the challenge of balancing type-specific losses,
and thereby prevents the unintended weighting of features during training, prevalent in previous
works altogether.
• Accounting for low-resolution information in the generation of numerical details not only boosts
sample quality and fidelity but also improves model convergence.

2 RELATED WORK

Diffusion models for tabular data. The main challenge for tabular data generation is the effective
integration of heterogeneous (i.e., numerical and categorical) features. TabDDPM (Kotelnikov
et al., 2023) and CoDi (Lee et al., 2023) combine multinomial diffusion (Hoogeboom et al., 2021)
and DDPM (Sohl-Dickstein et al., 2015; Ho et al., 2020); STaSY (Kim et al., 2023) treats one-hot
encoded categorical data as numerical; and TabSyn (Zhang et al., 2024b) adopts latent diffusion
to embed both feature types into a continuous space. Despite its popularity in other domains, latent
diffusion has proven less effective for heterogeneous tabular data compared to models defined directly
in data space (Mueller et al., 2025). More recent models, such as TabDiff (Shi et al., 2025) and CDTD
(Mueller et al., 2025) learn noise schedules alongside the diffusion model to accommodate the feature
heterogeneity in tabular data. These models integrate score matching (Song et al., 2021; Karras et al.,
2022) with either masked diffusion (Sahoo et al., 2024) or score interpolation (Dieleman et al., 2022),
respectively. While most of these models can be easily adapted to be trainable on data containing
missing values, in their original state none of them can generate missing values in numerical features.

Exploitation of low-resolution information. Cascaded diffusion models (Ho et al., 2022) for
super-resolution images define a sequence of diffusion models, where higher resolution models
are conditioned on the lower resolution model’s outputs. This divide-and-conquer strategy has
been successfully used in Google’s Imagen model (Saharia et al., 2022) for the generation of
high-fidelity images, and can be further refined with data-dependent couplings (Albergo et al., 2024).
Instead, Tang et al. (2024) improve sample quality with the combination of a hybrid autoregressive
transformer that encodes images into both categorical and continuous tokens. Sahoo et al. (2023)
introduce auxiliary latent variables to learn a latent lower resolution structure among images in
order to learn pixel-wise conditional noise schedules. This allows the model to adjust the noise in
the forward process dependent on low-resolution information of an image. Neural flow diffusion
models (Bartosh et al., 2024) generalize this by learning the entire forward process. More generally,
Pandey et al. (2022) and Kouzelis et al. (2025) show that combining low-level image details with
high-level semantic features improves training efficiency and sample quality. However, the lack of
a clear notion of ’resolution’ in tabular data makes it difficult to apply the same principle directly.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

−4 −2 0 2 4

educational-num

−3

−2

−1

0

1

2

3

ho
ur

s-
pe

r-
w

ee
k

(a) Ground-truth samples

−4 −2 0 2 4

educational-num

−3

−2

−1

0

1

2

3

ho
ur

s-
pe

r-
w

ee
k

Shape: 0.7267, Trend: 0.9977

(b) Unconditional samples

−4 −2 0 2 4

educational-num

−3

−2

−1

0

1

2

3

ho
ur

s-
pe

r-
w

ee
k

Shape: 0.7626, Trend: 0.9981

(c) Conditional samples

Figure 1: Example from the adult dataset (hours-per-week, years of education) illustrating the
effectiveness of low-resolution conditioning in guiding generation and improving details. (a) Samples
from pdata. (b) Samples from the unconditional CDTD trained on the two features. (c) Samples
from the CDTD conditional on categorical, low-resolution information learned from feature-specific,
shallow distributional regression trees. The red dots indicate the means of the possible combinations
of components. Shape and Trend metrics are estimated as an average over five sampling seeds.

3 PROBLEM STATEMENT

Goal. Let Dtrain = {xi}Ni=1 denote a tabular dataset with i.i.d. observations x = (xcat,xnum) drawn
from an unknown distribution pdata(xcat,xnum). Further, let xcat = (x

(j)
cat)

Kcat
j=1 with x(j)cat ∈ {0, . . . , Cj}

represent the Kcat categorical (including binary) features; and xnum ∈ RKnum the Knum numerical fea-
tures. The objective is to learn a (parameterized) joint distribution pθ(xcat,xnum) ≈ pdata(xcat,xnum)
to generate new samples x∗ = (x∗

cat,x
∗
num) ∼ pθ(xcat,xnum) that match the statistical properties of

the training data.

In practice, xnum can also be of mixed-type, e.g., a numerical feature including missing values,
or a variable following a continuous distribution with point masses at certain outcomes. Such a
mixed-type nature differs considerably from the purely continuous distributions typically considered
in diffusion-based generative models.

Cat. Num. Cat. and Num.
0.6

0.7

0.8

0.9

1.0

D
et

ec
tio

n
Sc

or
e

(↑
)

Figure 2: Detection scores
computed on categorical and
numerical subsets of CDTD-
generated samples from the
adult dataset.

Inflated values. Let xmixed be a mixed-type feature with
a single inflated value at v. Its univariate density is
p(xmixed) = πv · δv(xmixed) + (1− πv) · pcont(xmixed), where πv is
the probability mass at v, pcont is a continuous density, and δv is the
Dirac delta function centered at v. Zero-inflated features (v = 0)
are common in practice and often carry contextual information: a
working time of zero hours in economic survey data may indicate
unemployment; in medical data, a drug dosage of zero may indicate
the absence of treatment. While existing diffusion models can, in
principle, generate such inflated values, they do not explicitly ac-
count for this structure. As the distribution becomes more complex,
assigning precise probability mass exactly at v becomes increasingly
difficult.

Missing values. Likewise, the discrete state in a mixed-type fea-
ture can represent missingness. Let m = 1 if feature xmixed is missing, and m = 0 otherwise. Then,
the observed data is xmixed = (1−m)⊙ x

(latent)
num +m⊙ NaN with a latent variable x(latent)

num . Gener-
ally, the missingness indicator m may depend on both observed and unobserved parts of the data row.
The generative model must therefore also be able to infer p(m|xnum,x

(latent)
num) for all features (Little

& Rubin, 2019). This formulation is particularly relevant in domains where missing values carry
information: missing answers in psychological questionnaires may point towards certain personality
traits; missing values in medical datasets might indicate reluctance to disclose information. Previous
diffusion models for tabular data can be trained on numerical features with missing values, but are
not designed to generate such instances.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The simplicity of learning categorical features. Existing models for tabular data generation treat
xcat and xnum jointly. However, the generation performance is not equal across the two feature types.
For illustration, we train a CDTD model on the adult dataset, generate a synthetic dataset and train
a gradient-boosted detection model to differentiate between the fake and real samples (detection
score, see Appendix E). As shown in Figure 2, the detection score estimated only on xcat is nearly
perfect, whereas the detection score drops substantially for xnum only. This indicates that xnum is
more difficult to learn and accurately generate than xcat. Figure 15 in the Appendix shows that
this pattern is consistent across five out of six considered datasets. This observation motivates a
divide-and-conquer approach: first generating the easier component, xcat, and afterwards the more
difficult part xnum conditional on xcat to improve sample quality.

The benefits of conditional generation. Conditional generation is known to improve sample
quality. Unlike images, for which text captions are available as conditioning information, tabular data
lacks similar signals. In Figure 1, we investigate the use of distributional trees (Schlosser et al., 2019)
to generate a feature-wise clustering of data points which is then used as the conditioning signal in
a CDTD model that learns a bivariate distribution. Qualitatively, the conditional model learns the
details, i.e., low density areas, of the distribution more accurately. This is also reflected in improved
Shape and Trend metrics indicating improved sample quality.

1 2 3 4

Relative Cat. Loss Weight

0.72

0.74

0.76

D
et

ec
tio

n
Sc

or
e

(↑
)

Figure 3: Detection score as
a function of the relative loss
weight of categorical features
(from the adult dataset) in
CDTD. The vertical line indi-
cates the default.

The pitfall of imbalanced losses. The heterogeneity of tabular
features requires careful alignment of different losses to avoid im-
plicit weighting of feature importance (Ma et al., 2020). For tabular
data, CDTD (Mueller et al., 2025) derive the means of achieving
such a balancing from first principles. Yet, importance parity be-
tween xcat and xnum does not necessarily translate into better overall
sample quality. For illustration, we train CDTD on the adult data
using a grid of 14 relative loss weights for categorical features. Fig-
ure 3 shows that the detection score can be improved by increasing
the relative weight of the categorical losses. In practice, however,
models tend to be too large to effectively tune such hyperparameters.
Our novel cascaded flow matching model avoids such balancing
issues entirely, without requiring any tuning of relative loss weights.

4 CASCADED FLOW MATCHING FOR TABULAR DATA

In the following, we introduce TabCascade, a cascaded flow matching model for heterogeneous
tabular data with mixed-type features. First, we outline the general framework and motivate the
proposed decomposition into low and high-resolution information. We leverage the low-resolution
structure to learn feature-specific probability paths to improve the generation of xnum. In addition to
a high-resolution flow matching model, we adopt an efficient low-resolution model and demonstrate
how a low-resolution representation of xnum can be derived in practice.

4.1 CASCADED FRAMEWORK

Tabular data resolution. In images, resolution refers to the level of visual detail, typically
expressed in terms of the total number of pixels. Tabular data lacks a comparable notion of resolution.
Based on Figure 2 and the notion that coarse information is easier to learn than details, we associate
resolution in tabular data with feature types, that is, we treat xcat as low-resolution information and
xnum as high-resolution information. We assume that there exists a low-resolution representation of
x
(i)
num denoted by z(i)num. For each data row, x = (xcat,xnum), we construct a low-resolution counterpart,

xlow = (xcat, znum), where znum = [z
(i)
num]

Knum
i=1 and each z(i)num is a categorical low-resolution latent

representation of x(i)num.

Cascaded structure. Accordingly, we define the cascading pipeline (Ho et al., 2022) as a sequence
of a low-resolution model followed by a high-resolution model:

p(xcat,xnum) =
∑

znum∈Z
phigh(xnum|znum,xcat) plow(znum,xcat). (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Thus, it resembles a latent variable model, with the latent variable znum generated jointly with xcat.
This factorization simplifies learning the joint distribution: The generation of xcat is informed by
coarse information about xnum, which enables the model to capture dependencies across feature
types effectively. Additionally, conditioning on the information in znum eases learning phigh and
generating xnum. From the chain rule of entropy, we know that H(xnum|znum,xcat) < H(xnum|xcat)
if xnum ̸⊥ znum. We therefore aim to infer an informative znum such that p(xnum|xlow) and p(xlow)
are (substantially) easier to learn than the joint distribution p(xnum,xcat).

