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ABSTRACT

Few-shot classification aims to learn to classify new object categories well using
only a few labeled examples. Transfering feature representations from other mod-
els is a popular approach for solving few-shot classification problems. In this work
we perform a systematic study of various feature representations for few-shot clas-
sification, including representations learned from MAML, supervised classifica-
tion, and several common self-supervised tasks. We find that learning from more
complex tasks tend to give better representations for few-shot classification, and
thus we propose the use of representations learned from multiple tasks for few-
shot classification. Coupled with new tricks on feature selection and voting to
handle the issue of small sample size, our direct transfer learning method offers
performance comparable to state-of-art on several benchmark datasets.

1 INTRODUCTION

Few-shot learning(FSL) aims to train a prediction model with very few labeled examples. It is
motivated both by our interest in the ability of humans to learn new concepts with very few exam-
ples (Carey & Bartlett, 2011), and a practical need to build machine learning models without the
expensive process of collecting a large amount of labeled training data. In typical few-shot learning
settings we assume we have access to a large amount of data (labeled or unlabeled) from a source
domain as prior knowledge, and a small amount of labeled data for a target task in a different domain.

Popular approaches for the few-shot learning problem include meta-learning and transfer learning.
Meta-learning creates learning tasks that are similar to the target task from the source domain data,
and tries to learn a model that can quickly adapt to a new task (Finn et al., 2017; Ren et al., 2018;
Wang et al., 2019). Transfer learning, on the other hand, transfers models learned from the source
domain data to the target task through different adaptation techniques. In this work we focus on
transfer learning through representations, which aims to learn a good feature representation from
source data so that when learning the target task we can focus on training a much simpler task
model (e.g. a linear classifier) instead of having to learn feature extraction at the same time. In
computer vision and natural language processing, pre-training with large amount of data has become
the dominant method for building state-of-art models (Iglovikov & Shvets, 2018; Li et al., 2018; Cui
et al., 2018; Ruder et al., 2019). For few-shot classification, recent works (Tian et al., 2020) show
that even pre-training with simple classification task in the source domain gives a good feature
extractor for training few-shot models.

In this work we attempt to systematically study different representations for few-shot learning to
identify the good ones, including representations from common supervised and self-supervised pre-
training tasks (Gidaris et al., 2018; Doersch et al., 2015; He et al., 2020; Chen et al., 2020a), and
also representations from the meta-learning method MAML(Finn et al., 2017) by treating it as a
feature extractor. Compared to typical evaluations of self-supervised representation learning which
usually involve the same data distribution (train and test on same input data but for different tasks),
few-shot learning differ in two important aspects. The first one is data shift: the training and test
data have different distribution and usually contain different object categories. The second one is
extreme small sample size compared to typical evaluations of transfer learning. These differences
make a proper study of these different representations worthwhile.

In addition to learning good representations from source data, we believe there should also be em-
phasis on how to use them properly in few-shot settings. Representations learned from a large
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amount of pre-training data are usually high-dimensional, and for some few-shot learning task (e.g.,
5-way 1-shot classification) it is difficult to figure out which features are directly related to the target
concept given only a handful of examples. In this work we also investigate ways to perform feature
selection and noise reduction when adapting to the target task, given a good representation learned.

In summary, our contributions in this work include: 1) We study systematically different represen-
tations for few-shot classification, to understand why some representations work better than others.
2) We investigate the use of multi-task feature representations in few-shot learning and show their
utility. 3) We introduce feature selection via training with auxiliary classes, and a voting scheme
that follows naturally from multi-task prediction to improve few-shot learning.

2 RELATED WORKS

Motivated by bridging the gap between AI and human learning ability, we have seen an ever in-
creasing attention in the area of few-shot learning in machine learning community. Model Agnostic
Meta-Learning (MAML) was proposed by Finn et al. (2017); it aims to search for a proper ini-
tialization of the neural network that can be rapidly adapted to variety of new tasks with a few
optimization steps. Many improvements have been proposed based on MAML including first-order
approximations (Nichol et al., 2018) or incorporating task-specific information (Lee & Choi, 2018),
etc. Inspired by the concept of ”learning to learn”, many metric-learning methods are also developed
via meta-learning. By simulating the few-shot task setting while training the backbone model, these
metric-learning models (i.e Prototypical Networks, Relation Networks) (Snell et al., 2017; Sung
et al., 2018) aim to learn the best feature representation which can be generalized well to unseen
novel tasks.

Our work is motivated by the recent studies Chen et al. (2019) and Tian et al. (2020), which show
that pre-training a good feature extractor (e.g., using supervised classification) gives very good per-
formance on few-shot classification. We continue along this line of study to investigate which pre-
training tasks give the best feature extractor for few-shot classification. Our study of MAML as
a feature extractor is motivated by the work in Raghu et al. (2019), which show that MAML in
few-shot learning benefits more from the learned features rather than fast model adaptation.

Gidaris et al. (2019) and Su et al. (2020) study the use of self-supervised tasks including rota-
tion(Gidaris et al., 2018) and jigsaw(Noroozi & Favaro, 2016) to improve few-shot learning. They
use the self-supervised tasks as feature regularizers on top of meta-learning algorithms such as Pro-
toNet(Snell et al., 2017) and MAML(Finn et al., 2017), which is different from our direct joint
representation learning followed by transfer. Our approach is also closely related to Doersch &
Zisserman (2017) which consider jointly using multiple self-supervised tasks to learn visual repre-
sentations for classification. Zhai et al. (2019) has done a large scale study of the performance of
representation learning on a large set of downstream tasks, while we focus on few-shot classification
in this work.

