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Abstract

Self-supervised learning (SSL) has overcome the barrier of labelled supervision1

by learning representations contrastively or using clustering approaches or with2

redundancy reduction mechanisms and not limiting to distillation approaches. In3

the SSL framework, the major contributors are loss functions, augmentations or4

memory banks. In the SSL Regime, there is quite less work emphasizing the5

importance of distance metrics or the similarity function and how it impacts the6

quality of representations acquired from SSL training protocol.7

In this work, we study how an additional Euclidean metric can contribute to the8

learning of the SSL model. Our experiments suggest that adding an additional9

Euclidean metric to the contrastive SSL loss function aids in learning better repre-10

sentations and provides improvements in classification and robustness tasks. Also,11

we have seen some interpretable results out from our SSL loss. Although this12

work is currently confined to comparing with one of the standard works by Chen13

et al. [1], we believe it has a much broader scope in addressing this problem by14

approaching it with the theoretical motivation.15

1 Introduction16

Recently, contrastive self-supervised learning (SSL) has shown closer performance with supervised17

approaches. The underlying reason for competent performance can be due to appropriate augmenta-18

tions [2, 3, 4], contrastive loss functions [1, 5], and the use of memory banks[6, 7].19

The literature is evident that contrastive representation learning (CRL) has shown its recent success in20

vast domains [8]. In one of the well-established approaches of contrastive learning, [1], the samples21

are learned by the deep neural networks with an intuition of increasing the positive pair similarity and22

decreasing the negative pair similarity simultaneously. Here, the representations acquired by deep23

neural networks are operated on the unit hypersphere. The loss function aids learning by pushing24

dissimilar representations away from similar ones. Constricting the final representational space to25

a unit sphere can provide greater performance for both supervised [9] and unsupervised learning26

tasks[10]. Finally, maximizing the representational similarity between the positive pairs on the27

hypersphere significantly affected the learning of the neural networks.28

In a contrastive loss function, the similarity distance metric plays a significant role in calculating29

similarities among the acquired representations. The spherical distance metrics such as cosine30

similarity have shown tremendous performance compared to Euclidean, or Manhattan Distances31

[11, 12]. Recent works emphasized the influence of temperature scaling parameters and uniformity32

of embedding space on performance. In comparison, this work aims to provide the importance of33

distance metrics operating on the hyperspherical manifold.34
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Hyperspherical Learning It is well established that, Hyperspherical learning provides general-35

ization in pattern recognition as it constricts the representational space to an n-dimensional sphere36

[13]. The learning of representations on hyperspherical manifold acquired attention as it leveraged37

performance by proposing various angular margin objective functions for tackling Face Recognition38

task[14, 15, 16, 17]. Also, some applications of hyperspherical learning can be seen in few-shot recog-39

nition [18, 19, 20, 21]. When uniformly sampled distributions are mapped onto the unit hypersphere,40

the representations tend to be refined [10]. In variational autoencoders, the latent representations41

acquired on the Hypersphere are better and more stable compared to that of Euclidean space [11, 12].42

Hence, the literature shows hyperspherical learning provides better representations and performance43

than Euclidean space.44

Contrastive Learning The contrastive self-supervised learning has provided tremendous through-45

put with appropriate augmentations [2, 3, 4], contrastive loss functions [1, 5], and the use of memory46

banks[6, 7]. Some works provided good performance without negative samples[22] and others47

without the use of projection head [23].48

Contrastive Losses Operating on Hypersphere Each component that contributes to the contrastive49

learning framework is studied extensively. Here, we constrict to objective functions which operate on50

the Hypersphere. We consider these works are closely related to our work. First, Chen et al. [1] have51

provided a standard framework and have utilized an objective function that operates on hypersphere52

by scaling the radius (1/τ times). Wang et al. [5] have proposed two salient properties of contrastive53

losses, which are alignment and uniformity. Also, Chen et al. [24] have factorized the NT-Xent loss54

[1] into two proportions where one is responsible for the alignment and the other for distribution.55

This contrastive loss is assessed with various distribution criteria. Recently, Wang et al. [25] have56

provided some substantial analysis by varying temperature scaling parameters for the NT-Xent loss57

[1] and clearly detailed tolerance-uniformity dilemma.58

Our Contributions59

1. This work theoretically motivates that the Euclidean and spherical metrics are equivalent60

metrics and share the same topological regime on hypersphere. Thus an additional dis-61

tance metric could provide reliable improvements by not only learning representations by62

discriminating them across the spherical curvature but also on the plane.63

2. The empirical results are competitive in various tasks such as classification and robustness.64

2 Method65

The section follows by providing an introduction to the contrastive learning framework. Then, the66

theoretical motivation to operate the Euclidean distance metric on the hyperspherical manifold and67

provided. Finally, we provide our loss functions and perspectives to analyze the significance of68

proposed loss function.69

2.1 Contrastive Framework70

We chose the work by Chen et al. [1] for the contrastive representational framework. A detailed71

description of this framework is provided in the Appendix B. The loss function of this framework is,72

LNT−Xent = − log

(
eũ

T
i ṽi/τ∑2N

j=1 1[i ̸=j]e
ũT
i ṽj/τ

)
(1)

