
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TIME-DEPENDENT MIRROR FLOWS AND
WHERE TO FIND THEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Explicit regularization and implicit bias are often studied separately, though in
practice, they act in tandem. However, their interplay remains poorly understood.
In this work, we show that explicit regularization modifies the behavior of implicit
bias and provides a mechanism to control its strength. By incorporating explicit
regularization into the mirror flow framework, we present a general approach to
better understand implicit biases and their potential in guiding the design of op-
timization problems. Our primary theoretical contribution is the characterization
of regularizations and reparameterizations that induce a time-dependent Bregman
function, with a discussion of the implications of its temporal variation. Impor-
tantly, our framework encompasses single-layer attention, and application to sparse
coding. Extending beyond our core assumptions, we apply this framework to LoRA
finetuning, revealing an implicit bias towards sparsity.

1 INTRODUCTION

Regularization is a fundamental technique in machine learning that helps control model complexity,
prevent over-fitting and improve generalization (Kukačka et al., 2017). There are various ways
to regularize a model (Santos & Papa, 2022), including weight decay, the lasso penalty, dropout,
initialization strategies, early stopping, model constraints, and the introduction of noise. In this paper,
we focus on two major categories of regularization: explicit regularization and implicit bias, as well
as their interaction. We introduce both concepts within a general minimization problem. Consider
the objective function f : Rn → R to be minimized with respect to x:

min
x∈Rn

f(x). (1)

In the context of explicit regularization, a penalty term h(x) is incorporated into the objective function,
directly modifying the learning algorithm to prevent overfitting (Goodfellow et al., 2016), as follows:

min
x∈Rn

f(x) + αh(x). (2)

This approach constrains the model’s complexity and encourages simpler solutions that are more
likely to generalize well to new, unseen data (Tian & Zhang, 2022). Common explicit regularization
methods include L1 (LASSO) and L2 (Weight decay) regularization (Bishop & Nasrabadi, 2006).
The effectiveness of explicit regularization techniques has been demonstrated across various machine
learning paradigms (Arpit et al., 2016), including supervised learning, unsupervised learning, and
reinforcement learning.

Implicit bias (Gunasekar et al., 2018), can be considered as an inherent aspect of the model design
that does not require explicit modifications to the objective function. The goal of characterizing the
implicit bias is to understand how overparameterization impacts the training dynamics and, thus,
model selection. For example, in the presence of many global minima, optimization algorithms like
gradient descent inherently guide the solution toward specific global minima that enjoy some type of
low norm property (Pesme et al., 2021).

Consequently, the learned model’s properties, including its generalization performance, are signif-
icantly influenced by the choice of model. For example, (Stochastic) gradient descent provably
converges to the solution with the lowest L1 distance from the initialisation for overparameterized
least-squares regression (Pesme et al., 2021).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Such an implicit bias is often associated with a mirror flow (Karimi et al., 2024; Li et al., 2022),
which results from a reparameterization of f by setting x = g(w), where w ∈ M and M is a smooth
manifold. Note the fundamental difference explicit regularization in the original space and the mirror
flow with the objective function:

min
w∈M

f(g(w)) + αh(w). (3)

The explicit regularizer h acts on the parameters w and not x = g(w). Our main goal is to understand
how the explicit regularization αh(w) affects the implicit bias and thus the effective regularization in
the original parameter space x. While both explicit regularization and the mirror flow framework
have been extensively studied independently, the goal of this paper is to analyze their interplay and to
show how the explicit regularization affects the implicit bias by integrating explicit regularization
into the mirror flow framework. This integration will allow us to gain valuable insights into different
problems like sparse coding, attention, and LoRA. Since the nature and strength of implicit bias are
usually constant throughout training and inherently determined by the reparameterization, they can
sometimes degrade performance or simply not fit to a learning task. As we show, however, they can
be adapted and controlled by explicit regularization, which induces a time dependent mirror flow. In
previous work, it has been shown that overparametrization leads to lower-rank solutions or L1 bias
(Arora et al., 2019; Pesme et al., 2021; Vasudeva et al., 2024), which reveals a bias towards sparsity
in particular settings. Nevertheless, factors such as finite learning rates and noise can obscure this
sparsity bias. In this work, we demonstrate that explicit regularization offers a mechanism to control
this bias effectively. Specifically, it modulates the sparsity bias via the time-dependent mirror flow.

More generally, we aim to integrate explicit regularization into the mirror flow framework, thereby
unifying these two concepts. We provide sufficient conditions for the reparameterization g and explicit
regularization h similar to (Li et al., 2022), to analyze the resulting optimization problem within the
extended mirror flow framework and obtain convergence results. Additionally, we characterize the
regularization h in terms of g to understand their interplay and impact on the Legendre function,
which can be associated with the implicit bias. Concretely, we identify three distinct effects:

• Type of bias: the explicit regularization changes the shape of the Legendre function. For example,
the shape changes from an L2 norm to L1 norm.

• Positional bias: the explicit regularization shifts the global minimum of the Legendre function. For
the standard Legendre function, the global minimum corresponds to the network’s initialization
(Li et al., 2022). During training, the explicit regularization moves the minimum closer to zero.

• Range shrinking: the explicit regularization shrinks the range of the attainable values for the
Legendre function. For example, the L1 norm of the network parameters becomes fixed during
training.

The effects are illustrated in Figure.1. We further analyze the importance of explicit regularization and
its effect on implicit bias through multiple experiments, including sparse coding, attention mechanisms
in transformers, and LoRA. In the latter two cases, we observe that large weight decay leads to rank
collapse. Additionally, our findings also suggest a strategy to mitigate performance degradation
resulting from this collapse. While (Dai et al., 2021) and (Khodak et al., 2022) have studied the
effect of constant explicit regularization on the representation cost and quadratic reparameterizations,
we are concerned with the effect of both constant or dynamic explicit regularization on the implicit
bias. Our contributions are summarized as follows:

• We provide sufficient conditions for incorporating different types of explicit regularization into
the mirror flow framework and characterize their effect, focusing on three key impacts on the
implicit bias: positional bias shift, type of bias, and range shrinking, which can pose challenges for
trainability.

• We propose a systematic procedure for identifying these regularizations and establish a general
convergence result for the framework, which suggests how to overcome the above challenges by
changing the explicit regularization.

• We highlight the effects of the regularization and the resulting implicit bias in experiments such as
sparse coding, attention in transformers, and LoRA fine-tuning in large language models.

• Particularly, we obtain the insight that weight decay controls the sparsification strength induced by
quadratic reparameterizations such as attention and LoRA.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Positional bias

• •

Type of bias

L2 L1

Range shrinking

Figure 1: Illustration of three established effects of explicit regularization (→) on implicit bias.

2 RELATED WORK

Regularization There are multiple ways of regularizing training in supervised learning. Some of the
most widely used techniques include weight decay (Krogh & Hertz, 1991), data augmentation (Cubuk
et al., 2020; Orvieto et al., 2023), dropout (Srivastava et al., 2014), and batch normalization (Ioffe &
Szegedy, 2015). Weight decay, or L2 regularization, discourages large weights to reduce overfitting.
Data augmentation enhances the diversity of training examples by applying random transforma-
tions—such as rotations, flips, and crops—to the input data, helping neural networks to generalize
better. Dropout randomly deactivates a subset of neurons during each iteration, simulating ensemble
learning by creating multiple network configurations. Finally, batch normalization normalizes the
inputs to each layer in a mini-batch by subtracting the mean and dividing by the standard deviation,
ensuring that inputs are consistently centered and scaled during training.

Implicit bias The implicit bias is a well-studied phenomenon (Woodworth et al., 2020; Gunasekar
et al., 2017a; 2020; Li et al., 2022), which has primarily been characterized within the mirror
flow framework, a well-established concept in convex optimization (Alvarez et al., 2004; Beck &
Teboulle, 2003; Rockafellar & Fenchel, 1970; Boyd & Vandenberghe, 2009), which we extend by
explicit regularization that can induce a time-dependent Bregman function. A mirror flow can be
interpreted as a gradient flow on a Riemannian manifold (Li et al., 2022; Alvarez et al., 2004),
which has also been derived for stochastic gradient descent (Pesme et al., 2021; Even et al., 2023).
The study of discrete versions (Sun et al., 2022) has led to novel algorithmic designs (Raj & Bach,
2021; González et al., 2024; Azizan et al., 2022). Time-dependent mirror descent, however, is
largely underexplored, except for an analysis of some of its intrinsic properties and an application to
continuous sparsification (Radhakrishnan et al., 2021; Jacobs & Burkholz, 2024).

