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Abstract
Self-supervised Learning (SSL) including the mainstream contrastive learning has
achieved great success in learning visual representations without data annotations.
However, most of methods mainly focus on the instance level information (i.e.,
the different augmented images of the same instance should have the same feature
or cluster into the same class), but there is a lack of attention on the relationships
between different instances. In this paper, we introduced a novel SSL paradigm,
which we term as relational self-supervised learning (ReSSL) framework that
learns representations by modeling the relationship between different instances.
Specifically, our proposed method employs sharpened distribution of pairwise
similarities among different instances as relation metric, which is thus utilized to
match the feature embeddings of different augmentations. Moreover, to boost the
performance, we argue that weak augmentations matter to represent a more reliable
relation, and leverage momentum strategy for practical efficiency. Experimental
results show that our proposed ReSSL significantly outperforms the previous state-
of-the-art algorithms in terms of both performance and training efficiency. Code is
available at https://github.com/KyleZheng1997/ReSSL

1 Introduction

Recently, self-supervised learning (SSL) has shown its superiority and achieved promising results for
unsupervised visual representation learning in computer vision tasks [40, 27, 32, 6, 9, 47, 23, 24].
The purpose of a typical self-supervised learning algorithm is to learn general visual representations
from a large amount of data without human annotations, which can be transferred or leveraged in
downstream tasks (e.g., classification, detection, and segmentation). Some previous works [5, 23]
even have proven that a good unsupervised pretraining can lead to a better downstream performance
than supervised pretraining.

Among various SSL algorithms, contrastive learning [47, 45, 6] serves as a state-of-the-art framework,
which mainly focuses on learning an invariant feature from different views. For example, instance
discrimination is a widely adopted pre-text task as in [6, 24, 47], which utilizes the noisy contrastive
estimation (NCE) to encourage two augmented views of the same image to be pulled closer on
the embedding space but pushes apart all the other images away. Deep Clustering [4, 48, 5] is an
alternative pre-text task that forces different augmented views of the same instance to be clustered
into the same class. However, instance discrimination based methods will inevitably induce a class
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collision problem [1, 36, 10], where similar images should be pulled closer instead of being pushed
away. Deep clustering based methods cooperated with traditional clustering algorithms to assign a
label for each instance, which relaxed the constraint of instance discrimination, but most of these
algorithms adopt a strong assumption, i.e., the labels must induce an equipartition of the data, which
might introduce some noise and hurt the learned representations.

In this paper, we introduce a novel Relational Self-Supervised Learning framework (ReSSL), which
does not encourage explicitly to push away different instances, but uses relation as a manner to
investigate the inter-instance relationships and highlight the intra-instance invariance. Concretely, we
aim to maintain the consistency of pairwise similarities among different instances for two different
augmentations. For example, if we have three instances x1, x2, y and z where x1, x2 are two
different augmentations of x, y and z are different samples. Then, if x1 is similar to y but different to
z, we wish x2 can maintain such relationship and vice versa. In this way, the relation can be modelled
as a similarity distribution between a set of augmented images, and then use it as a metric to align the
same images with different augmentations, so that the relationship between different instances could
be maintained across different views.

However, this simple manner induces unexpectedly horrible performance if we follow the same
training recipe as other contrastive learning methods [6, 24]. We argue that construction of a proper
relation matters for ReSSL; aggressive data augmentations as in [6, 7, 41] are usually leveraged by
default to generate diverse positive pairs that increase the difficulty of the pre-text task. However,
this hurts the reliability of the target relation. Views generated by aggressive augmentations might
cause the loss of semantic information, so the target relation might be noisy and not that reliable. In
this way, we propose to leverage weaker augmentations to represent the relation, since much lesser
disturbances provide more stable and meaningful relationships between different instances. Besides,
we also sharpen the target distribution to emphasize the most important relationship and utilize the
memory buffer with a momentum-updated network to reduce the demand of large batch size for more
efficiency. Experimental results on multiple benchmark datasets show the superiority of ReSSL in
terms of both performance and efficiency. For example, with 200 epochs of pre-training, our ReSSL
achieved 69.9% on ImageNet [14] linear evaluation protocol, which is 2.4% higher than our baseline
method (MoCoV2 [8]). When working with the Multi-Crop strategy (200 epochs), ReSSL achieved
new state-of-the-art 74.7% Top-1 accuracy, which is 1.4% higher than CLSA-Multi [46].

