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Abstract

The ability of deep networks to learn superior
representations hinges on leveraging the proper
inductive biases, considering the inherent prop-
erties of datasets. In tabular domains, it is
critical to effectively handle heterogeneous fea-
tures (both categorical and numerical) in a uni-
fied manner and to grasp irregular functions like
piecewise constant functions. To address the
challenges in the self-supervised learning frame-
work, we propose a novel pretext task based
on the classical binning method. The idea is
straightforward: reconstructing the bin indices
(either orders or classes) rather than the origi-
nal values. This pretext task provides the en-
coder with an inductive bias to capture the ir-
regular dependencies, mapping from continuous
inputs to discretized bins, and mitigates the fea-
ture heterogeneity by setting all features to have
category-type targets. Our empirical investiga-
tions ascertain several advantages of binning:
capturing the irregular function, compatibility
with encoder architecture and additional modifi-
cations, standardizing all features into equal sets,
grouping similar values within a feature, and
providing ordering information. Comprehen-
sive evaluations across diverse tabular datasets
corroborate that our method consistently im-
proves tabular representation learning perfor-
mance for a wide range of downstream tasks.
The codes are available in https://github.
com/kyungeun-lee/tabularbinning.
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1. Introduction
Tabular datasets are ubiquitous across diverse applications
from financial markets and healthcare diagnostics to e-
commerce personalization and manufacturing process au-
tomation. These datasets are structured with rows repre-
senting individual samples and columns representing het-
erogeneous features—a combination of categorical and nu-
merical features—and they serve as the foundation for
myriad analyses. Despite the wide applicability of tab-
ular data, research into leveraging deep networks to har-
ness the inherent properties of such datasets is still in its
nascent stage. In contrast, tree-based machine learning
algorithms like XGBoost (Chen & Guestrin, 2016) and
CatBoost (Prokhorenkova et al., 2018) have consistently
demonstrated prowess in discerning the nuances of tabu-
lar domains, outperforming deep networks even those with
a larger model capacity and specialized modules (Arik &
Pfister, 2021; Gorishniy et al., 2021; Grinsztajn et al., 2022;
Rubachev et al., 2022). The consistent edge held by tree
models fuels the exploration of how their advantageous bi-
ases can be adapted for deep networks.

Recently, the quest to boost the performance of deep net-
works on tabular data has gained momentum. A funda-
mental challenge is the inherent heterogeneity of tabular
datasets, encompassing both categorical and numerical fea-
tures (Popov et al., 2019; Borisov et al., 2022; Yan et al.,
2023). To mitigate the feature discrepancies in deep net-
works, previous studies proposed using an additional mod-
ule like a feature tokenizer (Gorishniy et al., 2021) and an
abstract layer (Chen et al., 2022). Concurrently, some re-
search has explored ways to infuse the proven strengths of
tree-based models into deep networks. For instance, Grin-
sztajn et al. (2022) observed that deep networks tend to pre-
fer overly smooth solutions and struggle with modeling ir-
regularities like piecewise constant functions, in contrast to
the tree-based models. To address this challenge, Gorishniy
et al. (2022) introduced a novel approach combining piece-
wise linear encoding during preprocessing and periodic ac-
tivation functions. Although these advancements have led
to enhanced performance on several tabular data problems,
they have predominantly been explored within a supervised
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Figure 1: Binning as a pretext task. Bins are determined
based on the distribution of the training dataset for each
feature. The inputs are passed into the encoder network,
then the decoder network predicts the bin indices which
can be ordinal when the pretext task is the regression or
nominal when the pretext task is the classification.

learning framework, where they still fall short of outper-
forming simple tree-based methods (Gorishniy et al., 2021;
Grinsztajn et al., 2022; McElfresh et al., 2023).

In this study, we address the challenge of unsupervised tab-
ular deep learning where the tree-based methods are fun-
damentally inapplicable. To this end, we propose a novel
pretext task based on the classical binning method for auto-
encoding-based self-supervised learning (SSL). Our ap-
proach is straightforward: reconstructing bin indices rather
than reconstructing the raw values, as illustrated in Fig-
ure 1. Once numerical features are discretized into bins
based on the quantiles of the training dataset, we optimize
the encoder and decoder networks to accurately predict the
bin indices given original inputs. Despite its simplicity,
binning as a pretext task offers several advantages for tab-
ular deep learning. By setting the discretized bins as tar-
gets for the pretext task, we can employ the inductive bias
of capturing the irregular functions and mitigating the dis-
crepancy between features. The binning procedure allows
grouping the nearby samples based on the distribution of
the training dataset, so the learned representations should
be robust to the minor errors that can yield spurious pat-
terns. It also facilitates standardizing all features into equal
sets, thereby preventing any uninformative features from
dominating during SSL. Furthermore, our approach is com-
patible with any other modifications, including the choice
of deep architectures and input transformation functions.

Based on the extensive experiments on 25 public datasets,
we found that the binning task consistently improves
the SSL performance on diverse downstream tasks, even
though we simply changed the targets during SSL from
the continuous to the discretized bins. Finally, we found
that the binning task can be not only an effective objective
function for fully unsupervised learning but also beneficial
as the pretraining strategy to achieve state-of-the-art per-
formance, surpassing both tree-based and other supervised
deep learning methods across a wide range of tabular data
problems.

Our main contributions can be summarized as follows.
First, we suggest binning as a new pretext task for
SSL in tabular domains, compatible with any modifi-
cations. Second, we conduct extensive experiments on
25 public tabular datasets focusing on the various in-
put transformation methods and SSL objectives. Fi-
nally, we consistently achieve the best performance both
in unsupervised and supervised learning frameworks.
The codes are available in https://github.com/
kyungeun-lee/tabularbinning.

2. Related Works
Tabular deep learning: In recent years, there has been
a large number of deep learning research on a tabular do-
main: developing new deep architectures (Popov et al.,
2019; Badirli et al., 2020; Huang et al., 2020; Wang et al.,
2021; Arik & Pfister, 2021; Gorishniy et al., 2021; Chen
et al., 2022; Hollmann et al., 2022; Zhu et al., 2023; Kotel-
nikov et al., 2023; Chen et al., 2023a); or representing the
heterogeneous nature of tabular features as the graphs (Yan
et al., 2023; Chen et al., 2023b); or adopting new activation
function (Gorishniy et al., 2022). Despite these advance-
ments, ensembles of decision trees, such as GBDTs (Gradi-
ent Boosting Decision Trees), continue to serve as competi-
tive baselines (Arik & Pfister, 2021; Gorishniy et al., 2021;
Grinsztajn et al., 2022; Rubachev et al., 2022; McElfresh
et al., 2023; Beyazit et al., 2023). In this paper, our goal
is to suggest a new pretext task for self-supervised learning
in tabular domains, so we focus on architectures directly
inspired by classic deep models, in particular MLPs and
FT-Transformers (Gorishniy et al., 2021), in addition to the
state-of-the-art tabular deep learning model, such as T2G-
Former (Yan et al., 2023).

