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ABSTRACT

Unsupervised anomaly detection (UAD) has important applications in diverse
fields such as manufacturing industry and medical diagnosis. In the past decades,
although numerous insightful and effective UAD methods have been proposed, it
remains a huge challenge to tune the hyper-parameters of each method and select
the most appropriate method among many candidates for a specific dataset, due to
the absence of labeled anomalies in the training phase of UAD methods and the
high diversity of real datasets. In this work, we aim to address this challenge, so
as to make UAD more practical and reliable. We propose two internal evaluation
metrics, relative-top-median and expected-anomaly-gap, and one semi-internal
evaluation metric, normalized pseudo discrepancy (NPD), as surrogate functions
of the expected model performance on unseen test data. For instance, NPD mea-
sures the discrepancy between the anomaly scores of a validation set drawn from
the training data and a validation set drawn from an isotropic Gaussian. NPD is
simple and hyper-parameter-free and is able to compare different UAD methods,
and its effectiveness is theoretically analyzed. We integrate the three metrics with
Bayesian optimization to effectively optimize the hyper-parameters of UAD mod-
els. Extensive experiments on 38 datasets show the effectiveness of our methods.

1 INTRODUCTION

Unsupervised anomaly detection (UAD), often referred to as the one-class classification problem, is
a critical machine learning task with applications across diverse fields such as cybersecurity, fraud
detection, industrial quality control, and medical diagnostics (Aggarwal, 2016; Pang et al., 2021).
These domains typically encounter rare or unknown anomalous events, making the lack of labeled
anomaly data a key challenge. UAD addresses this by training models exclusively on “normal”
data1, with the primary objective of learning the boundary that defines normality. This allows the
model to identify unseen data points deviating from the normality as potential anomalies.

Recent advances in deep learning have led to highly effective deep UAD methods (Aggarwal, 2016;
Ruff et al., 2018; Zong et al., 2018; Pidhorskyi et al., 2018; Pang et al., 2019; Goyal et al., 2020; Yan
et al., 2021; Qiu et al., 2021; Shenkar & Wolf, 2022; Han et al., 2022; Cai & Fan, 2022; Tur et al.,
2023; Zhang et al., 2023; 2024; Fu et al., 2024), often outperforming traditional shallow models
like K-nearest-neighbors (KNN) (Zimek et al., 2012; Sun et al., 2022), local outlier factor (LOF)
(Breunig et al., 2000), isolation forest (IForest) (Liu et al., 2008), and one-class support vector ma-
chine (OCSVM) (Schölkopf et al., 2001). While deep UAD methods offer greater performance and
efficiency, they exhibit a longer list of hyper-parameters, such as network depth, hidden dimension,
weight decay, training epochs, learning rate, and algorithm-specified hyper-parameters. Meanwhile,
they are sensitive to the configuration of their hyper-parameters.

Compared to supervised learning, hyper-parameter tuning for unsupervised learning tasks like UAD
is particularly challenging. In supervised tasks, labeled validation sets provide direct feedback dur-
ing the hyper-parameter search, allowing practitioners to iteratively adjust parameters based on mea-
surable improvements (Hutter et al., 2019). In contrast, the absence of labeled data poses a unique

∗Corresponding author
1UAD assumes all or most of the training data are from normal conditions of a system. See Definition 1.
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challenge in unsupervised tasks, making it highly difficult to compare across different models and
tune their hyper-parameters (Halkidi & Vazirgiannis, 2001; Poulakis, 2020; Fan et al., 2022). In
Figure 1, more intuitively, we present the sensitivity of four UAD methods when tuning two of their
hyper-parameters. It can be seen that the performance of each method in terms of AUC over its two
hyper-parameters has many local maximums and minimums. Moreover, the distributions of each
method’s performance on different datasets are significantly different.
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(a) OCSVM on wine
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(b) OCSVM on ALOI
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(c) AE on magic.gamma

50 100 150 200 250
hidden dim

6

5

4

3

2

1

0

we
ig

ht
 d

ec
ay

 (l
og

-s
ca

le
)

0.75

0.80

0.85

0.90

0.95

AU
C

(d) AE on annthyroid
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(e) DSVDD on annthyroid
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(f) DSVDD on glass
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(g) DPAD on letter

6 4 2 0 2
 (log-scale)

6
5
4
3
2
1
0
1
2
3

 (l
og

-s
ca

le
)

0.4

0.6

0.8

1.0

AU
C

(h) DPAD on annthyroid

Figure 1: Heatmap visualization of AUC (area under the ROC curve) over two hyper-parameters
(described in Appendix H) in four UAD methods including OCSVM (Schölkopf et al., 2001), AE
(autoencoder), Deep SVDD (Ruff et al., 2018), and DAPD (Fu et al., 2024) on different datasets.

Although there have been some insightful attempts at hyper-parameter tuning and model selection
for anomaly detection, they face significant challenges in unsupervised settings. Recent methods at-
tempt to address this by using historical datasets to train meta-models or assuming a prior knowledge
of the anomaly ratio. However, both strategies introduce elements of supervision, contradicting the
fundamental principles of unsupervised learning. This reliance on prior information compromises
the unsupervised nature of the task. Specifically, meta-learning-based methods (Zhao et al., 2021;
2022; Zhao & Akoglu, 2024; Ding et al., 2024) require access to a collection of historical datasets,
which may not always be available or relevant. Similarly, methods (Nguyen et al., 2016) that as-
sume a known anomaly ratio are impractical in the real world, where anomalies are rare and their
proportion is typically unknown. These limitations highlight the urgent need for more effective and
fully unsupervised model selection techniques that can operate without these assumptions.

To address these challenges, we first propose two new internal evaluation metrics, relative-topk-
median and expected-anomaly-gap, under two proper assumptions in UAD. In the empirical studies,
we found that these two metrics do not always work well and are not effective in comparing different
UAD methods because they could overfit the training data when implemented on a complex UAD
model, and they both have an additional hyper-parameter to determine in advance, as the assumption
defined. We then propose a semi-internal evaluation metric, normalized pseudo discrepancy (NPD),
which measures the discrepancy between the anomaly scores of a validation set drawn from the
training data and a validation set drawn from an isotropic Gaussian distribution. It offers more
robust and reliable results under simpler assumptions without additional hyper-parameters. Our
metrics provide a more nuanced understanding of model performance based on a reliable theoretical
guarantee, enabling a better selection of hyper-parameters and models in UAD tasks.

Aiming at model and hyper-parameter selection for UAD algorithms and improving the convenience,
accuracy, and efficiency of UAD, our contributions are highlighted as follows.

• We propose two internal evaluation metrics, relative-top-median and expected-anomaly-gap,
and one semi-internal evaluation metric, normalized pseudo discrepancy, for automated UAD.

• We implement automated UAD using Bayesian optimization. It automatically and efficiently
selects the possibly best hyper-parameters guided by our proposed metrics.

• We provide theoretical guarantees for our NPD metric to ensure feasibility and reliability.
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• We conduct extensive empirical experiments on 38 benchmark datasets with four popular UAD
algorithms. The results show that NPD consistently outperforms existing model selection
heuristics and significantly works well on the complex state-of-art UAD algorithms.

2 RELATED WORK

Prior studies have shown that UAD methods are sensitive to hyper-parameter choices (Goldstein
& Uchida, 2016; Ding et al., 2022). Recently, hyper-parameter tuning and model selection for
unsupervised outlier detection have gained attention. Marques et al. (2015) proposed IREOS to
evaluate KNN and LOF, but it requires additional per-sample training, reducing efficiency. Nguyen
et al. (2016) compared clustering quality measures for outlier detection, but these metrics need
prior knowledge of the outlier ratio, introducing extra hyper-parameters. It contradicts the goal of
hyper-parameter optimization. Consensus-based methods (Duan et al., 2020; Lin et al., 2020; Ma
et al., 2023) use voting mechanisms to select reliable models, but model pools construction are still
sensitive to hyper-parameters. Goix (2016) proposed statistical metrics Mass-Volume (MV) and
Excess-Mass (EM), assuming outliers appear in the tail of the score distribution. Nevertheless ,
these studies focus only on shallow outlier detection methods.

Deep outlier detection methods have three main categories for model selection. The first, early stop-
ping, as proposed by (Huang et al., 2024), uses an inlier priority assumption and loss entropy to
select models during deep learning training iterations. The second category, hyper-ensemble meth-
ods, combines multiple models with varying hyper-parameters to enhance detection capability (Ding
et al., 2022; Nawaz et al., 2024). However, these methods introduce additional hyper-parameters,
such as ensemble weights, and do not guarantee effective outlier detection from the hyper-parameter
pool. The third category is based on meta-learning, which leverages historical tasks to inform
new outlier detection tasks. For example, (Zhao et al., 2021; 2022; Zhao & Akoglu, 2024; Ding
et al., 2024) train a meta-model on historical datasets with ground-truth labels to predict hyper-
parameters for new unlabeled datasets. However, this approach requires supervision, conflicting
with unsupervised learning principles. Moreover, if there’s a significant domain gap between histor-
ical and current datasets(exampled by the significantly different performance distributions in Figure
1), meta-learning may underperform. Lastly, meta-learning typically focuses on a single detection
model, making it challenging to compare various candidate models.

It is worth mentioning that previous hyper-parameter optimization methods focus on the unsuper-
vised outlier detection problem where transductive learning is performed to recognize the outliers
in the training set. In contrast, the UAD problem considered in this study is to train a model on a
“normal” dataset to detect the newly incoming anomalies in an inductive learning manner. Exist-
ing model selection methods for unsupervised outlier detection may fail when encountering UAD
because the training set contains no outliers or very few outliers. For example, the inlier priority
assumption does not hold for the early stopping method proposed by (Huang et al., 2024). In this
paper, we focus on the hyper-parameter tuning and model selection for UAD methods and take
advantage of Bayesian optimization (Snoek et al., 2012).

Note that hyperparameter tuning is a challenge in other unsupervised learning tasks as well. (Halkidi
& Vazirgiannis, 2001; Poulakis, 2020; Fan et al., 2022) presented some clustering validity metrics
to guide the hyper-parameter search using grid search or Bayesian optimization. Particularly, Fan
et al. (2022) proposed AutoSC to select models and hyperparameters for spectral clustering. Lin &
Fukuyama (2024); Liao et al. (2023) also used Bayesian optimization to tune the hyperparameter in
dimensionality reduction methods such as t-SNE.

3 AUTOMATED UNSUPERVISED ANOMALY DETECTION (AUTOUAD)

For completeness and clarity, we present the following definitions of UAD and AutoUAD.

Definition 1 (UAD) Consider a dataset X = {xi ∈ Rd : i = 1, 2, . . . , N} satisfies all of the
following assumptions:

• N0 samples are randomly drawn from an unknown distribution D0 deemed as a distribution of
normal data and N1 := N −N0 samples are randomly drawn from another unknown distribu-
tion D1 deemed as an anomalous distribution;
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• For every xi in X , whether it is drawn from D0 or D1 remains unknown;
• N0 and N1 are unknown but N0 ≫ N1 (e.g., N0 = 10N1);
• The overlap (Inman & Bradley Jr, 1989) between D0 and D1, defined as η(D0,D1) =∫

Rd min {px∼D0
(x), px∼D1

(x)} dx, is sufficiently small.

Based on such an X , UAD learns a function f : Rd → R that assigns an anomaly score for an
arbitrary unseen data (test data) x, where the higher f(x) is, the more likely x is an anomalous
data belonging an unknown anomaly distribution D′

1, where η(D′
1,D0) is sufficiently small.

Remark 3.1 In some scenarios, we may have N1 = 0, meaning that all samples in the training
dataset are normal. The sufficiently small overlaps η(D1,D0) and η(D′

1,D0) mentioned in the
definition are to ensure that the problem is meaningful, i.e., it is possible to distinguish between
normal samples and anomalous samples. In addition, when the difference between D′

1 and D1 is
larger, the task is more difficult. Note that each of D0, D1, and D′

1 may be a mixture of multiple
distributions (sub-populations), which will further increase the difficulty of the task.