Our contributions can be summarized as follows.

• We proposed a novel SSL paradigm, which we term it as relational self-supervised learning
(ReSSL). ReSSL maintains the relational consistency between the instances under different
augmentations instead of explicitly pushing different instances away.

• Our proposed weak augmentation and sharpening distribution strategy provide a stable and
high quality target similarity distribution, which makes the framework works well.

• ReSSL is a simple and effective SSL framework since it replaces the widely adopted
contrastive loss with our proposed relational consistency loss. It achieved state-of-the-art
performance under the same training cost.

2 Related Work

Self-Supervised Learning. Early works in self-supervised learning methods rely on all sorts of
pretext to learn visual representations. For example, colorizing gray-scale images [50], image jigsaw
puzzle [39], image super-resolution [34], image inpainting [19], predicting a relative offset for a pair
of patches [16], predicting the rotation angle [35], and image reconstruction [2, 22, 3, 17]. Although
these methods have shown their effectiveness, they lack the generality of the learned representations.

Instance Discrimination. The recent contrastive learning methods [32, 40, 6, 24, 41, 38, 29, 27, 30]
have made a lot of progress in the field of self-supervised learning. Most of the previous contrastive
learning methods are based on the instance discrimination [47] task in which positive pairs are
defined as different views of the same image, while negative pairs are formed by sampling views from
different images. SimCLR [6, 7] shows that image augmentation (e.g.Grayscale, Random Resized
Cropping, Color Jittering, and Gaussian Blur), nonlinear projection head and large batch size plays
a critical role in contrastive learning. Since large batch size usually requires a lot of GPU memory,
which is not very friendly to most of researchers. MoCo [24, 8] proposed a momentum contrast
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mechanism that forces the query encoder to learn the representation from a slowly progressing key
encoder and maintain a memory buffer to store a large number of negative samples. InfoMin [41]
proposed a set of stronger augmentation that reduces the mutual information between views while
keeping task-relevant information intact. AlignUniform [45] shows that alignment and uniformity are
two critical properties of contrastive learning.

Deep Clustering. In contrast to instance discrimination which treats every instance as a distinct
class, deep clustering [4] adopts the traditional clustering method (e.g.KMeans) to label each image
iteratively. Eventually, similar samples will be clustered into the same class. Simply apply the
KMeans algorithm might lead to a degenerate solution where all data points are mapped to the same
cluster; SeLa [48] solved this issue by adding the constraint that the labels must induce equipartition
of the data and proposed a fast version of the Sinkhorn-Knopp to achieve this. SwAV [5] further
extended this idea and proposed a scalable online clustering framework. PCL [36] reveals the
class collision problem and simply performed instance discrimination and unsupervised clustering
simultaneously; although it gets the same linear classification accuracy with MoCoV2, it has better
performance on downstream tasks.

Contrastive Learning Without Negatives. Most previous contrastive learning methods prevent
the model collapse in an explicit manner (e.g. push different instances away from each other or
force different instances to be clustered into different groups.) BYOL [23] can learn a high-quality
representation without negatives. Specifically, it trains an online network to predict the target network
representation of the same image under a different augmented view and using an additional predictor
network on top of the online encoder to avoiding the model collapse. SimSiam [9] shows that simple
Siamese networks can learn meaningful representations even without the use of negative pairs, large
batch size, and momentum encoders.

3 Methodology

In this section, we will first revisit the preliminary work on contrastive learning; then, we will
introduce our proposed relational self-supervised learning framework. After that, the algorithm and
the implementation details will also be explained.

