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ABSTRACT

Explicit regularization and implicit bias are often studied separately, though in
practice, they act in tandem. However, their interplay remains poorly understood.
In this work, we show that explicit regularization modifies the behavior of implicit
bias and provides a mechanism to control its strength. By incorporating explicit
regularization into the mirror flow framework, we present a general approach to
better understand implicit biases and their potential in guiding the design of op-
timization problems. Our primary theoretical contribution is the characterization
of regularizations and reparameterizations that induce a time-dependent Bregman
function, with a discussion of the implications of its temporal variation. Impor-
tantly, our framework encompasses single-layer attention, and application to sparse
coding. Extending beyond our core assumptions, we apply this framework to LoRA
finetuning, revealing an implicit bias towards sparsity.

1 INTRODUCTION

Regularization is a fundamental technique in machine learning that helps control model complexity,
prevent over-fitting and improve generalization (Kukačka et al., 2017). There are various ways
to regularize a model (Santos & Papa, 2022), including weight decay, the lasso penalty, dropout,
initialization strategies, early stopping, model constraints, and the introduction of noise. In this paper,
we focus on two major categories of regularization: explicit regularization and implicit bias, as well
as their interaction. We introduce both concepts within a general minimization problem. Consider
the objective function f : Rn → R to be minimized with respect to x:

min
x∈Rn

f(x). (1)

In the context of explicit regularization, a penalty term h(x) is incorporated into the objective function,
directly modifying the learning algorithm to prevent overfitting (Goodfellow et al., 2016), as follows:

min
x∈Rn

f(x) + αh(x). (2)

This approach constrains the model’s complexity and encourages simpler solutions that are more
likely to generalize well to new, unseen data (Tian & Zhang, 2022). Common explicit regularization
methods include L1 (LASSO) and L2 (Weight decay) regularization (Bishop & Nasrabadi, 2006).
The effectiveness of explicit regularization techniques has been demonstrated across various machine
learning paradigms (Arpit et al., 2016), including supervised learning, unsupervised learning, and
reinforcement learning.

Implicit bias (Gunasekar et al., 2018), can be considered as an inherent aspect of the model design
that does not require explicit modifications to the objective function. The goal of characterizing the
implicit bias is to understand how overparameterization impacts the training dynamics and, thus,
model selection. For example, in the presence of many global minima, optimization algorithms like
gradient descent inherently guide the solution toward specific global minima that enjoy some type of
low norm property (Pesme et al., 2021).

Consequently, the learned model’s properties, including its generalization performance, are signif-
icantly influenced by the choice of model. For example, (Stochastic) gradient descent provably
converges to the solution with the lowest L1 distance from the initialisation for overparameterized
least-squares regression (Pesme et al., 2021).
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Such an implicit bias is often associated with a mirror flow (Karimi et al., 2024; Li et al., 2022),
which results from a reparameterization of f by setting x = g(w), where w ∈ M and M is a smooth
manifold. Note the fundamental difference explicit regularization in the original space and the mirror
flow with the objective function:

min
w∈M

f(g(w)) + αh(w). (3)

The explicit regularizer h acts on the parameters w and not x = g(w). Our main goal is to understand
how the explicit regularization αh(w) affects the implicit bias and thus the effective regularization in
the original parameter space x. While both explicit regularization and the mirror flow framework
have been extensively studied independently, the goal of this paper is to analyze their interplay and to
show how the explicit regularization affects the implicit bias by integrating explicit regularization
into the mirror flow framework. This integration will allow us to gain valuable insights into different
problems like sparse coding, attention, and LoRA. Since the nature and strength of implicit bias are
usually constant throughout training and inherently determined by the reparameterization, they can
sometimes degrade performance or simply not fit to a learning task. As we show, however, they can
be adapted and controlled by explicit regularization, which induces a time dependent mirror flow. In
previous work, it has been shown that overparametrization leads to lower-rank solutions or L1 bias
(Arora et al., 2019; Pesme et al., 2021; Vasudeva et al., 2024), which reveals a bias towards sparsity
in particular settings. Nevertheless, factors such as finite learning rates and noise can obscure this
sparsity bias. In this work, we demonstrate that explicit regularization offers a mechanism to control
this bias effectively. Specifically, it modulates the sparsity bias via the time-dependent mirror flow.

More generally, we aim to integrate explicit regularization into the mirror flow framework, thereby
unifying these two concepts. We provide sufficient conditions for the reparameterization g and explicit
regularization h similar to (Li et al., 2022), to analyze the resulting optimization problem within the
extended mirror flow framework and obtain convergence results. Additionally, we characterize the
regularization h in terms of g to understand their interplay and impact on the Legendre function,
which can be associated with the implicit bias. Concretely, we identify three distinct effects:

• Type of bias: the explicit regularization changes the shape of the Legendre function. For example,
the shape changes from an L2 norm to L1 norm.

• Positional bias: the explicit regularization shifts the global minimum of the Legendre function. For
the standard Legendre function, the global minimum corresponds to the network’s initialization
(Li et al., 2022). During training, the explicit regularization moves the minimum closer to zero.

• Range shrinking: the explicit regularization shrinks the range of the attainable values for the
Legendre function. For example, the L1 norm of the network parameters becomes fixed during
training.

The effects are illustrated in Figure.1. We further analyze the importance of explicit regularization and
its effect on implicit bias through multiple experiments, including sparse coding, attention mechanisms
in transformers, and LoRA. In the latter two cases, we observe that large weight decay leads to rank
collapse. Additionally, our findings also suggest a strategy to mitigate performance degradation
resulting from this collapse. While (Dai et al., 2021) and (Khodak et al., 2022) have studied the
effect of constant explicit regularization on the representation cost and quadratic reparameterizations,
we are concerned with the effect of both constant or dynamic explicit regularization on the implicit
bias. Our contributions are summarized as follows:

• We provide sufficient conditions for incorporating different types of explicit regularization into
the mirror flow framework and characterize their effect, focusing on three key impacts on the
implicit bias: positional bias shift, type of bias, and range shrinking, which can pose challenges for
trainability.

• We propose a systematic procedure for identifying these regularizations and establish a general
convergence result for the framework, which suggests how to overcome the above challenges by
changing the explicit regularization.

• We highlight the effects of the regularization and the resulting implicit bias in experiments such as
sparse coding, attention in transformers, and LoRA fine-tuning in large language models.

• Particularly, we obtain the insight that weight decay controls the sparsification strength induced by
quadratic reparameterizations such as attention and LoRA.
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Positional bias

• •

Type of bias

L2 L1

Range shrinking

Figure 1: Illustration of three established effects of explicit regularization (→) on implicit bias.

2 RELATED WORK

Regularization There are multiple ways of regularizing training in supervised learning. Some of the
most widely used techniques include weight decay (Krogh & Hertz, 1991), data augmentation (Cubuk
et al., 2020; Orvieto et al., 2023), dropout (Srivastava et al., 2014), and batch normalization (Ioffe &
Szegedy, 2015). Weight decay, or L2 regularization, discourages large weights to reduce overfitting.
Data augmentation enhances the diversity of training examples by applying random transforma-
tions—such as rotations, flips, and crops—to the input data, helping neural networks to generalize
better. Dropout randomly deactivates a subset of neurons during each iteration, simulating ensemble
learning by creating multiple network configurations. Finally, batch normalization normalizes the
inputs to each layer in a mini-batch by subtracting the mean and dividing by the standard deviation,
ensuring that inputs are consistently centered and scaled during training.