Mixed-type features. We use ancestral sampling to sample from p(xcat,xnum): First, we sample
znum,xcat ∼ pθlow(znum,xcat), and then xnum ∼ pθhigh(xnum|znum,xcat). Since we defined z(i)num to be
categorical, this procedure allows us to directly accommodate mixed-type features. Let NaN and vinfl

be the missing and inflated states of x(i)num, respectively. We encode these as separate categories cmiss

and cinfl in z(i)num. Thus, we construct
x(i)num = I(z(i)num = cmiss) · NaN+ I(z(i)num = cinfl) · vinfl + I(z(i)num /∈ {cmiss, cinfl}) · x̃(i)num, (2)

where I(·) is the indicator function and x̃(i)num = [x̃num]i with x̃num ∼ pθhigh(xnum|znum,xcat). Once znum

indicates a category of interest, we can substitute x̃(i)num with the inflated or missing state. Intuitively,
the model first decides on the coarse structure and only fills in the details when necessary. Therefore,
inflatedness and missingness is entirely determined by pθlow. We can thus mask the corresponding
instances when training pθhigh to free up model capacity. This setup trivially extends to an arbitrary
mixed-type structure, for instance, with multiple inflated values.

4.2 HIGH-RESOLUTION MODEL

We build our model top-down and first introduce the high resolution model pθhigh. For brevity, let
x1 = xnum and z = znum and assume z is observed such that xlow = (xcat, z) and x1,xlow ∼ p∗data.
We rely on flow matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023)
to learn pθhigh, i.e., we use an ODE dxt = ut(xt)dt, with a time-dependent vector field ut for
t ∈ [0, 1], to transform samples from a source distribution x0 ∼ p0 to the distribution of interest
x1 ∼ p1 =

∑
xlow∈Xlow

p∗data via a probability path pt. The goal of flow matching is to learn a
vector field uθ

t which generates a flow Ψt(x0) = xt ∼ pt such that Ψ0(x0) = x0 ∼ p0 and
Ψ1(x0) = x1 ∼ p1. Below, we derive a novel guided conditional vector field ut(xt|x1,xlow) which
uses xlow to simplify and improve the generation of x1.

Guided conditional probability path. The construction of a suitable ODE requires to design a
conditional probability path pt(xt|x1). Particularly popular is the linear path, i.e., xt = tx1+(1−t)x0

with x0 ∼ N (0, I). To account for the high feature heterogeneity, we introduce a novel conditional
probability path which is guided by feature-specific time schedules and source distributions to exploit
our knowledge of xlow.

First, we define a time schedule γt(xlow) : t→ [0, 1]Knum which uses xlow to construct feature-specific
non-linear paths of least resistance in t. We constrain γt(xlow) to be monotonically increasing and
to satisfy γ0 = 0 and γ1 = 1. As an efficient parameterization that allows for a closed-form time
derivative γ̇t, we use a fifth-degree polynomial in t with the parameters provided by a neural network
(Sahoo et al., 2023, see Appendix G for details).

Second, we utilize our knowledge of z to move x0 closer to the target x1 with data-dependent
couplings (Albergo et al., 2024). The coarse information about x1 in z determines µ ∈ RKnum and
scales σ(z) := diag([σ1(z

(1)), . . . , σk(z
(k))]) with σi(z(i)) ∈ R+ of the feature-specific source

distributions such that
x0 = µ(z) + σ(z)ϵ, with ϵ ∼ N (0, I). (3)

We factorize feature-wise and thus, we re-write the induced coupling as

p(x0,x1) =
∑
z∈Z

p(x0|z)p(z|x1)p(x1) =
∏
i

∑
z(i)∈Z(i)

p(x
(i)
0 |z(i))p(z(i)|x(i)1)p(x1), (4)

with p(x(i)0 |z(i)) = N (µ(z(i)), σ2(z(i))) similar to a Gaussian component in a mixture model and
parameters selected based on z(i). Hence, we first draw x1 ∼ p(x1), retrieve z(i) for each x(i)1

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

feature-wise, and then sample x(i)0 from the corresponding p(x(i)0 |z(i)). Intuitively, we use z(i) to
construct a coupling such that each x(i)0 is already located in the proximity of its target x(i)1 . These
innovations induce a guided conditional probability path pt(xt|x1,xlow) such that

xt = γt(xlow)x1 + (1− γt(xlow))[µ(z) + σ(z)ϵ] ∼ pt(xt|x1,xlow). (5)

This defines the probability path in an augmented space such that the samples take group-specific
paths with the groups defined by the low-resolution information xlow. Since γ1 = 1 and γ0 = 0, we
obtain p0(xt|x1,xlow) = p(x0|z) and p1(xt|x1,xlow) = δx1(xt), and thus pt(xt|x1,xlow) defines a
valid conditional probability path.

Guided conditional vector field. Our knowledge of pt(xt|x1,xlow) allows us to apply Theorem 3
from Lipman et al. (2023) to derive the guided conditional vector field (see Appendix A.1). We
substitute for xt from Equation (5) to get the vector field as a function of ϵ ∼ N (0, I):

ut(ϵ|x1,xlow) = γ̇t(xlow)[x1 − (µ(z) + σ(z)ϵ)]. (6)

This represents the scaled difference between x1, a true data sample, and x0, a sample from the
data-dependent source distribution. Note that, for γt = t, µ = 0 and σ(xlow) = I, we recover the
x1 − ϵ from a flow matching model with linear paths. The vector field ut(ϵ|x1,xlow) is the target in
the conditional flow matching (CFM; Lipman et al., 2023) loss

LCFM = Et∼[0,1],(x1,xlow)∼p∗data,ϵ∼N (0,I)

[
||uθ

t (xt|xlow)− γ̇t(xlow)[x1 − (µ(z) + σ(z)ϵ)]||22
]
, (7)

with the velocity field uθ
t (xt|xlow) parameterized by a neural network granted access to xlow. We mask

missing or inflated value entries, as these are inferred from pθlow based on Equation (2). Hence, pθhigh

mostly learns feature dependencies and details. Having trained uθ
t , we simulate dxt = uθ

t (xt|xlow)dt
starting from x0 ∼ p(x0|z) to sample from p1. The cascaded pipeline ensures that xlow will be
available during generation.

4.3 LOW-RESOLUTION REPRESENTATION

So far, we have not discussed how we derive z and how we determine µ(z) and σ(z). First, we
note that z(i) must be categorical and only summarizes information about x(i)1 . Second, to minimize
the noise introduced to the training process of the flow models, we aim to learn feature-specific
encoders Enci(x

(i)
1) ∀i to output z(i) during data pre-processing. Finally, we want to learn µ and

σ2 of p(x(i)0 |z(i)) from z(i). Based on these requirements, we propose two different encoders, a
Gaussian mixture model (GMM; Bishop, 2006) and a distributional regression tree (DT; Schlosser
et al., 2019). For details on the encoders, we refer to Appendix F.

Each model efficiently learns to approximate p(x
(i)
1) with Ki Gaussian components

pk(x
(i)
1) = N (µk, σ

2
k) ∀k ∈ {1, . . . ,Ki}. For the GMM, we set z(i) = argmaxk logwkpk(x

(i)
1)

with mixture weights wk; for the DT, z(i) = Tree(x(i)1) is the index of the terminal leaf node x(i)1

is allocated to. Our encoder choices allow us to directly use µk and σ2
k to parameterize p(x(i)0 |z(i)) in

Equation (4) without any additional learning. If σ2
k ≈ 0, we treat µk as a inflated value and account

for it explicitly. Missing values are moved before fitting the encoder but afterwards added as a
separate category cmiss to z(i). Intuitively, we select p(x(i)0 |z(i)) to be the distribution that the encoder
suggests has most likely generated the data point x(i)1 . This moves the source distribution p(x0|z)
closer to the target distribution p(x1), which benefits both training and sampling by reducing the
transport cost. We provide a proof below. Compared to, e.g., minibatch Optimal Transport couplings
(Tong et al., 2024), our method comes at no additional costs, aside from obtaining z.

Theorem 1 (Data-dependent coupling lowers transport costs). If using a DT encoder to derive z, our
data-dependent coupling (see Equation (4)) lowers the transport costs compared to an independent
coupling.

Proof. See Appendix A.1.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.4 LOW RESOLUTION MODEL

The main requirements for the low-resolution model to learn pxlow are that the model generates
categorical data efficiently and accurately (and accommodates arbitrary cardinalities). A strength of
our framework is that any generative model for categorical can be used. For comparative purposes
we choose the CDTD model (Mueller et al., 2025), which has been shown to be both efficient and
effective at modeling high cardinality features.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate TabCascade across a diverse set of generative models and on multiple popular benchmark
datasets. Additionally, we examine the effect of different encoder complexities in an ablation study.
The implementation details for TabCascade are detailed in Appendix D.

Baselines. We benchmark TabCascade against several state-of-the-art generative models for tabular
data. These include CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019), the tree-based ARF Watson
et al. (2023) as well as the diffusion-based architectures TabDDPM (Kotelnikov et al., 2023), TabSyn
(Zhang et al., 2024b), TabDiff (Shi et al., 2025) and CDTD (Mueller et al., 2025). For a fair
comparison, we align all models as consistently as possible. Since none of the models natively
support missing data generation, we augment each with a simple encoding-based mechanism for
missing value simulation, as described in Section C. For training, we use three different seeds, which
also affect the missingness simulation. For generation, we use ten sampling seeds per model. Results
are aggregated over both training and sampling seeds. Details on the implementations are provided in
Appendix C.

Evaluation metrics. We evaluate all models on a broad set of standard metrics for synthetic tabular
data (for details, see Appendix E). In the main text, we present results for the Shape, Trend and
detection scores to illustrate the quality of the univariate, bivariate and joint densities, respectively. In
addition, we evaluate the performance of the synthetic relative to the real training data on downstream
tasks, also known as machine learning efficiency (MLE). Further results on privacy, fidelity and
coverage are provided in Appendix J. We provide modular code on all evaluation metrics to make
future research on tabular data generation easier and more comparable.

Datasets. We benchmark on a diverse set of six popular tabular datasets: adult, beijing,
default, diabetes, news and shoppers (see also Kotelnikov et al., 2023; Zhang et al., 2024b;
Mueller et al., 2025; Shi et al., 2025). The selected datasets include inflated values. The missing
values are added (10%) via a simulated MNAR mechanism (Muzellec et al., 2020; Zhao et al., 2023;
Zhang et al., 2024a). We utilize the associated regression or classification tasks to evaluate machine
learning efficiency for each dataset. For details on the datasets and the simulation, see Appendix B.

5.2 RESULTS

We provide training and sampling times in Appendix K and the learned time schedules per dataset in
Appendix H. TabCascade remains competitive in terms of training and sampling times despite the
cascaded pipeline. TabDDPM produces NaNs for the diabetes and news datasets.

Detection score. We first compare TabCascade to the baseline in terms of the detection score, since
it evaluates the entire joint density of the synthetic data. Table 1 shows that TabCascade with a DT
encoder leads to substantially more realistic samples. Since the low-resolution model relies on CDTD,
the vast difference in the detection score between CDTD and TabCascade shows the value of our
cascaded pipeline, which generates details based on low-resolution information.