3.1 Preliminaries on Self-supervised Learning

Given N unlabeled samples x, we randomly apply a composition of augmentation functions T (·)
to obtain two different views x1 and x2 through T (x, θ1) and T (x, θ2) where θ is the random
seed for T . Then, a convolutional neural network based encoder F(·) is employed to extract the
information from these samples, i.e., h = F(T (x, θ)). Finally, a two-layer non-linear projection
head g(·) is utilized to map h into embedding space, which can be written as: z = g(h). SimCLR
[6] and MoCo [24] style framework adopt the noise contrastive estimation (NCE) objective for
discriminating different instances in the dataset. Suppose z1i and z2i are the representations of two
augmented views of xi and zk is a different instance. The NCE objective can be expressed by Eq.
(1), where the similarity function sim(·) represents the dot product between L2 normalized vectors
sim(u,v) = uTv/‖u‖‖v‖ and τ is the temperature parameter.

LNCE = − log
exp(sim(z1, z2)/τ)

exp(sim(z1i , z
2
i )/τ) +

∑N
k=1 exp(sim(z1i , zk)/τ)

. (1)

BYOL [23] and SimSiam [9] style framework add an additional non-linear predictor head q(·) which
further maps z to p. The model will minimize the negative cosine similarity (equivalent to minimize
the L2 distance) between z to p.

Lcos = −
p1

‖p1‖
· z2

‖z2‖
, Lmse = ‖p1 − z2‖22. (2)

Tricks like stop-gradient and momentum teacher are often applied to avoid model collapsing.

3.2 Relational Self-Supervised Learning

In classical self-supervised learning, different instances are to be pushed away from each other, and
augmented views of the same instance is expected to be of exactly the same features. However, both
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Figure 1: The overall framework of our proposed method. We adopt the student-teacher framework
where the student is trained to predict the representation of the teacher, and the teacher is updated with
a “momentum update” (exponential moving average) of the student. The relationship consistency is
achieve by align the conditional distribution for student and teacher model. Please see more details in
our method part.

constrains are too restricted because of the existence of similar samples and the distorted semantic
information if aggressive augmentation is adopted. In this way, we do not encourage explicit negative
instances (those to be pushed away) for each instance; instead, we leverage the pairwise similarities
as a manner to explore their relationships. And we pull the features of two different augmentations
in this sense of relation metric. As a result, our method relaxes both (1) and (2), where different
instances do not always need to be pushed away from each other; and augmented views of the same
instance only need to share the similar but not exactly the same features.

Concretely, given a image x in a batch of samples , two different augmented views can be obtained
by x1 = T (x, θ1), x2 = T (x, θ2) and calculate the corresponds embedding z1 = g(F(x1)),
z2 = g(F(x2)). Then, we calculate the similarities between the instances of the first augmented
images. Which can be measured by sim(z1, zi). A softmax layer can be adopted to process the
calculated similarities, which then produces a relationship distribution:

p1
i =

exp(sim(z1, zi)/τt)∑K
k=1 exp(sim(z1, zk)/τt, )

. (3)

where τt is the temperature parameter. At the same time, we can calculate the relationship between
x2 and the i-th instance as sim(z2, zi). The resulting relationship distribution can be written as:

p2
i =

exp(sim(z2, zi)/τs)∑K
k=1 exp(sim(z2, zk)/τs, )

. (4)

where τs is a different temperature parameter. We propose to push the relational consistency between
p1i and p2i by minimizing the Kullback–Leibler divergence, which can be formulated as:

Lrelation = DKL(p
1||p2) = H(p1,p2)−H(p1). (5)

Since the p1 will only be used as a target, we only minimize H(p1,p2) in our implementation.