3 REPRESENTATION TRANSFER FOR FEW-SHOT LEARNING

In all the following experiments we adopt the following protocol to investigate transfer learning. We
first train a feature representation using one or multiple tasks on the source domain data, and use
the last layer of activations as our feature representation. During adaptation stage to the new few-
shot domain, we train a linear logistic regression classifier on top of the fixed feature representation
to adapt the model. This is a common protocol in many evaluations of representation learning
methods. In this work we focus on two backbones: ConvNet4 and ResNet12. ConvNet4 is a 4-layer
convolutional neural network with hidden layer size of 64 in each layer, where each layer is a 3x3
convolution followed by ReLU, batchnorm, and max-pooling of stride 2. ResNet12 is a residual
network (He et al., 2016) with 4 residual blocks of width 64-160-320-640. We also consider a wider
version of ResNet12 which we denote as ResNetW12 by increasing the width to 128-320-640-640,
to better accommodate multi-task learning. The feature representation size is fixed at 640. Our code
is implemented in PyTorch (Paszke et al., 2019). We focus on the two most commonly used datasets
in studying few-shot learning, Mini-ImageNet(Vinyals et al., 2016) and Tierd-ImageNet(Ren et al.,
2018), in the work below. We found that there are two ways to construct the 84x84 inputs of
these datasets from ImageNet (see Appendix A.1). We use the approach of directly taking random
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resized crops of 84x84 on the ImageNet images, as it allows us to experiment on more diverse set of
representation learning methods.

3.1 REPRESENTATIONS FROM META-LEARNING

We begin our study of representation transfer for few-shot learning with feature representations
produced by MAML. Previous studies Raghu et al. (2019) show that the benefits of MAML come
mainly from the feature representation learned in the last layer of the neural network instead of the
ability to do fast adaptation. In this section we want to go further and consider the question: from
a representation transfer point of view, what source tasks are the best for a target distribution of
few-shot learning tasks? Is learning from a set of 5-way 1-shot source tasks always the best if we
want to perform 5-way 1-shot classification in the target domain?

We use a modified version of MAML algorithm(Algorithm 1) that only adapts the last layer of the
neural network on the support set, as adapting the last layer only performs very close to adapting
the whole network (the almost-no-inner-loop(ANIL) algorithm in (Raghu et al., 2019)). We split
the parameters of the neural network into weights for the linear layer φ and the rest of the earlier
feature extraction layers θ, and write gφ(fθ(x)) for the output of network with input x. We use
(XS

i , Y
S
i , X

Q
i , Y

Q
i ) denoting the support set inputs, support set labels, query set inputs, query set

labels to represent the sampled few-shot classification task Ti. Note that only the linear layer param-
eters φ are updated in the inner loop using the support set, reflecting that we only update the linear
layer during adaptation. Parameters for feature representation θ are only updated in the outer loop.

Algorithm 1 Modified MAML for few-shot classification that adapts only the last layer (ANIL)
Given: inner and outer step size hyperparameters α, β, task distribution p
Randomly initialize θ, φ
while not done do

Sample batch of tasks Ti ∼ p(T )
for all Ti = (XS

i , Y
S
i , X

Q
i , Y

Q
i ) do

Update φ′i ← φ− α∇φL(gφ(fθ(XS
i )), Y

S
i )

end for
Update θ ← θ − β∇θ

∑
Ti
L(gφ′

i
(fθ(X

Q
i )), Y Qi ),

φ← φ− β∇φ
∑

Ti
L(gφ′

i
(fθ(X

Q
i )), Y Qi )

end while

We train 5-way 1-shot(5w1s), 5-way 5-shot(5w5s), 10-way 1-shot(10w1s) and 10-way 5-
shot(10w5s) tasks on Mini-ImageNet and Tiered-ImageNet, using both the ConvNet4 and ResNet12
architecture. To evaluate the representations learned, we extract the last layer features from these
n-way k-shot networks, and train a logistic regression model on top of it during the adaptation stage
on the support set. Each accuracy number reported in Tables 1 and 2 are the median of 5 trials, each
of which is the average of 600 random draws of n-way k-shot tasks.

The MAML algorithm is implemented using the higher package (Grefenstette et al., 2019). We
use an outer loop step size of 0.001 and inner step size of 0.01 for 5-way tasks and 0.05 for 10-way
tasks. There are 5 inner loop steps during training and 10 inner loop steps during evaluations. We
use a task batch size of 4 and run for 400 epochs. Due to the occassional overfitting of ResNet12
models, we select the model that performs best in terms of loss on the validation set provided in
Mini-ImageNet and Tiered-Imagenet, and report the results on the test set.

From the results on ConvNet4 in Table 1, we can see that contrary to intuition, training and testing on
the same type of n-way k-shot tasks do not result in the best performance. In general, representations
learned from 10-way tasks perform better than representations learned from 5-way tasks, irrespective
of the number of ways in the target tasks. And learning with more shots are also usually better. The
results for ResNet12 are similar (Table 2), except for the 5w1s outlier in Mini-ImageNet. Snell
et al. (2017) has previously noted the effect of models trained on larger number of ways performing
better than models trained on number of ways matching the target task, while Cao et al. (2019) and
Triantafillou et al. (2020) have studied the effect of number of shots in few-shot learning.
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Table 1: Few-shot classification accuracies of different MAML source representations based on
ConvNet4 on Mini-ImageNet and Tiered-ImageNet.