Self-supervised learning in tabular domains: Self-
supervised learning (SSL) aims to learn desirable repre-
sentations without making use of annotation information.
Recently, contrastive learning and auto-encoding have been
two major choices in the tabular domain. Contrastive learn-
ing aims to model the similarity between two or more aug-
mented views from the same sample, corresponding to the
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positive samples, and the dissimilarity between other sam-
ples, corresponding to the negative samples. Bahri et al.
(2021); Ucar et al. (2021) have optimized contrastive loss
after defining the positive and negative samples based on
the data augmentation function, such as masking or crop-
ping in feature dimension. Auto-encoding aims to re-
construct the original sample given its corrupted obser-
vation (Vincent et al., 2008). Compared to contrastive
learning, auto-encoders can handle a mix of data types
which can be beneficial for tasks involving heterogeneous
datasets, like tabular data. Yoon et al. (2020); Huang et al.
(2020); Majmundar et al. (2022) adopted the auto-encoding
methods optimizing the reconstruction loss with or without
the additional losses, such as corruption detection. In this
study, we suggest a new SSL pretext task based on the auto-
encoding approach.

3. Backgrounds
In this section, we delve into the auto-encoding-based self-
supervised learning framework in tabular domains focusing
on two factors: transformation methods to tabular inputs
and the objective functions in the auto-encoding-based SSL
framework.

Input transformation: To ensure the encoder network
does not simply learn an identity function, we employ
transformation functions on the input that preserve the
label-related information. For tabular datasets, only a few
transformation functions have been suggested like mask-
ing (Yoon et al., 2020; Ucar et al., 2021; Majmundar et al.,
2022) as illustrated in Figure 2 because all individual val-
ues can play a key role in determining the semantics and
small changes can affect the context. Given a sample
xi ∈ Rd in dataset D where d is the number of features,
i ∈ [1, N ], and N is the batch size, we randomly gener-
ate the masking vector mi with the same size of xi. Each
element of the masking vector mi is independently sam-
pled from a Bernoulli distribution with probability pm ∈
[0, 1]. To replace the masked values, the replacing vector
x̄i should be defined. In this study, we utilize two methods
suggested in the previous studies (Yoon et al., 2020; Ucar
et al., 2021; Majmundar et al., 2022).

• Constant (Figure 2a): x̄i,k is set as the pre-determined
constant value for all i. In this study, we use the average
for each feature k in the training dataset.

• Random (Figure 2b): x̄i,k is sampled from the other in-
batch samples for a given feature. In other words, to re-
place the k-th feature of the i-th sample in the batch, we
use the k-th feature of the i′-th sample in the same batch,
and i′ is sampled from the uniform distribution U

(
1
N

)
.

Finally, the corrupted sample x̃i is formulated as x̃i = (1−

(a) Replacing value = Constant

(b) Replacing value = Random

Figure 2: An illustration of two methods to generate the
replacing vectors for masked features.

mi)⊙xi+mi⊙ x̄i where 1 is all-ones vector with the same
size of xi. The transformation procedure is stochastic and
it provides randomness during training. When pm = 0, mi

becomes the zero matrix, and the uncorrupted input x̃i =
xi is used for training.

SSL objectives: Following the convention of SSL, the
encoder fe first transforms the corrupted sample x̃i to a
representation zi, then the decoder fd will be introduced to
learn the informative representation by optimizing the un-
supervised loss L. We can leverage which representation
should be learned by introducing the specific pretext task.
As a baseline, we consider two pretext tasks used in Yoon
et al. (2020); Huang et al. (2020); Majmundar et al. (2022).

• Reconstructing the original values: One common ap-
proach is to reconstruct uncorrupted samples from their
corrupted counterparts (Vincent et al., 2008). In this
setup, the encoder attempts to impute the masked fea-
tures by leveraging the correlations present in the non-
masked features. The learned representations will in-
volve the semantic-level information that is invariant to
corruption. To this end, the decoder network is defined
as f recon

d : Z → X̂ , and the corresponding loss is formu-
lated as LValueRecon := 1

N

∑N
i=1 ||xi − f recon

d (zi)||22.

• Detecting the masked features: An auxiliary task that can
facilitate the pretext task of reconstruction is predicting
which features have been masked during the corruption
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Figure 3: An example of binning (Dataset: Wine Qual-
ity (Cortez et al., 2009)). In the example, we set T as 10.
For each feature, we implement the binning to include the
same number of observations based on the training dataset.
Finally, we use the binning indices as the targets for auto-
encoding-based SSL. When we regard the bin indices as
the classes without order information, the binning indices
are converted into the one-hot vectors.

process of the input sample (Yoon et al., 2020). In this
setup, the encoder attempts to leverage the inconsistency
between feature values to identify the masked features,
resulting in learned representations that capture abnor-
mal patterns for a given input. Specifically, the method
employs a binary cross-entropy loss, which can be for-
mulated as LMaskXent := − 1

N

∑N
i=1 mi log f

mask
d (zi) +

(1 −mi) log (1 − fmask
d (zi)) where the decoder network

is defined as fmask
d : Z → M̂ .

We can optimize several loss functions simultaneously if
we train several decoders that utilize z as the inputs. For
example, Yoon et al. (2020) utilized the weighted sum of
LValueRecon and LMaskXent.

4. Methods: Binning as a Pretext Task for
Tabular SSL

Binning is a classical data preprocessing technique that
quantizes a given numerical feature xj ∈ R|D| into T
discrete intervals, known as bins Bj

t = [bjt−1, b
j
t ) where

t ∈ [1, T ] and bjt ∈ R is the bin boundaries. Binning
is effective in transforming continuous features into dis-
crete ones, mitigating minor errors in datasets like noise
and outliers, and making the data distribution more man-
ageable (Dougherty et al., 1995; Han et al., 2022).

In this study, we implement binning to establish targets
for auto-encoding-based SSL. We anticipate the representa-

tions will be robust to the minor input variation in the same
bins. Also, the deep networks can capture the irregularities
akin to the decision-making process of tree-based models,
which assign discrete leaves to each continuous sample be-
cause the pretext task corresponds to mapping continuous
inputs to discretized bins. In addition, the binning approach
helps mitigate feature heterogeneity by treating the targets
for all features as the same category type during SSL.

Müller et al. (2021) proposed a similar approach in the
context of Bayesian inference, addressing the well-known
challenge that neural networks face in modeling continu-
ous distributions. To overcome this issue, they pivoted to-
wards utilizing discretized continuous distributions for ac-
curately modeling posterior probability distributions. Their
research revealed that integrating discretization into the ob-
jective function of deep networks not only enhances the
effectiveness of the training process but is also theoreti-
cally established as a versatile technique capable of mod-
eling any distribution. Similarly, recent researches (Stew-
art et al., 2023; Wu et al., 2023) underscore the utility of
binning across various domains in deep learning. These
studies highlight the substantial potential of binning in aug-
menting the capabilities of neural networks.

The binning procedure is described in Figure 3. We first
determine the number of bins T as the design parameter.
Then, we split the value range into the disjoint set of T

intervals,
{
Bj

1, . . . , B
j
T

}
, considering the number of ob-

servations in the training dataset Dtrain for each j-th feature
xj . Specifically, the bin boundaries bjt are determined ac-
cording to the quantiles of t

T . (Alternative binning strate-
gies are also discussed in Supplementary D.1.) When the
number of unique values for xj in the training dataset is
less than T , each distinct value is assigned its own bin. Fi-
nally, we place each numerical feature xj

i into the bin Bj
t ,

and we substitute the original values with the correspond-
ing bin indices tji ∈ [1, T ]. Thus, we use the grouped ranks
(or classes) instead of the raw values. We call the binned
dataset as XBin.

The bin index of i-th sample and j-th feature, tji , can be
expressed as ordinal values or nominal classes. When we
utilize the bin indices as ordinal values, we set the pretext
task as reconstructing the bin indices based on the continu-
ous inputs, and the corresponding BinRecon loss is defined
as

LBinRecon :=
1

N

N∑
i=1

∥∥ti − fBinRecon
d (zi)

∥∥2
2

where fBinRecon
d : Z → X̂Bin.