More efficiency with Momentum targets. However, the quality of the target similarity distribution
p1 is crucial, to make the similarity distribution reliable and stable, we usually require a large batch
size which is very unfriendly to GPU memories. To resolve this issue, we utilize a “momentum
update" network as in [24, 8], and maintain a large memory buffer Q of K past samples {zk|k =
1, ...,K} (following the FIFO principle) for storing the feature embeddings from the past batches,
which can then be used for simulating the large batch size relationship and providing a stable similarity
distribution.

Ft ← mFt + (1−m)Fs, gt ← mgt + (1−m)gs, (6)
where Fs and gs denote the most latest encoder and head, respectively, so we name them as the
student model with a subscript s. On the other hand, Ft and gt stand for ensembles of the past encoder
and head, respectively, so we name them as the teacher model with a subscript t. m represents the
momentum coefficient which controls how fast the teacher Ft will be updated.

Sharper Distribution as Target. Note, the value of τt has to be smaller than τs since τt will be used
to generate the target distribution. A smaller τ will result in a “sharper" distribution which can be
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interpreted as highlight the most similar feature for z1. Align p2 with p1 can be regarded as pulling
z2 towards the features that are similar with z1.

Weak Augmentation Strategy for Teacher. To further improve the quality and stability of the
target distribution, we adopt a weak augmentation strategy for the teacher model since the standard
contrastive augmentation is too aggressive, which introduced too many disturbances and will mislead
the student network. Please refer to more details in our empirical study.

Compare with SEED and CLSA. SEED [21] follows the standard Knowledge Distillation (KD)
paradigm [26, 49, 18] where it aims to distill the knowledge from a larger network into a smaller
architecture. The knowledge transfer happens in the same view but between different models. In our
framework, we are trying to maintain the relational consistency between different augmentations;
the knowledge transfer happens between different views but in the same network. CLSA [46] also
introduced the concept of using weak augmentation to guide a stronger augmentation. However,
the “weak" augmentation in CLSA is equivalent to the “strong" augmentation in our method (We
do not use any stronger augmentations such as [12, 13]). On the other hand, CLSA still adopts the
InfoNCE loss (1) for instance discrimination, where our proposed method only utilized the relational
consistency loss (5). Finally, CLSA requires at least one additional sample during training, which
will slow down the training speed.

Algorithm 1: Relational Self-supervised Learning with Weak Augmentation (ReSSL)
Input : x: a batch of samples. Tw(·): Weak augmentation function. Tc(·): Contrastive

augmentation function. Ft and Fs: the teacher and student backbone network. gt and gs :
the non-linear projection head for teacher and student. Q: the memory buffer

while network not converge do
for i=1 to step do

Fetch x from current batch B
z1 = gt(Ft(Tw(x, θ1))); z2 = gs(Fs(Tc(x, θ2)));
p1 = SoftMax(z1QT / τt ); p2 = SoftMax(z2QT / τs ) ; // Eq. (3)(4)
Calculate Lrelation loss by CrossEntropy(p1, p2) ; // Eq. (5)
Update Fs and gs with loss Lrelation

Update Ft and gt by Ft ← mFt + (1−m)Fs, gt ← mgt + (1−m)gs ; // Eq. (6)
Update the memory buffer Q by z1

end
end
Output :The well trained model Fs

4 Empirical Study
In this section, we will empirically study our proposed method on 4 popular self-supervised learning
benchmarks and compare to previous state-of-the-art algorithms (SimCLR [6], BYOL [23], SimSiam
[9], MoCoV2 [8]).

Small Dataset. CIFAR-10 and CIFAR-100 [31]. The CIFAR-10 dataset consists of 60000 32x32
colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000
test images. CIFAR-100 is just like the CIFAR-10, except it has 100 classes containing 600 images
each. There are 500 training images and 100 testing images per class.

Medium Dataset. STL-10 [11] and Tiny ImageNet [33]. STL10 [11] dataset is composed of
96x96 resolution images of 10 classes, 5K labeled training images, 8K validation images, and 100K
unlabeled images. The Tiny ImageNet dataset is composed of 64x64 resolution images of 200 classes
with 100K training images and 10k validation images.