Definition 2 (AutoUAD) Given a dataset X defined in Definition 1, suppose we have a set of C
candidate UAD methods M := {M1,M2, . . . ,MC} and each methodMi has a set of Hi hyper-
parameters Θi := {θ(i)1 , θ

(i)
2 , . . . , θ

(i)
Hi
}, where θ

(i)
j ∈ S(i)j and S(i)j denotes a constraint set of the

j-th hyper-parameter of the i-th method. Denote fMi
(x|Θi) the scoring function of the methodMi

with parameters Θi. Let D̃ be the joint distribution of feature and label of unseen test data and
let (X̃ , Ỹ) be a test set with Ñ samples drawn from D̃. Denote E(Ỹ, ˆ̃Y) an evaluation metric of

anomaly detection (e.g., AUC or F1-score) for X̃ , where ˆ̃Y denotes the anomaly scores provided by
a UAD method. We aim to achieve the following two goals:

• Goal 1: For eachMi ∈M, solve

Θ∗
i = argmax

Θi∈
∏Hi

j=1 S(i)
j

E(X̃ ,Ỹ)∼D̃Ñ

[
E(Ỹ, {fMi

(x|Θi) : x ∈ X̃})
]

(1)

where
∏

is the Cartesian product and E is the expectation over the randomness of X̃ .
• Goal 2: Let Q(Mi(Θ

∗
i )) := E(X̃ ,Ỹ)∼D̃Ñ [E(Ỹ, {fMi(x|Θ∗

i ) : x ∈ X̃})] and M(Θ∗) :=

{M1(Θ
∗
1),M2(Θ

∗
2), . . . ,MC(Θ

∗
C)}, solve

M∗(Θ∗) = argmax
M(Θ∗)∈M(Θ∗)

Q(M(Θ∗)) (2)

whereM∗(Θ∗) is the best among all candidate methods with their best hyper-parameters.

Remark 3.2 An example for M is {KNN, OCSVM, DeepSVDD}. Particularly, for M2, namely
OCSVM, the set of hyper-parameters is Θ2 = {ν, ‘kernel’, γ, α0}2 , where, for example, the search
space for γ is S(2)3 = (0,∞), though we may reduce the search space according to experience.

AutoUAD defined by Definition 2 is a challenging problem due to the fact that the training data X
is unlabeled and there is no available prior knowledge about the test data X̃ . What we can do is
designing a metric V based onMi and X as a surrogate for E[E(Ỹ, {fMi

(x|Θi) : x ∈ X̃})], i.e.,

V(Mi,X ) ≈ g
(
E(X̃ ,Ỹ)∼D̃Ñ

[
E(Ỹ, {fMi(x|Θi) : x ∈ X̃})

] )
(3)

where g : R→ R is ideally a monotonically increasing function.

3.1 RELATIVE TOP-MEDIAN METRIC

In any real-world dataset, there are typically some data points that are far from the majority of
the data distribution, especially when the number of data points becomes large. These data points,
though not necessarily true anomalies, often exhibit characteristics that make them appear closer to

2According to scikit-learn (Pedregosa et al., 2011), ν is the training error bound, γ, α0 are kernel coefficient,
and ‘kernel’ is the choice of kernel function.

4



Published as a conference paper at ICLR 2025

0.00 2.52 5.04 7.56 10.08
Training Anomaly Score

0
20
40
60
80

100
120

Co
un

t

Test AUC: 0.78

(a) Low-AUC OCSVM
model on breastw

0 65 130 195 260
Training Anomaly Score

0

50

100

150

200

Co
un

t

Test AUC: 0.99

(b) High-AUC OCSVM
model on breastw

0.065 0.855 1.645 2.436 3.226
Training Anomaly Score

0

10

20

30

40

Co
un

t

Test AUC: 0.61

(c) Low-AUC DSVDD
model on lymph.

0.139 1.698 3.256 4.814 6.373
Training Anomaly Score

0
10
20
30
40
50
60

Co
un

t

Test AUC: 1.00

(d) High-AUC DSVDD
model on lymph.

Figure 2: Histograms of training anomaly scores of models with low and high testing AUCs. This
conforms to Assumption 1. A larger RTM (Definition 3) corresponds a higher AUC.

anomalies than the majority of the data. For example, in a dataset following a Gaussian distribution
in R2 or R3, most data points cluster near the mean, but a few data points naturally occur in the
tail regions of the distribution. While these tail points are part of the normal data, their distance
from the majority can make them resemble potential anomalies. They should be assigned relatively
high anomaly scores by a good UAD model. Based on this observation, we make the following
assumption.

Assumption 1 A good UAD model will assign low anomaly scores to the majority of data points
and will assign relatively high anomaly scores to the minority of data points.

Actually, Assumption 1 aligns with the way many UAD models are designed. For example, in
OCSVM, the decision boundary is shaped to enclose the majority of normal data points tightly,
leaving the points near or beyond the boundary with higher anomaly scores. To further show the
feasibility of the assumption, we present an empirical comparison between models with high AUC
and low AUC in Figure 2, where “DSVDD” stands for Deep SVDD (Ruff et al., 2018).

Assumption 1 and Figure 2 provide the following insights:

• The majority of data points, close to the median of the distribution, are presumed to represent
normal behavior and should be assigned low anomaly scores.

• A small percentage of data points (e.g., the top τ%) farthest from the majority are more likely
to deviate from normality and should receive relatively higher anomaly scores.

Thus we propose the following metric to approximate g
(
E[E(Ỹ, {fM(x|Θ) : x ∈ X̃})]

)
.

Definition 3 (RTM) Given a UAD methodMwith a set of hyper-parameters Θ trained on a dataset
X , the output anomaly scores are s = {s1, s2, . . . , sN} where si = fM(xi|Θ) and xi ∈ X . Denote
s(i) for sorted values with s(1) ≤ s(2) ≤ ... ≤ s(τ/100N) ≤ ... ≤ s(N). The relative top-median
(RTM) is defined as

VRTM(M,X ) =
mean({si|si ≥ s(τ/100N)})− median(s)

median(s) + ϵ
, (4)

where ϵ (throughout this paper) is a small constant (e.g. 10−6) to avoid zero denominator.

We heuristically set τ = 5 in our experiments. During hyper-parameter searching, if RTM5% is
larger, we say the corresponding model is better.

3.2 EXPECTED ANOMALY GAP METRIC

RTM may overlook a case in which all scores are uniformly distributed from small to large value.
To solve this, we propose the following anomaly gap metric.

Definition 4 (AG) Let p(s) be the unknown and theoretical distribution of the anomaly score s
defined in Definition 3 given by a UAD model and let ξ be a value in the domain of s. Define
w0(ξ) = P (s < ξ), w1(ξ) = P (s ≥ ξ), µ0(ξ) = E[s|s < ξ], µ1(ξ) = E[s|s ≥ ξ], σ2

0(ξ) =
Var(s|s < ξ), and σ2

1(ξ) = Var(s|s > ξ). Based on Assumption 1, there exists ξ such that P (s ≥ ξ)
is small, and the variance of both s ≥ ξ and s < ξ should also be small. The anomaly gap (AG) at
ξ is calculated by

AG(ξ; p(s)) =
w0(ξ)w1(ξ)(µ0(ξ)− µ1(ξ))

2

w0(ξ)σ2
0(ξ) + w1σ2

1(ξ) + ϵ
. (5)
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Ideally, the choice of ξ depends on how many training samples are around the optimal decision
boundary or similar to the true anomaly, i.e. drawn from D1 defined in Definition 1. It relies
on a threshold number, e.g. top-5%. Due to the non-linearity of real-world data and the lack of
supervision, it is hard to select the threshold for each dataset. The metric may also be sensitive to
an arbitrarily selected threshold. To reduce the sensitivity, we design to use a relaxed threshold sthr
indicating a range where data may draw from D1 and propose the following expected-anomaly-gap.

Definition 5 (EAG) Given the output anomaly scores s, let smax = max(s) and let sthr be a thresh-
old value such that sthr < smax. Suppose ξ follows a uniform distribution with p(ξ) = 1/(smax−sthr).
The expected anomaly gap (EAG) is defined as

VEAG(M,X ) = E[AG(ξ; p(s))|ξ ≥ sthr] =
∫ smax

sthr

AG(ξ)p(ξ)dξ =
1

smax − sthr

∫ smax

sthr

AG(ξ)dξ. (6)

To determine sthr for EAG, we make the following assumption.

Assumption 2 (Low Quality Data Upper Bound) At most 20% data points in the training set are
similar to the true anomalies, in which the UAD model gives them higher anomaly scores.

This is a very mild assumption for UAD. If there is too much low-quality data, the UAD model
may overfit them, leading to bad performance. Limiting the proportion prevents the model from
being overly influenced by low-quality data, ensuring that the learned normality patterns remain
accurate. In many practical scenarios, such as medical diagnosis and mechanical fault detection,
noisy or wrongly collected data constitute a small portion. So, it is realistic and applicable to make
the 20% upper bound assumption. Following Assumption 2, we set sthr as G−1(0.8), where G(s) is
the cumulative distribution function (CDF) of s and G−1(0.8) is the inverse CDF evaluated at 0.8,
representing the 80th percentile. Since we do not know p(s) but we have s sampled from p(s), we
finally calculate EAG by the discrete form VEAG(M,X ) = 1

0.2N

∑
ξ≥sthr

AG(ξ; s). Sequential and
vectorized implementations for calculating EAG are shown in Algorithms 1 and 2 of Appendix A.

3.3 NORMALIZED PSEUDO DISCREPANCY GUIDED SEARCH

Previous methods for evaluating UAD models have primarily relied on utilizing the training data’s
anomaly scores s solely. While these approaches are sometimes useful, they suffer from the follow-
ing limitations. First, internal evaluation metrics such as RTM and EAG may overfit the training set,
as they only observe the data available during training; Second, both RTM and EAG introduce an ad-
ditional hyper-parameter (a relaxed threshold). While the hyper-parameters can be set to reasonable
value under proper assumptions, they tend to be sensitive when applied to complex datasets.

We propose a new method called normalized pseudo discrepancy to address these limitations. Recall
that our goal is to construct a surrogate metric V to approximate the expected test performance
E[E(Ỹ, {fMi(x|Θi) : x ∈ X̃})]. This can be done if we could generate a reasonable proxy for
X̃ . NPD generates this proxy via taking advantage of a randomly generated dataset in addition
to a subset of the original training data, aiding in the evaluation by incorporating more diverse
perspectives and reducing the risk of overfitting, without using any real anomalies.

Definition 6 (NPD) Suppose M is the black box UAD model and Θ is the corresponding hyper-
parameters. We randomly split the training data into two subsets Xtrn and Xval with sizes N −M
and M respectively. The UAD model is trained on Xtrn. Let µtrn ∈ Rd and σ2

trn ∈ Rd be the mean
vector and the variance vector of Xtrn. We generate a dataset Xgen consisting of M samples drawn
from an isotropic Gaussian N (µtrn, diag(σ2

trn)). Then, we compute the anomaly score vectors for
Xval and Xgen, i.e. sval = fM(Xval|Θ) and sgen = fM(Xgen|Θ) respectively. Finally, we calculate
the normalized pseudo discrepancy (NPD) as

VNPD(M,X ) =
(Mean(sgen)−Mean(sval))

2

2(Var(sgen) + Var(sval)) + ϵ
. (7)

We argue that Xval ∪ Xgen is a good proxy for X̃ and NPD is an effective proxy of the expected test
performance E[E(Ỹ, {fMi(x|Θi) : x ∈ X̃})] by answering the following questions.
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• Why use Gaussian rather than other distributions for Xgen? Real-world data are often non-
Gaussian but are often close to Gaussian to some extent (Żuławiński et al., 2023; Khokhlov &
Hulot, 2017; Weinberg & Cole, 1992; Marko & Weil, 2012). We hope that Xgen are comparable
to Xtrn while having high diversity. It is known that within all distributions with the same vari-
ance, the Gaussian distribution has the largest entropy, meaning the highest diversity. Theorem
1 shows that the uncertainty of Xgen is always higher than that of Xtrn. In Figure 3, we illustrate
the correlation coefficient matrices of Xtrn and Xgen, and compare the distribution of normalized
Xtrn with standard Gaussian distribution. Although they have the same mean and variance, Xtrn
is from skewed distributions, and the features in Xtrn are correlated.

• Can Xgen contain samples very close to real anomalies? In Figure 3(right), the distributions of
Xtrn and Xgen are a little similar but substantially different, which indicates that Xgen contains
anomalies close to normal data, raising the difficulty of detection. We visualized Xgen in Figure
7 where Xgen can contain samples close to the real anomalies. Although there is the case of not,
the Xgen helps the UAD model build a tight decision boundary around normal data.

• What if some samples inXgen are very close to normal data? In Theorem 2, we show that NPD is
upper bounded by the score gap between normal data and anomalies. When maximizing NPD,
the gap also becomes larger even if Xgen contains some normal data.

• Will NPD overfit the training data? No. NPD is calculated from Xval and Xgen that are indepen-
dent from the model training data Xtrn.

Theorem 1 Denote xtrn the variables of Xtrn and xgen the variables of Xgen, the entropy of xgen is,
almost surely, higher than the entropy of xtrn, i.e., H(xgen) > H(xtrn).