Mini-ImageNet Tiered-ImageNet
source rep./target task 5w1s 5w5s 10w1s 10w5s 5w1s 5w5s 10w1s 10w5s

ConvNet4-5w1s 49.25
(0.76)

62.30
(0.67)

32.90
(0.43)

46.20
(0.42)

48.95
(0.89)

62.71
(0.77)

33.71
(0.56)

47.23
(0.52)

ConvNet4-5w5s 51.07
(0.79)

64.88
(0.72)

34.85
(0.47)

49.20
(0.44)

51.91
(0.84)

66.29
(0.76)

36.52
(0.58)

51.12
(0.56)

ConvNet4-10w1s 51.68
(0.82)

64.04
(0.73)

35.12
(0.45)

47.94
(0.43)

50.98
(0.89)

65.38
(0.77)

35.55
(0.54)

49.69
(0.52)

ConvNet4-10w5s 49.71
(0.82)

62.57
(0.73)

33.57
(0.45)

48.66
(0.43)

52.54
(0.86)

67.02
(0.78)

37.11
(0.58)

52.21
(0.55)

Table 2: Few-shot classification accuracies of different MAML source representations based on
ResNet12 on Mini-ImageNet and Tiered-ImageNet.

Mini-ImageNet Tiered-ImageNet
source rep./target task 5w1s 5w5s 10w1s 10w5s 5w1s 5w5s 10w1s 10w5s

ResNet12-5w1s 57.26
(0.84)

69.51
(0.66)

39.47
(0.51)

52.83
(0.46)

60.77
(0.95)

72.87
(0.84)

44.33
(0.65)

58.58
(0.57)

ResNet12-5w5s 53.78
(0.88)

67.28
(0.70)

36.63
(0.51)

51.31
(0.45)

61.93
(0.98)

75.18
(0.75)

46.00
(0.67)

60.89
(0.58)

ResNet12-10w1s 54.67
(0.81)

68.39
(0.69)

37.70
(0.54)

52.46
(0.47)

62.56
(0.97)

75.52
(0.75)

46.71
(0.64)

61.27
(0.59)

ResNet12-10w5s 53.86
(0.84)

67.61
(0.67)

36.83
(0.52)

51.92
(0.44)

63.98
(0.97)

77.47
(0.78)

48.78
(0.68)

64.62
(0.57)

From an adaptation point of view, 5-way models should transfer better to 5-way tasks, since they
come from a more ‘similar’ task distribution. However, from a feature learning perspective, this is
not surprising. More difficult pairing of classes like cat VS tiger are more common for higher way
tasks in a random sampling setting, thus they force the models to learn more discriminative features
that might transfer better to new domains.

Note that our adaptation here is based on logistic regression, which is different from fast adaptation
by performing a few gradient steps in MAML using the linear weights learned in the last layer.
The logistic regression results sometimes can be 1-2% lower than adaptation using MAML, since
the feature representations are trained using MAML and the last layer linear weights also encode
some prior information on what the adapted weights should be close to. However as we use logistic
regression for all model adaptations the comparison should be fair, and the results indicate increasing
the number of ways allow better representations to be learned for transfer.

3.2 REPRESENTATIONS FROM SUPERVISED AND SELF-SUPERVISED TASKS

In the last section we study the feature representations learned by MAML on few-shot learning
tasks, by considering MAML as a feature learning algorithm. In computer vision it is common to
pre-train on ImageNet classification, and then adapt the representation learned to downstream tasks
such as image segmentation or object detection (Iglovikov & Shvets, 2018; Li et al., 2018). In recent
years there are also many works on using self-supervised tasks to pre-train computer vision and NLP
models (Chen et al., 2020a;b; Baevski et al., 2019; Lan et al., 2019). The paper Tian et al. (2020)
showed that by just pre-training on the classification task using the source training set and adapting
using logistic regression, they can obtain results in few-shot learning that are competitive with state-
of-art algorithms. They also studied the use of distillation to improve the pre-training. In this section
we follow this line of investigation and study systematically the few-shot learning performance of
different supervised and self-supervised tasks.

We train these classification models using a learning rate of 0.05 for Mini-ImageNet and 0.01 for
Tiered-ImageNet, for 100 epochs using batch size of 64. The learning rates are decayed by a factor
of 10 at the 60th and 80th epochs. From the training partition of these two datasets, we further split
the partition into a training set (consisting of 90% of training partition) for training the classification
models, and a validation (remaining 10% of partition) for evaluation and model selection. As we can
see from both Mini-ImageNet and Tiered-ImageNet in Table 3, adapting from classification repre-
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Table 3: Few-shot classification accuracies of classification representation compared to MAML.
Mini-ImageNet Tiered-ImageNet

source rep./target task 5w1s 5w5s 10w1s 10w5s 5w1s 5w5s 10w1s 10w5s

ConvNet4-class 45.41
(0.75)

62.38
(0.74)

31.52
(0.45)

47.35
(0.43)

49.27
(0.85)

66.28
(0.77)

35.07
(0.51)

52.07
(0.56)

ConvNet4-maml 48.72
(0.79)

