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ABSTRACT

We study the implicit bias of sharpness-aware minimization (SAM) when training
L-layer linear diagonal networks on linearly separable binary classification. For
linear models (L = 1), both ℓ∞- and ℓ2-SAM recover the ℓ2 max-margin clas-
sifier, matching gradient descent (GD). However, for depth L = 2, the behavior
changes drastically—even on a single-example dataset. For ℓ∞-SAM, the limit
direction depends critically on initialization and can converge to 0 or to any stan-
dard basis vector, in stark contrast to GD, whose limit aligns with the basis vector
of the dominant data coordinate. For ℓ2-SAM, we show that although its limit
direction matches the ℓ1 max-margin solution as in the case of GD, its finite-time
dynamics exhibit a phenomenon we call sequential feature discovery, in which
the predictor initially relies on minor coordinates and gradually shifts to larger
ones as training proceeds or initialization increases. Our theoretical analysis at-
tributes this phenomenon to ℓ2-SAM’s gradient normalization factor applied in its
perturbation, which amplifies minor coordinates early and allows major ones to
dominate later, giving a concrete example where infinite-time implicit-bias analy-
ses are insufficient. Synthetic and real-data experiments corroborate our findings.

1 INTRODUCTION

Modern deep networks often generalize well despite extreme over-parameterization. One explana-
tion emphasizes the geometry of the objective: models perform better when optimization settles in
flatter regions of the landscape (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016; Neyshabur
et al., 2017; Jiang et al., 2019). Motivated by this view, Foret et al. (2020) introduce Sharpness-
Aware Minimization (SAM), which seeks parameters that minimize the worst-case loss within a
small neighborhood. Following its empirical success (Chen et al., 2021; Bahri et al., 2021; Kaddour
et al., 2022a), various theoretical works have analyzed SAM’s implicit bias to understand its effec-
tiveness (Andriushchenko & Flammarion, 2022; Behdin & Mazumder, 2023a; Zhou et al., 2025).
However, these analyses primarily apply to scenarios with attainable finite minimizers (e.g., squared
loss), leaving open the case of losses whose infimum lies at infinity (e.g., logistic loss).

We consider the implicit bias of SAM when training L-layer linear diagonal networks on linearly
separable classification datasets with logistic loss. We study two variants of SAM, ℓ∞-SAM and
ℓ2-SAM, named after the norm defining their local perturbation (See Section 2). For L = 1 (linear
models), gradient descent (GD) is known to converge in direction to the ℓ2 max-margin classi-
fier (Soudry et al., 2018). For both ℓ∞-SAM and ℓ2-SAM, we show that they also align with the
same limit direction. Thus, SAM does not change the implicit bias here, as shown in Figure 1a.

However, for 2-layer diagonal linear networks, we find that the trajectory of the linear coefficient
vector β(t) under both ℓ∞- and ℓ2-SAM can differ substantially from the maximum ℓ1-margin
implicit bias of GD (Gunasekar et al., 2018b). In Figure 1b, we consider a toy separable dataset
{(µ,+1)} with µ = (1, 2). In this case, the ℓ1 max-margin direction is e2 = (0, 1), the standard
basis vector for the major component of µ. As predicted, all GD trajectories and some SAM trajec-
tories show increasing alignment of β(t) with e2. However, for some initializations, we observe that
some trajectories of β(t) under ℓ∞-SAM and ℓ2-SAM instead converge to zero, or even align with
e1 = (1, 0)—a seemingly paradoxical implicit bias favoring the minor feature rather than the major
one. It is interesting that the addition of a single layer—from L = 1 to L = 2—introduces this
peculiar behavior of SAM different from GD, even for the simple setting: linear diagonal networks
trained with a single example.
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Figure 1: Trajectories of the predictor β(t) ∈ R2 from identical initial conditions under discrete
GD, ℓ∞-SAM and ℓ2-SAM on {(µ,+1)} with µ = (1, 2). We used η = 0.3 and ρ = 1 for SAM.

1.1 SUMMARY OF OUR CONTRIBUTIONS

We analyze the optimization trajectory and implicit bias of ℓ∞-SAM and ℓ2-SAM in L-layer linear
diagonal networks trained on linearly separable data with logistic loss. For theoretical analysis, we
analyze the evolution of the linear coefficient β(t) of the linear diagonal network under continuous-
time versions of SAM, ℓ∞-SAM flow and ℓ2-SAM flow. We characterize their limit directions,
obtained when training on general linearly separable data, and their pre-asymptotic behavior before
aligning with the limit directions, analyzed on a single-example dataset {(µ,+1)}.
• Depth 1 (linear). For linear models (L = 1), both ℓ∞-SAM flow and ℓ2-SAM flow have the same
ℓ2 max-margin implicit bias as GD on linearly separable data; in the single-example setting, we
further show that the ℓ∞-SAM coincides exactly with the GD trajectory.

• Depth L, ℓ∞-SAM. For L ≥ 2 and ℓ∞-SAM flow, we characterize the coordinate-wise trajectory
of β(t) determined by the relative scale of each coordinate at initialization and the perturbation
radius of ℓ∞-SAM (Theorem 3.2). For almost all initializations, β(t) diverges and its limit direc-
tion is one of the standard basis vectors e1, . . . , ed or it converges to a finite point (Corollary 3.5).
Compared to GD, the limit direction of ℓ∞-SAM becomes more sensitive to initialization.

• Depth 2, ℓ2-SAM. For L = 2 and ℓ2-SAM flow, we first prove that the limit direction (if con-
vergent to zero loss) is the ℓ1 max-margin solution (Theorem 4.2); however, this infinite-time
characterization does not explain our observation from Figure 1b. We empirically investigate the
finite-time trajectory of β(t) and identify the sequential feature discovery phenomenon, in which
β(t) initially relies on minor coordinates and gradually shifts to larger ones as t increases or ini-
tialization scale grows. We provide a theoretical explaination of both time-wise (Theorem 4.4) and
initialization-wise (Theorem 4.5) aspects of the phenomenon. This example shows that focusing
only on the t → ∞ limit can overlook aspects of the training dynamics. SAM provides a clear
instance where a finite-time view is essential to understanding how its implicit bias emerges.

• In Appendix E, we present synthetic and real-data experiments to corroborate our findings.

1.2 RELATED WORK

Implicit Bias of GD on Linear Diagonal Networks. Soudry et al. (2018) show that under linearly
separable data with logistic loss, the weight of a linear model diverges while the direction converges
to the ℓ2 max-margin classifier. For linear diagonal networks, gradient descent biases toward sparse
predictors (Gunasekar et al., 2018b), with 2-layer models converging to ℓ1 max-margin direction un-
der the assumption of directional convergence. This directional convergence has later been formally
established for gradient flow (Ji & Telgarsky, 2020), supporting the validity of this assumption.
Subsequent papers have studied linear diagonal networks in sparse regression, in which initializa-
tion scale governs the implicit bias: large initialization favors ℓ2-type bias, while small initialization
favors ℓ1-type sparsity (Woodworth et al., 2020; Yun et al., 2020; Moroshko et al., 2020). Stochas-
tic gradient descent (SGD)’s noise provides implicit regularization toward sparser solutions (Pesme
et al., 2021), amplified at large learning rates (Even et al., 2023). Nacson et al. (2022) show that
large GD step sizes push solutions out of the kernel regime, enabling sparse solutions. Beyond GD
and SGD, recent works analyze implicit bias in diagonal linear networks through mirror-flow and
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related continuous-time formulations (Jacobs et al., 2025; Wang & Klabjan, 2024; Papazov et al.,
2024; Jacobs & Burkholz, 2024); we provide a brief overview in Appendix A.2.1. Prior work on
small-initialization GD under squared loss in the same diagonal network setting shows incremental
saddle-to-saddle learning dynamics, where coordinates become active in discrete stages as the pre-
dictor moves between saddles (Berthier, 2023; Pesme & Flammarion, 2023). We provide a detailed
comparison between our setting and these saddle-to-saddle dynamics in Appendix A.2.2.

Properties of Sharpness-Aware Minimization. Motivated by the relationship between sharp-
ness and generalization (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016; Jiang et al., 2019;
Neyshabur et al., 2017), Foret et al. (2020) propose SAM. SAM exhibits distinctive valley-bouncing
dynamics (Bartlett et al., 2022; Wen et al., 2022) and convergence instability near local minima (Si
& Yun, 2023; Kim et al., 2023). SAM prefers low-rank solutions (Andriushchenko et al., 2023),
with its normalization term playing a crucial role (Dai et al., 2023). Extensive empirical work has
demonstrated the superior performance of SAM and its variants across various tasks and architec-
tures (Sun et al., 2024; Kwon et al., 2021; Li et al., 2024b; Liu et al., 2022; Yun & Yang, 2023;
Bahri et al., 2021; Zhuang et al., 2022; Kaddour et al., 2022b). Complementing these empirical
findings, theoretical work has analyzed SAM’s optimization dynamics, generalization, and implicit
bias (Li et al., 2024a; Behdin & Mazumder, 2023b; Zhang et al., 2024; Agarwala & Dauphin, 2023;
Wen et al., 2023; Long & Bartlett, 2024; Zhou et al., 2024; Springer et al., 2024; Baek et al., 2024;
Chen et al., 2023), including results in simplified settings such as diagonal linear networks on MSE
loss (Andriushchenko & Flammarion, 2022; Clara et al., 2025). A more detailed discussion of these
diagonal-network results of SAM is deferred to Appendix A.2.3.

2 PRELIMINARIES

Notation. We write the i-th standard basis vector as ei. For n ∈ N, let [n] = {1, · · · , n}.
For a vector v ∈ Rd, we denote its coordinates by v = (v1, · · · , vd). For any block vector
Z = (z(1), . . . ,z(L)) ∈ (Rd)L, we denote its ℓ-th block by Z(ℓ) := z(ℓ) ∈ Rd. For a, b ∈ Rd, a⊙b
denotes the element-wise product; for a collection {a(ℓ)}Lℓ=1, we write

⊙L
ℓ=1 al := a(1)⊙· · ·⊙a(L).

Model. We consider L-layer linear diagonal networks, a simple family of homogeneous networks
widely used for the study of implicit bias (See Section 1.2). Let θ = (w(1), . . . ,w(L)) ∈ (Rd)L be
the parameter vector. For x ∈ Rd, let the linear coefficient vector β(θ) and output f(x) be

β(θ) :=
⊙L

ℓ=1
w(ℓ) ∈ Rd, f(x) := ⟨β(θ),x⟩.

Data and Loss. We consider the standard supervised learning setting where a binary classification
dataset {(xi, yi)}Ni=1 is given. Let the logistic loss be ℓ(u) = log (1 + exp(−u)). Then the training
loss function is defined as L(θ) := 1

N

∑N
i=1 ℓ(yi⟨β(θ),xi⟩). We write the gradient of L with

respect to θ in a block form, as∇L(θ) = (∇w(1)L(θ), . . . ,∇w(L)L(θ)).
Optimization Algorithms. In this paper, we mainly consider the implicit bias of Sharpness-Aware
Minimization (SAM, Foret et al. (2020)) and how depth causes it to deviate from the baseline
algorithm, gradient descent (GD). At iteration t, a GD update reads θ(t+1) := θ(t)−η∇L(θ(t)),
where η > 0 is called the step size or learning rate.

On the other hand, SAM updates parameters by evaluating the gradient at a perturbed one:

θ̂(t) := θ(t) + εp(θ(t)), θ(t+ 1) := θ(t)− η∇L(θ̂(t)),
where the perturbation εp(θ(t)) is the approximate worst-case direction inside the ℓp-ball of per-
turbation radius ρ > 0: εp(θ) := argmax∥ε∥p≤ρ ε

⊤∇L(θ). We refer to θ̂ as the ascent point.
Since θ = (w(1), . . . ,w(L)) has a block structure, we also write θ̂ =

(
ŵ(1), . . . , ŵ(L)

)
and

εp(θ) = (ε
(1)
p (θ), . . . , ε

(L)
p (θ)) so that we can say ŵ(i) = w(i) + ε

(i)
p (θ). For p = 2 and ∞,

the perturbation εp(θ) has clean closed-form solutions:

ε2(θ) := ρ ∇L(θ)
∥∇L(θ)∥2

, ε∞(θ) := ρ sign(∇L(θ)),

and we consider the two variants, referred to as ℓ2-SAM when p = 2 and ℓ∞-SAM when p = ∞.
For p =∞, the maximizer is not unique when a coordinate of the gradient is zero. To make sure that
the update is uniquely determined, we adopt the convention sign(0) := 0, applied coordinate-wise.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Continuous-time Flows. In the study of optimization algorithms, it is often useful to reduce the
original discrete-time updates of an optimizer to a corresponding continuous-time flow. Unless
the step size is too large, continuous-time flows offer a good approximation of the discrete-time
optimizers, while allowing for clean and simplified analyses.

For GD, a common continuous-time counterpart is gradient flow (GF): θ̇(τ) = −∇L(θ(τ)). With
gradient flow, the analysis of GD trajectory boils down to solving an ordinary differential equation
(ODE). Likewise, we define and study the flow counterparts of SAM, governed by the ODE

θ̇(τ) = −∇L(θ̂(τ)). (1)

Depending on the choice of norm, we will use the terms ℓ∞-SAM flow and ℓ2-SAM flow to refer
to the continuous-time versions of SAM. Figure 6 in Appendix A.1 plots the trajectory of ℓ∞-SAM
flow and ℓ2-SAM flow under the same setup of Figure 1. We observe that the trajectories stay
almost the same and the surprising implicit bias of SAM carries over to SAM flows. Hence, we aim
to understand this unusual behavior of SAM by studying the corresponding SAM flows.

Rescaled Flows. As shown in Appendix A.3, for the special case of single-example dataset
{(µ,+1)}, the ℓp-SAM flow (p = 2,∞) of the i-th layer weight follows the same spatial trajectory
as the following rescaled ℓp-SAM flow:

ẇ(i)(t) = µ⊙
(⊙

ℓ ̸=i

(
w(ℓ)(t) + ε(ℓ)p (θ(t))

))
, (2)

obtained by taking out the loss derivative −ℓ′(⟨β(θ̂(t)),µ⟩) > 0 from the original ℓp-SAM flow.
Note that the original ℓp-SAM flow (1) and the rescaled flow in (2) differ only by a reparameteriza-
tion of time. Let worig(torig) denote the original SAM flow and w(t) the rescaled flow. Then there
exists a strictly increasing map torig = τ(t) such that worig(τ(t)) = w(t). Applying the chain rule
yields the relation

dw

dt
=
dworig

dτ

dτ

dt
= − ∇L(ŵ(t))

ℓ′(β(θ̂(t))⊤µ)
,

dτ

dt
= − 1

ℓ′(β(θ̂(t))⊤µ)
.

Since ℓ′(u) ↑ 0 as u→∞, the rescaled flow accelerates time in the large-margin regime. Formally,

τ(t) =

∫ t

0

− 1

ℓ′(β(θ̂(s))⊤µ)
ds.

The rescaled flow makes the analysis easier due to the omitted term. Since our goal is to gain a
better understanding of the spatial trajectory, we study the rescaled SAM flows in our analysis.

Directional Convergence. Let β : [0, Tmax) → Rd be a trajectory with maximal existence time
Tmax ∈ (0,∞]. We say that β(t) converges in direction if the limit β̄∞ = limt→Tmax

β(t)
∥β(t)∥ exists.

In this case, β̄∞ is called the limit direction of β.

3 SAM WITH ℓ∞-PERTURBATIONS

We begin with ℓ∞-SAM. For single-example data, its counterpart—rescaled ℓ∞-SAM flow—has
the nice property that each coordinate evolves independently, enabling an exact characterization of
the trajectory for any depth L.

3.1 DEPTH-1 NETWORKS

We start with the depth-1 case, in which the implicit bias of ℓ∞-SAM coincides with that of GD.
Theorem 3.1. For almost every dataset which is linearly separable, any perturbation radius ρ
and any initialization, consider the linear model f(x) = ⟨w,x⟩ trained with logistic loss. Then,
ℓ∞-SAM flow converges in the ℓ2 max-margin direction.

The proof is deferred to Appendix C.1. Since Theorem 3.1 holds for any ρ, it also recovers the
implicit bias of GF. While Theorem 3.1 characterizes the limit direction for almost all linearly sepa-
rable datasets, Theorem C.1 shows that, for the single-example data, the ℓ∞-SAM flow follows the
same trajectory as GF. The yellow lines in Figure 6a depict the flows. As t→∞, w(t) converges in
direction to the ℓ2 max-margin direction µ. Hence, when L = 1, GD and ℓ∞-SAM share the same
bias toward the ℓ2 max-margin solution, independent of the initialization.
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3.2 DEEPER NETWORKS (L ≥ 2).

To isolate the depth-induced implicit bias of SAM from effects of data-point configuration, we
analyze the minimalist separable dataset Dµ := {(µ,+1)} with feature vector µ ∈ Rd satisfying
0 < µ1 < · · · < µd; without loss of generality, we assume this monotone ordering of µi’s.

In the multi-point setting, as w(t) diverges the SAM perturbation becomes asymptotically negligi-
ble, so SAM and GD share the same long-term behavior. The regime where they differ is precisely
when the ρ-perturbation is non-negligible, but in the multi-point case the resulting gradients (and
thus SAM updates) become considerably complex for a tractable characterization of the SAM flow
in the regime where SAM and GD diverge. This motivates our focus on the single-example dataset
Dµ = {(µ,+1)}, where the SAM dynamics admit a tractable dynamical characterization while
still capturing depth-dependent phenomena unique to SAM. In Appendix C.5, we empirically verify
that these behaviors persist under multi-point datasets and discrete SAM updates, indicating that our
insights extend beyond the single-point setting.

In contrast to the depth-1 case, for deeper (linear diagonal) networks, the implicit bias of ℓ∞-SAM
differs from GD. For example, when L = 2, while GD always aligns with the major feature,
ℓ∞-SAM can favor minor features depending on the initial condition. For L ≥ 3, we show that
the implicit bias of ℓ∞-SAM is more sensitive to initialization than GD, in the sense that a wider
range of initialization leads to solutions focusing on minor features. The next theorem characterizes
the trajectory selected by the flow for different choices of initialization.
Theorem 3.2. For i ∈ [L], suppose w(i)(0) = α ∈ Rd+. Let w(i)(t) follow the rescaled ℓ∞-SAM
flow (2) with perturbation radius ρ > 0 on the dataset Dµ. Then, for the j-th coordinate of β(t):

• If αj < ρ, then βj(t) converges to 0 if L is even, or ρL if L is odd.

• If αj = ρ, then βj(t) = ρL for all t ≥ 0.
• If αj > ρ and L = 2, then βj(t) grows exponentially: βj(t) = Θ(exp(2µjt)).

• If αj > ρ and L > 2, let J := argmaxj:αj>ρ µj(αj − ρ)L−2, and also let T :=
mink∈J 1/(L−2)µk(αk−ρ)L−2. If j ∈ J , then βj(t) → ∞ as t → T ; otherwise, βj(t) stays
bounded for all t < T .

We provide the proof of Theorem 3.2 in Appendix C.2. The behavior of each coordinate βj(t)
is completely determined by whether the initialization αj lies below, at, or above the threshold ρ.
In each of these three regimes, βj(t) is monotone in t. Recall that ε∞(θ) := ρ sign(∇L(θ)).
For Dµ, the sign of the gradient (5) is determined coordinate-wise. Thus, the rescaled ℓ∞-SAM
flow (2) decouples across coordinates, and each βj(t) evolves independently, allowing us to state
Theorem 3.2 for each separate trajectory of βj(t).
Remark 3.3 (Interpretation of the Finite-time Blow-up). For L > 2, the rescaled ℓ∞-SAM flow
(2) exhibits finite-time blow-up: some coordinates satisfy βj(t) → ∞ as t → T . Interpreting this
phenomenon in the original SAM time scale, the blow-up corresponds to infinite time in the original
SAM flow. Indeed, as β̂(t)⊤µ→∞, we have ℓ′(β̂(t)⊤µ)→ 0−, and therefore

τ(t) =

∫ t

0

− 1

ℓ′(β̂(s)⊤µ)
ds→∞ as t→ T.

Thus, in the original SAM flow, only the coordinates in J diverge as the original time τ(t) → ∞,
while all other coordinates remain bounded.
Remark 3.4 (Interpretation of Exponential Growth). For L = 2, each coordinate βj(t) with αj > ρ
grows exponentially as t→∞. Since τ(t)→∞ as t→∞, divergence occurs on the same infinite-
time limit in both the rescaled and original ℓ∞-SAM flows. Nevertheless, because the dynamics are
obtained after a time reparameterization, the exponential rate observed in the rescaled flow should
not be directly interpreted as the actual divergence speed in the original SAM dynamics. Still, for
fixed L = 2, all coordinates share the same rescaled time, so their relative growth can be compared.
Among the coordinates with αj > ρ, the one with the largest feature weight µj dominates asymp-
totically and the ℓ∞-SAM flow therefore converges in that coordinate direction. We formalize these
conclusions for general L in the following corollary, characterizing the dominant direction.

Corollary 3.5. Under the assumptions of Theorem 3.2, let S := {j : αj > ρ} and assume S ̸= ∅.
If there is a unique maximizing index j∗ := argmaxj∈S µj(αj − ρ)L−2, then the ℓ∞-SAM flow
converges in the ej∗ direction. In particular, when L = 2, we have j∗ := argmaxj∈S µj .
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Figure 2: Trajectories β(t) from identical initializations under GF and ℓ∞-SAM flow with d = 2
and µ = (1, 2). For SAM, ρ = 1.

The proof is deferred to Appendix C.3. When L = 2 and α ∈ Rd++, setting ρ = 0 in Corollary 3.5
yields S = [d]. Hence, Corollary 3.5 recovers that the GF always aligns in the ed direction—the ℓ1
max-margin direction—regardless of the initialization.