2.2 Additional Euclidean Distance Metrics for Contrastive SSL73

As the existing loss LNT−XNT operates on a hypersphere with the spherical similarity metric (refer74

Appendix B). But, in order to embed the Euclidean distance in the existing loss function, the Euclidean75

and spherical metrics should be topologically equivalent i.e. they have to share the same metric76

topology on Hypersphere. As our Theorem 1 guarantees the topological equivalence we embed this77

Euclidean metric directly into contrastive loss function LNT−XNT .78
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Theorem 1. The metric topology of Sn determined by the Euclidean distance metric deuclid is79

equivalent to metric topology of Sn determined by the spherical distance metric dsphere (Proof is80

detailed in the appendix).81

As the Euclidean distance and spherical distances both can operate on the same metric topological82

space (unit hypersphere) we embed these metrics in the contrastive loss function to understand their83

behaviour when operated simultaneously on Euclidean and spherical Metrics. Thus we term them84

double metrics (DM) and use this throughout the study.85

(2)LDMij = −α log

(
eũ

T
i ṽi/τ∑2N

j=1 1[i ̸=j]e
ũT
i ṽj/τ

)
− β log

(
e|ũi−ṽi|2∑2N

j=1 1[i̸=j]e|ũi−ṽj |2

)

The α and β parameters are weighting functions (hyperparameters) that are to be tuned for optimal86

loss landscape. In this work, we evaluate four different settings for α and β parameters and provide87

our detailed implementations for these choices of parameters which are detailed in Table 1.88

Loss Parameters
LDM1

α = 0.75, β = 0.25
LDM2

α = 0.50, β = 0.50
LDM3 α = 0.25, β = 0.75
LDM4 α = 1.00, β = 1.00

Table 1: Variants of DM Losses

Geometric Intuition Now we comprehend the role of similar-89

ity metrics in the contrastive loss function geometrically. For90

this, let us consider two feature representations acquired from a91

neural network contrastively as rf1 , and rf2 . These feature rep-92

resentations are l2-normalised (r̃f1 , and r̃f2 ) and now they lie on93

unit hypersphere. Next, cosine similarity is calculated between94

r̃f1 , and r̃f2 and temperature scaling(τ ) is applied. The imme-95

diate result of τ can be seen as an extension of the radius by a96

scale of 1
τ i.e. unit hypersphere extends its radius from one to97

1
τ . Now, this temperature-scaled similarity metric is used in the98

LNT−XNT loss1. But, in this work we also calculate the Euclidean distance for normalised features99

r̃f1 , and r̃f2 and aggregate them with LNT−XNT loss by appropriate weighting coefficients (α, β).100

This helps to analyze and discriminate the representations from both the unit-hypersphere and the101

planar respectively (For example refer to Figure. 2). We are not aware of the exact embedding space102

of neural networks but are trying to map these representations on a unit-sphere with l2-norm. So, our103

intuition helps to discriminate the representation space by the presence of both planar and curvature104

information with the help of Euclidean and spherical metrics.105

3 Experiments106

3.1 Performance107

Loss Function Variants Test Accuracy
CIFAR-10 CIFAR-100 ImageNet-200

SimCLR [1] LNT−Xent 80.87 59.08 44.03

Ours

LDM1 80.82 59.63 44.48
LDM2

80.91 58.69 43.98
LDM3

81.85 59.22 44.58
LDM4

80.38 58.36 44.30

Table 2: The table below provides the empirical performance of
the individual objective functions for standard classification data.

As mentioned, to evaluate the108

performance of DM losses109

we have utilized standard110

classification data CIFAR-10,111

CIFAR-100, and ImageNet-200.112

From the results illustrated in113

Table 2, one can infer that with-114

out any additional increment115

in computational expense the116

DM losses perform superior117

for most of the scenarios.118

Specifically, the third version of DM loss LDM3
has shown greater performance in most of the119

scenarios.120

121

1This increment in radius will extend the representational space and thus the samples will have the more
cross-sectional volume to occupy.
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3.2 Robustness122

The Neural Networks are tested for their robustness for safety-critical applications; thus, we assess123

whether the proposed models are robust. In this work, we assess our models by considering two124

types of robustness, i.e., Corruptions, Distributional Shifts, and Data Biases. The significance of each125

robustness task and their evaluation strategy for our study are detailed in Appendix D.126

Loss Augmentation mCE (%) rel. mCE (%)
LNT−Xent

Standard

100 100
LDM1 100.02 100.04
LDM2 100.21 100.29
LDM3 99.73 99.53

LNT−Xent

AugMix
[26]

96.93 86.14
LDM1

96.66 87.19
LDM2

96.71 86.12
LDM3

96.13 86.15

Table 3: Robustness assessment for corruptions.

