
Local Linear Approximation Algorithm for Neural
Network

Anonymous Author(s)
Affiliation
Address
email

Abstract

This paper is concerned with estimation of weights and biases in feed forward1

neural network (FNN). We propose using local linear approximation (LLA) for2

the activation function, and develop a LLA algorithm to estimate the weights and3

biases of one hidden layer FNN by iteratively linear regression. We further propose4

the layerwise optimized adaptive neural network (LOAN), in which we use the5

LLA to estimate the weights and biases in the LOAN layer by layer adaptively. We6

compare the performance of the LOAN with the commonly-used procedures in7

deep learning via analyses of four benchmark data sets. The numerical comparison8

implies that the proposed LOAN may outperform the existing procedures.9

1 Introduction10

Although deep learning has many successful applications, the estimation of the weights and biases11

are still challenging in the construction of deep neural network. This is partly because there is12

no algorithm to guarantee its resulting solution to be the optimizer of the objective function being13

optimized. Many heuristics and trial-and-errors methods are applied to get successfully trained14

network. This work aims to tackle this problem from a different point of view and develop a reliable15

training algorithm. Consider a L-hidden layer FNN:16

h(l) = σl(Wlh
(l−1) + bl) (1)

for l = 1, · · · , L with h(0) = x, the p-dimensional input vector, where σl(·)’s are activation17

functions, applied to each component of inputs in the previous layer. Wl and bl are the weight matrix18

and the bias vector in the l-th hidden layer. Consider a linear regression model in the output layer19

y = β0 + β
Th(L) + ε. (2)

Denote f(x;θ) = β0 + β
Th(L), where θ = {β0,β,W1, · · · ,WL, b1, · · · , bL}. Suppose that we20

have a set of sample {xi, yi}, i = 1, · · · , n. In the literature, the estimation of θ is to minimize the21

nonlinear least squares (LS) function22

`(θ) =

n∑
i=1

{yi − f(xi,θ)}2,

which is highly nonlinear in θ, a high dimensional vector, and hence parameter estimation is23

challenging for deep neural network. Based on the chain rule, the gradient of `(θ) has an expressive24

form, while the Hessian matrix `′′(θ) of `(θ) is hard to compute, and computational cost for25

evaluating the inverse of `′′(θ) is too expensive to be afforded since the dimension of θ can be huge.26

As a result, the back propagation with gradient decent or its variations became the most popular27

parameter estimation method for deep neural network [6, 7, 8, 9]. Also see more recent developments28

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

[1, 10, 12, 13, 17, 18, 11]. We next present a high-level summary of the innovative ideas and major29

contributions of this work.30

We first observe that we could estimate the weights WL and biases bL without difficulty if we knew31

h(L−1). Thus, instead of seeking the optimal weights and biases in all layers simultaneously, we32

propose to assign the weights and biases layerwise by starting with estimating the weights W1 and b1.33

To this end, we propose to locally approximate the activation function in FNN by a linear function,34

and develop a LLA algorithm to estimate Wls and bls layer by layer based on h(l−1) with h(0) = x,35

the input predictor vector. We refer the neural network constructed by this strategy to as Layerwise36

Optimized Adaptive neural Network (LOAN for short) by the nature of its construction process.37

The LLA algorithm is distinguished from existing gradient descent algorithms in that it utilizes38

the Hessian matrix `′′(θ) in the same spirit of Fisher scoring algorithm for nonlinear regression39

models with normal error. By empirical analyses of four benchmark data sets in the literature of40

deep learning, we compare the performance of the LOAN with the commonly-used deep learning41

procedures including multi-layer perceptron (MLP) [15], AdaBoost [4], gradient boosting algorithm42

(GBM) [5], random forest (RF) [2], and XGBoost [3]. Our numerical comparison implies that the43

one-hidden layer LOAN may outperform these existing procedures in terms of prediction accuracy.44