Theorem 2 Let Xval = X 0
val ∪ X 1

val and Xgen = X 0
gen ∪ X 1

gen, where X 0
val and X 0

gen are normal, X 1
val

and X 1
gen are anomalous. The anomaly scores are denoted by s0val, s

1
val, s

0
gen, s

1
gen accordingly. NPD

has the following properties:

(a) Letting ∆ =
( |X 1

val|
M Mean(s1val) −

|X 0
gen|
M Mean(s0gen)

)2
and ∆′ =

( |X 1
gen|
M Mean(s1gen) −

|X 0
val|

M Mean(s0val)
)2

, it holds that

VNPD(M,X ) ≤ ∆+∆′

(Var(sval) + Var(sgen)) + ϵ/2
(8)

(b) NPD is translation-invariant and scale-invariant w.r.t. the scoring function fM when ϵ = 0.
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Figure 3: The left is the correlation coefficient ma-
trix of Xtrn in the dataset ‘letter’. It shows that the
distribution of Xtrn is far away from an isotropic
Gaussian. The right is the distribution comparison
between the normalized features and a standard
Gaussian. The majority of features are skewed,
indicating the Xgen is not similar to the Xtrn.

Theorem 2 shows that NPD is upper bounded
by the score gap between normal data and
anomalies. Specifically, ∆ and ∆′ represent
the squared gap between the mean anomaly
scores of normal and anomalous data across
Xval and Xgen. As NPD is maximized, the gap
between normal and anomalous data also be-
comes larger, meaning a clearer separation is
achieved. Note that in the worst case, NPD is
always zero for all UAD models, which how-
ever indicates that Xtrn,Xval, and Xgen are from
the same distribution, i.e. N (µtrn, diag(σ2

trn)).
As the distribution of Xtrn is already identi-
fied as N (µtrn, diag(σ2

trn)), it is easy to detect
anomalies without hyper-parameters.

Geometry Interpretation for NPD From a geometry perspective, the outline of Xgen is a hyper-
sphere, denoted as Sd−1, in Rd, centered at the mean of Xtrn. Sd−1 is the tightest hyper-sphere
enclosing almost all of the points of Xtrn. In practice, features in normal data are usually correlated
such that the volume occupied is small in the hyper-sphere. The rest of the space could be covered
by potential anomalies from D′

1. We visualized 4 real-world datasets in Figure 4. Based on the
fact that a Gaussian mixture model is a universal approximator of densities, we present a theorem
(Theorem 3) in Appendix B to show that the overlap between the distribution of normal training data
and the distribution of Xgen could be effectively bounded.
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Figure 4: Visualization of 3 randomly selected features of Xtrn, Xgen, and the hyper-sphere S2 sup-
ported byXgen. NoticeXtrn only occupies part of the hyper-sphere. Potential anomalies could appear
in the rest of the hyper-sphere space.

Theoretical Error Rate Bound of NPD Theorem 4 in Appendix C presents an error bound of FPR
and FNR for AutoUAD with NPD, which further supports the effectiveness of our method.

3.4 AUTOUAD VIA BAYESIAN OPTIMIZATION

Bayesian optimization (BO) (Jones et al., 1998) is an effective tool for hyperparameter optimization
in supervised learning (Snoek et al., 2012; Klein et al., 2017). It optimizes hyperparameters sequen-
tially, using past results to guide future iterations. Compared to grid search, BO is more efficient,
particularly for models with many hyperparameters, as grid search faces exponentially growing
search spaces and high computational costs. For example, using grid search to solve State 1 of the
AutoUAD problem (Definition 2), the number of training modelsMi is

∏Hi

j=1 |S
(i)
j |. Additionally,

grid search requires predefined hyperparameter grids, which often involve guesswork. We use BO
with the Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) for optimization. Details of
BO based on V(M,X ) are in Appendix F, as illustrated in Figure 9.

4 EXPERIMENTS AND RESULTS

Benchmark Datasets and UAD Methods We here3 show the effectiveness of AutoUAD with
four UAD methods including a shallow method OCSVM (Schölkopf et al., 2001) and three deep
methods AutoEncoder (AE) (Aggarwal, 2016), DeepSVDD (Ruff et al., 2018), and DPAD (Fu
et al., 2024), though there are more UAD methods in the literature. The experiments are conducted
on 38 widely-used real-world benchmark datasets collected by ADBench (Han et al., 2022) and
DAMI (Campos et al., 2016), excluding those with 50,000 or more samples due to time constraints,
though our method is scalable to larger datasets. The dataset information is summarized in Table
3 of Appendix E. Similar to (Shenkar & Wolf, 2022), we randomly split 50% of normal samples
for training and used the rest with anomalous data for testing. All data are standardized using the
training set’s mean and standard deviation. The split of each dataset is the same across different
UAD methods. We repeat all experiments with 5 different data splits and report the results with
mean and standard deviation. Note that the hyperparameter tuning and model selection are done
with the training data only (and the validation data used in our NPD is part of the training data),
while the test data is only used to evaluate the final model. Please also see the flowchart in Figure 9.

Baselines and Evaluation Metric We compare the proposed three metrics, RTM, EAG, and NPD,
with three existing internal evaluation metrics, including ModelCentrality (MC) (Lin et al., 2020),
HITS(Ma et al., 2023), and Mass-Volume (MV) / Excess-Mass (EM) (Goix, 2016), which uses a
similar assumption to RTM and EAG. Besides, we also compare three no model selection baselines,
Default uses the default hyper-parameters adopted by the corresponding UAD algorithm, Random
picks a set of hyper-parameters randomly from a grid search pool, and Max operates as an oracle
and is an upper bound of the performance. For the performance metric, we report the area under the
ROC curve (AUC) and F1 score of the selected model. The calculation of the F1 score is consistent
with (Shenkar & Wolf, 2022; Qiu et al., 2021). The implementation details are in Appendix G.

3Due to space limitation, the results on more UAD methods are in Appendix J.
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Figure 5: AUC, F1, and the proposed evaluation metrics of OCSVM, AE, DeepSVDD, and DPAD
on different datasets in each iteration of BO. The first row (a, b, c, d) are the results of RTM; The
second row (e, f, g, h) are the results of EAG; The last row (i, j, k, l) are the results of NPD.
Table 1: Mean AUC and F1 scores through 38 datasets. Default uses the default hyper-parameters.
Random is the expected value of the grid search. The p-value of the paired t-test shows the statistical
significance compared with Random. The best performance is bold and the second best is underline.
p-value* is the comparison between NPD and the second best.

Method OCSVM AE DeepSVDD DPAD
Metric AUC F1 AUC F1 AUC F1 AUC F1
Max mean±std 85.75±15.3 63.33±26.1 84.86±16.0 64.11±26.5 80.18±18.1 57.63±28.7 83.38±14.9 61.88±24.5
Default mean±std 78.73±19.4 54.32±27.6 81.47±16.9 56.68±25.7 73.90±21.7 48.93±28.4 73.65±18.5 48.66±25.1
Random mean±std 74.71±16.4 48.90±22.8 81.88±17.2 57.86±25.6 74.45±19.9 48.73±26.6 71.2±14.39 46.57±21.1

EM/MV mean±std 71.41±22.5 45.71±28.7 83.08±16.6 59.67±25.9 74.43±21.7 47.63±29.5 72.59±18.5 46.28±25.9
p-value 0.0065 0.0437 0.0156 0.04304 0.3301 0.3694 0.1385 0.6731

RTM(Ours) mean±std 76.52±20.8 53.15±28.9 82.15±16.6 57.72±27.8 73.64±21.4 44.87±27.7 74.00±20.7 44.24±27.4
p-value 0.1768 0.0415 0.7653 0.7414 0.4833 0.0325 0.0935 0.1684

EAG(Ours) mean±std 77.17±19.5 51.95±27.5 82.35±16.9 57.16±26.2 75.56±18.6 46.53±27.3 71.14±19.3 46.16±26.9
p-value 0.1333 0.1354 0.5727 0.3866 0.1674 0.0446 0.9189 0.7773

NPD(Ours)
mean±std 84.03±15.5 60.26±26.2 83.58±16.0 59.73±25.4 74.38±20.1 48.31±27.8 80.36±16.8 55.67±23.7

p-value 0.0000 0.0000 0.0212 0.0701 0.8838 0.6024 0.0000 0.0000
p-value* 0.0011 0.0014 0.181130 0.6954 0.5909 0.1657 0.0001 0.0006

Intuitive Validation of AutoUAD via BO In Figure 5, we present the performance in each itera-
tion of our proposed metrics RTM, EAG, and NPD with four UAD methods. The setting is detailed
in Table 5 of Appendix H. We see that in most cases, higher metrics correspond to higher AUC and
F1, meaning that they are effective surrogates for the expected model performance on unseen data.

Comparative Study We compare the performance using BO to search for the best model of RTM,
EAG, and NPD with Max, Default, Random, and EM/MV in Table 1. The consensus-based metrics
are not adaptable for BO because they are designed to select the most reliable model from a set of
models, while the performance of each model is not a consideration. The average performance of
AUC and F1 through 38 benchmark datasets indicates that our methods have the highest AUC and
F1. NPD significantly outperforms other methods when applied to OCSVM, AE, and DPAD. The
results for each dataset are in Appendix I. Thus, we achieve Goal 1 of AutoUAD.

To see the effectiveness of our methods for Goal 2 of AutoUAD, taking Figure 6 as an example, we
see NPD consistently has a strict positive correlation with AUC and F1, where the Spearman rank
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Figure 6: Comparison of EM/MV, RTM, EAG, and NPD on test AUC of selected model in BO
hyper-parameter search in 4 datasets. V is calculated on the training set, and AUC is calculated on
the testing set. Both AUC and V have been normalized. The NPD is positively proportional to the
AUC. We can select the best model through different UAD algorithms.
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Figure 7: T-SNE visualization of Xval, Xgen, and true anomalies. The generated Gaussian samples
guide the model in learning a decision boundary around normal data.
coefficient is always 1. In contrast, RTM and EAG do not always monotonically increase the AUC
and F1 due to overfitting of the training data and the additional hyper-parameter.

Unsupervised Outlier Model Selection (UOMS) Study Instead of using BO to optimize the
hyper-parameters, the goal of UOMS is to select the best pair of {M, θ} among a pool of op-
tions (usually a grid search pool). We use the same grid search pool in Table 4 and compare the
performance with the consensus-based metrics, MC and HITS, and IForest with the default hyper-
parameter. The size of our grid search is much larger, up to 2667 models, compared with previous
works Huang et al. (2024); Ma et al. (2023). The results are reported in Table 2. It is seen that
our metrics RTM and NPD consistently outperform the baselines indicating our method can achieve
goal 2 in AutoUAD among a grid search model pool. MC and HITS obtain a worse performance
because the consensus-based methods are not designed to be a surrogate in equation 3. They will be
affected by the majority of models. If the majority model has a lower score, the selected model will
thereby perform worse.

Table 2: UOMS comparison through 38 datasets.
The notation meanings are the same as Table 1.

Metrics AUC F1
Max mean±std 89.28±11.8 73.33±22.0
Default (IForest) mean±std 78.08±18.6 49.29±27.7
Random mean±std 75.15±16.2 49.71±23.2
EM/MV mean±std 75.79±19.2 51.09±27.70
MC mean±std 70.7±18.4 44.17±25.7
HITS mean±std 73.44±18.8 48.13±27.1

RTM (Ours) mean±std 79.39±19.6 56.84±28.1
p-value 0.1308 0.1227

EAG (Ours) mean±std 76.5±17.4 46.25±25.0
p-value 0.5670 0.3453

NPD (Ours)
mean±std 83.49±16.4 59.30±26.2

p-value 0.0000 0.0000
p-value* 0.0014 0.0003

Data Visualization See the t-SNE (Van der
Maaten & Hinton, 2008) results in Figure 7.

5 CONCLUSION

This paper studied the problem of hyper-
parameter optimization and model comparison
for unsupervised anomaly detection. We pro-
posed three surrogate metrics for the expected
model performance on unseen data without us-
ing any information of anomaly. Particularly,
the last metric NPD showed significant im-
provement over the baselines in the experi-
ments of 38 benchmark datasets. The success
of NPD stems from its simplicity and theoreti-
cal ground. Nevertheless, the highest NPD did not always correspond to the best model performance.
Future work may continuously try to provide more effective surrogate metrics.
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A EAG ALGORITHM

The sequential and vectorized algorithms for calculating EAG are shown in Algorithm 1 and Al-
gorithm 2, where ρ in the algorithm is set to 0.2. The time complexity is O(N) with prefix sum
computation of mean and variance. So, EAG is scalable to large dataset.