When we utilize the bin indices as nominal classes, we
convert the bin index tji into the one-hot vector uj

i =

[u1, u2, . . . , uT ] where uv = 1 when v = tji and uv = 0
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otherwise. Then, we set the pretext task as predicting the
bin indices as classes by optimizing the BinXent loss, de-
fined as the multi-class cross-entropy loss for each feature.

LBinXent := − 1

Nd

N∑
i=1

d∑
j=1

uj
i log f

BinXent
d (zji )

In this case, the predictions for each sample should be in
Rd×T . As a simple implementation, we add the 1x1 con-
volutional layer at the end of fBinXent

d (·) : Z → Û where
U ∈ RN×d×T represents the one-hot encoded binned
dataset.

We outline the benefits of utilizing the binning task in SSL
as follows. Empirical evidence on how each item is ad-
vantageous for tabular data problems will be provided in
subsequent sections.

• Capturing the irregular function: We explicitly make
deep networks learn the function that maps from con-
tinuous inputs to discrete targets during SSL. It effec-
tively provides beneficial inductive bias for tabular learn-
ing and mitigates the discrepancy between heterogeneous
features. (Section 5.2, 6.3, 6.4)

• Compatibility with other modifications: The binning task
is agnostic to modifications such as changes in encoder
architecture, input transformation functions, and addi-
tional objectives. Thus, it can be utilized independently
or in conjunction with other options. (Section 5.1, 5.2)

• Standardizing all features into equal sets1: After bin-
ning, all features lie on the uniform distribution with
identical elements. Unlike the conventional normaliza-
tion schemes, it largely simplifies the dataset to include
only T distinct values, and this ensures all features be-
come equal sets, thereby preventing any uninformative
features from dominating during training. (Section 6.1)

• Grouping similar values in each feature: Binning clus-
ters the nearby values in each feature and eliminates the
other information except the bin index. Deep networks
can identify nearby samples in a distribution as similar,
independent of their magnitude. (Section 6.1)

• Ordering in BinRecon loss: BinRecon loss utilizes the
grouped rank information only while eliminating the raw
value information. This ensures that the encoder network
learns the ordering information, regardless of the magni-
tude of the values. (Section 6.1)

Overall, we implement SSL as follows. First, tabular in-
puts undergo a transformation that retains their semantic
information. Then, the encoder network fe takes the trans-
formed input x̃ and produces the representation z, and the

1Detailed description is available in Supplementary E.1.

decoder network fd models the representation z to the tar-
get ŷSSL depending on the choice of pretext task. In this
study, we consider four types of pretext tasks and the cor-
responding losses are ValueRecon, MaskXent, BinRecon,
and BinXent. Once SSL is finished, the learned represen-
tations z are evaluated based on linear probing.

5. Experiments
In this section, we evaluate the effectiveness of binning as
a pretext task across 25 public tabular datasets encompass-
ing a range of data sizes and task types. Dataset details are
provided in Supplementary A. For all datasets, we apply
standardization for numerical features and labels for evalu-
ating the regression tasks.

For the encoder network fe, we experiment three types of
deep networks: (1) MLPs, representing the simplest form
of deep architecture; (2) FT-Transformer (Gorishniy et al.,
2021), a simple adaptation of the Transformer architecture
for the tabular domain; and (3) T2G-Former (Yan et al.,
2023), the state-of-the-art deep architecture for tabular data
problems. Note that a larger or more complex network does
not guarantee better performance in tabular datasets (Gor-
ishniy et al., 2021; Rubachev et al., 2022; Grinsztajn et al.,
2022; Gorishniy et al., 2022; McElfresh et al., 2023). To
determine the depth and width of fe in the case of MLP,
we identify the optimal configuration based on validation
performance in the supervised setup, i.e., only the encoder
with a linear head is trained with the supervised loss, en-
suring the unsupervised nature of our framework. In the
case of FT-Transformer and T2G-Former, we use the de-
fault setup from the original paper. For the decoder fd,
we always employ the MLP architecture as the same as
the MLP-type encoder network. Consequently, all cases
for each dataset have been trained on the same architec-
ture and optimization setups. A detailed description is
provided in Supplementary B. For a given network and
dataset, we also investigate the masking probability pm ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and the number of
bins T ∈ {2, 5, 10, 20, 50, 100}. Then, we found the op-
timal configuration based on validation performance on
each downstream task. After SSL, we evaluate the rep-
resentations based on linear probing 10 times with differ-
ent random seeds, and an average is reported. We evaluate
the representation quality based on accuracy for classifica-
tion tasks and RMSE for regression tasks. The full results
with standard deviation are also available in Supplemen-
tary C. All experiments are conducted on a single NVIDIA
GeForce RTX 3090. The codes are available in https://
github.com/kyungeun-lee/tabularbinning.
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Table 1: Linear evaluation results for various SSL methods when the encoder network is fixed as MLP. For each method,
we also determine the performance rankings for each dataset, and the average ranks are also provided in the last column.
Best cases for each dataset are marked in bold.

(a) Binary classification (Metric: Accuracy)

Masking Replacing value SSL Objective(s) CH HI AD BM PH OS CS PO Average Rank

FALSE - ValueRecon 0.810 0.651 0.837 0.899 0.728 0.883 0.709 0.851 7.571
TRUE Const. MaskXent 0.807 0.672 0.836 0.899 0.715 0.893 0.708 0.845 7.286
TRUE Const. ValueRecon 0.810 0.653 0.839 0.900 0.734 0.884 0.718 0.849 6.429
TRUE Const. MaskXent+ValueRecon 0.817 0.669 0.835 0.900 0.724 0.877 0.706 0.837 7.714
TRUE Random MaskXent 0.814 0.681 0.843 0.901 0.710 0.883 0.706 0.853 5.429
TRUE Random ValueRecon 0.811 0.661 0.838 0.898 0.736 0.885 0.714 0.842 7.143
TRUE Random MaskXent+ValueRecon 0.804 0.647 0.826 0.899 0.715 0.879 0.713 0.861 8.571

FALSE - BinXent 0.817 0.683 0.845 0.901 0.732 0.886 0.738 0.851 3.571
FALSE - BinRecon 0.823 0.687 0.840 0.900 0.737 0.889 0.724 0.865 2.286
TRUE Const. BinRecon 0.820 0.672 0.843 0.899 0.730 0.896 0.718 0.858 3.714
TRUE Random BinRecon 0.819 0.682 0.846 0.898 0.735 0.894 0.718 0.858 3.571

(b) Multiclass classification (Metric: Accuracy)

Masking Replacing value SSL Objective(s) CO OT GE VO WQ AL HE MNIST p-MNIST Average Rank

FALSE - ValueRecon 0.769 0.776 0.527 0.619 0.568 0.931 0.353 0.965 0.928 6.333
TRUE Const. MaskXent 0.784 0.777 0.518 0.545 0.547 0.909 0.341 0.793 0.554 9.333
TRUE Const. ValueRecon 0.783 0.791 0.557 0.622 0.586 0.931 0.354 0.966 0.925 4.111
TRUE Const. MaskXent+ValueRecon 0.750 0.774 0.519 0.610 0.571 0.931 0.360 0.941 0.907 7.444
TRUE Random MaskXent 0.763 0.791 0.555 0.549 0.544 0.925 0.336 0.945 0.817 8.000
TRUE Random ValueRecon 0.761 0.782 0.538 0.625 0.573 0.930 0.357 0.956 0.934 5.556
TRUE Random MaskXent+ValueRecon 0.769 0.779 0.521 0.564 0.519 0.925 0.353 0.945 0.906 8.333