Shape and Trend. A similar conclusion can be drawn from the Shape score in Table 2, which
evaluates the univariate densities. TabCascade either improves upon the previous models or performs
competitively. The same holds for Trend scores in Table 3 that evaluate the bivariate densities. Here,
some performance disadvantage of TabCascade would be expected, since xnum and xcat are, unlike

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of detection scores. Bold indicates the best and underline the second best
result. We report the average across 3 training runs and 10 different generated samples each.

adult beijing default diabetes news shoppers

ARF 0.350±0.011 0.061±0.002 0.052±0.004 0.288±0.009 0.000±0.000 0.118±0.004

TVAE 0.120±0.015 0.014±0.011 0.038±0.006 0.005±0.004 0.000±0.000 0.179±0.007

CTGAN 0.077±0.026 0.024±0.003 0.022±0.006 0.090±0.041 0.000±0.000 0.042±0.007

TabDDPM 0.725±0.013 0.103±0.064 0.225±0.004 - - 0.162±0.005

TabSyn 0.424±0.022 0.070±0.009 0.027±0.004 0.090±0.004 0.000±0.000 0.047±0.023

TabDiff 0.747±0.014 0.099±0.008 0.227±0.023 0.430±0.005 0.000±0.000 0.200±0.010

CDTD 0.622±0.009 0.080±0.002 0.190±0.008 0.310±0.052 0.000±0.000 0.181±0.005

TabCascade (GMM) 0.542±0.076 0.088±0.002 0.217±0.074 0.323±0.064 0.000±0.000 0.225±0.102

TabCascade (DT) 0.898±0.014 0.112±0.003 0.584±0.011 0.654±0.031 0.001±0.000 0.392±0.019

Table 2: Comparison of Shape scores. Bold indicates the best and underline the second best result.
We report the average across 3 training runs and 10 different generated samples each.

adult beijing default diabetes news shoppers

ARF 0.985±0.000 0.946±0.001 0.948±0.001 0.978±0.000 0.905±0.001 0.948±0.001

TVAE 0.893±0.008 0.891±0.030 0.905±0.007 0.869±0.012 0.856±0.018 0.934±0.010

CTGAN 0.902±0.012 0.909±0.002 0.908±0.012 0.925±0.012 0.916±0.001 0.908±0.003

TabDDPM 0.983±0.001 0.968±0.003 0.968±0.001 - - 0.944±0.003

TabSyn 0.972±0.003 0.958±0.003 0.938±0.005 0.917±0.005 0.863±0.011 0.910±0.012

TabDiff 0.991±0.001 0.971±0.002 0.975±0.003 0.969±0.001 0.927±0.001 0.975±0.001

CDTD 0.984±0.000 0.962±0.001 0.963±0.002 0.968±0.004 0.926±0.002 0.969±0.002

TabCascade (GMM) 0.976±0.007 0.960±0.007 0.955±0.014 0.976±0.003 0.934±0.006 0.965±0.008

TabCascade (DT) 0.989±0.001 0.977±0.001 0.985±0.001 0.986±0.002 0.948±0.001 0.980±0.001

the other models, not generated jointly. Although this makes it more difficult to capture dependencies
across features types, the highly competitive results indicate that our proposed znum encoding can
alleviate this problem. We provide a qualitative comparisons of bivariate densities in Appendix I
which further illustrate that TabCascade enables a more accurate fit of the details of distributions.

DT vs. GMM encoder. The DT encoder consistently outperforms the GMM encoder. This is
because the DT encoder induces a finer granularity into znum, i.e., it estimates more Gaussian
components. Also, the reduced overlap in the Gaussian components estimated by the DT encoder
may benefit the generative model by providing a more effective clustering of samples.

Additional metrics. We provide results on additional metrics in Appendix J. TabCascade performs
best or competitively in terms of MLE, α-Precision and β-Recall. Naturally, the stronger the
performance of the model on sample quality metrics, the lower the privacy, as the distance between
true and synthetic samples is decreased, which is confirmed by a higher DCR share.

Table 3: Comparison of Trend scores. Bold indicates the best and underline the second best result.
We report the average across 3 training runs and 10 different generated samples each.

adult beijing default diabetes news shoppers

ARF 0.969±0.001 0.977±0.001 0.952±0.003 0.962±0.000 0.951±0.004 0.956±0.001

TVAE 0.782±0.012 0.925±0.016 0.835±0.008 0.761±0.024 0.881±0.016 0.934±0.006

CTGAN 0.765±0.017 0.943±0.005 0.816±0.006 0.818±0.016 0.885±0.009 0.855±0.010

TabDDPM 0.971±0.002 0.991±0.001 0.953±0.009 - - 0.931±0.005

TabSyn 0.943±0.006 0.984±0.003 0.903±0.010 0.848±0.019 0.905±0.004 0.879±0.018

TabDiff 0.982±0.001 0.991±0.001 0.968±0.008 0.940±0.002 0.958±0.003 0.972±0.001

CDTD 0.971±0.002 0.988±0.001 0.936±0.019 0.916±0.008 0.958±0.005 0.971±0.002

TabCascade (GMM) 0.952±0.020 0.986±0.002 0.934±0.015 0.951±0.008 0.955±0.006 0.963±0.010

TabCascade (DT) 0.974±0.006 0.992±0.001 0.964±0.006 0.936±0.003 0.971±0.003 0.975±0.002

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ABLATION STUDY

Table 4: The effect of max depth for the DT encoder on various evaluation metrics averaged over
datasets. The standard deviation captures variance across the datasets. Grey indicates the choice of
max depth used for the main results.

Shape Trend Detection Score MLE α-Precision β-Recall

3 0.974±0.016 0.964±0.029 0.391±0.308 0.019±0.014 0.974±0.024 0.583±0.068

4 0.977±0.014 0.962±0.029 0.391±0.301 0.018±0.015 0.985±0.011 0.579±0.069

5 0.977±0.013 0.962±0.026 0.391±0.295 0.027±0.020 0.986±0.012 0.575±0.072

6 0.977±0.013 0.962±0.025 0.418±0.322 0.026±0.019 0.985±0.010 0.566±0.074

7 0.978±0.014 0.967±0.019 0.416±0.325 0.027±0.023 0.981±0.014 0.568±0.073

8 0.978±0.015 0.969±0.018 0.446±0.350 0.017±0.013 0.972±0.035 0.563±0.077

9 0.977±0.015 0.968±0.018 0.436±0.337 0.016±0.014 0.966±0.042 0.559±0.079

We thoroughly investigate the effect of the complexity of the encoder. Specifically, we vary the
maximum depth of the DT encoder from 3 to 9. Table 4 gives the average results over all datasets with
10 different synthetic samples each. For each setting, we adjusted the model parameters to ≈1 million
parameters for the high-resolution model and ≈2 million parameters for the low-resolution model
on the adult dataset. We emphasize that the effect of max depth may be different for different
architectures but an exhaustive evaluation of all combinations is prohibitively expensive. Ablation
results on additional metrics are given in Appendix J.

Increasing max depth increases the number of Gaussian components. This appears to make samples
substantially more realistic in the eyes of the gradient-boosting-based detection model whereas it has
a less pronounced effect on the other metrics. For features that are integer-valued with few unique
values, increasing max depth can lead to cases where each unique value is treated as a separate
component. In these cases, the feature would be entirely generated by the low-resolution model. This
data-driven way of treating an integer-valued feature as categorical is a feature of TabCascade and
benefits sample quality.

6 CONCLUSION

In this paper, we introduced TabCascade, a cascaded flow matching model that generates high-
resolution, numerical features based on their low-resolution encoding and categorical features.
The model builds on a novel conditional probability path guided by low-resolution information
and combines it with feature-specific, learnable time schedules that enable non-linear paths. This
framework allows the direct accommodation of mixed-type features and provably lowers the transport
costs. The extensive experiments we conducted demonstrate TabCascade’s enhanced ability to
generate realistic samples and learn the details of the distribution. We leave questions about how to
generalize the cascaded framework to other data modalities and how to adopt it for data imputation
for future work. Lastly, combining diffusion-based and autoregressive modeling in our cascaded
pipeline could be a future direction of further improving sample quality.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ahmed M. Alaa, Boris van Breugel, Evgeny Saveliev, and Mihaela van der Schaar. How Faithful is
your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models. In Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 290–306. PMLR, 2022.

Michael S. Albergo and Eric Vanden-Eijnden. Building Normalizing Flows with Stochastic Inter-
polants. In International Conference on Learning Representations, 2023. doi: 10.48550/arXiv.
2209.15571.

Michael S. Albergo, Mark Goldstein, Nicholas M. Boffi, Rajesh Ranganath, and Eric Vanden-Eijnden.
Stochastic interpolants with data-dependent couplings. In International Conference on Machine
Learning, volume 41. PMLR, September 2024. doi: 10.48550/arXiv.2310.03725.

Samuel A. Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E. Tillman, Prashant Reddy, and
Manuela Veloso. Generating synthetic data in finance: Opportunities, challenges and pitfalls.
In Proceedings of the First ACM International Conference on AI in Finance. Association for
Computing Machinery, 2021.

Grigory Bartosh, Dmitry Vetrov, and Christian A. Naesseth. Neural Flow Diffusion Models: Learnable
Forward Process for Improved Diffusion Modelling. In Advances in Neural Information Processing
Systems, volume 37, pp. 73952–73985. Curran Associates, Inc., 2024. doi: 10.48550/arXiv.2404.
12940.

Barry Becker and Ronny Kohavi. Adult, 1996.

Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000. doi: 10.1007/
s002110050002.

Sebastian Bischoff, Alana Darcher, Michael Deistler, Richard Gao, Franziska Gerken, Manuel
Gloeckler, Lisa Haxel, Jaivardhan Kapoor, Janne K. Lappalainen, Jakob H. Macke, Guy Moss,
Matthijs Pals, Felix Pei, Rachel Rapp, A. Erdem Sağtekin, Cornelius Schröder, Auguste Schulz,
Zinovia Stefanidi, Shoji Toyota, Linda Ulmer, and Julius Vetter. A Practical Guide to Sample-
based Statistical Distances for Evaluating Generative Models in Science. Transactions on Machine
Learning Research, 2024.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, Berlin,
Heidelberg, 2006. ISBN 0-387-31073-8.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep Neural Networks and Tabular Data: A Survey. IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–21, 2022. ISSN 2162-237X, 2162-2388. doi: 10.1109/
TNNLS.2022.3229161.

Song Chen. Beijing PM2.5, 2015.

John Clore, Krzysztof Cios, Jon DeShazo, and Beata Strack. Diabetes 130-US Hospitals for Years
1999-2008, 2014.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data. arXiv
preprint arXiv:2211.15089, 2022.

Kelwin Fernandes, Pedro Vinagre, Paulo Cortez, and Pedro Sernadela. Online News Popularity,
2015.

Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data
generation for tabular health records: A systematic review. Neurocomputing, 493:28–45, 2022.
ISSN 09252312. doi: 10.1016/j.neucom.2022.04.053.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded Diffusion Models for High Fidelity Image Generation. Journal of Machine Learning
Research, 23(47):1–33, 2022.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax Flows
and Multinomial Diffusion: Learning Categorical Distributions. In Advances in Neural Information
Processing Systems, volume 34, pp. 12454–12465, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-
Based Generative Models. In Advances in Neural Information Processing Systems, volume 35, pp.
26565–26577, 2022.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Jayoung Kim, Chaejeong Lee, and Noseong Park. STaSy: Score-based Tabular data Synthesis. In
International Conference on Learning Representations, 2023.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. TabDDPM: Modelling
Tabular Data with Diffusion Models. In International Conference on Machine Learning, pp.
17564–17579, 2023.

Theodoros Kouzelis, Efstathios Karypidis, Ioannis Kakogeorgiou, Spyros Gidaris, and Nikos Ko-
modakis. Boosting Generative Image Modeling via Joint Image-Feature Synthesis, April 2025.

Chaejeong Lee, Jayoung Kim, and Noseong Park. CoDi: Co-evolving Contrastive Diffusion Models
for Mixed-type Tabular Synthesis. In International Conference on Machine Learning, pp. 18940–
18956, 2023.

Zhong Li, Qi Huang, Lincen Yang, Jiayang Shi, Zhao Yang, Niki van Stein, Thomas Bäck, and
Matthijs van Leeuwen. Diffusion Models for Tabular Data: Challenges, Current Progress, and
Future Directions, February 2025.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching
for Generative Modeling. In International Conference on Learning Representations, 2023. doi:
10.48550/arXiv.2210.02747.

Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data, Third Edition.
John Wiley & Sons, Ltd, 2019. ISBN 978-0-470-52679-8.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow Straight and Fast: Learning to Generate and
Transfer Data with Rectified Flow. In International Conference on Learning Representations,
2023. doi: 10.48550/arXiv.2209.03003.

Chao Ma, Sebastian Tschiatschek, José Miguel Hernández-Lobato, Richard Turner, and Cheng Zhang.
VAEM: A Deep Generative Model for Heterogeneous Mixed Type Data. In Advances in Neural
Information Processing Systems, volume 33, pp. 11237–11247, 2020.

Markus Mueller, Kathrin Gruber, and Dennis Fok. Continuous Diffusion for Mixed-Type Tabular
Data. In International Conference on Learning Representations, 2025.

Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing Data Imputation using Optimal
Transport. In International Conference on Machine Learning, volume 119, pp. 7130–7140. PMLR,
2020. doi: 10.48550/arXiv.2002.03860.

Kushagra Pandey, Avideep Mukherjee, Piyush Rai, and Abhishek Kumar. DiffuseVAE: Efficient,
Controllable and High-Fidelity Generation from Low-Dimensional Latents. Transactions on
Machine Learning Research, 2022. doi: 10.48550/arXiv.2201.00308.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The Synthetic Data Vault. In IEEE In-
ternational Conference on Data Science and Advanced Analytics, pp. 399–410, 2016. doi:
10.1109/DSAA.2016.49.

Zhaozhi Qian, Bogdan-Constantin Cebere, and Mihaela van der Schaar. Synthcity: Facilitating inno-
vative use cases of synthetic data in different data modalities. In Advances in Neural Information
Processing Systems, volume 36, pp. 3173–3188, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic Text-to-Image
Diffusion Models with Deep Language Understanding. In Advances in Neural Information
Processing Systems, volume 35, pp. 36479–36494. Curran Associates, Inc., 2022. doi: 10.48550/
arXiv.2205.11487.

Subham Sekhar Sahoo, Aaron Gokaslan, Chris De Sa, and Volodymyr Kuleshov. Diffusion Models
With Learned Adaptive Noise. arXiv preprint arXiv:2312.13236, December 2023.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T.
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and Effective Masked Diffusion Lan-
guage Models. In Advances in Neural Information Processing Systems, volume 37, pp. 130136–
130184. Curran Associates, Inc., 2024. doi: 10.48550/arXiv.2406.07524.

Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
Generative Models via Precision and Recall. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., October 2018.

C. Okan Sakar, S. Olcay Polat, Mete Katircioglu, and Yomi Kastro. Real-time prediction of online
shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks.
Neural Computing and Applications, 31(10):6893–6908, 2019. ISSN 0941-0643, 1433-3058. doi:
10.1007/s00521-018-3523-0.

Lisa Schlosser, Torsten Hothorn, Reto Stauffer, and Achim Zeileis. Distributional Regression Forests
for Probabilistic Precipitation Forecasting in Complex Terrain. The Annals of Applied Statistics,
13(3):1564–1589, 2019. doi: 10.1214/19-AOAS1247.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. TabDiff:
A Mixed-type Diffusion Model for Tabular Data Generation. In International Conference on
Learning Representations, 2025. doi: 10.48550/arXiv.2410.20626.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. In International Conference on Machine
Learning, pp. 2256–2265, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Learning Representations, 2021.

Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
Han Cai, Yao Lu, and Song Han. HART: Efficient Visual Generation with Hybrid Autoregressive
Transformer, 2024.

Paul Tiwald, Ivona Krchova, Andrey Sidorenko, Mariana Vargas Vieyra, Mario Scriminaci, and
Michael Platzer. TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generat-
ing High-Fidelity Synthetic Data, February 2025.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research, 2024.

David S. Watson, Kristin Blesch, Jan Kapar, and Marvin N. Wright. Adversarial random forests for
density estimation and generative modeling. In International Conference on Artificial Intelligence
and Statistics, pp. 5357–5375, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling Tabular
Data using Conditional GAN. In Advances in Neural Information Processing Systems, volume 32,
pp. 7335–7345, 2019.

I-Cheng Yeh. Default of Credit Card Clients, 2009.

Hengrui Zhang, Liancheng Fang, and Philip S. Yu. Unleashing the Potential of Diffusion Models for
Incomplete Data Imputation, May 2024a.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-Type Tabular Data Synthesis with
Score-based Diffusion in Latent Space. In International Conference on Learning Representations,
2024b.

He Zhao, Ke Sun, Amir Dezfouli, and Edwin Bonilla. Transformed Distribution Matching for
Missing Value Imputation. In International Conference on Machine Learning, volume 202, pp.
42159–42186. PMLR, 2023. doi: 10.48550/arXiv.2302.10363.

Zilong Zhao, Aditya Kunar, Hiek Van der Scheer, Robert Birke, and Lydia Y. Chen. CTAB-GAN:
Effective Table Data Synthesizing. In Asian Conference on Machine Learning, pp. 97–112, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DERIVATION OF THE GUIDED CONDITIONAL VECTOR FIELD FOR THE HIGH-RESOLUTION
MODEL

Theorem 3 in Lipman et al. (2023) proves that if the Gaussian conditional probability path is of the
form pt(xt|x1) = N (µt(x1), σ

2
t (x1)I) then the unique vector field that generates the flow Ψt has

the form:

ut(xt|x1) =
σ̇t(x1)

σt(x1)
(xt − µt(x1)) + µ̇t(x1). (8)

We introduced a guided conditional probability path with the relation

xt = γt(xlow)x1 + (1− γt(xlow))[µ(z) + σ(z)ϵ]. (9)

Therefore, we have
σt(xlow) = (1− γt(xlow))σ(xlow), (10)

as ϵ ∼ N (0, I), and time-derivative

σ̇t(xlow) = −γ̇t(xlow)σ(z). (11)

For µt, we obtain
µt(x1,xlow) = γt(xlow)x1 + (1− γt(xlow))µ(z), (12)

as the interpolation between the true data sample and the mean of the source distribution, and for the
time-derivative

µ̇t(x1,xlow) = γ̇t(xlow)[x1 − µ(z)]. (13)

Plugging into Theorem 3 and (for brevity) omitting the dependence of γt, µ and σ on xlow:

ut(ϵ|x1,xlow) =
−γ̇tσ

[1− γt]σ
(xt − [γtx1 + (1− γt)µ]) + γ̇t[x1 − µ]

=
−γ̇t
1− γt

(xt − γtx1 − (1− γt)µ) + γ̇t[x1 − µ].

Further, we know the guided conditional probability path defined in Equation (9), plug in for xt and
reparameterize the vector field in terms of ϵ to get

ut(ϵ|x1,xlow) =
−γ̇t
1− γt

(
[γtx1 + (1− γt)[µ+ σϵ]]− γtx1 − (1− γt)µ

)
+ γ̇t[x1 − µ]

=
−γ̇t
1− γt

(
(1− γt)σϵ

)
+ γ̇t[x1 − µ]

= −γ̇tσϵ+ γ̇t[x1 − µ]

= γ̇t[x1 − (µ+ σϵ)],

which is the scaled difference between ground-truth sample x1 and source sample x0 from out
data-dependent source distribution.

The training target is therefore the guided conditional vector field:

ut(ϵ|x1,xlow) = γ̇t(xlow)[x1 − (µ(z) + σ(z)ϵ)]. (14)

A.1.1 PROOF: DT ENCODER LOWERS TRANSPORT COST BOUND

Proposition 3.1 by Albergo et al. (2024) shows that for a probability flow defined as

Ψt(x0) = αtx1 + βtx0 ∈ RKnum ,

such that Ψ0(x0) = x0 ∼ p0 and Ψ1(x0) = x1 ∼ p1, the transport costs are upper bound by

Ex0∼p0
[
||Ψ1(x0)− x0||2

]
≤

∫ 1

0

E[||Ψ̇t||2]dt <∞. (15)

Minimizing the left-hand side implies finding the optimal transport plan as defined by Benamou &
Brenier (2000), corresponding to the minimum Wasserstein-2 distance between p0 and p1. However,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

to show that a specific coupling p∗(x0,x1) induces less transport costs, it suffices to show that
E[||Ψ̇t||2] is smaller under the new coupling than the original independent coupling p(x0,x1).

Below, we show that our proposed data-dependent coupling leads to provable lower transport costs
when using a distributional tree as the encoder.

Our high resolution model defines Ψt(x0) = γtx1 + (1− γt)x0 such that Ψ̇t = γ̇t(x1 − x0).

We need to show that∫
R2d

||Ψ̇t||2p(x0,x1)dx0dx1 ≤
∫
R2d

||Ψ̇t||2p(x0)p(x1)dx0dx1,

where p(x0,x1) is our data-dependent coupling from Equation (4) where z is derived a the DT
encoder.

First, for the independent coupling, i.e., p(x0,x1) = p(x0)p(x1), the expectation is taken over
x0 ∼ p(x0) = N (0, I) and x1 ∼ p1 such that

E[||Ψ̇t||2] = E[||γ̇t(x1 − x0)||2]
= γ̇2

t

[
E[||x1||2 + ||x0||2 − 2xT

1x0]
]

= γ̇2
t

[
E[||x1||2] +Knum

]
,

where we used that Var[X] = E[X2] − E[X]2 and Cov[X,Y] = E[XY] − E[X]E[Y]. We can
deconstruct the expression into a sum over the Knum features x(i)1 :

E[||Ψ̇t||2] = γ̇2
t

Knum∑
i

[
E[(x(i)1)2]

]
+ γ̇2

t

Knum∑
i

[
E[1]

]
. (16)

For our data-dependent coupling, we have p(x0,x1) =
∑

z∈Z p(x0|z)p(z|x1)p(x1) from Equa-
tion (4) such that (from Equation (3)):

x0 = µ(z) + σ(z)ϵ with ϵ ∼ N (0, I).

