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Abstract

Learning from human involvement aims to incorporate the human subject to moni-
tor and correct agent behavior errors. Although most interactive imitation learning
methods focus on correcting the agent’s action at the current state, they do not adjust
its actions in future states, which may be potentially more hazardous. To address
this, we introduce Predictive Preference Learning from Human Interventions (PPL),
which leverages the implicit preference signals contained in human interventions
to inform predictions of future rollouts. The key idea of PPL is to bootstrap each
human intervention into L future time steps, called the preference horizon, with the
assumption that the agent follows the same action and the human makes the same
intervention in the preference horizon. By applying preference optimization on
these future states, expert corrections are propagated into the safety-critical regions
where the agent is expected to explore, significantly improving learning efficiency
and reducing human demonstrations needed. We evaluate our approach with ex-
periments on both autonomous driving and robotic manipulation benchmarks and
demonstrate its efficiency and generality. Our theoretical analysis further shows
that selecting an appropriate preference horizon L balances coverage of risky states
with label correctness, thereby bounding the algorithmic optimality gap. Demo and
code are available at: https://metadriverse.github.io/ppl.

1 Introduction

Effectively leveraging human demonstrations to teach and align autonomous agents remains a central
challenge in both Reinforcement Learning (RL) [46] and Imitation Learning (IL) [17]. In the literature
of RL and more recent RL from Human Feedback (RLHF), the agent explores the environment
through trial and error or under human feedback guidance, and the learning process hinges on a
carefully crafted reward function that reflects human preferences. However, RL algorithms often
require a large number of environment interactions to learn stable policies, and their exploration
can lead agents to dangerous or task-irrelevant states [40, 27]. In contrast, IL methods train agents
to emulate human behavior using offline demonstrations from experts. Nevertheless, IL agents
are susceptible to distributional shift because the offline dataset may lack corrective samples in
safety-critical or out-of-distribution states [35, 32, 3, 47].

Interactive Imitation Learning (IIL) [2, 34, 15, 42, 28, 41, 19, 20] incorporates human participants to
intervene in the training process and provide online demonstrations. Such methods have improved
alignment and learning efficiency in a wide variety of tasks, including robot manipulation [7, 8],
autonomous driving [27, 28], and even the strategy game StarCraft II [39]. One line of research
on confidence-based IIL designs various task-specific criteria to request human help, including
uncertainty estimation [23] and confidence in completing the task [4, 38]. In contrast, an increasing
body of work focuses on learning from active human involvement, where human subjects actively
intervene and provide demonstrations during training when the agent makes mistakes [15, 42, 22, 17,
28]. Compared to confidence-based IIL, active human involvement can ensure training safety [27]
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You will crash soon! Let me help you.
1) Trajectory Prediction Facilitating Human Intervention

Can I turn right here?

2) Learning Human Preferences in Forecasted Rollouts

Human rejects my right-turn. I understand human preferences in these states. 

Figure 1: Our Predictive Preference Learning from Human Interventions. (Top) Our approach
forecasts the agent’s upcoming trajectory (the red dotted path) and visualizes it for the human expert,
who will intervene if the forecasted path indicates an upcoming failure. (Bottom) A single intervention
is then interpreted as hypothesized preference signals across the predicted states. These signals reflect
the agent’s imputed imagination of what the expert would prefer, guiding the policy to avoid the risky
maneuver in similar future contexts. This integration of proactive forecasting and preference learning
accelerates policy improvement and reduces the total number of expert interventions required.

and does not require carefully designing human intervention criteria for each task [12]. However,
these methods require the human expert to monitor the entire training process, predict the agent’s
future trajectories, and intervene immediately in safety-critical states [28], imposing a significant
cognitive burden on the human participant. In addition, these methods often correct the agent’s
behavior only at the current intervened state, penalizing undesired actions step by step. For instance,
in HG-DAgger [15], the agent is optimized to mimic human actions solely at the states where
interventions occur. In practice, it is intuitive that the agent may repeat similar mistakes in the
consecutive future steps t+ 1, · · · , t+ L following an error at step t. As a result, the expert must
repeatedly provide corrective demonstrations in these regions, compromising training efficiency [17].

In this work, we propose a novel Interactive Imitation Learning algorithm, Predictive Preference
Learning from Human Interventions (PPL), to learn from active human involvement. As shown
in Fig. 1, our approach has two key designs: First, we employ an efficient rollout-based trajectory
prediction model to forecast the agent’s future states. These predicted rollouts are visualized in real
time for the user, helping human supervisors proactively determine when an intervention is necessary.
Second, our algorithm leverages preference learning on the predicted future trajectories to further
improve the sample efficiency and reduce the expert demonstrations needed. Such designs bring three
strengths: (1) They mitigate the distributional shift problem in IIL and improve training efficiency. By
incorporating anticipated future states into the training process, our method constructs a richer dataset,
especially in safety-critical situations. This expanded dataset offers more information than expert
corrective demonstrations in human-intervened states only. (2) The preference learning reduces the
agent’s visits to dangerous states, thus suppressing human interventions in safety-critical situations.
(3) By visualizing the agent’s predicted future trajectories in the user interface, we significantly
reduce the cognitive burden on the human supervisor to constantly anticipate the agent’s behavior.

Our contributions can be summarized as follows:

1. We introduce a novel Interactive Imitation Learning (IIL) algorithm that leverages trajectory
prediction to inform human intervention and employs preference learning to deter the agent
from returning to dangerous states.

2. We evaluate our algorithm on the MetaDrive [16] and Robosuite [49] benchmarks, using
both neural experts and real human participants, showing that PPL requires fewer expert
monitoring efforts and demonstrations to achieve near-optimal policies.

3. We present a theoretical analysis that derives an upper bound on the performance gap
of our approach. This bound highlights that the efficacy of our method lies in reducing
distributional shifts while preserving the quality of preference data.
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2 Related Work

Learning from Human Involvement. Many works incorporate human involvement in the training
loop to provide corrective actions in dangerous or repetitive states. For example, Human-Gated
DAgger (HG-DAgger) [15], Ensemble-DAgger [23], Thrifty-DAgger [12], Sirius [19], and Inter-
vention Weighted Regression (IWR) [22] perform imitation learning on human intervention data.
These methods do not leverage data collected by agents or suppress undesired actions likely to be
intervened by humans, leading to the agent’s susceptibility to entering hazardous states and thus
harming sample efficiency. EGPO [27], PVP [28], and AIM [2] design proxy cost or value functions
to suppress the frequency of human involvement. However, these approaches still require human
supervisors to continuously monitor the agent’s behavior throughout training and anticipate potential
failures that may necessitate intervention. This continuous oversight imposes a significant cognitive
load on the human expert and can limit scalability. Furthermore, these methods do not exploit the
agent’s predicted future trajectories that the expert might identify as potentially leading to undesirable
outcomes, which necessitates repeated corrective demonstrations in such situations.

Preference-Based RL. A large body of work focuses on learning human preferences by ranking
pairs of trajectories generated by the agent [6, 9, 34, 44, 37, 26]. One prominent paradigm, reinforce-
ment learning from human feedback (RLHF), first trains a reward model on offline human preference
data and then uses that model to guide policy optimization [6, 25, 43]. RLHF has achieved impres-
sive results in domains ranging from Atari games [6] to large language models [25]. Alternatively,
methods such as Direct Preference Optimization (DPO) [31], Contrastive Preference Optimization
(CPO) [45], and related variants [1, 24] bypass explicit reward-model training and instead directly
optimize the policy to satisfy preference labels via a classification loss.

However, applying RLHF and DPO to real-time control problems faces challenges due to the need for
extensive human labeling of preference data [31]. These labels are inherently subjective and prone
to noise [37]. Moreover, acquiring a high-quality preference dataset and achieving near-optimal
policies often requires a substantial number of environment samples, thereby imposing a considerable
burden on human experts [10]. In contrast, our framework elicits preferences in an online, interactive
manner: experts review the agent’s predicted future trajectory at each decision point and intervene
when a failure is anticipated; these interventions are then converted into contrastive preference labels.
This real-time preference collection enables the policy to adapt continuously to the evolving state
distribution and to receive targeted feedback precisely where it is most needed. In summary, our
approach PPL bridges preference-based RL and imitation learning by demonstrating that DPO-style
alignment techniques can be effectively adapted to control problems within an interactive imitation
learning framework.

3 Problem Formulation

In this section, we introduce our settings of interactive imitation learning environments. We use
the Markov decision process (MDP) M = ⟨S,A,P, r, γ, d0⟩ to model the environment, which
contains a state space S, an action space A, a state transition function P : S × A → S, a reward
function r : S × A → [Rmin, Rmax], a discount factor γ ∈ (0, 1), and an initial state distribution
d0 : S → [0, 1]. We denote π(a | s) : S × A → [0, 1] as a stochastic policy. Reinforcement
learning (RL) aims to learn a novice policy πn(a|s) that maximizes the expected cumulative return

J(πn) = E
τ∼Pπn

[
∞∑
t=0

γtr(st, at)], wherein τ = (s0, a0, s1, a1, ...) is the trajectory sampled from

trajectory distribution Pπn induced by πn, d0 and P . We also define the discounted state distribution

under policy πn as dπn
(s) = (1−γ) E

τ∼Pπn

[
∞∑
t=0

γtI[st = s]]. In this work, we consider the reward-free

setting where the agent has no access to the task reward function r(s, a).