64.88
(0.71)

35.87
(0.43)

47.26
(0.42)

48.77
(0.85)

65.65
(0.76)

35.19
(0.51)

51.30
(0.53)

ResNetW12-class 61.75
(0.79)

78.98
(0.60)

47.09
(0.53)

66.93
(0.44)

71.36
(0.91)

85.56
(0.64)

58.15
(0.66)

75.77
(0.54)

ResNet12-maml 57.74
(0.76)

65.97
(0.67)

37.79
(0.47)

51.94
(0.44)

60.47
(0.84)

74.69
(0.81)

45.08
(0.52)

63.49
(0.52)

Table 4: Few-shot classification accuracies of different self-supervised source representations.
Mini-ImageNet Tiered-ImageNet

source rep./target task 5w1s 5w5s 10w1s 10w5s 5w1s 5w5s 10w1s 10w5s

ResNetW12-rot 34.61
(0.64)

48.60
(0.66)

22.10
(0.36)

34.05
(0.40)

35.40
(0.69)

46.87
(0.69)

22.10
(0.36)

31.24
(0.40)

ResNetW12-loc 32.86
(0.63)

44.93
(0.65)

19.92
(0.35)

29.40
(0.38)

26.17
(0.51)

33.39
(0.59)

14.75
(0.26)

20.66
(0.34)

ResNetW12-contrast 46.63
(0.75)

64.83
(0.66)

33.56
(0.48)

50.75
(0.47)

52.63
(0.86)

72.00
(0.72)

39.26
(0.58)

59.37
(0.58)

sentation using logistic regression does not beat training with MAML when we use the simpler CNN
model ConvNet4. The main reason for this is the ConvNet4 model does not have sufficient capac-
ity for the classification task (only 51% top-1 accuracy on Mini-Imagenet and 26% top-1 accuracy
on Tiered-ImageNet), and thus the representation learned is not good enough for transfer. When
we switch to the higher capacity ResNet12 model (81% top-1 for mini-ImageNet and 70% top-1
for tiered-ImageNet), the transfer learning approach works much better than MAML, with few-shot
learning accuracies close to many state-of-art methods (see comparison methods in Table 11). This
is consistent with the observations in Tian et al. (2020), which we are reproducing here for compar-
isons with other feature representations that follow. We believe the classification tasks (64 classes
for Mini-ImageNet and 351 for Tiered-ImageNet) force the CNN models to learn richer and more
stable feature representations than the 5-way or 10-way MAML classification tasks. It is uncommon
to sample more difficult pairs of classes (e.g. cat VS tigers) in 5-way or 10-way MAML setup based
on random sampling, and these difficult pairs make the models learn more distinguishing features.

In recent years there have been many studies on using self-supervision to pre-train classification
models to reduce the requirement of labeled data (Gidaris et al., 2018; Doersch et al., 2015; He
et al., 2020; Chen et al., 2020a). Below we also consider several common self-supervision pre-
training tasks on FSL, including rotation prediction, location prediction (related to jigsaw), and
contrastive learning, to see how well these self-supervised representations transfer to FSL tasks.

For rotation prediction (Gidaris et al., 2018), we randomly rotate the 84x84 input image 0, 90, 180,
or 270 degrees and use these rotation angles as class labels. For location prediction (Sun et al.,
2019), we sample the input image at a higher 168x168 resolution, and split the image into 4 equal
parts (top-left, top-right, lower-left, lower-right), and use the location of the split as class labels.
For contrastive prediction, we follow the same implementation as in the simCLR paper (Chen et al.,
2020a), using an output embedding size of 128, and a batch size of 128. We tried larger batch sizes
like 256 and 512 but this did not improve the results. These models are trained using step size of
0.05 and batch size 64 (apart from the contrastive models).

From Table 4 we can see that the self-supervised tasks provide fairly good feature representations
for few-shot learning on Mini-ImageNet and Tiered-ImageNet. The relative strength of each feature
representation is consistent with previous results on self-supervised learning with ImageNet (He
et al., 2020), with rotation slightly better than location prediction and the more recent contrastive
learning better than both of them. However, they are still not as good as direct transfer using the
supervised classification training (Table 4).

To evaluate the properties of these self-supervised tasks further, we cross-evaluate the representa-
tions learned from one task on the other, using the 10% validation set from the training partition
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Table 5: Prediction accuracies for holdout-evaluation of different self-supervised representations.
Mini-ImageNet - holdout evaluation by task

train on/evalute on classification rotation location
classification 81.33 47.14 53.27

rotation 30.16 84.64 59.00
location 22.79 43.13 79.80

contrastive 49.59 50.42 53.38

(which has the same distribution as these models are trained on). We just take the representations
from these three models, and the re-train the last layer of the model using logistic regression using
the 90% training data from the training partition (exact same data on which the representations are
trained on), and test on the remaining 10%. We omit the contrastive representation because the
contrastive loss is dependent on batch size and not easily comparable. We can see from Table 5
that the representations trained on one task usually perform reasonably on the other two, but is not
competitive with models trained for that particular task. For example, the representation trained for
classification does not perform particularly well for rotation (47.14%) and location (53.27%), both
of which are 4-way classification problems. This motivates us to consider the question of whether
we can train representations that excel in all these tasks, and whether such representations will be
useful in few-shot learning.