Illustrative Example. Figure 2 shows the trajectories of β(t) under GF and ℓ∞-SAM flow with
L = 2, 3 and µ = (1, 2). Figure 2a depicts the L = 2, GF case, where GF always aligns in the e2
direction. For L = 2 and ℓ∞-SAM (Figure 2b), the plane (β1, β2) is partitioned by the thresholds
βj = α2

j = ρ2. If α2 > ρ (so 2 ∈ S), the ℓ∞-SAM flow shows directional convergence in e2
(red/blue regions). In the yellow region, 2 /∈ S and 1 ∈ S, so the limit direction is e1—the “minor”
feature. If all coordinates satisfy αj < ρ, the flow converges to 0 (purple region), by Theorem 3.2.

For L > 2 (Figures 2c and 2d), the blue regions get partitioned once more because large α1 leads
to µ1(α1 − ρ)L−2 > µ2(α2 − ρ)L−2, leading to directional convergence toward e1. Comparing
the green regions in Figures 2c and 2d shows that the slope of the boundary between blue and green
regions is steeper in ℓ∞-SAM flow than that of GF. Considering that initializations in the yellow
region also result in the limit direction e1, these together indicate that ℓ∞-SAM exhibits a greater
sensitivity to initialization and stronger implicit bias toward minor features than GD.

4 SAM WITH ℓ2-PERTURBATIONS: SEQUENTIAL FEATURE DISCOVERY

We now turn to ℓ2-SAM, which is the form most commonly used in practice.

4.1 ASYMPTOTIC BEHAVIOR ON DEPTH-1 AND DEPTH-2 NETWORKS

For depth-1 models, ℓ2-SAM converges in the ℓ2 max-margin direction regardless of initialization,
matching the implicit bias of GD and ℓ∞-SAM. We prove the following theorem in Appendix D.1:

Theorem 4.1. For almost every dataset which is linearly separable, any perturbation radius ρ and
any initialization, consider the linear model f(x) = ⟨w,x⟩ trained with logistic loss. Then, ℓ2-SAM
flow converges in the ℓ2 max-margin direction.

While Theorem 4.1 characterizes the limit direction for linearly separable datasets, Theorem D.1
shows that, for the single-example data, the ℓ∞-SAM flow follows the same trajectory as GF.

For depth-2 models, ℓ2-SAM asymptotically converges in the ℓ1 max-margin direction as the loss
converges to zero, independently of the initialization scale. This parallels the well-known behavior
of GD (Gunasekar et al., 2018b). We formalize this below, with the proof in Appendix D.3.

Theorem 4.2. For almost every dataset which is linearly separable, and any perturbation radius
ρ, consider the linear diagonal network of depth 2, f(x) = ⟨w(1) ⊙w(2),x⟩ trained with logistic
loss. Let (w(1)(t),w(2)(t)) follow the ℓ2-SAM flow with w(1)(0) = w(2)(0). Assume (a) the
loss vanishes, L(w(1)(t),w(2)(t)) → 0, (b) the predictor β(t) := w(1)(t) ⊙w(2)(t) converges in
direction. Then the limit direction of β(t) is the ℓ1 max-margin direction.

Since Theorems 4.1 and 4.2 holds for any ρ, it also recovers the implicit bias of GF. We now revisit
Figure 6, which is the flow counterpart of Figure 1, and compare the trajectories with the asymptotic
directional convergence results above. First, the green lines in Figure 6a visualize the trajectories
of ℓ2-SAM flow for L = 1, and we can check that the trajectories coincide with GD’s, as expected
by theory. In the L = 2 case (Figure 6b), the green ℓ2-SAM flow curves include ones that (i) drift
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(a) Dominant index j† := argmaxj βj(t) over α and t.
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(b) Normalized βj(t)/∥β(t)∥2 for α = 0.4.

Figure 3: Rescaled ℓ2-SAM flow on Dµ with µ = (4, 5, 6, 7, 8) ∈ R5 and ρ = 1.

toward the origin, and those that (ii) initially align with e1, a direction orthogonal to the ℓ1 max-
margin direction e2. Such behaviors are not explained by Theorem 4.2. Hence, to account for what
is observed in Figure 6b, we move on to analyze the dynamics of ℓ2-SAM in finite time.

4.2 PRE-ASYMPTOTIC BEHAVIOR ON DEPTH-2 NETWORKS

We investigate the pre-asymptotic dynamics of ℓ2-SAM on depth-2 linear diagonal networks and
show that the trajectory exhibits a behavior markedly different from its asymptotic limit. This con-
trast highlights the need for a finite-time analysis to understand how the implicit bias of SAM actu-
ally emerges. In this section, we retain the toy dataset Dµ := {(µ,+1)} with µ ∈ Rd satisfying
0 < µ1 < · · · < µd. We further present experiments on multi-point datasets, discrete-time ℓ2-
SAM, and deeper models (L ≥ 3) in Appendix D.8, which confirm that the qualitative behaviors
identified in the depth-2 single-point ℓ2-SAM flow persist in these more realistic settings. Moreover,
to capture the effect of the initialization scale with a single parameter, we adopt a coordinate-wise
and layer-wise uniform initialization w(1)(0) = w(2)(0) = α1 throughout this subsection. We
additionally report similar empirical results under random Gaussian initialization in Appendix E.2.

4.2.1 SEQUENTIAL FEATURE DISCOVERY

We begin by describing a newly observed and surprising phenomenon of ℓ2-SAM—sequential fea-
ture discovery. For certain initialization scales α and times t, ℓ2-SAM first aligns with minor
features; as t increases or as α increases, the dominant coordinate transitions from minor, interme-
diate to major features. In contrast, GD selects the major feature regardless of α and t. We visualize
this using rescaled ℓ2-SAM flow in Figure 3a and show the GF and ℓ∞-SAM flow counterparts in
Figure 7. To quantify the phenomenon along the two axes—time t and initialization scale α—at
each t and α, we track the index j† = argminj βj(t) and color the grid (t, α) according to j†.
Regions where β is negligibly small are shown in gray, indicating convergence to 0. Based on the
observations from Figure 3a, we partition the initialization scale α into three regimes.

(Regime 1) Starting from any α in this range, the trajectory eventually collapses to the origin as
training proceeds; effectively no feature is expressed and the loss does not vanish.

(Regime 2) Time-wise sequential feature discovery emerges. With a fixed α chosen from this
regime and increasing t, there exists the period where the dominant coordinate index j†
increases over time, transitioning from minor to major features. As shown in Figure 3b,
j† sequentially changes from 1 to 5 over time for α = 0.4.

(Regime 3) β aligns with the major feature from the outset and maintains this alignment throughout.

Beyond the time-wise phenomenon, Figure 3a also suggests that sequential feature discovery also
happens in the α-axis. To see this, consider a fixed slice of time t and navigate through the α-axis:
for small α, the predictor β remains near the origin with no feature discovered. As α grows, the
dominant coordinate at t shifts sequentially—β1 becomes largest first, then β2, and so on. However,
this is not a fair comparison between trajectories, because Figure 3a is obtained from the rescaled
flow; each trajectory (for each α) has a different time scale.
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Nevertheless, we can compare between trajectories if we base our comparison on trajectory-wise
maxima. More concretely, we calculate the trajectory-wise most-amplified index, to understand how
the initialization scale α affects the “amplification” of minor components. For each coordinate j, we
track the ratio βj(t)/βd(t) over the entire trajectory, and define j∗(α) := argmaxj maxt βj(t)/βd(t) as
the coordinate with the greatest maximum relative amplification. In Figure 3a, for each value of α
in Regime 2, we plot the time step that attains the maximum value of βj∗(α)(t)/βd(t) in black dots; we
can clearly observe that j∗(α) increases from the minor index 1 to second-most major index d − 1
in Regime 2. We call this phenomenon initialization-wise sequential feature discovery.

4.2.2 UNDERSTANDING THE EFFECT OF ℓ2-SAM

Before analyzing sequential feature discovery, we describe the rescaled ℓ2-SAM flow for depth-2
linear diagonal networks and offer an intuitive explanation of the sequential feature discovery phe-
nomenon. With initialization w(1)(0) = w(2)(0) ∈ Rd+, we have w(1)(t) = w(2)(t) =: w(t) for
all t ≥ 0. Using this, we derive in Appendix D.2 that the rescaled ℓ2-SAM flow for w(t) reads

ẇ(t) = µ⊙
(
w(t)− ρµ⊙w(t)

nθ(t)

)
, where nθ(t) :=

√
2∥µ⊙w(t)∥22. (3)

Compared to the ρ = 0 case, the extra term scales µ ⊙ w(t) coordinate-wise by 1 − ρ µ
nθ(t)

< 1.
When nθ(t) is large (e.g., under large initialization or after sufficient training), this factor is close
to one and the dynamics becomes close to GF. When nθ(t) is small (e.g., small initialization), the
coordinate-wise scaling factor multiplies different scalars to different coordinates, some of which
can even be negative and decrease the corresponding coordinates of w(t). Notice that larger µj
leads to smaller 1− ρ µj

nθ(t)
. Thus, in the early stage of training, major features are suppressed while

minor features are comparatively amplified, yielding the observed emphasis on minor features.

4.2.3 ANALYSIS OF TIME-WISE SEQUENTIAL FEATURE DISCOVERY

We next provide a theoretical account of the time-wise sequential feature discovery. At each time t,
we analyze the instantaneous growth rate of each coordinate βj(t), viewed as a function of both t
and the initialization scale α. This reveals how the growth behavior of different coordinates evolves
across the training trajectory. In particular, we derive a coordinate-wise growth rule of βj(t), in a
form analogous to Equation (3). The proof is provided in Appendix D.4.3, and an extension to the
L-layer setting—where an analogous growth rate can be derived—is given in Appendix D.5.

Lemma 4.3. The rescaled ℓ2-SAM flow (2) is β̇j(t) = rj(t)βj(t) with rj(t) := 2µj

(
1− ρµj

nθ(t)

)
.

By Lemma 4.3, the rate rj(t) controls the instantaneous growth or decay of βj(t). For fixed t,
rj(t) is concave quadratic in µj , maximized at µj = mc(t) := nθ(t)

2ρ . Hence, indices with µj
closest to mc(t) attain the largest rj(t); coordinates with feature strength µj nearest to mc(t)
are amplified the most, while those farther away may even decay. Consequently, the trajectory of
mc(t) dictates the feature-amplification dynamics, and it exhibits three regimes depending on the
initialization scale. Recall that 0 < µ1 < · · · < µd.

Theorem 4.4. There exists a unique α1 such that α0 := ρ µ1√
2∥µ∥2

< α1 < ρ
∥µ∥4

4√
2∥µ∥2∥µ∥3

3

< α2 :=

ρµd−1+µd√
2∥µ∥2

and the trajectory of mc(t) falls into one of the following three regimes.

(Regime 1) If α < α1, then mc(t) strictly decreases for all t ≥ 0 and there exists T1 such that for
j ∈ [d], βj(t) strictly decreases for all t ≥ T1 .

(Regime 2) If α1 < α < α2, there exists T2 such that mc(T2) <
µd−1+µd

2 and mc(t) strictly
increases for all t ≥ T2.

(Regime 3) If α > α2, then mc(t) >
µd−1+µd

2 , and βd(t) has the largest growth rate for all t ≥ 0.

The proof of Theorem 4.4 is provided in Appendix D.4.5. Theorem 4.4 identifies three regimes of
the mc(t) dynamics, each corresponding to a qualitatively different pattern of feature amplification.

Regime 1. mc(t) decreases for all t ≥ 0, and reaches µ1

2 at time T1. Once mc(t) ≤ µ1

2 , every
coordinate satisfies rj(t) ≤ 0 by the form of rj(t), and thus βj(t) strictly decreases for all j ∈ [d].

8
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Regime 3. When mc(t) >
µd+µd−1

2 , the closest feature strength to mc(t) is µd, so βd(t) attains the
largest growth rate. This explains why the major feature remains dominant throughout this regime.

Regime 2. When mc(T2) <
µd+µd−1

2 , the closest index jc satisfies jc < d. At this time, the
largest growth rate is therefore achieved by the non-major coordinate βjc(T2). Since mc(t) strictly
increases for all t ≥ T2, the coordinate with the largest growth rate increases, exhibiting the time-
wise sequential feature discovery observed empirically in Section 4.2.1. In Regime 2, there also exist
instances where mc(t) initially decreases and later increases, leading to a non-monotonic sequential
feature discovery phenomenon. We discuss this in Appendix A.5.

Regime 2 also leaves a clear trace in the training loss. SAM exhibits an early plateau while it mainly
amplifies minor coordinates, and the loss drops quickly only after it shifts to major coordinates,
whereas GD shows a steadier decrease without this minor-to-major transition. The corresponding
loss curves and further explanation are given in Figure 4 and Appendix E.1.
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Figure 4: Loss curves of GD (left) and ℓ2-SAM (right) on a 2-layer diagonal network in Regime 2
(α = 0.35, µ = (1, 2, 3, 4, 5, 6), ρ = 0.1). Colored regions mark the coordinate with highest growth.

4.2.4 ANALYSIS OF INITIALIZATION-WISE SEQUENTIAL FEATURE DISCOVERY

In the previous subsection, we examined which coordinate attains the maximal instantaneous growth
rate. We now turn to the cumulative update over time and study initialization-wise sequential feature
discovery. In Theorem 4.4, we characterize the range of α (Regime 2) in which sequential feature
discovery can occur. Here, we quantify the strength of amplification within Regime 2 as a function
of α. Since a coordinate βj(t) can diverge, we assess which feature is amplified—and by how
much—via the ratio of the j-th feature to the major feature, βj(t)/βd(t). For a given initialization
scale α, we track and bound how large the amplification ratio βj(t)/βd(t) can be along the trajectory.

Integrating the rescaled ℓ2-SAM flow (3) (derived in Appendix D.6.1) yields the coordinate ODE

βj(t) = βj(0) exp
(
2µjt− 2ρµ2

jI(t)
)

where I(t) := ∫ t0 1
nθ(s)

ds for j ∈ [d]. (4)

The behavior of β in (4) is determined by I(t). Recall that nθ(t) controls the behavior of ℓ2-SAM
in Section 4.2.2 and is used to characterize the instantaneous growth rate in Section 4.2.3. Here, we
focus on cumulative updates over time, where the time integral I(t) of 1/nθ becomes decisive. By
bounding I(t), we quantify how strongly each feature is amplified relative to the major feature.
Theorem 4.5. Let α0, α2 be defined in Theorem 4.4 and α1 be the threshold from there. Suppose
α1 < α ≤ ρ µ1+µd√

2∥µ∥2
< α2. Then, for j ∈ [d], there exists Tj such that

βj(Tj)
βd(Tj)

≥ LBj(α) := exp
(
2R′

j

(
(Rj − 1) log

(
1

1−α0/α

)
+ log

(
1

α0/α

)
− C(Rj)

))
where Rj := (µj+µd)/µ1 > 2, R′

j := (µd−µj)/µ1 and C(R) := R logR− (R− 1) log(R− 1).

The proof follows from a lower bound on I(t), and is deferred to Appendix D.6.2. A numerical
illustration of LBj(α) for several choices of µ is provided in Appendix D.7. Theorem 4.5 applies to
the small-α portion of Regime 2. For each coordinate j, we select the time Tj maximizing βj(t)

βd(t)
over

the entire trajectory, and obtain a nontrivial lower bound LBj(α) for this maximal amplification.

The theorem goes beyond the qualitative picture in Figure 3a, which only identifies which coordinate
becomes dominant (the index j†). Theorem 4.5 additionally quantifies how large this dominant co-
ordinate must grow: as shown in Appendix D.7, LBj(α) often exceeds 10, indicating that the minor
to intermediate coordinates can take values more than ten times larger than the major coordinate.

Dependence on α. For all α in Regime 2, the ratio α0/α lies in (0, 1), so both logarithmic terms
in LBj(α) are positive. Since Rj > 2, the first logarithmic term dominates the exponent, making
LBj(α) grow rapidly as α → α1. Thus smaller α in Regime 2 produces stronger amplification as

9
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shown in Appendix D.7. This is substantiated by Figure 3a: smaller α in Regime 2 keeps the dy-
namics aligned with minor-intermediate features for a longer time t, leading to greater amplification.

Dependence on Feature Geometry. The coefficients Rj and R′
j increase with the spectral gap

µd/µ1, so datasets with larger feature contrast amplify more strongly as shown in Appendix D.7.

Since LBj(α) varies across j, it is natural to ask which coordinate experiences the strongest ampli-
fication. Proposition 4.6 identifies the maximizing index j∗(α), with the proof in Appendix D.6.3.
Proposition 4.6. Under the conditions of Theorem 4.5, define j∗(α) := argmaxj∈[d] LBj(α) and
set α∗

0 := α0. Then, there exist thresholds α∗
0 < α∗

1 < · · · < α∗
m ≤ ρ µ1+µd√

2∥µ∥2
for some m ≤ d − 1

such that j∗(α) = j for α ∈ (α∗
j−1, α

∗
j ].

Proposition 4.6 shows j∗(α) monotonically increases sequentially from 1 to m on α ∈ (α0, α
∗
m].

Namely, as the initialization scale α grows, the index that maximizes the lower bound LBj(α) shifts
monotonically from minor to intermediate features. This matches the initialization-wise sequential
feature discovery discussed in Section 4.2.1 (i.e., the black dots in Figure 3a). Within Regime 2, the
our theoretical bound predicts a progression of the most-amplified coordinate from 1 to m.

Lastly, through the cumulative update analysis, we characterize the asymptotic behavior of ℓ2-SAM
flow for some extreme ranges of α. We prove the following proposition in Appendix D.6.4.
Proposition 4.7. Consider α0 defined in Theorem 4.4. (i) If α < α0, then β(t) converges to zero.
(ii) If α > ρ

∥µ∥2
2√

2d(
∏d

i=1 µi)
1/d∥µ∥1

, then β(t) converge in ℓ1 max-margin direction.

Recall that Theorem 4.2 assumes that the loss vanishes and the limit direction exists. Proposi-
tion 4.7(i) shows that for small α in Regime 1, the loss never vanishes. Proposition 4.7(ii) shows
that for some α’s in Regimes 2 or 3, the limit direction exists and is the ℓ1 max-margin direction.

5 EXPERIMENTS

Our investigation shows how depth, perturbation geometry, and initialization jointly shape SAM’s
optimization trajectory. We substantiate these findings with controlled experiments: 2-layer CNNs
and linear networks on synthetic banded data, where we systematically vary the dataset construc-
tion and metrics across architectures (Appendix E.3), as well as multi-point (Appendix D.8.2) and
deeper-depth diagonal models (Appendix D.8.3). We also present experiments with practical CNNs
trained on MNIST, where we use Grad-CAM (Selvaraju et al., 2017) to visualize which image pix-
els are emphasized (Figure 5 and Appendix E.4). These experiments show that ℓ2-SAM allocates
relatively bigger emphasis to weaker/background pixels than GD, qualitatively matching our theory.

(a) GD (b) ℓ2-SAM

Figure 5: Grad-CAM comparison of GD and ℓ2-SAM on a CNN trained on MNIST. GD focuses on
dominant digit pixels, whereas ℓ2-SAM highlights minor background regions.

6 CONCLUSION

We characterize how network depth changes SAM’s implicit bias on linear diagonal networks. For
depth 1, SAM preserves GD’s implicit bias. For deeper networks (L ≥ 2) with ℓ∞-SAM, we de-
rive precise weight trajectories depending on initialization scale and perturbation radius, where each
weight coordinate either diverges toward a standard basis vector or converges to a finite point. The
most interesting regime occurs for L = 2 with ℓ2-SAM: while the limit direction converges to the
ℓ1 max-margin solution, the finite-time dynamics exhibit sequential feature discovery, where the
weight coordinate initially relies on minor coordinates and gradually shifts to larger ones. These
observations suggest that implicit bias statements made only in the t → ∞ limit can overlook im-
portant finite-time behaviors. SAM provides a concrete example where a finite-time view is essential
to see how implicit bias actually emerges.
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ideas, analyses, or conclusions. All LLM-assisted text was reviewed and edited by the authors.

A FIGURES AND DISCUSSIONS OMITTED FROM MAIN TEXT

A.1 FLOW TRAJECTORIES OF GD AND SAM
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Figure 6: Trajectories of the predictor β(t) ∈ R2 from identical initial conditions under GF, ℓ∞-
SAM flow and ℓ2-SAM flow on {(µ,+1)} with µ = (1, 2). For SAM, ρ = 1.

A.2 MORE DISCUSSION ON RELATED WORK

A.2.1 RECENT WORK ON IMPLICIT BIAS IN DIAGONAL LINEAR NETWORKS

Jacobs & Burkholz (2024) study continuous sparsification with time-varying weight decay, formu-
lating a time-dependent Bregman potential that causes the implicit bias to evolve from ℓ2- to ℓ1-type
behavior over the course of training. Wang & Klabjan (2024) study smoothed sign descent on a
quadratically parameterized regression problem, introducing a time varying mirror map. and prove
that the resulting limit point is an approximate KKT point of a Bregman-divergence–style objective,
where the stability constant ε quantifies the gap to KKT optimality. Papazov et al. (2024) analyze
momentum gradient descent on diagonal linear network through a momentum gradient flow, show-
ing that a newly defined intrinsic parameter determines the optimization trajectory and admits a
second order, time varying mirror-flow formulation. Within this framework, they characterize the
induced implicit regularization and demonstrate that smaller values of this intrinsic parameter yield
more balanced weights and sparser solutions compared to standard gradient flow. Jacobs et al. (2025)
extend the mirror flow framework to account for explicit regularization and analyze the evolution of
the corresponding Legendre function over time, thereby describing how the implicit bias changes in
different reparameterizations, including diagonal linear networks. In particular, they track how the
implicit bias evolves in terms of its positional bias, bias type, and range shrinking.

A.2.2 COMPARISON WITH SADDLE-TO-SADDLE DYNAMICS

In this section, we provide further details on the relation between our work and the saddle-to-saddle
dynamics of gradient descent/flow. Pesme & Flammarion (2023) consider diagonal linear networks
trained with squared loss in the infinitesimal-initialization limit. In this regime, gradient flow ex-
hibits incremental, stage-wise learning: the flow undergoes long plateaus near a saddle whose pre-
dictor is supported on the first k coordinates, then escapes along a low-dimensional “fast escape”
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manifold to a saddle with support on k+1 coordinates, and so on. Sequentiality thus appears as dis-
crete transitions between saddles with support size k and k+1. In the diagonal setting, complexity
is captured by the number of active coordinates, which is constant on each plateau and changes only
at these transition times.