In imitation learning (IL), we assume that the human expert behavior ah follows a human policy
πh(a | s). The agent aims to learn πn from human expert trajectories τh ∼ Pπh

, and it needs
to optimize πn to close the gap between τn ∼ Pπn and τh. Prior works on imitation learning
have shown that using an offline expert demonstration dataset may lead to poor performance due
to out-of-distribution states [36, 34, 41]. Therefore, interactive imitation learning (IIL) methods
incorporate a human expert into the training loop to provide online corrective demonstrations, making
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the state distribution of expert data more similar to that of the novice policy [28, 35]. During training,
the human expert monitors the agent and can intervene and take control if the agent’s action an at
the current state s violates the human’s desired behavior or leads to a dangerous situation. We use
the deterministic intervention policy I(s, an) : S ×A → {0, 1} to model the human’s intervention
behavior, where the agent’s action follows the novice policy an ∼ πn(· | s), and the human subject
takes control when I(s, an) = 1.

With the notations above, the agent’s actual trajectories during training are derived from the following
shared behavior policy

πb(a | s) = πn(a | s)(1− I(s, a)) + πh(a | s)G(s), (1)

wherein G(s) =
∫
a′∈A I(s, a′)πn(a

′ | s)da′ is the probability of the agent taking an action an that
will be rejected and intervened by the human expert.

Preference Alignment. Recent works on preference-based RL have also leveraged offline preference
datasets to learn human-aligned policies [31, 45, 1]. Given an offline preference dataset Dpref where
each preference data (s, a+, a−) ∈ Dpref means that the human expert prefers the action a+ over
a− at state s, we can learn an agent policy πn that aligns with the human preference model. The
Contrastive Preference Optimization method [45] uses the following objective to train an agent policy
πθ from the preference dataset Dpref:

Lpref(πθ) = − E
(s,a+,a−)∼Dpref

[
log σ

(
β log πθ(a

+ | s)− β log πθ(a
− | s)

)]
, (2)

where σ(·) is the Sigmoid function, and β > 0 is a hyperparameter.

Trajectory Prediction Model. In this work, we allow the agent to access a short-term trajectory
prediction model f(s, an, H). Given the current state s and the agent’s action an, we can predict the
agent’s trajectory f(s, an, H) = (s, s̃1, · · · , s̃H) in the next H steps, where s̃i the predicted state that
the agent will reach if the agent applies the action an for i steps from the state s. The implementation
detail of f is in Sec. 4.3.

4 Method

4.1 Predictive Preference Learning from Human Interventions (PPL)

We propose PPL (Fig. 2), an efficient interactive imitation learning method that emulates the human
policy with fewer expert demonstrations and less cognitive effort. The key idea of PPL is to learn
human preferences from data generated by a future-trajectory prediction model. We illustrate the
human-agent interactions in Fig. 2 (left) and how PPL infers human preference in Fig. 2 (right).

During training, the human subject monitors the agent-environment interaction in each state s (Fig. 2
(left)). The novice policy πn suggests an action an for the current state s. Instead of executing
an immediately, we query the trajectory prediction model f(s, an, H) to obtain a predicted rollout
τ = f(s, an, H) = (s, s̃1, · · · , s̃H), which we visualize for the human expert. The expert then uses
τ to determine whether the agent will fail in the next H steps, such as crashing into vehicles or
going off the road. If so, the expert will provide corrective actions ah ∼ πh(s) for the next H steps,
depicted by the blue trajectory in Fig. 2. If the expert believes no intervention is needed, the agent
continues to use its own policy πn for the next H steps.

We introduce preference learning on the predicted trajectories because it is difficult to learn corrective
behavior purely from the expert’s demonstrations in safe states. By visualizing predicted rollouts,
experts can anticipate unsafe trajectories before the agent actually enters them and intervene preemp-
tively. As a result, the state distribution covered by these early interventions differs substantially from
the on-policy distribution of the novice policy, creating a distributional shift that standard imitation or
on-policy correction cannot address. Therefore, instead of relying solely on expert demonstrations,
we collect preference labels over the predicted rollouts (Fig. 2 Right) so that the agent can learn the
correct behavior in those risky states.

Whenever the expert intervenes at state s, we interpret this as indicating that continuing with an
would lead to unsafe or undesirable outcomes along the predicted trajectory. As shown in Fig. 2
(right), to capture this preference, we assume the expert prefers ah over an at state s and each of
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Preference Buffer

You should do  in state , not .

Human prefers  over  at .

Human prefers  over  at .
1) Human intervenes to prevent a future crash.

2) Agent infers human preference in predicted future states.
Human DemonstrationAgent's Exploratory 

Trajectory
Agent's Predicted 

Trajectory

 Human Buffer 

Figure 2: Illustration of Predictive Preference Learning. (Left) At each decision point, the agent
proposes an action, and its future trajectory is predicted and visualized. The human expert reviews
this rollout and intervenes only when a potential failure is anticipated. The intervention is recorded
alongside the state into the human buffer Dh for behavioral cloning. (Right) Each recorded interven-
tion is then converted into contrastive preference pairs over the predicted future states s̃1, · · · , s̃L.
These preference tuples are stored in a preference buffer Dpref and used to train the policy via a
contrastive classification loss, propagating expert intents into regions the agent is likely to explore.

the first L predicted states s̃1, · · · , s̃L for some preference horizon L ≤ H . For each i ≤ L, we
add the tuple (s̃i, a

+ = ah, a
− = an) to the preference dataset Dpref. We note that in each tuple

(s̃i, a
+ = ah, a

− = an), both ah and an are sampled at the current state s, not the predicted future
states s̃i, because the exact human corrective actions at hypothetical future states are not directly
observable. Still, the expert intervention at state s implies that applying ah at the predicted states
s̃1, . . . , s̃L, rather than continuing with an, is more likely to prevent the dangerous outcome in the
end of the predicted trajectory (s̃H ). Hence, our construction of the preference dataset ensures that it
faithfully captures the expert’s corrective intent across the predicted horizon.

The preference horizon L controls the length over which we elicit preferences in the predicted
trajectory. A small L may fail to capture enough risky states, while a large L risks applying
preferences where the corrective action ah at state s no longer matches what an expert would do in
those imagined states s̃i. In Theorem 4.1, we prove that under mild assumptions, the performance
gap of our learned policy is bounded by terms reflecting the state distribution shift and the quality
of the preference labels, implying that an ideal preference horizon L should balance these two error
terms. We also illustrate how the choice of L affects the performance of PPL in Fig. 8.

We train the novice policy πn using two complementary objectives. First, we apply a behavioral
cloning loss on expert demonstrations Dh:

LBC(πθ) = − E
(s,ah)∼Dh

[log πθ(ah | s)] . (3)

Second, inspired by Contrastive Preference Optimization (CPO) [45], we use the preference-
classification loss Eq. 2 over the predicted states in Dpref. The final loss of the agent policy πθ

is evaluated as
L(πθ) = Lpref(πθ) + LBC(πθ)

= − E
(s,a+,a−)∼Dpref

[
log σ

(
β log πθ(a

+ | s)− β log πθ(a
− | s)

)]
− E

(s,ah)∼Dh

[log πθ(ah | s)] .

(4)

The workflow of our method PPL is summarized in Alg. 1.

4.2 Analysis

We prove that the performance gap between the human policy πh and the agent policy πn can be
bounded by the following three error terms: 1) the state distribution shift δdist, 2) the quality of the
preference labels δpref, and 3) the optimization error ϵ.

The first error term is defined as δdist = DTV(dπn
, dpref), where dπn

(s) is the discounted state
distribution of the agent’s policy πn, and dpref(s) = |Dpref|−1 E(s′,a+,a−)∼Dpref I[s′ = s]. Here,
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Figure 3: The test-time performance curve of PPL and the IIL counterpart PVP [28] under three
different environments. The x-coordinate is the number of environment interactions, and the y-
coordinate is the agent’s success rate in a held-out test environment, where the evaluation is conducted
without expert involvement. Compared to the IIL counterpart, our approach achieves much higher
learning efficiency and reduces the expert’s efforts needed.

DTV(P,Q) = 1
2 |P −Q|1 is the total variation distance between two distributions. This error term

quantitatively measures the difference between the states actually visited by the agent and those
contained in the preference dataset.

The second error term is defined as δpref = E
s∼dpref

DTV(ρ
s
ideal, ρ

s
pref), which arises from the mis-

alignment of the positive actions in the preference dataset, as the human action ah in each tuple
(s̃i, ah, an) ∈ Dpref is sampled in state s instead of state s̃i. That is, this error reflects the assumption
that the human would still apply the same corrective action ah in a hypothetical future state s̃i reached
after executing an for i steps, which may not perfectly match what the expert would actually do. For
any state s in Dpref with dpref(s) > 0, the empirical preference-pair distribution in state s follows

ρspref(ah, an) =
E(s′,a+,a−)∼Dpref I[s′ = s, a+ = ah, a

− = an]

E(s′,a+,a−)∼Dpref I[s′ = s]
. (5)

The ideal preference-pair distribution at any state s in Dpref is simply the joint distribution of (ah, an):
ρsideal(ah, an) = πh(ah | s)πn(an | s) on A×A.