FALSE - BinXent 0.742 0.781 0.517 0.600 0.565 0.903 0.354 0.956 0.908 8.333
FALSE - BinRecon 0.784 0.783 0.544 0.625 0.592 0.935 0.357 0.964 0.950 3.556
TRUE Const. BinRecon 0.812 0.792 0.559 0.647 0.581 0.943 0.359 0.974 0.964 2.222
TRUE Random BinRecon 0.814 0.794 0.580 0.655 0.574 0.949 0.365 0.981 0.971 1.333

(c) Regression (Metric: RMSE)

Masking Replacing value SSL Objective(s) CA HO FI MI KI CPU DIA EL Average Rank

FALSE - ValueRecon 0.749 4.241 13900.720 0.784 0.163 3.876 1016.641 0.399 8.625
TRUE Const. MaskXent 0.709 4.548 13473.750 0.788 0.185 4.475 1259.744 0.396 8.875
TRUE Const. ValueRecon 0.693 4.086 13518.683 0.778 0.160 3.728 952.444 0.394 5.000
TRUE Const. MaskXent+ValueRecon 0.700 4.157 13915.875 0.775 0.174 5.644 2797.034 0.398 8.750
TRUE Random MaskXent 0.677 4.297 13826.641 0.782 0.176 3.951 1358.135 0.388 7.875
TRUE Random ValueRecon 0.713 4.127 13668.988 0.777 0.162 3.760 986.306 0.396 6.500
TRUE Random MaskXent+ValueRecon 0.701 4.136 14107.645 0.780 0.166 4.506 1917.875 0.397 8.750

FALSE - BinXent 0.690 4.116 13038.762 0.776 0.170 3.717 1207.923 0.383 4.875
FALSE - BinRecon 0.622 3.766 13453.309 0.767 0.158 3.208 897.645 0.370 2.250
TRUE Const. BinRecon 0.634 3.765 13208.133 0.773 0.158 3.156 957.801 0.371 2.375
TRUE Random BinRecon 0.619 3.703 13075.474 0.773 0.160 3.183 870.283 0.368 1.625

5.1. Comparison with the unsupervised methods:
Linear evaluation results

We first compare a series of SSL methods utilizing the same
MLP encoders for each dataset. To identify the compatibil-
ity of the binning task with other transformation functions,
we include the cases optimizing BinRecon loss with mask-
ing. Finally, we experiment with four cases to validate our
methodology; optimizing BinXent, treating bins as nom-
inal classes; optimizing BinRecon, treating bins as ordi-
nal values without any augmentation; optimizing BinRecon
with masking as constant values; and optimizing BinRecon

with masking as random values. In Table 1, four rows at
the bottom correspond to our methods.

Binary classification: First, we compare the perfor-
mance of eight datasets whose downstream task is binary
classification in Table 1a. Interestingly, we found a con-
sistent improvement when we changed the target for re-
construction loss from the raw values (ValueRecon) to
bin indices (BinRecon) while other training details were
fixed. These results indicate that learning irregular func-
tions (from continuous to discrete) is more beneficial than
learning smooth functions (from continuous to continuous)
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Table 2: Comparison with the tree-based and deep learning methods including state-of-the-art models. For baselines, we
directly reference the performance values from the papers to minimize ambiguity in selecting the hyperparameters. When
the performance is not available, we leave them blank(-). For each dataset, the best cases among deep learning methods
are marked in bold, and the second best results are underlined. SSL+Fine-tuning methods refer to the fine-tuning results of
the baseline SSL methods investigated in Section 5.1. For SSL+Fine-tuning methods corresponding to the four rows at the
bottom, we provide the best results among the combinations of various input transformations (None, Masking as constant,
Masking as random) and encoder networks (MLP, FT-Transformer, T2G-Former). Training details and full results are
provided in Supplementary C.

Training network and method Binary classification Multiclass classification Regression

HI ↑ PH ↑ OS ↑ PO ↑ CO ↑ GE ↑ VO ↑ AL ↑ HE ↑ MNIST ↑ CA ↓ HO ↓ FI ↓
Tree-based machine learning algorithms

XGBoost 0.726 0.721 0.840 0.711 0.969 0.683 0.699 0.924 0.348 0.977 0.434 3.152 10372.778
CatBoost 0.727 0.728 0.833 0.897 0.967 0.692 0.711 0.948 0.386 0.979 0.430 3.093 10636.322

Deep learning methods
MLP 0.714 0.724 0.896 0.901 0.968 0.659 0.692 0.960 0.378 0.983 0.513 3.146 10086.080
ResNet 0.688 0.728 0.885 0.795 0.729 0.484 0.550 0.220 0.229 0.826 0.706 4.004 10226.508
TabNet (Arik & Pfister, 2021; Gorishniy et al., 2021) 0.719 - - - 0.957 0.587 0.568 0.954 0.378 0.968 0.510 - -
NODE (Popov et al., 2019; Gorishniy et al., 2021) 0.726 - - - 0.958 - - 0.918 0.359 - 0.464 - -
DCN V2 (Wang et al., 2021; Gorishniy et al., 2021) 0.723 - - - 0.965 - - 0.955 0.385 - 0.484 - -
SCARF (Bahri et al., 2021) 0.585 0.710 0.878 0.838 0.654 0.325 0.289 0.731 0.050 0.801 1.084 5.595 13632.255
SAINT (Somepalli et al., 2021) 0.713 0.728 0.886 0.877 0.943 0.691 0.713 0.932 0.378 0.981 0.581 6.186 19366.582
FT-Transformer (Gorishniy et al., 2021) 0.729 0.724 0.882 0.890 0.970 0.664 0.705 0.960 0.391 0.966 0.487 3.319 10206.127
PLR (MLP-Ensemble) (Gorishniy et al., 2022) 0.734 - - - 0.970 0.674 - - - - 0.467 3.050 -
PLR (FT-T-Ensemble) (Gorishniy et al., 2022) 0.734 - - - 0.972 0.646 - - - - 0.464 3.162 -
T2G-Former (Yan et al., 2023) 0.734 0.746 0.884 0.881 0.968 0.656 0.717 0.964 0.391 0.985 0.455 3.138 10750.850
SSL(MaskXent)+Fine-tuning 0.725 0.751 0.892 0.897 0.970 0.698 0.717 0.963 0.383 0.985 0.479 3.086 10204.559
SSL(ValueRecon)+Fine-tuning 0.719 0.731 0.894 0.899 0.969 0.690 0.712 0.963 0.381 0.984 0.478 3.119 10333.400
SSL(MaskXent+ValueRecon)+Fine-tuning 0.727 0.737 0.894 0.896 0.968 0.658 0.709 0.959 0.382 0.984 0.475 3.257 10708.780

Ours – SSL(BinRecon)+Fine-tuning 0.737 0.764 0.897 0.904 0.971 0.720 0.728 0.966 0.388 0.986 0.464 2.989 9757.950

in tabular representation learning.

Multiclass classification: Next, we investigate nine
datasets whose downstream task is multiclass classification
in Table 1b. Unlike the binary classification tasks, we ob-
serve that optimizing BinRecon loss with masking consis-
tently leads to additional improvements compared to the
cases without masking, and optimizing BinXent does not
work well. These results indicate that the order informa-
tion is important for multiclass classification and BinRecon
can effectively manipulate them. Further discussion will be
provided in Section 6.