Implicit bias The implicit bias is a well-studied phenomenon (Woodworth et al., 2020; Gunasekar
et al., 2017a; 2020; Li et al., 2022), which has primarily been characterized within the mirror
flow framework, a well-established concept in convex optimization (Alvarez et al., 2004; Beck &
Teboulle, 2003; Rockafellar & Fenchel, 1970; Boyd & Vandenberghe, 2009), which we extend by
explicit regularization that can induce a time-dependent Bregman function. A mirror flow can be
interpreted as a gradient flow on a Riemannian manifold (Li et al., 2022; Alvarez et al., 2004),
which has also been derived for stochastic gradient descent (Pesme et al., 2021; Even et al., 2023).
The study of discrete versions (Sun et al., 2022) has led to novel algorithmic designs (Raj & Bach,
2021; González et al., 2024; Azizan et al., 2022). Time-dependent mirror descent, however, is
largely underexplored, except for an analysis of some of its intrinsic properties and an application to
continuous sparsification (Radhakrishnan et al., 2021; Jacobs & Burkholz, 2024).

Applications of the mirror flow framework The mirror flow framework has been applied to
various architectures, including attention mechanisms in transformers (Vaswani, 2017; Vasudeva
et al., 2024; Sheen et al., 2024), matrix factorization (Li et al., 2021; Gunasekar et al., 2017b; 2020)
and diagonal linear networks (Li et al., 2022; Pesme et al., 2021; 2024; Woodworth et al., 2020). For
deep matrix factorization, implicit bias has also been studied using gradient flow methods (Marion &
Chizat, 2024; Arora et al., 2019). These studies indicate that the flow tends to be implicitly biased
toward solutions with lower rank or low nuclear norms. We demonstrate that explicit L2 regularization
further enhances its strength, for example in the context of quadratic overparameterization. This is
illustrated through experiments on transformer networks. Moreover, we identify the inherent bias of
Low-Rank Adaptation (LoRA) (Hu et al., 2021; Wan et al., 2024) and delve into the challenges that
are associated with it. This is especially of interest, as LoRA has gained significant popularity in the
field of large language models (LLMs) as it allows for cost-effective finetuning.

Sparse coding Sparse coding (SC) is a powerful representation technique widely employed in
signal processing and pattern recognition (Zhang et al., 2015). It seeks to represent observations as
a linear combination of fundamental elements, termed atoms, which collectively form a dictionary.
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The core principle of SC is to achieve a sparse representation by imposing constraints, typically
using the L0-norm. However, this formulation leads to an NP-hard problem (Tropp, 2004). An
alternative strategy relaxes the constraint to the L1-norm, transforming the original problem into a
convex, albeit non-smooth optimization task. Proximal algorithms have proven effective to solve
these non-smooth problems (Daubechies et al., 2004). Furthermore, convolutional sparse coding
(CSC) extends SC by modeling the dictionary as a concatenation of circulant matrices. Notably, CSC
has a strong connection with modern convolutional neural networks (CNNs), where the forward pass
of a CNN can be viewed as a thresholding pursuit for a multi-layer CSC model (Papyan et al., 2017).
This relationship provides valuable insights into the theoretical underpinnings of CNNs and their
connection to sparse representation techniques.

3 EXPLICIT REGULARIZATION IN THE IMPLICIT BIAS FRAMEWORK

To analyze the impact of regularization on the training dynamics, we first present the gradient flow
corresponding to our optimization problem in Eq. (1). The implicit bias is then characterized by the
mirror flow framework, which is the stepping stone for our extension.

Consider the optimization problem in Eq. (1). The gradient flow for the training dynamics is:

dwt = −∇wf(g(wt))dt w0 = winit,

where ∇w is the gradient with respect to w. For a specific choice of g, reparameterizing the
loss function f leads to a mirror flow. A general framework is given in (Li et al., 2022) to study
the implicit bias through a mirror flow. We provide a summary in Appendix A. Formally, let the
reparameterization g be regular (Definition A.1), commuting (Definition A.3) and satisfy Assumption
A.1. Then, by Theorem A.1, there is an implicit regularizer R : Rn → R that follows the dynamics:

d∇xR(xt) = −∇xf(xt)dt, xinit = g(winit). (4)

R is a Legendre function that is associated with the implicit bias in the optimization. For example,
R can be the hyperbolic entropy encountered in Pesme et al. (2021); Woodworth et al. (2020).
Depending on the initialization of the reparameterization, the entropy is equivalent to either L2 or L1

implicit regularization. The equivalence to L1 is associated with the so-called feature learning regime,
which has been argued to improve generalization performance, highlighting a positive impact of
overparameterization on deep learning. Notably, by introducing explicit regularization, the Legendre
function R can change over time, which has only been encountered by Jacobs & Burkholz (2024) in
a specific setting, where it was crucial to exploit the implicit bias for gradual sparsification.

Accordingly, in the reparameterized setting of Eq. (3) with parametrization g and explicit regulariza-
tion h, we allow the regularization parameter α to vary over time during the gradient flow, denoted as
αt. This induces the following gradient flow:

dwt = − (∇wf(g(wt)) + αt∇wh(wt)) w0 = winit.

To rigorously define the corresponding time-dependent mirror flow, we define a parameterized
Legendre function similar to Definition 3.8 (Li et al., 2022).

Definition 3.1 Let A be a subset of R. A parameterized Legendre function is Ra : Rn → Rn such
that for all a ∈ A, Ra is a Legendre function (Definition 3.8 (Li et al., 2022)).

Definition 3.1 and Theorem A.1 enable us to state our main result, as follows.

Theorem 3.1 Let g: M → Rn and h: M → R be regular and commuting reparameterizations
satisfying Assumption A.1. Then there exists a time-dependent Legendre function Ra such that

d∇xRat
(xt) = −∇xf(xt)dt, x0 = g(winit) (5)

where at = −
∫ t

0
αsds. Moreover, Ra only depends on the initialization winit and the reparameteri-

zation g and h, and is independent of the loss function f .

Proof. See Theorem B.1 in the appendix. The main steps of the proof are:

• Applying Theorem 4.9 (Li et al., 2022) to the time-dependent loss function Lt (x, y) = f (x)+αty
with the reparameterization x = g(w) and explicit regularization y = h(w) to get the resulting
mirror flow with Legendre function R(x, y).

4
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• Utilizing that R is strictly convex to show that y → ∂yR(x, y) is invertible.

• We use that the mirror flow for yt is defined by ∂yR(xt, yt) = at, where at = −
∫ t

0
αsds.

Plugging in the inverse yt = Q(xt, at), into ∇xR(xt, yt), to get an expression for the gradient of
the time dependent Legendre function. This gives the equation for the time dependent mirror flow
∇xR(xt, Q(xt, at)) = µt, where µt = −

∫ t

0
∇xf(xs)ds.