Applications of the mirror flow framework The mirror flow framework has been applied to
various architectures, including attention mechanisms in transformers (Vaswani, 2017; Vasudeva
et al., 2024; Sheen et al., 2024), matrix factorization (Li et al., 2021; Gunasekar et al., 2017b; 2020)
and diagonal linear networks (Li et al., 2022; Pesme et al., 2021; 2024; Woodworth et al., 2020). For
deep matrix factorization, implicit bias has also been studied using gradient flow methods (Marion &
Chizat, 2024; Arora et al., 2019). These studies indicate that the flow tends to be implicitly biased
toward solutions with lower rank or low nuclear norms. We demonstrate that explicit L2 regularization
further enhances its strength, for example in the context of quadratic overparameterization. This is
illustrated through experiments on transformer networks. Moreover, we identify the inherent bias of
Low-Rank Adaptation (LoRA) (Hu et al., 2021; Wan et al., 2024) and delve into the challenges that
are associated with it. This is especially of interest, as LoRA has gained significant popularity in the
field of large language models (LLMs) as it allows for cost-effective finetuning.

Sparse coding Sparse coding (SC) is a powerful representation technique widely employed in
signal processing and pattern recognition (Zhang et al., 2015). It seeks to represent observations as
a linear combination of fundamental elements, termed atoms, which collectively form a dictionary.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The core principle of SC is to achieve a sparse representation by imposing constraints, typically
using the L0-norm. However, this formulation leads to an NP-hard problem (Tropp, 2004). An
alternative strategy relaxes the constraint to the L1-norm, transforming the original problem into a
convex, albeit non-smooth optimization task. Proximal algorithms have proven effective to solve
these non-smooth problems (Daubechies et al., 2004). Furthermore, convolutional sparse coding
(CSC) extends SC by modeling the dictionary as a concatenation of circulant matrices. Notably, CSC
has a strong connection with modern convolutional neural networks (CNNs), where the forward pass
of a CNN can be viewed as a thresholding pursuit for a multi-layer CSC model (Papyan et al., 2017).
This relationship provides valuable insights into the theoretical underpinnings of CNNs and their
connection to sparse representation techniques.

3 EXPLICIT REGULARIZATION IN THE IMPLICIT BIAS FRAMEWORK

To analyze the impact of regularization on the training dynamics, we first present the gradient flow
corresponding to our optimization problem in Eq. (1). The implicit bias is then characterized by the
mirror flow framework, which is the stepping stone for our extension.

Consider the optimization problem in Eq. (1). The gradient flow for the training dynamics is:

dwt = −∇wf(g(wt))dt w0 = winit,

where ∇w is the gradient with respect to w. For a specific choice of g, reparameterizing the
loss function f leads to a mirror flow. A general framework is given in (Li et al., 2022) to study
the implicit bias through a mirror flow. We provide a summary in Appendix A. Formally, let the
reparameterization g be regular (Definition A.1), commuting (Definition A.3) and satisfy Assumption
A.1. Then, by Theorem A.1, there is an implicit regularizer R : Rn → R that follows the dynamics:

d∇xR(xt) = −∇xf(xt)dt, xinit = g(winit). (4)

R is a Legendre function that is associated with the implicit bias in the optimization. For example,
R can be the hyperbolic entropy encountered in Pesme et al. (2021); Woodworth et al. (2020).
Depending on the initialization of the reparameterization, the entropy is equivalent to either L2 or L1

implicit regularization. The equivalence to L1 is associated with the so-called feature learning regime,
which has been argued to improve generalization performance, highlighting a positive impact of
overparameterization on deep learning. Notably, by introducing explicit regularization, the Legendre
function R can change over time, which has only been encountered by Jacobs & Burkholz (2024) in
a specific setting, where it was crucial to exploit the implicit bias for gradual sparsification.

Accordingly, in the reparameterized setting of Eq. (3) with parametrization g and explicit regulariza-
tion h, we allow the regularization parameter α to vary over time during the gradient flow, denoted as
αt. This induces the following gradient flow:

dwt = − (∇wf(g(wt)) + αt∇wh(wt)) w0 = winit.

To rigorously define the corresponding time-dependent mirror flow, we define a parameterized
Legendre function similar to Definition 3.8 (Li et al., 2022).

Definition 3.1 Let A be a subset of R. A parameterized Legendre function is Ra : Rn → Rn such
that for all a ∈ A, Ra is a Legendre function (Definition 3.8 (Li et al., 2022)).

Definition 3.1 and Theorem A.1 enable us to state our main result, as follows.

Theorem 3.1 Let g: M → Rn and h: M → R be regular and commuting reparameterizations
satisfying Assumption A.1. Then there exists a time-dependent Legendre function Ra such that

d∇xRat
(xt) = −∇xf(xt)dt, x0 = g(winit) (5)

where at = −
∫ t

0
αsds. Moreover, Ra only depends on the initialization winit and the reparameteri-

zation g and h, and is independent of the loss function f .

Proof. See Theorem B.1 in the appendix. The main steps of the proof are:

• Applying Theorem 4.9 (Li et al., 2022) to the time-dependent loss function Lt (x, y) = f (x)+αty
with the reparameterization x = g(w) and explicit regularization y = h(w) to get the resulting
mirror flow with Legendre function R(x, y).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Utilizing that R is strictly convex to show that y → ∂yR(x, y) is invertible.

• We use that the mirror flow for yt is defined by ∂yR(xt, yt) = at, where at = −
∫ t

0
αsds.

Plugging in the inverse yt = Q(xt, at), into ∇xR(xt, yt), to get an expression for the gradient of
the time dependent Legendre function. This gives the equation for the time dependent mirror flow
∇xR(xt, Q(xt, at)) = µt, where µt = −

∫ t

0
∇xf(xs)ds.

• In the final step, showing that ∇xR (x,Q(x, a)), where ∇x is the derivative with respect to the
first entry, is the gradient of a Legendre function for a fixed.

We examine several key implications of Theorem 3.1. First, we provide a geometric interpretation
to offer an intuition of how implicit bias and explicit regularization interact. We then extend the
convergence result for mirror flows to time-dependent mirror flows (Theorem 3.2) by introducing the
so-called contracting property (see Definition 3.2) to also cover time-varying regularization. If we
want to exploit these results and control the implicit bias that is induced by a reparameterization g,
which is often a given neural network or modeling design choice, we have to choose an appropriate
regularizer h and thus face the question: Can we characterize the explicit regularizer h, given a
reparameterization g? To demonstrate the versatility and discuss the limitations of our framework,
we explore new parametrizations in Appendix B.1. In the following section, we explore the practical
implications of these results on previously studied reparameterizations Woodworth et al. (2020);
Pesme et al. (2021); Gunasekar et al. (2017a) and study the three main effects of explicit regularization:
positional bias, type of bias, and range shrinking.

Geometric interpretation Mirror flow can be interpreted as a gradient flow on a Riemannian
manifold (Li et al., 2022; Alvarez et al., 2004). If a Legendre function satisfies a mirror flow, the
iterates xt follow the dynamics:

dxt = −
(
∇2

xR(xt)
)−1 ∇xf(xt)dt x0 = g(winit). (6)

This is as a gradient flow on a Riemannian manifold, where the metric is given by
(
∇2

xR
)−1

. In the
same way, Theorem 3.1 leads to a new geometric interpretation for regularization. xt follows:

dxt = −
(
∇2

xRat
(xt)

)−1
(∇xf(xt) + αt∇xyt) dt x0 = g(winit) and y0 = h(winit), (7)

where yt is defined as in Theorem 3.1. This suggests that regularization can be interpreted as a gradient
flow with a changing Riemannian metric and a regularization on the manifold. The unexpected
result is that the metric evolves due to the time-dependent Legendre function. In practice, we can
steer at and can thus control the implicit bias. This creates a novel connection between explicit
regularization and implicit bias. Another interpretation of this connection is that the effect of the
explicit regularization gets stored in the time-dependent Legendre function. Therefore, the explicit
regularization has a lasting effect on the training dynamics when it gets turned off. The geometric
interpretation not only provides valuable intuition but helps to show convergence for time-dependent
Bregman functions, which we define in Definition 3.2 (Definition A.6 (Li et al., 2022)).

Definition 3.2 Let A be a subset of R. A parameterized Bregman function is Ra : Rn → Rn such
that for all a ∈ A, Ra is a Bregman function (Definition A.6 (Li et al., 2022)). Furthermore, Ra is
called contracting if dRa

da ≤ 0 for a ∈ A.

An example of a function that satisfies Definition 3.2 is Ra(x) = (x−a)2. The function is contracting
on the set A = (−∞, 0].

Remark 3.1 Note that if there is a T > 0 such that for t ≥ T , αt = 0. We recover a gradient flow
with Riemannian metric

(
∇2

xRaT

)−1

We use Definition 3.2 and Remark 3.1 to show convergence for decaying regularization, i.e., αt → 0.