4 MULTI-TASK REPRESENTATIONS

When training for feature representations separately, we minimize over the training data from the
source domain the following objective functions:∑n

i=1
Lcls(f(xi; θ, wcls), y

cls
i ),∑n

i=1
Lrot(f(Trot(xi; yroti ); θ, wrot), y

rot
i ),∑n

i=1
Lloc(f(Tloc(xi; yloci ); θ, wloc), y

loc
i ),

where Trot and Tloc are the rotation and location-based cropping transform, and Lcls, Lrot, Lloc are
the corresponding cross-entropy loss for supervised classification, rotation prediction, and location
prediction respectively. The neural networks are represented by f(·; θ, w) with backbone parameters
θ and linear(head) layer weights w.

To combine these different learning tasks into one shared neural network for joint training, a major
difficulty is the differences in their inputs Doersch & Zisserman (2017). A rotated or a cropped input
image can affect the learning of the classification task if the classification task is jointly trained with
the rotation or location prediction task. Nevertheless, we consider jointly training the classification
task with rotation or location prediction tasks with the transformed inputs:∑n

i=1
(Lcls(f(Trot(xi; yroti ); θ, wcls), y

cls
i ) + λrotLrot(f(Trot(xi; yroti ); θ, wrot), y

rot
i )),∑n

i=1
(Lcls(f(Tloc(xi; yloci ); θ, wcls), y

cls
i ) + λlocLloc(f(Tloc(xi; yloci ); θ, wloc), y

loc
i )),

where λrot and λloc control the relative weights of the tasks. The backbone parameters θ are shared
among different tasks, while the weights wcls, wrot, wloc are task-specific heads.

We also consider jointly training all three tasks, based on the composed transformation Tloc+rot,
cropping based on location followed by random rotation.∑n

i=1

(
Lcls(f(x

′
i; θ, wcls), y

cls
i ) + λrotLrot(f(x

′
i; θ, wrot), y

rot
i )) + λlocLloc(f(x

′
i; θ, wloc), y

loc
i )
)
,

where x′i = Tloc+rot(xi; y
rot
i , yloci ).

We simply fix λrot and λloc at 1 (all three tasks have equal weights). We find that training with
all 4 versions of a rotation or location crop in the same mini-batch works slightly better than ran-
domly sampling one of them, although this can reduce the effective batch size for the supervised
classification task. For Mini-ImageNet we adopt this approach of taking all 4 copies of rotation or
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Table 6: Prediction accuracies for holdout-evaluation of different multi-task representations.
Mini-ImageNet - holdout evaluation by task

train on/evalute on classification rotation location
ResNetW12-cls+rot 81.59 86.35 60.75

ResNetW12-cls+loc4 75.78 51.82 80.03
ResNetW12-cls+loc5 80.86 52.37 75.21

ResNetW12-cls+rot+loc5 78.31 85.94 72.74

Table 7: Few-shot classification accuracies of different multi-task trained representations.
Mini-ImageNet Tiered-ImageNet

source rep./target task 5w1s 5w5s 10w1s 10w5s 5w1s 5w5s 10w1s 10w5s
ResNetW12

-cls
61.75
(0.79)

78.98
(0.60)

47.09
(0.53)

66.93
(0.44)

71.36
(0.91)

85.56
(0.64)

58.15
(0.66)

75.77
(0.54)

ResNetW12
-cls+rot

63.66
(0.80)

81.68
(0.57)

49.38
(0.54)

70.48
(0.42)

72.65
(0.86)

86.17
(0.61)

59.88
(0.65)

77.25
(0.51)

ResNetW12
-cls+loc5

61.67
(0.80)

79.19
(0.59)

46.89
(0.52)

67.33
(0.41)

70.55
(0.92)

85.33
(0.59)

57.33
(0.65)

75.43
(0.53)

ResNetW12
-cls+rot+loc5

62.56
(0.77)

80.35
(0.59)

48.43
(0.50)

68.63
(0.44)

70.11
(0.91)

85.14
(0.63)

57.51
(0.65)

75.47
(0.51)

location crop in the same mini-batch, while for the larger Tiered-ImageNet we use the sampling
version instead to reduce training time.

We again consider the holdout set accuracy on different tasks for these joint models. From Table 6
we can see that by jointly training with the other tasks, the performance on the corresponding task
improves. For the joint model with location prediction (cls+loc4), we find that the classification
accuracy on the holdout set drops by more than 5%, because for that model the training inputs are
the 4 corners of an image and the model has never seen whole pictures of the object categories to be
learned. We can see how the learning tasks can interfere with each other in this case. We therefore
create a 5-class version of the location prediction task, by including the rescaled version of the
whole picture as an extra class, in addition to the original 4 corners. The resulting model(cls+loc5)
has improved classification accuracy. We can also observe that there is a tradeoff among accuracies
of different tasks due to finite learning capacity of the models, and this is particularly evident in the
joint model cls+rot+loc5.

From Table 7 we can see that for Mini-ImageNet, training a multi-task model with rotation pre-
diction(cls+rot) significantly improves the few-shot learning accuracy of the representation. On the
other hand there is no significant improvement with the model with joint location training. For the
joint model with all 3 tasks (cls+rot+loc5), it is better than the base supervised representation but
slightly worse than the joint model with rotation prediction only, indicating that there might be a
capacity problem with fitting all three tasks.