• In the final step, showing that ∇xR (x,Q(x, a)), where ∇x is the derivative with respect to the
first entry, is the gradient of a Legendre function for a fixed.

We examine several key implications of Theorem 3.1. First, we provide a geometric interpretation
to offer an intuition of how implicit bias and explicit regularization interact. We then extend the
convergence result for mirror flows to time-dependent mirror flows (Theorem 3.2) by introducing the
so-called contracting property (see Definition 3.2) to also cover time-varying regularization. If we
want to exploit these results and control the implicit bias that is induced by a reparameterization g,
which is often a given neural network or modeling design choice, we have to choose an appropriate
regularizer h and thus face the question: Can we characterize the explicit regularizer h, given a
reparameterization g? To demonstrate the versatility and discuss the limitations of our framework,
we explore new parametrizations in Appendix B.1. In the following section, we explore the practical
implications of these results on previously studied reparameterizations Woodworth et al. (2020);
Pesme et al. (2021); Gunasekar et al. (2017a) and study the three main effects of explicit regularization:
positional bias, type of bias, and range shrinking.

Geometric interpretation Mirror flow can be interpreted as a gradient flow on a Riemannian
manifold (Li et al., 2022; Alvarez et al., 2004). If a Legendre function satisfies a mirror flow, the
iterates xt follow the dynamics:

dxt = −
(
∇2

xR(xt)
)−1 ∇xf(xt)dt x0 = g(winit). (6)

This is as a gradient flow on a Riemannian manifold, where the metric is given by
(
∇2

xR
)−1

. In the
same way, Theorem 3.1 leads to a new geometric interpretation for regularization. xt follows:

dxt = −
(
∇2

xRat
(xt)

)−1
(∇xf(xt) + αt∇xyt) dt x0 = g(winit) and y0 = h(winit), (7)

where yt is defined as in Theorem 3.1. This suggests that regularization can be interpreted as a gradient
flow with a changing Riemannian metric and a regularization on the manifold. The unexpected
result is that the metric evolves due to the time-dependent Legendre function. In practice, we can
steer at and can thus control the implicit bias. This creates a novel connection between explicit
regularization and implicit bias. Another interpretation of this connection is that the effect of the
explicit regularization gets stored in the time-dependent Legendre function. Therefore, the explicit
regularization has a lasting effect on the training dynamics when it gets turned off. The geometric
interpretation not only provides valuable intuition but helps to show convergence for time-dependent
Bregman functions, which we define in Definition 3.2 (Definition A.6 (Li et al., 2022)).

Definition 3.2 Let A be a subset of R. A parameterized Bregman function is Ra : Rn → Rn such
that for all a ∈ A, Ra is a Bregman function (Definition A.6 (Li et al., 2022)). Furthermore, Ra is
called contracting if dRa

da ≤ 0 for a ∈ A.

An example of a function that satisfies Definition 3.2 is Ra(x) = (x−a)2. The function is contracting
on the set A = (−∞, 0].

Remark 3.1 Note that if there is a T > 0 such that for t ≥ T , αt = 0. We recover a gradient flow
with Riemannian metric

(
∇2

xRaT

)−1

We use Definition 3.2 and Remark 3.1 to show convergence for decaying regularization, i.e., αt → 0.

Theorem 3.2 Consider the same settings as Theorem 3.1. Additionally, assume that for αt ≥ 0
there is a T > 0 such that for t ≥ T , αt = 0. Moreover, for a ∈ [b, 0], Ra is a contracting
Bregman function for some b < 0. Assume that for all t ≥ 0 the integral at := −

∫ t

0
αsds ≥ b.

For the loss function assume that ∇xf is locally Lipschitz and argmin{f(x) : x ∈ domRa∞} is

5
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non-empty. Then the following holds: if f is quasi-convex, xt converges to a point x∗ which satisfies
∇xf(x∗)

T (x− x∗) ≥ 0 for x ∈ domRa∞ . Furthermore, if f is convex, x∗ converges to a minimizer
f in domRa∞ .

For the proof, we refer to Theorem B.2 in the appendix. The proof is split into two parts:

• Showing that the iterates are bounded up to time T with the contracting property and quasi-
convexity.

• Demonstrating convergence after time T , using the geometric interpretation of evolution of xt.

Theorem 3.2 demonstrates that the contracting property enables us to show convergence for time-
dependent Bregman functions. In addition, Theorem 4.17 and Corollary 4.18 in (Li et al., 2022)
for diagonal linear networks can be recovered within this framework. These results show that
x∗ = argminx∈domRa∞

Ra∞ . Therefore, since we control αt, we also control the function that is
implicitly minimized.

Reparameterizations We characterize the regularization h for commuting and regular reparameter-
ization classes g such that Theorem 3.1 applies. First, we present a result for separable reparame-
terizations g, which encompass all previous settings Woodworth et al. (2020); Pesme et al. (2021);
Gunasekar et al. (2017a).

Corollary 3.1 Let g be a seperable reparameterization such that gi(wi) =
∑mi

j=1 gi,j(wi,j) and
h(w) =

∑n
i=1

∑mi

j=1 hi,j(wi,j), where gi,j : R → R and hi,j : R → R. Furthermore, assume that g
and h are analytical functions. Then if and only if h and g satisfy

hi,j = ci,jgi,j ∀i ∈ [n], j ∈ [mi],

with ci,j ∈ R a constant, Theorem 3.1 applies.

Proof. The result follows from the commuting relationship between g and h. The Wronskian between
two analytical functions is zero if and only if they are linearly dependent (Bôcher, 1901). □

Modern machine learning tends to rely heavily on over-parameterization. Our next primary focus
is to demonstrate the advantages of Theorem 3.1 in this common context of over-parameterized
parameterizations. We provide examples showcasing the positive applications of Corollary 3.1.

Example 3.1 The reparameterization u2 − v2 with regularizations of the form cuu
2 − cvv

2. Setting
cu = 1 and cv = −1 leads to the L2 regularization on the reparameterization.

Example 3.1 has been used to study the effect of stochasticity on overparameterized networks Pesme
et al. (2021). More generally, we present a general class of examples that always results in a
well-posed optimization problem, in this case h is positive.

Example 3.2 Consider the reparameterization a(u)− b(v), where a and b are positive analytical
increasing functions. In this case, the regularization cua(u)− cvb(v) can always be employed. By
selecting cu ≥ 0 and cv ≤ 0, the optimization problem remains well-posed.

This approach encompasses reparameterizations such as u2k − v2k (Woodworth et al., 2020) and new
log u− log v. Next, we will discuss another significant class of reparameterizations: the quadratic
reparameterizations, as described in Theorem 4.16 in (Li et al., 2022).

Theorem 3.3 In the setting of Theorem 3.2, consider the commuting quadratic parametrization G:
RD → Rd and H: RD → R, where each Gi(w) =

1
2w

TAiw and H(w) = 1
2w

TBw, for symmetric
matrices A1, A2, . . . , Ad ∈ RD×D and symmetric matrix B ∈ RD×D that commute with each other,
i.e., AiAj − AjAi = 0 for all i, j ∈ [d] and BAj − AjB = 0 for all j ∈ [d]. For any winit ∈ RD,
if ∇wGi(winit)

d
i=1 = Aiwinit

d
i=1 and ∇wH(winit) = Bwinit are linearly independent, then the

following holds:

• Qa(µ) =
1
4 || exp(aB +

∑d
i=1 µiAi)winit||2L2

is a time-dependent Legendre function with domain
Rd.