Theorem 3.2 Consider the same settings as Theorem 3.1. Additionally, assume that for αt ≥ 0
there is a T > 0 such that for t ≥ T , αt = 0. Moreover, for a ∈ [b, 0], Ra is a contracting
Bregman function for some b < 0. Assume that for all t ≥ 0 the integral at := −

∫ t

0
αsds ≥ b.

For the loss function assume that ∇xf is locally Lipschitz and argmin{f(x) : x ∈ domRa∞} is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

non-empty. Then the following holds: if f is quasi-convex, xt converges to a point x∗ which satisfies
∇xf(x∗)

T (x− x∗) ≥ 0 for x ∈ domRa∞ . Furthermore, if f is convex, x∗ converges to a minimizer
f in domRa∞ .

For the proof, we refer to Theorem B.2 in the appendix. The proof is split into two parts:

• Showing that the iterates are bounded up to time T with the contracting property and quasi-
convexity.

• Demonstrating convergence after time T , using the geometric interpretation of evolution of xt.

Theorem 3.2 demonstrates that the contracting property enables us to show convergence for time-
dependent Bregman functions. In addition, Theorem 4.17 and Corollary 4.18 in (Li et al., 2022)
for diagonal linear networks can be recovered within this framework. These results show that
x∗ = argminx∈domRa∞

Ra∞ . Therefore, since we control αt, we also control the function that is
implicitly minimized.

Reparameterizations We characterize the regularization h for commuting and regular reparameter-
ization classes g such that Theorem 3.1 applies. First, we present a result for separable reparame-
terizations g, which encompass all previous settings Woodworth et al. (2020); Pesme et al. (2021);
Gunasekar et al. (2017a).

Corollary 3.1 Let g be a seperable reparameterization such that gi(wi) =
∑mi

j=1 gi,j(wi,j) and
h(w) =

∑n
i=1

∑mi

j=1 hi,j(wi,j), where gi,j : R → R and hi,j : R → R. Furthermore, assume that g
and h are analytical functions. Then if and only if h and g satisfy

hi,j = ci,jgi,j ∀i ∈ [n], j ∈ [mi],

with ci,j ∈ R a constant, Theorem 3.1 applies.

Proof. The result follows from the commuting relationship between g and h. The Wronskian between
two analytical functions is zero if and only if they are linearly dependent (Bôcher, 1901). □

Modern machine learning tends to rely heavily on over-parameterization. Our next primary focus
is to demonstrate the advantages of Theorem 3.1 in this common context of over-parameterized
parameterizations. We provide examples showcasing the positive applications of Corollary 3.1.

Example 3.1 The reparameterization u2 − v2 with regularizations of the form cuu
2 − cvv

2. Setting
cu = 1 and cv = −1 leads to the L2 regularization on the reparameterization.

Example 3.1 has been used to study the effect of stochasticity on overparameterized networks Pesme
et al. (2021). More generally, we present a general class of examples that always results in a
well-posed optimization problem, in this case h is positive.

Example 3.2 Consider the reparameterization a(u)− b(v), where a and b are positive analytical
increasing functions. In this case, the regularization cua(u)− cvb(v) can always be employed. By
selecting cu ≥ 0 and cv ≤ 0, the optimization problem remains well-posed.

This approach encompasses reparameterizations such as u2k − v2k (Woodworth et al., 2020) and new
log u− log v. Next, we will discuss another significant class of reparameterizations: the quadratic
reparameterizations, as described in Theorem 4.16 in (Li et al., 2022).

Theorem 3.3 In the setting of Theorem 3.2, consider the commuting quadratic parametrization G:
RD → Rd and H: RD → R, where each Gi(w) =

1
2w

TAiw and H(w) = 1
2w

TBw, for symmetric
matrices A1, A2, . . . , Ad ∈ RD×D and symmetric matrix B ∈ RD×D that commute with each other,
i.e., AiAj − AjAi = 0 for all i, j ∈ [d] and BAj − AjB = 0 for all j ∈ [d]. For any winit ∈ RD,
if ∇wGi(winit)

d
i=1 = Aiwinit

d
i=1 and ∇wH(winit) = Bwinit are linearly independent, then the

following holds:

• Qa(µ) =
1
4 || exp(aB +

∑d
i=1 µiAi)winit||2L2

is a time-dependent Legendre function with domain
Rd.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

• For all a ∈ R, Ra is Bregman function with domRa = range∇xQa. Furthermore, if B is positive
semi-definite, then dRa

da ≤ 0, therefore Theorem 3.2 applies.

Proof. The first statement is derived by applying Theorem 4.16 from (Li et al., 2022). The second
statement follows from recognizing that exp(aB) acts as a linear transformation of the initialization
winit. Subsequently, applying Theorem 4.16 of (Li et al., 2022) gives the first part of the last statement.
It remains to demonstrate that Ra is contracting. Since B is positive semi-definite, it follows that
d
daQa ≥ 0. By the reverse ordering property of convex conjugation, we have that d

daRa ≤ 0. For
completeness, let h > 0; then for a ∈ R, we have Qa+h ≥ Qa. Applying the reverse ordering
property implies Ra+h ≤ Ra. Rearranging and dividing by h gives 1

h (Ra+h −Ra) ≥ 0. Taking the
limit as h → 0 concludes the proof. □

Theorem 3.3 encompasses recent works on the reparameterization m⊙ w, which has been proposed
to sparsify neural networks (Jacobs & Burkholz, 2024), and extends work on analyzing transformers
(Vasudeva et al., 2024). Note, the operation ⊙ is pointwise multiplication (Hadamard product).
Having identified classes where we can determine h, we will now apply our results to illustrate how
time dependence influences the dynamics and gain novel insights.

Remark 3.2 It is important to note that for the time-dependent Bregman function in Theorem 3.3
to be contracting, B needs to be positive semi-definite. Furthermore, B = I corresponds to L2

regularization on the reparameterization. We will utilize this to examine the dynamics for the key and
query matrices K and Q in vision transformer networks with L2 regularization and LoRA.

4 THE EFFECT OF REGULARIZATION

In this section, we introduce several time-dependent Legendre functions to demonstrate the wide
applicability of our analysis. We aim to gain insights into how regularization affects implicit bias,
focusing on two primary effects: the alteration of positional bias and the type of regularization. For
instance, changing the type of regularization corresponds to transitioning from implicit L2 to L1

regularization. Furthermore, we illustrate a third effect, which examines how regularization shrinks
the range of mirror flow. We consider the reparameterizations m ⊙ w and u2k − v2k for k ∈ N+.
Using L2 regularization, represented as ||m||2L2

+ ||w||2L2
, is permissible according to Theorem

3.3 for m⊙ w. According to Corollary 3.1, we can also apply the regularization
∑n

i=1 u
2k
i + v2ki .

The parameterization m ⊙ w illustrates the effect of L2 regularization on attention mechanisms,
while u2k − v2k highlights the range shrinking. For the parameterizations m⊙ w, we provide the
time-dependent Legendre function explicitly. In contrast, an analytic expression for u2k − v2k is not
feasible (Woodworth et al., 2020). However, we can still examine the evolution of the gradient flow.
In addition we found a new parametrization that has L1 to L2 type of bias change, see Appendix B.1.

The parameterization m⊙ w Consider the separable parameterization x = m⊙ w with regular-
ization y = ||m||2L2

+ ||w||2L2
as discussed in (Jacobs & Burkholz, 2024). For initializations where

|winit| < minit, Theorem 3.3 holds. We can compute the time-dependent Bregman function:

Ra(x) =
1

4

d∑
i=1

xiarcsinh
(

xi

2 exp(2a)ui,0vi,0

)
−
√

x2
i + 4 exp(4a)u2

i,0v
2
i,0 − xi log

(
ui,0

vi,0

)
(8)

where u0 = (minit+winit)/
√
2 and v0 = (minit−winit)/

√
2. We recover the corrected hyperbolic

entropy (Woodworth et al., 2020), which now is dependent on a. Note, that we used Theorem 3.3
to find Ra, we can invert the corresponding function Qa(µ), where µ = −

∫ t

0
∇xf(xs)ds. The

regularization thus affects the time dependent Legendre function trough changing a. This allows us
to modulate between an implicit L2 and L1 regularization through explicit regularization (Jacobs
& Burkholz, 2024). Moreover, a also controls the location of the global minimum, a smaller a
corresponds to moving it closer to zero. Therefore, we both change the type of bias and positional
bias. In Appendix C Figure.9a we illustrate the type of bias and positional bias effects for m⊙ w.