In contrast, our work on the sequential feature discovery focuses on a linear diagonal classifier
trained with ℓ2-SAM and logistic loss, and on a different notion of complexity: individual coordi-
nates (features) ordered by the strength of the teacher signal, from minor to major features. In our
setting, all coordinates are present from the beginning. Instead of coordinate jumps, we track how the
coordinate-wise alignments and margins evolve both over time and as a function of the initialization
scale, where by “alignment” we mean the magnitude of the predictor at each coordinate, indicating
how strongly the predictor attends to each feature. We show that ℓ2-SAM gives rise to two comple-
mentary forms of sequential feature discovery: (i) a time-wise ordering, where alignment with minor
features is relatively amplified earlier in training and gradually shifts toward major features; and (ii)
an initialization-scale-wise ordering, where the most-amplified feature over a finite training process
changes systematically with the initialization scale. In both views, the ordering emerges through
a continuous evolution of the alignment across coordinates, and sequentiality is captured by which
feature is currently most amplified, rather than by discrete activation or deactivation of features.

The mechanisms underlying these two phenomena are conceptually distinct. First, saddle-to-saddle
dynamics start from the zero vector and involve successive coordinate activations, where previously
inactive coordinates become active over time. Our setting, by contrast, starts from α1 (without
taking the limit α → 0), where all coordinates are already active, and the dynamics involve suc-
cessive amplification of already-active coordinates. Activation and amplification are fundamentally
different: even if saddle-to-saddle dynamics exhibit successive activation, the identity of the most
dominant coordinate can remain unchanged, unlike in our setting where dominance itself shifts over
time.

Second, the ordering principles differ. In our work, the ordering of amplified coordinates is driven
directly by the data geometry, namely the ordering of the signal strengths µj . In saddle-to-saddle
dynamics, the progression is governed by a dual-thresholding mechanism, tied to when integrated
gradients hit constraint boundaries, and does not correspond to a minor-to-major feature progression.

Third, the role of initialization is opposite. Saddle-to-saddle dynamics arise in the vanishing-
initialization limit (α → 0). In contrast, we observe sequential feature discovery across a wide
range of non-vanishing initialization scales, and in fact show that increasing α induces a clear and
systematic amplification ordering. Our phenomenon is therefore not a small-initialization effect.

Fourth, saddle points play no constructive role in our mechanism. Aside from the trivial effect
that extremely small initialization can prevent SAM trajectories from escaping the origin, saddle
points do not drive the sequential feature discovery we characterize. The observed dynamics are not
mediated by saddle escape.

Finally, the problem setups are fundamentally different. Prior saddle-to-saddle works analyze re-
gression under squared loss, whereas our work studies classification under logistic loss, where the
optimization landscape and asymptotic behavior are qualitatively different.

Taken together, these observations indicate that sequential feature discovery is a SAM-specific phe-
nomenon, distinct from known saddle-to-saddle or incremental learning dynamics, and does not
arise under conventional gradient descent.

A.2.3 IMPLICIT BIAS OF SAM ON LINEAR DIAGONAL NETWORKS

Previous works (Andriushchenko & Flammarion, 2022; Clara et al., 2025) have studied SAM’s im-
plicit bias in diagonal linear networks. Andriushchenko & Flammarion (2022) analyze 2-layer lin-
ear diagonal networks under sparse regression with MSE loss, showing SAM induces better sparsity
than gradient descent, but require the small-ρ assumption. Clara et al. (2025) study SAM dynamics
with noise, proving weight balancing across layers and sharpness minimization, also limited to MSE
loss. Our analysis removes the small-ρ assumption to capture the full perturbation effect and studies
logistic loss, revealing distinct implicit bias properties compared to the squared loss setting.
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A.3 DERIVATION OF RESCALED ℓp-SAM FLOW

For the dataset {(µ,+1)}, the loss function is given as:

L(θ) = ℓ(⟨β(θ),µ⟩).

For each i ∈ [L], the gradient is

∇w(i)L(θ) = ℓ′
(
⟨β(θ),µ⟩

)
∇w(i)⟨β(θ),µ⟩= ℓ′

(
⟨β(θ),µ⟩

)
µ⊙

(⊙
ℓ ̸=i

w(ℓ)
)
. (5)

Then, we have the ℓp-SAM flow of w(i) as

ẇ(i)(t) = −∇w(i)L(θ̂(t)) = −ℓ′
(
⟨β(θ̂(t)),µ⟩

)
µ⊙

(⊙
ℓ ̸=i

ŵ(ℓ)(t)
)
.

Since ℓ′(u) = − 1
1+exp(u) < 0, it has the same spatial trajectory (up to reparameterization of time):

ẇ(i)(t) = µ⊙
(⊙
ℓ ̸=i

ŵ(ℓ)(t)
)
= µ⊙

(⊙
ℓ ̸=i

(
w(ℓ)(t) + ε(ℓ)p (θ(t))

))
.

This derivation works for any p, not just p = 2 and p =∞.

A.4 GD AND ℓ∞-SAM DO NOT EXHIBIT SEQUENTIAL FEATURE DISCOVERY
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Figure 7: Dominant index j† := argmaxj βj(t) for GF and ℓ∞-SAM flow over (t, α) on Dµ with
µ = (4, 5, 6, 7, 8) ∈ R5.
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A.5 INTERESTING TRAJECTORY IN REGIME 2 OF THEOREM 4.4
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(a) T = 1 (short horizon).

0 2 4 6
time t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

in
iti

al
iza

tio
n 

sc
al

e 

1
2
3
4
5
6
7
8
9
10
11
12

ar
gm

ax j
j(t

)

(b) T = 6 (long horizon).

Figure 8: Dominant index for ℓ2-SAM flow with µ = (1, 2, . . . , 12). The black line indicates the
interesting trajectory.

In Regime 2 of Theorem 4.4, there is also an interesting sub-regime that corresponds to smaller
values of α with the range of Regime 2. Define a critical threshold αcrit :=

ρ∥µ∥4
4√

2∥µ∥2∥µ∥3
3

∈ (α1, α2).

When α1 < α < αcrit, the trajectory mc(t) initially decreases to a minimum above µ1

2 and then
increases. During this decreasing phase, the ℓ2-SAM flow amplifies coordinates with smaller indices
j < jc(0) than the most-amplified index at initialization jc(0) ∈ argminj |µj −mc(0)|, enabling an
aggressive exploration of weaker features before transitioning to the standard minor-first-major-last
sequential discovery pattern. Along the black path in Figure 8, this manifests as the most-amplified
coordinate starting at β4, then stepping down to β1 sequentially during the initial decrease, and—
after sufficient time—stepping back up sequentially toward βd as mc(t) increases.
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B CORE LEMMA FOR SAM ON DEPTH-1 NETWORKS

Although our argument is inspired by the simple proof of Theorem 9 in Soudry et al. (2018), ex-
tending that analysis from gradient descent to the SAM flow is far from straightforward. In GD the
gradient has a clean exponential form and all coefficients are fixed, which makes the support/non-
support decomposition almost immediate.

In contrast, SAM evaluates the gradient at the perturbed point ŵ(t), introducing the time–dependent
factors γn(t) and the perturbed margins m̂n(t), neither of which appear in GD. Controlling these
additional terms turns out to be technically delicate: one must show that the SAM-induced coeffi-
cients remain uniformly bounded, that the perturbed margins stay within a fixed range, and that the
resulting two-variable function ψ(z, δ) admits a uniform upper bound. Only after establishing these
new ingredients can the GD-style argument be recovered. The proof below develops these steps and
shows that, despite the additional complexity, the SAM flow converges to the same ℓ2 max-margin
direction as GD.

Lemma B.1. For almost every dataset which is linearly separable, any perturbation radius ρ and
any initialization, consider the linear model f(x) = ⟨w,x⟩ trained with logistic loss. For any SAM
perturbation of the form

ŵ = w + ε(w)

with a perturbation direction ε(w) satisfying

∥ε(w)∥2 ≤ B for some finite constant B <∞ and all w,

the resulting SAM flow converges in ℓ2 max-margin direction.

Proof. Let {(xn, yn)}Nn=1 ⊂ Rd×{±1} be a linearly separable dataset, that is, there exists a vector
w∗ such that

yn x
⊤
nw∗ > 0 for all n.

As usual in this setting, we absorb the labels into the inputs and assume without loss of generality
that all labels are yn = 1. In other words, we redefine xn ← ynxn and work with a dataset {xn}Nn=1
such that

∃w∗ with x⊤
nw∗ > 0 for all n.

For the linear model f(x) = x⊤w, the logistic loss is

L(w) =

N∑
n=1

ℓ(x⊤
nw), ℓ(u) = log(1 + e−u), ℓ′(u) = − e−u

1 + e−u
.

The SAM flow with perturbation ε(w) is the gradient flow

ẇ(t) = −∇L(ŵ(t)), ŵ(t) = w(t) + ε(w). (6)

Let mn(t) = x⊤
nw(t) and m̂n(t) = x⊤

n ŵ(t). Then

∇L(ŵ(t)) = −
N∑
n=1

e−m̂n(t)

1 + e−m̂n(t)
xn = −

N∑
n=1

γn(t)e
−mn(t)xn,

with

γn(t) =
e−(m̂n(t)−mn(t))

1 + e−m̂n(t)
≥ 0.

Because ŵ(t) −w(t) = ε(w(t)) and ∥ε(w(t))∥2 ≤ B, if the data are bounded, say ∥xn∥2 ≤ R,
then

|m̂n(t)−mn(t)| = |x⊤
n (ŵ(t)−w(t))| ≤ BR =: C (7)

for all n, t. Hence there is a constant A > 0 such that

0 ≤ γn(t) ≤ A for all n, t.
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The SAM flow equation 6 can therefore be written as

ẇ(t) =

N∑
n=1

γn(t)e
−mn(t)xn, 0 ≤ γn(t) ≤ A. (8)

Let w∗ denote the ℓ2 max-margin solution

w∗ = argmin
w
∥w∥2 s.t. x⊤

nw ≥ 1 for all n.

Let S = {n : x⊤
nw

∗ = 1} be the support set. Standard KKT conditions yield coefficients bn > 0
for n ∈ S with

∑
n∈S bn = 1 such that

w∗ =
∑
n∈S

bnxn.

Define the residual
r(t) = w(t)−w∗ log t.

Our goal is to show that r(t) is bounded. This will imply that

w(t)

∥w(t)∥
=

w∗ log t+ r(t)

∥w∗∥ log t+ o(log t)
→ w∗

∥w∗∥
,

that is, the SAM flow converges in the ℓ2 max-margin direction.

Differentiating and substituting equation 8, we obtain

ṙ(t) = ẇ(t)− w∗

t
=

N∑
n=1

γn(t)e
−mn(t)xn −

w∗

t
.

We split the sum over the support and non-support points:

ṙ(t) =
∑
n∈S

γn(t)e
−mn(t)xn +

∑
n/∈S

γn(t)e
−mn(t)xn −

w∗

t
.

For n ∈ S we have x⊤
nw

∗ = 1, so

mn(t) = x⊤
nw(t) = x⊤

nw
∗ log t+ x⊤

n r(t) = log t+ x⊤
n r(t),

and therefore
te−mn(t) = e−x⊤

n r(t).

For n /∈ S we have

e−mn(t) = e−x⊤
n w∗ log t−x⊤

n r(t) = t−x⊤
n w∗

e−x⊤
n r(t).

Using w∗ =
∑
n∈S bnxn we rewrite

ṙ(t) =
1

t

∑
n∈S

bn

[γn(t)
bn

e−x⊤
n r(t) − 1

]
xn +

∑
n/∈S

γn(t)t
−x⊤

n w∗
e−x⊤

n r(t)xn. (9)

Consider the squared norm:

1

2

d

dt
∥r(t)∥2 = r(t)⊤ṙ(t) = T1(t) + T2(t),

where T1(t) and T2(t) are the contributions of the two terms in equation 9. For the non-support term
T2(t) in equation 9, we have

T2(t) =
∑
n/∈S

γn(t)t
−x⊤

n w⋆

e−x⊤
n r(t)x⊤

n r(t).

There is a margin gap θ > 0 such that x⊤
nw

∗ ≥ 1 + θ when n /∈ S. Then

t−x⊤
n w∗

≤ t−(1+θ),
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and using γn(t) ≤ A and ∀z e−zz ≤ 1, we have

T2(t) ≤
A

t1+θ
.

For the support points, write zn(t) = x⊤
n r(t) and define

δn(t) :=
γn(t)

bn
, ψn(t) =

(
δn(t)e

−zn(t) − 1
)
zn(t),

so that
T1(t) =

1

t

∑
n∈S

bn ψn(t).

We first justify that the coefficients δn(t) = γn(t)/bn remain in a fixed compact interval. By
equation 7,

|m̂n(t)−mn(t)| ≤ C.
Since

γn(t) =
e−(m̂n(t)−mn(t))

1 + e−m̂n(t)
,

and the denominator satisfies 1 + e−m̂n(t) ≥ 1, we obtain the uniform bound

0 ≤ γn(t) ≤ e−(m̂n(t)−mn(t)) ≤ eC for all n, t.

Thus each γn(t) lies in the compact interval

[0, eC ].

Next, since every bn > 0 for n ∈ S and S is a finite set, define

bmin := min
n∈S

bn > 0, bmax := max
n∈S

bn.

Therefore

δn(t) =
γn(t)

bn
=⇒ 0 ≤ δn(t) ≤

eC

bmin
for all n ∈ S and all t.

Hence δn(t) ranges over the compact interval

[δmin, δmax] =
[
0,

eC

bmin

]
.

For each fixed δ > 0, consider the function

ψ(z, δ) := (δe−z − 1)z.

As z → ±∞ we have ψ(z, δ)→ −∞, and therefore ψ(z, δ) attains a finite global maximum on R.
Since δn(t) ∈ [δmin, δmax] for all t, there exists a constant Cψ > 0 such that

ψ(z, δ) ≤ Cψ ∀z ∈ R, ∀δ ∈ [δmin, δmax].

Consequently,
ψn(t) = ψ(zn(t), δn(t)) ≤ Cψ ∀n ∈ S, ∀t,

and therefore
T1(t) ≤

C1

t
, C1 := Cψ

∑
n∈S

bn.

Combining the two bounds on T1(t), T2(t), for sufficiently large t,

1

2

d

dt
∥r(t)∥2 = T1(t) + T2(t) ≤

C1

t
+

A

t1+θ
≤ C2

t
,

for some constant C2 > 0.
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Integrating from t0 to t gives

∥r(t)∥2 ≤ ∥r(t0)∥2 + 2C2

∫ t

t0

u−1du = ∥r(t0)∥2 + 2C2 log
( t
t0

)
,

so
∥r(t)∥ = O(

√
log t) = o(log t).

Since
w(t) = w∗ log t+ r(t), ∥r(t)∥ = o(log t),

we obtain
w(t)

∥w(t)∥
=

w∗

∥w∗∥
+ o(1),

which proves
w(t)

∥w(t)∥
→ w∗

∥w∗∥2
.

Thus ℓ2-SAM flow converges in the ℓ2 max-margin direction for any initialization and any fixed
ρ > 0.
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C SAM WITH ℓ∞-PERTURBATIONS: PROOF OF SECTION 3

C.1 DEPTH-1 NETWORKS: PROOF OF THEOREM 3.1

Theorem 3.1. For almost every dataset which is linearly separable, any perturbation radius ρ
and any initialization, consider the linear model f(x) = ⟨w,x⟩ trained with logistic loss. Then,
ℓ∞-SAM flow converges in the ℓ2 max-margin direction.

Proof. Apply Lemma B.1 with ε(w) = ρ sign(∇L(θ)). Then ∥ε(w)∥2 ≤ ρ
√
d for all w, so the

conditions of Lemma B.1 hold. Thus, the flow converges to the ℓ2 max-margin direction.

Theorem C.1. Consider the linear model f(x) = ⟨w,x⟩ trained on the dataset Dµ with loss
L(w) = ℓ(⟨w,x⟩) where ℓ′(u) < 0 for all u. Then, GF and ℓ∞-SAM flow, starting from any w(0),
evolve on the same affine line w(0) + span{µ} and have the same spatial trajectory.

Proof. The model is f(x) = ⟨w,x⟩ = w⊤x. The loss is L(w) = ℓ(w⊤µ). The gradient is
∇wL(w) = ℓ′(w⊤µ) · µ with ℓ′(s) < 0.

Gradient Descent The GF is

ẇ = −∇wL(w)

= −ℓ′(w⊤µ) · µ.

SAM with ℓ∞ perturbation The ascent point is

ŵ = w + ρε∞(w)

= w + ρsign(∇wL(w))

= w − ρsign(µ).

The equation of ℓ∞-SAM flow is

ẇ = −∇wL(ŵ)

= −∇wL(w − ρsign(µ))
= −ℓ′(w⊤µ− ρsign(µ)⊤µ) · µ
= −ℓ′(w⊤µ− ρ∥µ∥1) · µ.

Therefore, they have the same spatial trajectory as:

ẇ = µ.

The term −ℓ′(w⊤µ− ρ∥µ∥1) is the accelation in terms of t since −ℓ′(s) is decreasing in s.

C.2 PROOF OF THEOREM 3.2

Theorem 3.2. For i ∈ [L], suppose w(i)(0) = α ∈ Rd+. Let w(i)(t) follow the rescaled ℓ∞-SAM
flow (2) with perturbation radius ρ > 0 on the dataset Dµ. Then, for the j-th coordinate of β(t):

• If αj < ρ, then βj(t) converges to 0 if L is even, or ρL if L is odd.

• If αj = ρ, then βj(t) = ρL for all t ≥ 0.
• If αj > ρ and L = 2, then βj(t) grows exponentially: βj(t) = Θ(exp(2µjt)).

• If αj > ρ and L > 2, let J := argmaxj:αj>ρ µj(αj − ρ)L−2, and also let T :=
mink∈J 1/(L−2)µk(αk−ρ)L−2. If j ∈ J , then βj(t) → ∞ as t → T ; otherwise, βj(t) stays
bounded for all t < T .

Proof. Since we suppose w(i)(0) = α ∈ Rd+ for all i ∈ [L], and the dynamics of the linear diagonal
network are invariant under any permutation of the layer indices {1, . . . , L}, we obtain
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w(1)(t) = w(2)(t) = · · · = w(L)(t) =: w(t) for all t ≥ 0.

With ℓ∞ perturbation, the rescaled ℓ∞-SAM flow (2) becomes

ẇ(i)(t) = µ⊙

⊙
ℓ ̸=i

(
w(ℓ)(t) + ε(ℓ)∞ (θ(t))

)
= µ⊙

⊙
ℓ ̸=i

(
w(ℓ)(t) + ρ sign(∇w(ℓ)L(θ(t)))

) .

Recall the gradient (5)

∇w(ℓ)L(θ(t)) = ℓ′
(
⟨β(θ(t)),µ⟩

)
µ⊙

⊙
ℓ̸=i

w(ℓ)(t)

 ,

where ℓ′(u) = − 1
1+exp(u) < 0. Since we also have µ > 0 (element-wise), we have

sign(∇w(ℓ)L(θ(t))) = −sign

⊙
ℓ̸=i

w(ℓ)(t)


=
(a)
−sign

(
L−1⊙
ℓ=1

w(t)

)
,

where (a) follows from the fact that w(i)(t) = w(t) for all i ∈ [L]. Using this fact again, we have
the ODE

ẇ(t) = ẇ(i)(t) = µ⊙

⊙
ℓ̸=i

(
w(t)− ρ sign

(
L−1⊙
ℓ=1

w(t)

))
= µ⊙

(
L−1⊙
ℓ=1

(
w(t)− ρ sign

(
L−1⊙
ℓ=1

w(t)

)))
.

This can be written as coordinate-wise as

ẇj(t) = µj
(
wj(t)− ρ sign

(
wj(t)

L−1
))L−1

for j ∈ [d].

Divide into three cases:

Case 1: L = 2.

ẇj(t) = µj (wj(t)− ρ sign (wj(t))) .

By Lemma C.2, we have

wj(t) =


ρ+ (wj(0)− ρ)eµjt if wj(0) > ρ,

ρ if wj(0) = ρ,

ρ+ (wj(0)− ρ)eµjt (t < T ), 0 (t ≥ T ) if wj(0) < ρ,

0 if wj(0) = 0,

where T := 1
µj

log
(

ρ
ρ−wj(0)

)
. Then, we have

βj(t) = wj(t)
L →


Θ(e2µjt) if αj > ρ,

ρL if αj = ρ,

0 if αj < ρ,

as t→∞.
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Case 2: L > 2 and L is even.

ẇj(t) = µj (wj(t)− ρ sign (wj(t)))L−1
.

By Lemma C.3, we have

wj(t) =


ρ+

(
−(L− 2)µjt+

1
(wj(0)−ρ)L−2

)− 1
L−2

if wj(0) > ρ,

ρ if wj(0) = ρ,

ρ−
(
−(L− 2)µjt+

1
(wj(0)−ρ)L−2

)− 1
L−2

(t < T ), 0 (t ≥ T ) if wj(0) < ρ,

0 if wj(0) = 0,

where T :=
(ρ−wj(0))

−(L−2)−ρ−(L−2)

(L−2)µj
. Then, we have

βj(t) = wj(t)
L →


Θ
(
(t∗ − t)−

L
L−2

)
if αj > ρ, as t→ t∗,

ρL if αj = ρ, as t→∞,
0 if αj < ρ, as t→∞,

where t∗ = 1/(L−2)µj(wj(0)−ρ)L−2

Case 3: L > 2 and L is odd.

ẇj(t) = µj (wj(t)− ρ)L−1
.

By Lemma C.4, we have

wj(t) =

ρ if wj(0) = ρ,

ρ+
(
−(L− 2)µjt+

1
(wj(0)−ρ)L−2

)− 1
L−2

if wj(0) ̸= ρ.

Then, we have

βj(t) = wj(t)
L →

{
Θ
(
(t∗ − t)−

L
L−2

)
if αj > ρ, as t→ t∗,

ρL if αj ≤ ρ, as t→∞,

where t∗ = 1/(L−2)µj(wj(0)−ρ)L−2.