For Tiered-ImageNet we again see an improvement with the multi-task representation with rotation
prediction (Table 7). For the joint model with location and joint model with all 3 tasks (cls+rot+loc5)
there are declines compared to the baseline model. The capacity constraint is more severe with
Tiered-ImageNet as it is a more complex dataset with larger number of classes. The classification
and location prediction accuracies are 60% and 89% on the holdout set for the cls+loc5 model,
but once we add the rotation task the holdout accuracies for classification, location, and rotation
prediction drop to 56%, 79% and 87% respectively.

5 MAKING USE OF AUXILIARY CLASSES AND VOTING AT ADAPTATION

5.1 IRRELEVANT FEATURE ELIMINATION WITH AUXILIARY CLASSES

In previous sections, we aim to investigate which feature representation can serve the few-shot learn-
ing task with more accurate features to reach a better predictive accuracy. All these feature repre-
sentations are learned from upstream tasks with sufficient training classes and samples. However,
we find that these extra data are not only important during the feature extraction phase, they can

7
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Figure 1: Adapting with auxiliary classes to downweigh irrelevant features

Table 8: Few-shot classification accuracies with auxiliary classes.
Mini-ImageNet Tiered-ImageNet

source rep./target task 5w1s 5w5s 10w1s 10w5s 5w1s 5w5s 10w1s 10w5s

ResNetW12-cls 61.75
(0.79)

78.98
(0.60)

47.09
(0.53)

66.93
(0.44)

71.36
(0.91)

85.56
(0.64)

58.15
(0.66)

75.77
(0.54)

ResNetW12-cls+aux 63.70
(0.79)

79.42
(0.57)

49.29
(0.53)

67.40
(0.43)

71.92
(1.03)

85.66
(0.64)

58.59
(0.68)

76.25
(0.55)

ResNetW12-cls+rot 63.66
(0.80)

81.68
(0.57)

49.38
(0.54)

70.48
(0.42)

72.65
(0.86)

86.17
(0.61)

59.88
(0.65)

77.25
(0.51)

ResNetW12-cls+rot+aux 66.28
(0.78)

81.92
(0.55)

51.08
(0.52)

70.80
(0.41)

73.69
(0.91)

86.82
(0.60)

59.50
(0.67)

77.50
(0.53)

ResNetW12-cls+loc5 61.67
(0.80)

79.19
(0.59)

46.89
(0.52)

67.33
(0.41)

71.02
(0.95)

85.96
(0.63)

58.04
(0.68)

75.92
(0.53)

ResNetW12-cls+loc5+aux 64.10
(0.75)

79.97
(0.56)

47.89
(0.52)

67.29
(0.42)

71.78
(0.93)

85.83
(0.62)

58.09
(0.69)

76.10
(0.52)

also help to improve the performance of the final linear classifier in the adapting stage. Consider
the example of a 3-way 1-shot classification of animals (sheep, cat, pig), the classifier cannot tell if
”sky” is a discriminative feature for sheep if only one of the three images contain a blue sky. The
classifier can confuse the features of the animal that it should learn with background features that
are merely correlated with the subject.

To solve this problem, as shown in Figure 1, after determining the well-trained backbone model, we
obtain the embedding representation for the few-shot support data (e.g. from a 5-way 1-shot task) as
well as samples from auxiliary classes (e.g. the 64 training categories from Mini-ImageNet). Next,
we train the logistic regression classifier using all these data together. In this case, the output size of
the classification logits is extended (5+64). We just randomly sample 1000 examples from the train-
ing set as our auxiliary classes data. By utilizing data in auxiliary classes, our final linear classifier
learns to downgrade and eliminate the contribution of those spurious features while emphasizing
the unique task-related features. In our example the classifier learns to NOT associate ”sky” with
sheep, because the sky feature is also likely to appear in auxiliary classes examples, and such an
association can lead to misclassification of the auxiliary classes examples. In the inference phase,
extra connections and output logits corresponding to the auxiliary data are discarded. And the class
in the current few-shot task with highest probability will be the final prediction.

The experiment result using auxiliary classes is shown in Table 8, using the best multi-task represen-
tations from the previous sections. We can see that for most models there are good improvements
for 5w1s and 10w1s tasks confirming our intuition, while the improvements for 5w5s or 10w5s are
smaller since there are 5 examples per class, making it less likely for the model to rely on spurious
features. The improvements are also smaller for Tiered-ImageNet.

5.2 VOTING WITH AUXILIARY TASK INSTANCES

In Section 4 we experimented with multi-task representations. For these models, they are not just
capable of predicting the target class on normal images, but also on rotated images and cropped
corners of images since they are trained on these inputs. This offers yet another opportunity in
improving the prediction performance via voting. We can generate a set of rotated or cropped copies

8
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Table 9: Few-shot classification accuracies with location-based voting.
Mini-ImageNet Tiered-ImageNet

source rep./target task 5w1s 5w5s 10w1s 10w5s 5w1s 5w5s 10w1s 10w5s

ResNetW12-cls+loc5 61.67
(0.80)

79.19
(0.59)

46.89
(0.52)

67.33
(0.41)

71.02
(0.95)

85.96
(0.63)

58.04
(0.68)

75.92
(0.53)

ResNetW12-cls+loc5+vote 63.38
(0.77)

81.87
(0.57)

48.85
(0.54)

70.54
(0.44)

72.02
(0.93)

86.41
(0.60)

59.15
(0.69)

77.82
(0.51)