Compared with the deep network, the one-hidden layer LOAN enjoys model interpretability and45

model parsimony. The multiple-hidden layer LOAN can be used to further improve the one-hidden46

layer LOAN in terms of prediction accuracy.47

The rest of this paper is organized as follows. In section 2, we develop the LLA algorithm and an48

algorithm for construction of the LOAN. Section 3 presents numerical comparisons. Conclusion and49

discussion are given in section 4.50

2 New method for constructing neural network51

Let us start with one-hidden layer neural network in order to get insights into the LLA algorithm.52

2.1 One-hidden layer neural network53

Note that h(0) = x. Then one hidden-layer FNN with J1 nodes can be expressed as follows54

h(1) = σ(Wh(0) + b) = (σ(wT
1 x + b1), · · · , σ(wT

J1
x + bJ1

))T , where we drop the subscripts55

of W and b for ease of presentation. Throughout this paper, we set σ(z) = max{z, 0}, the ReLU56

activation function. To estimate the weights and biases, we minimize a nonlinear LS function57

`1(θ) =

n∑
i=1

{yi − β0 −
J1∑
j=1

βjσ(w
T
j xi + bj)}2. (3)

We next propose an algorithm to minimize (3). Givenw(c)
j and b(c)j in the current step, we propose to58

approximate σ(xTwj + bj) by a linear function based on the first-order Taylor expansion of σ(z):59

σ(xTwj+bj) ≈ σ(xTw
(c)
j +b

(c)
j)+{(xTwj+bj)− (xTw

(c)
j +b

(c)
j)}I(xTw

(c)
j +b

(c)
j > 0) (4)

for j = 1, · · · , J1. We refer (4) to as local linear approximation (LLA). Thus,60

βjσ(x
Twj+bj) ≈ βjσ(xTw

(c)
j +b

(c)
j)+γjI(x

Tw
(c)
j +b

(c)
j > 0)+ηT

j xI(x
Tw

(c)
j +b

(c)
j > 0) (5)

where γj = βj(bj − b(c)j) and ηj = βj(wj − w(c)
j). Define z1ij = σ(xT

i w
(c)
j + b

(c)
j), z2ij =61

I(xT
i w

(c)
j + b

(c)
j > 0), and z3ij = xiI(x

T
i w

(c)
j + b

(c)
j > 0)}, j = 1 · · · , J1. Further define62

z1i = [z1i1, · · · , z1iJ1], z2i = [z2i1, · · · , z2iJ1], z3i = [zT3i1, · · · , zT3iJ1
], and zi = [z1i, z2i, z3i]

T ,63

which is a J1(p+ 2)-dimensional vector. With the aid of approximation (5), the objective function in64

(3) is approximated by65

n∑
i=1

{yi − β0 −
J1∑
j=1

{βjz1ij + γjz2ij + η
T
j z3ij}}2, (6)

which is the LS function of linear regression with the response yi and predictors zi. Denote the66

resulting LS estimate of βj , γj and ηj by β̂j , γ̂j and η̂j , respectively. By the definition of γj and ηj ,67

2

we can update bj and wj as follows68

b
(c+1)
j = b

(c)
j + γ̂j/β̂j , and w(c+1)

j = w
(c)
j + η̂j/β̂j . (7)

If |β̂j | is very close to zero, one may simply set b(c+1)
j = b

(c)
j and w(c+1)

j = w
(c)
j . Thus, we may69

estimate W and b by iteratively updating (7) and regressing yi on the updated zi. The procedure can70

be summarized as the following algorithm.71

Algorithm 1: Local Linear Approximation (LLA) Algorithm72

Step 1 Set initial value for W (0) = [w
(0)
1 , · · · ,w(0)

J1
]T and b(0)j , and let c = 0.73

Step 2 Calculate zi defined in the text based on w(c)
j and b(c)j , obtain the least squares estimate74

(LSE) β̂js, γ̂js and η̂js by running a linear regression yi on covariate zi, and update the75

biases and weights76

b
(c+1)
j = b

(c)
j + γ̂j/β̂j , and w(c+1)

j = w
(c)
j + η̂j/β̂j .