Corruptions To evaluate the127

robustness to corruptions, we128

consider the ImageNet-C dataset129

[27]. From results illustrated130

in Table 3, with standard aug-131

mentations LDM3
has less er-132

ror compared to SimCLR. Also,133

when AugMix is used, LDM3
has134

very low mCE, but almost all the135

losses have similar rel. mCE2.136

Cumulating these results, we say137

LDM3 is robust to corruption.138

Biases To assess the robustness139

of models to biases we consider140

two synthetic datasets Colored MNIST, Corrupted CIFAR and one real-world dataset– Biased FFHQ141

[28].As self-supervised contrastive learning does not rely on labels, it is crucial to understand the142

representations acquired from biased data.So from Table 4 it can be seen that DM contrastive loss143

outperforms every biased dataset. Also, LDM3
has provided significant performance in most of the144

scenarios. Also with our analysis, we say that DM losses provide better performance with conflicting145

samples.146

4 Future Directions and Conclusion147

Dataset Ratio (%) LNT−Xent [1] Ours
LDM1

LDM2
LDM3

LDM4

Colored
MNIST

0.5 87.35 86.03 86.38 85.14 87.91
1.0 90.36 90.49 90.33 91.05 90.71
2.0 92.83 92.48 92.81 92.84 92.04
5.0 94.81 94.42 95.09 95.14 95.05

Corrupted
CIFAR

0.5 25.50 26.04 25.55 25.70 26.31
1.0 28.58 28.47 28.32 28.51 28.98
2.0 33.33 32.56 33.71 33.71 33.38
5.0 40.39 40.66 39.44 41.09 40.07

Table 4: Robustness assessment for data biases.

These DM contrastive losses148

were interpreted from their un-149

derlying geometrical significance150

but, have shown their leveraging151

performance on standard image152

classification data, biased data153

and data with corruptions. The154

key contribution of additional Eu-155

clidean Metric to the loss func-156

tion is that they do not need157

any additional computational re-158

source and provides better perfor-159

mance under various scenarios. The experiments prove that DM losses do not fluctuate in their160

performance with altering temperature (refer Table 5) and they provide a significant performance of161

standard classification and robustness tasks.162

There are a couple of limitations which we tend to address in future studies. First, these loss functions163

are restricted to contrastive-based approaches and thus can only work for certain set of loss functions164

[1, 5, 24, 29]. In the future, we are willing to analyse the impact of various distance metrics on SSL165

framework and can be applied to various methods [30, 31, 32] to attain a unified perspective. It166

should be noted that DM losses are sensitive to α, β as they control the distance metrics operating167

on the hypersphere. To have significant performance, a lower weight is given for loss operating on168

spherical distance and a higher weight for the loss operating with Euclidean distance (LDM3
). Thus,169

a better hyperparameter refinement is needed to reach the optima in the loss landscape.170

2The corruption error for each corruption sub-category is tabulated in the Appendix Section
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A Broader Impact279

A simple geometric distance function can enhance the performance for the considered downstream280

tasks. The scope for DM losses is also into upstream tasks applications but not limited to image281

denoising, segmentation, reconstruction and generation.282

Our method does not extensively increase computational resources to excel in the performance but,283

provides a simple geometric trick and improves baselines. Also, the authors have firmly decided to284

contribute to safe AI and thus strive to reduce AI biases. The self-supervised learning methodically285

relies on the intrinsic characteristics of the given data. Hence, to provide safe AI to the community,286

the authors ensure that the model is robust to some of the safety-critical aspects. A stronger motivation287

arises when Deep Learning continues to be applied in various technologies and social domains.288

B Contrastive Learning Framework289

As it is clearly evident that augmentations are one of the key contributors to contrastive learning,290

we augment the data into two views using various augmentation techniques such as Gaussian blur,291

random resize crop and color jitters, etc. So, for a given N mini-batch of samples, we generate 2N292

samples, and of these, 2N − 2 samples are considered negative samples. Hence, we have N − 1293

negative pairs to feed the neural network for one positive pair.294

The pair of samples (both positive and negative) are fed to the standard neural network (encoder)295

ResNet50 to acquire the refined representations. The feature representations acquired by the ResNet50296

are vectors in R2048 space. The features in R2048 space are represented as fui , fvi and where,297

i ∈ {1, 2, ..., N}. As R2048 space is computationally expressive to operate, the representations are298

mapped (projected) to a lower dimensional space of R128 using a 2-layered multilayer perception.299

These representations are represented as re paired as (ui, vi) and where, i ∈ {1, 2, ..., N}. The pair300

(ui, vj) is said to be positive pair if i = j and else, is said to be a negative pair.301

Finally, the mini-batch of features extracted from the two views is now l2-normalized and these pairs302

are represented (ũi, ṽi) and where, i ∈ {1, 2, ..., N} . After normalization, these features are meant303

to be on a hypersphere of 128 dimensions i.e. S127. Now, these normalized features are contrastively304

learned using the following objective function,305
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Figure 1: The above figure is a visual description of CIFAR-10 test data mapped to a there dimensional
embedding feature vector on 2-sphere, i.e., in S2. Here it can be observed that samples of SimCLR
are not well distributed onto the sphere after training the first 40 epochs but, they spread onto the
sphere slowly with an increase in the number of epochs. Whereas, LDM3

readily occupies the sphere.
The results obtained at each of these epochs are detailed in Table 6

LNT−Xent = − log

(
eũ

T
i ṽi/τ∑2N

j=1 1[i ̸=j]e
ũT
i ṽj/τ

)
(3)

The loss function in eq (3) (Which is same as (1)) is the same as mentioned by Chen et al. [1]. Where306