6
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• For all a ∈ R, Ra is Bregman function with domRa = range∇xQa. Furthermore, if B is positive
semi-definite, then dRa

da ≤ 0, therefore Theorem 3.2 applies.

Proof. The first statement is derived by applying Theorem 4.16 from (Li et al., 2022). The second
statement follows from recognizing that exp(aB) acts as a linear transformation of the initialization
winit. Subsequently, applying Theorem 4.16 of (Li et al., 2022) gives the first part of the last statement.
It remains to demonstrate that Ra is contracting. Since B is positive semi-definite, it follows that
d
daQa ≥ 0. By the reverse ordering property of convex conjugation, we have that d

daRa ≤ 0. For
completeness, let h > 0; then for a ∈ R, we have Qa+h ≥ Qa. Applying the reverse ordering
property implies Ra+h ≤ Ra. Rearranging and dividing by h gives 1

h (Ra+h −Ra) ≥ 0. Taking the
limit as h → 0 concludes the proof. □

Theorem 3.3 encompasses recent works on the reparameterization m⊙ w, which has been proposed
to sparsify neural networks (Jacobs & Burkholz, 2024), and extends work on analyzing transformers
(Vasudeva et al., 2024). Note, the operation ⊙ is pointwise multiplication (Hadamard product).
Having identified classes where we can determine h, we will now apply our results to illustrate how
time dependence influences the dynamics and gain novel insights.

Remark 3.2 It is important to note that for the time-dependent Bregman function in Theorem 3.3
to be contracting, B needs to be positive semi-definite. Furthermore, B = I corresponds to L2

regularization on the reparameterization. We will utilize this to examine the dynamics for the key and
query matrices K and Q in vision transformer networks with L2 regularization and LoRA.

4 THE EFFECT OF REGULARIZATION

In this section, we introduce several time-dependent Legendre functions to demonstrate the wide
applicability of our analysis. We aim to gain insights into how regularization affects implicit bias,
focusing on two primary effects: the alteration of positional bias and the type of regularization. For
instance, changing the type of regularization corresponds to transitioning from implicit L2 to L1

regularization. Furthermore, we illustrate a third effect, which examines how regularization shrinks
the range of mirror flow. We consider the reparameterizations m ⊙ w and u2k − v2k for k ∈ N+.
Using L2 regularization, represented as ||m||2L2

+ ||w||2L2
, is permissible according to Theorem

3.3 for m⊙ w. According to Corollary 3.1, we can also apply the regularization
∑n

i=1 u
2k
i + v2ki .

The parameterization m ⊙ w illustrates the effect of L2 regularization on attention mechanisms,
while u2k − v2k highlights the range shrinking. For the parameterizations m⊙ w, we provide the
time-dependent Legendre function explicitly. In contrast, an analytic expression for u2k − v2k is not
feasible (Woodworth et al., 2020). However, we can still examine the evolution of the gradient flow.
In addition we found a new parametrization that has L1 to L2 type of bias change, see Appendix B.1.

The parameterization m⊙ w Consider the separable parameterization x = m⊙ w with regular-
ization y = ||m||2L2

+ ||w||2L2
as discussed in (Jacobs & Burkholz, 2024). For initializations where

|winit| < minit, Theorem 3.3 holds. We can compute the time-dependent Bregman function:

Ra(x) =
1

4

d∑
i=1

xiarcsinh
(

xi

2 exp(2a)ui,0vi,0

)
−
√

x2
i + 4 exp(4a)u2

i,0v
2
i,0 − xi log

(
ui,0

vi,0

)
(8)

where u0 = (minit+winit)/
√
2 and v0 = (minit−winit)/

√
2. We recover the corrected hyperbolic

entropy (Woodworth et al., 2020), which now is dependent on a. Note, that we used Theorem 3.3
to find Ra, we can invert the corresponding function Qa(µ), where µ = −

∫ t

0
∇xf(xs)ds. The

regularization thus affects the time dependent Legendre function trough changing a. This allows us
to modulate between an implicit L2 and L1 regularization through explicit regularization (Jacobs
& Burkholz, 2024). Moreover, a also controls the location of the global minimum, a smaller a
corresponds to moving it closer to zero. Therefore, we both change the type of bias and positional
bias. In Appendix C Figure.9a we illustrate the type of bias and positional bias effects for m⊙ w.

Building on this result, we study attention, where the query Q and key K matrices are both of size
n× n. Consequently, the matrix KTQ is a quadratic parameterization. We use L2 regularization,
(B = I) and assume that the corresponding matrices Aj for j ∈ [n2] satisfy the conditions of
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Theorem 3.3, Specific choices for these matrices will be illustrated later. It is worth noting that a
transformer also has a value matrix V and an activation function. Assuming V is not trainable and
that the function f encompasses the activation function, the gradient flow dynamics are described
by Theorem 3.1, which characterizes the implicit bias. For optimality and convergence, however,
additional assumptions must be satisfied (Sheen et al., 2024). Specifically, consider the optimization
problem for a transformer network with L2 regularization:

min
K,Q

f(KTQ) + α
(
||K||2fro + ||Q||2fro

)
.

When both K and Q are diagonal matrices with values Λk and Λq, this corresponds to the setting
of m ⊙ w. By slight abuse of notation m = Λk and w = Λq. Thus, the time-dependent Legendre
function in Eq. (8) applies. Therefore, the implicit bias of spectrum ΛT

kΛq, is described by Eq. (5).
This implies that the L2 regularization modulates the implicit bias of the spectrum between L2 an
L1, which corresponds to the Frobenius norm and nuclear norm of the matrix KTQ. This can be
generalized by using the so-called alignment property (Sheen et al., 2024). In our experiments, we
illustrate that a larger L2 regularization leads to a faster modulation, i.e. minimizing the nuclear norm
of KTQ over the Frobenius norm. Note that L2 regularization is used for transformers to keep the
parameters from growing too large. As observed in Khodak et al. (2022), weight decay encourages
minimization of the nuclear norm. Nevertheless, this is not the full picture, the weight decay changes
the geometry according to Eq. (6), leading to a modulation between the Frobenius and nuclear norm.
This reveals how transformers enter the feature regime or become potentially too sparse.