Algorithm 1 Expected Anomaly Gap

Input: maximum percentile ρ, anomaly score vector s;
1: N ← s.size; ∆← 0;
2: Top ρN sort s in descending order;
3: for k ∈ {1, ..., ρN} do
4: µ0 ←mean(s[: k]); µ1 ←mean(s[k :]);
5: σ0 ←variance(s[: k]); σ1 ←variance(s[k :]);
6: ∆← ∆+ k(N − k)(µ0 − µ1)

2/N(kσ2
0 + (N − k)σ2

1 + ϵ); ▷ equation 5
7: end for
8: ∆← ∆/ρN ;

Output: EAG value ∆ through different k;
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Algorithm 2 Expected Anomaly Gap Vectorized

Input: Percentile ρ, anomaly score vector s;
1: N ← s.size; ∆← 0;
2: Top ρN sort s in descending order;
3: Σ← PrefixSum(s); sum← Σ[−1]
4: n← [1, ..., N ]; w0 ← n/N ; w1 ← 1−w1;
5: µ0 ← Σ/n; µ1 ← (sum−Σ)/n.reverse;
6: Σ2 ← PrefixSum(s

⊙
s);

7: σ2
0 ← (Σ2 −Σ

⊙
Σ/n)/(n− 1 + ϵ); ▷ Sample variance

8: σ2
1 ← (Σ2[−1]−Σ2 − (sum−Σ)

⊙
(sum−Σ)/n.reverse)/(n.reverse− 1 + ϵ);

9: σ2
inter ← w0w1(µ0 − µ1)

⊙
(µ0 − µ1);

10: σ2
intra ← w0σ

2
0 +w1σ

2
1 ;

11: ∆← σ2
inter/σ

2
intra;

Output: mean(∆[1 : ρN ]);

B BOUND OF OVERLAP BETWEEN DISTRIBUTIONS OF XTRN AND XGEN

Here we provide the bound of the overlap between the distribution of normal training data and the
distribution of Xgen. The theorem is proved in Appendix D.

Theorem 3 Let ptrn be the density function of the training data and pmix =
∑⊤

i=1 wiN (µi,Σi) be
a Gaussian mixture model to approximate ptrn such that | log(ptrn(x)) − log(pmix(x))| ≤ ε holds
for any x ∈ Rd. Denote pgen the density function Xgen. Suppose λ ≤ λmin(Σi) ≤ λmax(Σi) ≤ λ̄,
ϕ ≤ ∥µi∥ ≤ ϕ̄, β ≤ ∥Σi∥∗ ≤ β for all i ∈ [T ]. Then the distance between ptrn and pgen, measured
by the KL-divergence, satisfies the following inequalities:
(a) DKL(pgen∥ptrn) ≤ 1

2T

(
d log λ̄+ λ−1ϕ̄2 + dλ−1

)
− d

2 + ε;
(b) DKL(ptrn∥pgen) ≥ exp(−ε)(−d log λ̄−d−2(T−1)λ−1ϕ̄−(T−1)λ−1β̄+Tϕ+Tβ)−ε exp(−ε).

C BOUND OF ERROR RATE OF NPD

In this section, we analyze the generalization error of our AutoUAD with the evaluation metric NPD
using tool of the Rademacher complexity, which is defined as follows.

Definition 7 (Rademacher Complexity) Let H be a set of real-valued functions defined over a set
X . Given a sample S ∈ Xm and σ = (σ1, . . . , σn), where σis are independent uniform random
variables taking values in {−1,+1}. The empirical Rademacher complexity of H is defined as
follows:

R̂S(H) =
2

m
E
σ

[
sup
h∈H

∣∣∣∣∣
m∑
i=1

σih (xi)

∣∣∣∣∣ | S = (x1, . . . , xm)

]
.

To calculate the false positive rate (FPR) and false negative rate (FNR), we need to determine a
threshold for the anomaly scores given by a model M. For convenience, we give the following
definitions.

Definition 8 Let τM(z) = 1(z > c) be a threshold function, where c > 0 is the threshold. Let
FM = τM ◦ fM : Rd → {0, 1} and FM be the class of FM defined byM with hyperparameters
Θ. The FPR and FNR on the unseen testing data are then defined as FPR = Ex∼D0 [FM(x)] and
FNR = Ex∼D′

1
[1− FM(x)] respectively.

Without loss of generality and for convenience, we assume that in the problem defined by Definition
1, N1 = 0, and in NPD, M = N/2. The following theorem (proved in Section D.4) provides a
bound for the FPR and FNR on the unseen testing data.

Theorem 4 Based on Definition 8, letting ∆ = min{maxx∈Xgen fM(x) −
minx∈Xgen fM(x),maxx∈Xval fM(x) − minx∈Xval fM(x)}, ς = maxx∈Xgen fM(x), and
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κ = 1.2 + 2(c−1 − 1
5ς )

∑
x∈Xgen

fM(x)/N , then over the randomness of Xval and Xgen, the
following inequality holds with probability at least 1− 2δ:

FPR + FNR ≤ κ− 2∆

c
√
N

√
VNPD(M,X ) +

√
2

2

√
DKL(Dgen∥D′

1)

+ R̂Xval(FM) + R̂Xgen(FM) + 6

√
log 2

δ

N

(9)

In the theorem, the empirical Rademacher complexities R̂Xval(FM) and R̂Xgen(FM) can be explic-
itly bounded for anyM (e.g., OC-SVM and AE) with any hyperparameters Θ and the corresponding
technique is fairly standard in the literature (Bartlett & Mendelson, 2002; Bartlett et al., 2017). Due
to this, together with the fact that our work AutoUAD is a framework not specialized to a sin-
gle M, we will not show the M-specific computation of R̂Xval(FM) and R̂Xgen(FM). Note that
DKL(Dgen||D′

1) can be further bounded by the similar approach used in Theorem 3. Our AutoUAD
finds the model with the largest VNPD and hence has the potential to reduce the false positive rate
and false negative rate. In addition, a smaller DKL(Dgen||D′

1) or complexity of M (measured as
R̂Xval(FM) and R̂Xgen(FM)) may also lead to a lower error rate.

D PROOF FOR THEOREMS

D.1 PROOF FOR THEOREM 1

Proof: Let g(x) be the density function of a Gaussian distribution with mean µ and variance σ2

and let p(x) be the density function of an arbitrary distribution with the same variance σ2. Without
loss of generality, we assume that f(x) has the same mean of µ as g(x), because differential entropy
is translation invariant. Denote the entropy of g and f as H(g) and H(f) respectively. The Kullback-
Leibler divergence between g and f satisfies

0 ≤ DKL(f∥g) =
∫ ∞

−∞
f(x) log

(
f(x)

g(x)

)
dx = −H(f)−

∫ ∞

−∞
f(x) log(g(x))dx (10)

We have

H(g) = −
∫

g(x) log g(x)dx

= −E
[
logN

(
µ, σ2

)]
= −E

[
log

[(
2πσ2

)−1/2
exp

(
− 1

2σ2
(x− µ)2

)]]
=

1

2
log

(
2πσ2

)
+

1

2σ2
E
[
(x− µ)2

]
=

1

2
log

(
2πσ2

)
+

1

2

(11)

Note that according to the basic definitions,
∫∞
−∞ f(x)dx = 1 and

∫∞
−∞ f(x)(x − µ)2dx = σ2.

Then, for the second term of RHS of (10), we have∫ ∞

−∞
f(x) log(g(x))dx =

∫ ∞

−∞
f(x) log

(
1√
2πσ2

e−
(x−µ)2

2σ2

)
dx

=

∫ ∞

−∞
f(x) log

1√
2πσ2

dx+

∫ ∞

−∞
f(x)

(
− (x− µ)2

2σ2

)
dx

= −1

2
log

(
2πσ2

)
− σ2

2σ2

= −1

2

(
log

(
2πσ2

)
+ 1

)
= −H(g)

(12)
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Combining the results of (10) and (12), we obtain

H(g)−H(f) ≥ 0. (13)

This inequality indicates that with a given variance, the entropy of the Gaussian distribution is the
largest amongst all distributions.

For Xtrn, we denote the density function of each variable as fi, i = 1, . . . , d. For Xgen, we denote
the density function of each variable as gi, i = 1, . . . , d. Since g1, g2, . . . , gd or the corresponding
variables more formally are independent, we have

H(g1, g2, . . . , gd) =

d∑
i=1

H(gi). (14)

Since g1, g2, . . . , gd or the corresponding variables more formally are not independent almost surely,
we have

H(f1, f2, . . . , fd) <

d∑
i=1

H(fi). (15)

Appying 13 to each i and combing them with (14) and (15), we arrive at

H(g1, g2, . . . , gd) > H(f1, f2, . . . , fd). (16)

We finish the proof by changing the format of entropy using variables rather than density functions.
Q.E.D.

D.2 PROOF FOR THEOREM 2

Proof: For (a), we have the following derivation:

VNPD(M,X ) =
(Mean(sval)−Mean(sgen))

2

2(Var(sval) + Var(sgen)) + ϵ

=

( |X 0
val|

M Mean(s0val) +
|X 1

val|
M Mean(s1val)−

|X 0
gen|
M Mean(s0gen)−

|X 1
gen|
M Mean(s1gen)

)2
2(Var(sval) + Var(sgen)) + ϵ

≤
2
( |X 1

val|
M Mean(s1val)−

|X 0
gen|
M Mean(s0gen)

)2
+ 2

( |X 1
gen|
M Mean(s1gen)−

|X 0
val|

M Mean(s0val))
)2

2(Var(sval) + Var(sgen)) + ϵ

=

( |X 1
val|

M Mean(s1val)−
|X 0

gen|
M Mean(s0gen)

)2
+

( |X 1
gen|
M Mean(s1gen)−

|X 0
val|

M Mean(s0val)
)2

(Var(sval) + Var(sgen)) + ϵ/2
(17)

For (b), let c0 and c1 be two arbitrary real numbers and let the transformed scoring function be
f ′ = c1f + c0. Then denote the anomaly score given by f ′ as s′. We have the following derivation:

VNPD(f
′) =

(Mean(s′val)−Mean(s′gen))
2

2(Var(s′val) + Var(s′gen)) + ϵ

=
((c1 ×Mean(sval) + c0)− (c1 ×Mean(sgen) + c0))

2

2(c21 × Var(s′val) + c21 × Var(sgen)) + ϵ

=
c21 × (Mean(sval)−Mean(sgen))

2

2c21 × (Var(s′val) + Var(sgen)) + ϵ

(18)

When ϵ = 0, we have VNPD(f
′) = VNPD(f). This finished the proof. Q.E.D.

D.3 PROOF FOR THEOREM 3

Proof: (a) The KL-divergence between pgen and ptrn

DKL(pgen∥ptrn) =

∫
x

pgen(x) log
pgen(x)

ptrn(x)
, (19)
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where pgen(x) = 1
(2π)d/2|Σgen|1/2

exp
(
− 1

2 (x− µgen)
⊤Σ−1(x− µgen)

)
. In addi-

tion, | log(ptrn(x)) − log(pmix(x))| ≤ ε holds for any x, where pmix(x) =∑⊤
i=1 wi

1
(2π)d/2|Σi|1/2

exp
(
− 1

2 (x− µi)
⊤Σ−1

i (x− µi)
)
.

We have
DKL(pgen∥ptrn) =Epgen [log(pgen)− log(ptrn)]

≤Epgen [log(pgen)− log(pmix) + ε)]

=ε+DKL(pgen∥pmix)

(20)

Using Jensen’s inequality, we obtain

DKL(pgen∥pmix) =Epgen [log(pgen)− log

T∑
i=1

wiN (µi,Σi)]

≤Epgen [log(pgen)−
T∑

i=1

wi log(N (µi,Σi))]

=

T∑
i=1

Epgen [log(p
1/T
gen − log(N (µi,Σi)

wi)]

(21)

For each i, it is not hard to show that

Epgen [log(pgen)− log(N (µi,Σi)
wi)]

=Epgen

[
1

2
log
|Σi|wi

|Σ0|1/T
− 1

2T
(x− µ0)

⊤
Σ−1

0 (x− µ0) +
wi

2
(x− µi)

⊤
Σ−1

i (x− µi)

]

=
1

2
log
|Σi|wi

|Σ0|1/T
− 1

2T
Epgen

[
(x− µ0)

⊤
Σ−1

0 (x− µ0)
]
+

wi

2
Epgen

[
(x− µi)

⊤
Σ−1

i (x− µi)
]

=
1

2
log
|Σi|wi

|Σ0|1/T
− 1

2T
tr(Epgen

[
(x− µ0)

⊤
(x− µ0)

]
Σ−1

0 ) +
wi

2
(µ0 − µi)

⊤
Σ−1

i (µ0 − µi)

+
wi

2
tr
{
Σ−1

i Σ0

}
=
1

2

[
log
|Σi|wi

|Σ0|1/T
− d

T
+ wi (µ0 − µi)

⊤
Σ−1

i (µ0 − µi) + witr(Σ−1
i Σ0)

]
(22)

Since µ0 = 0, Σ0 = Id, it follows from (22) that

Epgen [log(pgen)− log(N (µi,Σi)
wi)]

=
1

2

[
wi log |Σi| −

d

T
+ wiµ

⊤
i Σ

−1
i µi + witr(Σ−1

i )

]
(23)

Combining (21) and (23), and using λmin(Σi) ≥ λ and λmin(Σi) ≤ λ̄, we have

DKL(pgen∥pmix) ≤−
d

2
+

1

2T

T∑
i=1

[
wi log |Σi|+ wiµ

⊤Σ−1
i µi + witr(Σ−1

i )
]

≤− d

2
+

1

2T

T∑
i=1

wi

(
d log λ̄+ λ−1∥µi∥2 + dλ−1

)
≤− d

2
+

1

2T

T∑
i=1

wi

(
d log λ̄+ λ−1 max

j
∥µj∥2 + dλ−1

)
=− d

2
+

1

2T

(
d log λ̄+ λ−1 max

j
∥µj∥2 + dλ−1

)
≤− d

2
+

1

2T

(
d log λ̄+ λ−1ϕ̄2 + dλ−1

)

(24)
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Combining (24) and (20), we complete the proof.