1[i̸=j] ∈ 0, 1 is the indicator function which works opposite to that of Kronecker delta i.e. 1[i̸=j] = 1307

if [i ̸= j] and 0 when [i = j].308

Linear Evaluation While Linear evaluation, only encoder-learned representations are extracted,309

and discard the projections. The encoder weights are frozen and the features fui
, fvi are now attached310

to 2 Layered MLP for classification.311

Distance Metrics312

First, let us consider the well-established spherical and Euclidean distances. Let u, v are the vectors313

in the Euclidean space of d dimension (u, v ∈ Rd) and the ũ, ṽ are the unit vectors in d dimensional314

hypersphere (Sd−1).315

dsphere(u, v) = θ(u, v) = arccos(ũT ṽ) (4)
316

deuclid(u, v) = |u− v|2=

(
d∑

i=1

(ui − vi)
2

) 1
2

(5)

317

C Ablation Study318

C.1 Experimental Setup319

Data, Network Architecture, and Parameters For evaluating the performance of DM losses we320

have utilized standard classification data CIFAR-10, CIFAR-100, and Tiny-ImageNet (ImageNet-321

200). In the contrastive framework, the augmentations, encoder and projection head, and the322

hyperparameters for SimCLR and DM losses are kept identical for a fair evaluation. For contrastive323

training, the augmentations such as random resize crop, random horizontal flip, random grayscale,324
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Figure 2: The above figure is a 2-D geometrical intuition of considering additional Euclidean metric.
First, we compare SimCLR, and then we differentiate how the proposed method is unique. Till the
temperature scaling step, both of them follow the same sequence of steps. A pair of feature vectors
(dissimilar) is first l2-normalised and thus they lie on the unit hypersphere. Next, we calculate the
cosine similarity between these two feature vectors. The next successive step is temperature scaling
for SimCLR i.e. when we scale the feature vectors with τ then the radius of the sphere is extended
× 1

τ and this can be perceived as temperature-scaled cosine similarity. Whereas, we do just rely on
the temperature-scaled cosine similarity but calculate the Euclidean distance between the two feature
vectors on the unit sphere.

Temp (τ ) LNT−XNT LDM1
LDM2

LDM3
LDM4

0.01 78.51 77.14 78.56 79.32 77.83
0.05 78.50 78.51 78.74 79.88 77.96
0.07 77.96 80.09 80.33 79.67 79.73
0.1 81.39 81.32 82.10 81.17 80.83
1 78.98 79.12 79.26 79.42 77.97

(a) Results on CIFAR-10

Temp (τ ) LNT−XNT LDM1
LDM2

LDM3
LDM4

0.01 54.07 53.79 53.85 55.54 54.78
0.05 55.24 55.09 54.75 56.20 55.09
0.07 56.73 57.23 56.82 58.17 55.96
0.1 57.56 57.11 57.42 58.89 56.81
1 45.54 42.71 42.71 46.92 46.69

(b) Results on CIFAR-100

Table 5: Altering temperature parameter and evaluating the results for the mentioned loss functions
on CIFAR-10, 100 Datasets.

and color jitter are applied. The ResNet-50 is used as the encoder for the base encoder and for the325

projection head, 2-Layered MLP with 2048 to 128 neurons is utilized. LARS optimizer is applied326

with a learning rate of 0.3× batch
256 applied. For CIFAR-10 and 100 datasets, 1028 samples are trained327

as a batch. For training ImageNet-200 contrastively we’ve used a batch size of 256. Also, we’ve328

applied linear warmup for the initial 10 epochs and used a cosine scheduler for decaying learning329

rates without any restarts. If not mentioned specifically, we have used the temperature scaling of330

τ = 0.07. If not mentioned particularly, the models are trained contrastively for 120 epochs.331

After contrastive training, we perform the linear evaluation and for this, we consider augmentations332

such as random resize crop, random horizontal flip, and normalization. Then freeze the trained333

encoder which is trained contrastively and attach a 2-Layered MLP (2048 to the number of classes)334

for classifying the representations using softmax activation. A dropout is used between 2-Layered335

MLP with a drop rate of 40%. For the linear evaluation, SGD is used to optimize the network with a336

momentum of 0.9 and with a learning rate of 0.1× batch
256 . The learning rate is scheduled at multiple337

steps i.e. for every 40 epochs by a scale of 0.1. If not mentioned particularly, the models undergo338

linear evaluation for 90 epochs.339

C.2 Temperature Alteration340

But, these experiments are performed under optimal temperatures (τ = 0.07). It is necessary to341

assess the performance for a broad spectrum of temperatures to judge the model’s stability. Thus,342

we fluctuate the temperature τ from 0.01 to 1 and observe the stability of the DM losses. From the343

results demonstrated in Table 5, it can be understood that even with varying temperatures most of344

the DM losses have stable learning and again LDM3
has provided significant performance for both345
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Loss ACC @ 40th ACC @ 80th ACC @ 120th

LNT−Xent 61.19 68.94 70.98
LDM1 61.40 68.30 69.85
LDM2 63.10 69.46 70.97
LDM3 63.15 70.94 72.23
LDM4 59.84 67.25 69.32

Table 6: Linear evaluation Accuracy scores for the losses visualised on S2.