ResNetW12-cls+rot+loc5 62.56
(0.77)

80.35
(0.59)

48.43
(0.50)

68.63
(0.44)

70.91
(0.94)

85.81
(0.59)

58.11
(0.65)

75.92
(0.51)

ResNetW12-cls+rot+loc5+vote 63.53
(0.82)

82.27
(0.57)

49.11
(0.55)

71.45
(0.42)

71.66
(0.95)

86.59
(0.61)

58.92
(0.66)

77.52
(0.51)

Table 10: Few-shot classification with rotation-based voting.
Mini-ImageNet Tiered-ImageNet

source rep./target task 5w1s 5w5s 10w1s 10w5s 5w1s 5w5s 10w1s 10w5s

ResNetW12-cls+rot 63.66
(0.80)

81.68
(0.57)

49.38
(0.54)

70.48
(0.42)

72.65
(0.86)

86.17
(0.61)

59.88
(0.65)

77.25
(0.51)

ResNetW12-cls+rot+vote 62.89
(0.81)

81.32
(0.57)

48.91
(0.53)

70.07
(0.42)

73.02
(0.91)

86.70
(0.62)

59.76
(0.66)

77.84
(0.52)

of the input image, and run the target classifier on all of them, and take the majority prediction as the
final prediction. In the following we consider two voting schemes, one based on generating 4 copies
of rotated input image for voting, and another one based on generating the 5 copies (4 cropped
corners and one rescaled input) for voting, corresponding to the rotation prediction and location
prediction task we used.

We can see from Tables 9 and 10 the results of voting. Voting based on the cropped images from the
location prediction problem is effective in improving the prediction accuracies across all the various
few-shot learning tasks. The accuracies improve on average by 2%, which is quite large for these
problems. On the other hand, voting based on rotated versions of the same image does not seem to
help, presumably because unlike cropping the rotated images all contain the same information about
the class. It degrades performance slightly on Mini-ImageNet but slightly improves performance
on Tiered-ImageNet, but both are within standard error. We also tried voting based on rotated and
cropped copies using the base classification representation. But this degrades the performance since
the classification model was not trained on classifying cropped or rotated images, indicating the
importance of multi-task training.

We finally compare our multi-task representations with the above feature selection and voting heuris-
tics against some of the state-of-art methods based on inductive learning published in the past two
years, and the results are shown in Table 11. The results on 5w1s and 5w5s learning are shown as
they are the most commonly published numbers. We use the cls+rot+loc5 representation with aux-
iliary classes and location voting as our best model for Mini-ImageNet, and cls+rot with auxiliary
classes as our best model for Tiered-ImageNet. Our approach is competitive with these state-of-art
models. Our best results are obtained with the original input image, as it supports the cropping of

Table 11: Comparison of our approach against some state-of-art methods.
Mini-ImageNet Tiered-ImageNet

Method Backbone 5w1s 5w5s 5w1s 5w5s
DeepEMD(Zhang et al. (2020)) ResNet12 65.91(0.82) 82.41(0.56) 71.16(0.87) 86.03(0.58)
FEAT(Ye et al. (2020)) ResNet12 66.78(0.20) 82.05(0.14) 70.80(0.23) 84.38(0.16)
MetaOptNet(Lee et al. (2019)) ResNet12 62.64(0.61) 78.63(0.46) 65.99(0.72) 81.56(0.53)
MTL(Sun et al. (2020)) ResNet12 61.20(1.80) 75.50(0.80) 65.60(1.80) 80.80(0.80)
CAN(Hou et al. (2019)) ResNet-12 63.85(0.48) 79.44(0.34) 69.89(0.51) 84.23(0.37)
Distillation(Tian et al. (2020)) ResNet-12 64.82(0.60) 82.14(0.43) 71.52(0.69) 86.03(0.49)
Boosting(Gidaris et al. (2019)) WRN-28-10 63.77(0.45) 80.70(0.33) 70.53(0.51) 84.98(0.36)
Fine-tuning(Dhillon et al. (2019)) WRN-28-10 57.73(0.62) 78.17(0.49) 66.58(0.70) 85.55(0.48)
Centroid align(Afrasiyabi et al. (2020)) WRN-28-10 65.92(0.60) 82.85(0.55) 74.40(0.68) 86.61(0.59)
Ours (best model, crop on original) ResNetW12 65.23(0.81) 83.37(0.56) 73.69(0.91) 86.82(0.60)
Ours (best model, 84x84 resized) ResNetW12 63.05(0.79) 80.11(0.57) 69.78(0.88) 84.86(0.65)
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184x184 images without upscaling for the location prediction task. We also show results on the
84x84 resized image, using cls+rot models for both Mini-ImageNet and Tiered-ImageNet since we
cannot include the location prediction task with this resolution. There is a considerable gap be-
tween these two input preprocessing approaches, which we discuss in Appendix A.1. We believe
the biggest benefit of our approach is the ability to deal with two concerns in few-shot learning
separately: transfering to a new domain and dealing with the small number of examples given in
that new domain. We handle the first one by studying representations for few-shot learning transfer,
and this problem can benefit from the numerous works done in representation learning in computer
vision and NLP in recent years. We handle the second problem by imposing extra constraints when
adapting a linear classifier through prior knowledge. This modular approach can allow progress on
solving either problems translate to improvements in few-shot learning.