These cases of L cover all possible cases in Theorem 3.2.

The following three lemmas (Lemmas C.2 to C.4) are used in the proof of Theorem 3.2 and corre-
spond, respectively, to the three cases.
Lemma C.2. Let µ > 0 and ρ > 0. Consider

ẇ(t) = µ (w(t)− ρ sign(w(t))) .

Then, there exists the solution w such that it is absolutely continuous (AC) and satisfies

w(t) = w(0) +

∫ t

0

ẇ(s)ds. (10)

In particular,

w(t) =


ρ+ (w(0)− ρ)eµt if w(0) > ρ,

ρ if w(0) = ρ,

ρ+ (w(0)− ρ)eµt (t < T ), 0 (t ≥ T ) if w(0) < ρ,

0 if w(0) = 0,

where T := 1
µ log

(
ρ

ρ−w(0)

)
.
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Proof. Case 1: w(0) = 0. The constant function w(t) = 0 is AC, and∫ t

0

µ
(
0− ρ sign(0)

)
ds =

∫ t

0

0 ds = 0.

Thus, Equation (10) holds.

Case 2: w(0) = ρ. The constant function w(t) = ρ is AC, and since sign(w(t)) = 1, we have∫ t

0

µ
(
ρ− ρ · 1

)
ds =

∫ t

0

0 ds = 0.

Thus, Equation (10) holds.

Case 3: w(0) > ρ. At t = 0, we have ẇ(0) = µ
(
w(0) − ρ

)
> 0. Assume, for contradiction,

that there exists t⋆ > 0 with w(t⋆) = ρ. Then on [0, t⋆) we have w(t) > ρ and hence ẇ(t) =
µ
(
w(t) − ρ

)
> 0, so w is strictly increasing on [0, t⋆). An increasing function cannot reach the

smaller value ρ starting from w(0) > ρ: contradiction. Thus w(t) > ρ for all t ≥ 0. On the region
{w(t) > ρ}, sign(w(t)) = 1 and the ODE reduces to the linear equation

ẇ = µ(w − ρ).
Then, we have

ẇ(t)

w(t)− ρ
= µ

⇒
∫ t

0

ẇ(s)

w(s)− ρ
ds =

∫ t

0

µds

⇒ log

∣∣∣∣w(t)− ρw(0)− ρ

∣∣∣∣ = µt

⇒w(t) = ρ+
(
w(0)− ρ

)
eµt.

This function is AC and satisfies Equation (10).

Case 4: 0 < w(0) < ρ. Initially sign(w(0)) = 1, so again ẇ = µ(w − ρ) and

w(t) = ρ+
(
w(0)− ρ

)
eµt.

Since w(0)− ρ < 0, the function w is strictly decreasing and reaches 0 exactly once at

T :=
1

µ
log
( ρ

ρ− w(0)

)
> 0.

On [0, T ], this solution is AC and satisfies Equation (10). Define w(t) := 0 for all t ≥ T . Then,
using sign(0) = 0,

w(t) = w(T ) +

∫ t

T

µ
(
0− ρ sign(0)

)
ds = 0 +

∫ t

T

0 ds = 0,

so Equation (10) also holds on [T,∞). The function w is AC on [0, T ] and on [T,∞), and it is
continuous at t = T , hence it is absolutely continuous.

Lemma C.3. Let µ > 0, ρ > 0, and L is even. Consider

ẇ(t) = µ (w(t)− ρ sign(w(t)))L−1
.

Then, there exists the solution w such that it is absolutely continuous (AC) and satisfies Equa-
tion (10). In particular,

w(t) =


ρ+

(
−(L− 2)µt+ 1

(w(0)−ρ)L−2

)− 1
L−2

if w(0) > ρ,

ρ if w(0) = ρ,

ρ−
(
−(L− 2)µt+ 1

(w(0)−ρ)L−2

)− 1
L−2

(t < T ), 0 (t ≥ T ) if w(0) < ρ,

0 if w(0) = 0,

where T := (ρ−w(0))−(L−2)−ρ−(L−2)

(L−2)µ .
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Proof. The proof is similar to the proof of Lemma C.2.

Case 1: w(0) = 0. The constant function w(t) = 0 is AC, and∫ t

0

µ
(
0− ρ sign(0)

)L−1
ds =

∫ t

0

µ · 0L−1 ds = 0.

Thus, Equation (10) holds.

Case 2: w(0) = ρ. The constant function w(t) = ρ is AC, and since sign(w(t)) = 1, we have∫ t

0

µ
(
ρ− ρ · 1

)L−1
ds =

∫ t

0

µ · 0L−1 ds = 0.

Thus, Equation (10) holds.

Case 3: w(0) > ρ. At t = 0, we have ẇ(0) = µ
(
w(0) − ρ

)L−1
> 0. Assume, for contradiction,

that there exists t⋆ > 0 with w(t⋆) = ρ. Then on [0, t⋆) we have w(t) > ρ and hence ẇ(t) =
µ
(
w(t) − ρ

)
> 0, so w is strictly increasing on [0, t⋆). An increasing function cannot reach the

smaller value ρ starting from w(0) > ρ: contradiction. Thus w(t) > ρ for all t ≥ 0. On the region
{w(t) > ρ}, sign(w(t)) = 1 and the ODE reduces to

ẇ = µ(w − ρ)L−1.

Then, we have

ẇ(t)

(w(t)− ρ)L−1
= µ

⇒
∫ t

0

ẇ(s)

(w(s)− ρ)L−1
ds =

∫ t

0

µds

⇒− 1

L− 2

(
1

(w(t)− ρ)L−2
− 1

(w(0)− ρ)L−2

)
= µt

⇒(w(t)− ρ)L−2 =

(
−(L− 2)µt+

1

(w(0)− ρ)L−2

)−1

⇒
(a)
w(t) = ρ+

(
−(L− 2)µt+

1

(w(0)− ρ)L−2

)− 1
L−2

,

where (a) follows from w(t)− rho > 0. This function is AC and satisfies Equation (10).

Case 4: 0 < w(0) < ρ. Initially sign(w(0)) = 1, so again ẇ = µ(w − ρ)L−1 and

(w(t)− ρ)L−2 =

(
−(L− 2)µt+

1

(w(0)− ρ)L−2

)−1

.

Since w(0)− ρ < 0 and L is even, we have

w(t) = ρ−
(
−(L− 2)µt+

1

(w(0)− ρ)L−2

)− 1
L−2

.

The function w is strictly decreasing and reaches 0 exactly once at

T :=
(ρ− w(0))−(L−2) − ρ−(L−2)

(L− 2)µ
> 0.

On [0, T ], this solution is AC and satisfies Equation (10). Define w(t) := 0 for all t ≥ T . Then,
using sign(0) = 0,

w(t) = w(T ) +

∫ t

T

µ
(
0− ρ sign(0)

)L−1
ds = 0 +

∫ t

T

0 ds = 0,

so Equation (10) also holds on [T,∞). The function w is AC on [0, T ] and on [T,∞), and it is
continuous at t = T , hence it is absolutely continuous.
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Lemma C.4. Let µ > 0, ρ > 0 and L is odd. Consider

ẇ(t) = µ (w(t)− ρ)L−1
.

Then, there exists the solution w such that it is absolutely continuous (AC) and satisfies Equa-
tion (10). In particular,

w(t) =

ρ if w(0) = ρ,

ρ+
(
−(L− 2)µt+ 1

(w(0)−ρ)L−2

)− 1
L−2

if w(0) ̸= ρ,

Proof. The proof is similar to the proof of Lemma C.2.

Case 1: w(0) = ρ. The constant function w(t) = ρ is AC, and∫ t

0

µ
(
ρ− ρ

)
ds =

∫ t

0

0 ds = 0.

Thus, Equation (10) holds.

Case 2: w(0) ̸= ρ. Separate variables:

dw

(w − ρ)L−1
= µdt.

Integrating from 0 to t gives

− 1

L− 2

(
1

(w(t)− ρ)L−2
− 1

(w(0)− ρ)L−2

)
= µt.

Solving for w yields

w(t) = ρ+

(
−(L− 2)µt+

1

(w(0)− ρ)L−2

)− 1
L−2

.

The function is AC and satisfies Equation (10).

C.3 PROOF OF COROLLARY 3.5

Corollary 3.5. Under the assumptions of Theorem 3.2, let S := {j : αj > ρ} and assume S ̸= ∅.
If there is a unique maximizing index j∗ := argmaxj∈S µj(αj − ρ)L−2, then the ℓ∞-SAM flow
converges in the ej∗ direction. In particular, when L = 2, we have j∗ := argmaxj∈S µj .

Proof. Work under the assumptions of Theorem 3.2 and let

S := {j : αj > ρ} ≠ ∅, j∗ := argmax
j∈S

µj(αj − ρ)L−2,

where the maximizer is unique. We prove that the (rescaled) ℓ∞–SAM flow satisfies

β(t)

∥β(t)∥2
−→ ej∗ .

Case L = 2. By Theorem 3.2, for j ∈ S,

βj(t) = Θ
(
e 2µjt

)
,

whereas for j /∈ S we have either βj(t) → 0 (if L even) or βj(t) ≡ ρL when αj = ρ; in any event
these coordinates stay bounded. Since the maximizer is unique and L− 2 = 0,

j∗ = argmax
j∈S

µj ,
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hence for every k ∈ S \ {j∗},

βk(t)

βj∗(t)
= Θ

(
e−2(µj∗−µk)t

)
−→ 0,

and for k /∈ S we also have βk(t)/βj∗(t) → 0 because the denominator grows exponentially while
the numerator is bounded. Therefore β(t)/∥β(t)∥2 → ej∗ .

Case L > 2. By Theorem 3.2, for each j ∈ S there is a blow-up time

t∗j =
1

(L− 2)µj (αj − ρ)L−2
,

and as t ↑ t∗j ,

βj(t) = Θ
(
(t∗j − t)−1/(L−2)

)
.

If j /∈ S, then βj(t) is bounded (either converging to 0 when L is even, or equal to ρL when αj = ρ).
The uniqueness of j∗ implies

t∗j∗ = min
j∈S

t∗j and t∗j∗ < t∗k ∀k ∈ S \ {j∗}.

Hence, for any fixed t < t∗j∗ , all coordinates with k ̸= j∗ are finite; moreover,

lim
t↑t∗

j∗

βk(t)

βj∗(t)
= 0 for every k ̸= j∗,

because βj∗(t)→∞ while βk(t) remains finite as t < t∗k. Consequently,

lim
t↑t∗

j∗

β(t)

∥β(t)∥2
= ej∗ .

Combining the two cases establishes the claim. In particular, when L = 2 we have j∗ =
argmaxj∈S µj .

C.4 FINITE-TIME BLOW-UP

In the setting of Theorem C.1, the ℓ∞-SAM flow evolves independently across coordinates. In the
rescaled ℓ∞-SAM flow, each coordinate indeed admits a finite blow-up time. However, as explained
in Remark 3.3, the smallest of these blow-up times corresponds to torig = ∞ in the original SAM
time scale. Consequently, both the original flow and the rescaled flow terminate at this same time
and cannot be extended beyond it.

To illustrate this behavior concretely, we provide Figures 9 and 10 using µ = (1, 2, 3, 4, 5), ρ = 1,
and a depth-L = 3 network. In the original flow, only one coordinate diverges as torig → ∞.
As shown in Figure 9b, the normalized trajectories βj(t)/∥β(t)∥ show that the remaining coordi-
nates grow much more slowly than the dominant one—indeed, they remain bounded. Because their
growth is negligible compared to the blow-up coordinate, their normalized values converge to zero.
Thus, in this example, the trajectory converges to the direction e5.

In contrast, Figure 10a shows that in the rescaled ℓ∞-SAM flow, each coordinate βj(t) has its own
finite blow-up time. However, Theorem 3.2 identifies the blow-up time T = 1

(L−2)µj(αj−ρ)L−2 for
any j ∈ J , which is the minimum of these blow-up times—only the coordinates in J blow up at T ,
while all remaining coordinates stay bounded. Since this rescaled time T corresponds to torig =∞,
the flow cannot proceed past T . In this example, T ≈ 0.25.

Because the rescaled system is simply a time reparameterization of the original one, the two plots
differ only in their x-axis scaling. Before reaching T , the two flows exhibit the same evolution along
the y-axis. Indeed, reparameterizing the original trajectory (Figure 9) by τ(t) reproduces the same
curve as shown in Figure 10 before T .
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(a) βj(t) trajectory.
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Figure 9: βj(t) and normalized βj(t) trajectory of the original ℓ∞-SAM flow.
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Figure 10: βj(t) and normalized βj(t) trajectory of the rescaled ℓ∞-SAM flow.

C.5 EMPIRICAL VERIFICATION

Our theoretical analysis (Theorem 3.2 and Corollary 3.5) establishes the behavior of the ℓ∞-SAM
flow in the one-point settingDµ. In this section, we investigate whether these phenomena extend be-
yond the idealized one-point regime. We first examine the discrete-time dynamics (GD and discrete
ℓ∞-SAM) on the one-point dataset and verify that they exhibit exactly the same trajectory patterns
predicted by the continuous-time theory. We then turn to multi-point datasets and demonstrate that
the same qualitative behaviors persist in both the continuous-time flows and their discrete counter-
parts. Taken together, these experiments empirically confirm that the insights obtained from Dµ

carry over robustly to multi-point datasets and to practical discrete SAM updates.

For reproducibility, we detail the exact initialization used in all experiments. We adopt the layer-wise
balanced initialization w(i)(0) = α for every i ∈ [L], consistent with the setup of Theorem 3.2. The
black-edged dot in Figures 11 and 13 indicates the initial predictor β(0). We set w(i)(0) = β(0)1/L

element-wise so that β(0) =
⊙L

i=1 w
(i)(0) holds exactly. For the continuous-time trajectories, we
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approximate the flow using the corresponding discrete updates with a small step size η = 10−3 via
an explicit Euler scheme.

C.5.1 ONE-POINT CASE: DISCRETE VS. CONTINUOUS DYNAMICS

To verify that our continuous-time analysis faithfully predicts the behavior of the corresponding
discrete algorithms, we repeat the experiments in Figure 2 using exactly the same initializations,
SAM radius ρ, and feature vector µ. We simulate both the gradient flows (black curves) and their
discrete counterparts (blue dots), including GD and discrete ℓ∞-SAM updates. As shown below, the
discrete trajectories closely trace the qualitative evolution of their continuous-time versions.
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(d) ℓ∞-SAM (L = 3)

Figure 11: Trajectories β(t) under GF, ℓ∞-SAM flow (black line), GD, and discrete ℓ∞-SAM
updates (blue dots) for d = 2 and µ = (1, 2). For SAM, we set ρ = 1. For GD and discrete
ℓ∞-SAM, we use step size η = 0.1.

C.5.2 MULTI-POINT CASE: PERSISTENCE OF ONE-POINT BEHAVIOR

To examine whether the qualitative behaviors identified in the one-point analysis persist on more
realistic datasets, we construct random linearly separable binary data by sampling two Gaussian
clusters centered at +µ and −µ as shown in Figure 12. Specifically, we draw

x(+)
n = µ+ εn, yn = +1, x(−)

n = −µ+ εn, yn = −1,

with εn ∼ N (0, σ2Id) and use N/2 samples per class (with µ = (1, 2), N = 100, σ = 0.5).

Figures 11 and 13 show that the same qualitative patterns predicted by our one-point theory—such
as the asymptotic trajectory structure—also emerge clearly in this multi-point setting. Importantly,
these behaviors are observed not only in the continuous-time flows but also in their discrete coun-
terparts (GD and discrete ℓ∞-SAM). This empirical evidence demonstrates that the phenomena
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described in Theorem 3.2 and Corollary 3.5 extend robustly beyond the one-point setting to general
linearly separable datasets.

2 0 2
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x 2

O

+1 class
-1 class

Figure 12: A randomly generated linearly separable dataset used in our multi-point experiments. We
sample two Gaussian clusters centered at ±µ = ±(1, 2) with isotropic noise (ε ∼ N (0, 0.52I2))
and assign labels +1 and −1 accordingly. This dataset is used to evaluate whether the one-point
phenomena from Theorem 3.2 and Corollary 3.5 persist in the multi-point regime.

0 1 2 3 4
1

0

1

2

3

4

2

(a) GD (L = 2)

0 1 2 3 4
1

0

1

2

3

4

2
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Figure 13: Trajectories β(t) under GF, ℓ∞-SAM flow (black line), GD, and discrete ℓ∞-SAM
updates (blue dots) for d = 2 on random multi-point dataset in Figure 12. For SAM, we set ρ = 1.
For GD and discrete ℓ∞-SAM, we use step size η = 0.1.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

D SAM WITH ℓ2-PERTURBATIONS: PROOF OF SECTION 4

D.1 DEPTH-1 NETWORKS: PROOF OF THEOREM 4.1

Theorem 4.1. For almost every dataset which is linearly separable, any perturbation radius ρ and
any initialization, consider the linear model f(x) = ⟨w,x⟩ trained with logistic loss. Then, ℓ2-SAM
flow converges in the ℓ2 max-margin direction.

Proof. Apply Lemma B.1 with ε(w) = ρ ∇L(θ)
∥∇L(θ)∥2

. Then ∥ε(w)∥2 ≤ ρ for all w, so the conditions
of Lemma B.1 hold. Thus, the flow converges to the ℓ2 max-margin direction.

Theorem D.1. Consider the linear model f(x) = ⟨w,x⟩ trained on the dataset Dµ with loss
L(w) = ℓ(⟨w,x⟩) where ℓ′(u) < 0 for all u. Then, GF and ℓ2-SAM flow, starting from any w(0),
evolve on the same affine line w(0) + span{µ} and have the same spatial trajectory.

Proof. The model is f(x) = ⟨w,x⟩ = w⊤x. The loss is L(w) = ℓ(w⊤µ). The gradient is
∇wL(w) = ℓ′(w⊤µ) · µ with ℓ′(s) < 0.

Gradient Descent GF is

ẇ = −∇wL(w)

= −ℓ′(w⊤µ) · µ.

SAM with ℓ2 perturbation The ascent point is

ŵ = w + ρε2(w)

= w + ρ
∇wL(w)

∥∇wL(w)∥2
= w − ρ µ

∥µ∥2
.

The update of ℓ2-SAM flow is

ẇ = −∇wL(ŵ)

= −∇wL(w − ρ
µ

∥µ∥2
)

= −ℓ′(w⊤µ− ρµ
⊤µ

∥µ∥2
) · µ

= −ℓ′(w⊤µ− ρ∥µ∥2) · µ.

Therefore, they have the same spatial trajectory as:

ẇ = µ.

The term −ℓ′(w⊤µ− ρ∥µ∥2) is the accelation in terms of t since −ℓ′(s) is decreasing in s.

D.2 DERIVATION OF ℓ2-SAM FLOW

Let us get the ℓ2-SAM flow. The gradient is

∇w(i)L(θ) = ℓ′
(
⟨β(θ),µ⟩

)
∇w(i)⟨β(θ),µ⟩

= ℓ′
(
⟨β(θ),µ⟩

)
µ⊙w(ℓ) for (i, l) ∈ {(1, 2), (2, 1)}.

From the gradient, we have

ε
(i)
2 (θ) = ρ

∇w(i)L(θ)
∥∇L(θ)∥2

=
(a)
−ρ µ⊙w(ℓ)√

∥µ⊙w(1)∥22 + ∥µ⊙w(2)∥22
= −ρµ⊙w(ℓ)

nθ
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for (i, l) ∈ {(1, 2), (2, 1)}, where nθ =
√
∥µ⊙w(1)∥22 + ∥µ⊙w(2)∥22 and (a) follows from

ℓ′(u) = − 1
1+eu < 0.

We consider the initialization w(1)(0) = w(2)(0) ∈ Rd+. Then, since the loss function and dynamics
are invariant under exchanging w(1) and w(2), we have w(1)(t) = w(2)(t) =: w(t) for all t ≥ 0.
Therefore, the update on w(t) by rescaled ℓ2-SAM flow is given as

ẇ(t) = µ⊙
(
w(t)− ρµ⊙w(t)

nθ(t)

)
.

D.3 PROOF OF THEOREM 4.2

Theorem 4.2. For almost every dataset which is linearly separable, and any perturbation radius
ρ, consider the linear diagonal network of depth 2, f(x) = ⟨w(1) ⊙w(2),x⟩ trained with logistic
loss. Let (w(1)(t),w(2)(t)) follow the ℓ2-SAM flow with w(1)(0) = w(2)(0). Assume (a) the
loss vanishes, L(w(1)(t),w(2)(t)) → 0, (b) the predictor β(t) := w(1)(t) ⊙w(2)(t) converges in
direction. Then the limit direction of β(t) is the ℓ1 max-margin direction.

Proof. Let {(xn, yn)}Nn=1 ⊂ Rd × {±1} be a linearly separable dataset, meaning that there exists
w∗ ∈ Rd such that

yn x
⊤
nw∗ > 0 ∀n.

As usual, we absorb the labels into the inputs by redefining xn ← ynxn, so that we may assume
yn = 1 for all n and

∃w∗ such that x⊤
nw∗ > 0 ∀n.

We consider a depth-2 diagonal linear network with parameters w1,w2 ∈ Rd, defining the predictor

f(x;w1,w2) = (w1 ⊙w2)
⊤x = β⊤x, β := w1 ⊙w2.

The loss function is logistic:

L(w1,w2) =

N∑
n=1

ℓ
(
β⊤xn

)
, ℓ(u) = log(1 + e−u), ℓ′(u) = − e−u

1 + e−u
.

We study the ℓ2-SAM flow with fixed perturbation radius ρ > 0:

ẇ1(t) = −∇w1
L(ŵ1(t), ŵ2(t)), ẇ2(t) = −∇w2

L(ŵ1(t), ŵ2(t)),

where

ŵi(t) = wi(t) + ρ
∇wi
L(w1(t),w2(t))

∥∇wi
L(w1(t),w2(t))∥2

, i = 1, 2.

Step 1: Balanced initialization removes layer imbalance. Let

zj(t) := w
(1)
j (t)− w(2)

j (t).