Building on this result, we study attention, where the query Q and key K matrices are both of size
n× n. Consequently, the matrix KTQ is a quadratic parameterization. We use L2 regularization,
(B = I) and assume that the corresponding matrices Aj for j ∈ [n2] satisfy the conditions of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 3.3, Specific choices for these matrices will be illustrated later. It is worth noting that a
transformer also has a value matrix V and an activation function. Assuming V is not trainable and
that the function f encompasses the activation function, the gradient flow dynamics are described
by Theorem 3.1, which characterizes the implicit bias. For optimality and convergence, however,
additional assumptions must be satisfied (Sheen et al., 2024). Specifically, consider the optimization
problem for a transformer network with L2 regularization:

min
K,Q

f(KTQ) + α
(
||K||2fro + ||Q||2fro

)
.

When both K and Q are diagonal matrices with values Λk and Λq, this corresponds to the setting
of m ⊙ w. By slight abuse of notation m = Λk and w = Λq. Thus, the time-dependent Legendre
function in Eq. (8) applies. Therefore, the implicit bias of spectrum ΛT

kΛq, is described by Eq. (5).
This implies that the L2 regularization modulates the implicit bias of the spectrum between L2 an
L1, which corresponds to the Frobenius norm and nuclear norm of the matrix KTQ. This can be
generalized by using the so-called alignment property (Sheen et al., 2024). In our experiments, we
illustrate that a larger L2 regularization leads to a faster modulation, i.e. minimizing the nuclear norm
of KTQ over the Frobenius norm. Note that L2 regularization is used for transformers to keep the
parameters from growing too large. As observed in Khodak et al. (2022), weight decay encourages
minimization of the nuclear norm. Nevertheless, this is not the full picture, the weight decay changes
the geometry according to Eq. (6), leading to a modulation between the Frobenius and nuclear norm.
This reveals how transformers enter the feature regime or become potentially too sparse.

The parametrization u2k − v2k In the previous paragraph, we have illustrated with the time-
dependent Bregman function of m⊙w that both the type of bias and positional bias can change. In this
paragraph, we illustrate another phenomenon. We show that the range of the time-dependent Legendre
function can shrink due to the regularization. We consider the parameterization g(w) = u2k − v2k

with regularization h(w) =
∑n

i=1u
2k
i + v2ki as allowed by Corollary 3.1. Moreover, similar to the

previous parameterization, the current parameterization also exhibits both an L2 to L1 type change
see Theorem 3 in (Woodworth et al., 2020). Unfortunately, there is no analytical formula available
for the Legendre function in this case. Therefore we compute the flow and derive the domain which
is the range of the time-dependent mirror flow. The flow Qa is given by

Qat
(xt) =

(
(2k − 2) (2k)

1

µt + at + cu

) 2k
2k−2

−
(
(2k − 2) (2k)

1

−µt + at + cv

) 2k
2k−2

(9)

where µt = −
∫ t

0
∇f(xs)ds and at = −

∫ t

0
αsds. The domain of Qa is the range of Ra. The domain

of Qa depends on a as follows µ ∈ (−cu − a, cv + a). Since at is negative the domain of Qa

is shrinking over time. Thus the range of Ra is also shrinking. By shrinking the range we start
excluding the set of acceptable solutions of the original optimization problem minimizing f . This
may eventually lead to not being able to solve the main optimization problem. Although we have
no analytical expression for Ra, we can use Qa to approximate it. We illustrate the range shrinking
effect in Appendix C Figure.9b with this approach.

Take away We have illustrated the three effects summarized in Figure.1. The insight we get for
both parameterizations is that the positional bias is getting closer to the origin. Furthermore, the
implicit bias changes from L2 to L1, entering the "rich regime". Moreover, the range of the implicit
bias is shrinking in the case of u2k − v2k for k > 1.

5 EXPERIMENTS

We highlight three benefits of our theoretical analysis. The first experiment concerns sparse coding,
where we show that our results hold for finite learning rate and observe the range shrinking effect.
The second experiment focuses on attention in transformers, studying the effect of moving the
implicit bias from the Frobenius norm to the nuclear norm. The third experiment is finetuning an
LLM with LoRA, where we illustrate the storage of the explicit regularization in the time-dependent
Legendre function by turning off the weight decay, which is a novel insight. This illustrates that our
insights also extend to settings where our assumptions are not met exactly. Note that the change in
positional bias is present in all settings. Moreover, the sparse coding experiment is also repeated for
the parameterization that has type of bias change from L1 to L2 in Appendix B.1. Furthermore, we
provide a detailed exposition on diagonal linear networks there as well.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Sparse Coding To demonstrate the applicability of our analysis, we extend our study to the
traditional sparse coding problem, which is commonly solved using proximal gradient methods. Our
approach is based on the online dictionary learning algorithm (Mairal et al., 2009), but with our
proposed parameterization substituting the standard sparse coding step. For this experiment, we use
the Olivetti faces dataset. We denote the dictionary with D, labels with z, the code with g(w) and
regularization with h(w). The feature dimension of D is n. The optimization problem is given by

min
w

1

2n
∥z −Dg(w)∥2 + αh(w). (10)

We use gradient descent to solve the optimization problem in Eq. 10 with learning rate η > 0.

The parameterization u2k−v2k In this context, we parameterize the sparse code as g(w) = u2k−v2k

and set the regularization h(w) =
∑n

i=1 u
2k
i + v2ki as discussed in the previous section. The

parameters are initialized as u0 = 1
2 (
√
x2 + β2 + x)

1
2k and v0 = 1

2 (
√

x2 + β2 − x)
1
2k , where

β = 1, x ∼ N (0, In), and all operations are pointwise. We set regularization strength to α = 0.001.
We explore various values of n ∈ [7]. Throughout the training process, we track two key metrics: the
reconstruction mean squared error (MSE) and the nuclear norm of the sparse code, g(w) = u2k−v2k.
The results are presented in Figure.2. We observe the effect of the range shrinking for k > 1, for
larger k the evolution of the nuclear norm becomes stationary faster. This indicates that the range
in which the time-dependent Legendre function is allowed to move has shrunk. The shrinking also
causes the MSE to converge faster for large k.

0 20 40 60 80
Iterations

103

1.1×103

1.2×103

1.3×103

1.4×103

1.5×103

1.6×103

Nu
cle

ar
 n
or
m
 o
f s

pa
rs
e
co

de
 (l
og

 sc
al
e)

k=1
k=2
k=3
k=4
k=5
k=6
k=7

(a) nuclear norm of sparse code w

0 20 40 60 80
Iterations

10−2

10−1

Re
co

ns
tru

ct
io
n
M
SE

 (l
og

 sc
al
e) k=1

k=2
k=3
k=4
k=5
k=6
k=7

(b) Reconstruction MSE of x

Figure 2: Results for sparse coding reparameterisation g(w) = u2k − v2k

Attention in transformers We leverage the insight from Theorem 3.3 to strengthen the results of
(Sheen et al., 2024) on transformers. Our experiments are based on a Tiny-ViT transformer network
trained on CIFAR10, applying weight decay α ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.
For each layer, we calculate the nuclear norm and Frobenius norm of the product of the query and key
matrices, denoted as |KTQ|frob, |KTQ|nuc, average them across all layers, and compute their ratio,
which is visualized in Figure.3a. We observe that the decay of the ratio is associated with increasing
weight decay, illustrating the type of bias effect. For small weight decay other factors take precedence
and the ratio starts increasing at the end of training, as mentioned in the introduction. In contrast, for
larger weight decay we do no see this happen, therefore effectively controlling the ratio. Moreover,
Figure.3b suggests that large weight decay can lead to lower validation error. Nevertheless, too large
weight decay leads to higher validation loss, which is accompanied with a smaller ratio.

LoRA Our following LoRA experiments demonstrate that the insights of Theorem 3.3 extend
beyond the specific assumptions of the theorem. We finetune, GPT2 (Radford et al., 2019) with
LoRA on the tiny_shakespeare (Karpathy, 2015) dataset and train for 500 iterations with two different
type of schedules. The first employs a constant weight decay throughout the training process, while
the second disables weight decay after 200 iterations. Figure.4 presents the results. We observe in
Figure 4a that increasing the weight decay leads to a decay in the ratio, illustrating the change in
type of bias. Moreover, when the weight decay is turned off, we see that the ratio still decreases.
In contrast, this would not be the case for linear paramterizations, which have an implicit L2 bias.
To add to this, the ratio of weight decay 1.0 with turning off intersects with the ratio of 0.5 with
constant weight decay only after iteration 400. A similar intersection occurs for 0.2 with turning off
and 0.1 with constant weight decay. At the 400th iteration, the cumulative amount of applied weight
decay is equal. This intersection after the 400 iteration and the fact that the ratios are non-increasing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epochs

1.5

2.0

2.5

3.0

3.5

4.0

Nu
cle

ar
 n
or
m
 /
Fr
ob

en
iu
s n

or
m

(a) Average ratio |KTQ|nuc/|KTQ|frob;

0 20 40 60 80 100
Epochs

1.2

1.4

1.6

1.8

2.0

2.2

Va
l e

rro
r

wd = 0.5
wd = 0.1
wd = 0.05
wd = 0.01
wd = 0.005
wd = 0.001
wd = 0.0005
wd = 0.0001

(b) Validation error.