Set c = 1, 2, · · · , and repeat Step 2 until the criterion of algorithm convergence meets.77

We propose how to construct initial values for the iterative updates in section 2.378

2.2 Layer-wise Optimized Adaptive Neural Network79

The back-propagation with gradient decent algorithm is to seek optimal weights and biases in all80

layers of FNN via minimizing `(θ) in (2). This leads to a high-dimensional, nonconvex minimization81

problem. We propose a new procedure to assign the weights and biases as follows. We start with82

h(0) = x, fit the data with one-hidden layer network as described in section 2.1, and obtain an83

estimate Ŵ and b̂ of W and b. We set W1 = Ŵ and b1 = b̂ for the weight matrix and bias vector84

in FNN. Then we define x̃i = h
(1)
i = σ(W1h

(0)
i + b1). We fit data {x̃i, yi} with one-hidden layer85

network, and obtain Ŵ and b̂ by the proposed LLA. Then we set W2 = Ŵ and b2 = b̂. Thus, we86

construct a LOAN by estimating Wl’s and bl’s by running one-hidden layer network on data {x̃i, yi}87

with x̃i = h
(l−1)
i . This procedure can be summarized as the following algorithm.88

Algorithm 2: Layerwise Optimized Adaptive Network (LOAN)89

Step 1 Input LOAN structure [J1, · · · , JL] with Jl being the number of nodes for the l-th layer.90

Step 2 Obtain W1 and b1 in the 1st hidden layer by fitting the data {xi, yi} to a one-hidden layer91

neural network by the LLA algorithm. Set h(1)
i = σ(W1xi + b1).92

Step 3 For l = 1, · · · , L− 1, set x̃i = h
(l), and obtain Wl+1 and bl+1 by fitting the data {x̃i, yi} to93

one-hidden layer neural network by the LLA algorithm. Set h(l+1)
i = σ(Wl+1x̃i + bl+1).94

2.3 Initial values for the LLA95

Motivated by model fitting for a single index model, we propose an initial value for using the LLA96

algorithm to estimate Wl and bl at the l-th layer with Jl nodes as follows. Set x̃ = h(l−1), we fit97

data {x̃i, yi} to a linear regression model and obtain the LS estimate of coefficients of x̃, denoted98

by α̂. Let τ̂j , j = 1, · · · , Jl be quantile points of x̃T
i α̂, i = 1, · · · , n. We may set initial value of99

b
(0)
j = −τ̂j , and w(0)

j = α̂ for j = 1, · · · , Jl.100

Since the objective function `1(θ) is nonconvex, numerical minimization algorithm may depend on101

the initial value. We find the proposed initial value strategy in the last paragraph work reasonably102

well in practice, but the performance of the LOAN can be further improved by integrating model103

averaging and cross-validation strategy. Specifically, We randomly partition data into a pre-specified104

K subsets with approximately the same sample size, and then for k = 1, · · · ,K, we fit a LOAN with105

data excluding the k-th data subset, and obtain the mean squared error (MSE) for the entire data set,106

denoted by MSEk. Rank the resulting LOANs by their MSEs from smallest to largest. Set the final107

model to be the average of the top Ks LOANs with smaller MSEs. Here Ks ≤ K is a pre-specified108

integer. In our numerical study, we set K = 20 and Ks = 15, and find this work well.109

3

Table 1: Comparison with commonly-used procedures with default hyper-parameter value.

Methods AF BS CHP PK
100*mean(std) 100*mean(std) 100*mean(std) 100*mean(std)

LOAN 4.3317(0.5895) 7.8386(0.4148) 18.5801(0.6955) 42.6082(4.9884)
MLP 25.4913(3.4600) 9.9173(2.0827) 24.1495(1.0754) 31.4595(2.3832)
XGBoost 5.1042(0.7245) 7.8751(0.3137) 16.4491(0.6905) 3.7880(0.4386)
RF 6.5254(0.7346) 10.2843(0.4672) 21.2067(0.9217) 2.8041(0.4835)

Table 2: Comparison of the impact of PCA on LOAN and existing procedures.