From the SAM flow and

∂L
∂w

(1)
j

(ŵ) =

N∑
n=1

ℓ′(β̂⊤xn)xn,j ŵ
(2)
j ,

∂L
∂w

(2)
j

(ŵ) =

N∑
n=1

ℓ′(β̂⊤xn)xn,j ŵ
(1)
j ,

one obtains

żj(t) = −Gj(t)
(
w

(2)
j (t)− w(1)

j (t)
)
(1 + o(1)), Gj(t) =

N∑
n=1

ℓ′(β̂⊤xn)xn,j .

Here the factor 1+o(1) arises because the gradients in the SAM update are evaluated at the perturbed
parameter

ŵ(t) = w(t) + ρ
∇L(w(t))

∥∇L(w(t))∥2
,
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rather than at w(t) itself. Since the perturbation has fixed magnitude ρ while the parameter norm
satisfies ∥w(t)∥ → ∞ along any vanishing-loss trajectory of a 2-homogeneous model, the relative
perturbation decays:

∥ŵ(t)−w(t)∥2
∥w(t)∥2

=
ρ

∥w(t)∥2
−→ 0.

Consequently, the gradients∇L(ŵ(t)) and∇L(w(t)) become asymptotically colinear, and replac-
ing the latter by the former introduces only a vanishing multiplicative error 1+o(1) in the imbalance
ODE for zj(t).

Since zj(0) = 0 under balanced initialization and the ODE żj(t) = −Gj(t)zj(t)(1+ o(1)) is linear
with a Lipschitz right-hand side, uniqueness of solutions implies zj(t) ≡ 0 for all t. Hence for all t

w
(1)
j (t) = w

(2)
j (t) =: aj(t), βj(t) = aj(t)

2.

Step 2: Predictor ODE. From the SAM ODE,

ȧj(t) = −aj(t)Gj(t) (1 + o(1)).

Hence

β̇j(t) = 2aj(t)ȧj(t) = −2aj(t)2Gj(t)(1 + o(1)) = −2βj(t)Gj(t)(1 + o(1)).

Noting that

∇βL(β)j =
N∑
n=1

ℓ′(β⊤xn)xn,j ,

since

Gj(t) =

N∑
n=1

ℓ′(β̂⊤xn)xn,j =

N∑
n=1

ℓ′(β(t)⊤xn)xn,j (1 + o(1)),

we have
Gj(t) = ∇βj

L(β(t)) (1 + o(1)).

Hence the coordinate-wise predictor dynamics

β̇j(t) = −2βj(t)Gj(t) (1 + o(1))

become
β̇j(t) = −2βj(t)∇βjL(β(t)) (1 + o(1)).

Writing this in vector form using diag(β)∇βL = (β1∇β1
L, . . . , βd∇βd

L)⊤, we obtain

β̇(t) = −2 diag(β(t))∇βL(β(t)) (1 + o(1)). (11)

Step 3: Geometry induced by the diagonal parameterization. To characterize the optimization
geometry associated with the depth-2 diagonal model, we invoke Lemma D.2. The lemma shows
that, for the parameterization

β = w(1) ⊙w(2) and R(w(1),w(2)) = 1
2

(
∥w(1)∥22 + ∥w(2)∥22

)
,

the induced predictor norm is exactly the ℓ1 norm:

∥β∥N := min
w(1)⊙w(2)=β

R(w(1),w(2)) = ∥β∥1.

Moreover, on the balanced submanifold w(1) = w(2) = a with β = a⊙2, the lemma establishes
that the Riemannian metric induced on predictor space is

⟨u,v⟩N = u⊤M(β)v, M(β) = 2 diag(β).

Therefore, the natural-gradient steepest-descent flow with respect to the induced norm ∥ · ∥N takes
the form

β̇(t) = −M(β(t))∇βL(β(t)) = −2 diag(β(t))∇βL(β(t)).
We next compare this asymptotic steepest-descent flow with the predictor ODE arising from the
ℓ2-SAM dynamics.
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Step 4: Asymptotic identification with ℓ1 steepest descent. Comparing equation 11 with the
steepest-descent flow above shows that the SAM predictor dynamics coincide with the ℓ1 steepest-
descent dynamics up to a multiplicative factor 1 + o(1) and a vanishing perturbation. Assumptions
(a) and (b) guarantee that these perturbations do not change the limiting direction of β(t)/∥β(t)∥2.

Step 5: Conclude ℓ1 max-margin. By the max-margin theorem for steepest descent in a given
norm (Gunasekar et al. (2018a), Thm. 5; extended to logistic loss by Lyu & Li (2019)), any trajectory
following ℓ1 steepest descent and satisfying L(β(t)) → 0 converges in direction to the ℓ1 max-
margin solution. Since the SAM predictor dynamics are asymptotically equivalent to ℓ1 steepest
descent, and by (b) the direction limit exists, we obtain

β̄ ∥ β⋆, β⋆ ∈ argmin
β

∥β∥1 s.t. β⊤xn ≥ 1.

Lemma D.2 (Induced Norm and Natural Gradient Metric for Depth-2 Diagonal Models). Consider
the depth-2 diagonal parameterization

β = w(1) ⊙w(2) ∈ Rd,

and the quadratic parameter regularizer

R(w(1),w(2)) :=
1

2

(
∥w(1)∥22 + ∥w(2)∥22

)
.

Then the induced predictor norm

∥β∥N := min
w(1)⊙w(2)=β

R(w(1),w(2))

satisfies
∥β∥N = ∥β∥1.

Moreover, on the submanifold where w(1) = w(2) = a and β = a⊙2, the Riemannian metric
induced on the predictor space by R is

⟨u,v⟩N = u⊤M(β)v, M(β) = 2 diag(β).

Consequently, the natural-gradient steepest-descent flow w.r.t. ∥ · ∥N is

β̇ = −M(β)∇βL(β) = −2 diag(β)∇βL(β).

Proof. (i) Computation of the induced norm. For each coordinate j, the constraint βj = w
(1)
j w

(2)
j

decouples. If βj = 0, the minimum is attained at (w(1)
j , w

(2)
j ) = (0, 0) and equals 0 = |βj |.

For βj ̸= 0, eliminate w(2)
j via w(2)

j = βj/w
(1)
j and minimize

ϕj(w) :=
1

2

(
w2 +

β2
j

w2

)
, w ̸= 0.

Differentiation yields ϕ′j(w) = w − β2
jw

−3, whose nonzero roots satisfy w4 = β2
j , so that |w| =

|βj |1/2. Substitution gives ϕj(w⋆) = |βj |. Summing over j yields the induced norm

∥β∥N =

d∑
j=1

|βj | = ∥β∥1.

(ii) Local parametrization and Jacobian. On the balanced submanifold w(1) = w(2) = a ∈ Rd,
the predictor is

βj = a2j .
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Hence the Jacobian of the map a 7→ β is diagonal:
∂βj
∂ak

= 2aj δjk.

(iii) Riemannian metric induced from R. The regularizer restricted to a becomes
R(a,a) = ∥a∥22.

Thus the parameter-space metric is Euclidean on a. For a tangent predictor perturbation dβ, the
corresponding parameter perturbation is

daj =
dβj
2aj

=
dβj

2
√
βj
.

Thus the squared parameter differential is

∥da∥22 =

d∑
j=1

(
dβj

2
√
βj

)2

=

d∑
j=1

(dβj)
2

4βj
.

Therefore the predictor-space inner product induced by R is

⟨u,v⟩N =

d∑
j=1

ujvj
4βj

.

Equivalently,

M(β)−1 =
1

4
diag(β−1

1 , . . . , β−1
d ).

Inverting yields
M(β) = 4 diag(β1, . . . , βd).

(iv) Removal of irrelevant constant factor. Steepest-descent flows are invariant to multiplication
of M by any positive scalar constant. Thus M(β) is equivalent, for optimization dynamics, to

M(β) = 2 diag(β),

which is the conventional normalization in the induced-norm literature.

(v) Natural gradient flow. By definition of steepest descent under the induced norm,

β̇ = −M(β)∇βL(β) = −2 diag(β)∇βL(β).

D.4 PROOFS FOR SECTION 4.2.3

In this section, we provide detailed proofs for the trajectory analysis of SAM flow, with a focus
on the roles of the initialization scale α, the perturbation radius ρ, and the feature vector µ. For
notational simplicity, we omit the time dependence (t) when the context is clear.
Assumption D.3. the initial weight parameters are positive and symmetric: w(1)(0) = w(2)(0) =
α1 for some scaling factor α > 0.
Assumption D.4. the vector µ has strictly positive, increasing coordinates: 0 < µ1 < · · · < µd.
(Equivalently, up to a fixed permutation we may assume the coordinates are monotone.)

We introduce two auxiliary quantities. Define the normalized weights pj(t) :=
µ2
jβj(t)∑d

k=1 µ
2
kβk(t)

and

their moments Mk(t) :=
∑d
j=1 µ

k
j pj(t). Using these, we set the thresholds

mL :=
µ1

2
, mH(t) :=

M2(t)

2M1(t)
.

In the proof, we consider ℓ(⟨β,µ⟩) term, so not only considering the spatial trajectory but full
gradient flow without any reparameterization. We define the margins at the current and perturbed
parameters as s(t) := ⟨β(t),µ⟩ and ŝ(t) := ⟨β̂(t),µ⟩. Set λ̂(t) := |ℓ′(ŝ(t))|, the slope of the loss
with respect to the margin evaluated at the perturbed margin.
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D.4.1 RECAP: BASIC NOTATION

Recall the margin s = ⟨β,µ⟩ and the loss L(s) = log (1 + exp(−s)). The derivatives of the loss
with respect to the margin s are:

dL
ds

= −σ(−s) = − 1

1 + exp(s)
,

d2L
ds2

= σ(s)σ(−s) > 0,

where σ(s) = (1 + exp(−s))−1 is the sigmoid function. We define λ := σ(−s) ∈ (0, 1) as the
logistic loss slope magnitude. The gradients with respect to the weight parameters, obtained via the
chain rule, are:

dL
dw(1)

j

:=
dL
ds

ds

dw(1)
j

= −λµjw(2)
j ,

dL
dw(2)

j

:=
dL
ds

ds

dw(2)
j

= −λµjw(1)
j .

The squared norm of the gradient vector is:

∥∇θL∥2 =

d∑
j=1

λ2µ2
j

((
w

(2)
j

)2
+
(
w

(1)
j

)2)
= λ2n2θ,

where nθ :=

√∑d
j=1 µ

2
j

((
w

(1)
j

)2
+
(
w

(2)
j

)2)
. SAM perturbs parameters by taking a step of

size ρ along the normalized gradient direction.

ε2 := ρ
∇θL
∥∇θL∥2

,

(ε2)w(1)
j

= −
ρµjw

(2)
j

nθ
,

(ε2)w(2)
j

= −
ρµjw

(1)
j

nθ
.

The perturbed weight parameters are

(ŵ1)j := w
(1)
j −

ρµjw
(2)
j

nθ
, (ŵ2)j := w

(2)
j −

ρµjw
(1)
j

nθ
.

The perturbed βj becomes

β̂j := ŵ
(1)
j ŵ

(2)
j

= w
(1)
j w

(2)
j −

ρµj
nθ

((
w

(1)
j

)2
+
(
w

(2)
j

)2)
+
ρ2µ2

j

n2θ
w

(1)
j w

(2)
j

= βj

(
1 +

ρ2µ2
j

n2θ

)
− ρµj

nθ

((
w

(1)
j

)2
+
(
w

(2)
j

)2)
.

The perturbed margin and loss slope magnitude are

ŝ := ⟨β̂,µ⟩ =
d∑
j=1

µj β̂j , λ̂ := σ(−ŝ).

Recall that the SAM flow dynamics are given by:

θ̇ = −∇θL(θ̂).
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D.4.2 PRELIMINARY ANALYSIS

We first establish a key property of the SAM flow: the balancedness of the weights.

Lemma D.5. Under Assumption D.4, the SAM flow decays the quantity w(1)
j (t)−w(2)

j (t) exponen-
tially to zero.

Proof. Define ∆j := w
(1)
j − w

(2)
j . The SAM dynamics yield

ẇ
(1)
j = λ̂µjŵ

(2)
j , (ẇ(2))j = λ̂µjŵ

(1)
j .

The time derivative of ∆j is

∆̇j = ẇ
(1)
j − ẇ

(2)
j

= λ̂µjŵ
(2)
j − λ̂µjŵ

(1)
j

= λ̂µj

(
w

(2)
j −

ρµjw
(1)
j

nθ

)
− λ̂µj

(
w

(1)
j −

ρµjw
(2)
j

nθ

)

= −λ̂µj
(
1 +

ρµj
nθ

)
∆j .

Since λ̂ is positive and µj > 0, it gives exponential decay.

∆j(T ) = ∆j(0) · exp

(
−µj

∫ T

0

λ̂

(
1 +

ρµj
nθ

)
dt

)
.

Hence, the quantity w(1)
j (t)− w(2)

j (t) decays exponentially.

Proposition D.6. Under initialization with w(1)
j (0) = w

(2)
j (0) and Assumption D.4, the equality

w
(1)
j (t) = w

(2)
j (t) is preserved for all t ≥ 0. Furthermore, the sign of w(1)

j (t) and w(2)
j (t) remains

unchanged throughout the dynamics.

Proof. With w
(1)
j (0) = w

(2)
j (0), we have ∆j(0) = w

(1)
j (0) − w

(2)
j (0) = 0. By Lemma D.5,

∆j(t) = 0 for all t ≥ 0. Given this balancedness, each coordinate evolves multiplicatively according
to

ẇ
(1)
j = λ̂µjŵ

(2)
j = λ̂µj

(
w

(1)
j −

ρµjw
(1)
j

nθ

)
= λ̂µj

(
1− ρµj

nθ

)
w

(1)
j .

This differential equation has the unique solution

w
(1)
j (T ) = w

(1)
j (0) · exp

(
µj ·

∫ T

0

λ̂(t)

(
1− ρµj

nθ

)
dt

)
.

Since the exponential function is always positive, w(1)
j (t) and w(2)

j (t) maintain the same sign as
their initial values throughout the dynamics.

D.4.3 PROOF OF LEMMA 4.3

We begin by restating Lemma 4.3.

Lemma 4.3. The rescaled ℓ2-SAM flow (2) is β̇j(t) = rj(t)βj(t) with rj(t) := 2µj

(
1− ρµj

nθ(t)

)
.

Proof. Under Assumption D.3 and Assumption D.4, the Proposition D.6 holds, which ensures that
w

(1)
j = w

(2)
j =

√
βj for all t ≥ 0. So we have(

w
(1)
j

)2
+
(
w

(2)
j

)2
= 2βj , n2θ = 2

d∑
j=1

µ2
jβj .
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The evolution equation for βj is

β̇j = ẇ
(1)
j w

(2)
j + w

(1)
j ẇ

(2)
j

= 2λ̂µjβj

(
1− ρµj

nθ

)
. (12)

This yields

βj(T ) = βj(0) · exp

(
2µj

∫ T

0

λ̂

(
1− ρµj

nθ

)
dt

)
.

Let rj := 2λ̂µj

(
1− ρµj

nθ

)
. When rj > 0, βj grows locally exponentially. Otherwise, it decays lo-

cally exponentially. The key insight is that each βj’s growth rate depends on the interaction between
the gradient magnitude λ̂ and the perturbation term ρµj

nθ
. This interaction drives SAM’s implicit

bias.

D.4.4 PRELIMINARY ANALYSIS FOR mc(t)TRAJECTORY ANALYSIS

Before proving Theorem 4.4, we establish some preliminary results that will be used in the proof.

Lemma D.7. Under Assumption D.3 and Assumption D.4, the time derivative of mc(t) is given by

ṁc = λ̂(t)M1(t) (mc(t)−mH(t)) .

Proof. Recall that mH = M2

2M1
, where

Mr :=

d∑
j=1

pjµ
r
j , pj :=

µ2
jβj∑d

k=1 µ
2
kβk

. (13)

Substituting the definition of pj , we obtain

M2 =

∑
j µ

4
jβj∑

k µ
2
kβk

=
2
∑
j µ

4
jβj

n2θ
, M1 =

∑
j µ

3
jβj∑

k µ
2
kβk

=
2
∑
j µ

3
jβj

n2θ
.

Since µ1 < · · · < µd and pj ≥ 0 with
∑
j pj = 1, we have µ1

2 ≤ mH = M2

2M1
≤ µd

2 . We define a
new expression for mc.

mc(t) =

√
S

2ρ
, where S := n2θ. (14)

Taking the time derivative of S, we have

Ṡ = 2

d∑
j=1

µ2
j β̇j .

From Lemma 4.3, we have β̇j = rjβj where rj = 2λ̂ · µj
(
1− ρµj

nθ

)
= 2λ̂ ·

(
µj −

µ2
j

2mc

)
. Substi-

tuting this into the expression for Ṡ, we get

Ṡ = 2

d∑
j=1

µ2
j · 2λ̂ ·

(
µj −

µ2
j

2mc

)
· βj

= 4λ̂

d∑
j=1

µ2
jβj

(
µj −

µ2
j

2mc

)

= 4λ̂

d∑
j=1

(
µ3
jβj −

µ4
jβj

2mc

)
.
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Recalling that M1 =
2
∑d

j=1 µ
3
jβj

S and M2 =
2
∑d

j=1 µ
4
jβj

S , we can rewrite the sums as
d∑
j=1

µ3
jβj =

M1S

2
,

d∑
j=1

µ4
jβj =

M2S

2
.

Therefore, we have

Ṡ = 4λ̂

(
M1S

2
− M2S

2 · 2mc

)
= 2λ̂S

(
M1 −

M2

2mc

)
.

Since mc =
√
S

2ρ , we have:

ṁc =
1

2ρ
· Ṡ

2
√
S

=
Ṡ

4ρ
√
S
.

Substituting our expression for Ṡ:

ṁc =
2λ̂S

(
M1 − M2

2mc

)
4ρ
√
S

=
λ̂
√
S

2ρ

(
M1 −

M2

2mc

)
= λ̂mc

(
M1 −

M2

2mc

)
= λ̂M1

(
mc −

M2

2M1

)
= λ̂M1 (mc −mH) .

Next, we derive the time derivative of mH.
Lemma D.8. Under Assumption D.3 and Assumption D.4, the time derivative of mH is given by

ṁH =
λ̂

2(M1)2mc
(2mcΓ1 − Γ2) ,

where Γ1 :=M1M3 −M2
2 and Γ2 :=M1M4 −M2M3.

Proof. Starting from mH = M2

2M1
, we have

ṁH =
Ṁ2M1 −M2Ṁ1

2(M1)2

=
1

2M1

(
Ṁ2 −

M2

M1
Ṁ1

)

=
1

2M1

 d∑
j=1

ṗjµ
2
j −

M2

M1
·
d∑
j=1

ṗjµj


=

1

2M1

d∑
j=1

ṗj
(
µ2
j − 2mHµj

)
.

Since β̇j = rjβj where rj = 2λ̂
(
µj −

µ2
j

2mc

)
, we can compute

ṗj =
(µ2
jβj) · rj ·

(∑d
k=1 µ

2
kβk

)
− (µ2

jβj) ·
(∑d

k=1 µ
2
kβkrk

)
(∑d

k=1 µ
2
kβk

)2
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= pj

(
rj −

d∑
k=1

pkrk

)

= pj · 2λ̂

((
µj −

µ2
j

2mc

)
−

d∑
k=1

pk ·
(
µk −

µ2
k

2mc

))

= pj · 2λ̂
(
(µj −M1)−

1

2mc

(
µ2
j −M2

))
.

Substituting this into the expression for ṁH, we have

ṁH =
λ̂

M1

d∑
j=1

pj

(
(µj −M1)−

1

2mc
(µ2
j −M2)

)
(µ2
j − 2mHµj).

We split the sum into two components:

First term: C1 =
∑
j

pj (µj −M1)
(
µ2
j − 2mHµj

)
,

Second term: C2 =
∑
j

pj
(
µ2
j −M2

) (
µ2
j − 2mHµj

)
.

For the first term,

C1 =
∑
j

pjµ
3
j − 2mH

∑
j

pjµ
2
j −M1

∑
j

pjµ
2
j + 2mHM1

∑
j

pjµj

=M3 − 2mHM2 −M1M2 + 2mHM
2
1

=M3 −
M2

2

M1
=
M1M3 −M2

2

M1
=

Γ1

M1
.

For the second term,

C2 =
∑
j

pjµ
4
j − 2mH

∑
j

pjµ
3
j −M2

∑
j

pjµ
2
j + 2mHM2

∑
j

pjµj

=M4 − 2mHM3 −M2
2 + 2mHM1M2

=M4 −
M2M3

M1
=
M1M4 −M2M3

M1
=

Γ2

M1
.

Therefore, we have

ṁH =
λ̂

M1

d∑
j=1

pj ·
(
(µj −M1)−

1

2mc

(
µ2
j −M2

)) (
µ2
j − 2mHµj

)
=

λ̂

M1

(
Γ1

M1
− Γ2

2mcM1

)
=

λ̂

2 (M1)
2
mc

(2mcΓ1 − Γ2) .

Next, we establish a key inequalities involving the threshold mH.

Proposition D.9. Γ1 ≥ 0 and Γ2 ≥ 0.

Proof. Γ1 and Γ2 are defined in Lemma D.8. Mr and pj are defined in Equation 13. Let Mr :=∑d
j=1 pjµ

r
j = Ep

[
µrj
]
. By Cauchy–Schwarz with X = µ1/2 and Y = µ3/2,(

Ep

[
µ2
])2 ≤ Ep [µ] Ep

[
µ3
]

=⇒ Γ1 =M1M3 −M2
2 ≥ 0.
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By Cauchy–Schwarz with X = µ and Y = µ2,(
Ep

[
µ3
])2 ≤ Ep

[
µ2
]
Ep

[
µ4
]
.

Multiplying the two inequalities gives
Ep

[
µ2
]
Ep

[
µ3
]
≤ Ep [µ] Ep

[
µ4
]

=⇒ Γ2 =M1M4 −M2M3 ≥ 0.

Proposition D.10. Let mD := Γ2

2Γ1
. We have mD ≥ mH for all t ≥ 0.