Finally, we define the optimization error of the agent policy πn as ϵ = Lpref(πn)−Lpref(πh). We recall
that Lpref(π) = − E

(s,a+,a−)∼Dpref

[log σ (β log π(a+ | s)− β log π(a− | s))], where β is a positive

constant and σ(·) is the Sigmoid function. Under these notations, we have the following Thm. 4.1.
Theorem 4.1. We denote the Q-function of the human policy πh as Q∗(s, a). We assume that for
any (s, a, a′), |Q∗(s, a)−Q∗(s, a′)| ≤ U , | log πh(a|s)− log πh(a

′|s)| ≤ M , and | log πn(a|s)−
log πn(a

′|s)| ≤ M , where U,M > 0 are constants. When β is small enough, we have

J(πh)− J(πn) = O(
√
ϵ+ δpref + δdist). (6)

Here we explain the insights of Thm. 4.1 as follows. In our choice of the preference horizon L,
the key is to balance the two error terms δdist and δpref. Recall that the distribution shift term δdist
measures how close the state distributions are when there is no human intervention (dπn

) and the
state distribution represented in the preference dataset (dpref). Increasing L decreases δdist because
the preference dataset will contain more predicted states s̃i from the agent’s future trajectories. In
contrast, the preference error term δpref captures the misalignment between the true but unobserved
human action at a future state t′ > t and the bootstrapped corrective action ah at step t, which we
assume would also apply at t′. Therefore, the longer the preference horizon, the larger δpref, because
the difference between the human actions ah in state s and the predicted s̃L grows as L increases. In
Fig. 8, we visualize the effects of L on the performance of PPL. We prove Thm. 4.1 in Appendix F.

4.3 Implementation Details

Tasks. As shown in Fig. 4, we conduct experiments on control tasks and manipulation tasks with
different observation and action spaces. For the control task, we consider the MetaDrive driving
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experiments [16], where the agent must navigate towards the destination in heavy-traffic scenes
without crashing into obstacles or other vehicles. The agent uses the sensory state vector s ∈ R259

as its observation and outputs a control signal a = (a0, a1) ∈ [−1, 1]2 representing the steering
angle and the acceleration, respectively. We evaluate the agent’s learned policy in a held-out test
environment separate from the training environments.

For manipulation tasks, we consider the Table Wiping and Nut Assembly tasks from the Robosuite
environment [49]. In the Table Wiping task, the robot arm must learn to wipe the whiteboard surface
and clean all of the markings. The positions of these markings are randomized at the beginning of
each episode. The states are s ∈ R34 and actions are a ∈ R6 (3 translations in the XYZ axes and 3
rotations around the XYZ axes). In the Nut Assembly task, the robot must grab a metal ring from
a random initial pose and place it over a target cylinder at a fixed location. The states are s ∈ R51

and actions are a ∈ R7, where the additional dimension in the action space represents opening or
closing the gripper. In both manipulation tasks, the simulated UR5e robot arm uses fixed-impedance
operational-space control to achieve the commanded pose.

Trajectory Prediction Model. In PPL, we need to predict the future states f(s, an, H) =
(s, s̃t+1, · · · , s̃t+H) from the current state s. We implement f by running an H-step simulator rollout
from the current state s, repeatedly applying action an to collect the sequence (s̃t+1, · · · , s̃t+H).
This H-step simulator rollout runs at up to 1,000 fps on a CPU.

In real-world tasks such as autonomous driving, simulator rollouts often deviate from reality because
vehicle dynamics parameters are imperfect and other traffic participants behave unpredictably. To
predict future motion with minimal overhead, prior work directly propagates the ego-vehicle’s
state through a physics model [18, 29, 13]. Following this approach, we use the kinematic bicycle
model [30] to simulate H = 10 steps, assuming all other traffic participants remain stationary.
Compared with the data-driven approaches [50, 5, 21], this rule-based predictor requires only forward
integration of a single vehicle and produces short-term trajectories whose accuracy closely matches
simulator rollouts. This lightweight extrapolation method runs at about 3,000 fps on a CPU, enabling
real-time prediction with minimal overhead. Our ablation studies confirm that replacing the simulator
with our bicycle-model predictions incurs negligible performance loss (Table 2, rows 9-10).

5 Experiments

5.1 Experimental Setting

Neural Policies as Proxy Human Policies. Experiments with real human participants are time-
consuming and exhibit high variability between trials. Following the prior works on interactive
imitation learning [10, 27], in addition to real-human experiments, we also incorporate neural policies
in the training loop of PPL to approximate human policies in Table 3, 4, and 5. The neural experts
are trained using PPO-Lagrangian [33] for 20 million environment steps.

In MetaDrive, the neural expert uses the following takeover rule when training all baselines and
our method PPL: if the predicted trajectory τ = f(s, an, H) contains any safety violation, such as
crashes or going off the road, or the average speed is too slow, the expert takes control for the next
H steps. In RoboSuite, the neural expert intervenes when the cumulative reward over the predicted
trajectory τ falls below a threshold ϵ. We set ϵ = 1 for the Table Wiping task and ϵ = 2 for the Nut
Assembly task.

In Table 1, we report experiments involving real humans in the MetaDrive safety benchmark. In
Table 3, Table 4, and Table 5, we report experiments with the neural policy as the proxy human policy
in the MetaDrive, Table Wiping, and Nut Assembly tasks, respectively.

Evaluation Metrics. In the Table Wiping task and Nut Assembly task, we report the success rate,
the ratio of episodes where the agent reaches the destination. In the MetaDrive safety benchmark, we
also report the episodic return and route completion rate during evaluation. The route completion
rate is the ratio of the agent’s successfully traveled distance to the length of the complete route.

We train each interactive imitation learning baseline five times using distinct random seeds. Then, we
roll out 50 trajectories generated by each model in the held-out evaluation environment and average
each evaluation metric as the model’s performance. During the evaluation, no expert is involved. The
standard deviation is provided. We fix H = 10 for all the interactive imitation learning baselines. In
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(a) MetaDrive (b) Robosuite: Table Wiping (c) Robosuite: Nut Assembly

Figure 4: Human interfaces of the three tasks: MetaDrive (a), Table Wiping (b), and Nut Assembly
(c). In (a), the agent’s forecasted trajectory (the red dots) leads to a collision, prompting the expert to
intervene via the gamepad (blue dots show the predicted rollout of the expert). In (b) and (c), the
expert observes the agent’s forecasted trajectory and intervenes via the keyboard if necessary.

Figure 5: Training process of PPL in the MetaDrive environment with the human expert over 20K
steps. We plot the test success rate (left), training takeover rate (top right), and training episodic
safety cost (bottom right). During training, when the agent’s forecasted trajectory (red dots) leads to
a collision, the human expert intervenes via the gamepad, and the corrected rollout is shown (blue
dots). When the agent’s forecasted trajectory is safe, it is visualized in green dots. The agent becomes
autonomous and performant during training, requiring fewer human interventions to maintain safety.

PPL, we fix β = 0.1, choose L = 4 for the MetaDrive benchmark and Table Wiping task, and set
L = 6 for the Nut Assembly task. In Fig. 8, we show how the choice of L affects the performance of
PPL in the MetaDrive benchmark.

We also report the total number of human-involved transitions (human data usage) and the overall
intervention rate, which is the ratio of human data usage to total data usage. These show how much
effort humans make to teach the agents.

Human Interfaces. Human subjects can take control through the Xbox Wireless Controller or the
keyboard and monitor the training process by visualizing environments on the screen. The predicted
trajectories are updated every H = 10 steps (one second), so that the human expert can intervene
promptly before the agent causes any safety violations and undesired behaviors.

Baselines. We test two imitation learning baselines: Behavior Cloning (BC) and GAIL [11], and
two confidence-based IIL methods: Ensemble-DAgger [23] and Thrifty-DAgger [12]. Four human-
in-the-loop IIL methods that learn from active human involvement are tested: Intervention Weighted
Regression (IWR) [22], Human-AI Copilot Optimization (HACO) [17], Expert Intervention Learning
(EIL) [42], and Proxy Value Propagation [28].

5.2 Baseline Comparison

In Table 1, we report the performance of our PPL and all the baselines with real human experts in the
MetaDrive safety benchmark. Our method PPL outperforms all the baselines and achieves a success
rate of 76% within 10K steps. The whole experiment of PPL takes only 12 minutes on a desktop
computer with an Nvidia GeForce RTX 4080 GPU.