The parametrization u2k − v2k In the previous paragraph, we have illustrated with the time-
dependent Bregman function of m⊙w that both the type of bias and positional bias can change. In this
paragraph, we illustrate another phenomenon. We show that the range of the time-dependent Legendre
function can shrink due to the regularization. We consider the parameterization g(w) = u2k − v2k

with regularization h(w) =
∑n

i=1u
2k
i + v2ki as allowed by Corollary 3.1. Moreover, similar to the

previous parameterization, the current parameterization also exhibits both an L2 to L1 type change
see Theorem 3 in (Woodworth et al., 2020). Unfortunately, there is no analytical formula available
for the Legendre function in this case. Therefore we compute the flow and derive the domain which
is the range of the time-dependent mirror flow. The flow Qa is given by

Qat
(xt) =

(
(2k − 2) (2k)

1

µt + at + cu

) 2k
2k−2

−
(
(2k − 2) (2k)

1

−µt + at + cv

) 2k
2k−2

(9)

where µt = −
∫ t

0
∇f(xs)ds and at = −

∫ t

0
αsds. The domain of Qa is the range of Ra. The domain

of Qa depends on a as follows µ ∈ (−cu − a, cv + a). Since at is negative the domain of Qa

is shrinking over time. Thus the range of Ra is also shrinking. By shrinking the range we start
excluding the set of acceptable solutions of the original optimization problem minimizing f . This
may eventually lead to not being able to solve the main optimization problem. Although we have
no analytical expression for Ra, we can use Qa to approximate it. We illustrate the range shrinking
effect in Appendix C Figure.9b with this approach.

Take away We have illustrated the three effects summarized in Figure.1. The insight we get for
both parameterizations is that the positional bias is getting closer to the origin. Furthermore, the
implicit bias changes from L2 to L1, entering the "rich regime". Moreover, the range of the implicit
bias is shrinking in the case of u2k − v2k for k > 1.

5 EXPERIMENTS

We highlight three benefits of our theoretical analysis. The first experiment concerns sparse coding,
where we show that our results hold for finite learning rate and observe the range shrinking effect.
The second experiment focuses on attention in transformers, studying the effect of moving the
implicit bias from the Frobenius norm to the nuclear norm. The third experiment is finetuning an
LLM with LoRA, where we illustrate the storage of the explicit regularization in the time-dependent
Legendre function by turning off the weight decay, which is a novel insight. This illustrates that our
insights also extend to settings where our assumptions are not met exactly. Note that the change in
positional bias is present in all settings. Moreover, the sparse coding experiment is also repeated for
the parameterization that has type of bias change from L1 to L2 in Appendix B.1. Furthermore, we
provide a detailed exposition on diagonal linear networks there as well.
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Sparse Coding To demonstrate the applicability of our analysis, we extend our study to the
traditional sparse coding problem, which is commonly solved using proximal gradient methods. Our
approach is based on the online dictionary learning algorithm (Mairal et al., 2009), but with our
proposed parameterization substituting the standard sparse coding step. For this experiment, we use
the Olivetti faces dataset. We denote the dictionary with D, labels with z, the code with g(w) and
regularization with h(w). The feature dimension of D is n. The optimization problem is given by

min
w

1

2n
∥z −Dg(w)∥2 + αh(w). (10)

We use gradient descent to solve the optimization problem in Eq. 10 with learning rate η > 0.

The parameterization u2k−v2k In this context, we parameterize the sparse code as g(w) = u2k−v2k

and set the regularization h(w) =
∑n

i=1 u
2k
i + v2ki as discussed in the previous section. The

parameters are initialized as u0 = 1
2 (
√
x2 + β2 + x)

1
2k and v0 = 1

2 (
√

x2 + β2 − x)
1
2k , where

β = 1, x ∼ N (0, In), and all operations are pointwise. We set regularization strength to α = 0.001.
We explore various values of n ∈ [7]. Throughout the training process, we track two key metrics: the
reconstruction mean squared error (MSE) and the nuclear norm of the sparse code, g(w) = u2k−v2k.
The results are presented in Figure.2. We observe the effect of the range shrinking for k > 1, for
larger k the evolution of the nuclear norm becomes stationary faster. This indicates that the range
in which the time-dependent Legendre function is allowed to move has shrunk. The shrinking also
causes the MSE to converge faster for large k.

0 20 40 60 80
Iterations

103

1.1×103

1.2×103

1.3×103

1.4×103

1.5×103

1.6×103

Nu
cle

ar
 n
or
m
 o
f s

pa
rs
e 
co

de
 (l
og

 sc
al
e)

k=1
k=2
k=3
k=4
k=5
k=6
k=7

(a) nuclear norm of sparse code w

0 20 40 60 80
Iterations

10−2

10−1

Re
co

ns
tru

ct
io
n 
M
SE

 (l
og

 sc
al
e) k=1

k=2
k=3
k=4
k=5
k=6
k=7

(b) Reconstruction MSE of x

Figure 2: Results for sparse coding reparameterisation g(w) = u2k − v2k

Attention in transformers We leverage the insight from Theorem 3.3 to strengthen the results of
(Sheen et al., 2024) on transformers. Our experiments are based on a Tiny-ViT transformer network
trained on CIFAR10, applying weight decay α ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.
For each layer, we calculate the nuclear norm and Frobenius norm of the product of the query and key
matrices, denoted as |KTQ|frob, |KTQ|nuc, average them across all layers, and compute their ratio,
which is visualized in Figure.3a. We observe that the decay of the ratio is associated with increasing
weight decay, illustrating the type of bias effect. For small weight decay other factors take precedence
and the ratio starts increasing at the end of training, as mentioned in the introduction. In contrast, for
larger weight decay we do no see this happen, therefore effectively controlling the ratio. Moreover,
Figure.3b suggests that large weight decay can lead to lower validation error. Nevertheless, too large
weight decay leads to higher validation loss, which is accompanied with a smaller ratio.

LoRA Our following LoRA experiments demonstrate that the insights of Theorem 3.3 extend
beyond the specific assumptions of the theorem. We finetune, GPT2 (Radford et al., 2019) with
LoRA on the tiny_shakespeare (Karpathy, 2015) dataset and train for 500 iterations with two different
type of schedules. The first employs a constant weight decay throughout the training process, while
the second disables weight decay after 200 iterations. Figure.4 presents the results. We observe in
Figure 4a that increasing the weight decay leads to a decay in the ratio, illustrating the change in
type of bias. Moreover, when the weight decay is turned off, we see that the ratio still decreases.
In contrast, this would not be the case for linear paramterizations, which have an implicit L2 bias.
To add to this, the ratio of weight decay 1.0 with turning off intersects with the ratio of 0.5 with
constant weight decay only after iteration 400. A similar intersection occurs for 0.2 with turning off
and 0.1 with constant weight decay. At the 400th iteration, the cumulative amount of applied weight
decay is equal. This intersection after the 400 iteration and the fact that the ratios are non-increasing

9
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Figure 3: Average ratio and validation accuracy for attention mechanism.

after turning off weight decay illustrate that the regularization is stored within the time-dependent
Legendre function. This storage mechanism enables exploration of solutions with lower ratios that are
unconstrained by explicit regularization, potentially achieving lower test loss (as shown in Figure 4b).
These insights suggest that optimizing dynamic weight decay schedules can lead to improved LoRA
fine-tuning outcomes.
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Figure 4: Average ratio and test accuracy for LoRA.