Proof. We use same notation as in the proof of Proposition D.9. Let a := M2

M1
. Γ1 ≥ 0 and Γ2 ≥ 0

by Proposition D.9. Then we have
Ep
[
(µ2 − aµ)2

]
= Ep[µ4]− 2aEp[µ3] + a2 Ep[µ2]

=M4 − 2aM3 + a2M2.

Substituting a = M2

M1
and multiplying by M2

1 gives

M2
1Ep

[
(µ2 − M2

M1
µ)2
]
=M2

1M4 − 2M1M2M3 +M3
2 .

Since an expectation of a square is nonnegative and M2
1 ≥ 0, it follows that

M2
1M4 − 2M1M2M3 +M3

2 ≥ 0.

Therefore, we have
Γ2

2Γ1
≥ M2

2M1
= mH.

D.4.5 PROOF OF THEOREM 4.4

We begin by restating Theorem 4.4 for convenience.

Theorem 4.4. There exists a unique α1 such that α0 := ρ µ1√
2∥µ∥2

< α1 < ρ
∥µ∥4

4√
2∥µ∥2∥µ∥3

3

< α2 :=

ρµd−1+µd√
2∥µ∥2

and the trajectory of mc(t) falls into one of the following three regimes.

(Regime 1) If α < α1, then mc(t) strictly decreases for all t ≥ 0 and there exists T1 such that for
j ∈ [d], βj(t) strictly decreases for all t ≥ T1 .

(Regime 2) If α1 < α < α2, there exists T2 such that mc(T2) <
µd−1+µd

2 and mc(t) strictly
increases for all t ≥ T2.

(Regime 3) If α > α2, then mc(t) >
µd−1+µd

2 , and βd(t) has the largest growth rate for all t ≥ 0.

Proof. From Lemma D.7 and Lemma D.8, we have
ṁc = λ̂M1 (mc −mH) ,

ṁH =
λ̂

2 (M1)
2
mc

(2mcΓ1 − Γ2) .

Recall that Mr and pj are defined in Equation 13. Γ1 and Γ2 are defined in Lemma D.8. mD

is defined in Proposition D.10. We define A(t) := λ̂M1(t) and B(t) := mc(t) − mH(t) so that
ṁc = A(t)B(t).

Regime 1. For any t ≥ 0, if mc(t) < mL, then mc(t) <
µ1

2 < mH(t). Hence B(t) < 0, and
therefore ṁc(t) < 0. Consequently, for any t ≥ 0, whenever mc(t) < mL, the function mc(·)
is strictly decreasing. Since mc(0) < mL, we have mc(t) < mL for all t ≥ 0, and it is strictly
decreasing.

Moreover, since mc(t) < mL = µ1

2 , we have 2mc(t) < µ1 ≤ µj . Therefore,

rj(t) = 2λ̂(t) ·

(
µj −

µ2
j

2mc(t)

)
< 0,

Thus β̇j(t) = βj(t)rj(t) < 0, and βj(t) decays exponentially for all t ≥ 0.
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Regime 2. When mL < mc(0) < mH(0), we have B(0) < 0 and thus ṁc(0) = A(0)B(0) < 0,
so mc initially drifts downward. While B(t) < 0, the mc < mD holds so the mH drifts downward:
ṁH(t) < 0. Note that we get the following equality:

ṁc = AB,

Ḃ = ṁc − ṁH = AB − ṁH.

Let I(t) := exp
(
−
∫ t
0
A(τ)dτ

)
. Then:

IḂ = IAB − IṁH, (15)
d
dt

(IB) = İB + IḂ = −IAB + IḂ = −IṁH, (16)

I(t)B(t)− I(0)B(0) = −
∫ t

0

I(u)ṁH(u)du. (17)

Note that d
dt (IB) > 0 while B(t) < 0.

Existence of Regime 2 threshold For an initialization m0 ∈ (mL,mH(0)), define the budget to
the floor:

ψ(m0) := I(0)B(0) +

∫ tfloor(m0)

0

d
dt

(I(t)B(t))

= (m0 −mH(0)) +

∫ tfloor(m0)

0

I(u) (−ṁH(u)) du.

where tfloor(m0) is the first time when mc(t) = mL, or +∞ if it never meets. Note that mc(t) meets
the threshold mH(t) before the floor mL if and only if the accumulated area

∫
I(−ṁH) reaches

mH(0)−m0 before time tfloor. Therefore, we can consider two different cases.

• ψ(m0) > 0 ⇒ mc meets mH before it meets mL, the trajectory of mc will first decreases,
and it drifts at a point bigger than mL, and then increases.

• ψ(m0) < 0⇒ then the mc meets mL, then it goes to Regime 1.

Also, the ODEs have continuous right hand sides, and solutions depend continuously on m0. so for
any fixed τ > 0, the truncated map

ψτ (m0) := (m0 −mH(0)) +

∫ min{τ,tfloor(m0)}

0

I(u) (−ṁH(u)) du

is continuous in m0. As τ ↑ tfloor(m0), we have ψτ (m0) → ψ(m0). by monotone convergence
(integrand is positive while B(t) < 0). Hence ψ is continuous on (mL,mH(0)). based on ψ, we get
the signs at the endpoints.

• As m0 ↓ mL, we get tfloor(m0) ↓ 0, so the integral→ 0. Hence,

ψ(m0)→ − (mH(0)−mL) < 0.

• As m0 ↑ mH(0), we have B(0) ↓ 0. Since the integral is nonnegative, we get

lim inf
m0↑mH(0)

ψ(m0) ≥ 0.

By continuity and the opposite signs at the endpoints, there exists at least one mdip ∈ (mL,mH(0))
such that ψ(mdip) = 0.
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Uniqueness of Regime 2 threshold. Define the two possible first events for the trajectory started
at m0:

• hit : first time when B = mc −mH = 0.

• floor : first time when mc(t) = mL

Then we define the event map E(m0) ∈ {hit, floor} by which event happens first. If the first event
is hit at time τ , then we have B = 0 and Ḃ = −AB > 0. If the first event is floor at time τ ,
then we have mc = mL and d

dt (mc −mL) < 0. Because the ODE right-hand sides are smooth,
solutions depend continuoisly on the initial value m0. So, we have near a hit point, the zero of
B persists. Also, near a floor point, the zero of mc − mL persists. This means that Shit = {m0 :
E(m0) = hit} and Sfloor = {m0 : E(m0) = floor} are disjoint open sets whose union is the whole
interval (mL,mH(0)). So, there exists a unique mc ∈ (mL,mH(0)) that becomes a unique Regime
2 threshold.

Regime 3. When mc(0) > mH(0), we have B(0) > 0 and thus ṁc(0) = A(0)B(0) > 0, so mc
initially increases. We now show that B(t) > 0 for all t ≥ 0. Suppose for contradiction that there
exists a first time τ > 0 such that B(τ) = 0 (i.e., mc(τ) = mH(τ)). Then

Ḃ(τ) = ṁc(τ)− ṁH(τ)

= A(τ)B(τ)− ṁH(τ)

= 0− ṁH(τ)

= − λ̂(τ)

2 (M1(τ))
2
mc(τ)

(2mc(τ)Γ1(τ)− Γ2(τ)) .

Proposition D.10 gives mD(τ) ≥ mH(τ). Therefore, we have 2mc(τ)Γ1(τ) − Γ2(τ) ≤ 0 and
Ḃ(τ) > 0. However, for B to reach zero from above for the first time, we must have Ḃ(τ) ≤ 0.
This is a contradiction. Therefore, B(t) > 0 for all t ≥ 0, which means mc(t) > mH(t) for all
t ≥ 0. Since A(t) = λ̂M1(t) > 0 and B(t) > 0 for all t ≥ 0, we have

ṁc(t) = A(t)B(t) > 0

for all t ≥ 0, so mc(t) is strictly increasing for all time.

D.5 EXTENSION TO DEEPER DIAGONAL LINEAR NETWORKS

In this section, we extend our analysis to L-layer diagonal linear networks. As the depth increases
(L > 2), some notational adjustments are necessary.

Recall that the margin is given by

s = ⟨β,µ⟩ =
〈
w(1) ⊙w(2) ⊙ · · · ⊙w(L), µ

〉
,

where ⊙ denotes elementwise (Hadamard) product.

The gradient of the loss L with respect to a particular weight w(l)
j can be computed via the chain

rule:
dL

dw(l)
j

=
dL
ds
· ds

dw(l)
j

= −λµj
∏
k ̸=l

w
(k)
j ,

where λ is as before, and k ̸= l indicates multiplication over all layers except l.

The squared Euclidean norm of the gradient vector∇θL is then

∥∇θL∥2 =

d∑
j=1

L∑
l=1

(
dL

dw(l)
j

)2

= λ2
d∑
j=1

L∑
l=1

µ2
j

∏
k ̸=l

w
(k)
j

2

.
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Accordingly, we define

nθ :=

√√√√√ d∑
j=1

L∑
l=1

µ2
j

∏
k ̸=l

w
(k)
j

2

.

The resulting perturbation is:

ε2 := ρ
∇θL
∥∇θL∥2

,

(ε2)w(l)
j

= −ρµj
nθ

∏
k ̸=l

w
(k)
j .

Thus, the perturbed weights are given by

ŵ
(l)
j := w

(l)
j −

ρµj
nθ

∏
k ̸=l

w
(k)
j .

The perturbed product then takes the form

β̂j :=

L∏
l=1

ŵ
(l)
j .

Therefore, the ODE for each coordinate is:

ẇ
(l)
j = −∂L(θ̂)

∂w
(l)
j

= λ̂µj
∏
k ̸=l

w
(k)
j .

Additionally, we define an assumption on the weight initialization scheme:

Assumption D.11. The weights are initialized symmetrically at t = 0, that is, w(1)
j (0) = w

(2)
j (0) =

· · · = w
(L)
j (0) = wj(0) for all j.

Now we show the balancedness-preserving property of the SAM flow.

Lemma D.12. Suppose Assumption D.11 holds. Then for all t ≥ 0,

w
(l)
j (t) = wj(t) for every l, j.

Furthermore, the sign of wj(t) is preserved for all t ≥ 0.

Proof. Fix j. Assume that at some time t all weights corresponding to j across the layers are equal,
i.e.,

w
(1)
j (t) = w

(2)
j (t) = · · · = w

(L)
j (t) = wj(t).

Then n2θ(t) simplifies as follows:

n2θ(t) =

d∑
j=1

L∑
l=1

µ2
j

∏
k ̸=l

w
(k)
j (t)

2

=

d∑
j=1

L∑
l=1

µ2
j

(
wj(t)

L−1
)2

=

d∑
j=1

Lµ2
j (wj(t))

2L−2.
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Therefore, the perturbed weight for each layer l simplifies to:

ŵ
(l)
j (t) = w

(l)
j (t)− ρµj

nθ(t)

∏
k ̸=l

w
(k)
j (t)

= wj(t)−
ρµj
nθ(t)

wj(t)
L−1,

which is independent of l. Hence,

ŵ
(1)
j (t) = ŵ

(2)
j (t) = · · · = ŵ

(L)
j (t) =: ŵj(t).

Substituting this into the SAM flow equation yields:

ẇ
(l)
j (t) = λ̂(t)µjŵj(t)

L−1,

which is likewise independent of l.

Now, for a fixed j, consider the L-dimensional vector

uj(t) :=
(
w

(1)
j (t), w

(2)
j (t), . . . , w

(L)
j (t)

)
.

The SAM dynamics specify the ODE:

u̇j(t) = Fj (uj(t),θ(t)) ,

where Fj is the vector whose l-th entry is λ̂(t)µj
∏
k ̸=l ŵ

(k)
j (t). This ODE is locally Lipschitz in

uj , ensuring uniqueness of solutions for given initial conditions.

Consider the one-dimensional diagonal manifold

Dj :=
{
(x, . . . , x) ∈ RL : x ∈ R

}
.

if uj(t) ∈ Dj , then u̇j(t) ∈ Dj as well, because all coordinates have the same derivative. So Dj is
invariant under the flow.

Since the initial condition uj(0) lies in Dj due to symmetric initialization, and the ODE solution is
unique, we conclude that uj(t) ∈ Dj for all t ≥ 0. Therefore,

w
(l)
j (t) = wj(t) for all l, j, and t ≥ 0.

In summary, Assumption D.11 guarantees balancedness at all times for any depth L.

Next, we consider the sign preservation property.

Recall that on the balanced manifold, we may write w(l)
j (t) = wj(t) for all l, j, and t ≥ 0, so the

per-coordinate dynamics reduce to

ẇj(t) = λ̂(t)µj

(
wj(t)− ρ

µj
nθ(t)

wj(t)
L−1

)L−1

.

We claim that the sign of wj(t) is preserved for all t ≥ 0. To see this, observe that the right-hand
side of the ODE is a smooth (in fact, polynomial) function of wj , so it is locally Lipschitz in wj for
each fixed t. In particular, if at some time τ we have wj(τ) = 0, then ẇj(τ) = 0, so wj(t) ≡ 0 for
all t ≥ τ is a solution with the same initial value. By uniqueness of solutions to ODEs with Lipschitz
right-hand side, it follows that once wj reaches zero, it remains identically zero for all future time
and cannot cross to the opposite sign. Therefore, if wj(0) ̸= 0, the sign of wj(t) is preserved for all
t ≥ 0 by continuity; if wj(0) = 0, it remains zero.

In summary, the sign of wj(t) cannot change during the flow.

Utilizing the balancedness-preserving property, we can now extend the lemma for the depth-L diag-
onal network.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Lemma D.13. Under Assumption D.11 and Assumption D.4, the rescaled ℓ2 SAM flow satisfies, for
each coordinate j,

d
dt
βj(t) = r

(L)
j (t)βj(t),

where

r
(L)
j (t) = Lµjβj(t)

(1−2/L)

(
1− ρµj

nθ(t)
βj(t)

(L−2)/L

)(L−1)

,

and

βj(t) = wj(t)
L, nθ(t) = L

d∑
k=1

µ2
kwk(t)

(2L−2).

Proof. Now define the effective coefficient per coordinate, for general depth L:

βj(t) :=

L∏
l=1

w
(l)
j (t) = wj(t)

(L).

Under the balanced ℓ2 SAM flow, the coordinate dynamics become:

β̇j(t) =
d
dt
(
wj(t)

L
)
= Lwj(t)

(L−1)ẇj(t)

= Lw
(L−1)
j λ̂µjŵ

(L−1)
j .

We first compute the perturbed weight for coordinate j:

ŵj = wj −
ρµj
nθ

wL−1
j = wj

(
1− ρµj

nθ
wL−2
j

)
.

Substituting this into the expression for β̇j(t) gives:

β̇j(t) = Lλ̂(t)µj w
2L−2
j

(
1− ρµj

nθ(t)
wL−2
j

)L−1

.

To express this in terms of βj = wLj , note that

w2L−2
j = β

2−2/L
j , wL−2

j = β
(L−2)/L
j .

Therefore, we obtain:

β̇j(t) = Lλ̂(t)µj βj(t)
2−2/L

(
1− ρµj

nθ(t)
βj(t)

(L−2)/L

)L−1

.

Absorbing λ̂(t) into the time parameter yields the rescaled SAM flow equation:

d
dt
βj(t) = r

(L)
j (t)βj(t),

where

r
(L)
j (t) := Lµj βj(t)

1−2/L

(
1− ρµj

nθ(t)
βj(t)

(L−2)/L

)L−1

.

This provides the Depth-L generalization of the SAM feature amplification dynamics.
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Proposition D.14. Consider the depth-L diagonal network under Assumption D.11 and Assump-
tion D.4. Define

βj(t) :=

L∏
l=1

w
(l)
j (t) = wj(t)

L, zj(t) := µjwj(t)
L−2, n2θ(t) := L

d∑
k=1

µ2
kwk(t)

(2L−2),

and the critical effective scale:

zc(t) :=
nθ(t)

ρL
.

Then for each time t, we have

d
dt
βj(t) = Lzj(t)

(
1− ρ

nθ(t)
zj(t)

)L−1

=: ϕt (zj(t)) .

The function z 7→ ϕt(z) is strictly increasing on (0, zc(t)), strictly decreasing on (zc(t), nθ(t)/ρ),
and possesses a unique interior maximum at z = zc(t).

In particular, at any fixed t, the coordinate(s) whose effective scale zj(t) is closest to the peak of ϕt,
i.e., near zc(t), experience the largest instantaneous growth in βj .

Proof. In rescaled SAM time, we have

d
dt
βj(t) = Lµj βj(t)

1−2/L

(
1− ρµj

nθ(t)
βj(t)

(L−2)/L

)L−1

,

where

n2θ(t) = L

d∑
k=1

µ2
kwk(t)

2L−2.

Define the effective z-scale by
zj(t) := µj wj(t)

L−2.

Note that
µj β

(L−2)/L
j = µj w

L−2
j = zj .

Plugging this into the βj ODE yields

d
dt
βj(t) = Lzj(t)

(
1− ρ

nθ(t)
zj(t)

)L−1

.

We may rewrite this as

d
dt
βj(t) = ϕt(zj(t)), where ϕt(z) := Lz

(
1− ρ

nθ(t)
z

)L−1

.

Define the critical effective scale:

zc(t) :=
nθ(t)

ρL
.

Consider ϕt(z) = Lz (1− cz)L−1, where c = ρ
nθ(t)

> 0. Its derivative with respect to z is:

d
dz
ϕt(z) = L (1− cz)L−2

(1− Lcz) ,

so that:

• ϕ′t(z) > 0 for 0 < z < zc(t),

• ϕ′t(z) = 0 when z = zc(t),

• ϕ′t(z) < 0 for zc(t) < z < nθ(t)/ρ.
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Therefore, for each fixed t, the function z 7→ ϕt(z) is strictly increasing on (0, zc(t)), strictly
decreasing on (zc(t), nθ(t)/ρ), and has a unique interior maximum at z = zc(t).

Unlike the depth-2 case, where each µj is a fixed constant and their order remains unchanged
throughout training, in the depth-L case the effective quantities zj(t) are time-dependent and could,
in principle, change order as the SAM flow evolves. However, the following proposition establishes
that the order of zj(t) is actually preserved throughout the entire SAM trajectory.

Proposition D.15. Under Assumptions D.11 and D.4, the order of the zj(t) is preserved in the
depth-L SAM flow. That is, if µ1 < · · · < µd, then z1(t) < z2(t) < · · · < zd(t) for all t ≥ 0.

Proof. We first compute the ODE satisfied by zj(t). By definition,

zj = µjw
L−2
j ,

Taking the time derivative, we get

żj = µj (L− 2)w
(L−3)
j ẇj

= µj (L− 2)w
(L−3)
j

(
λ̂µjŵ

(L−1)
j

)

Therefore, the perturbed weight is

ŵj = wj

(
1− ρµj

nθ
w

(L−2)
j

)
.

Also, we get

w
(L−3)
j ŵ

(L−1)
j = w

(2L−4)
j

(
1− ρµj

nθ
w

(L−2)
j

)(L−1)

.

Using w(L−2)
j =

zj
µj

and w(2L−4)
j =

z2j
µ2
j

, we obtain

żj = (L− 2)λ̂µ2
j

z2j
µ2
j

(
1− ρµj

nθ

zj
µj

)(L−1)

= (L− 2)λ̂z2j

(
1− ρzj

nθ

)(L−1)

.

Thus, the ODE for zj(t) can be expressed as

żj(t) = f(t, zj(t)) := (L− 2)λ̂ zj(t)
2

(
1− ρzj(t)

nθ(t)

)L−1

.

Notice that in this expression, the dependence on j appears only through zj(t); both λ̂ and nθ(t)
are time-dependent scalars shared across all coordinates. So each zj(t) solves the same scalar non-
autonomous ODE,

ż(t) = f(t, z(t)),

with z(t) = zj(t).

Now at t = 0, under symmetric positive init wj(0) = α > 0, we have zj(0) = µjα
L−2. Since

µ1 < · · · < µd and αL−2 > 0, we have z1(0) < z2(0) < · · · < zd(0). For this ODE with f is
smooth and locally Lipschitz in z, the two different solutions zj(t) cannot cross each other. If two
solutions ever meet (same values at some time), then uniqueness makes them to be identical for all
times. So the order of zj(t) is preserved for all t ≥ 0. Thus, we have z1(t) < z2(t) < · · · < zd(t)
for all t ≥ 0.
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D.6 PROOFS FOR SECTION 4.2.4

D.6.1 DERIVATION OF THE DYNAMICS OF β(t)

The dynamics of β(t) = w(t)⊙w(t) is given by

β̇(t) = ẇ(t)⊙w(t) +w(t)⊙ ẇ(t).

By Equation (3), it is given as

β̇(t) = 2µ⊙w(t)⊙
(
w(t)− ρµ⊙w(t)

nθ(t)

)
= 2µ⊙

(
β(t)− ρµ⊙ β(t)

nθ(t)

)
.

Coordinate-wise, we have the linear equation

β̇j(t) = 2µj

(
βj(t)− ρ

µjβj(t)

nθ(t)

)
= 2µjβj(t)

(
1− ρ µj

nθ(t)

)
.

Therefore, separating variables and integrating, we get

β̇j(t)

βj(t)
= 2µj − 2ρ

µ2
j

nθ(t)

⇒
∫ t

0

β̇j(s)

βj(s)
ds =

∫ t

0

(
2µj − 2ρ

µ2
j

nθ(s)

)
ds

⇒ log
βj(t)

βj(0)
= 2µjt− 2ρµ2

j

∫ t

0

1

nθ(s)
ds.

Define I(t) :=
∫ t
0

1
nθ(s)

ds. Then, the solution is given by

βj(t) = βj(0) exp
(
2µjt− 2ρµ2

jI(t)
)

for j ∈ [d].

D.6.2 PROOF OF THEOREM 4.5

Before proving Theorem 4.5, we establish Theorem D.16, which provides lower and upper bounds
for I(t) and serves as a key ingredient in the proof of Theorem 4.5 below.

Theorem D.16. Suppose w(1) = w(2) = α ∈ Rd. Let (w(1)(t))t≥0 and (w(2)(t))t≥0 follow
the rescaled ℓ2-SAM flow (2) reduced to (3) with perturbation radius ρ and data point µ. Define
Cµ,α = µ1√

2
∑d

j=1 µ
2
jα

2
j

and Cµ,α =
∥µ∥2

2√
2d(

∏d
j=1 µjαj)

1/d∥µ∥1
. Then,

(a) I(t) ≥ 1
ρµ2

1
log
(

1
ρCµ,α exp(−µ1t)+1−ρCµ,α

)
when I(t)

t ≥
1

ρ(µ1+µ2)
,

(b) I(t) ≤ d
ρ∥µ∥2

2
log

(
1

ρCµ,α exp(− ∥µ∥1
d t)+1−ρCµ,α

)
.