Implementation Details We adopt the ResNet18 [25] as our backbone network. Because most of
our dataset contains low-resolution images, we replace the first 7x7 Conv of stride 2 with 3x3 Conv
of stride 1 and remove the first max pooling operation for a small dataset. For data augmentations,
we use the random resized crops (the lower bound of random crop ratio is set to 0.2), color distortion
(strength=0.5) with a probability of 0.8, and Gaussian blur with a probability of 0.5. The images
from the small and medium datasets will be resized to 32x32 and 64x64 resolution respectively. Our
method is based on MoCoV2 [8]; in order to simulate the shuffle BN trick on one GPU, we simply
divide a batch of data into different groups and then calculate BN statistics within each group. The
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Table 1: Compare to other SSL algorithms on small and medium dataset.

Method BackProp EMA CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
Supervised - - 94.22 74.66 82.55 59.26

SimCLR [6] 2x No 84.92 59.28 85.48 44.38
BYOL [23] 2x Yes 85.82 57.75 87.45 42.70
SimSiam [9] 2x No 88.51 60.00 87.47 37.04
MoCoV2 [8] 1x Yes 86.18 59.51 85.88 43.36
ReSSL (Ours) 1x Yes 90.20 63.79 88.25 46.60

momentum value and memory buffer size are set to 0.99/0.996 and 4096/16384 for small and medium
datasets respectively. Moreover, The model is trained using SGD optimizer with a momentum of
0.9 and weight decay of 5e−4. We linear warm up the learning rate for 5 epochs until it reaches
0.06×BatchSize/256, then switch to the cosine decay scheduler [37].

Evaluation Protocol. All the models will be trained for 200 epochs. For testing the representation
quality, we evaluate the pre-trained model on the widely adopted linear evaluation protocol - We
will freeze the encoder parameters and train a linear classifier on top of the average pooling features
for 100 epochs. To test the classifier, we use the center crop of the test set and computes accuracy
according to predicted output. We train the classifier with a learning rate of 30, no weight decay, and
momentum of 0.9. The learning rate will be times 0.1 in 60 and 80 epochs. Note, for STL-10; the
pretraining will be applied on both labeled and unlabeled images. During the linear evaluation, only
the labeled 5K images will be used.

Result. As we can see the result in Table 1, our proposed method outperforms the previous method
on all four benchmarks. Reminder, most of the previous method requires twice back-propagation,
which results in a much higher training cost than MoCoV2 and our method.

4.1 A Properly Sharpened Relation is A Better Target

The temperature parameter is very crucial in most contrastive learning algorithms. To verify the
effective of τs and τt for our proposed method, we fixed τs = 0.1 or 0.2, and sweep over τt =
{0.01, 0.02, ..., 0.07}. The result is shown in Table 2. For τt, the optimal value is either 0.04 or 0.05
across all different datasets. As we can see, the performance is increasing when we increase τt from
0 to 0.04 and 0.05. After that, the performance will start to decrease. Note, τt → 0 correspond to the
Top-1 or argmax operation which produce a one-hot distribution as the target. On the other hand,
when τt → 0.1, the target will be a much flatter distribution that cannot highlight the most similar
features for students. Hence, τt can not be either too small or too large, but it has to be smaller than
τs (p1 has to be sharper than p2) so that the target distribution can provide effective guidance to the
student model.