In Table 3, 4, and 5, we report the performance of our PPL and all the baselines with neural experts
as proxy human policies in MetaDrive, Table Wiping, and Nut Assembly tasks, respectively. We
also plot the curves of the test-time success rate in Fig. 3. These tables and Fig. 3 show that PPL
achieves both fewer expert data usage and environment samples needed in both driving tasks and
robot manipulation tasks while significantly outperforming baselines in testing performance. These
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Table 1: Comparison of methods with training/testing statistics in the MetaDrive environment with
the real human expert. The overall intervention rate is given together with the human data usage.

Method Human-in-
the-Loop

Training Testing
Human Data Usage Total Data Usage Success Rate Episodic Return Route Completion

Human Expert – 20K – 0.95 ± 0.04 349.2 ± 18.2 0.98 ± 0.01

BC ✗ 20K – 0.0 ± 0.0 53.5 ± 22.8 0.16 ± 0.07

GAIL ✗ 20K 1M 0.14 ± 0.03 146.2 ± 17.1 0.44 ± 0.05

Ensemble-DAgger ✓ 3.8K (0.38) 10K 0.36 ± 0.11 233.8 ± 21.3 0.70 ± 0.02

Thrifty-DAgger ✓ 3.2K (0.32) 10K 0.45 ± 0.04 221.5 ± 26.4 0.62 ± 0.04

PVP ✓ 4.9K (0.49) 10K 0.46 ± 0.08 267.3 ± 15.0 0.71 ± 0.04

IWR ✓ 5.2K (0.52) 10K 0.23 ± 0.10 246.7 ± 10.7 0.62 ± 0.02

EIL ✓ 6.9K (0.69) 10K 0.01 ± 0.01 137.3 ± 26.1 0.40 ± 0.08

HACO ✓ 6.3K (0.63) 10K 0.11 ± 0.05 154.7 ± 14.7 0.45 ± 0.09

PPL (Ours) ✓ 2.9K (0.29) 10K 0.76 ± 0.07 324.8 ± 9.2 0.90 ± 0.06

Table 2: Ablation studies in MetaDrive with 10K
total data usage. We use the neural expert as the
proxy human policy.

Method
Expert Data

Usage
Route

Completion
Success

Rate

Imitation on a+ 1.9K 0.65 0.36
PPL with random a+ 2.2K 0.73 0.45
PPL with random a− 2.3K 0.69 0.38

PPL with DPO 1.6K 0.91 0.80
PPL with IPO 2.6K 0.61 0.35

PPL with SLiC-HF 3.0K 0.59 0.32

PPL with BC loss only 2.0K 0.72 0.42
PPL with CPO loss only 5.8K 0.31 0.04

PPL with rule-based f 1.9K 0.91 0.78
PPL (Ours) 1.8K 0.92 0.81

PVP

PPL (Ours)

Figure 6: We plot the steering control sequences
for both PVP and PPL on the same MetaDrive
map, with arrows representing the steering an-
gles every five steps. Both agents are trained to
10K steps. Compared to PVP, our method yields
smoother steering and more consistent speeds,
especially when navigating close to obstacles.

results suggest that our construction of the preference dataset accurately reflects human preferences
and helps speed up imitation learning. In addition, Fig. 6 shows that our method PPL produces
smoother control sequences and generates trajectories that better align with human preferences.

5.3 Ablation Studies

In Table 2, we perform ablation studies of our PPL in the MetaDrive safety benchmark with the
neural expert as proxy human policies.

Discarding positive or negative actions: In the first three rows of Table 2, we show that the advantage
of our method PPL arises from the constructed preference pairs (s̃, a+, a−) in the preference data
Dpref (Fig. 2 (right)), instead of merely emulating the positive actions a+ or simply avoiding taking
the negative actions a− in the preference buffer. As shown in Table 2, discarding the negative
actions a− and performing Behavior Cloning on the positive actions (Imitation on a+) leads to poor
performance, which is even worse than directly imitating the expert demonstrations in the human
buffer Dh (PPL with BC loss only). In addition, replacing the positive actions by random actions
(PPL with random a+) or the negative actions by random actions (PPL with random a−) also fails to
solve the MetaDrive benchmark.

Preference-based RL objectives: In our learning objective Eq. 4, we use the Contrastive Preference
Optimization (CPO) loss [45] to learn from the preference dataset Dpref. In Table 2 (rows 4–6), we
also report the performance of using other preference-based RL objectives from Direct Preference
Optimization (DPO) [31], IPO [1], and SLiC-HF [48]. For DPO and IPO, we use a reference policy
trained by Behavior Cloning from 10K expert demonstrations. Table 2 shows that using IPO (PPL
with IPO) and SLiC-HF (PPL with SLiC-HF) objectives degrade the performance of PPL. Using the
DPO objective (PPL with DPO) does not hurt the performance of PPL. However, the DPO objective
requires access to a pretrained reference policy, while our learning objective Eq. 4 does not.

Discarding the BC loss or preference loss: As shown in row 7 of Table 2, discarding the CPO loss
Lpref in Eq. 4 (PPL with BC loss only) significantly damages the performance of PPL. Discarding
the BC loss (PPL with CPO loss only) also damages the performance, because the BC loss helps
regularize our learned policy and avoid it deviating too much from the expert demonstrations.
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Figure 7: Performance of PPL under varying
trajectory-prediction noise levels ϵ in MetaDrive.
PPL still outperforms PVP when the trajectory
predictor is imperfect.
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Figure 8: Performance of PPL with different
preference horizons L in MetaDrive with 10K
and 15K total data usage. PPL has the best learn-
ing efficiency when we set L = 4 in MetaDrive.

Rule-based trajectory prediction model: Following Sec. 4.3, we also implement a rule-based
trajectory prediction model f by simulating the ego-vehicle dynamics for H steps. Using a rule-based
f (PPL with rule-based f ) has negligible effects on the performance of PPL. This shows that our
method still outperforms the IIL baselines even without relying on simulator rollouts.

5.4 Robustness Analysis

In Sec. 5.4, we evaluate PPL’s robustness to noise in the trajectory predictor (Fig. 7). We also
visualize the effect of the preference horizon L on PPL in Fig. 8.

In Fig. 7, we show that PPL is robust to noise in trajectory predictors. With an imperfect predictive
model, PPL still outperforms all the baselines. We inject random Gaussian noise enoise to the outputs s̃
of the trajectory predictor, and we set the norm ||enoise||2 = ϵ ∗ ||s̃||2. Then we gradually increase the
constant ϵ to test PPL’s robustness to noises in trajectory predictors. We use MetaDrive, Table Wiping,
and Nut Assembly environments following the same setups from Tables 3, 4, and 5, respectively. We
find that with a noisy predictive model, PPL still outperforms all the baselines in MetaDrive and Table
Wiping when the noise ϵ ≤ 0.25. In Nut Assembly, PPL outperforms the baselines when ϵ ≤ 0.125.

In Fig. 8, we visualize how the preference horizon L affects the test success rate of PPL in the
MetaDrive safety benchmark with 10K and 15K total data usage. As L increases from 2 to 4, the
agent gains additional corrective information from forecasted states in the preference buffer and
achieves higher success rates. Beyond L = 4, however, the benefit tapers off and eventually degrades,
since overly long horizons yield less accurate preference labels. Therefore, we observe peak learning
efficiency at L = 4. Notably, when 3 ≤ L ≤ 5, PPL trained for only 10K steps already outperforms
PVP trained for 15K steps. With an appropriately chosen preference horizon, PPL can substantially
reduce both training time and expert monitoring effort.

6 Conclusion

In this work, we propose Predictive Preference Learning from Human Interventions (PPL), a novel
interactive imitation learning algorithm that applies preference learning over predicted future trajecto-
ries to capture implicit human preferences. By converting each expert intervention into contrastive
preference labels across forecasted states, PPL directs corrective feedback toward the regions of
the state space the agent is most likely to explore. This approach substantially improves learning
efficiency and reduces both the number of required demonstrations and the expert’s cognitive load,
without offline pretraining and reward engineering.

Limitations. We assume that the expert always knows the optimal corrective action and demon-
strates it accurately, whereas human demonstrations can be suboptimal or inconsistent. Additionally,
all our experiments are conducted in simulation. The effectiveness and safety of PPL on real robots
operating in physical environments remain to be explored in future works.

Acknowledgment: This work was supported by the NSF Grants CCF-2344955 and IIS-2339769,
and ONR grant N000142512166. The human experiment in this study is approved through the
IRB#23-000116 at UCLA. ZP was supported by the Amazon Fellowship via UCLA Science Hub.

10



References
[1] Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal

Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from human
preferences. In International Conference on Artificial Intelligence and Statistics, pages 4447–4455. PMLR,
2024.

[2] Haoyuan Cai, Zhenghao Peng, and Bolei Zhou. Robot-gated interactive imitation learning with adaptive
intervention mechanism. International Conference on Machine Learning, 2025.

[3] Sonia Chernova and Andrea L Thomaz. Robot learning from human teachers. Springer Nature, 2022.

[4] Sonia Chernova and Manuela Veloso. Interactive policy learning through confidence-based autonomy.
Journal of Artificial Intelligence Research, 34:1–25, 2009.

[5] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal
of Robotics Research, page 02783649241273668, 2023.