Regression: Finally, we test eight datasets whose down-
stream task is the regression in Table 1c. Since the evalu-
ation metric is RMSE, lower values correspond to better-
performing cases. Compared to other downstream tasks,
regression tasks exhibit the most significant improvements
with the binning pretext task. For instance, when com-
paring our method with the best baselines, we observed
improvements of 10.27% for HO dataset, 8.63% for DIA
dataset, and 8.57% for CA dataset.

5.2. Comparison with the supervised methods:
Fine-tuning results

We observed that the binning consistently improves the un-
supervised learning performance across the various tabu-

lar datasets and the downstream tasks. In this section,
we compare our method against the supervised meth-
ods that utilize label information throughout the train-
ing. Our supervised baselines include tree-based algo-
rithms, such as XGBoost (Chen & Guestrin, 2016) and
CatBoost (Prokhorenkova et al., 2018), recent deep learn-
ing methods and fine-tuning results from SSL methods dis-
cussed in Section 5.1. Since supervised baselines often re-
quire extensive hyperparameter tuning, we directly refer-
ence the reported performances in the papers. When the
performance has not been reported in the paper, we train
with the default setup as depicted in the paper or leave them
blank. For our methods, we first train encoder networks us-
ing the default setup with BinRecon loss in an unsupervised
manner. Then, we conduct fine-tuning on the pre-trained
encoders. The training details are provided in Supplemen-
tary C.

The results are summarized in Table 2 and Table 7, 10 in
the supplementary material. Surprisingly, our method con-
sistently outperforms both the tree-based and deep learning
methods, even though it relies solely on changing the objec-
tive function to discretized bins during pre-training. On av-
erage, we outperform XGBoost by 5.55% (max. 27.14%),
CatBoost by 2.18% (max. 8.26%), the state-of-the-art deep
learning method (T2G-Former) by 2.30% (max. 9.76%),
and the fine-tuning results of other SSL methods by 1.55%
(max. 4.38%).
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The superior performance of our method is primarily at-
tributed to its unsupervised pretraining phase, a strategy
particularly effective in deep learning and absent in tree-
based algorithms. The key to its success lies in manipu-
lating an appropriate inductive bias during pretraining. For
our method, the binning objective effectively leverages the
irregularities and mitigates the heterogeneity between the
features as described in Section 4. Thanks to the suc-
cessful implementation of this pretraining strategy, our ap-
proach achieves superior performance across a wide array
of datasets.

6. Discussion
6.1. Ablation study on the individual factor for binning

In this section, we scrutinize the individual contributions of
the components of binning, detailed in Section 4. Specif-
ically, we examine the roles of discerning the order of
samples within each feature, standardizing all features into
equal sets, and grouping similar values. BinRecon en-
capsulates all three elements while ValueRecon disregards
them completely. To dissect the influence of each factor,
we systematically eliminate them one by one from the Bin-
Recon loss as follows.

• Ordering: We shuffle the bin indices with different ran-
dom seeds for each feature.

• Standardizing into equal sets: We replace the bin indices
with the averages for each bin. Then, each feature in-
cludes different elements in different ranges.

• Grouping: We set T j = |Dj
train| for every feature. In this

case, each unique value corresponds to an individual bin,
and only the order information remains.

As shown in Table 11 in supplementary material, we found
that eliminating the standardizing factor shows the largest
performance degradation, averaging a 6.85% decrease in
15 datasets among 25. This decline is much steeper than
the effect of eliminating all three factors. From these obser-
vations, we infer that the standardizing factor which makes
all features lie on the uniform distribution with identical el-
ements is most critical for the successful implementation
of binning. We provide a more detailed discussion related
to the impact of the standardizing factor in Supplemen-
tary E.1.

6.2. Dependency between the number of bins and
downstream task performance

In this section, we investigate the relationship between
the number of bins and downstream task performance for
BinXent and BinRecon without input transformation. To

analyze results across datasets with varying ranges and
different evaluation metrics, we assess normalized perfor-
mance based on the best and worst performances among
the models that differ by the number of bins, keeping the
loss function consistent. As shown in Figure 6 in supple-
mentary material, there is no clear relationship between the
number of bins and normalized performance (Pearson cor-
relation ρ2 = 0.01, Kendall rank correlation τ = 0.16 for
BinXent, ρ2 = 0.04, τ = 0.27 for BinRecon), except that
the number of bins should be not too small, but larger is not
always better. This result is not surprising, as utilizing too
few bins can eliminate necessary information while utiliz-
ing too many bins can diminish the benefits of binning.

6.3. Bin information is not usable unless it is provided
as a pretext task

So far, we found that bin information is critical for achiev-
ing superior representations across various tabular data
problems. However, even if we do not employ bin informa-
tion as an explicit pretext task, it remains accessible from
the raw values. In this section, we evaluate how accurately
the learned representations can predict bin indices when we
optimize ValueRecon or MaskXent during SSL. To gauge
this, we measure the relative error increase against the re-
sults of BinRecon case. As shown in Table 12 in the supple-
mentary material, the prediction error is steeply increased
at an average of 66.3% when bin information is not pro-
vided. This underscores that while bin information can be
derived from the data, its utility is markedly compromised
unless it is adopted as a pretext task.

6.4. Visualization analysis

To demonstrate the superior capability of the binning task
in effectively capturing irregular functions mapping con-
tinuous inputs to discretized bin indices, compared to other
methods, we present a visualization analysis of represen-
tation vectors after SSL in Figure 4. Due to the high-
dimensional nature of the representation vectors, we im-
plement PCA for better interpretability. In the visualiza-
tion, the bin indices are represented as different colors. A
distinct pattern emerges from this analysis: the representa-
tion vectors are specifically grouped according to their bin
indices in the case of BinRecon. This pronounced cluster-
ing is not evident when other pretext tasks are employed.
These findings highlight the effectiveness of binning as a
pretext task. It demonstrates the unique capacity of this
approach to enable the encoder to accurately capture the
irregular function, distinguishing it from other methods.

6.5. Optimizing multiple loss functions during SSL

In Section 4, we introduce the potential for integrating mul-
tiple loss functions in SSL by employing various decoders
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Table 3: Comparison of fine-tuning performance for tabular SSL when applying binning as data augmentation (Randomized
Quantization, RQ) versus using binning to define output labels (Ours).

Training method HI ↑ PH ↑ OS ↑ PO ↑ CO ↑ GE ↑ VO ↑ AL ↑ HE ↑ MNIST ↑ CA ↓ HO ↓ FI ↓
RQ (Wu et al., 2023) 0.717 0.736 0.896 0.886 0.969 0.690 0.719 0.959 0.379 0.984 0.475 3.159 10398.616
Ours 0.737 0.764 0.897 0.904 0.971 0.720 0.728 0.966 0.388 0.986 0.464 2.989 9757.950

Figure 4: Visualization analysis using HO dataset. For bet-
ter interpretability, we implement PCA for the learned rep-
resentation vectors based on the different objective func-
tions, plotting the first two principal components. Colors
denote the bin indices of each sample.

that share a common input representation, z. This strategy
underlines the flexibility of our approach, though it was not
the primary focus of our current study.