(b) First, | log(ptrn(x))− log(pmix(x))| ≤ ε implies that

ptrn(x)

pmix(x)
≤ exp(ε) and

pmix(x)

ptrn(x)
≤ exp(ε). (25)

Now we obtain
DKL(ptrn∥pgen) =Eptrn [log(ptrn)− log(pgen)]

≥ exp(−ε)Epmix [log(pmix)− log(pgen)− ε]

= exp(−ε)DKL(pmix∥pgen)− ε exp(−ε)
(26)

For convenience, let qi := N (µi,Σi), then pmix =
∑⊤

i=1 wiqi. Using Jensen’s inequality, we have

DKL(pmix∥pgen) =Epmix [log(

T∑
i=1

wiqi)− log(pgen)]

≥Epmix [

T∑
i=1

wi log(qi)− log(pgen)]

=

T∑
i=1

Epmix [log(q
wi
i )− log(p1/Tgen )]

(27)

For each i, we derive that

Epmix [log(q
wi
i )− log(p1/Tgen )]

=Epmix

[
1

2
log
|Σ0|1/T

|Σi|wi
− wi

2
(x− µi)

⊤
Σ−1

i (x− µi) +
1

2T
(x− µ0)

⊤
Σ−1

0 (x− µ0)

]

=
1

2
log
|Σ0|1/T

|Σi|wi
− wi

2
Epmix

[
(x− µi)

⊤
Σ−1

i (x− µi)
]
+

1

2T
Epmix

[
(x− µ0)

⊤
Σ−1

0 (x− µ0)
]

=
1

2
log
|Σ0|1/T

|Σi|wi
− wi

2
witr(Eqi

[
(x− µi)

⊤
(x− µi)

]
Σ−1

i )

− wi

2

∑
j ̸=i

wjEqj

[
(x− µi)

⊤
Σ−1

i (x− µi)
]

+
1

2T

T∑
j=1

wj (µj − µ0)
⊤
Σ−1

0 (µj − µ0) +
1

2T

T∑
j=1

tr
{
Σ−1

0 Σj

}
=
1

2

[
log
|Σ0|1/T

|Σi|wi
− w2

i d− wi

∑
j ̸=i

(µj − µi)
⊤
Σ−1

i (µj − µi)−
1

T

∑
j ̸=i

tr(Σ−1
i Σj)

+
1

T

T∑
j=1

(µj − µ0)
⊤
Σ−1

0 (µj − µ0) +
1

T

T∑
j=1

tr(Σ−1
0 Σj)

]
=
1

2

[
− wi log |Σi| − w2

i d− wic1 −
1

T
c2 +

1

T
c3 +

1

T
c4

]
,

(28)
where c1 =

∑
j ̸=i (µj − µi)

⊤
Σ−1

i (µj − µi) ≤ (T − 1)λ−1 maxij ∥µj − µi∥, c2 =∑
j ̸=i tr(Σ−1

i Σj) ≤ (T − 1)λ−1β̄, c3 =
∑T

j=1 (µj − µ0)
⊤
Σ−1

0 (µj − µ0) ≥ T minj ∥µj∥, and

c4 =
∑T

j=1 tr(Σ−1
0 Σj) ≥ Tβ. By the way, log |Σi| ≤ d log λ̄. It follows that

DKL(pmix∥pgen) ≥
T∑

i=1

(
−wid log λ̄− w2

i d− 2wi(T − 1)λ−1ϕ̄− (T − 1)/Tλ−1β̄ + ϕ+ β
)

≥− d log λ̄− d− 2(T − 1)λ−1ϕ̄− (T − 1)λ−1β̄ + Tϕ+ Tβ
(29)
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Finally, we have

DKL(ptrn∥pgen) ≥ exp(−ε)(−d log λ̄− d− 2(T − 1)λ−1ϕ̄− (T − 1)λ−1β̄ + Tϕ+ Tβ)− ε exp(−ε).
(30)

Q.E.D.

D.4 PROOF FOR THEOREM 4

The following is a standard Rademacher complexity bounds (Bartlett & Mendelson, 2002).

Theorem 5 (Rademacher Bound) Let H be a class offunctions mapping Z = X × Y to [0, 1] and
S = (z1, . . . , zm) a finite sample drawn i.i.d. according to a distribution Q. Then, for any δ > 0,
with probability at least 1−δ over samples S of size m, the following inequality holds for all h ∈ H
:

R(h) ≤ R̂(h) + ℜ̂S(H) + 3

√
log 2

δ

2m
.

Proof: Since Xval are sampled from D0, using the standard Rademacher complexity bound given
by Theorem 5, we can obtain

Ex∼D0 [FM(x)] ≤ 2

N

∑
x∈Xval

FM(x) + R̂Xval(FM) + 3

√
log 2

δ

N
, (31)

where |Xval| = N/2 and the inequality holds with probability at least 1− δ.

For convenience, we let g(x) := 1−FM(x) and let p1(x), p2(x) be the density functions ofD′
1,Dgen

respectively. We have

Ex∼D′
1
[g(x)] =Ex∼Dgen [g(x)] + Ex∼D′

1
[g(x)]− Ex∼Dgen [g(x)]

≤Ex∼Dgen [g(x)] +

∣∣∣∣∫ g(x)p1(x)dx−
∫

g(x)p2(x)dx

∣∣∣∣
≤Ex∼Dgen [g(x)] +

∫
g(x)|p1(x)− p2(x)|dx

≤Ex∼Dgen [g(x)] +

∫
|p1(x)− p2(x)|dx

≤Ex∼Dgen [g(x)] +

√
2

2

√
DKL(Dgen||D′

1),

(32)

where the last inequality used the fact that the total variation distance can be upper-bouned by using
the KL-divergence.

Using Theorem 5 for Ex∼Dgen [g(x)], we have

Ex∼Dgen [1− FM(x)] ≤ 2

N

∑
x∈Xgen

(1− FM(x)) + R̂Xgen(FM) + 3

√
log 2

δ

N
, (33)

where |Xgen| = N/2 and the inequality holds with probability at least 1− δ.

Combining (31) and (33), we have

FPR + FNR ≤ 2

N

∑
x∈Xval

FM(x) +
2

N

∑
x∈Xgen

(1− FM(x)) +

√
2

2

√
DKL(Dgen||D′

1)

+ R̂Xval(FM) + R̂Xgen(FM) + 6

√
log 2

δ

N

(34)

which holds with probability at least 1− 2δ.
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As τM is a threshold function, we have

FM(x) =
sgn(f(x)− c) + 1

2
, (35)

where c is a threshold defined by the modelM with hyperparameters Θ. It follows that

FM(x) ≤ c−1fM(x) (36)

and
1− FM(x) ≤ 1 + ϑ− ϑ

ς
fM(x) (37)

where ϑ could be any value and ς = maxx∈Xgen fM(x).

Now we can derive that
2

N

∑
x∈Xval

FM(x) +
2

N

∑
x∈Xgen

(1− FM(x))

≤ 2

N

∑
x∈Xval

c−1fM(x) +
2

N

∑
x∈Xgen

(1 + ϑ− ϑ

ς
fM(x))

≤c−1

 2

N

∑
x∈Xval

fM(x)− 2

N

∑
x∈Xgen

fM(x)


+

2

N

∑
x∈Xgen

(
1 + ϑ+ (c−1 − ϑ

ς
)fM(x)

)
(38)

Recall that 2
N

∑
x∈Xval

fM(x) = mean(sval) and 2
N

∑
x∈Xgen

fM(x) = mean(sgen) and
mean(sval) ≤ mean(sgen), it follows from (39) that

2

N

∑
x∈Xval

FM(x) +
2

N

∑
x∈Xgen

(1− FM(x))

≤− c−1
√
(mean(sgen)−mean(svar))

2

+
2

N

∑
x∈Xgen

(
1 + ϑ+ (c−1 − ϑ

ς
)fM(x)

)
≤− c−1

√
ϱVNPD(M,X ) + κ

(39)

where ϱ = 2(Var(sgen) + Var(sval)) + ϵ and κ = 2
N

∑
x∈Xgen

(
1 + ϑ+ (c−1 − ϑ

ς )fM(x)
)
= 1 +

ϑ+ (c−1 − ϑ
ς )mean(sgen).

Based on the von-Szokefalvi-Nagy’s inequality, we have

ϱ ≥
2((max(sgen)−min(sgen))

2 + (max(sval)−min(sval))
2)

N
+ ϵ

≥4∆2

N
+ ϵ ≥ 4∆2

N

(40)

where ∆ = min{max(sgen)−min(sgen),max(sval)−min(sval)}.
Combining the above result with (39) and (34) and letting ϑ = 0.2 we obtain

FPR + FNR ≤κ− 2∆

c
√
N

√
VNPD(M,X ) +

√
2

2

√
DKL(Dgen||D′

1)

+ R̂Xval(FM) + R̂Xgen(FM) + 6

√
log 2

δ

N

(41)

This completed the proof.

Q.E.D.
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Table 3: 38 real-world tabular datasets tested. * represent the dataset is from DAMICampos et al.
(2016)

Dataset # Sample Dim. % Anomaly
ALOI 49534 27 3.04
anthyroid 7200 6 7.42
arrhythmia* 452 274 14.60
breastw 683 9 34.99
cardio 1831 21 9.61
Cardiotocography 2114 21 22.04
fault 1941 27 34.67
glass 214 9 42.21
Hepatitis 80 17 16.25
InternetAds 1966 1555 18.72
Ionosphere 351 32 35.90
landsat 6435 36 20.71
letter 1600 32 15.10
Lymphography 148 18 4.05
magic 19020 10 35.16
mammography 11183 6 2.32
mnist 7603 100 9.21
musk 3062 166 3.17
optdigits 5216 64 2.88
PageBlocks 5393 10 9.46
pendigits 6870 16 2.27
Pima 768 8 34.90
satellite 6435 36 31.64
satimage-2 5803 36 1.22
shuttle* 1013 9 1.28
SpamBase 4207 57 39.91
speech 3686 400 1.65
Stamps 340 9 9.12
thyroid 3772 6 2.47
vertebral 240 6 12.50
vowels 1456 12 3.43
Waveform 3443 21 2.90
WBC 223 9 4.48
WDBC 367 30 2.72
Wilt 4819 5 5.33
wine 129 13 7.75
WPBC 198 33 23.74
yeast 1484 8 34.16

E DATASETS SUMMARY

We conducted our experiment under the UAD dataset setting with 38 benchmark datasets commonly
used in UAD research. The dataset information is shown in Table 3. Similar to (Shenkar & Wolf,
2022), we randomly split 50% of normal samples for training and used the rest with anomalous
data for testing. All data are standardized using the training set’s mean and standard deviation. The
split of each dataset is the same across different UAD methods. We repeat all experiments with 5
different data splits and report the results with mean and standard deviation.

F AUTOUAD VIA BAYESIAN OPTIZATION

Bayesian optimization (BO) (Jones et al., 1998) has emerged as a powerful tool for hyper-parameter
optimization in supervised learning (Snoek et al., 2012; Klein et al., 2017). BO optimizes hyper-
parameters sequentially by leveraging historical search results to guide the next iteration. Com-

22



Published as a conference paper at ICLR 2025

pared with grid search, BO offers significant advantages, especially for models with many hyper-
parameters.

Given a black-box function h : Z → R, BO aims to find an optimal point z∗ ∈ Z that minimizes
h globally, and typically proceeds through three steps. First, BO identifies the most promising point
zt+1 ∈ argmaxz αp(h)(z) using numerical optimization, where αp(h) is an acquisition function
(e.g., Expected Improvement) that depends on a prior p(h) (e.g., Gaussian processes (Williams
& Rasmussen, 2006)). Next, BO evaluates the potentially expensive and noisy function yt+1 ∼
h(zt+1) + N (0, σ2) and updates the observation set Dt = {(z1, z1), . . . , (zt, yt)} with the new
sample (zt+1, yt+1). Finally, it updates both the prior p(h) and the acquisition function αp(h) using
the updated dataset Dt+1, allowing the process to iterate toward the optimal solution.