6 DISCUSSION

We have provided a framework to analyze how explicit regularization affects implicit bias by inte-
grating it into the mirror flow framework, which has led to a novel geometric interpretation of the
interplay between explicit regularization and implicit bias. We have identified sufficient conditions for
incorporating these regularizations and characterized their effects on the dynamics, notably positional
bias, type of bias, and range shrinking. Additionally, we have established a systematic procedure
for identifying suitable regularizations for given parameterizations and established convergence
within our framework. We have also illustrated the implications of our theory in the context of
sparse coding, attention in transformers, and LoRA fine-tuning. We found that the type of bias can
change dynamically during training, for example, from L2 to L1, as observed in our experiments.
Accordingly, the geometry of the training dynamics changes as described in Eq. (7). This is associated
with a time-dependent Legendre function, which might be of independent interest conceptually. Our
findings could have implications also for other regularization methods such as early stopping or for
explaining scaling laws that relate the amount of overparameterization to optimal training times.
Furthermore, multiple experiments highlight the potential of our framework to not only enhance our
understanding of the interplay between explicit regularization and implicit bias but also to pave the
way for developing more effective regularization techniques, such as dynamic weight decay, tailored
to various model architectures and tasks.
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A IMPLICIT BIAS FRAMEWORK

In this section for completeness we present the existing results for the mirror flow framework.
Consider the optimization problem in Eq. (1) for a loss function f : Rn → R

min
x∈Rn

f(x).

We can use the implicit bias framework to study the effect of overparameterization. An overparameter-
ization can be accomplished by introducing a function g : M → Rn, with M a smooth manifold. For
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particular g, the reparameterization of the loss function f leads to a mirror flow. A general framework
is given in (Li et al., 2022) to study the implicit bias in terms of a mirror flow. Let R : Rn → R be a
Legendre function (Definition 3.8 (Li et al., 2022)), then the mirror flow is described by

d∇xR(xt) = −∇xf(xt)dt, xinit = g(winit) (11)

(Li et al., 2022) provide a sufficient condition for the parameterization g such that it induces a mirror
flow Eq. (11). The Legendre function R controls the implicit bias.

For this we have to give two definitions that are used to give these sufficient conditions. Furthermore,
we define ∂g as the Jacobian of the function g. The parameterization has to be regular and commuting
we now give the definitions of both these properties.

Definition A.1 (Regular Parmeterization Definition 3.4 (Li et al., 2022)) Let M be a smooth sub-
manifold of RD. A regular parametrization g : M → Rn is a C1 parametrization such that ∂G(w)
is of rank n for all w ∈ M .

For the second definition we first need to define what a Lie bracket is.

Definition A.2 (Lie bracket Definition 3.4 (Li et al., 2022)) Let M be a smooth submanifold of RD.
Given two C1 vector fields X,Y on M , we define the Lie Bracket of X and Y as [X,Y ](w) :=
∂Y (w)X(w)− ∂X(w)Y (w).

Definition A.3 (Commuting Parameterization Definition 4.1 (Li et al., 2022)) Let M be a smooth
submanifold of RD. A C2 parameterization g : M → Rd is commuting in a subset S ⊂ M iff for
any i, j ∈ [n], the Lie bracket

[
∇gi,∇gj

]
(w) = 0 for all w ∈ S. Moreover, we call g a commuting

parameterization if it is commuting in the entire M .

Besides these two definitions we need to make an additional assumption on the flow of the solution.
We define the solution of the gradient (descent) flow of a function f : M → Rn initialized at x ∈ M

dxt = −∇xf(xt)dt x0 = x (12)

as xt = ϕt
x(x) which is well defined if the solution exists. Using this we can make the following

assumption.

Assumption A.1 (Assumption 3.5 (Li et al., 2022)) Let M be a smooth submanifold of RD and
g : M → Rn be a parameterization. We assume that for any w ∈ M and i ∈ [n], ϕt

gi(w) is
well-defined for t ∈ (T−, T+) such that either limt→T+

||ϕt
gi(w)||L2

= ∞ or T+ = ∞ and similarly
for T−. Also, we assume that for any w ∈ M and i, j ∈ [n], it holds that for (t, s) ∈ R2 that
ϕs
gi ◦ ϕ

t
gj (w) is well-defined iff ϕt

gj ◦ ϕ
s
gi(w)

Using these definitions we state the known result for mirror flow.

Theorem A.1 (Theorem 4.9 (Li et al., 2022)) Let M be a smooth submanifold of RD and g : M →
Rn be a commuting and regular parameterization satisfying Assumption A.1. For any initalization
winit ∈ M , consider the gradient flow for any time-dependend loss function Lt : Rd → R:

dwt = −∇wLt(g(wt))dt, w0 = winit.

Define xt = g(wt) for all t ≥ 0, then the dynamics of xt is a mirror flow with respect to the Legendre
function R given by Lemma 4.8 in (Li et al., 2022), i.e.,

d∇xR(xt) = −∇xLt(xt)dt, x0 = g(winit).

Moreover, this R only depends on the initialization winit and the parameterization g, and is indepen-
dent of the loss function Lt.

We have used Theorem A.1 to show the Theorem 3.1 in the main text.
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B PROOFS OF SECTION 3

Theorem B.1 Let g : M → Rn and h : M → R be regular and commuting parameterizations
satisfying Assumption A.1. Then there exists a time-dependent Legendre function Ra such that

d∇xRat(xt) = −∇xf(xt)dt, x0 = g(winit)

where at = −
∫ t

0
αsds. Moreover, Ra only depends on the initialization winit and the parameteriza-

tion g and h, and is independent of the loss function f .

Proof. Consider the time dependent loss function Lt(x, y) = f(x) + αty. Applying Theorem A.1
implies there is a Legendre function R(x, y) such that{

∇xR(xt, yt) = −
∫ t

0
∇xf(xs)ds

∂yR(xt, yt) = −
∫ t

0
αsds.

(13)

We use Eq. (13) to derive the time dependent Legendre function. First note that ∂y∂yR(x, y) > 0
for (x, y) ∈ domR since R is strictly convex. This implies that the map y → ∂yR(x, y) is invertible.
Let the inverse be denoted by Q(x, a), where in the dynamics at = −

∫ t

0
αsds. Plugging Q into the

first part of Eq. (13) gives us

∇xR (xt, Q (xt, at)) = −
∫ t

0

∇xf (xs) ds, (14)

where ∇x is still the derivative with respect to the first entry. Eq. (14) looks already like a time
dependent mirror flow. We show now that there exists a Legendre function Rα with the map
∇xR (x,Q (x, α)) as the gradient. This we can do by showing that the Hessian is symmetric and
positive definite and that the Rα is essentially smooth.

By implicitly differentiating, we make the following observation:

dQ

dx
= − 1

∂y∂yR(x,Q)
∇x∂yR(x,Q).

Next we compute the Hessian and apply observation B:

∇2
xRα = ∇2

xR(x,Q) + ∂y∇xR(x,Q) · dQ
dx

= ∇2
xR(x,Q)− 1

∂y∂yR(x,Q)
∂y∇xR(x,Q)∇x∂yR(x,Q)T .

Observe that this matrix is symmetric as it is a sum of symmetric matrices. It remains to be shown
that the Hessian matrix is positive definite. For this we use that ∇2

xR is positive definite. ∇2
xR is PD

implies that the inverse (∇2
xR)−1 is PD. The first block entry of this matrix is given by(

∇2
xR(x, y)− 1

∂y∂yR(x, y)
∂y∇xR(x, y)∇x∂yR(x, y)T

)−1

which is also PD. Now this implies the result as the inverse of ∇2
xRα is PD. It follows that there exists

a function Ra such that ∇Ra = ∇xR(x,Q(x, a)) by Corollary 16.27 in (Lee, 2013), concluding the
first part.