CIFAR-10 and CIFAR-100 datasets respectively. Thus with these evaluations, we infer that DM346

losses have learning stability even with altering temperatures.347

C.3 Hyperspherical Distribution348

It should be noted that LDM1
has comparatively poor performance and does not illustrate the surge of349

learning. The reason for the superior performance of LDM3
and substandard performance of LDM1

350

can be comprehended by visualizing the sample distribution on the hypersphere.351

To understand the behaviour of representations, we provide using hyperspherical Spread (Sample352

distribution on S2).353

Hyperspherical Spread In the first visualization, the data samples which are fed into a neural354

network are mapped onto S2 depicts the visual representations that are distributed on unit 2-sphere355

i.e. S2. To visualize these representations on S2, the contrastive framework is modified accordingly356

for the CIFAR-10 dataset3.357

First, we use ResNet18 as the base encoder and used 3-Layered MLP (512 → 64 → 3). Hence, while358

training contrastively we get a pair of feature representations at the terminal layer in 3 dimensions359

R3 (Refer Figure ??. After l2−normalisation the feature vectors occupy the S2 space. These feature360

vectors are directly visualized after training the neural network contrastively for 40, 80, and 120361

epochs respectively. Now, in Figure 4 we visualize the test samples which are unseen by the model.362

One can observe that each of the samples spreads on S2 i.e., the samples have the tendency to occupy363

the S2. This gives a vivid picture of DM losses and illustrates that they tend to spread across the S2364

space with the right choice of the parameters α, and β. Specifically, the LDM3
have a high tendency365

to spread uniformly across S2 with increasing epochs.366

Rather than just relying on visual facets illustrated in Figure 4, we examine the performance of each367

loss function for all the mentioned epochs. Uniformly distributed samples on S2 seek to have greater368

performance. The linear evaluation accuracy scores are detailed in Table 6 justifies that samples that369

spread over the hypersphere perform better. This is obliged by integrating a good loss function that370

provides well-discriminative decision boundaries. As LDM3
improves the uniformity of distributed371

samples over the hypersphere with well-discriminative decision boundaries leading to better empirical372

performance.373

D Robustness Results374

Corruptions To evaluate the robustness to corruptions, we consider the ImageNet-C dataset [27].375

This data has four major categories of corruptions (Noise, Blur, Weather, and Digital), and each376

category is again divided into sub-categories. Also, each sub-category has five severity levels from 1377

to 5 (1 resembles the minimum, and 5 is the maximum severity).378

3CIFAR-10 is chosen as it would be intuitive to understand the learned representations for 10 classes

CIFAR-10 ResNet18 FC Layer 1

64

FC Layer 2

3

 normalization 

3

Figure 3: The dimensionality reduction of CIFAR-10 data from R32×32×3 → S2 using neural
network.
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Now, we consider the SimCLR model as the baseline model and evaluate our losses accordingly.379

Also, we evaluate with two augmentations. The first augmentations are the same as the previous, and380

the second is AugMix[26]. These augmentations are performed during linear evaluation, and the381

encoder weights are frozen (The encoder is trained on ImageNet-200). The results are evaluated on382

the two metrics: mean Corruption Error (mCE) and relative mean Corruption Error (rel. mCE).383

Biases The robustness of neural networks to data biases when trained on self-supervised contrastive384

losses is one of the challenges to providing a safe AI [33]. Hence to assess the robustness of385

models to biases we consider two synthetic datasets Colored MNIST, Corrupted CIFAR and one386

real-world dataset– Biased FFHQ [28]. The diversity ratio in each of these datasets ranges from 0.5%387

to 5% (Except for Biased FFHQ). Increasing diversity among the samples has proven significant388

performance and eventually provided better de-biased representations.389

As self-supervised contrastive learning does not rely on labels, it is crucial to understand the390

representations acquired from biased data (A comprehensive evaluation of various alignment and391

conflict samples are detailed in the appendix). So from Table 4 it can be seen that DM contrastive392

loss outperforms every biased dataset. Also, LDM3 has provided significant performance in most393

of the scenarios. Also with our analysis, we say that DM losses provide better performance with394

conflicting samples.395

396

From these results, neural networks trained on DM contrastive losses provide incremental robustness397

to Corruptions and Data Biases. Hence we justify that, adding an additional euclidean distance metric398

(operating on Sd−1) can provide finer performance not just on standard image recognition, but also399

enhance the robustness of the model.400

E Extended Discussion401

Gutmann et al. [34] has proposed an objective function that learns the distribution of data (in the402

absence of labels) by discriminating the data distribution with artificially generated noise. This403

work motivated to develop many objective (loss) functions that are relatively on par with supervised404

models.405

The self-supervised contrastive learning has been viewed from many perspectives, and each of406

these perspectives has an intuitive conception to understand the representations. Wang et al. [5]407

has proposed two properties of contrastive loss, which are alignment and uniformity. Likewise,408

considering DM losses, they are embedded with alignment parameter, i.e., alignment is obtained by409

factorizing the equation (4).410

(6)
LDMij = −(α(ũT

i ṽi/τ) + β|ũi − ṽi|2)︸ ︷︷ ︸
weighted alignment

+α log

 2N∑
j=1

1[i ̸=j]e
ũT
i ṽj/τ


+ β log

 2N∑
j=1

1[i ̸=j]e
|ũi−ṽj |2


Specifically, in equation (5), it is clear that DM losses justify the alignment property of contrastive411

losses. Specifically, the term weighted alignment has distinct parameter values i.e., α, β. Although412

the weight α is operating on spherical distance (i.e. -α(ũT
i ṽi/τ) ), according to Lemma 1 those413

distances satisfy isometry in Sd−1. Hence, the weighted alignment property is a key contributor to414

the performance.415

Now, other parts of the loss function, other than the weighted alignment, can be closely related to416

distribution property [24]. Hence, we believe that hyperspherical spread can be a decisive component417

to not just provide better performance but also better robustness. As we do not attempt to guarantee418

the theoretical formulations [21] but rather envision an intuition from the vivid visualizations. Hence,419

the work by Chen et al., [24] is also considered to be closely related to our work.420