We sequentially maximize the proposed evaluation metrics via BO instead of defining a hyper-
parameter grid in a grid search. Suppose we have a set of different models for a UAD methodM,
i.e., FM = {fM;Θ1

, fM;Θ2
, . . . , fM;ΘH

}, where Θi is the hyper-parameters in fMi
. Let

hi(Θi) := −∆(fM(X|Θi)), i = 1, 2, . . . ,H,

where ∆ can RTM, EAG, or NPD, and X denotes the dataset (either training set or validation set).
Then we use BO to find

Θ∗
i = arg min

Θi∈Si

hi(Θi),

where Si denotes the set of constraints. We can find the best model for each UAD method. Finally,
we get the best model with its best hyper-parameters using equation 2. we use Tree-structured
Parzen Estimator (TPE) (Bergstra et al., 2011). Then, the Expected Improvement (EI) acquisition
function is

EIy∗(Θ) =

∫ y∗

−∞
(y∗ − y)p(y|Θ)dy =

∫ y∗

−∞
(y∗ − y)p(Θ|y)p(y)

p(Θ) dy,

where y = h(θ), and y∗ = hmin is the best function value known. Let γ = p(y < y∗) and
p(Θ) =

∫
R p(Θ|y)p(y)dy = γℓ(Θ) + (1− γ)φ(Θ). We have

EIy∗(Θ) =
γy∗(Θ)−γℓ(Θ)−

∫ y∗
−∞ p(y)dy

γℓ(Θ)+(1−γ)φ(Θ) ∝
(
γ + φ(Θ)

ℓ(Θ) (1− γ)
)−1

,

where ℓ(Θ) is the density formed by using the observations {Θ(i)} such that the corresponding loss
h(Θ(i)) was less than y∗, and φ(Θ) is the density formed by using the remaining observations.

G IMPLEMENTATION DETAILS

Implementation All experiments are implemented by Pytorch (Paszke et al., 2017) on NVIDIA
RTX 3090 and AMD Ryzen Threadripper 3990X platform. For OCSVM, AE, and DeepSVDD, we
utilize popular PyOD implementation (Zhao et al., 2019). For DPAD, we use the code provided by
the authors. We utilize optuna (Akiba et al., 2019) to implement the Bayesian optimization with
Tree-structured Parzen Estimator (TPE) sampler (Bergstra et al., 2011). For each run, we perform
500 searches. We consider the core hyper-parameters of each UAD algorithm, they are listed in
Table 5. For MV/EM, MC, and HITS baseline, we utilize implementation in (Ma et al., 2023) 4. For
Max baseline, the highest performance among all observations is reported. For Random baseline,
the grid search pool is listed in Table 4. For NPD, we set the size of validation data as M = 0.3N .
For all ϵ, we set it as 1× 10−9.

H HYPER-PARAMETERS OF UAD ALGORITHMS

We first describe each hyper-parameter of 4 UAD algorithms studied in this paper. For deep learning-
based algorithms, we only consider the core hyper-parameters, such as hidden dimension, regulariza-
tion, etc, because deep UAD algorithms are usually not sensitive to optimization’s hyper-parameters
(learning rate, batch size, etc.).

4https://github.com/yzhao062/uoms
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Table 4: UAD Algorithms studied for hyper-parameter sensitivity and grid search pool construc-
tion. We search for two core hyper-parameters for each algorithm while keeping the other hyper-
parameters as default. 2667 UAD models are constructed in the pool.

UAD Algorithms Hyper-parameters Searched [Grid Values] # models
OCSVM ν : [0.01, 0.02, ..., 1], γ : [100, 50, 10, 5, 1, 0.5, 0.1, 0.01, ..., 10−6] 1500
AutoEncoder weight decay: [1, 0.5, 0.1, 0.01, ..., 10−6], hidden dim.: [16, 24, 32, ..., 256]] 403
DeepSVDD λ : [0.9, 0.5, 0.1, 0.01, ..., 10−6], hidden dim.: [16, 24, 32, ..., 256] 403
DPAD λ : [1000, 500, 100, 50, ..., 10−6], γ : [1000, 500, 100, 50, ..., 10−6] 361

Table 5: Hyper-parameter Searched in Bayesian Optimization.

UAD Algorithms Hyper-parameters Searched (Value Range)
OCSVM kernel, ν(0, 1), γ(1e− 6, 100), α0(0, 1000)
AutoEncoder weight decay(1e− 6, 0.1), hidden dim. 1(16, 256), hidden dim 2(16, 256)
DeepSVDD λ(1e− 6, 1), hidden dim. 1(16, 256), hidden dim. 2(16, 256)
DPAD λ(1e− 6, 1000), k(3, 1000), γ(1e− 6, 100) hidden dim. 1(16, 256), hidden dim 2(16, 256)

• OCSVM: We repeat the description in Scikit-Learn(Pedregosa et al., 2011). ν: An upper
bound on the fraction of training errors and a lower bound on the fraction of support vectors.
γ: Kernel coefficient for rbf, poly, and sigmoid. α0: Independent term in kernel function.
It is only significant in poly and sigmoid. Kernel: kernel type to be used in the algorithm.

• AE: Hidden dim. 1: the width of the first and the last hidden layer of the neural network.
Hidden dim. 2: the width of the second and the penultimate hidden layer of the neural
network, which is known as the size of the hidden representation. Weight decay: the regu-
larization term to control model complexity.

• DeepSVDD: We do not use an AE for pre-training to save time. c is computed based on
the network initialization first forward pass. Hidden dim. 1: the width of the first and the
last hidden layer of the neural network. Hidden dim. 2: the width of the second and the
penultimate hidden layer of the neural network, which is known as the size of the hidden
representation. λ: weight decay regularizer on the network parameters.

• DPAD: Hidden dim. 1: the width of the first and the last hidden layer of the neural network.
Hidden dim. 2: the width of the second and the penultimate hidden layer of the neural net-
work, which is known as the size of the hidden representation. λ: weight decay regularizer
on the network parameters. γ: hyper-parameter in dense projection distance calculation. k:
k nearest neighbors used in finding anomaly score.

Unless specified we train deep UAD methods with 256 batch size, Adam optimizer, 0.001 learning
rate, and 200 epochs. For AE we train 100 epochs. For DPAD we use a larger batch size of 4096.

We list the hyper-parameters searched for grid search and UOMS model pool construction in Table
4. We list the hyper-parameters considered in BO in Table 5.

I DETAILED RESULTS FOR EACH DATASET

Table 1 in Section 4 reports the average AUC and F1 results through 38 datasets. We list the results
of each dataset in Table 6 and Table 7 for AUC and F1, respectively.

J BO RESULTS ON MORE UAD ALGORITHMS

We perform AutoUAD via BO on five additional conventional deep UAD algorithms, including
PLAD(Cai & Fan, 2022), NeuTraLAD(Qiu et al., 2021), HRN(Hu et al., 2020), DROCC(Goyal
et al., 2020), and SCAD(Shenkar & Wolf, 2022). Due to time constraints, we test them on 14
datasets with smaller sizes (number of samples less than 1000), including arrhythmia, breastw, glass,
Hepatitis, Ionosphere, Lymphography Pima, shuttle, Stamps, vertebral, WBC, WDBC, wine, and
WPBC. The results compared with Max, EM/MV, RTM, EAG, and NPD are reported in Table 8. It
is seen our metrics work well with complex deep UAD methods.
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Table 6: AUC (%) score of EM/MV, EAG, NPD, and RTM on 38 benchmark datasets with 4 UAD
methods. Average results are reported through 5 different random data splits.