Figure 3: Average ratio and validation accuracy for attention mechanism.

after turning off weight decay illustrate that the regularization is stored within the time-dependent
Legendre function. This storage mechanism enables exploration of solutions with lower ratios that are
unconstrained by explicit regularization, potentially achieving lower test loss (as shown in Figure 4b).
These insights suggest that optimizing dynamic weight decay schedules can lead to improved LoRA
fine-tuning outcomes.

0 200 400
Iterations

1.70

1.75

1.80

1.85

N
uc

le
ar

 n
or

m
 /

Fr
ob

en
iu

s n
or

m

(a) Average ratio |BTA|nuc/|BTA|frob.

0 200 400
Iterations

3.4

3.6

3.8

4.0

Te
st

 lo
ss

wd = 0.2 turn off
wd = 0.1
wd = 1.0 turn off
wd = 0.5

(b) Test loss.

Figure 4: Average ratio and test accuracy for LoRA.

6 DISCUSSION

We have provided a framework to analyze how explicit regularization affects implicit bias by inte-
grating it into the mirror flow framework, which has led to a novel geometric interpretation of the
interplay between explicit regularization and implicit bias. We have identified sufficient conditions for
incorporating these regularizations and characterized their effects on the dynamics, notably positional
bias, type of bias, and range shrinking. Additionally, we have established a systematic procedure
for identifying suitable regularizations for given parameterizations and established convergence
within our framework. We have also illustrated the implications of our theory in the context of
sparse coding, attention in transformers, and LoRA fine-tuning. We found that the type of bias can
change dynamically during training, for example, from L2 to L1, as observed in our experiments.
Accordingly, the geometry of the training dynamics changes as described in Eq. (7). This is associated
with a time-dependent Legendre function, which might be of independent interest conceptually. Our
findings could have implications also for other regularization methods such as early stopping or for
explaining scaling laws that relate the amount of overparameterization to optimal training times.
Furthermore, multiple experiments highlight the potential of our framework to not only enhance our
understanding of the interplay between explicit regularization and implicit bias but also to pave the
way for developing more effective regularization techniques, such as dynamic weight decay, tailored
to various model architectures and tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Felipe Alvarez, Jérôme Bolte, and Olivier Brahic. Hessian riemannian gradient flows in convex
programming. SIAM Journal on Control and Optimization, 43(2):477–501, January 2004. ISSN
1095-7138. doi: 10.1137/s0363012902419977. URL http://dx.doi.org/10.1137/
S0363012902419977.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization, 2019. URL https://arxiv.org/abs/1905.13655.

Devansh Arpit, Yingbo Zhou, Hung Ngo, and Venu Govindaraju. Why regularized auto-encoders
learn sparse representation? In International Conference on Machine Learning, pp. 136–144.
PMLR, 2016.

Navid Azizan, Sahin Lale, and Babak Hassibi. Explicit regularization via regularizer mirror descent.
arXiv preprint arXiv:2202.10788, 2022.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003. ISSN 0167-6377.
doi: https://doi.org/10.1016/S0167-6377(02)00231-6. URL https://www.sciencedirect.
com/science/article/pii/S0167637702002316.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Maxime Bôcher. Certain cases in which the vanishing of the wronskian is a sufficient condition for
linear dependence. Transactions of the American Mathematical Society, 2:139–149, 1901. URL
https://api.semanticscholar.org/CorpusID:123122034.

Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. 2009. URL https://web.
stanford.edu/~boyd/cvxbook/.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Zhen Dai, Mina Karzand, and Nathan Srebro. Representation costs of linear neural networks: analysis
and design. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 57(11):1413–
1457, 2004.

Mathieu Even, Scott Pesme, Suriya Gunasekar, and Nicolas Flammarion. (s)gd over diagonal linear
networks: Implicit regularisation, large stepsizes and edge of stability. ArXiv, abs/2302.08982,
2023. URL https://api.semanticscholar.org/CorpusID:268042036.

Tomás González, Cristóbal Guzmán, and Courtney Paquette. Mirror descent algorithms with nearly
dimension-independent rates for differentially-private stochastic saddle-point problems, 2024.
URL https://arxiv.org/abs/2403.02912.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro.
Implicit regularization in matrix factorization, 2017a.

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro.
Implicit regularization in matrix factorization, 2017b. URL https://arxiv.org/abs/
1705.09280.

11

http://dx.doi.org/10.1137/S0363012902419977
http://dx.doi.org/10.1137/S0363012902419977
https://arxiv.org/abs/1905.13655
https://www.sciencedirect.com/science/article/pii/S0167637702002316
https://www.sciencedirect.com/science/article/pii/S0167637702002316
https://api.semanticscholar.org/CorpusID:123122034
https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/~boyd/cvxbook/
https://api.semanticscholar.org/CorpusID:268042036
https://arxiv.org/abs/2403.02912
https://arxiv.org/abs/1705.09280
https://arxiv.org/abs/1705.09280

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832–1841.
PMLR, 2018.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry, 2020.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Tom Jacobs and Rebekka Burkholz. Mask in the mirror: Implicit sparsification, 2024. URL
https://arxiv.org/abs/2408.09966.

Mohammad Reza Karimi, Ya-Ping Hsieh, and Andreas Krause. Sinkhorn flow as mirror flow: A
continuous-time framework for generalizing the sinkhorn algorithm. In International Conference
on Artificial Intelligence and Statistics, pp. 4186–4194. PMLR, 2024.

Andrej Karpathy. char-rnn. https://github.com/karpathy/char-rnn, 2015.

Mikhail Khodak, Neil Tenenholtz, Lester Mackey, and Nicolò Fusi. Initialization and regularization
of factorized neural layers, 2022. URL https://arxiv.org/abs/2105.01029.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A taxonomy,
2017. URL https://arxiv.org/abs/1710.10686.

J.M. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer New
York, 2013. ISBN 9780387217529. URL https://books.google.de/books?id=
w4bhBwAAQBAJ.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning, 2021. URL https://arxiv.org/abs/
2012.09839.

Zhiyuan Li, Tianhao Wang, Jason D. Lee, and Sanjeev Arora. Implicit bias of gradient descent on
reparametrized models: On equivalence to mirror descent. ArXiv, abs/2207.04036, 2022. URL
https://api.semanticscholar.org/CorpusID:250407876.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse
coding. In Proceedings of the 26th annual international conference on machine learning, pp.
689–696, 2009.

Pierre Marion and L’enaic Chizat. Deep linear networks for regression are implicitly regularized
towards flat minima. 2024. URL https://api.semanticscholar.org/CorpusID:
269983094.

Antonio Orvieto, Anant Raj, Hans Kersting, and Francis Bach. Explicit regularization in over-
parametrized models via noise injection. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de
Meent (eds.), Proceedings of The 26th International Conference on Artificial Intelligence and Statis-
tics, volume 206 of Proceedings of Machine Learning Research, pp. 7265–7287. PMLR, 25–27
Apr 2023. URL https://proceedings.mlr.press/v206/orvieto23a.html.

Vardan Papyan, Yaniv Romano, and Michael Elad. Convolutional neural networks analyzed via
convolutional sparse coding. Journal of Machine Learning Research, 18(83):1–52, 2017.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for diagonal linear
networks: a provable benefit of stochasticity, 2021.

12

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2408.09966
https://github.com/karpathy/char-rnn
https://arxiv.org/abs/2105.01029
https://arxiv.org/abs/1710.10686
https://books.google.de/books?id=w4bhBwAAQBAJ
https://books.google.de/books?id=w4bhBwAAQBAJ
https://arxiv.org/abs/2012.09839
https://arxiv.org/abs/2012.09839
https://api.semanticscholar.org/CorpusID:250407876
https://api.semanticscholar.org/CorpusID:269983094
https://api.semanticscholar.org/CorpusID:269983094
https://proceedings.mlr.press/v206/orvieto23a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Scott Pesme, Radu-Alexandru Dragomir, and Nicolas Flammarion. Implicit bias of mirror flow on
separable data. arXiv preprint arXiv:2406.12763, 2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Caroline Uhler. Linear convergence of
generalized mirror descent with time-dependent mirrors, 2021.

Anant Raj and Francis Bach. Explicit regularization of stochastic gradient methods through duality. In
Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pp.
1882–1890. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.press/v130/
raj21a.html.