Proof. From the definition of I(t), I(t) :=
∫ t
0

1
nθ(s)

ds, we have I ′(t) = 1
nθ(t)

.

Since we suppose w(1)(0) = w(2)(0), and the loss function and dynamics are invariant under
exchanging w(1) and w(2), we have w(1)(t) = w(2)(t) =: w(t) for all t ≥ 0.

From the definition of nθ(t), we have

nθ(t) =
√
∥µ⊙w(1)(t)∥22 + ∥µ⊙w(2)(t)∥22
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=
√
2∥µ⊙w(t)∥22

=

√√√√√2

 d∑
j=1

µ2
jwj(t)

2



=

√√√√√2

 d∑
j=1

µ2
jβj(t)

.
From Equation (4), which is βj(t) = βj(0) exp

(
2µjt− 2ρµ2

jI(t)
)
, we have

nθ(t) =

√√√√√2

 d∑
j=1

µ2
jβj(0) exp

(
2µjt− 2ρµ2

jI(t)
),

and therefore,

I ′(t) =
1√

2
(∑d

j=1 µ
2
jβj(0) exp

(
2µjt− 2ρµ2

jI(t)
)) .

(a) When I(t)
t ≥

1
ρ(µ1+µ2)

≥ 1
ρ(µ1+µj)

for j = 2, . . . , d, it holds that

(2µjt− 2ρµ2
jI(t))− (2µ1t− 2ρµ2

1I(t)) = 2(µj − µ1)(t− ρ(µj + µ1)I(t)) ≥ 0.

Therefore,

I ′(t) =
1√

2
∑d
j=1 µ

2
jβj(0) exp

(
2µjt− 2ρµ2

jI(t)
)

≤ 1√
2
∑d
j=1 µ

2
jβj(0) exp (2µ1t− 2ρµ2

1I(t))

=
1√

2
∑d
j=1 µ

2
jβj(0) exp (µ1t− ρµ2

1I(t))

Separating variables and integrating, we get

exp(−ρµ2
1I(t))dI ≤

1√
2
∑d
j=1 µ

2
jβj(0)

exp(−µ1t)dt

⇒
∫ I(t)

I(0)

exp(−ρµ2
1u)du ≤

∫ t

0

1√
2
∑d
j=1 µj(s)

2βj(0)
exp(−µ1s)ds

⇒− 1

ρµ2
1

(exp(−ρµ2
1I(t))− exp(−ρµ2

1I(0))) ≤ −
1√

2
∑d
j=1 µj(s)

2βj(0)

1

µ1
(exp(−µ1t)− exp(−µ10))

⇒
(a)

1

ρµ2
1

(exp(−ρµ2
1I(t))− 1) ≥ 1√

2
∑d
j=1 µj(s)

2βj(0)

1

µ1
(exp(−µ1t)− 1)

⇒ exp(−ρµ2
1I(t)) ≥ ρ

µ1√
2
∑d
j=1 µj(s)

2βj(0)
(exp(−µ1t)− 1) + 1

⇒− ρµ2
1I(t) ≥ log

(
ρCµ,α(exp(−µ1t)− 1) + 1

)
⇒I(t) ≥ 1

ρµ2
1

log

(
1

ρCµ,α exp(−µ1t) + 1− ρCµ,α

)
,
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where (a) holds since I(0) = 0 from the definition of I(t).

(b) By AM-GM inequality, we have

I ′(t) =
1√

2
∑d
j=1 µ

2
jβj(0) exp

(
2µjt− 2ρµ2

jI(t)
)

≤ 1√
2d
(∏d

j=1 µ
2
jβj(0) exp

(
2µjt− 2ρµ2

jI(t)
))1/d

=
1√

2d
(∏d

j=1 µ
2
jβj(0)

)1/d
exp

(
2
∑d

j=1 µj

d t− 2ρ
∑d

j=1 µ
2
j

d I(t)

)
=

1√
2d
(∏d

j=1 µ
2
jα

2
j

)1/d
exp

(
2∥µ∥1

d t− 2ρ∥µ∥2
2

d I(t)
)

=
1

√
2d
(∏d

j=1 µjαj

)1/d
exp

(
∥µ∥1

d t− ρ∥µ∥2
2

d I(t)
)

Separating variables and integrating, we get

exp(−ρ∥µ∥
2
2

d
I(t))dI ≤ 1

√
2d
(∏d

j=1 µjαj

)1/d exp(−∥µ∥1d t

)
dt

⇒
∫ I(t)

I(0)

exp(−ρ∥µ∥
2
2

d
u)du ≤

∫ t

0

1
√
2d
(∏d

j=1 µjαj

)1/d exp(−∥µ∥1d s

)
ds

⇒− d

ρ∥µ∥22
(exp(−ρ∥µ∥

2
2

d
I(t))− exp(−ρ∥µ∥

2
2

d
I(0))) ≤ − 1

√
2d
(∏d

j=1 µjαj

)1/d d

∥µ∥1
(exp(−∥µ∥1

d
t)− 1)

⇒ exp(−ρ∥µ∥
2
2

d
I(t)) ≥ ρ ∥µ∥22

√
2d
(∏d

j=1 µjαj

)1/d
∥µ∥1

(exp(−∥µ∥1
d

t)− 1) + 1

⇒− ρ∥µ∥
2
2

d
I(t) ≥ log

(
ρCµ,α(exp(−

∥µ∥1
d

t)− 1) + 1

)
⇒I(t) ≤ d

ρ∥µ∥22
log

(
1

ρCµ,α exp(−∥µ∥1

d t) + 1− ρCµ,α

)
.

Theorem 4.5. Let α0, α2 be defined in Theorem 4.4 and α1 be the threshold from there. Suppose
α1 < α ≤ ρ µ1+µd√

2∥µ∥2
< α2. Then, for j ∈ [d], there exists Tj such that

βj(Tj)
βd(Tj)

≥ LBj(α) := exp
(
2R′

j

(
(Rj − 1) log

(
1

1−α0/α

)
+ log

(
1

α0/α

)
− C(Rj)

))
where Rj := (µj+µd)/µ1 > 2, R′

j := (µd−µj)/µ1 and C(R) := R logR− (R− 1) log(R− 1).

Proof. By the assumption α0 < α1 < α, we have Cµ,α = α0

ρα <
1
ρ . We also have

Cµ,α =
µ1√

2∥µ∥2α
≥ µ1√

2∥µ∥2ρα(2)
µ

=
µ1

ρ(µ1 + µd)
≥ µ1

ρ(µj + µd)
=

1

ρ Rj
for all j ∈ [d].
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⇒
1− ρCµ,α

ρCµ,α

=
1

ρCµ,α

− 1 < Rj − 1 for all j ∈ [d].

Let Tj := 1
µ1

log
(

ρCµ,α

1−ρCµ,α
(Rj − 1)

)
≥ 0.

From Theorem D.16, we have

I(Tj) ≥
1

ρµ2
1

log

(
1

ρCµ,α exp(−µ1Tj) + 1− ρCµ,α

)

=
1

ρµ2
1

log

 1

ρCµ,α exp
(
log
(

1−ρCµ,α

ρCµ,α(Rj−1)

))
+ 1− ρCµ,α


=

1

ρµ2
1

log

 1
1−ρCµ,α

Rj−1 + 1− ρCµ,α


=

1

ρµ2
1

log

 1

(1− ρCµ,α)
(
1 + 1

Rj−1

)


=
1

ρµ2
1

log

 1

(1− ρCµ,α)
(

Rj

Rj−1

)


=
1

ρµ2
1

log

(
1− 1

Rj

1− ρCµ,α

)
.

Recall from Equation (4) that

βj(Tj) = βj(0) exp
(
2µjTj − 2ρµ2

jI(Tj)
)

for j ∈ [d].

Thus, for j ∈ [d], we have

βj(Tj)

βd(Tj)
= exp

(
−2(µd − µj)Tj + 2ρ(µ2

d − µ2
j )I(Tj)

)
= exp

(
−2µd − µj

µ1
log

(
ρCµ,α

1− ρCµ,α

(Rj − 1)

)
+ 2ρ(µ2

d − µ2
j )I(Tj)

)
≥ exp

(
−2µd − µj

µ1
log

(
ρCµ,α

1− ρCµ,α

(Rj − 1)

)
+ 2

µ2
d − µ2

j

µ2
1

log

(
1− 1

Rj

1− ρCµ,α

))

= exp

(
2
µd − µj
µ1

(
µd + µj
µ1

log

(
1− 1

Rj

1− ρCµ,α

)
− log

(
ρCµ,α

1− ρCµ,α

(Rj − 1)

)))

= exp

(
2R′

j

(
Rj log

(
1− 1

Rj

1− ρCµ,α

)
− log

(
ρCµ,α

1− ρCµ,α

(Rj − 1)

)))

= exp

2R′
j

Rj log
 Rj−1

Rj

1− ρα0

α

− log

( ρα0

α

1− ρα0

α

(Rj − 1)

)
= exp

(
2R′

j

(
(Rj − 1) log(Rj − 1)−Rj log(Rj)− (Rj − 1) log

(
1− ρα0

α

)
− log

(ρα0

α

)))
= exp

(
2R′

j

(
−C(Rj)− (Rj − 1) log

(
1− ρα0

α

)
− log

(ρα0

α

)))
= exp

(
2R′

j

(
(Rj − 1) log

(
1

1− ρα0/α

)
+ log

(
1

ρα0/α

)
− C(Rj)

))
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D.6.3 PROOF OF PROPOSITION 4.6

Proposition 4.6. Under the conditions of Theorem 4.5, define j∗(α) := argmaxj∈[d] LBj(α) and
set α∗

0 := α0. Then, there exist thresholds α∗
0 < α∗

1 < · · · < α∗
m ≤ ρ µ1+µd√

2∥µ∥2
for some m ≤ d − 1

such that j∗(α) = j for α ∈ (α∗
j−1, α

∗
j ].

Proof. For α ∈ (α0, ρ
µ1+µd√
2∥µ∥2

), let x = α0/α ∈ (0, 1) and write

Gj(x) = log LBj(α) = 2R′
jΦRj (x),

where

ΦR(x) = (R− 1) log
1

1− x
+ log

1

x
− C(R), C(R) = R logR− (R− 1) log(R− 1),

and Rj = (µj + µd)/µ1 > 1, R′
j = (µd − µj)/µ1 ≥ 0.

(1) Shape of ΦRj
. We have

Φ′
Rj

(x) =
Rjx− 1

x(1− x)
, Φ′′

Rj
(x) =

Rj − 1

(1− x)2
+

1

x2
> 0.

Thus ΦRj
is strictly convex on (0, 1) and attains its unique minimum at x = 1/Rj , where

ΦRj
(1/Rj) = 0. Consequently ΦRj

(x) ≥ 0 for all x and it is strictly increasing on [1/Rj , 1).
(2) Crossing between adjacent indices. For any j ∈ {1, . . . , d− 1} define

Hj+1,j(x) = Gj+1(x)−Gj(x) = 2
(
R′
j+1ΦRj+1(x)−R′

jΦRj (x)
)
.

Because Rj+1 > Rj , we have ΦRj+1
(1/Rj+1) = 0 and ΦRj

(1/Rj+1) > 0, hence
Hj+1,j(1/Rj+1) < 0. Likewise ΦRj

(1/Rj) = 0 and ΦRj+1
(1/Rj) > 0, giving

Hj+1,j(1/Rj) > 0. By continuity, Hj+1,j has at least one zero x∗j ∈ (1/Rj+1, 1/Rj ].

To show uniqueness, using the expression for Φ′
Rj

, we obtain

H ′
j+1,j(x) =

2

x(1− x)
(
(R′

j+1Rj+1 −R′
jRj)x− (R′

j+1 −R′
j)
)
.

Since

R′
kRk =

(µd − µk)(µk + µd)

µ2
1

=
µ2
d − µ2

k

µ2
1

,

we obtain R′
j+1Rj+1 −R′

jRj =
µ2
j−µ

2
j+1

µ2
1

< 0. Its zero occurs at

xc =
R′
j+1 −R′

j

R′
j+1Rj+1 −R′

jRj
=

µ1

µj+1 + µj
,

and therefore
H ′
j+1,j(x) > 0 for x < xc, H ′

j+1,j(x) < 0 for x > xc.

Hence Hj+1,j(x) is strictly increasing up to xc and strictly decreasing afterward. Since 1/Rj =
µ1/(µj + µd) ≤ µ1/(µj+1 + µj), Hj+1,j is strictly increasing in the interval (1/Rj+1, 1/Rj ].
BecauseHj+1,j(1/Rj+1) < 0 andHj+1,j(1/Rj) > 0, this implies thatHj+1,j crosses zero exactly
once in (1/Rj+1, 1/Rj). Consequently the root x∗j is unique, with Hj+1,j(x) < 0 for x < x∗j and
Hj+1,j(x) > 0 for x > x∗j .

(3) Thresholds and staircase structure. As α increases, x = α0/α decreases. Define α∗
j = α0/x

∗
j .

When α crosses α∗
j , the maximizer between indices j and j + 1 switches once from j to j + 1.

Because the intervals (1/Rj+1, 1/Rj ] are disjoint and ordered, the thresholds satisfy α∗
0 < α∗

1 <

· · · < α∗
m ≤ ρ(µ1 + µd)/(

√
2∥µ∥2) for some m ≤ d− 1.

Thus j∗(α) takes constant values on each interval (α∗
j−1, α

∗
j ], increasing step by step until the last

threshold within the admissible range.
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D.6.4 PROOF OF PROPOSITION 4.7

Proposition 4.7. Consider α0 defined in Theorem 4.4. (i) If α < α0, then β(t) converges to zero.
(ii) If α > ρ

∥µ∥2
2√

2d(
∏d

i=1 µi)
1/d∥µ∥1

, then β(t) converge in ℓ1 max-margin direction.

Proof. We use Theorem D.16 to prove the theorem. When w(1)(0) = w(2)(0) = α1, we have

Cµ,α =
µ1√

2
∑d
j=1 µ

2
jα

2
=

µ1√
2
∑d
j=1 µ

2
jα

=
µ1√

2∥µ∥2α
=
α0

α

Cµ,α =
∥µ∥22√

2d(
∏d
j=1 µjα)

1/d∥µ∥1
=

∥µ∥22√
2d(
∏d
j=1 µj)

1/dα∥µ∥1

(i) By the assumption α ≤ α0, we have Cµ,α = α0

ρα ≥
1
ρ . Let T := 1

µ1
log
(

ρCµ,α

ρCµ,α−1

)
≥ 0.

From Theorem D.16, we have

I(t) ≥ 1

ρµ2
1

log

(
1

ρCµ,α exp(−µ1t) + 1− ρCµ,α

)
.

As t→ T , we have

ρCµ,α exp(−µ1t) + 1− ρCµ,α

→ρCµ,α exp(−µ1T ) + 1− ρCµ,α

=ρCµ,α exp(log

(
ρCµ,α − 1

ρCµ,α

)
) + 1− ρCµ,α

=ρCµ,α

(
ρCµ,α − 1

ρCµ,α

)
+ 1− ρCµ,α = 0.

Since ρCµ,α exp(−µ1t) + 1− ρCµ,α is strictly decreasing in t, we have

ρCµ,α exp(−µ1t) + 1− ρCµ,α → 0 + as t→ T.

Therefore, I(t)→ +∞ as t→ T .

Recall from Equation (4) that

βj(t) = βj(0) exp
(
2µjt− 2ρµ2

jI(t)
)

for j ∈ [d].

As t→ T , we have βj(t)→ 0 for all j ∈ [d] since I(t)→ +∞. Therefore, β(t)→ 0 as t→ T .

(ii) By the assumption α > ρ
∥µ∥2

2√
2d(

∏d
i=1 µi)

1/d∥µ∥1
, we have Cµ,α < 1

ρ .

From Theorem D.16, we have

I(t) ≤ d

ρ∥µ∥22
log

(
1

ρCµ,α exp(−∥µ∥1

d t) + 1− ρCµ,α

)
.

For t ∈ [0,∞), we have

0 < 1− ρCµ,α ≤ ρCµ,α exp(−∥µ∥1
d

t) + 1− ρCµ,α < 1.

and as t→∞, we have

ρCµ,α exp(−∥µ∥1
d

t) + 1− ρCµ,α → 1− ρCµ,α > 0.

As t→∞, we have

I(t) ≤ d

ρ∥µ∥22
log

(
1

ρCµ,α exp(−∥µ∥1

d t) + 1− ρCµ,α

)
→ d

ρ∥µ∥22
log

(
1

1− ρCµ,α

)
<∞.
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Therefore, I(t) <∞ as t→∞.

Recall from Equation (4) that

βj(t) = βj(0) exp
(
2µjt− 2ρµ2

jI(t)
)

for j ∈ [d].

Thus, for j ∈ [d], we have

βj(t)

βd(t)
= exp

(
−2(µd − µj)t+ 2ρ(µ2

d − µ2
j )I(t)

)
.

As t→∞, we have βj(t)
βd(t)

→ 0 for all j < d since limt→∞ I(t) <∞. Therefore, β(t) converges to
the direction of ed as t→∞.

D.7 NUMERICAL EVALUATION OF THEOREM 4.5

In this section, we provide numerical illustrations of the lower bound LBj(α) derived in Theo-
rem 4.5. For several choices of µ, we compute the value of

LBj(α) := exp
(
2R′

j

(
(Rj − 1) log

(
1

1−α0/α

)
+ log

(
1

α0/α

)
− C(Rj)

))
and visualize how much the ratio βj(t)/βd(t) must be amplified at minimum.

Figure 14 shows that for small α in Regime 2 and for µ with a large spectral gap µd/µ1, LBj(α)
easily exceeds 10. Since this is only a lower bound, the actual amplification can be even larger,
indicating that minor-to-intermediate coordinates can grow by substantially more than the major
coordinate.
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(a) µ = (4, 5, 6, 7, 8)
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(b) µ = (1, 2, 3, 4, 5)
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(c) µ = (1, 3, 5, 7, 9)
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(d) µ = (1, 2, 4, 8, 16)

Figure 14: Numerical evaluation of LBj(α) for various choices of µ.

For reproducibility, we describe the numerical procedure used to generate Figure 14. For each choice
of µ (with d = dim(µ)), we evaluate LBj(α) for all j ∈ [d] on a uniform grid ofα values. Following
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the assumptions of Theorem 4.5, we first obtain the threshold α1 specified in Theorem 4.4. We then
set α ∈

[
α1, ρ

µ1+µd√
2∥µ∥2

]
using 400 grid points. The quantities α0, Rj , R′

j , and C(Rj) are computed
directly from their definitions in Theorems 4.4 and 4.5 using the given µ. The index j ∈ [d]
corresponds to the coordinate ordering µ1 < · · · < µd. Since the computation is closed-form, no
randomness is involved and the plots are exactly reproducible.

D.8 EMPIRICAL VERIFICATION

Our analysis in Section 4.2 focuses on the one-point setting Dµ. We begin by verifying that the
sequential feature discovery occurs across multiple choices of µ in this one-point regime: both the
continuous-time rescaled flows and the discrete ℓ∞-SAM updates exhibit the same coordinate-wise
progression, and the loss dynamics follow the theoretical prediction. We then turn to multi-point
datasets and show that the sequential feature discovery persists in this more realistic setting under
both the rescaled ℓ2-SAM flow and discrete ℓ2-SAM updates, as illustrated in Figure 11. Finally,
we confirm that this phenomenon is not limited to depth 2; the same coordinate-wise progression
arises in deeper diagonal networks (general depth L). Taken together, these results demonstrate that
the sequential feature discovery is a robust and widely recurring behavior: it appears consistently
across different µ, across multiple multi-point datasets, across both continuous and discrete SAM
dynamics, and across depths L ≥ 2.

To clarify the heatmap visualizations (e.g., Figures 3a and 15 to 23), for each time t and initialization
scale α, we compute j† = argminj βj(t) and color the grid point (t, α) according to this index. Grid
regions where the predictor β becomes negligibly small are shown in gray, indicating convergence
toward 0. We use the threshold ∥β(t)∥2 ≤ 10−2 to define gray regions.

Following the visualization style of Figure 3a, we also partition the α–axis into the three regimes
defined in Theorem 4.4: Regime 1 (small α), Regime 2 (intermediate α), and Regime 3 (large α).
These regime boundaries are indicated by horizontal black dashed lines in heatmap figures.

For reproducibility, we detail the exact initialization used in all experiments. As mentioned in Sec-
tion 4.2, we adopt a uniform initialization across coordinates and layers: w(1)(0) = w(2)(0) = α1
for depth-2 setup and w(1)(0) = · · · = w(L)(0) = α1 for depth-L. To approximate continuous-time
trajectories, we simulate the flow using an explicit Euler scheme with a small step size η = 10−4.
For discrete updates, we use a step size of η = 0.01.

D.8.1 ONE-POINT CASE: CONTINUOUS VS. DISCRETE DYNAMICS

We first verify that sequential feature discovery appears robustly across multiple choices of µ in the
one-point setting. To demonstrate that this phenomenon is not limited to the continuous ℓ2-SAM
flow, we additionally evaluate discrete ℓ2-SAM updates. Across all tested choices of µ, the resulting
heatmaps closely match the structure in Figure 3a, showing both time–wise and initialization–wise
sequential feature discovery. To better visualize the evolution of β(t), we also provide the loss
heatmaps over (α, t). In the discrete ℓ2-SAM case, Regime 1 often appears unstable and does not
become fully gray. This occurs because the relatively large step size causes the trajectory to hover
near the origin without collapsing exactly to 0. As a result, the predictor norm stays above the gray
threshold—so it is not colored gray—yet the loss remains large, revealing that the trajectory is still
effectively stuck in the vicinity of the origin.