ad methods AE DPAD DeepSVDD OCSVM
delta method EM/MV EAG NPD RTM EM/MV EAG NPD RTM EM/MV EAG NPD RTM EM/MV EAG NPD RTM
ALOI 56.08±0.4 56.08±0.1 55.86±0.5 55.78±0.4 51.40±2.3 52.30±0.7 58.69±1.0 55.18±1.0 54.58±1.1 54.85±0.8 54.88±1.1 54.90±0.3 55.25±0.3 54.72±0.1 61.43±1.2 54.91±0.1
Cardiotocography 73.01±2.6 78.35±1.6 73.38±2.3 70.37±3.4 58.93±3.2 63.90±14.1 70.20±4.4 69.02±5.7 85.05±4.2 79.55±2.9 79.09±8.5 63.97±7.9 78.90±11.4 63.47±11.7 80.53±1.9 84.40±0.5
Hepatitis 78.74±4.3 79.58±4.1 80.47±2.3 79.81±3.8 67.92±17.6 67.53±13.5 69.23±3.8 81.28±3.6 78.09±4.6 77.86±7.7 70.21±11.2 78.97±7.2 73.36±13.9 65.95±13.2 78.93±3.2 79.54±4.2
InternetAds 88.59±1.2 88.99±0.8 87.94±0.5 88.91±0.7 74.02±16.6 83.84±8.3 79.17±3.1 83.81±6.4 88.12±1.0 87.64±0.7 87.53±0.7 88.03±0.9 65.96±19.7 57.32±16.4 85.40±0.5 86.72±0.7
Ionosphere 95.64±0.6 96.12±0.9 96.30±0.6 96.35±0.4 91.67±6.3 81.18±5.3 95.89±1.3 84.30±7.7 83.84±7.6 81.33±5.8 87.92±4.8 81.70±2.4 85.99±9.9 76.53±16.7 96.99±0.8 91.11±2.9
Lymphography 98.95±1.0 99.09±0.8 98.52±1.4 99.14±0.8 99.00±0.4 98.76±0.8 97.95±1.4 98.95±0.8 98.95±0.8 98.43±1.1 98.95±0.6 98.95±0.9 90.14±18.5 99.00±0.9 98.71±0.8 99.14±0.8
PageBlocks 94.97±1.1 92.72±1.1 95.98±1.3 93.20±0.4 77.73±13.4 50.85±9.7 95.22±1.3 86.43±4.0 91.33±1.4 90.58±2.3 94.01±1.6 90.32±2.0 86.19±20.3 94.33±2.4 94.95±0.3 93.46±0.4
Pima 68.69±1.0 68.81±2.7 70.59±1.1 72.80±1.9 66.36±5.5 64.27±4.6 66.72±2.9 61.93±5.1 70.91±1.9 68.72±2.9 68.97±1.6 69.03±9.5 65.72±8.3 65.01±5.4 72.15±1.4 68.63±0.9
SpamBase 80.90±1.5 80.94±1.0 82.95±2.1 80.64±1.2 48.90±18.7 58.00±18.4 65.85±20.3 71.73±11.3 78.86±2.7 77.10±2.8 77.99±2.8 77.02±2.1 70.66±23.7 78.89±1.4 83.27±1.0 80.06±1.0
Stamps 93.72±2.7 93.18±1.6 94.48±1.4 93.59±2.2 81.88±16.5 90.58±5.2 89.16±5.2 92.89±3.4 92.10±3.2 90.77±4.5 86.95±9.3 92.34±1.9 90.83±7.9 88.48±13.4 95.14±1.3 92.94±2.3
WBC 97.70±0.9 98.89±0.5 97.96±1.2 99.04±0.6 96.40±2.5 98.87±0.6 97.19±0.9 98.78±1.2 99.28±0.2 99.34±0.2 97.96±1.6 99.26±0.3 98.47±1.0 99.15±0.2 98.44±0.6 99.25±0.1
WDBC 98.63±0.5 98.01±1.0 98.65±0.4 96.32±2.5 83.28±19.3 92.24±13.5 95.66±2.4 85.65±17.6 98.57±1.7 95.01±3.6 98.15±1.8 95.18±2.0 77.46±43.2 67.76±22.2 99.08±0.5 99.18±0.2
WPBC 52.23±3.6 49.61±2.8 52.56±5.4 50.72±2.1 48.89±2.5 48.42±4.3 48.41±6.4 50.27±2.5 48.74±2.5 52.94±4.5 50.20±5.6 49.54±5.5 45.73±5.6 52.13±2.0 50.37±4.0 48.70±2.5
Waveform 66.43±2.8 69.12±3.6 64.95±2.1 66.75±2.9 65.12±9.6 60.83±3.1 65.82±5.2 57.94±5.4 68.36±7.1 66.73±6.3 59.61±10.4 64.58±7.6 51.25±17.8 67.20±5.2 77.53±0.6 54.18±0.6
Wilt 71.99±9.8 74.60±9.6 79.76±3.2 69.85±4.9 56.11±10.1 60.77±5.7 76.77±4.0 39.04±6.2 35.91±7.7 42.30±8.6 36.33±6.1 29.01±5.6 48.57±20.1 72.15±2.0 74.95±2.7 33.42±0.5
annthyroid 89.27±3.3 85.37±1.5 91.25±2.1 87.25±5.1 68.29±19.9 58.49±17.5 89.44±1.5 78.21±7.6 83.65±4.0 70.50±9.2 79.67±6.3 83.73±5.7 80.03±20.6 93.88±0.5 93.39±0.6 85.24±3.1
arrhythmia 75.84±1.6 76.23±1.9 74.95±1.6 76.13±1.4 67.23±9.6 71.06±1.3 70.63±1.9 71.84±3.5 73.49±2.8 72.25±1.5 74.65±2.4 74.94±2.1 69.04±10.9 63.35±12.3 75.81±1.4 75.77±1.7
breastw 98.76±0.9 98.86±0.6 98.74±0.6 99.06±0.7 83.86±26.3 97.52±2.2 97.54±1.2 98.56±0.9 98.86±0.9 98.69±0.7 98.69±1.0 98.96±0.6 98.84±0.8 95.80±6.7 98.64±0.7 98.82±0.8
cardio 94.75±1.8 95.80±1.3 93.21±2.5 93.92±0.8 76.00±17.8 89.57±6.7 89.23±2.2 73.74±6.6 95.72±0.6 94.35±3.7 93.92±5.0 89.10±4.3 87.77±11.1 89.12±16.6 96.15±0.6 96.80±0.4
fault 74.08±1.7 65.63±2.7 76.16±1.3 72.00±6.0 67.85±10.5 59.09±11.7 78.12±0.5 64.59±3.8 58.73±4.2 50.45±4.6 58.74±5.5 47.08±4.2 66.05±8.3 62.75±1.8 71.13±1.6 56.08±1.5
glass 84.14±5.4 84.42±4.3 84.45±5.7 81.87±2.6 80.34±13.0 77.67±12.3 86.19±10.2 78.30±7.4 66.51±5.1 73.97±8.7 61.11±12.1 75.69±5.5 64.62±24.3 81.33±6.4 87.16±1.9 60.33±16.5
landsat 58.86±4.8 53.58±3.9 64.01±1.2 58.25±2.0 64.44±8.5 52.86±6.6 70.70±2.4 61.68±2.6 44.47±3.2 46.91±2.9 43.20±5.9 42.50±5.6 54.34±17.0 45.61±0.4 59.83±1.3 39.33±0.8
letter 86.26±3.3 79.76±4.7 91.32±0.7 86.54±1.9 66.74±15.1 54.41±13.7 80.76±2.0 60.33±5.0 53.06±1.4 52.23±5.8 52.73±3.7 52.40±5.9 58.64±15.4 85.92±13.6 86.50±1.6 54.70±7.1
magic.gamma 82.71±3.5 78.40±2.6 85.23±0.5 77.97±2.3 68.33±5.8 58.96±11.2 81.09±0.7 68.27±1.0 68.11±2.6 68.24±4.1 70.73±4.6 64.68±2.0 73.18±8.5 74.88±6.8 83.76±0.4 75.35±7.1
mammography 89.92±1.3 88.34±2.8 89.62±0.6 87.73±5.2 75.21±6.0 71.96±21.5 83.60±1.8 80.44±6.9 86.62±5.0 87.41±3.0 85.20±4.3 88.55±0.9 86.55±3.8 88.48±1.2 83.46±1.7 88.22±0.6
mnist 93.41±1.5 94.28±0.4 93.45±0.8 92.38±0.5 78.68±5.0 75.20±18.6 74.86±13.8 72.71±2.6 84.01±7.3 82.59±6.5 85.20±4.6 87.26±3.9 61.56±17.9 91.00±0.3 92.33±0.5 90.32±0.4
musk 100.00±0.0 100.00±0.0 100.00±0.0 100.00±0.0 93.39±9.6 90.47±6.8 98.40±3.6 99.16±1.9 97.88±2.8 96.65±3.4 94.05±7.8 90.55±6.0 62.62±21.6 90.22±21.5 100.00±0.0 100.00±0.0
optdigits 88.88±4.4 91.71±1.9 77.08±10.3 80.21±1.9 59.23±10.2 48.75±8.1 70.57±14.6 50.24±11.7 46.08±23.6 68.29±6.8 59.48±17.1 60.70±12.1 63.75±18.7 78.33±25.2 88.06±0.9 54.08±0.9
pendigits 99.45±0.4 97.12±2.8 99.57±0.1 99.67±0.2 82.85±12.7 95.03±2.9 98.57±0.9 68.35±16.2 83.19±17.6 90.49±3.2 81.26±19.3 93.30±2.5 80.34±37.9 94.35±0.2 99.94±0.0 94.43±0.2
satellite 80.37±1.8 80.01±0.2 81.88±1.5 80.02±0.3 77.08±7.7 70.96±9.8 84.14±1.7 72.70±5.4 65.58±2.6 68.22±1.7 67.55±2.0 66.10±10.7 70.95±7.0 72.78±20.7 82.31±1.0 73.41±10.4
satimage-2 99.68±0.1 99.65±0.1 99.59±0.2 99.86±0.0 97.61±1.0 97.50±1.4 98.70±0.8 82.69±12.1 96.94±0.8 95.67±3.3 97.92±0.6 87.00±8.4 79.59±27.0 99.87±0.0 99.83±0.1 98.74±1.0
shuttle 99.49±0.3 99.55±0.3 99.29±0.5 99.50±0.3 98.29±1.2 86.39±25.0 96.50±6.4 97.45±3.0 97.14±1.7 93.70±3.9 96.75±3.0 93.99±1.3 95.54±4.0 97.99±1.7 99.20±0.2 97.37±1.5
speech 48.03±1.1 47.24±0.6 50.57±0.4 47.34±0.6 49.96±3.2 51.26±2.4 50.20±5.3 53.26±3.5 47.11±5.1 52.28±4.6 47.57±3.8 46.84±2.5 48.20±2.1 50.05±0.0 51.71±1.2 53.15±9.4
thyroid 98.43±1.1 98.19±0.9 98.60±0.1 98.45±0.6 76.02±19.1 61.65±22.0 96.87±1.0 90.20±9.4 97.62±1.1 95.20±1.4 96.91±2.3 96.71±0.7 98.05±0.5 98.31±0.2 98.48±0.1 98.28±0.1
vertebral 52.85±10.1 48.39±3.1 57.58±5.6 48.14±6.9 47.85±7.5 51.89±6.7 47.46±6.3 45.60±7.6 41.70±2.9 45.10±11.6 43.33±8.7 33.91±6.1 44.91±3.8 47.83±3.3 55.54±3.9 43.54±2.4
vowels 97.09±1.4 94.31±4.6 98.80±0.3 94.60±0.4 72.84±21.0 69.69±10.2 95.87±2.3 77.12±5.6 64.05±6.6 63.46±13.3 59.95±8.3 65.69±16.4 70.92±16.7 91.65±9.0 97.97±0.6 67.96±2.7
wine 97.42±1.7 95.46±1.2 95.05±3.5 94.47±2.2 85.19±20.3 84.39±16.6 94.81±5.2 75.49±34.1 80.74±12.6 93.12±6.5 87.59±9.6 93.73±4.7 65.02±39.8 85.85±20.4 95.69±3.4 91.90±3.0
yeast 45.64±1.3 47.58±1.4 45.17±1.7 47.72±1.3 49.49±1.0 52.56±3.4 47.51±2.2 47.47±2.6 43.13±2.7 44.38±3.6 41.56±1.4 41.86±1.1 45.47±1.0 46.41±1.9 48.39±1.1 43.97±0.4

Table 7: F1 (%) score of EM/MV, EAG, NPD, and RTM on 38 benchmark datasets with 4 UAD
methods. Average results are reported through 5 different random data splits.