Tyrrel R Rockafellar and Werner Fenchel. Convex Analysis. 1970. URL https://api.
semanticscholar.org/CorpusID:198120397.

Claudio Filipi Gonçalves Dos Santos and João Paulo Papa. Avoiding overfitting: A survey on
regularization methods for convolutional neural networks. ACM Computing Surveys, 54(10s):
1–25, January 2022. ISSN 1557-7341. doi: 10.1145/3510413. URL http://dx.doi.org/
10.1145/3510413.

Heejune Sheen, Siyu Chen, Tianhao Wang, and Harrison H. Zhou. Implicit regularization of gradient
flow on one-layer softmax attention, 2024.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Haoyuan Sun, Kwangjun Ahn, Christos Thrampoulidis, and Navid Azizan. Mirror descent maximizes
generalized margin and can be implemented efficiently, 2022.

Yingjie Tian and Yuqi Zhang. A comprehensive survey on regularization strategies in machine
learning. Information Fusion, 80:146–166, 2022.

J.A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on
Information Theory, 50(10):2231–2242, 2004. doi: 10.1109/TIT.2004.834793.

Bhavya Vasudeva, Puneesh Deora, and Christos Thrampoulidis. Implicit bias and fast convergence
rates for self-attention, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. Efficient large language models: A
survey, 2024. URL https://arxiv.org/abs/2312.03863.

Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models, 2020.

Zheng Zhang, Yong Xu, Jian Yang, Xuelong Li, and David Zhang. A survey of sparse representation:
algorithms and applications. IEEE access, 3:490–530, 2015.

A IMPLICIT BIAS FRAMEWORK

In this section for completeness we present the existing results for the mirror flow framework.
Consider the optimization problem in Eq. (1) for a loss function f : Rn → R

min
x∈Rn

f(x).

We can use the implicit bias framework to study the effect of overparameterization. An overparameter-
ization can be accomplished by introducing a function g : M → Rn, with M a smooth manifold. For

13

https://proceedings.mlr.press/v130/raj21a.html
https://proceedings.mlr.press/v130/raj21a.html
https://api.semanticscholar.org/CorpusID:198120397
https://api.semanticscholar.org/CorpusID:198120397
http://dx.doi.org/10.1145/3510413
http://dx.doi.org/10.1145/3510413
https://arxiv.org/abs/2312.03863

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

particular g, the reparameterization of the loss function f leads to a mirror flow. A general framework
is given in (Li et al., 2022) to study the implicit bias in terms of a mirror flow. Let R : Rn → R be a
Legendre function (Definition 3.8 (Li et al., 2022)), then the mirror flow is described by

d∇xR(xt) = −∇xf(xt)dt, xinit = g(winit) (11)

(Li et al., 2022) provide a sufficient condition for the parameterization g such that it induces a mirror
flow Eq. (11). The Legendre function R controls the implicit bias.

For this we have to give two definitions that are used to give these sufficient conditions. Furthermore,
we define ∂g as the Jacobian of the function g. The parameterization has to be regular and commuting
we now give the definitions of both these properties.

Definition A.1 (Regular Parmeterization Definition 3.4 (Li et al., 2022)) Let M be a smooth sub-
manifold of RD. A regular parametrization g : M → Rn is a C1 parametrization such that ∂G(w)
is of rank n for all w ∈ M .

For the second definition we first need to define what a Lie bracket is.

Definition A.2 (Lie bracket Definition 3.4 (Li et al., 2022)) Let M be a smooth submanifold of RD.
Given two C1 vector fields X,Y on M , we define the Lie Bracket of X and Y as [X,Y](w) :=
∂Y (w)X(w)− ∂X(w)Y (w).

Definition A.3 (Commuting Parameterization Definition 4.1 (Li et al., 2022)) Let M be a smooth
submanifold of RD. A C2 parameterization g : M → Rd is commuting in a subset S ⊂ M iff for
any i, j ∈ [n], the Lie bracket

[
∇gi,∇gj

]
(w) = 0 for all w ∈ S. Moreover, we call g a commuting

parameterization if it is commuting in the entire M .

Besides these two definitions we need to make an additional assumption on the flow of the solution.
We define the solution of the gradient (descent) flow of a function f : M → Rn initialized at x ∈ M

dxt = −∇xf(xt)dt x0 = x (12)

as xt = ϕt
x(x) which is well defined if the solution exists. Using this we can make the following

assumption.

Assumption A.1 (Assumption 3.5 (Li et al., 2022)) Let M be a smooth submanifold of RD and
g : M → Rn be a parameterization. We assume that for any w ∈ M and i ∈ [n], ϕt

gi(w) is
well-defined for t ∈ (T−, T+) such that either limt→T+

||ϕt
gi(w)||L2

= ∞ or T+ = ∞ and similarly
for T−. Also, we assume that for any w ∈ M and i, j ∈ [n], it holds that for (t, s) ∈ R2 that
ϕs
gi ◦ ϕ

t
gj (w) is well-defined iff ϕt

gj ◦ ϕ
s
gi(w)

Using these definitions we state the known result for mirror flow.

Theorem A.1 (Theorem 4.9 (Li et al., 2022)) Let M be a smooth submanifold of RD and g : M →
Rn be a commuting and regular parameterization satisfying Assumption A.1. For any initalization
winit ∈ M , consider the gradient flow for any time-dependend loss function Lt : Rd → R:

dwt = −∇wLt(g(wt))dt, w0 = winit.

Define xt = g(wt) for all t ≥ 0, then the dynamics of xt is a mirror flow with respect to the Legendre
function R given by Lemma 4.8 in (Li et al., 2022), i.e.,

d∇xR(xt) = −∇xLt(xt)dt, x0 = g(winit).

Moreover, this R only depends on the initialization winit and the parameterization g, and is indepen-
dent of the loss function Lt.

We have used Theorem A.1 to show the Theorem 3.1 in the main text.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B PROOFS OF SECTION 3

Theorem B.1 Let g : M → Rn and h : M → R be regular and commuting parameterizations
satisfying Assumption A.1. Then there exists a time-dependent Legendre function Ra such that

d∇xRat(xt) = −∇xf(xt)dt, x0 = g(winit)

where at = −
∫ t

0
αsds. Moreover, Ra only depends on the initialization winit and the parameteriza-

tion g and h, and is independent of the loss function f .

Proof. Consider the time dependent loss function Lt(x, y) = f(x) + αty. Applying Theorem A.1
implies there is a Legendre function R(x, y) such that{

∇xR(xt, yt) = −
∫ t

0
∇xf(xs)ds

∂yR(xt, yt) = −
∫ t

0
αsds.

(13)

We use Eq. (13) to derive the time dependent Legendre function. First note that ∂y∂yR(x, y) > 0
for (x, y) ∈ domR since R is strictly convex. This implies that the map y → ∂yR(x, y) is invertible.
Let the inverse be denoted by Q(x, a), where in the dynamics at = −

∫ t

0
αsds. Plugging Q into the

first part of Eq. (13) gives us

∇xR (xt, Q (xt, at)) = −
∫ t

0

∇xf (xs) ds, (14)

where ∇x is still the derivative with respect to the first entry. Eq. (14) looks already like a time
dependent mirror flow. We show now that there exists a Legendre function Rα with the map
∇xR (x,Q (x, α)) as the gradient. This we can do by showing that the Hessian is symmetric and
positive definite and that the Rα is essentially smooth.

By implicitly differentiating, we make the following observation:

dQ

dx
= − 1

∂y∂yR(x,Q)
∇x∂yR(x,Q).

Next we compute the Hessian and apply observation B:

∇2
xRα = ∇2

xR(x,Q) + ∂y∇xR(x,Q) · dQ
dx

= ∇2
xR(x,Q)− 1

∂y∂yR(x,Q)
∂y∇xR(x,Q)∇x∂yR(x,Q)T .

Observe that this matrix is symmetric as it is a sum of symmetric matrices. It remains to be shown
that the Hessian matrix is positive definite. For this we use that ∇2

xR is positive definite. ∇2
xR is PD

implies that the inverse (∇2
xR)−1 is PD. The first block entry of this matrix is given by(

∇2
xR(x, y)− 1

∂y∂yR(x, y)
∂y∇xR(x, y)∇x∂yR(x, y)T

)−1

which is also PD. Now this implies the result as the inverse of ∇2
xRα is PD. It follows that there exists

a function Ra such that ∇Ra = ∇xR(x,Q(x, a)) by Corollary 16.27 in (Lee, 2013), concluding the
first part.