Finally Ra is essentially smooth by construction, using that R is essentially smooth. The boundary
bn(Ra) by construction is the set of points x∗ that have a sequence xn ∈ domint∇xR(·, Q(·, a))
such that if xn → x∗ we have |||∇R|| → ∞. Suppose that Ra is not essentially smooth then there ex-
ists a sequence {xn} with xn → bd(Ra) as n → ∞ such that limn→∞ ||∇xR(xn, Q(xn, a))||2L2

<
∞. Nevertheless, R is essentially smooth this implies that

lim
n→∞

||∇yR(xn, Q(xn, a))||2 = a2 = ∞,

leading to a contradiction. Hence, Ra is a Legendre function with the domain similarly constructed
as the boundary. □
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Theorem B.2 Assume the same settings as Theorem 3.1. Furthermore assume that for αt ≥ 0 there
is a T > 0 such that for t ≥ T , αt = 0. Moreover for a ∈ [b, 0], Ra is a contracting Bregman
function for some b < 0. Assume that for all t ≥ 0 the integral at := −

∫ t

0
αsds ≥ b. For the

loss function assume that ∇xf is locally Lipschitz and argmin{f(x) : x ∈ domRa∞}. Then if f is
quasi-convex xt converges to a point x∗ which satisfies ∇xf(x∗)

T (x− x∗) ≥ 0 for x ∈ domRa∞ .
In addition if f is convex x∗ converges to a minimizer f in domRa∞ .

Proof. We can bound the trajectory of xt by using the time dependent Bregman divergence. The
divergence between a critical point x∗ of f and the itterates xt is given by

Dat
(x∗, xt) := Rat

(x∗)−Rat
(xt)−∇xR

T
at
(x∗ − xt) ≥ 0

Note that the contracting property implies that for a2 ≤ a1 we have domRa2
⊂ domRa1

. Thus,
a critical point x∗ in domRa∞ is in domRat

. Hence, the divergence is well defined. Due to that
f is quasi convex and Ra contracting we have that Dat

(x∗, xt) is bounded. From the contracting
property it follows that Ra∞(x∗) ≥ Rat(x

∗). By definition of a Bregman function we have that xt

stays bounded for all t ≥ 0. It follows that xT is in the domain of Ra∞ and bounded. Therefore,
we have that Dat(x

∗, xt) ≤ Ra∞(x∗)−Rat(xt)−∇xR
T
at
(x∗ − xt) =: Wt. Now we show that the

evolution of Wt is decaying, implying that Dat(x
∗, xt) is bounded. The evolution is given by

dWt = αt
d

dat
Rat

(xt)dt−∇xRat
(xt)dxt +∇xRat

(xt)dxt − d∇xR
T
at
(x∗ − xt)

≤ +d∇xf(xt)
T (x∗ − xt)

≤ 0

where we used that αt ≥ 0 and the contracting property for the first inequality and quasi-convexity
for the second. Therefore xt stays bounded for t ∈ [0, T ]. Now, using the geometeric interpretation
Eq. (7) we have that the evolution of x̃t = xT+t is a gradient flow on a Riemannian manifold with
metric

(
∇2

xRa∞

)−1
. Therefore Theorem 4.14 in (Li et al., 2022) applies, which concludes the result.

□

B.1 OTHER PARAMETERIZATIONS

In this section we explore several parameterizations and limitations of the framework. We show
that Theorem 3.1 does not apply to linear parametrization. Moreover, Theorem 3.1 does not apply
to overparameterizations with depth larger than 2 and weight decay. Nevertheless, we show in
experiments that similar effects can occur. We illustrate both the type change and range shrinking
effect. Finally, we explore a novel parametrization log(u)− log(v). This is to illustrate that the type
of bias can also change from L1 to L2.

Linear parametrization From Corollary 3.1, we derive another corollary for non-
overparameterized parametrization.

Corollary B.1 Let g(x) = x be the identity parametrization and h ∈ C2(Rn,R). Then Theorem 3.1
applies if and only if, h is given by h(x) =

∑n
i=1 cixi + d where ci, d ∈ R are arbitrary coefficients.

Proof. To apply the theorem, h needs to be commuting with g, implying that ∂i∂ih = 0 ∀i ∈ [n],
concluding the result. □

Corollary B.1 poses a limitation in the applicability of Theorem 3.1. Since h is not positive for all
x ∈ Rn, the resulting optimization problem is ill-posed. Therefore, standard non-reparameterized
loss functions cannot be analyzed in this manner.

Beyond quadratic parametrization We show that the current framework excludes higher order
parameterization with weight decay. In order to show that

Theorem B.3 Let g : Rk → R be given by g(w) := Πk
i=1wi , a k > 2 depth reparamterization.

Moreover, let h : Rk → R and h(w) =
∑k

i=1 w
2
i . Then g and h do not commute.
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Proof. This follows directly from checking the commuting condition between g and h:

[∇wg,∇wh](w) = ∇wg(w)∇2
wh(w)−∇wh(w)∇2

wg(w)

=

(4− 2k)Πi∈[k]\{1}wi

...
(4− 2k)Πi∈[k]\{k}wi

 .

In order for this to be equal to zero all products need to be zero. This implies that the gradient flow
given by

dwt = −

Πi∈[k]\{1}wi,t

...
Πi∈[k]\{k}wi,t

⊙∇xf(g(wt))− αtwtdt,

becomes dwt = −αtwtdt and is independent of f . Hence, g and h do not commute □

Theorem B.3 implies that we can not apply Theorem 3.1. We note that the commuting condition is
only a sufficient criteria such that a pair (g, h) is a time-dependent mirror flow.

Experiment over-parameterization Although, our theoretical result does not hold for parametriza-
tion with higher depth we illustrate that the expected effects do occur as well for higher depth. We
consider the reparamterization m⊙ w ⊙ v for diagonal linear networks and compare with m⊙ w,
both with weight decay. Moreover, we compare with the parameterization m with L1 regularization
to motivate the importance of the geometry, which is controlled by the time-dependent Legendre
function. Note, in this setting for m⊙ w we can reach the groundtruth (Jacobs & Burkholz, 2024).

Let d = 40 be the amount data points and n = 100 the dimension of the data. We generate
independent data Zk ∼ N(0, In) for k ∈ [d]. We assume a sparse ground truth x∗ such that
||x∗||L0

= 5. The training labels are generated by yk = ZT
k x

∗. Moreover, the mean squared error
loss function is used. The learning rate η = 10−3 and we use weight decay α ∈ {0.01, 0.1, 1}. We
run the 100000 steps with weight decay, after that we run the same amount of steps without weight
decay. We initialize m = 0 and w = z = 1, this ensures that both parametrization are initialized at
zero and have the same scaling. In this setup, we illustrate the type change similar predicted for the
parametrization m⊙ w. Moreover, we illustrate the range shrinking which occurs for higher depth
parametrization u2k − v2k. Note that the ground truth has the following ratio between the L1 and L2

norm 2.23.