Since z = f(x1) is a deterministic function of x1, we only take the expectation over x1 and ϵ to
derive

E[||Ψ̇t||2] = E[||γ̇t(x1 − x0)||2]
= γ̇2

t E[||(x1 − µ(f(x1))− σ(f(x1))ϵ)||2]

We can deconstruct this expression as a sum over Knum features x(i)1 as

E[||Ψ̇t||2] = γ̇2
t E

[Knum∑
i

(
x
(i)
1 − µ(f(x

(i)
1))− σ(f(x

(i)
1))ε(i)

)2
]

= γ̇2
t E

Knum∑
i

[(
x
(i)
1 − µ(f(x

(i)
1)

)2

+
(
σ(f(x

(i)
1))ε(i)

)2

− 2
(
x
(i)
1 − µ(f(x

(i)
1)

)
σ(f(x

(i)
1))ε(i)

]

= γ̇2
t

Knum∑
i

[
E
(
x
(i)
1 − µ(f(x

(i)
1)

)2

+ E
(
σ(f(x

(i)
1))2(ε(i))2

)]
,

since x(i)1 ⊥ ϵ(i) which implies

E
(
x
(i)
1 − µ(f(x

(i)
1)

)
σ(f(x

(i)
1))ε(i) = E

[
x
(i)
1 σ(f(x

(i)
1))ε(i)

]
− E

[
µ(f(x

(i)
1)σ(f(x

(i)
1))ε(i)

]
= E

[
x
(i)
1 σ(f(x

(i)
1))

]
E
[
ε(i)

]
− E

[
µ(f(x

(i)
1)σ(f(x

(i)
1))

]
E
[
ε(i)

]
= 0,

as E[ε(i)] = 0. Using Var[ε(i)] = E[(ε(i))2]− E[ε(i)]2 = 1, we can further derive

E[||Ψ̇t||2] = γ̇2
t

Knum∑
i

[
E
[(
x
(i)
1 − µ(f(x

(i)
1)

)2]]
+ γ̇2

t

Knum∑
i

[
E
[
σ(f(x

(i)
1))2

]]
. (17)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

If we now compare Equation (16) and Equation (17), we recognize that to that E[||Ψ̇t||2] is smaller
under our data-dependent coupling, it suffices to show that feature-wise that

E
[(
x
(i)
1 − µ(f(x

(i)
1)

)2] ≤ E[(x(i)1)2] = 1, (18)

since we standardize x(i)1 to zero mean, unit variance and

E
[
σ(f(x

(i)
1))2

]
≤ E[1] = 1. (19)

Note that if we are using the DT encoder, f(x(i)1) simply indicates in which of the Ki terminal leafs
the observation falls. The kth terminal leaf reflects an interval [τ (i)k−1, τ

(i)
k] on the real line. Based on

all observations falling into the kth interval, DT learns a Gaussian distribution with parameters µk
and σk. This allows us to rewrite Equation (18) as

E
[(
x
(i)
1 − µ(f(x

(i)
1)

)2]
=

Ki∑
k=1

Pr(τ
(i)
k−1 < x

(i)
1 ≤ τ

(i)
k)E

x
(i)
1 |x(i)

1 ∈[τ
(i)
k−1,τ

(i)
k]

[(
x
(i)
1 − µk

)2]︸ ︷︷ ︸
MSE in kth interval

.

For each interval, the DT encoder learns the optimal µk by maximizing the likelihood, i.e., minimizing
the mean squared error within the kth interval, which is equivalent to the expectation on the right-hand
side. The we assign the optimal µk, the MSE is necessarily lower than choosing µk = 0 in the case
of an independent coupling. This proves that Equation (18) holds.

For proofing the second condition in Equation (19), we only need to show σ(f(x
(i)
1)2 ≤ 1 for all x(i)1 .

That is, the variance of the terminal leaf in which x(i)1 falls should be at most one for all possible x(i)1 .
This directly follows from the fact that we separate observations into smaller groups based on the
intervals determined by the DT encoder. Note that [τ (i)k−1, τ

(i)
k] ≤ supp(x

(i)
1) for all k, which implies

σ2
k ≤ 1 for all k.

Since both sufficient conditions in Equation (18) and Equation (19) are proven to hold, we conclude
that

γ̇2
t E[||(x1 − µ(f(x1))− σ(f(x1))ϵ)||2] ≤ γ̇2

t

[
E[||x1||2] +Knum

]
, (20)

i.e., our data-dependent coupling based on the DT encoder is able to achieve lower transport costs
compared to independent coupling.

B BENCHMARK DATASETS

Our selected benchmark datasets are highly diverse, particularly in cardinality of categorical
features (see Table 5), and have been used extensively in previous research (Kotelnikov et al., 2023;
Mueller et al., 2025; Shi et al., 2025; Tiwald et al., 2025; Zhang et al., 2024b). All datasets are
publicly accessible and licensed under creative commons. We randomly split each dataset into
70/10/20 training, validation and test sets. Numerical features in xnum are quantile transformed and
standardized, following the usual practice for tabular data generation.

Table 5: Overview of the selected experimental datasets. We count the target towards the respective
features. The minimum and maximum number of categories are taken over all categorical features.

Dataset License Prediction task Total no. No. of features No. of categories
observations categorical continuous min max

adult (Becker & Kohavi, 1996) CC BY 4.0 binary class. 48 842 9 6 2 42
beijing (Chen, 2015) CC BY 4.0 regression 41 757 1 10 4 4
default (Yeh, 2009) CC BY 4.0 binary class. 30 000 10 14 2 11
diabetes (Clore et al., 2014) CC BY 4.0 binary class. 101 766 29 8 2 523
news (Fernandes et al., 2015) CC BY 4.0 regression 39 644 14 46 2 2
shoppers (Sakar et al., 2019) CC BY 4.0 binary class. 12 330 8 10 2 20

Missing value simulation. First, we remove any rows with missing values in the target, to ensure
that a valid estimation of the Machine Learning Efficiency metric, or in any of the numerical features.
This gives us full control over the missingness proportion and mechanism. To simulate missingness,

16

https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/dataset/332/online+news+popularity
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

we adopt the approach from prior imputation studies (see e.g., Muzellec et al., 2020; Zhao et al.,
2023; Zhang et al., 2024a). Note that missing values in categorical features are trivial to deal with by
simply encoding them as a separate category. In the following, we therefore focus exclusively on
generating missing values in numerical features.

We choose to simulate missing values under a missing not at random (MNAR) mechanism, as it
combines a missing at random (MAR), p(m|xnum,x

(latent)
num) = p(m|xnum), with a missing completely

at random (MCAR), p(m|xnum,x
(latent)
num) = p(m), mechanism (see Little & Rubin, 2019). Following

prior work (Muzellec et al., 2020; Zhao et al., 2023; Zhang et al., 2024a), we simulate missing
values using a two-step procedure. First, under a MAR mechanism, we randomly select 30% of the
numerical and categorical features as inputs to a randomly initialized logistic model, to determine the
missingness probabilities for the remaining numerical features. The model’s coefficients are scaled to
preserve variance, and the bias term is adjusted via line search to achieve a 10% missing rate. Second,
we apply an MCAR mechanism by setting 10% of the logistic model’s input features (including
selected categorical ones) to missing. Thus, the missingness introduced by the MAR mechanism may
be explained by values which now have been masked by the MCAR mechanism, making them latent
to them model. Throughout, we ensure that we do not introduce any missings to the target, to ensure
that we can determine the Machine Learning Efficiency metric. Introducing non-trivial missings
increases the complexity of the joint distribution, both in terms of dimensions and dependencies, and
makes the job for the generative models more difficult.

C IMPLEMENTATIONS

We benchmark TabCascade against recent state-of-the-art generative models, many of which are
diffusion-based. To ensure that the benchmarks are fair, we align the models as much as possible. For
diffusion-based models, we use the same MLP-based architecture with the same bottleneck dimension.
The MLP contains a projection layer onto the bottleneck dimension (256-dimensional), five fully
connected layers, and an output layer. The only differences stem from variations in the required inputs
or outputs, which make certain minor model-specific changes to the MLP necessary, e.g., CDTD
requires predicted logits for categorical features. For all models, we use the same time encoder based
on positional embeddings with a subsequent 2-layer MLP. For non-diffusion-based models, we try to
align the layer dimensions. In any case, similar to Mueller et al. (2025) we scale each model to a
total of ≈ 3 million parameters on the adult dataset (when simulating missing values according to
the MNAR mechanism) and train it for 30 000 steps with a batch size of 4096. For diffusion-based
models, we limit the maximum training time to 30 minutes to increase model comparability. We
use the same data pre-processing pipeline for all models and add model-specific pre-processing
steps where necessary. For diffusion-based models, we mostly align the sampling steps to 200. One
exception is TabDDPM, which builds on DDPM and therefore requires more sampling steps (default
= 1000). A second exception is TabDiff, for which we adopt the authors’ suggestion of 50 sampling
steps. Otherwise, TabDiff sampling will take an order of magnitude more time than other models, in
particular for larger datasets. When available, we follow the default hyperparameters provided by
the authors or the package / code documentation. We run all experiments using PyTorch 2.7.1 and
TensorFloat32 using a MIG instance on an A100 GPU. All code and configuration files are made
available to ensure reproducibility.

Below, we briefly elaborate on each baseline model and its implementation:

ARF (Watson et al., 2023) – a generative model that is based on a random forest for density estimation.
The implementation is available at https://github.com/bips-hb/arfpy and licensed under
the MIT license. We use package version 0.1.1. For training, we utilize 16 CPU cores and 20 trees as
suggested in the paper.

CTGAN (Xu et al., 2019) – one of the most popular GAN-based models for tabular data. The
implementation is available as part of the Synthetic Data Vault (Patki et al., 2016) at https:
//github.com/sdv-dev/CTGAN and licensed under the Business Source License 1.1. We use
package version 0.11.0. The architecture dimensions are adjusted to be comparable to MLP used for
the diffusion-based models. The model requires that the batch size is divisible by 10. Therefore, we
adjust the default batch size of 4096 downwards accordingly.