Methods 6 PCs 9 PCs 13 PCs All (19) PCs
100*mean(std) 100*mean(std) 100*mean(std) 100*mean(std)

LOAN 29.3152(2.7984) 18.3863(2.8369) 27.2601(7.1044) 43.0542(3.6137)
MLP 41.7293(2.6673) 34.7943(2.3511) 30.6869(2.1018) 30.6617(2.9831)
XGBoost 50.8823(3.2462) 47.1367(2.7843) 42.9631(2.6408) 44.4751(2.1000)
RF 41.2433(2.8571) 39.6862(2.6231) 37.7282(2.5413) 39.9511(2.5392)

3 Numerical comparison110

This section provides a brief summary of our numerical comparison. A complete and detailed111

description of data sets including the sample size, dimension of predictors, and the version of existing112

procedures are given in the Appendix of this paper. In this section, we compare the performance of113

the proposed LOAN with MLP [15], AdaBoost [4], GBM [5], RF [2], and XGBoost [3] by empirical114

analyses of four benchmark data sets: airfoil (AF, for short) data, bikesharing (BS, for short) data,115

california house price (CHP, for short) data, and parkinson (PK, for short) data. XGBoost performs116

better than AdaBoost and GBM. Thus, we present results of XGBoost only to save space. Results of117

AdaBoost and GBM are given in the Appendix.118

In our numerical comparison, we first standardize the response and predictors so that their sample119

means and variances equal 0 and 1, respectively. We split each data set into 80% training data and120

20% testing data with seed 1, · · · , 30. Thus, we may obtain 30 MSEs for testing data and 30 MSEs121

for training data for each procedure. We report the sample mean and standard deviation (std) of the122

30 MSEs for each procedure and data set. We first compare the performance of the one-hidden layer123

LOAN with 60 nodes with all other procedures with default settings. Table 1 depicts the values of124

100 times of the sample mean and std of the 30 MSEs, and implies that the LOAN performs well in125

terms of prediction accuracy. Specifically the LOAN has the smallest MSE for AF and BS data sets.126

For CHD, XGboost performs the best, and follows by the LOAN. The LOAN has slightly greater127

MSE than XGBoost since XGBoost has a deeper tree by default. For PK data, the RF performs the128

best, and then follows by XGBoost. It seems that both RF and XGBoost perform much better than the129

LOAN and MLP. This motivates us to examine the data further. By doing exploratory data analysis130

of PK data, we find that several of its 19 predictors are highly correlated. The poor performance of131

the LOAN may be due to the collinearity of predictors since the linear regression is used to update132

the weights and biases. We conduct a principal component analysis (PCA), and the first 6, 9 and 13133

principal components (PC) can explain 95%, 99% and 99.9% of the total variance. We further apply134

all procedures to PK data with predictors being set to PCs. Table 2 depicts the MSEs for PK data135

with PC predictors. Compared with Table 1, the performance of XGBoost and RF becomes poor. The136

performance of MLP is quite stable across different numbers of PCs. The performance of the LOAN137

improves significantly via using PCs. In Tables 1 and 2, we use the one-layer LOAN for comparison.138

We have examine the performance of the multiple-hidden layer LOAN in the Appendix due to the139

space limit.140

4 Conclusion and discussion141

We develop the LLA algorithm and further develop the LOAN. Our comparison indicates that142

the LOAN may outperform commonly-used procedures. This paper focuses on regression with143

continuous responses. The LOAN can be extended to classification problems.144

4

Broader Impact145

FNN is a commonly-used model in deep learning, which has been used in our daily life. The proposed146

LLA algorithm can significantly improve the existing algorithm for FNN, and the proposed LOAN147

can outperform commonly-used procedures such as MLP and XGBoost in deep learning. Researchers148

in data mining and machine learning can certainly benefit from the proposed LLA algorithm and149

LOAN. People who use deep learning techniques and methods may also benefit this research in their150

daily life.151

References152

[1] Antoine Bordes, Léon Bottou, and Patrick Gallinari. Sgd-qn: Careful quasi-newton stochastic153

gradient descent. Journal of Machine Learning Research, 10:1737–1754, 2009.154

[2] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.155

[3] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of156

the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages157

785–794, 2016.158

[4] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning159

and an application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.160

[5] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of161

statistics, 29(5):1189–1232, 2001.162

[6] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.163

MIT press Cambridge, 2016.164

[7] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:165

data mining, inference, and prediction. Springer Science & Business Media, 2009.166