6 FUTURE WORK AND CONCLUSIONS

We have presented in this work a systematic study of different learned feature representations for
few-shot learning. Coupled with some new heuristics for feature selection, we find that this trans-
fer learning approach with multi-task representations is competitive with state-of-art methods. For
future work we would like to study if deeper networks would allow us to learn these multi-task
representations better, and also obtain a better understanding of how features are shared or compete
against each other in these multiple tasks. We are also interested in exploring what other types of
structures or constraints can be exploited during the classifier adaptation stage.
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image classification. In European Conference on Computer Vision, pp. 18–35. Springer, 2020.

Alexei Baevski, Michael Auli, and Abdelrahman Mohamed. Effectiveness of self-supervised pre-
training for speech recognition. arXiv preprint arXiv:1911.03912, 2019.

Tianshi Cao, Marc Law, and Sanja Fidler. A theoretical analysis of the number of shots in few-shot
learning. arXiv preprint arXiv:1909.11722, 2019.

Susan Carey and Elsa Bartlett. Acquiring a single new word, u: Papers and reports on child language
development, 15: 17–29, 2011.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big self-
supervised models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029, 2020b.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained
categorization and domain-specific transfer learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4109–4118, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for
few-shot image classification. arXiv preprint arXiv:1909.02729, 2019.

Carl Doersch and Andrew Zisserman. Multi-task self-supervised visual learning. In Proceedings of
the IEEE International Conference on Computer Vision, pp. 2051–2060, 2017.

10



Under review as a conference paper at ICLR 2022

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE international conference on computer vision, pp.
1422–1430, 2015.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR,
2017.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and Matthieu Cord. Boosting
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A APPENDIX

A.1 EFFECT OF INPUT IMAGE SIZE ON FEW-SHOT CLASSIFICATION ACCURACY

In the literature the datasets Mini-ImageNet and Tiered-ImageNet are usually constructed from the
standard ImageNet data(Deng et al., 2009), but depending on the interpretation of the input image
size of 84x84 from the original papers(Vinyals et al., 2016; Ren et al., 2018), there could be two
different versions of Mini-ImageNet or Tiered-ImageNet constructed. One approach directly resizes
the input image file to 84x84, while the other approach performs random resized crops of size 84x84
analogous to the common data augmentation approach in ImageNet training (crops of 224x224
instead). We have seen implementations of data loaders that read from resized 84x84 python pickle
files, and also data loaders that directly perform random resized crops from the input jpeg image.
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Table 12: Few-shot classification on different input image resolution.
Mini-ImageNet Tiered-ImageNet

source rep./target task 5w1s 5w5s 10w1s 10w5s 5w1s 5w5s 10w1s 10w5s

ResNetW12-cls(84x84 resized) 60.53
(0.80)

78.44
(0.61)

45.77
(0.53)

65.87
(0.43)

68.38
(0.94)

83.25
(0.67)

54.83
(0.66)

73.02
(0.53)

ResNetW12-cls(84x84 random crop) 61.75
(0.79)

78.98
(0.60)

47.09
(0.53)

66.93
(0.44)

71.36
(0.91)

85.56
(0.64)

58.15
(0.66)

75.77
(0.54)

Table 13: Few-shot classification using different number of augmented examples from training set.
Mini-ImageNet

source rep./target task 5w1s 5w5s 10w1s 10w5s
ResNetW12-cls 61.75(0.79) 78.98(0.60) 47.09(0.53) 66.93(0.44)

ResNetW12-cls-aux1 63.62(0.77) 79.53(0.58) 47.97(0.50) 67.06(0.44)
ResNetW12-cls-aux5 63.96(0.81) 79.39(0.58) 48.17(0.53) 67.16(0.43)
ResNetW12-cls-aux10 63.69(0.83) 79.43(0.60) 47.90(0.55) 67.31(0.43)

But these two versions of the data contain different amount of information as images in the second
approach is of higher resolution, especially when data augmentation is used. Data augmentation
is used on the support set for both logistic regression and MAML. Table 12 shows the few-shot
transfer accuracy of the base classification model on Mini-ImageNet and Tiered-ImageNet. In gen-
eral using the original ImageNet input image compared to the downsampled 84x84 version gives
1-2% advantage for Mini-ImageNet, and a 2-3% advantage for Tiered-ImageNet, for the models we
considered in this paper. In this work we focus on the original input image, because representation
learning methods like location prediction needs a larger 184x184 input image to avoid effect of in-
terpolation in upscaling, and constrative learning benefits from having a larger set of random crops
from a higher resolution image. This is consistent with the usual training of representation learning
methods in ImageNet because the input images are not resized to 224x224 to allow for more types
of input transformations. We discovered this issue of input resolution when we downloaded two
different versions of the data and noticed there are considerable differences in their accuracies.

A.2 EFFECT OF NUMBER OF AUGMENTED AUXILIARY EXAMPLES ON FEW-SHOT
CLASSIFICATION ACCURACY

We also consider a more systematic scheme for augmenting the support set with auxiliary classes
from the training data apart from randomly sampling 1000 examples from the training set. In Ta-
ble 13 we consider augmenting 1, 5 and 10 examples per training class(64 classes) to the support
set on Mini-ImageNet. We can see that the improvement is similar for different number of exam-
ples augmented. One might be able to obtain better results by increasing the number of augmented
examples but at the same time control their total sample weight relative to examples in the support
set, but we do not explore this further in this work.
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