[6] Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 4299–4307, 2017.

[7] Bin Fang, Shidong Jia, Di Guo, Muhua Xu, Shuhuan Wen, and Fuchun Sun. Survey of imitation learning
for robotic manipulation. International Journal of Intelligent Robotics and Applications, 3:362–369, 2019.

[8] Aditya Ganapathi, Priya Sundaresan, Brijen Thananjeyan, Ashwin Balakrishna, Daniel Seita, Jennifer
Grannen, Minho Hwang, Ryan Hoque, Joseph E Gonzalez, Nawid Jamali, et al. Learning dense visual
correspondences in simulation to smooth and fold real fabrics. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 11515–11522. IEEE, 2021.

[9] Lin Guan, Mudit Verma, Sihang Guo, Ruohan Zhang, and Subbarao Kambhampati. Widening the pipeline
in human-guided reinforcement learning with explanation and context-aware data augmentation. Advances
in Neural Information Processing Systems, 34, 2021.

[10] Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and Dorsa
Sadigh. Contrastive preference learning: learning from human feedback without rl. arXiv preprint
arXiv:2310.13639, 2023.

[11] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural In-
formation Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages 4565–4573, 2016.

[12] Ryan Hoque, Ashwin Balakrishna, Ellen Novoseller, Albert Wilcox, Daniel S. Brown, and Ken Goldberg.
Thriftydagger: Budget-aware novelty and risk gating for interactive imitation learning, 2021.

[13] Nico Kaempchen, Bruno Schiele, and Klaus Dietmayer. Situation assessment of an autonomous emergency
brake for arbitrary vehicle-to-vehicle collision scenarios. IEEE Transactions on Intelligent Transportation
Systems, 10(4):678–687, 2009.

[14] Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Claude Sammut and Achim G. Hoffmann, editors, Machine Learning, Proceedings of the Nineteenth
International Conference (ICML 2002), University of New South Wales, Sydney, Australia, July 8-12, 2002,
pages 267–274. Morgan Kaufmann, 2002.

[15] Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Hg-dagger:
Interactive imitation learning with human experts. In 2019 International Conference on Robotics and
Automation (ICRA), pages 8077–8083. IEEE, 2019.

[16] Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
Composing diverse driving scenarios for generalizable reinforcement learning. IEEE transactions on
pattern analysis and machine intelligence, 2022.

[17] Quanyi Li, Zhenghao Peng, and Bolei Zhou. Efficient learning of safe driving policy via human-ai copilot
optimization. In International Conference on Learning Representations, 2022.

11



[18] Chiu-Feng Lin, A Galip Ulsoy, and David J LeBlanc. Vehicle dynamics and external disturbance estimation
for vehicle path prediction. IEEE Transactions on Control Systems Technology, 8(3):508–518, 2000.

[19] Huihan Liu, Soroush Nasiriany, Lance Zhang, Zhiyao Bao, and Yuke Zhu. Robot learning on the job:
Human-in-the-loop autonomy and learning during deployment. The International Journal of Robotics
Research, page 02783649241273901, 2022.

[20] Huihan Liu, Yu Zhang, Vaarij Betala, Evan Zhang, James Liu, Crystal Ding, and Yuke Zhu. Multi-task
interactive robot fleet learning with visual world models. arXiv preprint arXiv:2410.22689, 2024.

[21] Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. Multimodal motion prediction
with stacked transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 7577–7586, 2021.

[22] Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Yuke Zhu, Li Fei-Fei, and Silvio Savarese. Human-
in-the-loop imitation learning using remote teleoperation. ArXiv preprint, abs/2012.06733, 2020.

[23] Kunal Menda, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Ensembledagger: A bayesian
approach to safe imitation learning. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5041–5048. IEEE, 2019.

[24] Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-free
reward. Advances in Neural Information Processing Systems, 37:124198–124235, 2024.

[25] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. arXiv preprint arXiv:2203.02155, 2022.

[26] Malayandi Palan, Gleb Shevchuk, Nicholas Charles Landolfi, and Dorsa Sadigh. Learning reward functions
by integrating human demonstrations and preferences. In Robotics: Science and Systems, 2019.

[27] Zhenghao Peng, Quanyi Li, Chunxiao Liu, and Bolei Zhou. Safe driving via expert guided policy
optimization. In 5th Annual Conference on Robot Learning, 2021.

[28] Zhenghao Mark Peng, Wenjie Mo, Chenda Duan, Quanyi Li, and Bolei Zhou. Learning from active human
involvement through proxy value propagation. Advances in neural information processing systems, 36,
2024.

[29] Romain Pepy, Alain Lambert, and Hugues Mounier. Reducing navigation errors by planning with realistic
vehicle model. In 2006 IEEE Intelligent Vehicles Symposium, pages 300–307. IEEE, 2006.

[30] Philip Polack, Florent Altché, Brigitte d’Andréa Novel, and Arnaud de La Fortelle. The kinematic bicycle
model: A consistent model for planning feasible trajectories for autonomous vehicles? In 2017 IEEE
intelligent vehicles symposium (IV), pages 812–818. IEEE, 2017.

[31] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36:53728–53741, 2023.

[32] Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard. Recent advances in robot
learning from demonstration. Annual Review of Control, Robotics, and Autonomous Systems, 3:297–330,
2020.

[33] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

[34] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Shared autonomy via deep reinforcement learning.
Robotics: Science and Systems, 2018.

[35] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661–668. JMLR Workshop
and Conference Proceedings, 2010.

[36] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings, 2011.

[37] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based learning of
reward functions. UC Berkeley, 2017.

12



[38] H. Saeidi, Justin D. Opfermann, Michael Kam, Sudarshan Raghunathan, S. Leonard, and A. Krieger. A
confidence-based shared control strategy for the smart tissue autonomous robot (star). In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1268–1275, 2018.

[39] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft
multi-agent challenge. ArXiv preprint, abs/1902.04043, 2019.

[40] William Saunders, Girish Sastry, Andreas Stuhlmueller, and Owain Evans. Trial without error: Towards
safe reinforcement learning via human intervention. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pages 2067–2069. International Foundation for Autonomous
Agents and Multiagent Systems, 2018.

[41] Esmaeil Seraj, Kin Man Lee, Zulfiqar Zaidi, Qingyu Xiao, Zhaoxin Li, Arthur Nascimento, Sanne van
Waveren, Pradyumna Tambwekar, Rohan Paleja, Devleena Das, et al. Interactive and explainable robot
learning: A comprehensive review. Foundations and Trends® in Robotics, 12(2-3):75–349, 2024.

[42] Jonathan Spencer, Sanjiban Choudhury, Matthew Barnes, Matthew Schmittle, Mung Chiang, Peter Ra-
madge, and Siddhartha Srinivasa. Learning from interventions. In Robotics: Science and Systems (RSS),
2020.

[43] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in neural
information processing systems, 33:3008–3021, 2020.

[44] Garrett Warnell, Nicholas R. Waytowich, Vernon Lawhern, and Peter Stone. Deep TAMER: interactive
agent shaping in high-dimensional state spaces. In Sheila A. McIlraith and Kilian Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1545–1554.
AAAI Press, 2018.

[45] Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton Murray,
and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm performance in
machine translation. arXiv preprint arXiv:2401.08417, 2024.

[46] Zhenghai Xue, Zhenghao Peng, Quanyi Li, Zhihan Liu, and Bolei Zhou. Guarded policy optimization with
imperfect online demonstrations. arXiv preprint arXiv:2303.01728, 2023.

[47] Maryam Zare, Parham M Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation learning:
Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics, 2024.

[48] Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

[49] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush Nasiriany, and
Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot learning. arXiv preprint
arXiv:2009.12293, 2020.

[50] Alex Zyner, Stewart Worrall, and Eduardo Nebot. A recurrent neural network solution for predicting driver
intention at unsignalized intersections. IEEE Robotics and Automation Letters, 3(3):1759–1764, 2018.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: Our Method and Experiments sections accurately address the claims in the
abstract and introduction.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Conclusion section (Sec. 6).
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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5.1.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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to reproduce that algorithm.
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the architecture clearly and fully.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
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material?

Answer: [Yes]

Justification: Our code is included in https://metadriverse.github.io/ppl, and the
experiment results can be faithfully reproduced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experimental settings, the training/test details, and the hyperpa-
rameters in Sec. 5.1.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: According to Sec. 5.1, we train our method and all the baselines five times
using distinct random seeds. We also report the standard deviation in Table 1 and 3.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Sec. 5.2, we report the type of GPU and the time of execution needed to
reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both positive and negative social impacts in the Ethics Statement
(Sec. H).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not include pretrained language models, image generators, or
scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited MetaDrive [16] and Robosuite [49] in our paper, the creators
of assets used in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not include new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We provide the instructions to the human participants in the supplemental
material.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We have obtained IRB approval to conduct this project, and we provide the
ethics statement in the Appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our method does not involve LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Algorithm

We summarize our method PPL in Alg. 1.