Our preliminary investigations into the GE dataset re-
vealed performance gains from this multi-decoder strat-
egy. Specifically, under conditions of 2 bins and a 0.1 ran-
dom masking probability, training with a single MaskXent
or ValueRecon loss yielded linear probing performance of
0.509 and 0.553, individually. On the other hand, training
with a single BinRecon loss yielded a linear probing perfor-
mance of 0.560. Further, introducing an additional decoder
to simultaneously optimize both BinRecon and MaskXent
losses (with equal weights) or both BinRecon and ValueRe-
con losses (with equal weights) improved linear probing
performance to 0.577. These observations imply that in-
corporating binning loss with other SSL objectives such as
MaskXent could improve tabular representation learning.

6.6. Binning as an input transformation

Wu et al. (2023) introduced Randomized Quantization
(RQ) as a data-agnostic augmentation strategy for con-
trastive representation learning, which applies binning di-
rectly to the input samples. In contrast, our method pri-
marily utilizes classical binning on output labels within an
auto-encoding-based self-supervised learning framework.

To determine the more effective application of binning for
tabular representation learning, we implemented the RQ
augmentation using the official codes, following the same
experimental setups as our baseline methods, as detailed in
both the manuscript and supplementary materials. For the

hyperparameters of the RQ augmentation, we selected the
same range as our method: {2, 5, 10, 20, 50, 100}.

As summarized in Table 3, our approach consistently out-
performed the RQ method. According to Wu et al. (2023),
employing binning as an augmentation strategy leads to in-
evitable information loss within the input samples. While
in domains with inherent redundancy (e.g., images), some
information loss can be mitigated through other channels or
local patterns, the tabular domain typically lacks such com-
pensatory mechanisms. For example, in a medical dataset
predicting diabetes, reducing detail in a critical feature like
blood sugar levels cannot be compensated by other vari-
ables due to the independence of features within tabular
data. Consequently, we anticipate that employing binning
as an input transformation in the tabular domain may not
be effective, as it would lead to the systematic removal of
vital information.

7. Conclusion
In this work, we suggest a novel pretext task based on bin-
ning which can manipulate the unique properties of tabu-
lar datasets. The binning task can effectively address the
challenges in tabular SSL, including mitigating the feature
heterogeneity and learning the irregularities. Importantly,
our method focuses exclusively on modifying the objec-
tive function and is independent of specific architectures
or augmentation methods. Based on the extensive exper-
iments, we found that the binning task not only improves
the unsupervised representation learning but also is a pow-
erful pretraining strategy to achieve consistently superior
performance against the tree-based and other deep learn-
ing methods. In this study, we have uncovered the poten-
tial of leveraging the inherent properties of tabular data as
pretext tasks for SSL. However, many unique characteris-
tics remain unexplored, such as hierarchical relationships
between features. We hope our work inspires further inves-
tigations into tabular-data-specific SSL in the future.

Impact Statement
This paper contributes to advancing the field of Machine
Learning, particularly focusing on tabular data, a domain
prevalent in numerous real-world applications. Our work
holds the potential to significantly enhance data analysis
and predictive modeling across various sectors, including

9



Binning as a Pretext Task: Improving Self-Supervised Learning in Tabular Domains

healthcare, finance, and social sciences, where tabular data
is extensively used. While we believe our method can lead
to positive societal impacts, such as improved decision-
making and more efficient data processing, we also ac-
knowledge the importance of responsible use. It is crucial
to ensure that the deployment of these advanced machine
learning techniques is carried out with ethical considera-
tions and a commitment to mitigating biases. We hope this
research inspires further innovations in machine learning
while prompting continuous discussion on its ethical and
societal implications.
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A. Dataset detail
In this study, we use 25 public datasets mostly from the OpenML (Vanschoren et al., 2014) library, including the frequently
used datasets in previous studies (Yoon et al., 2020; Ucar et al., 2021; Gorishniy et al., 2021; 2022). Each dataset has
exactly one train-validation-test split, so all algorithms use the same splits as the previous studies (Gorishniy et al., 2021;
2022; Rubachev et al., 2022). We summarize the main properties of datasets in Table 4. For each dataset, we use a
predefined batch size depending on the number of training samples: 64 when the number of training samples is less than
1000, 128 when the number of training samples is larger than 1000 and less than 5000, 256 when the number of training
samples is larger than 5000 and less than 10000, 512 when the number of training samples is larger than 10000 and less
than 50000, and 1024 when the number of training samples is larger than 50000.

We regard the feature as categorical when the number of unique values in the training dataset is less than 20 (5 for AL,
MNIST, p-MNIST, MI). The categorical variables are fed into the feature tokenizer for FT-Transformer while MLP has no
additional operation for them. For MNIST and p-MNIST datasets, we ignore the features that have only one possible value
throughout the training dataset.

In this study, we introduce a new p-MNIST dataset as a simple modification of well-known MNIST dataset. In constructing
the p-MNIST dataset, we permute the pixel values across all samples based on a single, predefined order. Specifically,
we first generate a permutation of the pixel indices ([0, 783]) using a fixed random seed. This pre-determined order is
then consistently applied to the pixel values in all images within the whole dataset. The primary intention behind this
methodology is to disrupt the inherent locality present in MNIST images (i.e. nearby columns are more related), thereby
rendering the data more tabular-like, where spatial locality is less apparent or quantifiable (i.e. nearby columns are not
necessarily more related).

Table 4: Dataset summary.

Abbr. Name # Train # Validation # Test # Num # Cat Task type Batch size

CH Churn Modeling 2 6400 1600 2000 4 6 Binclass 256
HI Higgs Small (Baldi et al., 2014) 62751 15688 19610 24 4 Binclass 1024
AD Adult (Kohavi et al., 1996) 26048 6513 16281 2 12 Binclass 512
BM Bank Marketing (Moro et al., 2011) 28934 7234 9043 7 9 Binclass 512
PH Philippine (Guyon et al., 2019) 3732 933 1167 308 0 Binclass 128
OS Online Shoppers (Sakar et al., 2019) 7891 1973 2466 8 9 Binclass 256
CS German Credit dataset 3 640 160 200 20 0 Binclass 64
PO Phoneme 3458 865 1081 5 0 Binclass 128
CO Covertype (Blackard & Dean, 1999) 371847 92962 116203 44 7 Multiclass 1024
OT Otto Group Products 4 39601 9901 12376 80 13 Multiclass 512
GE Gesture Phase 6318 1580 1975 32 0 Multiclass 256
VO Volkert 5 (Guyon et al., 2019) 37318 9330 11662 147 33 Multiclass 512
WQ Wine Quality (Cortez et al., 2009) 4157 1040 1300 11 0 Multiclass 128
AL ALOI (Geusebroek et al., 2005) 69120 17280 21600 124 4 Multiclass 1024
HE Helena (Guyon et al., 2019) 62752 15688 19610 27 0 Multiclass 512
MNIST Handwritten Digit Images 50000 10000 10000 627 90 Multiclass 512
p-MNIST Permuted MNIST 50000 10000 10000 627 90 Multiclass 512
CA California Housing (Pace & Barry, 1997) 13209 3303 4128 8 0 Regression 512
HO House 16H 6 14581 3646 4557 16 0 Regression 512
FI FIFA 12273 3069 3836 28 0 Regression 512
MI MSLR-WEB10K(Fold 1) (Qin & Liu, 2013) 723412 235259 241521 131 5 Regression 1024
KI Forward kinetics of an 8 link robot arm6 5242 1311 1639 8 0 Regression 256
CPU Computer Activity Databases6 5242 1311 1639 8 0 Regression 256
DIA Diamonds 34521 8631 10788 9 0 Regression 512
EL Electricity 7 24623 6156 7695 7 0 Regression 512

2https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
3https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
4https://www.kaggle.com/c/otto-group-product-classification-challenge/data
5https://automl.chalearn.org/data
6http://www.ncc.up.pt/˜ltorgo/Regression/DataSets.html
7https://github.com/LeoGrin/tabular-benchmark
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B. Implementation details
We use the optimization strategy for SSL as follows. We do not tune any hyperparameter and the same configuration is
applied to all cases.