17

https://github.com/bips-hb/arfpy
https://github.com/sdv-dev/CTGAN
https://github.com/sdv-dev/CTGAN

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

TVAE (Xu et al., 2019) – a VAE-based model for tabular data. The implementation is available as
part of the Synthetic Data Vault (Patki et al., 2016) at https://github.com/sdv-dev/CTGAN
and licensed under the Business Source License 1.1. We use package version 0.11.0. The architecture
dimensions are adjusted to be comparable to MLP used for the diffusion-based models.
TabDDPM (Kotelnikov et al., 2023) – a diffusion-based generative model for tabular data that
combines multinomial diffusion (Hoogeboom et al., 2021) and DDPM (Sohl-Dickstein et al., 2015;
Ho et al., 2020). We base our code on the official implementation available at https://github.
com/yandex-research/tab-ddpm under the MIT license. However, we adjust the model to allow
for unconditional generation in case of classification tasks.
TabSyn (Zhang et al., 2024b) – a latent diffusion model that first learns a transformer-based VAE
to map mixed-type data to a continuous latent space. The diffusion model is then trained on that
latent space. Note that despite TabSyn utilizing a separately trained encoder, this does not result in a
lower-dimensional latent space and therefore, does not speed up sampling. We use the official code
available at https://github.com/amazon-science/tabsyn under the Apache 2.0 license. We
leave the transformer-based VAE unchanged and scale only the MLP.
TabDiff (Shi et al., 2025) – a continuous time diffusion model that combines score matching (Song
et al., 2021; Karras et al., 2022) with masked diffusion (Sahoo et al., 2024) and learnable, feature-
specific noise schedules. Originally, it relies on transformer-based encoder and decoder parts, which
we remove from the model to improve comparability. However, we keep the other parts, including the
tokenizer. We scale the bottleneck dimension down to 256 and adjust the hidden layers accordingly,
to align the architecture more with the other diffusion-based models. Otherwise, we use the official
implementation available at https://github.com/MinkaiXu/TabDiff under the MIT license.
CDTD (Mueller et al., 2025) – a continuous time diffusion that combines score matching (Song
et al., 2021; Karras et al., 2022) with score interpolation (Dieleman et al., 2022) and leanable noise
schedules. Based on the performance results in the original paper, we use the by type noise schedule,
that is, we learn an adaptive noise schedule per feature type. We use the official implementation
available at https://github.com/muellermarkus/cdtd_simple under the MIT license. To
align architectures and improve comparability, we adjust the MLP dimensions.

None of the selected benchmark models accommodates the generation of missing values in numerical
features out of the box. Therefore, to achieve a fair comparison, we endow each model with the
simple means to generate missing values. To avoid manipulating a model’s internals and therewith
potentially disrupting the training dynamics, we confine ourselves to changing the data encoding. For
each numerical feature that contains missing values, we introduce an additional binary missingness
mask. We simply treat this mask as an additional categorical feature to be generated and mean-impute
the missing values. After sampling, we overwrite the generated numerical values with NaN based on
the generated missingness mask.

D TABCASCADE IMPLEMENTATION

Since we make use of two separate models instead of a single model, we use the same MLP
architecture as for the baselines but scale various layers and components down to achieve ≈3 million
parameters on the adult dataset. We add the conditioning information about xlow as an additive
embedding to the bottleneck layer. Instead of parameterizing uθ

t (xt|xlow) directly with a neural
network fθ(xt,xlow, t), we use the known form of the vector field to parameterize

uθ
t (xt|xlow) = γ̇t(xlow)f

θ(xt,xlow, t). (21)

We train pθlow and pθhigh simultaneously using teacher forcing. That is, we train pθhigh using the real data
instances, instead of the ones generated by pθlow. This enables an end-to-end training of two separate
models with a reduced time penalty. The training and generation processes are described in detail in
Algorithm 1 and Algorithm 2 below.

For the DT encoder we set a max depth of 8 which on the adult dataset translates to an average
of 66 distinct groups for each feature that are captured by znum. For the GMM encoder, we set the
maximum number of components to 30 to keep the training time below 1 minute on the adult
dataset. Empirical evidence shows that this does not effectively limit the estimated number of
components, which typically lie below 30.

18

https://github.com/sdv-dev/CTGAN
https://github.com/yandex-research/tab-ddpm
https://github.com/yandex-research/tab-ddpm
https://github.com/amazon-science/tabsyn
https://github.com/MinkaiXu/TabDiff
https://github.com/muellermarkus/cdtd_simple

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Training

Pre-Training
Learn feature-wise encoder z(i)num = Enci(x

(i)
num)

Training
Sample xnum,xcat ∼ pdata

Retrieve z(i)num = Enci(x
(i)
num)∀i and construct xlow = (xcat, znum) = [x

(j)
low]

Klow
j=1

Construct mask for inflated and missing values in xnum

Low-Resolution Model
Train CDTD model (Mueller et al., 2025)

High-Resolution Model
Sample t ∼ U(0, 1) and ϵ ∼ N (0, I)
Compute x0 using Equation (3)
Compute xt = γt(xlow)x1 + (1− xlow)x0

Compute target using Equation (6)
Form predictions uθ

t (xt|xlow) = γ̇t(xlow)f
θ(xt,xlow, t)

Compute MSE between uθ
t (xt|xlow) and the target (mask losses for missing and inflated values)

Backpropagate.

Algorithm 2 Generation

Low-Resolution Model
Sample x

(j)
0 ∼ N (0, I)∀j

for t in tgrid with step size h do
Predict Pr(x(j)low = c|{x(j)

t }Kcat
j=1.t)∀c ∈ {0, 1, . . . , Cj} ∀j

Compute µ(j)
t =

∑Cj

c=1 Pr(x
(j)
low = c|{x(j)

t }Klow
j=1 .t) · x

(j)
1 (c) ∀j

Compute u(j)t (xt|x1) =
µ
(j)
t −x

(j)
t

σ2(t)

Take update step x
(j)
t = x

(j)
t + h · u(j)t (xt|x1) ∀j

end for
Assign classes based on argmaxc Pr(x

(j)
low = c|{x(j)

1 }Klow
j=1 .t = 1− h)∀c ∈ {0, 1, . . . , Cj} ∀j

High-Resolution Model
Retrieve µ(znum),σ(znum) and sample x0 using Equation (3)
Solve ODE xnum = x0 +

∫ t=1

t=0
γ̇(xlow)f

θ(xt,xlow, t)dt

Post-Process Samples
Overwrite xnum with inflated or missing values using Equation (2)
Return xcat,xnum

E EVALUATION METRICS

Univariate densities (Shape). To evaluate the quality of the column-wise, univariate densities, we
use the popular Shape metric, which is part of the SDMetrics library (version 0.22.0) of the Synthetic
Data Vault (Patki et al., 2016). For numerical features, we use the Kolmogorov-Smirnov statistic
Kstat ∈ [0, 1] and compute the score as 1−Kstat feature-wise. Note that Kstat cannot be computed
from observations with missing values. Therefore, we remove any rows with missing values in the
numerical features beforehand. For categorical features, we compute the Total Variation Distance
(TVD) based on the empirical frequencies of each category value, expressed as proportions Rc and
Sc in the real and synthetic datasets, respectively. The TVD between real and synthetic datasets is

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

then given as

δ(R,S) =
1

2

∑
c∈C

|Rc − Sc|.

Again, we let 1 − δ(R,S) to ensure that an increasing score (up to 1) indicates improved sample
quality. The average score over all features gives the Shape score reported in our results.

Bivariate densities (Trend). To get a better idea of the accuracy of feature interactions in the
synthetic data, we evaluate the Trend score, which is another metric provided by the SDMetrics
library (version 0.22.0) of the Synthetic Data Vault (Patki et al., 2016). This metrics focuses on the
sample quality in terms of accurate pair-wise correlations. Hence, the aim is to compute a score
between every pair of features. For two numerical features, we can simply compute the Pearson
correlation coefficient. We denote the score as

dnum
i,j = 1− 0.5 · |Si,j −Ri,j |,

where Si,j and Ri,j represent the Pearson correlation between features i and j computed on the
synthetic and real data, respectively.

For two categorical features, we derive the score from the normalized contingency tables, i.e., from
te proportion of samples in each possible combination of categories. To determine the difference
between real and synthetic data, we can use the Total Variation Distance (TVD) such that

dcat
i,j = 1− 0.5

∑
ci∈Ci

∑
cj∈Cj

|Sci,cj −Rci,cj |,

where Ci and Cj are the set of categories of features i and j and Si,j , Ri,j are the cells from the
normalized contigency table corresponding to these categories.

To be able to compute a comparable score when comparing features of different types, i.e., a numerical
and a categorical feature, we first discretize the numerical feature into ten bins and then compute the
TVD as explained above. For all scores, a higher score indicates better sample quality. The overall
Trend score is the average over all pair-wise scores. Since this metric cannot accommodate missing
values in numerical features, we again remove rows with such missing values beforehand.

Joint density (Detection score). While the other metrics so far focus on the sample quality in terms
of univariate densities or pair-wise distributions, we are particularly interested in the overall quality
of the full joint distribution. Following the typical approach in the literature (Bischoff et al., 2024;
Mueller et al., 2025; Shi et al., 2025), we train a detection model to differentiate between fake and
real samples, which make up the training data in equal proportions. This approach is also called a
classifier two-sample test (C2ST) (Bischoff et al., 2024).

To ensure that the detection model is sensitive to small changes in the distribution, we choose
LightGBM (Ke et al., 2017). Gradient-boosting models have shown remarkable performance on
tabular datasets (Borisov et al., 2022). LightGBM has been particularly designed for improved
efficiency, which is important for the evaluation of the detection score on larger datasets. Another
advantage is that it naturally accommodates missings in numerical features. This allows the detection
score to indirectly capture how well the generative model learned the missingness mechanism. To
train LightGBM, we sample a synthetic dataset of the same size as the training set used for the
generative model. The objective is to classify whether a given sample is real or synthetic. We use
5-fold cross-validation to estimate the out-of-sample performance, with a max depth = 5 and 500
boosting iterations. To get the final detection score, we first use the highest average AUC obtained
over validation sets across boosting iterations, denoted by Ā. The detection score is then computed as

Detection Score = 1− (max(0.5, Ā) · 2− 1),

such that a score of 1 indicates that the model cannot distinguish fake and real samples at all. On the
other extreme, a score of 0 indicates that the model can perfectly classify the samples into fake and
real. This procedure mimics the detection metric in the SDMetrics library of the Synthetic Data Vault
(Patki et al., 2016) but uses a much more powerful detection model.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Downstream-task performance (Machine learning efficiency). Machine learning efficiency
(MLE; sometimes also called efficacy or utility) measures the usefulness of the synthetic data for
the downstream prediction task, either binary classification or regression, associated with a given
dataset. This represents a train-synthetic-test-real strategy: We train a predictor on the synthetic data
and test the predictor’s out-of-sample performance on the real test data. Similarly, we get the test set
performance by training the predictor on the real training data. For regression tasks, we evaluate the
RMSE and for classification tasks the AUC. Since our goal is to generate a realistic and faithful copy
of the true data, we expect both models to perform similarly on the downstream task, regardless of
which data has been used for training. Thus, only the relative comparison of the model performances
matters, which we report using their absolute difference

MLE Score = |MS −MR|, with M ∈ {AUC,RMSE}.

As the predictor, we again pick LightGBM (Ke et al., 2017) with a max depth of 5 and 500 boosting
iterations because of its efficiency and strong predictive performance on tabular data. It also auto-
matically accommodates missings in numerical features. Note that the generative model’s ability
to generate missing values is evaluated in two different ways: (1) LightGBM may rely directly on
missing values to infer the target and (2) the generative model may place missing values incorrectly
and thereby eradicates information that would be needed (and is available in the true training data)
for the prediction task. Hence, there is a twofold negative impact of a generative model that is not
able to accurately learn the missingness mechanism on the downstream task performance.