[8] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural networks for167

perception, Edited by: Harry Wechsler, pages 65–93. Elsevier, 1992.168

[9] Geoffrey E Hinton. Connectionist learning procedures. In Machine learning, Edited by Yves169

Kodratoff and Ryszard S. Michalski, pages 555–610. Elsevier, 1990.170

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint171

arXiv:1412.6980v9, 2017.172

[11] Guang-He Lee, David Alvarez-Melis, and Tommi S. Jaakkola. Towards robust, locally linear173

deep networks. In International Conference on Learning Representations. Also available at174

arXiv preprint arXiv:1907.03207, 2019.175

[12] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic176

gradient descent on structured data. In Advances in Neural Information Processing Systems,177

pages 8157–8166, 2018.178

[13] Yu Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-179

ming, 140(1):125–161, 2013.180

[14] R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters,181

33(3):291–297, 1997.182

[15] Sankar K Pal and Sushmita Mitra. Multilayer perceptron, fuzzy sets, classifiaction. IEEE183

Transactions on Neural Networks, 3(5):683–697, 1992.184

[16] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,185

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-186

learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–2830,187

2011.188

[17] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,189

2012.190

[18] Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural191

networks. In Advances in Neural Information Processing Systems, pages 2055–2064, 2019.192

5

Appendix of “Local Linear Approximation Algorithm for Neural Network"

This appendix provides a complete section of Section 3 on numerical comparison in the main text. We193

compare the performance of the proposed LOAN with commonly-used procedures in deep learning194

by empirical analysis of four data sets:195

(1) airfoil (AF, for short) data, which consists of n = 1503 observations with p = 5 predictors and196

can be downloaded from197

https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise,198

The response is the scaled sound pressure level. The explanatory variables include frequency,199

angle of attack, chord length, free-stream velocity, suction side displacement thickness200

(2) bikesharing (BS, for short) data, which consists of n = 17379 observations with p = 8 predictors201

and can be downloaded from202

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset.203

The response is the log-transformed count. The explanatory variables include normalized204

hour, normalized temperature, normalized humidity, normalized wind speed, season, holiday,205

weekday and weather situation.206

(3) California house price (CHP, for short) data [14], which consists of n = 20, 640 observations207

with p = 8 predictors and can be downloaded from Carnegie-Mellon StatLib repository208

(http://lib.stat.cmu.edu/datasets/).209

The response variable is the median house value. The explanatory variables include longi-210

tude, latitude, housing median age, medium income, population, total rooms, total bedrooms211

and households.212

(4) Parkinson (PK, for short) data, which consists of n = 5874 observations with p = 19 predictors213

and can be downloaded from214

https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring.215

The response variable is the total UPDRS scores, and the explanatory variables include216

subject age, subject gender, time interval from baseline recruitment date, and 16 biomedical217

voice measures.218

In our numerical anlaysis, we compare the performance of the proposed LOAN with219

1. MLP: multi-layer perceptron [15, 16] (python scikit-learn version 0.22.1),220

2. XGBoost [3] (python version 1.2.0).221

3. GBM: gradient boosting algorithm [5, 16]222

4. AdaBoost [4, 16]223

5. RF: random forest [2, 16]224

In our numerical comparison, we first standardize the response and predictors so that their sample225

means and variances equal 0 and 1, respectively. We split each data set into 80% training data and226

20% testing data with seed 1, · · · , 30. Thus, we may obtain 30 MSEs for testing data and 30 MSEs227

for training data for each procedure. We report the sample mean and standard deviation (std) of the228

30 MSEs for each procedure and data set.229

We first compare the performance of the one-hidden layer LOAN with all other procedures with230

default settings. The number of nodes in the LOAN is set to be 60. Table A.1 depicts the values of231