The temperature scaling parameter, τ is another important factor in the contrastive loss that proved to421

have tremendous performance [1]. This τ parameter should be chosen appropriately to determine422
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Original 
Image 𝓛𝑫𝑴𝟏

𝓛𝑺𝒊𝒎𝑪𝑳𝑹
𝓛𝑫𝑴𝟐

𝓛𝑼𝒏𝒊𝒇𝒐𝒓𝒎𝒊𝒕𝒚
+

𝓛𝑨𝒍𝒊𝒈𝒏𝒎𝒆𝒏𝒕

Dual Metric Losses (Proposed)

𝓛𝑫𝑴𝟑
𝓛𝑫𝑴𝟒

Figure 4: This figure describes the GradCAM Visualizations produced for the test samples of
ImageNet200 for 5 distinct classes chosen at random. One can observe that, the class activation maps
provided by LDM3

are quite interpretable compared to the others. Thus, compared to [1] and [5] our
methods provide better visually interpretable class activation maps.

the optimal performance. But, Wang et al., [25] conducted a study that details the importance423

of temperature parameters. First, by providing the theoretical analysis at both extremities τ (i.e.424

τ ∈ (0,+∞). Second, the authors have experimentally proved that an effective temperature parameter425

would be τ = 0.3. Also, they contributed a tolerance property which gives an intuition to choose426

the apt temperature. Hence we conduct experiments with this optimal temperature of 0.3 and assess427

whether the proposed loss can still sustain random temperature fluctuations.428

Now, Table 7 compares the above-mentioned loss functions with the DM losses. All the evaluations429

are fairly evaluated without any alterations in the temperature parameter (τ ), augmentations and also430

other influencing hyperparameters. The parameters related to the loss functions are considered and431

evaluated at their optimal setting except for the parameters that are chosen optimal as per authors’432

claims. For instance, Wang et al. [25] has illustrated clearly that, the loss function performs optimally433

at τ = 0.3 and we considered it accordingly Also, the weights of Lalign and Luniform are chosen434

according to their optimal performance.435

So in most cases, LDM3 competes and provides significant performance. From the results obtained436

from Tables 2, 5b, 6, 3, 4, 7 the LDM3
loss do not compromise on performance and robustness at any437

level. Also, the weighting parameters α, β are notable components as they determine the success rate438

of DM losses. When there is a higher weight for the loss function, which operates using spherical439

distance (eg. LDM1
) then the performance fluctuates, and the samples do not quickly spread onto the440

hypersphere to distribute themselves. Also, when there are non-homogeneous weights (α+ β ̸= 1441

and α, β ≥ 1 ) the DM losses tend to perform poorly4. Hence, LDM3
is an apt contrastive loss for442

most of the downstream self-supervised tasks.443

F Theoretical Study and Prerequisites444

Some of the fundamental definitions, of theorems, are adapted from the relevant sources. To have445

a fair understanding of metric spaces refer [35] and to have a topological perspective of the metric446

spaces refer [36]. The metrical properties of Euclidean and spherical manifolds can be extracted447

from the work by Ratcliffe et al.[37]. The reader can follow the appendix progressively as sufficient448

fundamentals for the current work are detailed precisely.449

4A detailed evaluation of various non-homogeneous partitions of weights is provided in Appendix
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Loss Functions CIFAR-10 CIFAR-100 ImageNet-200
Test (%) Test (%) Test (%)

Tongzhou et al.,[5] 80.86 55.65 42.57
LNT−Xent [1] 80.87 59.08 44.03

LDM1 80.82 59.63 44.48
LDM2

80.91 58.69 43.98
LDM3

81.85 59.22 44.58
LDM4

80.83 58.38 44.30
Wang et al., [25] (τ = 0.3) 81.89 55.01 42.82

LDM1 (τ = 0.3) 83.85 55.09 43.27
LDM2 (τ = 0.3) 82.79 55.68 43.47
LDM3 (τ = 0.3) 83.64 57.09 44.09
LDM4

(τ = 0.3) 82.02 53.56 42.64

Table 7: Comparison of various loss functions with proposed DM losses. All the evaluations are
fairly evaluated without any alterations in the temperature parameter (τ ), augmentations, and other
influencing hyperparameters. But, the parameters specifically related to the loss functions (significant
contributions) are considered and evaluated at their optimal setting. The best-performed model is
provided and highlighted with bold and the second best is highlighted by underline.