Algorithm 1 Predictive Preference Learning from Human Interventions (PPL)

1: Input: Hyperparameters H,L, β.
2: for timestep k = 0, H, 2H, . . . do
3: Agent samples action an ∼ πn(sk).
4: Predict future trajectory τ = f(sk, an, H) = (sk, s̃k+1, · · · , s̃k+H).
5: Human observes τ to decide whether to take over in the next H steps.
6: for timestep t = k, k + 1, · · · , k +H − 1 do
7: if Human takes over then
8: Human takes action ah ∼ πh(st).
9: Add (st, ah) to the human buffer Dh.

10: Agent samples action an ∼ πn(st).
11: Predict future trajectory τ ′ = f(st, an, L) = (st, s̃t+1, · · · , s̃t+L).
12: Add (s̃, ah, an) to the preference dataset Dpref for each s̃ in (st, s̃t+1, · · · , s̃t+L).
13: Observe st+1 ∼ P(· | st, ah).
14: else
15: Agent samples action an ∼ πn(st).
16: Observe st+1 ∼ P(· | st, an).
17: end if
18: Train policy πn with loss function Eq. 4.
19: end for
20: end for
21: Output: Policy πn.

B Additional Experimental Results

We report the performance of our PPL and all the baselines with neural experts as proxy human poli-
cies in MetaDrive (Table 3), Table Wiping (Table 4), and Nut Assembly (Table 5) tasks, respectively.
The test success rate curves of all three tasks are shown in Fig. 3.

Table 3: Comparison of methods with training/testing statistics in the MetaDrive environment with
the neural expert as the proxy human policy. The overall intervention rate is given together with the
expert data usage.

Method Expert-in-the-Loop Training Testing
Expert Data Usage Total Data Usage Success Rate Episodic Return Route Completion

Neural Expert – – – 0.83 ± 0.07 340.2 ± 15.9 0.93 ± 0.02

BC ✗ 20K – 0.12 ± 0.04 142.7 ± 27.5 0.46 ± 0.07

GAIL ✗ 20K 1M 0.34 ± 0.08 196.5 ± 14.1 0.60 ± 0.09

Ensemble-DAgger ✓ 3.2K (0.32) 10K 0.41 ± 0.08 238.6 ± 13.0 0.69 ± 0.07

Thrifty-DAgger ✓ 2.9K (0.29) 10K 0.49 ± 0.07 248.2 ± 27.8 0.75 ± 0.06

PVP ✓ 2.5K (0.25) 10K 0.56 ± 0.07 258.1 ± 23.4 0.76 ± 0.05

IWR ✓ 2.7K (0.27) 10K 0.33 ± 0.11 217.0 ± 20.9 0.67 ± 0.06

EIL ✓ 3.9K (0.39) 10K 0.11 ± 0.06 131.8 ± 29.5 0.42 ± 0.11

HACO ✓ 2.6K (0.26) 10K 0.36 ± 0.15 210.2 ± 25.2 0.64 ± 0.10

PPL (Ours) ✓ 1.2K (0.20) 6K 0.80 ± 0.04 329.9 ± 13.4 0.92 ± 0.03

Table 4: Results of different approaches in Table
Wiping.

Method Expert Data Usage Total Data Success Rate

Neural Expert – – 0.84
BC 10K – 0.11

GAIL 10K 1M 0.37

PVP 2.3K 4K 0.58
IWR 2.5K 4K 0.51
EIL 2.4K 4K 0.53

HACO 2.9K 4K 0.48
PPL (Ours) 0.2K 2K 0.80

Table 5: Results of different approaches in Nut
Assembly.

Method Expert Data Usage Total Data Success Rate

Neural Expert – – 0.60
BC 100K – 0.02

GAIL 100K 1M 0.08

PVP 49K 200K 0.35
IWR 54K 200K 0.29
EIL 48K 200K 0.25

HACO 77K 200K 0.15
PPL (Ours) 48K 200K 0.51
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The neural experts in Table 3, 4, and 5 are trained with PPO-Lagrangian [33] for 20M environment
steps, yet their test success rates still fall short of 100% for the following reasons. The MetaDrive
safety environments occasionally generate rare but challenging scenarios that even a well-trained
policy may fail to handle. In the Table Wiping task, the neural expert sometimes fails to remove one
or two markings on the whiteboard, leaving a small patch of dirt uncleaned. In the Nut Assembly
task, successful grasping requires the gripper to be precisely aligned with the metal ring’s handle,
which is highly sensitive to even minor action errors.

C Demo Video

We have attached our demo video to https://metadriverse.github.io/ppl. This video shows
how we conduct human experiments and the evaluation results of our method Predictive Preference
Learning from Human Interventions (PPL). This video includes five sections:

1. The first section gives an overview of Predictive Preference Learning, showing what human
observes on the screen and how human provides corrective demonstrations in an episode.

2. The second section is the footage of the MetaDrive human experiment, where the human
expert interacts with the driving agent via a gamepad.

3. The third section shows the evaluation results of the PPL agent in a held-out MetaDrive
test environment. We compare our approach PPL with the PVP baseline [28], and both
agents are trained to 10K timesteps. The evaluation results show that our approach PPL has
a higher test success rate and lower safety cost.

4. The fourth section shows the applicability of our methods to manipulation tasks in Ro-
bosuite [49]: Table Wiping and Nut Assembly. PPL successfully imitates the expert and
accomplishes both tasks in evaluation environments.

5. In the fifth section, we provide a full training session on MetaDrive. The video is played at
5× speed, and it shows how a human expert trains a PPL agent on MetaDrive in under 12
minutes, with approximately 1.8K demonstration steps and 10K environment steps.

D Human Subject Research Protocol

Human Participants. Five university students (ages 20–30) with valid driver’s licenses and video
gaming experience took part in the study voluntarily. After receiving a detailed overview of the
procedures and providing written informed consent under an IRB-approved protocol, each participant
completed a hands-on familiarization session. During this session, they were informed how the
predicted trajectories were shown on screen, and they practiced with our control interface and learning
environments until performing ten consecutive successful runs before the main experiments.

Main Experiment. Each participant began with one or two fully manual episodes to build con-
fidence, and then ceded control to the agent when they felt safe. Participants were instructed to
intervene only when the agent’s predicted trajectory appeared unsafe, illegal, or inconsistent with
their desired actions. They were directed to prioritize safe task completion and then to guide the
agent toward their personal driving or manipulation preferences.

E Notations

Before we prove Theorem 4.1, we recall all the notations in this work. We denote the human
policy as πh and the novice policy as πn. For any stochastic policy π(a | s) and the initial state
distribution d0 on state space S, we define the value function J(π) as the expected cumulative

return: J(π) = E
τ∼Pπ

[
∞∑
t=0

γtr(st, at)], wherein τ = (s0, a0, s1, a1, ...) is the trajectory sampled from

trajectory distribution Pπ induced by π, d0 and the state transition distribution P . We also denote

the Q-function of policy π as Q(s, a) = E
τ∼Pπ

[
∞∑
t=0

γtr(st, at)
∣∣s0 = s, a0 = a]. And we define the

discounted state distribution under π as dπ(s) = (1− γ) E
τ∼Pπ

[
∞∑
t=0

γtI[st = s]].
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In our algorithm PPL, we have a preference dataset Dpref containing preference pairs (s, a+, a−).
The preference loss function of policy π in PPL is defined as

Lpref(π) = |Dpref|−1
∑

(s′,a+,a−)∈Dpref

[
− log σ

(
β log π(a+ | s)− β log π(a− | s)

)]
, (7)

where β is a positive constant and σ(x) = (1 + exp(−x))−1 is the Sigmoid function.

We denote the state distribution in Dpref as

dpref(s) = |Dpref|−1
∑

(s′,a+,a−)∈Dpref

I[s′ = s]. (8)

In addition, for any state s in Dpref with dpref(s) > 0, we denote the empirical preference-pair
distribution in state s as

ρspref(ah, an) =

∑
(s′,a+,a−)∈Dpref

I[s′ = s, a+ = ah, a
− = an]∑

(s′,a+,a−)∈Dpref

I[s′ = s]
, (9)

which is a distribution on A×A.

F Proof of Theorem 4.1

Our goal is to prove that the performance gap J(πh)− J(πn) between the human policy πh and the
agent policy πn can be bounded by the following three error terms: the state distribution shift δdist,
the quality of preference labels δpref , and the optimization error ϵ. We denote the total variation for
any two distributions P,Q on the same space as DTV(P,Q) = 1

2∥P −Q∥1.

Here, we formally define the three error terms. The first state distribution shift error arises from
the difference between the distribution of states in the preference dataset Dpref (denoted as dpref(s))
and the discounted state distribution of the agent’s policy πn (denoted as dπn

(s)). To define the
distribution shift error δdist in PPL, we use the total variation between the two distributions, i.e.,

δdist = DTV(dπn
, dpref). (10)

The second error term arises from the misalignment of the positive actions in the preference dataset,
as the human action ah in each tuple (s̃i, ah, an) ∈ Dpref is sampled in state s instead of the predicted
future state s̃i. In an ideal preference dataset, one would observe expert and novice actions drawn
directly at s̃i. To quantify this error, we define the following distribution ρsideal(ah, an) = πh(ah |
s)πn(an | s) on A×A for any state s, i.e., the distribution over pairs (ah, an) if both policies were
sampled at directly at state s. Then we use

δpref = E
s∼dpref

DTV(ρ
s
ideal, ρ

s
pref) (11)

to define the errors in the preference dataset.