100 times of the sample mean and std of the 30 MSEs of testing data (testing MSE for short) as well232

as the 30 MSEs of training data (training MSE for short). Table A.1 implies that XGBoost performs233

better than other two boosting methods: AdaBoost and GBM, and the LOAN performs well in terms234

of prediction accuracy. Specifically the LOAN has the smallest testing MSEs for AF and BS data sets.235

For CHD, XGboost performs the best, and follows by the LOAN in terms of testing MSE. The LOAN236

has slightly greater testing MSE than XGBoost, while XGBoost has a deeper tree by default. For237

AF, BS and CHD data sets, the LOAN has the smallest difference between testing MSE and training238

MSE. This implies that the LOAN is less likely to be over-fitting. Compared with other procedures,239

the LOAN has relatively small standard deviation of MSE. This implies that the LOAN has a fairly240

stable performance. For PK data, the RF performs the best, and then follows by XGBoost. It seems241

that both RF and XGBoost performs much better than the LOAN and MLP. This motivates us to242

examine the data further.243

A.1

https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring

Table A.1: Comparison with commonly-used procedures with default hyper-parameter value.

Methods AF BS CHP PK
100*mean(std) 100*mean(std) 100*mean(std) 100*mean(std)

MSE for Testing Data

LOAN 4.3317(0.5895) 7.8386(0.4148) 18.5801(0.6955) 42.6082(4.9884)
MLP 25.4913(3.4600) 9.9173(2.0827) 24.1495(1.0754) 31.4595(2.3832)
XGBoost 5.1042(0.7245) 7.8751(0.3137) 16.4491(0.6905) 3.7880(0.4386)
AdaBoost 31.7242(2.6197) 27.7419(0.7384) 56.3744(5.3267) 60.9171(1.8358)
GBM 14.7338(1.5846) 16.5968(0.5592) 21.2866(0.7254) 21.0340(0.7685)
RF 6.5254(0.7346) 10.2843(0.4672) 21.2067(0.9217) 2.8041(0.4835)

MSE for Training Data

LOAN 2.3213(0.1634) 6.3305(0.2549) 15.7216(0.1275) 28.8462(2.5983)
MLP 24.5284(0.0268) 7.7488(0.7496) 23.7055(1.1570) 23.7447(1.3502)
XGBoost 0.2623(0.0268) 4.3713(0.0946) 5.7634(0.1456) 0.3115(0.0264)
AdaBoost 29.2881(1.1124) 27.2715(0.6059) 55.8631(5.5463) 60.4119(1.1948)
GBM 11.2280(0.6303) 15.8681(0.1972) 19.5493(0.1864) 19.0881(0.7516)
RF 0.9366(0.0388) 1.4413(0.0179) 3.8432(0.0766) 0.3897(0.0356)

Table A.2: Comparison of the impact of PCA on LOAN and existing procedures based on PK data

Methods 6 PCs 9 PCs 13 PCs All (19) PCs
100*mean(std) 100*mean(std) 100*mean(std) 100*mean(std)

MSE for Testing Data

LOAN 29.3152(2.7984) 18.3863(2.8369) 27.2601(7.1044) 43.0542(3.6137)
MLP 41.7293(2.6673) 34.7943(2.3511) 30.6869(2.1018) 30.6617(2.9831)
XGBoost 50.8823(3.2462) 47.1367(2.7843) 42.9631(2.6408) 44.4751(2.1000)
AdaBoost 81.2930(2.6109) 78.9303(2.7339) 76.2363(2.2727) 76.5351(2.5682)
GBM 67.0713(2.3618) 62.4927(2.2980) 59.1466(1.8239) 59.7928(1.9610)
RF 41.2433(2.8571) 39.6862(2.6231) 37.7282(2.5413) 39.9511(2.5392)