Privacy (Distance to closest record). First, we want to emphasize that privacy is not a particular
concern for our work: To obtain privacy guarantees, context-specific choices, for instance, with
regards to the budget for differential privacy, must be made. Such in-processing privacy mechanisms
as well as pre-processing and post-processing techniques are typically model agnostic but depend
heavily on the dataset as well other considerations, such as legal and ethical questions. Hence, we
investigate the distance to closest record (DCR) only for completeness and comparison with previous
research but do not make any privacy guarantees.

To ensure all features are on the same scale, we min-max-scale numerical features and one-hot encode
categorical features. We allow for missing values in numerical features by using mean imputation
and adding the missingness indicator to the one-hot encoded categorical features. For each synthetic
sample we then find the nearest neighbor in the training set in terms of their L2 distance (Zhao et al.,
2021). Since the DCR is much more meaningful when compared to some reference, we report the
DCR share (Zhang et al., 2024b; Shi et al., 2025). Let d(i)train and d(i)test be the L2 distance of the of the
i-th synthetic sample to the closest training and test sample, respectively. Then we set

S(i) =


1 if d(i)train < d

(i)
test,

0 if d(i)train > d
(i)
test,

0.5 if d(i)train = d
(i)
test,

such that synthetic samples being closer to the training samples than the test samples increase the
score. The DCR share is then computed as an average over the scores S(i) obtained all synthetic
samples. The optimal DCR share is 0.5.

Fidelity and coverage (α-Precision and β-Recall). Precision and Recall metrics for generative
model evaluation have been proposed by Sajjadi et al. (2018) and refined for tabular data by Alaa
et al. (2022). α-Precision measures the probability that synthetic samples resides in the α-support of
the true distribution and therefore measures sample fidelity. β-Recall, on the other hand, measures
the sample diversity or coverage. That is, what fraction of real samples reside in the β-support of the
generative distribution. For both metrics, higher values indicate better sample quality. For estimation,
we rely on the official implementation in the synthcity package (Qian et al., 2023) available at
https://github.com/vanderschaarlab/synthcity. However, we need to make some minor
adjustments, in exactly the same way as for the DCR computation, to accommodate the missing
values in numerical features.

21

https://github.com/vanderschaarlab/synthcity

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F ENCODERS

To encode each x(i)num into its categorical low-resolution representation z(i)num, we propose two different
encoder: (1) a Dirichlet Process Variational Gaussian Mixture Model and (2) a distributional regres-
sion tree. Below, we briefly elaborate on the respective implementations and explain our reasoning
behind these choices as well as the differences between the two encoders.

F.1 GAUSSIAN MIXTURE MODEL

An obvious choice for an encoder is a Gaussian Mixture Model (GMM) because it can approximate
any density arbitrarily close. However, its classical variant requires pre-specification of the number of
components K. This is not desirable, since it would require setting a potentially different K for each
feature. Instead, we rely on the Dirichlet Process Variational Gaussian Mixture Model (Bishop, 2006)
as provided by the sklearn package. The combination with Dirichlet Process leads to a mixture of a
theoretical infinite number of components. For practical purposes, this allows us to avoid specifying
the number of components per feature and instead infer them directly from the data. We specify a
weight concentration prior of 0.001, following settings in Synthetic Data Vault (Patki et al., 2016)
package RDT (see https://github.com/sdv-dev/RDT). A low prior encourages the model to
put most weight on few components, leading to fewer estimated components after training.

During training, the Variational GMM maximizes a variational lower bound to the maximum like-
lihood objective and does soft clustering of the data points. To assign a value x(i)num to a discrete
category z(i)num after training and achieve a hard clustering, we let

z(i)num = argmax
k

wk log pk(x
(i)
num) = argmax

k
logwkN (x(i)num;µk, σ

2
k),

where the wk are the mixture weights. A potential drawback for the GMM is that its components
may substantially overlap (see Figure 4). For instance, it is possible that a small variance Gaussian
lies in the middle of a high variance Gaussian if this benefits the overall fit. This can make the group
derived from hard clustering disconnected on the real line. Also, it can lead to component mean to
deviate from the actual mean within the cluster. To address these downsides, we investigate the use
of a distributional regression tree instead.

F.2 DISTRIBUTIONAL REGRESSION TREE

Trees split the data into more homogeneous subgroups via binary splits. This can capture abrupt shifts
and non-linear functions. Distributional trees (DT; Schlosser et al., 2019) utilize the non-parametric
nature of trees and combine it with parametric distributions. The goal is to find homogeneous
groups with respect to a parametric distributions such that the model captures abrupt changes in any
distributional parameters, such as the mean and variance of a Gaussian distribution.

Training a DT can be interpreted as maximizing a weighted likelihood over n observations:

θ̂(x(i)num) = max
θ∈Θ

n∑
j=1

wj(x
(i)
num) · ℓ(θj ;x(i)num), (22)

where θj = (µj , σj) are the parameters of the jth Gaussian component. Note that unlike the GMM,
the tree-based approach leads to a hard clustering since wj(x

(i)
num) ∈ {0, 1} simply indicates the

allocated terminal leaf for that data point. For each x(i)num, the fitting algorithm goes through the
following steps:

• estimate θ̂ via maximum likelihood,

• test for associations or instabilities of the score ∂ℓ
∂θ (θ̂;x

(i)
num),

• choose split of supp(x(i)num) that yields the highest improvement in the log likelihood,
• repeat until convergence.

The DT exhibits various benefits when compared to the GMM encoder. It searches for a partitioning
of supp(x(i)num) such that values falling into a given segment are more homogeneous with respect

22

https://github.com/sdv-dev/RDT

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

to the moments of the Gaussian distribution. Hence, it directly optimizes a hard clustering of data
points and defines a Gaussian component only within the clusters. This substantially reduces the
possible overlap of the Gaussian components compared to GMM, a feature which allows us to prove
Theorem 1. For empirical evidence, compare Figure 5 to Figure 4. This is also an attractive property
when determining a suitable Gaussian-based source distribution for flow matching: Sampling from
the same Gaussian component guarantees samples being close in data space.

The level of granularity captured by z(i)num is governed by the complexity of the encoder. DT allows us
to specify a maximum tree depth but otherwise learns optimal number of components from the data.
Lastly, DT is also much faster to train than GMM.

Since no Python implementation of DT is available, we use the disttree R package and combine it
with rpy2 to make it callable with Python.

F.3 PRACTICAL CONSIDERATIONS

In practice, σ2
k is never actually zero due to numerical precision. Therefore, if σ2

k < ϵ, we check
empirically whether Var[x(i)num|z(i)num = k] = 0. If this is the case, we confirm µk to represent an
inflated value.

Furthermore, many features may actually be integers instead of truly continuous values. To keep this
ordinal structure, even integers with smaller number of unique values are often treated as “continuous”.
In this case, since the granularity of z(i)num is governed by the complexity of the encoder, if we choose
a complex encoder, it can happen that znum simply recovers all unique values. But this is not a failure
case. The consequence is only that the low resolution model already has access to all information
about that feature and the high resolution model does not need to generate the feature at all.

−4 −3 −2 −1 0 1 2 3

age
(quantile-transformed and standardized)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

si
ty

−4 −2 0 2 4

hours-per-week
(quantile-transformed and standardized)

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

Figure 4: Gaussian components found by the GMM encoder (max components = 7, to align with the
number of components found by DT) for two features in the adult dataset. The red vertical lines
indicate the component means.

−4 −3 −2 −1 0 1 2 3

age
(quantile-transformed and standardized)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

si
ty

−4 −2 0 2 4

hours-per-week
(quantile-transformed and standardized)

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Figure 5: Gaussian components found by the DT encoder (max depth = 3) for two features in the
adult dataset. The red vertical lines indicate the component means.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G POLYNOMIAL PARAMETERIZATION OF TIME SCHEDULE

We parameterize the feature-specific time schedules using the polynomial form proposed by Sahoo
et al. (2023). Let fϕ : Rm × [0, 1] → Rd, where d is the number of features and c ∈ Rm be a vector
with conditioning information. We define fϕ as

fϕ(c, t) =
a2ϕ(c)

5
t5+

aϕ(c)bϕ(c)

2
t4+

b2
ϕ(c) + 2‘aϕ(c)dϕ(c)

3
t3+bϕ(c)dϕ(c)t

2+dϕ(c)t, (23)

where multiplication and division operations are defined element-wise. The parameters aψ(c),bψ(c)
and dψ(c)) are outputs of a neural network with parameters ψ that maps Rm → Rd → Rd to
construct a common embedding which is the input to separate linear layers that map to aψ(c),bψ(c)
and dψ(c)), respectively. The network uses SiLU activation functions. We can then normalize to get

γt(c) =
fϕ(c, t)

fϕ(c, 1)
, (24)

such that γt(c) is monotonically increasing for t ∈ [0, 1] and has end points γ0(c) = 0 and γ1(c) = 1.
Note that its time-derivative γ̇t(c) is available in closed form.

H LEARNED TIME SCHEDULES

Below we display the learned feature-specific time schedules γt(xlow for each dataset for the Tab-
Cascade model with DT encoder (one line per feature). Since the time schedule is conditioned on
xlow we picture Exlow [γt(xlow)] and Varxlow [γt(xlow)]. While on average a linear time schedule seems
beneficial, the model does capture some heterogeneity across features.

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.2

0.4

0.6

0.8

1.0

E
x
lo
w

[γ
t
(x
lo
w

)]

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.000

0.002

0.004

0.006

0.008

V
a
r x
lo
w

[γ
t
(x
lo
w

)]

Figure 6: Learned time schedule for the adult dataset.

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.2

0.4

0.6

0.8

1.0

E
x
lo
w

[γ
t
(x
lo
w

)]

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0000

0.0005

0.0010

V
a
r x
lo
w

[γ
t
(x
lo
w

)]

Figure 7: Learned time schedule for the beijing dataset.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.00

0.25

0.50

0.75

1.00

E
x
lo
w

[γ
t
(x
lo
w

)]

0.0 0.2 0.4 0.6 0.8 1.0

Time

0

2

4

6

8

V
a
r x
lo
w

[γ
t
(x
lo
w

)]

×10−6

Figure 8: Learned time schedule for the default dataset.

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.00

0.25

0.50

0.75

1.00

E
x
lo
w

[γ
t
(x
lo
w

)]

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.5

1.0

V
a
r x
lo
w

[γ
t
(x
lo
w

)]

×10−6

Figure 9: Learned time schedule for the diabetes dataset.

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.2

0.4

0.6

0.8

1.0

E
x
lo
w

[γ
t
(x
lo
w

)]

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

V
a
r x
lo
w

[γ
t
(x
lo
w

)]

Figure 10: Learned time schedule for the news dataset.