Finally, we define the optimization error of the agent policy πn as

ϵ = Lpref(πn)− Lpref(πh). (12)

Under these notations, we have the following Thm. F.1. We note that when we choose a small
β ≤ M−2 (M is defined in Thm. F.1), we have

J(πh)− J(πn) =
1

1− γ
·O

(√ϵ+ 4 log 2 · δpref
2β

+ 2δdist

)
. (13)

Theorem F.1 (Formal Statement of Theorem 4.1). We denote the Q-function of the human policy
πh as Q∗(s, a). We assume that for any (s, a, a′), |Q∗(s, a)−Q∗(s, a′)| ≤ U , | log πh(a|s) −
log πh(a

′|s)| ≤ M , and | log πn(a|s) − log πn(a
′|s)| ≤ M , where U,M are positive constants.

Then, we have

J(πh)− J(πn) ≤
U

1− γ
·
(√ϵ+ 4(βM + log 2) · δpref

2β
+

βM2

8
+ 2δdist

)
. (14)
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Proof. The key is to combine Lem. F.2, Lem. F.3, and Lem. F.4 to obtain the bound.

From Lem. F.2, we can use the state distribution shift and the total variation of the two policies
πh, πn on dpref to bound the optimality gap:

J(πh)− J(πn) ≤
U

1− γ
·
(

E
s∼dpref

DTV

(
πh(·|s), πn(·|s)

)
+ 2δdist

)
. (15)

In addition, for any policy π, we define the function

g(π) = E
s∼dpref

E
a+∼πh(s),a−∼πn(s)

[
− log σ

(
β log π(a+ | s)− β log π(a− | s)

)]
, (16)

which represents the preference loss on ideal preference pairs, where a+, a− are sampled directly at
each state s.

Using F.4, we can bound the total variation term E
s∼dpref

DTV

(
πh(·|s)

)
by g(πn)− g(πh):

E
s∼dpref

DTV

(
πh(·|s), πn(·|s)

)
≤

√
g(πn)− g(πh)

2β
+

βM2

8
. (17)

In addition, by Lem. F.3, we can also bound g(πn)− g(πh) by the optimization error ϵ on Lpref and
the misalignment of preference levels δpref :

g(πn)− g(πh) ≤ ϵ+ 4(βM + log 2) · δpref . (18)

Combining Eq. 15, 17, and 18 yields Eq. 14.

Lemma F.2 (Performance Optimality Gap on the State Distribution Shift). We recall that dpref(s) =
|Dpref|−1 E

(s′,a+,a−)∼Dpref

I[s′ = s], and we define U = max
s∈S,a1,a2∈A

|Q∗(s, a1)−Q∗(s, a2)|.

Then, for any two stochastic policies πh, πn, we have

J(πh)− J(πn) ≤
U

1− γ
·
(

E
s∼dpref

DTV

(
πh(·|s), πn(·|s)

)
+ 2δdist

)
. (19)

where δdist = DTV(dπn , dpref).

Proof Sketch. The key is to use the Performance Difference Lemma (Lem. G.2) on J(πh)− J(πn),
yielding Eq. 20. Then, we can apply Lem. G.1, which bounds the expectation on s ∼ dpref
and s ∼ dπn

by the distribution shift term δdist. Finally, applying the assumption U =
max

s∈S,a1,a2∈A
|Q∗(s, a1)−Q∗(s, a2)| bounds the difference of the Q-function by the total variation

between πh and πn.

Proof. By the Performance Difference Lemma (Lem. G.2), we have

J(πh)− J(πn) =
1

1− γ
E

s∼dπn

E
ah∼πh(s),an∼πn(s)

[Q∗(s, ah)−Q∗(s, an)] . (20)

By Lem. G.1, as dπn
and dpref are two distributions on the same state space S, we have

(1− γ)(J(πh)− J(πn))

≤ E
s∼dpref

E
ah∼πh(s),an∼πn(s)

[Q∗(s, ah)−Q∗(s, an)]

+ 2DTV(dπn , dpref) ·max
s∈S

∣∣∣∣ E
ah∼πh(s),an∼πn(s)

[Q∗(s, ah)−Q∗(s, an)]

∣∣∣∣
≤ E

s∼dpref

E
ah∼πh(s),an∼πn(s)

[Q∗(s, ah)−Q∗(s, an)]

+ 2δdist ·max
s∈S

E
ah∼πh(s),an∼πn(s)

|Q∗(s, ah)−Q∗(s, an)|

≤ E
s∼dpref

[
E

ah∼πh(s)
Q∗(s, ah)− E

an∼πn(s)
Q∗(s, an)

]
+ 2U · δdist,

(21)
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where we use U = max
s∈S,a1,a2∈A

|Q∗(s, a1)−Q∗(s, a2)| in the last inequality of Eq. 21.

In addition, πh(s) and πn(s) are two probability distributions on the same action space A. By Lem.
G.1, we have for any s ∈ S,

E
ah∼πh(s)

Q∗(s, ah)− E
an∼πn(s)

Q∗(s, an) ≤ U ·DTV

(
πh(·|s), πn(·|s)

)
. (22)

This proves that

J(πh)− J(πn) ≤
U

1− γ
·
(

E
s∼dpref

DTV

(
πh(·|s), πn(·|s)

)
+ 2δdist

)
. (23)

Lemma F.3 (Misalignment of Preference Pairs). We recall that the loss function of the policy π is
Lpref(π) = − E

(s,a+,a−)∼Dpref

[log σ (β log π(a+ | s)− β log π(a− | s))]. And the optimization loss is

defined as ϵ = Lpref(πn)− Lpref(πh).

In addition, following Eq. 16, for any policy π, we define

g(π) = E
s∼dpref

E
a+∼πh(s),a−∼πn(s)

[
− log σ

(
β log π(a+ | s)− β log π(a− | s)

)]
. (24)

Under the assumption that for any (s, a, a′), | log πh(a|s)− log πh(a
′|s)| ≤ M , and | log πn(a|s)−

log πn(a
′|s)| ≤ M , we have

we can bound
g(πn)− g(πh) ≤ ϵ+ 4(βM + log 2) · δpref , (25)

where δpref = E
s∼dpref

DTV(ρ
s
ideal, ρ

s
pref).

Proof Sketch. The key is to apply Lem. G.1 on the two distributions ρsideal and ρspref , so that we can
bound the difference of Lpref(π) and g(π) for any policy π by O(δpref).

Proof. For any s ∈ S, we denote ρsideal(ah, an) = πh(ah | s)πn(an | s), a probability distribution
on A×A. We also denote ρspref(ah, an) = ρpref(s, ah, an)/dpref(s) for any s such that dpref(s) > 0,
where we recall that ρpref(s, ah, an) = |Dpref|−1 E

(s′,a+,a−)∼Dpref

I[s′ = s, a+ = ah, a
− = an].

The key is that ρsideal and ρspref are two distributions on the same space A × A, and we can apply
Lem. G.1 on Eq. 24 to obtain the proof.

We denote lπ(s, a+, a−) = − log σ (β log π(a+ | s)− β log π(a− | s)).
We also denote lπmax = max

s,a+,a−
|lπ(s, a+, a−)|, and lmax = max(lπh

max, l
πn
max). Then, for any policy π,

g(π) = E
s∼dpref

E
a+∼πh(s),a−∼πn(s)

lπ(s, a+, a−)

= E
s∼dpref

E
(a+,a−)∼ρs

ideal

lπ(s, a+, a−)

≤ E
s∼dpref

[
2lπmax ·DTV(ρ

s
ideal, ρ

s
pref) + E

(a+,a−)∼ρs
pref

lπ(s, a+, a−)
]

= 2lπmaxδpref + E
s∼dpref

E
(a+,a−)∼ρs

pref

lπ(s, a+, a−)

= 2lπmaxδpref + |Dpref|−1
∑

(s,a+,a−)∈Dpref

lπ(s, a+, a−)

= 2lπmaxδpref + Lpref(π).

(26)

Similarly, we can obtain that g(π) ≥ −2lπmaxδpref + Lpref(π) for any policy π. Thus we have

g(πn)− g(πh) ≤ 4lmaxδpref + (Lpref(πn)− Lpref(πh)) = 4lmaxδpref + ϵ. (27)
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Finally, under the condition that | log π(a|s) − log π(a′|s)| ≤ M for any (s, a, a′), we have
|lπ(s, a, a′)| ≤ − log σ(−βM) = log(1 + exp(βM)) ≤ βM + log 2.

This implies that lmax ≤ βM + log 2 and completes the proof.

Lemma F.4 (Optimization Error Bounds the Total Variation). We assume that for any (s, a, a′),
| log πh(a|s)− log πh(a

′|s)| ≤ M , and | log πn(a|s)− log πn(a
′|s)| ≤ M .