MSE for Training Data

LOAN 21.7594(1.5550) 11.8719(1.4716) 16.0485(2.7811) 29.2183(3.0557)
MLP 37.1915(1.8439) 27.9013(0.9417) 22.0252(0.9036) 20.5078(0.9063)
XGBoost 10.0009(0.7694) 6.6056(0.4240) 4.0770(0.3162) 2.9568(0.2952)
AdaBoost 79.1353(2.3975) 76.3020(2.1195) 73.5840(2.0781) 73.5073(2.3712)
GBM 59.1133(1.5346) 53.7506(1.1314) 49.5714(0.9834) 49.4500(0.9870)
RF 5.9341(0.2602) 5.6795(0.1998) 5.3804(0.2432) 5.6393(0.2185)

By doing exploratory data analysis of PK data, we find that several of the 19 predictors in PK data244

are highly correlated. For example, the correlation between Shimmer and Shimmer(dB) is 0.9923.245

The correlation between Jitter(%) and Jitter(RAP) is 0.9841. The poor performance of the LOAN246

may be due to the collinearity of predictors since the linear regression is applied for updating the247

weights and biases. Thus, we conduct a principal component analysis (PCA), and the first 6, 9 and248

13 principal components (PC) can explain 95%, 99% and 99.9% of the variance. We further apply249

all procedures to PK data with predictors being set to PCs. Table A.2 depicts the MSEs for PK data250

with PC predictors. Compared with Table A.1, the performance of XGBoost and RF becomes poor.251

Tables A.1 and A.2 clearly imply that the performance of RF and XGBoost are not robust under linear252

transformation on predictors. The performance of MLP is quite stable across different numbers of PC253

variables. The performance of the LOAN improves significantly via using PCs.254

In Tables A.1 and A.2, we use the one hidden-layer LOAN for comparison. It is of interest to examine255

the performance of the LOAN with multiple-hidden layers. To this end, we set the MLP, XGBoost,256

GBM and RF with the same number of layer or depth as L, the number of hidden layers used in the257

LOAN. Other parameters of the MLP, XGBoost, GBM and RF are set to be the default values, We258

apply all these procedures to CHD data. Table A.3 depicts the sample means and standard deviation259

A.2

Table A.3: Comparison of the number of hidden layers in LOAN and existing procedures based on
CHD data

Methods L = 1 L = 2 L = 3
100*mean(std) 100*mean(std) 100*mean(std)

MSE for Testing Data

LOAN 18.5801(0.6955) 18.0160(0.6742) 17.5237(0.6530)
MLP 22.5382(0.9667) 20.6272(0.8958) 20.2324(0.8761)
XGBoost 28.5367(0.7766) 20.7961(0.6612) 18.3401(0.6515)
GBM 35.5315(0.8693) 24.5913(0.7452) 21.2869(0.7255)
RF 66.7451(1.4958) 53.6974(1.1509) 43.9402(1.0961)

MSE for Training Data

LOAN 15.7216(0.1275) 14.3645(0.2425) 12.5553(0.1572)
MLP 21.2712(0.6557) 18.3534(0.4721) 16.7369(0.5431)
XGBoost 27.9085(0.1824) 19.1496(0.2419) 15.1269(0.1666)
GBM 35.1605(0.1962) 23.7616(0.2104) 19.5492(0.1863)
RF 66.7071(0.6086) 53.5375(0.3329) 43.4837(0.3294)

of the 30 training and testing data splittings for L = 1, 2 and 3. The number of nodes in the LOAN260

with one hidden layer is set to be 60. The number of nodes in the LOAN with two hidden layer is261

set to be 60 and 10 in the first and second layer, respectively. The number of nodes in the LOAN262

with three hidden layers is set to be 60, 10 and 50 in the first, second and third layer, respectively.263

Since there is no option to set different depth levels for AdaBoost, we exclude it for this comparison.264

From Table A.3, we can see that both the LOAN and MLP have smaller MSE as L increases, but265

there is no dramatic improvement, while XGBoost, GBM and RF seem to have more improvement as266

L increases. Table A.3 indicates that the LOAN performs the best when L = 1, 2 and 3.267

A.3

	Introduction
	New method for constructing neural network
	One-hidden layer neural network
	Layer-wise Optimized Adaptive Neural Network
	Initial values for the LLA

	Numerical comparison
	Conclusion and discussion