ad methods AE DPAD DeepSVDD OCSVM
delta method EM/MV EAG NPD RTM EM/MV EAG NPD RTM EM/MV EAG NPD RTM EM/MV EAG NPD RTM
ALOI 10.34±1.3 9.86±0.6 11.32±0.5 9.53±0.7 8.17±3.4 8.16±0.8 14.85±0.9 9.90±1.1 8.21±0.4 8.39±0.7 8.06±0.6 8.29±0.5 8.26±0.3 8.19±0.1 19.55±0.3 8.14±0.0
Cardiotocography 57.55±2.7 61.55±1.1 57.25±2.3 55.41±3.5 43.73±4.4 50.69±15.3 54.81±4.4 54.89±5.5 68.58±5.5 63.13±2.9 62.79±8.8 46.23±8.0 61.03±11.6 45.02±11.7 64.38±2.0 66.27±0.8
Hepatitis 55.39±6.4 55.39±3.4 53.85±5.4 56.92±8.8 47.69±18.4 47.69±16.7 44.61±6.4 56.92±6.9 53.85±7.7 58.46±8.8 50.77±11.7 52.31±13.8 47.69±11.4 47.69±16.7 46.15±7.7 53.85±7.7
InternetAds 81.74±2.2 81.79±2.1 80.22±0.9 81.96±2.2 59.95±23.5 72.72±12.8 62.23±4.2 72.28±11.9 81.03±2.5 80.54±2.8 79.24±1.2 81.36±2.3 52.66±25.9 41.90±21.0 78.15±2.2 81.52±1.9
Ionosphere 89.84±1.0 89.52±0.4 90.00±0.4 90.00±0.4 85.56±5.8 74.76±5.8 90.48±1.1 77.46±7.4 77.46±7.9 75.08±6.5 78.73±6.4 75.72±1.4 78.10±9.6 72.38±11.5 90.48±1.9 83.33±4.6
Lymphography 86.67±13.9 90.00±9.1 76.67±14.9 90.00±9.1 83.33±0.0 83.33±11.8 73.33±9.1 80.00±7.5 80.00±7.5 76.67±14.9 83.33±0.0 83.33±11.8 66.67±39.1 86.67±13.9 80.00±13.9 90.00±9.1
PageBlocks 71.02±4.9 63.02±3.9 75.92±4.7 63.80±1.4 54.43±18.0 16.55±8.9 78.12±2.0 65.57±3.9 62.51±4.5 58.67±5.5 71.53±3.6 58.16±6.1 59.45±24.8 71.49±7.1 78.43±2.1 65.29±2.1
Pima 64.78±0.7 66.05±2.7 67.54±1.9 69.03±2.2 63.58±4.5 62.99±2.0 63.36±2.4 60.67±3.1 67.98±1.7 66.34±2.5 67.01±1.1 65.37±6.9 63.96±6.3 62.91±5.4 67.24±0.8 66.19±0.9
SpamBase 77.18±1.6 77.40±1.0 79.02±2.0 77.19±1.0 57.46±10.4 63.91±11.2 68.28±12.0 70.76±7.7 75.77±1.7 74.72±2.5 74.87±2.3 74.11±1.8 70.65±16.6 76.84±1.4 79.91±1.4 76.72±1.2
Stamps 65.81±9.8 65.81±4.9 70.32±5.3 67.09±8.4 54.84±22.2 63.87±13.2 57.42±10.3 60.65±16.8 58.06±12.7 56.77±16.7 51.61±16.0 61.93±7.7 64.52±8.2 58.06±22.0 70.32±5.3 61.29±9.1
WBC 72.00±8.4 78.00±4.5 76.00±5.5 84.00±5.5 66.00±8.9 82.00±8.4 74.00±5.5 82.00±4.5 82.00±4.5 86.00±5.5 70.00±12.2 84.00±5.5 74.00±15.2 86.00±5.5 76.00±5.5 86.00±5.5
WDBC 70.00±7.1 62.00±8.4 70.00±7.1 54.00±15.2 44.00±38.5 58.00±17.9 64.00±11.4 46.00±18.2 74.00±16.7 58.00±19.2 64.00±27.0 38.00±14.8 48.00±32.7 24.00±33.6 80.00±7.1 82.00±4.5
WPBC 38.30±3.0 33.61±1.0 37.45±8.6 32.34±3.5 37.45±2.4 37.87±6.5 34.04±9.2 37.45±4.9 36.17±4.3 39.58±6.1 38.30±6.6 35.74±1.8 33.19±4.9 41.28±2.4 35.74±4.6 31.49±4.1
Waveform 12.20±2.6 12.40±1.8 12.00±1.6 11.20±3.6 12.20±2.5 10.60±1.8 15.20±5.8 12.80±6.0 10.80±0.8 9.00±2.9 7.20±2.5 11.00±2.4 9.40±11.8 13.00±8.4 29.00±1.4 8.40±1.3
Wilt 13.23±12.9 11.67±9.8 21.87±5.0 5.68±5.1 11.05±6.9 19.38±8.2 26.61±2.6 0.47±0.7 1.56±2.4 7.16±5.2 3.19±2.8 0.23±0.3 4.13±3.4 8.48±3.7 7.16±2.8 2.10±0.3
annthyroid 57.00±4.8 47.30±2.9 62.13±3.9 56.52±7.0 33.26±23.1 22.92±21.5 60.11±1.4 47.56±7.1 48.39±4.4 37.00±8.2 46.25±6.0 48.20±8.9 48.01±22.2 64.42±2.1 64.50±2.1 50.19±1.8
arrhythmia 51.82±1.3 52.42±1.4 51.21±3.9 52.42±1.4 48.18±7.8 50.91±4.0 49.39±3.1 50.00±3.7 50.91±3.6 49.70±2.9 49.40±4.1 51.21±2.3 43.33±13.1 41.21±13.9 50.91±4.2 52.73±1.7
breastw 96.15±1.1 96.23±1.3 95.40±0.9 96.40±1.3 83.01±22.1 94.81±2.6 92.97±2.5 95.73±1.5 96.15±1.7 95.82±0.8 96.40±1.5 96.65±1.1 96.40±1.3 92.13±9.3 96.23±0.8 96.23±1.5
cardio 73.52±6.1 73.52±6.0 70.00±5.5 72.05±4.6 52.27±22.6 69.77±6.1 65.91±4.1 50.68±8.6 78.98±2.2 74.32±8.8 74.09±10.9 61.48±4.8 58.41±24.3 68.07±27.0 75.46±3.9 80.34±1.4
fault 67.99±1.6 62.86±2.2 70.25±1.2 67.79±3.9 63.77±7.9 57.98±7.8 71.59±0.7 61.64±3.3 57.86±3.3 51.47±3.0 57.15±4.5 50.76±3.1 62.85±6.1 60.42±0.9 68.59±1.5 56.91±0.5
glass 31.11±5.0 24.44±9.3 31.11±5.0 26.66±9.9 22.22±7.9 31.11±12.2 26.66±6.1 20.00±5.0 15.55±6.1 13.33±5.0 17.78±9.9 20.00±9.3 24.44±9.3 22.22±7.9 20.00±9.3 15.55±6.1
landsat 46.41±3.7 46.06±2.7 49.33±1.1 44.31±3.2 47.89±8.8 38.80±8.0 54.13±2.6 46.57±2.8 31.66±1.6 39.03±3.7 30.86±3.1 33.94±6.6 41.13±14.4 38.18±0.2 43.74±1.1 28.21±0.3
letter 44.40±7.2 35.40±5.9 58.40±2.3 44.40±4.3 27.40±14.4 16.60±14.6 40.60±3.6 24.00±7.1 15.40±4.2 11.60±3.4 16.80±4.1 9.40±1.1 18.20±11.9 47.80±17.2 48.00±2.0 20.00±5.6
magic.gamma 75.55±3.0 72.14±2.5 77.93±0.6 71.30±1.9 63.47±4.7 58.14±6.8 74.33±0.7 63.82±0.7 63.42±2.1 64.24±3.8 65.51±3.8 60.68±2.2 68.01±6.6 69.36±5.6 77.05±0.4 69.62±6.1
mammography 44.62±5.8 39.00±12.7 43.46±5.5 39.85±15.3 24.00±8.6 25.00±12.8 34.31±6.2 31.16±8.6 39.69±12.4 42.23±10.1 32.62±10.0 45.39±7.0 44.38±2.3 40.92±3.8 44.62±1.4 45.46±0.9
mnist 71.51±2.6 73.49±0.9 71.66±1.3 70.43±1.4 52.83±6.5 48.37±23.6 47.23±15.4 46.31±2.5 56.57±10.8 51.72±9.6 58.74±5.9 57.52±8.6 28.29±22.0 67.80±1.5 71.25±1.8 66.40±1.1
musk 100.00±0.0 100.00±0.0 100.00±0.0 100.00±0.0 67.01±22.3 49.48±28.5 96.29±8.3 92.37±13.1 74.64±19.0 60.62±19.9 66.60±22.4 39.59±19.9 25.16±41.9 78.35±40.3 100.00±0.0 100.00±0.0
optdigits 14.40±10.8 20.27±9.4 5.33±8.2 1.33±0.7 11.20±10.3 3.20±6.1 19.47±8.1 6.67±6.5 0.93±2.1 1.87±2.6 4.93±10.0 0.13±0.3 10.27±23.0 30.93±23.8 11.73±1.9 0.00±0.0
pendigits 82.31±9.2 60.38±24.9 84.23±2.9 86.03±3.2 40.90±18.4 53.08±14.5 74.62±8.9 24.74±16.1 38.20±33.9 18.08±20.6 33.08±18.6 36.28±13.2 54.23±35.3 44.36±0.8 95.51±1.4 45.13±2.0
satellite 73.00±1.4 73.60±0.3 73.86±1.1 73.60±0.3 68.63±6.9 63.79±8.3 74.99±1.5 65.03±4.8 60.12±2.6 64.63±1.0 62.69±1.8 59.74±8.9 65.35±5.3 65.54±16.4 72.64±0.8 66.70±7.5
satimage-2 85.07±7.9 81.41±5.9 80.00±5.5 93.24±1.8 74.93±7.0 78.59±11.5 72.11±9.7 44.79±21.8 81.13±7.4 58.31±24.4 79.16±9.9 12.68±12.2 55.49±49.4 94.93±0.8 92.11±0.8 89.30±4.7
shuttle 75.38±16.7 78.46±16.7 69.23±15.4 73.85±10.3 52.31±16.7 47.69±32.4 66.15±16.9 61.54±28.3 43.08±28.1 23.08±7.7 44.62±21.3 26.15±6.9 35.38±15.0 46.15±10.9 63.08±10.0 40.00±8.4
speech 5.58±0.9 4.92±0.0 7.54±1.5 4.59±0.7 2.30±2.7 2.30±2.2 4.59±3.2 2.95±1.8 2.30±1.9 5.58±3.4 2.30±1.9 2.62±1.5 3.61±2.1 3.94±0.9 6.56±0.0 6.56±3.8
thyroid 74.41±11.2 72.69±7.5 73.98±4.0 74.84±5.8 32.69±30.8 18.06±21.0 63.66±5.1 59.57±18.2 70.97±7.5 48.17±7.7 64.52±14.3 62.80±3.9 69.68±7.4 71.18±4.4 70.97±2.3 72.90±1.8
vertebral 22.00±11.9 14.67±1.8 25.33±8.4 14.00±9.3 17.33±10.4 23.33±11.5 20.67±8.9 16.66±8.5 11.33±3.0 12.00±9.6 12.00±8.4 3.33±5.8 16.67±2.4 15.33±4.5 20.67±7.6 14.67±1.8
vowels 75.60±4.8 60.00±18.0 80.80±3.9 56.40±4.8 28.40±20.5 29.20±14.2 61.60±7.9 41.20±7.9 14.00±6.2 8.80±9.9 13.20±7.9 8.80±8.6 31.60±24.3 48.80±32.7 76.00±6.9 25.20±1.8
wine 76.00±11.4 66.00±11.4 62.00±17.9 66.00±11.4 56.00±30.5 58.00±19.2 74.00±15.2 54.00±35.1 42.00±26.8 64.00±13.4 52.00±26.8 66.00±20.7 40.00±24.5 62.00±25.9 68.00±17.9 60.00±10.0
yeast 47.77±1.2 49.35±1.6 46.98±1.3 49.63±0.8 51.40±1.1 52.94±3.2 48.84±2.0 48.60±3.3 45.56±2.6 46.47±3.1 44.58±1.7 44.61±1.3 46.90±0.7 47.53±1.3 49.82±0.6 46.11±0.6
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Table 8: Comparative study of Bayesian optimization through 14 datasets on 5 additional UAD
algorithms. Mean AUC and F1 scores are reported. The best performance is bold.

Method PLAD NeuTraLAD HRN DROCC SCAD
Metric AUC F1 AUC F1 AUC F1 AUC F1 AUC F1
Max 77.08+-19.3 57.89+-24.5 76.24+-16.0 52.04+-22.2 83.53+-17.2 68.27+-18.1 49.26+-26.5 36.11+-24.8 86.36+-15.9 63.15+-18.8
EM/MV 41.20+-25.7 23.57+-18.4 26.86+-33.7 15.9+-22.9 78.17+-20.5 53.87+-28.6 27.60+-24.7 16.86+-16.4 77.55+-19.4 54.96+-27.1
RTM(Ours) 32.48+-19.8 17.53+-16.5 60.33+-17.0 33.45+-28.7 80.44+-17.1 59.48+-26.4 35.41+-25.2 23.52+-21.0 74.92+-17.3 48.06+-24.3
EAG(Ours) 59.22+-21.4 38.64+-24.0 68.44+-25.2 45.49+-28.6 79.24+-18.9 55.31+-32.9 40.89+-32.3 25.50+-25.1 77.13+-18.8 49.74+-26.7
NPD(Ours) 47.23+-24.3 30.31+-23.2 70.64+-18.4 39.48+-28.2 64.81+-27.5 46.07+-33.3 26.97+-23.1 14.46+-16.0 82.62+-17.2 58.11+-21.3

The core hyper-parameters considered for AutoUAD via BO are listed below.

• PLAD: : coefficient to control the perturbation. Hidden dim. 1: the width of the first and
the last hidden layer of the neural network. Hidden dim. 2: the width of the second and the
penultimate hidden layer of the neural network, which is known as the size of the hidden
representation. Weight decay: the regularization term to control model complexity.

• NeuTraLAD: k: number of transformations. τ : temperature for contrastive loss. Hidden
dim. : the size of the hidden representation. Encoder dim.: Hidden dimension of encoder
module. Transform dim.: Hidden dimension of transformation module.

• HRN: n: order of the H-regularization. λ: coefficient of the H-regularization. Hidden dim.
: the size of the hidden representation. Weight decay: the regularization term to control
model complexity.

• DROCC: γ: parameter to vary projection. r: radius of hypersphere to sample points from.
lamda: weight is given to the adversarial loss. Hidden dim. : the size of the hidden
representation.

• SCAD: k: kernel size for sliding window. τ : temperature for contrastive loss. Hidden dim.
: the size of the hidden representation. Weight decay: the regularization term to control
model complexity.

K EFFICIENCY OF PROPOSED METRICS

We test the running time efficiency of datasets of different sizes. Notice that MC and HITS have
theoretical computation time complex with O(LN2) and O(tLN), respectively, where t is the max
iteration in HITS, and L is the size of UAD model pool, i.e. L = |{(Mi,Θj)|Mi ∈M,Θj ∈ S(i)}|.
The running time results for selection through 200 candidate UAD models are shown in Figure 8. It
is seen that NPD is the most efficient method.
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L FLOWCHART OF AUTOUAD
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Figure 9: Working flowchart of AutoUAD. Training Phase: Candidate UAD models M con-
tain multiple UAD algorithm {M1,M2, ...,MC}, and each algorithmMi has multiple candidate
hyper-parameters {Θ(1)

i ,Θ
(2)
i , ...,Θ

(j)
i , ...},Θ(j)

i ∈
∏Hi

k=1 S
(i)
k . For each Mi, the Bayesian opti-

mizer will select hyper-parameters to train the UAD model. After training converges, the model is
evaluated by (semi-)internal metric (RTM, EAG, or NPD) using the training set where no ground-
truth label is required. The evaluation output V(Mi,X ) provides feedback to the Bayesian optimizer
to select new hyper-parameters for the next round. Testing Phase: After training, we obtain the best
model Mi(Θ

∗
i ) for each UAD algorithm. By selecting the algorithm with highest V , we obtain

M∗(Θ∗). During testing, the selected model is evaluated by E (AUC/F1) using the testing set with
the ground-truth label to show the effectiveness of our methods. NPD Details: The training dataset
is randomly split into Xtrn and Xval before training phase. An extra dataset Xgen is generated from
an isotropic GaussianN (µtrn, diag(σ2

trn)), where µtrn and σ2
trn are the mean and variance vectors

of Xtrn. Xtrn is used to train the UAD model. After the model training, anomaly scores sval and
sgen are computed from Xval and Xgen, respectively. Then, NPD is calculated taking sval and sgen
as input using equation 7. We argue that Xgen can contain samples close to real anomalies so that
NPD can show the significance of evaluating a good UAD model. It is justified in Theorem 3.

M SENSITIVITY OF τ IN RTM

Due to time constraints, we perform sensitivity analysis varying τ in [50, 30, 20, 10, 5, 3, 1] tested
on 37 datasets (ALOI is dropped due to its size) using DPAD and OCSVM. An average result is
summarized in Figure 10. It is seen that the performance varies much as the change of τ , especially
in DPAD results, τ = 3 and τ = 5 show very different results, making the choice τ difficult
and imperial. It also reveals the internal evaluation metric is still sensitive to the additional hyper-
parameter.
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Figure 10: Average testing AUC across 37 datasets varying τ in RTM.
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