Table 2: Effect of different τt and τs for ReSSL

Dataset τs τt = 0.01 τt = 0.02 τt = 0.03 τt = 0.04 τt = 0.05 τt = 0.06 τt = 0.07

CIFAR-10 0.1 89.35 89.74 90.09 90.04 90.20 90.18 88.67
CIFAR-10 0.2 89.52 89.67 89.24 89.50 89.22 89.40 89.50

CIFAR-100 0.1 62.34 62.79 62.71 63.79 63.46 63.20 61.31
CIFAR-100 0.2 60.37 60.05 60.24 60.09 59.09 59.12 59.76

STL-10 0.1 86.65 86.96 87.16 87.32 88.25 87.83 87.08
STL-10 0.2 85.17 86.12 85.01 85.67 85.21 85.51 85.28

Tiny ImageNet 0.1 45.20 45.40 46.30 46.60 45.08 45.24 44.18
Tiny ImageNet 0.2 43.28 42.98 43.58 42.12 42.70 42.76 42.60

For τt, it is clearly to see that the result of τs = 0.1 can always result a much higher performance
than τs = 0.2, which is different to MoCoV2 where τs = 0.2 is the optimal value. According to
[43, 44, 15], a greater temperature will result in a larger angular margin in the hypersphere. Since
MoCoV2 adopts instance discrimination as the pretext task, a large temperature can enhance the
compactness for the same instance and discrepancy for different instances. In contrast to instance
discrimination, our method can be interpreted as pulling similar instances closer on the hypersphere;
when the ground truth label is not available, the large angular margin might hurt the performance.
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Query 10-NN

Figure 2: Visualization of the 10 nearest neighbour of the query image. The top half is the result
when we apply the weak augmentation. The bottom half is the case when the typical contrastive
augmentation is adopted. Note, we use the red square to highlight the images that has different ground
truth label with the query image.

4.2 Weak Augmentation Makes Better Relation

As we have mentioned, the weaker augmentation strategy for the teacher model is the key to the
success of our framework. Here, We implement the weak augmentation as a random resized crop
(the random ratio is set to (0.2, 1)) and a random horizontal flip. For temperature parameter, we
simply adopt the same setting as in Table 2 and report the performance of the best setting. The
result is shown in Table 3, as we can see that when we use the weak augmentation for the teacher
model, the performance is significantly boosted across all datasets. We believe that this phenomenon
is because relatively small disturbances in the teacher model can provide more accurate similarity
guidance to the student model. To further verify this hypothesis, we random sampled three image
from STL-10 training set as the query images, and then find the 10 nearest neighbour based on the
weak / contrastive augmented query. We visualized the result in Figure 2,

Table 3: Effect of weak augmentation guided ReSSL

Teacher Aug Student Aug CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
Contrastive Contrastive 86.17 57.60 84.71 40.38

Weak Contrastive 90.20 63.79 88.25 46.60

4.3 More Experiments on Weak Augmentation

Since the weak augmentation for the teacher model is one of the crucial points in ReSSL, we further
analyze the effect of applying different augmentations on the teacher model. In this experiment, we
simply set τt = 0.04 and report the linear evaluation performance on the Tiny ImageNet dataset. The
results are shown in Table 4. The first row is the baseline, where we simply resize all images to the
same resolution (no extra augmentation is applied). Then, we applied random resized crops, random
flip, color jitter, grayscale, gaussian blur, and various combinations. We empirically find that if we
use no augmentation (e.g., no random resized crops) for the teacher model, the performance tends to
degrade. This might result from that the gap of features between two views is way too smaller, which
undermines the learning of representations. However, too strong augmentations of teacher model
will introduce too much noise and make the target distribution inaccurate (see Figure 2). Thus mildly
weak augmentations are better option for the teacher, and random resized crops with random flip is
the combination with the highest performance as Table 4 shows.
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Table 4: Effect of different augmentation for teacher model (Tiny ImageNet)

Random Resized Crops Random Flip Color Jitter GrayScale Gaussian Blur Acc
31.74

X 46.00
X 30.98

X 29.46
X 29.68

X 30.10
X X 46.60
X X 44.44
X X 42.28
X X 44.88
X X X 43.70
X X X 42.28
X X X 44.52

4.4 Dimension of the Relation

Since we also adopt the memory buffer as in MoCo [24], the buffer size will be equivalent to the
dimension of the distribution p1 p2. Thus, it will be one of the crucial points in our framework. To
verify the effect the memory buffer size, we simply keep τs = 0.1 and τt = 0.04, then varying the
memory buffer size from 256 to 32768. The result is shown in Table 5, as we can see that a larger
memory buffer can significantly boost the performance. However, a further increase in the buffer size
can only bring a marginal improvement when the buffer is large enough.