We recall that g(π) = E
s∼dpref

E
a+∼πh(s),a−∼πn(s)

[− log σ (β log π(a+ | s)− β log π(a− | s))],

which is defined in Eq. 16. Then we have

E
s∼dpref

DTV

(
πh(·|s), πn(·|s)

)
≤

√
g(πn)− g(πh)

2β
+

βM2

8
. (28)

Proof Sketch. First, we define

f(π) = −β

2
E

s∼dpref

E
a+∼πh(s),a−∼πn(s)

[
log π(a+|s)− log π(a−|s)

]
+ log 2. (29)

Using the Taylor’s expansion on the function log σ(x) at x = 0, when the policy π satisfies
| log π(a|s)− log π(a′|s)| ≤ M for any (s, a, a′), we can obtain that |g(π)− f(π)| ≤ β2M2

8 .

In addition, f(πn)− f(πh) bounds the KL divergence of the two policies πh and πn over s ∼ dpref .
So we can use Pinsker’s inequality to obtain the bound on DTV

(
πh(·|s), πn(·|s)

)
.

Proof. For any (s, a+, a−), we denote un(s, a
+, a−) = log πn(a

+|s) − log πn(a
−|s), and

uh(s, a
+, a−) = log πh(a

+|s) − log πh(a
−|s). From the assumptions, we can obtain that

|un(s, a
+, a−)| ≤ M and |uh(s, a

+, a−)| ≤ M .

By definition of the function g(·), we have g(πn) − g(πh) =
E

s∼dpref

E
a+∼πh(s),a−∼πn(s)

[log σ (β · uh(s, a
+, a−))− log σ (β · un(s, a

+, a−))].

The Taylor’s expansion of log σ(x) at x = 0 ensures that for any x ∈ R, we have∣∣∣∣log σ(x) + log 2− 1

2
x

∣∣∣∣ ≤ 1

8
x2. (30)

This ensures that

g(πn) = E
s∼dpref

E
a+∼πh(s),a−∼πn(s)

[
− log σ

(
β · un(s, a

+, a−)
)]

≥ log 2− β

2
E

s∼dpref

E
a+∼πh(s),a−∼πn(s)

un(s, a
+, a−)− β2M2

8
,

(31)

and similarly,

g(πh) = E
s∼dpref

E
a+∼πh(s),a−∼πn(s)

[
− log σ

(
β · uh(s, a

+, a−)
)]

≤ log 2− β

2
E

s∼dpref

E
a+∼πh(s),a−∼πn(s)

uh(s, a
+, a−) +

β2M2

8
,

(32)

Hence, we have

g(πn)− g(πh) ≥
β

2
E

s∼dpref

E
a+∼πh(s),a−∼πn(s)

[
uh(s, a

+, a−)− un(s, a
+, a−)

]
− β2M2

4

=
β

2
E

s∼dpref

E
a+∼πh(s),a−∼πn(s)

[
log

πh(a
+|s)

πh(a−|s)
− log

πn(a
+|s)

πn(a−|s)

]
− β2M2

4

=
β

2
E

s∼dpref

[
E

a+∼πh(s)
log

πh(a
+|s)

πn(a+|s)
+ E

a−∼πn(s)
log

πn(a
−|s)

πh(a−|s)

]
− β2M2

4
.

(33)
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By the definition of KL divergence, we have

g(πn)− g(πh) =
β

2
E

s∼dpref

[
KL

(
πh(·|s)

∥∥∥πn(·|s)
)
+KL

(
πn(·|s)

∥∥∥πh(·|s)
)]

− β2M2

4

≥ 2β E
s∼dpref

[
DTV

(
πh(·|s), πn(·|s)

)]2
− β2M2

4
,

(34)

where we use Pinsker’s inequality to obtain the bound on DTV

(
πh(·|s), πn(·|s)

)
from the KL

divergence.

Finally, we apply the inequality E[X2] ≥ (E[X])2 on X = DTV

(
πh(·|s), πn(·|s)

)
, so that we have

g(πn)− g(πh) ≥ 2β
[

E
s∼dpref

DTV

(
πh(·|s), πn(·|s)

)]2
− β2M2

4
. (35)

This proves that

E
s∼dpref

DTV

(
πh(·|s), πn(·|s)

)
≤

√
g(πn)− g(πh)

2β
+

βM2

8
. (36)

G Technical Lemmas

Lemma G.1 (Expectation Difference via Total Variation). Let P and Q be two probability distri-
butions on a measurable space X , and let f : X → R be any measurable function satisfying the
uniform bound |f(x)| ≤ M for any x ∈ X . Then∣∣∣∣ E

x∼P (·)
f(x)− E

x∼Q(·)
f(x)

∣∣∣∣ ≤ 2M ·DTV(P,Q), (37)

where DTV(P,Q) = 1
2∥P −Q∥1 is the total variation distance.

In addition, when the measurable function g satisfies the bound |g(x1) − g(x2)| ≤ M ′ for any
x1, x2 ∈ X , we have ∣∣∣∣ E

x∼P (·)
g(x)− E

x∼Q(·)
g(x)

∣∣∣∣ ≤ M ′ ·DTV(P,Q). (38)

Proof. When |f(x)| ≤ M for any x, we have∣∣∣∣ E
x∼P (·)

f(x)− E
x∼Q(·)

f(x)

∣∣∣∣ =
∣∣∣∣∣∑

x

f(x) · (P (x)−Q(x))

∣∣∣∣∣
≤

∑
x

|f(x)| · |P (x)−Q(x)|

≤ M ·
∑
x

|P (x)−Q(x)|

= 2M ·DTV(P,Q).

(39)

When |g(x1)− g(x2)| ≤ M ′ for any x1, x2 ∈ X , we set f(x) = g(x)− 1
2c, where c = sup

x∈X
f(x) +

inf
x∈X

f(x). As we have |f(x)| ≤ M ′/2 for any x ∈ X , we have∣∣∣∣ E
x∼P (·)

g(x)− E
x∼Q(·)

g(x)

∣∣∣∣ = ∣∣∣∣ E
x∼P (·)

f(x)− E
x∼Q(·)

f(x)

∣∣∣∣ ≤ M ′ ·DTV(P,Q). (40)
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Lemma G.2 (Performance Gap Between Human Policy and Novice Policy). We denote the Q-function

of human policy πh as Q∗(s, a) = E
τ∼Pπh

[
∞∑
t=0

γtr(st, at)
∣∣s0 = s, a0 = a].

For the human policy πh and the novice policy πn whose value functions are J(πh), J(πn), respec-
tively, we have

J(πh)− J(πn) =
1

1− γ
E

s∼dπn

[
E

ah∼πh(s)
Q∗(s, ah)− E

an∼πn(s)
Q∗(s, an)

]
. (41)

Proof. We denote the Q-function of novice policy πn as Qn(s, a) = E
τ∼Pπn

[
∞∑
t=0

γtr(st, at)
∣∣s0 =

s, a0 = a].

We denote value functions of πh, πn as V ∗(s) = E
a∼πh(s)

Q∗(s, a) and Vn(s) = E
a∼πn(s)

Qn(s, a),

respectively. And we have J(πh) = E
s0∼d0

V ∗(s0), and J(πn) = E
s0∼d0

Vn(s0).

We define the advantage function of πh as A∗(s, a) = Q∗(s, a)− V ∗(s).

By the performance difference lemma (Lemma 6.1, [14]), we have

E
s0∼d0

[
Vn(s0)− V ∗(s0)

]
=

1

1− γ
E

s∼dπn

[
E

a∼πn(s)
A∗(s, a)

]
. (42)

This implies that

E
s0∼d0

[
Vn(s0)− V ∗(s0)

]
=

1

1− γ
E

s∼dπn

[
E

a∼πn(s)
[Q∗(s, a)− V ∗(s)]

]
=

1

1− γ
E

s∼dπn

[
− V ∗(s) + E

a∼πn(s)
Q∗(s, a)

]
=

1

1− γ
E

s∼dπn

[
− E

a∼πh(s)
Q∗(s, a) + E

a∼πn(s)
Q∗(s, a)

]
.

(43)

Multiplying −1 on both sides, we can obtain that

J(πh)− J(πn) =
1

1− γ
E

s∼dπn

[
E

ah∼πh(s)
Q∗(s, ah)− E

an∼πn(s)
Q∗(s, an)

]
. (44)

H Ethics Statement

Our Predictive Preference Learning from Human Interventions (PPL) delivers a human-friendly,
human-in-the-loop training process that increases automation while minimizing expert effort, ad-
vancing more intelligent AI systems with reduced human burden. All the experiments are conducted
entirely in simulation, ensuring no physical risk to participants. All volunteers provided informed
consent, were compensated above local market rates, and could pause or withdraw from the study
at any time without penalty. Individual sessions lasted less than one hour, with a mandatory rest
period of at least three hours before any subsequent participation. No personal or sensitive data was
collected or shared. We have obtained the IRB approval to conduct this project.

While PPL promises positive social impact by streamlining human-AI collaboration, it may also
encourage overreliance on automated systems or inherit biases present in expert involvement.
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