• Optimizer: AdamW (Loshchilov & Hutter, 2017)

• Learning rate: 1e-4

• Weight decay: 1e-5

• Epochs: 1000

• Learning rate scheduler: Cosine annealing scheduler (Loshchilov & Hutter, 2016; Goyal et al., 2017)

For the hyperparameters related to SSL, we tried pm ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and T ∈
{2, 5, 10, 20, 50, 100}. When we combine the transformation function and binning methods, to reduce the hyperparam-
eter space, we tried pm ∈ {0.1, 0.2, 0.3} and T ∈ {2, 10} for MLPs, and pm ∈ {0.1, 0.2} and T ∈ {2, 10} for FT-
Transformers. After SSL, we evaluate the pre-trained representations with the linear head. The linear head is trained with
different random seeds 10 times, and the average performance is reported.

For other state-of-the-art models, we directly reference the reported performance in the papers to reduce the ambiguity
from the random seeds or the tuning details.

B.1. MLP

For MLPs, we set the architecture when the validation performance is best under the supervised setup with the encoder
network fe after the grid search on the depth (1, 2, 3, 4, 5) and the width (128, 256, 512, 1024). The representation size is
determined as identical to the width of MLPs. The following decoder network fd is defined as symmetric with fe.

For supervised learning, we use the same configuration of SSL summarized above, except that the learning rate is 0.001
and the number of epochs is 100. We summarize the best setups for all datasets as follows.

Table 5: MLP architectures.

Depth Datasets Width Datasets

1 CH, HI, AD, BM, OS, FI, CS 128 CH, HI, AD, BM, OS, FI, MI, CA
2 MI, CPU, HE, OT, AL 256 CS, HE, KI, PH, HO
3 CA, KI, MNIST, EL 512 CPU, WQ, p-MNIST, DIA
4 WQ, p-MNIST, PH, HO, CO, GE, VO, PO 1024 CO, GE, VO, PO, MNIST, EL, OT, AL
5 DIA

B.2. FT-Transformer

We do not conduct any hyperparameter tuning for FT-Transformer, and we use the default setup defined in (Gorishniy
et al., 2021) with the number of blocks as 3. For three large-scale datasets, such as MI, MNIST, and p-MNIST, we set the
number of blocks as 1 because of the computational budget. For the representation size, we adopt the value found in MLP
cases. For fd, we use the MLP network whose architecture is the same as Table 5.

B.3. T2G-Former

We do not conduct any hyperparameter tuning for FT-Transformer, and we use the default setup defined in (Yan et al.,
2023) with the number of layers as 3, the dimension of tokens as 192, the number of heads as 8, and the activation function
as ReGLU. For the representation size, we adopt the value found in MLP cases. For fd, we use the MLP network whose
architecture is the same as Table 5.
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B.4. Linear evaluation and Fine-tuning

For linear evaluation, we use the same optimization configuration for SSL except for the learning rate of 0.01 for 100
epochs. For fine-tuning, we use the same setups of the supervised cases for 50 or 100 epochs.

C. Full results
Here, we present the comprehensive results from our manuscript, accompanied by standard deviations derived from 10
repetitions of the experiment.
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Table 7: Fine-tuning results with standard deviation based on 10 times repeated experiments. In this case, the models are
pretrained in an unsupervised fashion (i.e. optimizing BinRecon loss) and fine-tuned in a supervised fashion. For each
dataset and encoder, we experiment with various combinations of input transformation methods and the number of bins as
explained in Supplementary B. Then, we repeated the best case determined based on the validation performance.

Encoder HI ↑ PH ↑ OS ↑ PO ↑ CO ↑ GE ↑ VO ↑ AL ↑ HE ↑ MNIST ↑ CA ↓ HO ↓ FI ↓
MLP 0.717±0.001 0.738±0.009 0.897±0.000 0.893±0.004 0.969±0.000 0.673±0.004 0.728±0.001 0.963±0.001 0.388±0.001 0.986±0.000 0.502±0.002 2.989±0.015 9963.609± 23.173
FT-Transformer 0.703±0.004 0.742±0.011 0.882±0.004 0.904±0.003 0.971±0.000 0.698±0.006 0.720±0.003 0.961±0.001 0.374±0.002 0.978±0.001 0.475±0.003 3.173±0.024 9757.950±210.751
T2G-Former 0.737±0.001 0.764±0.008 0.892±0.003 0.895±0.005 0.967±0.001 0.720±0.002 0.725±0.001 0.966±0.001 0.378±0.002 0.985±0.000 0.464±0.001 3.144±0.041 10155.818±132.559

Table 8: Fine-tuning results using a fixed set of hyperparameters across all datasets (encoder network: T2G-Former, input
transformation: random masking with a 0.2 ratio, and the number of bins=10). In this case, the models are pretrained
in an unsupervised fashion (i.e. optimizing BinRecon loss) and fine-tuned in a supervised fashion. Even with these fixed
parameters, our method maintains a competitive edge over baseline approaches, thereby affirming the intrinsic strength and
adaptability of our approach. Specifically, under this setting, our method still showcases notable performance improve-
ments across a range of datasets, reaffirming its effectiveness beyond the scope of extensive hyperparameter optimization.

Encoder HI ↑ PH ↑ OS ↑ PO ↑ CO ↑ GE ↑ VO ↑ AL ↑ HE ↑ MNIST ↑ CA ↓ HO ↓ FI ↓ Average Rank

XGBoost 0.726 0.721 0.840 0.711 0.969 0.683 0.699 0.924 0.348 0.977 0.434 3.152 10372.778 3.462
SSL+Finetuning(T2G-Former, Random masking(0.2), MaskXent) 0.714 0.733 0.872 0.895 0.925 0.708 0.705 0.960 0.365 0.983 0.551 3.174 10201.881 2.692
SSL+Finetuning(T2G-Former, Random masking(0.2), ValueRecon) 0.719 0.727 0.870 0.892 0.874 0.673 0.713 0.762 0.343 0.982 0.474 3.310 10434.967 4.000
SSL+Finetuning(T2G-Former, Random masking(0.2), MaskXent+ValueRecon) 0.721 0.757 0.873 0.891 0.839 0.657 0.699 0.958 0.351 0.983 0.478 3.101 10063.307 3.000
Ours(T2G-Former, Random masking(0.2), Bin=10, BinRecon) 0.734 0.773 0.880 0.895 0.965 0.699 0.728 0.963 0.380 0.983 0.469 3.193 10006.578 1.462

We also summarize the detailed training setups for the best cases in Table 7 as follows.

Table 9: Training setups for the best cases in Table 7.

Datasets HI PH OS PO CO GE VO AL HE MNIST CA HO FI

Encoders T2G-Former T2G-Former MLP FT-Transformer FT-Transformer T2G-Former MLP T2G-Former MLP MLP T2G-Former MLP FT-Transformer
Input transformation Masking(Random) Masking(Random) None Masking(Random) Masking(Const.) Masking(Random) Masking(Const.) Masking(Random) Masking(Random) Masking(Random) Masking(Const.) Masking(Random) Masking(Const.)
Masking probability (pm) 0.1 0.2 - 0.1 0.2 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.2
Number of bins 2 10 2 10 10 10 10 10 2 10 10 2 2
Fine-tuning epochs 50 50 50 50 100 100 100 100 100 100 50 100 100

Here are the results for the other list of datasets, not included in Table 2. Again, we found that the binning method
consistently outperforms other methods.