Table 5: Effect of different memory buffer size on small and medium dataset

Dataset (Small) K = 256 K = 512 K = 1024 K = 4096 K = 8192 K = 16384
CIFAR-10 89.37 89.53 89.83 90.04 90.15 90.35

CIFAR-100 61.17 62.47 63.20 63.79 63.84 64.06
Dataset (Medium) K = 256 K = 1024 K = 4096 K = 8192 K = 16384 K = 32768

STL-10 85.88 87.23 87.72 87.42 87.32 87.47
Tiny ImageNet 43.08 45.32 45.78 45.42 46.60 46.48

4.5 Visualization of Learned Representations

We also show the t-SNE [42] visualizations of the representations learned by our proposed method
and MoCov2 on the training set of CIFAR-10. Our proposed relational consistency loss leads to
better class separation than the contrastive loss.

(a) ReSSL w/o Sharpen (b) ReSSL w/o Weak Aug (c) ReSSL Standard (d) MoCo V2

Figure 3: t-SNE visualizations on CIFAR-10. Classes are indicated by colors.

5 Results on Large-scale Datasets

We also performed our algorithm on the large-scale ImageNet-1k dataset [14]. In the experiments,
we adopt a learning rate of 0.05 ∗ BatchSize/256, a memory buffer size of 130k, and a 2-layer
non-linear projection head with a hidden dimension 4096 and output dimension 512. For τt and τs,
we simply adopt the best setting from Table 2 where τt = 0.04 and τs = 0.1.
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Linear Evaluation. For the linear evaluation of ImageNet-1k, we strictly follow the setting in SwAV
[5]. The results are shown in Table 6. As we can see clearly that ReSSL consistently outperforms
previous methods on both 1x and 2x backprop setting. (Please noted that the student network will be
passed in one 224x224 augmented view and two 224x224 augmented views for 1x backprob and 2x
backprob setting respectively.)

Table 6: Top-1 accuracy under the linear evaluation on ImageNet with the ResNet-50 backbone. The
table compares the methods over 200 epochs of pretraining.

Method Arch Backprop EMA Batch Size Param Epochs Top-1
Supervised R50 1x No 256 24 120 76.5
1x Backprop Methods
InstDisc [47] R50 1x No 256 24 200 58.5
LocalAgg [52] R50 1x No 128 24 200 58.8
MoCo v2 [8] R50 1x Yes 256 24 200 67.5
MoCHi [30] R50 1x Yes 512 24 200 68.0
CPC v2 [32] R50 1x No 512 24 200 63.8
PCL v2 [36] R50 1x Yes 256 24 200 67.6
AdCo [28] R50 1x Yes 256 24 200 68.6
ReSSL (Ours) R50 1x Yes 256 24 200 69.9
2x Backprop Methods
CLSA-Single [46] R50 2x Yes 256 24 200 69.4
SimCLR [6] R50 2x No 4096 24 200 66.8
SwAV [5] R50 2x No 4096 24 200 69.1
SimSiam [23] R50 2x No 256 24 200 70.0
BYOL [23] R50 2x Yes 4096 24 200 70.6
WCL [51] R50 2x No 4096 24 200 70.3
ReSSL (Ours) R50 2x Yes 256 24 200 71.4

Working with Multi-Crop Strategy. We also performed ReSSL with Multi-Crop strategy. The
result is shown below in Table 7. Specifically, the result of 4 crops is trained with the resolution of
224× 224, 160× 160, 128× 128, 96× 96. For the result of 5 crops, we add an additional 192× 192
image which is exactly the same with AdCo [28]. As we can see, our proposed ReSSL is significantly
better than previous state-of-the-art methods.