Definition 1 Suppose a non-empty set X /∈ ϕ and for each x1, x2 ∈ X let d(x1, x2) be a real450

number,451

1. Non-degenerate d(x1, x2) = 0 iff x1 = x2 ;452

2. Non-negative d(x1, x2) ≥ 0 ;453

3. Symmetric d(x1, x2) = d(x2, x1) ∀x1, x2 ∈ X.454

4. Triangle Inequality d(x1, x3) ≤ d(x1, x2) + d(x1, x2) ∀x1, x2, x3 ∈ X .455

Then ’d’ is said to be a metric (distance) on space X and (X, d) is called a metric space.456

Definition 2 Suppose (X, d) is called a metric space and let Td be the collection of subsets of U457

of X such that, for each x ∈ U ∃ r > 0 with a open ball B(x; r) ⊂ U . Then (X, Td) is called the458

topological space defined under the metric (distance) d.459

Definition 3 Suppose dA, dB be distance metrics on X with topologies TA, TB respectively . Then460

dAand dB metrics are equivalent iff they have the same topology i.e. TA ≡ TB .461

Proposition 2 Let the distance metrics dA, dB on X are such that for some ϵ we have,462

1

ϵ
dA(x1, x2) ≤ dB(x1, x2) ≤ dA(x1, x2) (7)

Where, ∀x1, x2 ∈ X . Then these metrics dA, dB are equivalent metrics.463

Proof. Let TA, TB be the topologies defined by metrics dA, dB respectively. We must show that a464

subset of U of X ∈ TA iff it ∈ TB .465

Let, U ∈ TA andu ∈ U . There exist some r1 > 0 such that BdA
(u; r1) ⊂ U i.e.

{u ∈ X|dA(u, v) < r1} ⊂ U.

Similarly consider BdB
(u; r2) where r2 = r1/ϵ. If v ∈ BdB

(u; r1/ϵ) then dB(u, v) < r1/ϵ. But,
1
ϵdA(u, v) ≤ dB(u, v) and so, for v ∈ BdB

(u; r1/ϵ) we have

dA(u, v) ≤ dB(u, v) ≤ ϵ× r1
ϵ

= r1

13



Hence, v ∈ BdA
(u; r1) whenever v ∈ BdB

(u; r1/ϵ) but,
BdA

(u; r1) ⊂ U and so, BdB
(u; r1/ϵ) ⊂ BdA

(u; r1) ⊂ U

Thus, for u ∈ U , there exist some r2 > 0 (r2 = r1/ϵ such that, BdB
(u; r2) ⊂ U . Thus, U

is open in the topology determined by metric dB i.e. U ∈ TA and U ∈ TB . As U ∈ TB for
uinU ∃r1 > 0 with BdB

(u; r1) ⊂ U . If dA(u, v) < r1/ϵ we have dB(u, v) ≤ ϵdA(u, v) < ϵ× r1
ϵ .

So, BdA
(u; r1/ϵ) ⊂ BdB

(u; r1) ⊂ U .
Thus, U ∈ TA iff U ∈ TB and ∴ TA ≡ TB

466

Definition 4 The spherical distance function dsphere is a metric on hypersphere of d dimensions467

(Sd−1).468

Proof. Let u, v are the vectors in the Euclidean space of d dimension (u, v ∈ Rd) and the ũ, ṽ are the469

unit vectors in d dimensional hypersphere (Sd−1).470

The spherical distance dsphere is written as,471

dsphere(u, v) = θ(u, v) = arccos(ũT ṽ)

The spherical metric dsphere is non-negative, non-degenerate, and also symmetric. Now we prove the472

triangle inequality to justify that, (Sd−1,dsphere) forms a metric space. It should be noted that the473

orthogonal transformations of Rd → Sd−1 preserves spherical distances. So, we transform u, v, w by474

an orthogonal transformation and u, v, w ∈ Rd. Here to prove this inequality let us consider d = 3475

then we have,476

cos(θ(u, v) + θ(v, w)) = cos θ(u, v) cos θ(v, w)− sin θ(u, v) sin θ(v, w)

= (u.v)(v.w)− |u× v||v × w|
≤ (u.v)(v.w)− (u× v).(v × w)[

(a× b).(c× d) =

∣∣∣∣a.c a.d
b.c b.d

∣∣∣∣]
cos(θ(u, v) + θ(v, w)) ≤ (u.v)(v.w)− (u× v).(v × w)

= (u.v)(v.w)− (u× v).(v × w)

= (u.v)(v.w)− ((u.v)(v.w)− (u.w)(vv))

= (u.w)

= cos θ(u,w)

Thus we obtain θ(u,w) ≤ θ(u, v) + θ(v, w).477

Lemma 1 A function f : Sd−1 → Sd−1 is an isometry iff it is an isometric w.r.t deuclid on Sd−1478

because |u− v|22≡ 2(1− u.v).479

Proof. As, u, v ∈ Sd−1 it should be clear that, |u|= |v|= 1.480

|u− v|2 =

√√√√d−1∑
i=1

(ui − vi)2 =

√√√√d−1∑
i=1

(u2
i + v2i − 2ui.vi)

=

√√√√d−1∑
i=1

u2
i +

d−1∑
i=1

v2i − 2

d−1∑
i=1

ui.vi) =
√
1 + 1− 2× (u.v) =

√
2(1− u.v)

So,
|u− v|22≡ 2(1− u.v)

481
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Theorem 1. The metric topology of Sn determined by the Euclidean distance metric deuclid is482

equivalent to metric topology of Sn determined by the spherical distance metric dsphere (Proof is483

detailed in the appendix).484

Proof. Suppose, u, v ∈ Sn−1 and θ(u, v) is already mentioned in the equation B. Where,485

dsphere(u, v) ∈ [0, π].486

It can be verified that,487

deuclid(u, v) = |u− v|2= 2 sin

(
θ(u, v)

2

)
.