In Figure.5a we observe for m that higher weight decay does not get closer to the ground truth after
turning the L1 regularization off. This is in line with the fact that the regularization is not stored in
the geometry as described by Eq. (7). By turning off the regularization we converge to the closest
solution in L2 norm. This is best seen in Figure.6a, where the ratio increases above the value of the
ground truth.

In Figure.5b we observe for m ⊙ w that higher weight decay gets closer to the ground truth after
turning the weight decay off. This is in line with the fact that the regularization is stored in the
geometry as described by Eq. (7) and a type of bias change from L2 to L1. Furthermore, this is also
confirmed in Figure.6b that for large weight decay the ratio gets close to the ratio of the ground truth
only after turning the weight decay off. This also illustrates Theorem 3.2.

In Figure.5c, we observe for the regularization strength 1e − 1 a similar effect corresponding to
the type of bias change from L2 to L1. In contrast, the higher regularization does not exhibit the
same behavior. We claim this is due to the range shrinking effect. To motivate this is not due to the
dynamics getting stuck at x = 0 we report the final value of first parameter. The value is equal to
1.58 which is not equal to either 0 or the ground truth value 1. To add to this, in Figure.6c we unveil
that the ratio for large weight decay stays constant.

In conclusion, the type of bias can improve generalization, whereas m⊙ w even goes to the ground
truth with high regularization, m does not. Moreover, when we use higher order parametrization such
as m ⊙ w ⊙ z we encounter a different phenomena: range shrinking. To add to this, higher order
parametrization still exhibit the type of bias change in a certain range of regularization strength. Thus,
our theoretical framework leads to verifiable predictions. These can be used to improve the training
dynamics of neural networks in general.
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Figure 5: Illustration of the effect of weight decay with higher order reparameterizations on general-
ization performance.

0 50000 100000 150000 200000
Steps

2 × 100

3 × 100

4 × 100

6 × 100

L1
/L

2 wd = 1e-2
wd = 1e-1
wd = 1e0

(a) The evolution of m.

0 50000 100000 150000 200000
Steps

2 × 100

3 × 100

4 × 100

6 × 100

L1
/L

2

wd = 1e-2
wd = 1e-1
wd = 1e0

(b) The evolution of m⊙ w.

0 50000 100000 150000 200000
Steps

100

2 × 100

3 × 100

4 × 100

6 × 100

L1
/L

2

wd = 1e-2
wd = 1e-1
wd = 1e0

(c) The evolution of m⊙ w ⊙ z.

Figure 6: The ratio between the L1 and L2 for diagonal linear networks.

The reparameterization log(u)−log(v) In this paragraph, we consider another reparameterization.
In the main text, we have seen that the regularization changed the type of bias from L2 to L1. We
now consider a reparameterization with explicit regularization that leads to the opposite type of bias
change. The reparameterization is g(w) = log(u)− log(v). The regularization found in Corollary
3.1 is h(w) =

∑n
i=1 log(ui) + log(vi). Then for u, v > 1 we can apply Theorem 3.1.

We now give the resulting time-dependent Legendre function. The time-dependent Legendre function
is

Ra(x) =
1

4

n∑
i=1

(
u2
0,i − 2a

)
log

(
e−2xi + 1

)
+

(
v20,i − 2a

)
log

(
e2xi + 1

)
∀a <

1

2
min{u2

0,i, v
2
0,i}.

The global minimum is centered at ∇xRa = 0 and is given by log
(√

u2
0 − 2a

)
− log

(√
v20 − 2a

)
.

Thus a shift occurs when a changes, illustrating the positional bias. Moreover, to illustrate the type
change, consider the balanced initialization u0 = v0 = βI , the Legendre function is then given by

Ra(x) =
1

4

(
β2 − 2a

) n∑
i=1

log (2 cosh(xi))

which resembles the log-cosh loss function with vertical rescaling. The rescaling changes the type of
bias from L1 → L2. The type here is L2 close to the origin and L1 further away from zero. Due to
the scaling, it becomes closer and closer to L2. This is illustrated in Figure.7. Furthermore, we will
show in experiments that the type change is crucial for generalization.

Experiment log(u) − log(v). In this context, we reparameterize the sparse code as g(w) =
log(u)− log(v) ∈ Rn and replace the regularization as discussed. We initialize the parameters as
u0 = 1/(β(1 + e−x)) and v0 = 1/(β(1 + ex)), where β = 1 and x = 0.1. Note, the initialization is
different for stability reasons. We explore various values for α ∈ {0.0001, 0.001, 0.01, 0.1, 0.0, 1.0}.
During the training process, we track two key metrics: the reconstruction Mean Squared Error (MSE)
and the nuclear norm of the sparse code, defined as g(w) = log u− log v. The results are illustrated
in Figure.8. We observe that higher regularization leads to a faster increase in the nuclear norm,
which confirms the movement to L2 regularization. This leads to a construction error.
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Figure 7: From L1 to L2 implicit bias, with a = −
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Figure 8: Results for sparse coding reparameterisation g(w) = log u− log v

C HYPERPARAMETERS AND ADDITIONAL FIGURES

We present the experimental details in this section and an additional plot of the validation error.
Moreover, we present the evolution of the time depenent Legendre functions corresponding to m⊙w
and u4 − v4 in Figures.9a and 9b .

For sparse coding we have used a learning rate η = 0.001/Lip(D) where Lip(D) denotes the
resulting Lipschitz constant of the optimization problem depending on the dictionary D. In addition,
we set the number of features n = 50 and run for 100 iterations. In the case of attention, we used the
optimizer AdamW with learning rate 1e− 3 and CosineAnnealingWarmRestarts. Finally, for LoRA
we use SGD with momentum (0.9), constant learning rate 2e − 4, LoRA rank 8, alpha 32 and no
drop-out.

Learning rate schedule and type of bias change We further study the effect of learning rate
scheduler. Specifically, we run pre-trained ViT-tiny on ImageNet classification fine-tuning task.
We set the learning rate to 1e − 4 with AdamW optimisers. We also vary the weight decay in the
range [0.001, 0.003, 0.005, 0.007, 0.01]. Moreover, for each of the settings, we train two comparison
experiments, one without a learning rate scheduler, and one with the popular CosineAnnealingWarm-
Restarts. We use the cumulative sum of the learning rate schedule as the x-axis. The results are
shown in Figure.10. Furthermore, results with SGD optimizer are included in Figure.11. We observe
in both figures that the validation accuracy increases for the decaying schedule in comparison to
the constant schedule. Moreover, we again observe a decaying ratio, for stronger weight decay the
ratio decreases more. We observe that the modulation of the ratio is very similar, especially for SGD.
This indicates that the implicit and explicit regularization is the dominating contributing factor to
controlling the ratio, instead of the learning rate. Note that the AdamW optimizer can have additional
effects that also contribute to changing the ratio.
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Figure 9: Illustrations of the 3 effects of explicit regularization on the time-dependent Legendre
function. In both figures a = −

∫ t

0
αsds. The positional bias is illustrated in Fig 9a and the range

shrinking is illustrated in Fig 9b. Both figures illustrate the change in type of bias from L2 to L1.
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Figure 10: Results for ViT-tiny fine-tuning task with AdamW optimiser
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Figure 11: Results for ViT-tiny fine-tuning task with SGD optimiser
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