Table 10: Fine-tuning results for the other list of datasets, not included in Table 2.

Training network and method Binary classification Multiclass classification Regression

CH ↑ AD ↑ BM ↑ CS ↑ OT ↑ WQ ↑ p-MNIST ↑ MI ↓ KI ↓ CPU ↓ DIA ↓ EL ↓
Tree-based machine learning algorithms

XGBoost 0.859 0.875 0.903 0.710 0.827 0.632 0.978 0.742 0.128 15.437 564.547 0.293
CatBoost 0.861 0.873 0.907 0.750 0.825 0.659 0.980 0.741 0.090 2.668 531.584 0.291

Deep learning methods
MLP 0.838 0.851 0.902 0.666 0.810 0.629 0.980 0.753 0.072 2.764 563.123 0.354
ResNet 0.827 0.842 0.903 0.750 0.745 0.570 0.806 0.769 0.160 3.517 919.240 0.409
FT-Transformer (Gorishniy et al., 2021) 0.831 0.836 0.904 0.676 0.796 0.618 0.957 0.746 0.073 2.746 538.575 0.350
T2G-Former (Yan et al., 2023) 0.863 0.860 0.903 0.681 0.819 0.599 0.980 0.754 0.069 2.708 544.061 0.350
SSL(RQ)+Fine-tuning 0.843 0.852 0.900 0.695 0.812 0.627 0.978 0.757 0.073 2.709 530.547 0.346
SSL(MaskXent)+Fine-tuning 0.841 0.849 0.904 0.713 0.816 0.639 0.978 0.753 0.071 2.786 538.677 0.338
SSL(ValueRecon)+Fine-tuning 0.837 0.851 0.904 0.681 0.816 0.631 0.978 0.753 0.072 2.688 541.866 0.347
SSL(MaskXent+ValueRecon)+Fine-tuning 0.836 0.848 0.902 0.725 0.815 0.628 0.978 0.752 0.071 2.712 576.607 0.344

Ours – SSL(BinRecon)+Linear eval/Fine-tuning 0.843 0.857 0.910 0.774 0.817 0.648 0.982 0.750 0.068 2.686 531.458 0.339
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D. Additional results for discussion
D.1. Comparing the binning method between the quantiles and the equal-width

We found that the grouping is critical for implementing the binning task successfully. Instead of quantile-based binning in
our method, we also can manipulate equal-width binning. Here, we experiment with which method can be more beneficial
for binning between the quantile and fixed size. We test the same candidates for the number of bins for equal-width binning,
and we compare the test performance when the validation performance is the best with the quantile-based ones.
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Figure 5: Relative performance when we change the binning method to the equal-width from the quantiles. When the
values are positive, the quantile-based binning is better than the equal-width binning. When the values are negative, vice
versa. In particular, for regression tasks, the quantile-based binning is much better than the equal-width binning.

The results are described in Figure 5. Among 25 datasets, equal-width binning showed better performance for three datasets
(PH, HE, MNIST) to the extent of 0.6% at the maximum, and two binning methods showed comparable performance for
two datasets (OT, AL). For the other 20 datasets, quantile-based binning showed better performance. In particular, for
regression tasks, we found that the performance degrades 27% as the maximum when we change the binning method from
quantile to fixed size. Finally, we conclude that quantile-based binning consistently results in good representations across
various datasets.

D.2. Dependency between the number of bins and downstream task performance

We investigate the relationship between the number of bins and downstream task performance for BinXent and BinRecon
without input transformation. Because the performance range is quite different between the datasets, we normalize the
performance with the best and worst cases for each dataset. This approach allows us to normalize performance metrics
across datasets with varying ranges and different evaluation metrics. Specifically, we assess the best and worst performance
among six models that differ by the number of bins (2, 5, 10, 20, 50, 100), keeping the loss function (BinXent, BinRecon)
consistent. Consequently, the normalized scale sets the best-performing case to 1 and the worst-performing case to 0.
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Figure 6: Empirical analysis on the dependency between the number of bins and the downstream task performance.
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D.3. Results for Section 6

Table 11: Ablation test results on individual components of binning.

Ordering Standardizing Grouping Improved Deteriorated

Yes Yes Yes - (Baseline) - (Baseline)
No Yes Yes 1 (+4.70%) 12 (−4.05%)
Yes No Yes 1 (+5.21%) 15 (−6.85%)
Yes No No 3 (+1.95%) 12 (−5.83%)
No No No - 18 (−6.02%)

Table 12: Binning regression task performance on various SSL methods. We provide the relative error with the baseline
of the BinRecon case. For all cases, the error is increased by at least 38%. As a result, the binning indices are achievable
from the raw inputs but not usable in the resulting representations when we do not explicitly provide as the pretext targets.

Masking Masking value Objective(s) Relative error increase (%)

False - BinRecon (Baseline) 0

False - ValueRecon 49.579
True Const. MaskXent 82.922
True Const. ValueRecon 38.444
True Const. MaskXent+ValueRecon 68.344
True Random MaskXent 111.708
True Random ValueRecon 38.135
True Random MaskXent+ValueRecon 60.016

Average 66.285

D.4. Additional results for Section 6.6

Table 13: Comparison of fine-tuning performance for tabular SSL when applying binning as data augmentation (Random-
ized Quantization, RQ) versus using binning to define output labels (Ours).

Training method HI ↑ PH ↑ OS ↑ PO ↑ CO ↑ GE ↑ VO ↑ AL ↑ HE ↑ MNIST ↑ CA ↓ HO ↓ FI ↓
RQ (Wu et al., 2023) 00.717±0.002 0.736±0.005 0.896±0.002 0.886±0.004 0.969±0.000 0.690±0.007 0.719±0.003 0.959±0.000 0.379±0.001 0.984±0.001 0.475±0.002 3.159±0.030 10398.616± 28.659
Ours 0.737±0.001 0.764±0.008 0.897±0.000 0.904±0.003 0.971±0.000 0.720±0.002 0.728±0.001 0.966±0.001 0.388±0.001 0.986±0.000 0.464±0.001 2.989±0.015 9757.950±210.751

E. Additional descriptions
E.1. Impact on uninformative features

Müller et al. (2021) and Stewart et al. (2023) demonstrated that incorporating discretization into the objective function of
deep networks not only improves training efficiency but also proves to be a theoretically sound method for modeling any
distribution. This underlines the significant potential of binning to enhance neural network performance. We propose that
one key advantage of binning is its ability to simplify the dataset into T distinct values per feature, creating equal sets
among all features. This property helps prevent uninformative features—those with low mutual information with the task
label but potentially high entropy due to variance or a large number of unique values—from dominantly influencing the
training process.

In scenarios where tabular SSL is applied using straightforward reconstruction loss, neural networks might inadvertently
focus more on features characterized by their high variability(frequency) or unique value counts. This phenomenon, more
pronounced in tabular data as noted in recent studies (Beyazit et al., 2023; Cherepanova et al., 2024), suggests that training
could be skewed towards these high-frequency yet less informative features. By substituting output labels with bin indices
during SSL, our method explicitly constrain all the features to regress on the SSL outputs with same frequency or same
variability. Thus, it effectively circumvents that any specific feature from dominating during SSL, ensuring that such
uninformative features do not overshadow the learning of meaningful representations.
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