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

0.2

0.4

0.6

0.8

1.0

E
x
lo
w

[γ
t
(x
lo
w

)]

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.000

0.005

0.010

0.015

0.020

0.025

V
a
r x
lo
w

[γ
t
(x
lo
w

)]

Figure 11: Learned time schedule for the shoppers dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

I QUALITATIVE COMPARISONS

5

10

15

ed
uc

at
io

na
l-

nu
m

Real Data ARF CTGAN TVAE TabDDPM

0 50

age

5

10

15

ed
uc

at
io

na
l-

nu
m

TabSyn

0 50

age

TabDiff

0 50

age

CDTD

0 50

age

TabCascade (DT)

0 50

age

TabCascade (GMM)

Figure 12: Example of bivariate density from the adult dataset.

0.00

0.25

0.50

0.75

1.00

Sp
ec

ia
lD

ay

Real Data ARF CTGAN TVAE TabDDPM

0.0 0.1 0.2

BounceRates

0.00

0.25

0.50

0.75

1.00

Sp
ec

ia
lD

ay

TabSyn

0.0 0.1 0.2

BounceRates

TabDiff

0.0 0.1 0.2

BounceRates

CDTD

0.0 0.1 0.2

BounceRates

TabCascade (DT)

0.0 0.1 0.2

BounceRates

TabCascade (GMM)

Figure 13: Example of bivariate density from the shoppers dataset.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0.00

0.25

0.50

0.75

1.00

ab
s

tit
le

se
nt

im
en

t
po

la
ri

ty

Real Data ARF CTGAN TVAE TabDDPM

0.0 0.5 1.0

global subjectivity

0.00

0.25

0.50

0.75

1.00

ab
s

tit
le

se
nt

im
en

t
po

la
ri

ty

TabSyn

0.0 0.5 1.0

global subjectivity

TabDiff

0.0 0.5 1.0

global subjectivity

CDTD

0.0 0.5 1.0

global subjectivity

TabCascade (DT)

0.0 0.5 1.0

global subjectivity

TabCascade (GMM)

Figure 14: Example of bivariate density from the news dataset. TabDDPM produces NaNs for this
dataset.

J ADDITIONAL RESULTS

0.0

0.5

1.0

D
et

ec
tio

n
Sc

or
e

(↑
) adult beijing default

Cat. Num. Cat. and Num.
0.0

0.5

1.0

D
et

ec
tio

n
Sc

or
e

(↑
) diabetes

Cat. Num. Cat. and Num.

news

Cat. Num. Cat. and Num.

shoppers

Figure 15: Detection score of CDTD samples for all datasets.

Table 6: The effect of max depth for the DT encoder on additional evaluation metrics averaged over
datasets. The standard deviation captures variance across the datasets. Grey indicates the choice of
max depth used for the main results.

MissSim CMS DCR Share

3 0.993±0.003 0.014±0.004 0.866±0.062

4 0.995±0.002 0.015±0.006 0.859±0.058

5 0.994±0.002 0.015±0.006 0.851±0.052

6 0.994±0.002 0.015±0.007 0.848±0.052

7 0.993±0.003 0.016±0.007 0.849±0.052

8 0.991±0.006 0.017±0.007 0.849±0.050

9 0.988±0.007 0.017±0.007 0.849±0.049

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 7: Comparison of machine learning efficiency. Per dataset, bold indicates the best and
underline the second best result. We report the average (and standard deviation) across 3 training
runs and 10 different generated samples each.

adult beijing default diabetes news shoppers

ARF 0.019±0.003 0.102±0.007 0.014±0.003 0.031±0.014 0.115±0.045 0.052±0.014

TVAE 0.077±0.018 0.288±0.060 0.017±0.007 0.063±0.015 0.061±0.067 0.026±0.011

CTGAN 0.094±0.016 0.256±0.018 0.039±0.007 0.081±0.030 0.013±0.003 0.116±0.015

TabDDPM 0.018±0.005 0.046±0.003 0.007±0.005 - - 0.014±0.007

TabSyn 0.029±0.003 0.097±0.015 0.034±0.019 0.093±0.017 3.286±2.633 0.044±0.013

TabDiff 0.015±0.002 0.054±0.004 0.009±0.004 0.023±0.018 0.082±0.026 0.021±0.006

CDTD 0.016±0.003 0.037±0.004 0.009±0.005 0.053±0.016 0.147±0.036 0.011±0.006

TabCascade (GMM) 0.022±0.009 0.036±0.005 0.015±0.006 0.045±0.015 0.037±0.037 0.016±0.009

TabCascade (DT) 0.007±0.001 0.034±0.003 0.010±0.004 0.036±0.015 0.057±0.051 0.008±0.005

Table 8: Comparison of α-Precision scores. Per dataset, bold indicates the best and underline the
second best result. We report the average (and standard deviation) across 3 training runs and 10
different generated samples each.

adult beijing default diabetes news shoppers

ARF 0.991±0.003 0.933±0.003 0.957±0.004 0.976±0.002 0.898±0.005 0.964±0.006

TVAE 0.766±0.021 0.697±0.165 0.772±0.078 0.261±0.070 0.139±0.061 0.938±0.025

CTGAN 0.804±0.077 0.806±0.009 0.825±0.006 0.878±0.055 0.930±0.008 0.922±0.075

TabDDPM 0.928±0.012 0.964±0.005 0.907±0.007 - - 0.767±0.017

TabSyn 0.970±0.023 0.982±0.013 0.941±0.040 0.926±0.047 0.611±0.172 0.851±0.070

TabDiff 0.995±0.001 0.973±0.004 0.975±0.007 0.826±0.010 0.972±0.008 0.983±0.006

CDTD 0.993±0.002 0.993±0.003 0.978±0.005 0.979±0.013 0.851±0.012 0.982±0.006

TabCascade (GMM) 0.976±0.014 0.990±0.005 0.981±0.004 0.978±0.007 0.979±0.010 0.948±0.008

TabCascade (DT) 0.981±0.003 0.980±0.007 0.986±0.003 0.993±0.004 0.907±0.008 0.987±0.007

Table 9: Comparison of β-Recall scores. Per dataset, bold indicates the best and underline the
second best result. We report the average (and standard deviation) across 3 training runs and 10
different generated samples each.

adult beijing default diabetes news shoppers

ARF 0.420±0.004 0.285±0.006 0.362±0.007 0.329±0.006 0.114±0.003 0.423±0.006

TVAE 0.196±0.018 0.098±0.058 0.247±0.032 0.179±0.079 0.049±0.025 0.483±0.010

CTGAN 0.162±0.039 0.148±0.013 0.304±0.032 0.178±0.063 0.339±0.031 0.326±0.016

TabDDPM 0.525±0.008 0.396±0.007 0.553±0.004 - - 0.664±0.024

TabSyn 0.397±0.014 0.311±0.019 0.346±0.026 0.176±0.024 0.035±0.016 0.301±0.056

TabDiff 0.477±0.003 0.373±0.007 0.482±0.005 0.274±0.010 0.366±0.018 0.476±0.007

CDTD 0.573±0.004 0.441±0.006 0.603±0.008 0.561±0.017 0.517±0.010 0.728±0.007

TabCascade (GMM) 0.517±0.020 0.524±0.022 0.519±0.004 0.480±0.005 0.507±0.010 0.665±0.024

TabCascade (DT) 0.595±0.009 0.541±0.005 0.562±0.006 0.517±0.004 0.478±0.011 0.687±0.006

Table 10: Comparison of DCR share scores. Per dataset, bold indicates the best and underline the
second best result. We report the average (and standard deviation) across 3 training runs and 10
different generated samples each.

adult beijing default diabetes news shoppers

ARF 0.815±0.002 0.801±0.002 0.793±0.004 0.806±0.002 0.785±0.003 0.800±0.004

TVAE 0.800±0.004 0.816±0.019 0.792±0.016 0.787±0.009 0.815±0.015 0.817±0.006

CTGAN 0.781±0.003 0.777±0.013 0.783±0.003 0.778±0.004 0.783±0.002 0.784±0.006

TabDDPM 0.799±0.005 0.795±0.002 0.800±0.003 - - 0.856±0.020

TabSyn 0.780±0.003 0.780±0.003 0.780±0.004 0.775±0.002 0.780±0.005 0.780±0.005

TabDiff 0.786±0.003 0.787±0.003 0.786±0.003 0.777±0.002 0.782±0.002 0.782±0.005

CDTD 0.863±0.002 0.823±0.002 0.851±0.005 0.837±0.002 0.818±0.004 0.955±0.004

TabCascade (GMM) 0.886±0.009 0.861±0.008 0.826±0.003 0.797±0.004 0.798±0.002 0.929±0.004

TabCascade (DT) 0.871±0.006 0.845±0.002 0.839±0.004 0.799±0.002 0.805±0.003 0.937±0.004

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

K TRAINING AND SAMPLING TIMES

Table 11: Training times in minutes. For diffusion-based models, the training time was capped at 30
minutes.

ARF TVAE CTGAN TabDDPM TabSyn TabDiff CDTD TabCascade
(DT)

TabCascade
(GMM)

adult 11.4 20.0 36.2 9.5 14.4 30.0 6.0 10.7 11.2
beijing 10.6 21.5 35.3 8.1 13.2 30.0 5.6 11.4 11.2
default 14.7 25.1 44.1 11.9 19.4 30.0 6.6 11.7 11.9
diabetes 56.0 29.5 101.8 30.0 16.2 30.0 8.0 12.6 13.7
news 38.7 41.7 68.2 21.1 30.0 30.0 9.2 17.1 16.9
shoppers 3.6 24.1 39.2 10.4 14.3 30.0 6.2 11.1 11.1

Table 12: Sample times in seconds per 1000 samples. TabDDPM produces NaNs for diabetes
and news datasets.

ARF TVAE CTGAN TabDDPM TabSyn TabDiff CDTD TabCascade
(DT)

TabCascade
(GMM)

adult 1.55 0.14 0.24 7.08 0.53 3.62 2.55 0.69 2.06
beijing 1.09 0.14 0.23 5.32 0.55 2.24 3.76 0.62 2.09
default 2.43 0.18 0.29 10.19 0.56 3.47 6.38 0.76 2.14
diabetes 4.46 0.22 0.32 - 0.53 24.11 3.54 0.87 2.26
news 6.76 0.34 0.44 - 0.60 7.69 5.26 1.17 2.52
shoppers 1.71 0.18 0.25 7.45 0.54 3.20 2.90 0.70 2.05

29

	Introduction
	Related Work
	Problem Statement
	Cascaded Flow Matching for Tabular Data
	Cascaded framework
	High-resolution model
	Low-resolution representation
	Low resolution model

	Experiments
	Experimental Setup
	Results
	Ablation Study

	Conclusion
	Appendix
	Derivation of the guided conditional vector field for the high-resolution model
	Proof: DT Encoder lowers Transport Cost Bound

	Benchmark Datasets
	Implementations
	TabCascade Implementation
	Evaluation Metrics
	Encoders
	Gaussian Mixture Model
	Distributional Regression Tree
	Practical Considerations

	Polynomial Parameterization of Time Schedule
	Learned Time Schedules
	Qualitative Comparisons
	Additional Results
	Training and Sampling Times