Finally Ra is essentially smooth by construction, using that R is essentially smooth. The boundary
bn(Ra) by construction is the set of points x∗ that have a sequence xn ∈ domint∇xR(·, Q(·, a))
such that if xn → x∗ we have |||∇R|| → ∞. Suppose that Ra is not essentially smooth then there ex-
ists a sequence {xn} with xn → bd(Ra) as n → ∞ such that limn→∞ ||∇xR(xn, Q(xn, a))||2L2

<
∞. Nevertheless, R is essentially smooth this implies that

lim
n→∞

||∇yR(xn, Q(xn, a))||2 = a2 = ∞,

leading to a contradiction. Hence, Ra is a Legendre function with the domain similarly constructed
as the boundary. □

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Theorem B.2 Assume the same settings as Theorem 3.1. Furthermore assume that for αt ≥ 0 there
is a T > 0 such that for t ≥ T , αt = 0. Moreover for a ∈ [b, 0], Ra is a contracting Bregman
function for some b < 0. Assume that for all t ≥ 0 the integral at := −

∫ t

0
αsds ≥ b. For the

loss function assume that ∇xf is locally Lipschitz and argmin{f(x) : x ∈ domRa∞}. Then if f is
quasi-convex xt converges to a point x∗ which satisfies ∇xf(x∗)

T (x− x∗) ≥ 0 for x ∈ domRa∞ .
In addition if f is convex x∗ converges to a minimizer f in domRa∞ .

Proof. We can bound the trajectory of xt by using the time dependent Bregman divergence. The
divergence between a critical point x∗ of f and the itterates xt is given by

Dat
(x∗, xt) := Rat

(x∗)−Rat
(xt)−∇xR

T
at
(x∗ − xt) ≥ 0

Note that the contracting property implies that for a2 ≤ a1 we have domRa2
⊂ domRa1

. Thus,
a critical point x∗ in domRa∞ is in domRat

. Hence, the divergence is well defined. Due to that
f is quasi convex and Ra contracting we have that Dat

(x∗, xt) is bounded. From the contracting
property it follows that Ra∞(x∗) ≥ Rat(x

∗). By definition of a Bregman function we have that xt

stays bounded for all t ≥ 0. It follows that xT is in the domain of Ra∞ and bounded. Therefore,
we have that Dat(x

∗, xt) ≤ Ra∞(x∗)−Rat(xt)−∇xR
T
at
(x∗ − xt) =: Wt. Now we show that the

evolution of Wt is decaying, implying that Dat(x
∗, xt) is bounded. The evolution is given by

dWt = αt
d

dat
Rat

(xt)dt−∇xRat
(xt)dxt +∇xRat

(xt)dxt − d∇xR
T
at
(x∗ − xt)

≤ +d∇xf(xt)
T (x∗ − xt)

≤ 0

where we used that αt ≥ 0 and the contracting property for the first inequality and quasi-convexity
for the second. Therefore xt stays bounded for t ∈ [0, T]. Now, using the geometeric interpretation
Eq. (7) we have that the evolution of x̃t = xT+t is a gradient flow on a Riemannian manifold with
metric

(
∇2

xRa∞

)−1
. Therefore Theorem 4.14 in (Li et al., 2022) applies, which concludes the result.

□

B.1 OTHER PARAMETERIZATIONS

In this section we explore several parameterizations and limitations of the framework. We show
that Theorem 3.1 does not apply to linear parametrization. Moreover, Theorem 3.1 does not apply
to overparameterizations with depth larger than 2 and weight decay. Nevertheless, we show in
experiments that similar effects can occur. We illustrate both the type change and range shrinking
effect. Finally, we explore a novel parametrization log(u)− log(v). This is to illustrate that the type
of bias can also change from L1 to L2.

Linear parametrization From Corollary 3.1, we derive another corollary for non-
overparameterized parametrization.

Corollary B.1 Let g(x) = x be the identity parametrization and h ∈ C2(Rn,R). Then Theorem 3.1
applies if and only if, h is given by h(x) =

∑n
i=1 cixi + d where ci, d ∈ R are arbitrary coefficients.

Proof. To apply the theorem, h needs to be commuting with g, implying that ∂i∂ih = 0 ∀i ∈ [n],
concluding the result. □

Corollary B.1 poses a limitation in the applicability of Theorem 3.1. Since h is not positive for all
x ∈ Rn, the resulting optimization problem is ill-posed. Therefore, standard non-reparameterized
loss functions cannot be analyzed in this manner.

Beyond quadratic parametrization We show that the current framework excludes higher order
parameterization with weight decay. In order to show that

Theorem B.3 Let g : Rk → R be given by g(w) := Πk
i=1wi , a k > 2 depth reparamterization.

Moreover, let h : Rk → R and h(w) =
∑k

i=1 w
2
i . Then g and h do not commute.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. This follows directly from checking the commuting condition between g and h:

[∇wg,∇wh](w) = ∇wg(w)∇2
wh(w)−∇wh(w)∇2

wg(w)

=

(4− 2k)Πi∈[k]\{1}wi

...
(4− 2k)Πi∈[k]\{k}wi

 .

In order for this to be equal to zero all products need to be zero. This implies that the gradient flow
given by

dwt = −

Πi∈[k]\{1}wi,t

...
Πi∈[k]\{k}wi,t

⊙∇xf(g(wt))− αtwtdt,

becomes dwt = −αtwtdt and is independent of f . Hence, g and h do not commute □

Theorem B.3 implies that we can not apply Theorem 3.1. We note that the commuting condition is
only a sufficient criteria such that a pair (g, h) is a time-dependent mirror flow.

Experiment over-parameterization Although, our theoretical result does not hold for parametriza-
tion with higher depth we illustrate that the expected effects do occur as well for higher depth. We
consider the reparamterization m⊙ w ⊙ v for diagonal linear networks and compare with m⊙ w,
both with weight decay. Moreover, we compare with the parameterization m with L1 regularization
to motivate the importance of the geometry, which is controlled by the time-dependent Legendre
function. Note, in this setting for m⊙ w we can reach the groundtruth (Jacobs & Burkholz, 2024).

Let d = 40 be the amount data points and n = 100 the dimension of the data. We generate
independent data Zk ∼ N(0, In) for k ∈ [d]. We assume a sparse ground truth x∗ such that
||x∗||L0

= 5. The training labels are generated by yk = ZT
k x

∗. Moreover, the mean squared error
loss function is used. The learning rate η = 10−3 and we use weight decay α ∈ {0.01, 0.1, 1}. We
run the 100000 steps with weight decay, after that we run the same amount of steps without weight
decay. We initialize m = 0 and w = z = 1, this ensures that both parametrization are initialized at
zero and have the same scaling. In this setup, we illustrate the type change similar predicted for the
parametrization m⊙ w. Moreover, we illustrate the range shrinking which occurs for higher depth
parametrization u2k − v2k. Note that the ground truth has the following ratio between the L1 and L2

norm 2.23.

In Figure.5a we observe for m that higher weight decay does not get closer to the ground truth after
turning the L1 regularization off. This is in line with the fact that the regularization is not stored in
the geometry as described by Eq. (7). By turning off the regularization we converge to the closest
solution in L2 norm. This is best seen in Figure.6a, where the ratio increases above the value of the
ground truth.

In Figure.5b we observe for m ⊙ w that higher weight decay gets closer to the ground truth after
turning the weight decay off. This is in line with the fact that the regularization is stored in the
geometry as described by Eq. (7) and a type of bias change from L2 to L1. Furthermore, this is also
confirmed in Figure.6b that for large weight decay the ratio gets close to the ratio of the ground truth
only after turning the weight decay off. This also illustrates Theorem 3.2.

In Figure.5c, we observe for the regularization strength 1e − 1 a similar effect corresponding to
the type of bias change from L2 to L1. In contrast, the higher regularization does not exhibit the
same behavior. We claim this is due to the range shrinking effect. To motivate this is not due to the
dynamics getting stuck at x = 0 we report the final value of first parameter. The value is equal to
1.58 which is not equal to either 0 or the ground truth value 1. To add to this, in Figure.6c we unveil
that the ratio for large weight decay stays constant.

In conclusion, the type of bias can improve generalization, whereas m⊙ w even goes to the ground
truth with high regularization, m does not. Moreover, when we use higher order parametrization such
as m ⊙ w ⊙ z we encounter a different phenomena: range shrinking. To add to this, higher order
parametrization still exhibit the type of bias change in a certain range of regularization strength. Thus,
our theoretical framework leads to verifiable predictions. These can be used to improve the training
dynamics of neural networks in general.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 50000 100000 150000 200000
Steps

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

||x
x

* |
| L 2

wd = 1e-2
wd = 1e-1
wd = 1e0

(a) The evolution of m.

0 50000 100000 150000 200000
Steps

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

||x
x

* |
| L 2

wd = 1e-2
wd = 1e-1
wd = 1e0

(b) The evolution of m⊙ w.