Specifically, θ(u, v) is a strictly increasing function of the euclidean distance |u− v|2.488

It is clear from Theorem 1 (appendix) that θ(u, v) is i) non-degenerate ii) non-negative and iii)489

symmetric. In order to prove the fourth postulate i.e. triangle inequality let us consider a, b, c ∈ S2.490

If θ(a, b) + θ(b, c) ≥ π we obtain,

dsphere(a, c) ≤ π ≤ dsphere(a, b) + dsphere(b, c).

Therefore, assume dsphere(a, b) + dsphere(b, c) ≤ π. Now consider b as the north pole and rotate the491

axis-c to c∗ such that, c∗ and a are on opposite meridians.492

|a− c|2≤ |a− c∗|2

deuclid(a, c) ≤ deuclid(a, c
∗)

∴ dsphere(a, c) ≤ dsphere(a, c
∗)

493

dsphere(a, c
∗) = dsphere(a, b) + dsphere(b, c

∗)

= dsphere(a, b) + dsphere(b, c)

So, the metric space (Sn−1, dsphere) is complete and494

2

π
α ≤ sinα ≤ α (Where, 0 ≤ α ≤ π

2
)

From Definition 3 and Proposition 25 it can be concluded that,

deuclid(u, v) ≤ dsphere(u, v) ≤
π

2
deuclid(u, v).

Hence Proposition 1 implies that Euclidean distance metric and spherical distance metric are equiva-495

lent and share the same topological space.496

G Gradient Analysis of losses497

The gradients are calculated and analyzed w.r.t positive pairs to comprehend the target distribution498

similar to Chen et al. [1]. First, we calculate the gradients w.r.t +ve samples for LNT−Xent and then499

we’ll further proceed for DM loss LDM .500

5Refer Appendix section for detailed proofs.
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Gradients w.r.t +ve samples for LNT−Xent

LNT−Xent = uT v+/τ − log

 ∑
v∈{v+,v−}

exp(uT v/τ)


501

∂

∂u
(LNT−Xent) =

∂

∂u
(uT v+/τ)− ∂

∂u

log
∑

v∈{v+,v−}

exp(uT v/τ)



[
∂

∂x
(aTx) =

∂

∂x
(axT ) = a

]

∂

∂u
(LNT−Xent) = v+/τ − 1∑

v∈{v+,v−} exp(u
T v/τ)

× ∂

∂u

 ∑
v∈{v+,v−}

exp(uT v)


=

v+

τ
−

(
∂
∂u

(∑
v+ exp(uT v+/τ) +

∑
v− exp(uT v−/τ)

)∑
v∈{v+,v−} exp(u

T v/τ)

)

Suppose, Z(u, v) =
∑

v∈{v+,v−}

exp(uT v/τ)



∴ ∇LNT−Xent =

(
1−

∑
v+ exp(uT v+/τ)

Z(u, v)

)
.
v+

τ
−
(∑

v− exp(uT v−/τ)

Z(u, v)

)
.
v−

τ

Here, Z(u, v) can be assumed as the partition function [34] for the contrastive loss.502

Gradients w.r.t +ve samples for LDM

LDM = αLNT−Xent + β||u− v+||2−β log

 ∑
v∈{v+,v−}

exp(||u− v||2)



∂

∂u
(LDM ) = α

∂

∂u
(LSimCLR) + β

∂

∂u
(||u− v+||2)− β

∂

∂u

log
∑

v∈{v+,v−}

exp(||u− v||2)


503 [

∂

∂x
(||x− y||) = x− y

||x− y||2

]

= α∇LNT−Xent + β
u− v+

||u− v||2
− β

1∑
v∈{v+,v−} exp(||u− v||2)

× ∂

∂u

 ∑
v∈{v+,v−}

exp(||u− v||2)


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= α∇LNT−Xent + β
u− v+

||u− v||2
− β

(
∂
∂u (

∑
v+ exp(||u− v+||2) +

∑
v− exp(||u− v−||2))∑

v∈{v+,v−} exp(||u− v||2)

)

Suppose, Z2(u, v) =
∑

v∈{v+,v−}

exp(||u− v||2)



= α∇LNT−Xent + β
u− v+

||u− v||2
− β

∑v+ exp(||u− v+||2). u−v+

||u−v+||2
Z2(u, v)

+

∑
v− exp(||u− v−||2). u−v−

||u−v−||2
Z2(u, v)

)

∴ ∇LDM = α∇LNT−Xent+β
u− v+

||u− v||2
−β

∑v+ exp(||u− v+||2). u−v+

||u−v+||2
Z2(u, v)

+

∑
v− exp(||u− v−||2). u−v−

||u−v−||2
Z2(u, v)

)
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