Table 7: Working with Multi-Crop Strategy (Linear Evaluation on ImageNet)

Method Arch EMA Batch Size Param Epochs Top-1
SwAV [5] R50 No 256 24 200 72.7
AdCo [28] R50 No 256 24 200 73.2
CLSA-Multi [46] R50 Yes 256 24 200 73.3
ReSSL (4 crops) R50 Yes 256 24 200 73.8
ReSSL (5 crops) R50 Yes 256 24 200 74.7

Working with Smaller Architecture. We also applied our proposed method on the smaller architec-
ture (ResNet-18). The result is shown in Table 8. Following the same training recipe of the ResNet-50
in above, our proposed method has a higher performance than SEED [21] without a larger pretrained
teacher network.

Table 8: Experiments on ResNet-18 (Linear Evaluation on ImageNet)

Method Epochs Student Teacher Acc
MoCo v2 200 ResNet-18 EMA 52.2
SEED 200 ResNet-18 ResNet-50 (MoCoV2) 57.6
ReSSL (1x backprop) 200 ResNet-18 EMA 58.1

Low-shot Classification. We further evaluate the quality of the learned representations by trans-
ferring them to other datasets. Following [36], we perform linear classification on the PASCAL
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VOC2007 dataset [20]. Specifically, we resize all images to 256 pixels along the shorter side and
taking a 224 × 224 center crop. Then, we train a linear SVM on top of corresponding global average
pooled final representations. To study the transferability of the representations in few-shot scenarios,
we vary the number of labeled examples K and report the mAP. Table 9 shows the comparison
between our method with previous works. We report the average performance over 5 runs (except for
k=full).It’s clearly to see that our proposed method is consistently outperform MoCo v2 and PCL v2
across all different K.

Table 9: Transfer learning on low-shot image classification
Method Epochs ImageNet K=16 K=32 K=64 Full
Random - - 10.10 11.34 11.96 12.42
Supervised 90 76.1 82.26 84.00 85.13 87.27
MoCo V2 [8] 200 67.5 76.14 79.16 81.52 84.60
PCL V2 [36] 200 67.5 78.34 80.72 82.67 85.43
ReSSL (1x backprob) 200 69.9 79.17 81.96 83.81 86.31

Semi-Supervised Learning. Next, we evaluate the performance obtained when fine-tuning the
model representation using a small subset of labeled data. In this experiments, we adopt our 5 crops
pre-trained model. The result is shown in Table 10. Notably, with just 200 epochs of pre-training,
ReSSL outperforms all previous methods.

Table 10: Semi-supervised Learning
Method Epochs Linear Eval 1% Labels 10% Labels
SimCLR [6] 1000 69.3 48.3 65.6
BYOL [23] 1000 74.3 53.2 68.6
SwAV [5] 800 75.3 53.9 70.2
ReSSL (5 crops) 200 74.7 57.9 70.4

6 Conclusion

In this work, we propose relational self-supervised learning (ReSSL), a new paradigm for unsuper-
vised visual representation learning framework that maintains the relational consistency between
instances under different augmentations. Our proposed ReSSL relaxes the typical constraints in
contrastive learning where different instances do not always need to be pushed away on the embedding
space, and the augmented views do not need to share exactly the same feature. An extensive empirical
study shows the effect of each component in our framework. The experiments on large-scaled datasets
demonstrate the efficiency and state-of-the-art performance for unsupervised representation learning.

Broader Impact

This work provides a technical advancement in the field of unsupervised visual representation learning.
An immediate application of this work is to give a pre-trained model for the tasks where the data
annotation is very hard to collect (e.g.medical images and fine-grained images.) Moreover, the most
significant advantage of ReSSL is that we do not need to train the model for a long time as the previous
method (generally 800 or 1000 epochs), which will cause a lot of carbon dioxide emissions. We
believe ReSSL is a more environment-friendly method since it can achieve a competitive performance
with much lesser training costs.
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