0 50000 100000 150000 200000
Steps

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

||x
x

* |
| L 2

wd = 1e-2
wd = 1e-1
wd = 1e0

(c) The evolution of m⊙ w ⊙ z.

Figure 5: Illustration of the effect of weight decay with higher order reparameterizations on general-
ization performance.

0 50000 100000 150000 200000
Steps

2 × 100

3 × 100

4 × 100

6 × 100

L1
/L

2 wd = 1e-2
wd = 1e-1
wd = 1e0

(a) The evolution of m.

0 50000 100000 150000 200000
Steps

2 × 100

3 × 100

4 × 100

6 × 100

L1
/L

2

wd = 1e-2
wd = 1e-1
wd = 1e0

(b) The evolution of m⊙ w.

0 50000 100000 150000 200000
Steps

100

2 × 100

3 × 100

4 × 100

6 × 100

L1
/L

2

wd = 1e-2
wd = 1e-1
wd = 1e0

(c) The evolution of m⊙ w ⊙ z.

Figure 6: The ratio between the L1 and L2 for diagonal linear networks.

The reparameterization log(u)−log(v) In this paragraph, we consider another reparameterization.
In the main text, we have seen that the regularization changed the type of bias from L2 to L1. We
now consider a reparameterization with explicit regularization that leads to the opposite type of bias
change. The reparameterization is g(w) = log(u)− log(v). The regularization found in Corollary
3.1 is h(w) =

∑n
i=1 log(ui) + log(vi). Then for u, v > 1 we can apply Theorem 3.1.

We now give the resulting time-dependent Legendre function. The time-dependent Legendre function
is

Ra(x) =
1

4

n∑
i=1

(
u2
0,i − 2a

)
log

(
e−2xi + 1

)
+

(
v20,i − 2a

)
log

(
e2xi + 1

)
∀a <

1

2
min{u2

0,i, v
2
0,i}.

The global minimum is centered at ∇xRa = 0 and is given by log
(√

u2
0 − 2a

)
− log

(√
v20 − 2a

)
.

Thus a shift occurs when a changes, illustrating the positional bias. Moreover, to illustrate the type
change, consider the balanced initialization u0 = v0 = βI , the Legendre function is then given by

Ra(x) =
1

4

(
β2 − 2a

) n∑
i=1

log (2 cosh(xi))

which resembles the log-cosh loss function with vertical rescaling. The rescaling changes the type of
bias from L1 → L2. The type here is L2 close to the origin and L1 further away from zero. Due to
the scaling, it becomes closer and closer to L2. This is illustrated in Figure.7. Furthermore, we will
show in experiments that the type change is crucial for generalization.

Experiment log(u) − log(v). In this context, we reparameterize the sparse code as g(w) =
log(u)− log(v) ∈ Rn and replace the regularization as discussed. We initialize the parameters as
u0 = 1/(β(1 + e−x)) and v0 = 1/(β(1 + ex)), where β = 1 and x = 0.1. Note, the initialization is
different for stability reasons. We explore various values for α ∈ {0.0001, 0.001, 0.01, 0.1, 0.0, 1.0}.
During the training process, we track two key metrics: the reconstruction Mean Squared Error (MSE)
and the nuclear norm of the sparse code, defined as g(w) = log u− log v. The results are illustrated
in Figure.8. We observe that higher regularization leads to a faster increase in the nuclear norm,
which confirms the movement to L2 regularization. This leads to a construction error.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

x
21012a

4
2
0

R
a (x)

2

4

6

Figure 7: From L1 to L2 implicit bias, with a = −
∫ t

0
αsds.

0 20 40 60 80

iterations

103

104

nu
cle

ar
 n
or
m
 o
f s

pa
rs
e
co

de
 (l
og

 sc
al
e)

λ=1
λ=0.1
λ=0.01
λ=0.001
λ=0.0001
λ=0.0

(a) nuclear norm of sparse code w

0 20 40 60 80

iterations

10−1

100

101

re
co

ns
tru

ct
io
n
M
SE

 (l
og

 sc
al
e)

λ=1
λ=0.1
λ=0.01
λ=0.001
λ=0.0001
λ=0.0

(b) Reconstruction MSE of x

Figure 8: Results for sparse coding reparameterisation g(w) = log u− log v

C HYPERPARAMETERS AND ADDITIONAL FIGURES

We present the experimental details in this section and an additional plot of the validation error.
Moreover, we present the evolution of the time depenent Legendre functions corresponding to m⊙w
and u4 − v4 in Figures.9a and 9b .

For sparse coding we have used a learning rate η = 0.001/Lip(D) where Lip(D) denotes the
resulting Lipschitz constant of the optimization problem depending on the dictionary D. In addition,
we set the number of features n = 50 and run for 100 iterations. In the case of attention, we used the
optimizer AdamW with learning rate 1e− 3 and CosineAnnealingWarmRestarts. Finally, for LoRA
we use SGD with momentum (0.9), constant learning rate 2e − 4, LoRA rank 8, alpha 32 and no
drop-out.

Learning rate schedule and type of bias change We further study the effect of learning rate
scheduler. Specifically, we run pre-trained ViT-tiny on ImageNet classification fine-tuning task.
We set the learning rate to 1e − 4 with AdamW optimisers. We also vary the weight decay in the
range [0.001, 0.003, 0.005, 0.007, 0.01]. Moreover, for each of the settings, we train two comparison
experiments, one without a learning rate scheduler, and one with the popular CosineAnnealingWarm-
Restarts. We use the cumulative sum of the learning rate schedule as the x-axis. The results are
shown in Figure.10. Furthermore, results with SGD optimizer are included in Figure.11. We observe
in both figures that the validation accuracy increases for the decaying schedule in comparison to
the constant schedule. Moreover, we again observe a decaying ratio, for stronger weight decay the
ratio decreases more. We observe that the modulation of the ratio is very similar, especially for SGD.
This indicates that the implicit and explicit regularization is the dominating contributing factor to
controlling the ratio, instead of the learning rate. Note that the AdamW optimizer can have additional
effects that also contribute to changing the ratio.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

x
10123

a

4

2

0

R
a (x)

0

10

20

(a) The evolution of Ra associated with m ⊙ w
initialized at x0 = 1.

R a
(x

)

0.000

0.001

0.002

a
0.40.20.0

x 0.20.00.2

(b) The evolution of the approximated Ra associ-
ated with u4 − v4 initialized at x0 = 0.

Figure 9: Illustrations of the 3 effects of explicit regularization on the time-dependent Legendre
function. In both figures a = −

∫ t

0
αsds. The positional bias is illustrated in Fig 9a and the range

shrinking is illustrated in Fig 9b. Both figures illustrate the change in type of bias from L2 to L1.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Cumsum of learning rate

7.9

8.0

8.1

8.2

8.3

8.4

8.5

Nu
cle

ar
 n
or
m
 /
Fr
ob

en
iu
s n

or
m

wd =0.01, no scheduler
wd =0.01
wd =0.007, no scheduler
wd =0.007
wd =0.005, no scheduler
wd =0.005
wd =0.003, no scheduler
wd =0.003
wd =0.001, no scheduler
wd =0.001

(a) Average ratio |KTQ|nuc/|KTQ|frob

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Cumsum of learning rate

50

55

60

65

70

75

Va
l a

cc

wd =0.01, no scheduler
wd =0.01
wd =0.007, no scheduler
wd =0.007
wd =0.005, no scheduler
wd =0.005
wd =0.003, no scheduler
wd =0.003
wd =0.001, no scheduler
wd =0.001

(b) Validation accuracy

Figure 10: Results for ViT-tiny fine-tuning task with AdamW optimiser

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Cumsum of learning rate

2

3

4

5

6

7

8

Nu
cle

ar
 n

or
m

 /
Fr

ob
en

iu
s n

or
m

wd =0.01, no scheduler
wd =0.01
wd =0.007, no scheduler
wd =0.007
wd =0.005, no scheduler
wd =0.005
wd =0.003, no scheduler
wd =0.003
wd =0.001, no scheduler
wd =0.001

(a) Average ratio |KTQ|nuc/|KTQ|frob

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Cumsum of learning rate

0

10

20

30

40

50

60

70

Va
l a

cc

wd =0.01, no scheduler
wd =0.01
wd =0.007, no scheduler
wd =0.007
wd =0.005, no scheduler
wd =0.005
wd =0.003, no scheduler
wd =0.003
wd =0.001, no scheduler
wd =0.001

(b) Validation accuracy

Figure 11: Results for ViT-tiny fine-tuning task with SGD optimiser

20

	Introduction
	Related Work
	Explicit regularization in the implicit bias framework
	The effect of regularization
	Experiments
	Discussion
	Implicit bias framework
	Proofs of Section 3
	Other parameterizations

	Hyperparameters and additional figures