For comparison, we first present the results of GF and discrete GD with µ = (4, 5, 6, 7, 8). The
behavior is similar across different choices of µ. Both GF and GD consistently recover the major
feature, independent of the initialization scale α, and they do not exhibit sequential feature discovery.
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(a) GF

0.0 0.2 0.4 0.6 0.8 1.0
time t

0.0

0.2

0.4

0.6

0.8

in
iti

al
iza

tio
n 

sc
al

e 

1

2

3

4

5

j
=

ar
gm

ax j
j(t

)

0.0 0.2 0.4 0.6 0.8 1.0
time t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

in
iti

al
iza

tio
n 

sc
al

e 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

lo
gi

st
ic 

lo
ss

(b) Discrete GD (η = 0.01)

Figure 15: Dominant index j† over α, t and logistic loss on Dµ with µ = (4, 5, 6, 7, 8).

1. µ = (4, 5, 6, 7, 8)
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(a) Rescaled ℓ2-SAM flow
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(b) Discrete ℓ2-SAM updates (η = 0.01)

Figure 16: Dominant index j† over α, t and logistic loss on Dµ with µ = (4, 5, 6, 7, 8) and ρ = 1.
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2. µ = (1, 2, 3, 4, 5)
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(a) Rescaled ℓ2-SAM flow
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(b) Discrete ℓ2-SAM updates (η = 0.01)

Figure 17: Dominant index j† over α, t and logistic loss on Dµ with µ = (1, 2, 3, 4, 5) and ρ = 1.

3. µ = (1, 3, 5, 7, 9)
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(a) Rescaled ℓ2-SAM flow
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(b) Discrete ℓ2-SAM updates (η = 0.01)

Figure 18: Dominant index j† over α, t and logistic loss on Dµ with µ = (1, 3, 5, 7, 9) and ρ = 1.
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4. µ = (1, 2, 4, 8, 16)
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(a) Rescaled ℓ2-SAM flow
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(b) Discrete ℓ2-SAM updates (η = 0.01)

Figure 19: Dominant index j† over α, t and logistic loss on Dµ with µ = (1, 2, 4, 8, 16) and ρ = 1.

D.8.2 MULTI-POINT CASE: PERSISTENCE OF ONE-POINT BEHAVIOR

To examine whether the sequential feature discovery identified in the one-point analysis persist
in more realistic datasets, we construct random linearly separable binary data by sampling two
Gaussian clusters centered at +µ and −µ for various choices of µ. Specifically, we draw

x(+)
n = µ+ εn, yn = +1, x(−)

n = −µ+ εn, yn = −1,
with εn ∼ N (0, σ2Id) and use N/2 samples per class (with µ = (1, 2), N = 100, σ = 0.5). For
visualization, we plot only the first two dimensions of the dataset in the left panels. The middle
panels show the results of the rescaled ℓ2-SAM flow on this dataset, and the right panels show the
discrete ℓ2-SAM updates. Across all choices of multi-point datasets, the same sequential feature
discovery behavior observed in the one-point setting persists.

For comparison, we present the results of GF and discrete GD with the multi-point dataset gener-
ated with mean µ = (4, 5, 6, 7, 8). The behavior is similar across different choices of µ. As in
the one-point setting, both GF and GD consistently recover the major feature, independent of the
initialization scale α, and they do not exhibit sequential feature discovery.
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Figure 20: First two dimensions of Dµ with µ = (4, 5, 6, 7, 8) and the dominant index j† over α, t
under GF and discrete GD updates.
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(b) µ = (1, 2, 3, 4, 5)
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(c) µ = (1, 3, 5, 7, 9)
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(d) µ = (1, 2, 4, 8, 16)

Figure 21: First two dimensions of Dµ and the dominant index j† over α, t under the rescaled ℓ2-
SAM flow and discrete ℓ2-SAM updates.
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D.8.3 DEPTH-L CASE: PERSISTENCE OF DEPTH-2 DYNAMICS

We confirm that the sequential feature discovery is not limited to depth L = 2; the same coordinate-
wise progression arises in deeper diagonal networks (general depth L). Specifically, we observe GF
and rescaled ℓ2-SAM flow on the one-point dataset Dµ with µ = (4, 5, 6, 7, 8). The behavior re-
mains similar across different choices of µ, multi-point datasets, and under discrete updates. While
GF appears to exhibit Regime 1 (being trapped near the origin), it does not show the sequential
feature discovery, even in the deeper models. However, the rescaled ℓ2-SAM flow clearly demon-
strates the sequential feature discovery for general depth L. Even though Regime 1 appears chaotic,
Regime 2 and 3 are distintcly observed. Thus, the sequential feature discovery robustly occurs not
only at depth L = 2 but also in deeper models.
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(c) Depth 4

0.0 0.2 0.4 0.6 0.8 1.0
time t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

in
iti

al
iza

tio
n 

sc
al

e 

1

2

3

4

5

j
=

ar
gm

ax j
j(t

)

(d) Depth 5

Figure 22: Dominant index j† over α, t under the GF on Dµ with µ = (4, 5, 6, 7, 8).
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Figure 23: Dominant index j† over α, t under the rescaled ℓ2-SAM flow on Dµ with
µ = (4, 5, 6, 7, 8) and ρ = 1.
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E EXPERIMENTS

E.1 LOSS DYNAMICS

For initialization scales in the intermediate regime (Regime 2 in Theorem 4.4), SAM first amplifies
minor coordinates and only later focuses on the major ones. This also affects to the training loss
curve. As shown in Figure 24, the loss curve of SAM is noticeably flatter than that of GD in the
early phase of training. In this experiment, we train the diagonal linear network with full-batch
SAM using radius ρ = 0.5, learning rate 0.05, and 10000 epochs. We fix the initialization scale to
α = 0.06 as a representative intermediate value. The data vector is µ = (1, 2, 3, 4, 5, 6), and all
other settings follow the default diagonal-network configuration.

To make this precise, we track the dominant index argmaxj rj(t), where rj(t) denotes the growth
rate of βj(t). In the early phase, this dominant index corresponds to minor features (coordinates
with small µj), while in the later phase it switches to major features (coordinates with larger µj).
When SAM is focusing on minor features, the loss decreases slowly, leading to a plateau; once SAM
shifts to major features, the loss drops much faster. In contrast, GD does not exhibit this minor-to-
major feature focusing behavior, and its loss decreases more rapidly from the beginning, without
such plateau.

Figure 24: Training loss curves of GD (top) and SAM (bottom) on the 2-layer diagonal network in
the intermediate initialization regime (α = 0.06). The colored areas correspond to regimes where
each feature is mostly amplified. Compared to GD, SAM exhibits an early plateau loss curve: in
this phase, SAM primarily amplifies minor coordinates, leading to slow loss decrease. Once SAM
shifts its focus to major coordinates, the loss drops rapidly. GD does not display this minor-to-major
feature focusing behavior, thereby showing a more steadily decreasing loss without such a plateau.

E.2 SEQUENTIAL FEATURE DISCOVERY UNDER RANDOM INITIALIZATION

In the main analysis, we focused on a symmetric and layer-wise balanced initialization to obtain
a clean theoretical characterization. Here, we examine whether the sequential feature discovery
phenomenon persists under more general random initialization.
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We initialize the two layers independently as

w(1)(0),w(2)(0) ∼ N (0, α2I),

where the parameter α controls the initialization scale as the standard deviation of the Gaussian
distribution.

Figure 25a shows the normalized coordinate trajectories βj(t)/∥β(t)∥2 under random initialization
(Seed 0) for α = 0.65, µ = (1, 2, 3, 4, 5, 6), and ρ = 0.1. In this case, all coordinates except
the fourth are sequentially amplified, with activation progressing roughly from the second to the
sixth coordinate. Correspondingly, Figure 25b shows that the layer-wise discrepancy ∥w(1)(t) −
w(2)(t)∥2 rapidly decays to zero, indicating fast balancing of the two layers.

A qualitatively similar but quantitatively different pattern is observed under a different random seed.
In Figure 25c (Seed 1), the sequential amplification begins from the third coordinate and proceeds
toward the sixth. Despite this seed-dependent variation in the detailed activation order, the overall
sequential feature discovery phenomenon persists. Moreover, Figure 25d confirms that the balanced-
ness property is again achieved rapidly in the early stage of training.

These empirical observations are theoretically supported by Lemma D.5, which shows that even
when the layers start from imbalanced initializations, the dynamics drive them toward a balanced
regime exponentially fast. This explains why the simplified, balanced initialization assumed in the
main analysis captures the essential behavior of the training dynamics beyond this restricted setting.
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Figure 25: Sequential feature discovery under random initialization in a two-layer diagonal network.
Rows correspond to different random seeds (Seed 0 and Seed 1), and columns correspond to different
plot types (left: normalized coordinate trajectories, right: balancedness).
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E.3 ALTERNATIVE 2-LAYER MODELS

To evaluate the generality of our theoretical predictions, we conduct experiments on alternative 2-
layer models featuring different parameterizations and metrics. In all cases, the experimental settings
and hyperparameters are chosen to closely match those used in our main theoretical simulations with
the diagonal network.

E.3.1 LINEAR NETWORK

We fix a small matrix dimension d = 5. All inputs are d×d matrices. We first draw a single random
“signal” matrix µ ∈ Rd×d with i.i.d. standard normal entries, and then compute its singular value
decomposition (SVD)

µ = Uµ diag(Sµ)V
⊤
µ .

From this SVD, we construct an orthonormal basis of rank-1 matrices

µi = uiv
⊤
i , i = 1, . . . , d,

where ui is the i-th column of Uµ and v⊤i is the i-th row of V ⊤
µ . These µi play the role of “feature

directions”, analogous to the coordinates in the diagonal model.

We use the logistic loss, and the dataset follows the same format as in the diagonal model: we
consider the two points {+µ,−µ} with opposite labels {+1,−1}. The 2-layer linear network is

fθ(X) = ⟨β,X⟩F = ⟨W (1)W (2), X⟩F ,

with learnable matrices W (1),W (2) ∈ Rd×d and effective weight β = W (1)W (2). Each layer is
initially set to the identity matrix, and before training we rescale all layers by a scalar α, so that
W (1)(0) =W (2)(0) = αI and hence β(0) = α2I .

For training, we use full-batch SAM with radius ρ = 0.5, learning rate 0.05, and a finite train-
ing epochs of T = 5000. We repeat the experiment over a range of initialization scales, α ∈
{0.20, 0.21, . . . , 0.70}.
As our tracking metric, we monitor the normalized squared alignment

ai(t) =
⟨β(t), µi⟩2F
∥β(t)∥2F

, i = 1, . . . , d,

where β(t) denotes the effective weight at training iteration t.

The results are shown in Figure 26. As plotted in the figure, the dynamics of SAM and GD are
qualitatively different. For SAM, when the initialization scale is smaller than 0.225, training does
not converge to a solution with sufficiently small loss. Beyond this regime, as the initialization
scale increases, the dominant singular direction that maximizes the alignment (i.e., argmaxi ai(T ))
moves from σ5 to σ1, indicating that SAM sequentially aligns from the minor component to the
major component as α grows.

Figure 26: Alignment of the effective weight β(t) for GD (left) and SAM (right) across initialization
scales.

69



3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

E.3.2 CONVOLUTIONAL NEURAL NETWORK

We consider a 2-layer linear convolutional network trained on a synthetic dataset built from a single
image matrix µ. This experiment is designed to probe frequency-wise feature selection under SAM.

We fix an image size d = 32 and construct a single base image µ ∈ R1×d×d as a sum of cosine
plane waves with radial frequencies:

µ(x, y) =

K∑
k=1

wk

Lk∑
l=1

cos

(
wπrk

xcosθk,l + y sin θk,l
d

+ ϕk,l

)
,

The experiment uses K = 5 different frequency bands, where rk are target bands, wk > 0 are
band weights, and θk,l, ϕk,l are random orientations and phases for each band. We take rk ∈
{3, 9, 11, 13, 15} and wk = {1.0, 2.0, 3.0, 4.0, 5.0} for all k. We set Lk = 8 for all k. We then
renormalize µ to have unit euclidean norm, then shift it slightly to be strictly positive. Next, we
define the frequency bands by constructing radial masks Mk ⊂ {0, · · · , d − 1}2 in the fourier
domain. Let µ̂ denote the 2D FFT of µ. The band energy of µ at band k is then given by

µk =
∑
m∈Mk

|µ̂(m)|2.

The bands are sorted by µk. As we apply low weights to low frequency bands when constructing
µ, in this setting, low frequency bands have smaller µk and treated as minor features, and high
frequency bands have larger µk and treated as major features.

The utilized model is a depth-2 convolutional network without nonlinearities. For the first convo-
lutional layer, we use 3 × 3 convolution with 32 output channels, stride 1, and padding 1. For the
second convolutional layer, we use same size of kernel, channel size, stride, and padding.

We used realistic gaussian initialization for the weights of the convolutional layers. The weights for
each layer are independently initialized. Lastly, the final FC layer is a linear layer. the input for fc
layer is squeezed 1d vector, and the output is a single logit.

Logistic loss is used, and full-batch training is employed. We use learning rate of 0.03 and ρ = 0.1.
We train for 6000 epochs.

Band-wise effective weights. To compare with the diagonal model, we require a band-wise de-
composition of the effective weight β(θ) in input space. Since the network is linear, β(θ) can be
recovered from gradients. At a given parameter vector θ, we consider the empirical margin

s(θ) = E(x,y) [yfθ(x)] =
1

2
(fθ(µ)− fθ(−µ)) .

We compute the gradient of s(θ) with respect to the input and form a “virtual gate” version of β in
input space:

∇xs(θ)|x,y = y (∇xfθ(x)) .
So,

βmap(u, v) = E(x,y)

[
(∇xfθ(x)⊙ x)u,v

]
,

which is proportional to (β(θ)⊙µ)u,v in our linear setting. In practice, this expectation is computed
exactly by averaging over x ∈ {µ,−µ}.

We then take the 2D FFT of βmap, denoted β̂map, and define the band-wise effective weights by

βk(θ) =
∑
m∈Mk

∣∣∣β̂map(m)
∣∣∣2 .

For each training epoch t we record the vector

(β1(θt), . . . , βK(θt)) ,
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and, in particular, the index of the dominant band

kdom(t) = argmax
k

βk(θt).

In our initialization-scale experiments, we repeat this procedure over a range of α ∈ [0.13, 0.20]
and, for each α, track both the dominant band kdom at the end of training. This provides a CNN
analogue of the feature-selection behavior observed in the diagonal model, where coordinates are
replaced by frequency bands.

Figure 27 displays how the final dominant frequency band selected by the CNN varies with the
initialization scale α. Consistent with expectations, when trained with SAM, the model emphasizes
minor features (i.e., low frequency bands) for small α, and shifts its focus to major features (high
frequency bands) as α increases. In contrast, under standard GD, the dominant frequency band
remains unchanged regardless of the initialization scale.

Figure 27: Dominant band for GD (top) and SAM (bottom) across gaussian initialization with dif-
ferent scales. Each point shows the dominant band (the band that model mostly focuses on) at the
end of training; SAM systematically shifts from minor (low-frequency) to major(high-frequency)
bands as α increases, whereas GD remains insensitive to α.

E.4 GRAD-CAM

As our theoretical analysis rigorously characterizes the dynamics of SAM in linear diagonal net-
works, we extend our empirical investigation to convolutional neural networks (CNNs) to examine
whether the same phenomena persist in more realistic architectures. Combining the results for both
ℓ∞-SAM and ℓ2-SAM, our theory predicts three practical regimes: for small initialization scale α,
SAM collapses toward the origin; for large α, SAM behaves similarly to GD; and for intermediate
α, SAM preferentially amplifies minor to intermediate features relative to GD.

To examine these predictions in practice, we train depth-2 CNNs with ReLU activations using both
SAM and GD. We then apply Grad-CAM (Selvaraju et al., 2019; Gildenblat & contributors, 2021)
to visualize which regions of the input image are emphasized by each model. In addition to quali-
tative visualizations, we compute the average values of pixels whose Grad-CAM activation exceeds
a threshold (0.5) and plot this quantity as a function of the initialization scale α. To characterize
the sequential feature discovery as a function of the initialization scale, we rescale the default ran-
dom initialization by multiplying it by α and train the model under this controlled initialization
scheme. Unlike the theoretical setting of Theorem 4.5, which assumes a structured initialization, we
use randomized initialization with rescaling in practice. In the corresponding figures, we indicate
collapse-to-origin behavior in green and blow-up behavior in purple.

We conduct experiments on MNIST (Deng, 2012), SVHN (Netzer et al., 2011), and CIFAR-10
(Krizhevsky et al., 2009). Across all datasets, we consistently observe that GD-trained models
concentrate on dominant, high-intensity pixels, whereas SAM-trained models emphasize lower-
intensity, minor pixel regions. These results demonstrate that the distinct feature prioritization
mechanism predicted by our theory persists in nonlinear CNN architectures.
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E.4.1 MNIST

We first study this phenomenon on MNIST. MNIST has a simple structure, where the black back-
ground takes the minimum pixel value (0) and the white digit takes the maximum pixel value (1).

We construct a subset of 1,000 images whose labels are in 0, 1, 2, 3 and train models using either GD
or ℓ2-SAM. After training, we visualize the learned attention patterns using Grad-CAM, as shown in
Figure 28. We observe that the GD-trained model primarily bases its predictions on the white digit
region, whereas the ℓ2-SAM–trained model concentrates more strongly on the black background
region. Unless otherwise stated, we use a learning rate of 0.1, a SAM perturbation radius of 0.5, and
train for 500 epochs with a batch size of 64. We use no momentum and no weight decay. For the
CNN architecture, we use 3× 3 convolutional kernels and do not apply batch normalization or layer
normalization.

(a) GD (b) ℓ2-SAM

Figure 28: Grad-CAM comparison between GD and ℓ2-SAM on MNIST (labels 0–3).

To study the practical behavior of ℓ∞-SAM, we train models using ℓ∞-SAM on a subset of 1,000
MNIST images with labels in {0, 1}. We then visualize the Grad-CAM maps, as shown in Figure 29.
We observe a bias pattern similar to that of ℓ2-SAM, where the model places greater emphasis on
background regions corresponding to minor features. We use the same hyperparameters as in the
previous experiment: learning rate 0.1, perturbation radius 0.5, training for 500 epochs, and a batch
size of 64.

Input 1 Grad-CAM Overlay Input 1 Grad-CAM Overlay

Input 0 Grad-CAM Overlay

(a) GD

Input 0 Grad-CAM Overlay

(b) ℓ∞-SAM

Figure 29: Grad-CAM comparison between GD and ℓ∞-SAM on MNIST (labels 0–1).

We now quantify the average values of activated pixels (Grad-CAM > 0.5) as a function of the
initialization scale α across different dataset subsets. In this experimental setup (Figure 30), we
observe that GD consistently concentrates more on the white digit region, which can be interpreted
as the major component in the pixel value manner, unless GD fails to minimize the loss because of
too large initialization scale. We denote as purple dots where GD blows up. Moreover, we observe
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three regimes of α of SAM. We denote as green dots where too small initialization scale fails to
escape near the origin and so the loss is not changed. Here can be seen as Regime 1. After that,
SAM concentrates on the pixels whose average is almost 0, so the background region. This implies
SAM concentrating on the minor component of the data more than GD, which can be seen as Regime
2. When GD blows up, SAM also goes out of the trend and almost blows up.
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(a) MNIST with labels 0,1,2,3.
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(b) 1k MNIST images with labels 0 and 1.
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(c) 1k MNIST images with labels 0,1,2,3.
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(d) Full MNIST 1k subset.

Figure 30: Average number of pixels with Grad-CAM activation exceeding 0.5 as a function of the
initialization scale α, comparing GD and ℓ2-SAM across different MNIST subsets.

ℓ∞-SAM exhibits a similar pattern (Figure 31). When α is small, the dynamics collapse toward the
origin. For intermediate values of α, ℓ∞-SAM tends to prioritize minor features more strongly than
GD. For sufficiently large α, however, the behavior of ℓ∞-SAM deviates from this trend.
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Figure 31: Average number of pixels with Grad-CAM activation exceeding 0.5 as a function of the
initialization scale α, comparing GD and ℓ∞-SAM on 1k MNIST images with labels 0 and 1.
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E.4.2 SVHN

We next study this phenomenon on SVHN. SVHN is more complex than MNIST, as it contains
both images with dark backgrounds and light digits, as well as images with light backgrounds and
dark digits. Nevertheless, we observe that ℓ2-SAM consistently emphasizes the darker regions of
the image.

We construct a subset of 1,000 images with labels in {0, 1} and train models using either GD or ℓ2-
SAM. We use a learning rate of 0.01, a SAM perturbation radius of 0.05, and train for 200 epochs.

The images in Figure 32 contain dark digits on light backgrounds. In this case, we observe that
SAM concentrates more strongly on the digit regions than the background, as the digits constitute
the minor features in these images. By contrast, the images in Figure 33 contain light digits on dark
backgrounds. For these images, SAM concentrates more strongly on the background regions than
on the digits, as the background constitutes the minor feature in this setting.

(a) GD (b) ℓ2-SAM

Figure 32: Grad-CAM comparison between GD and ℓ2-SAM on SVHN (1k images, labels 0–1)
with dark digits and light backgrounds.
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(a) GD (b) ℓ2-SAM

Figure 33: Grad-CAM comparison between GD and ℓ2-SAM on SVHN (1k images, labels 0–1)
with light digits and dark backgrounds.

Across different values of α, we observe that small α causes ℓ2-SAM to collapse toward the origin,
while intermediate α leads ℓ2-SAM to emphasize minor features with lower pixel intensities as
shown in Figure 34, where pixel intensity is computed as the average over the three color channels.
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Figure 34: Average number of activated pixels (Grad-CAM > 0.5) as a function of the initialization
scale α, comparing GD and ℓ2-SAM.

E.4.3 CIFAR-10

We also observe the same phenomenon on the CIFAR-10 dataset. We construct a subset of CIFAR-
10 with labels in {0, 1} and train models using a learning rate of 0.01, a SAM perturbation radius
of 0.05, for 500 epochs. As shown in Figure 35, small values of α lead SAM to emphasize minor
features, while larger values of α make the behaviors of GD and SAM increasingly similar.
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Figure 35: Average number of activated pixels (Grad-CAM > 0.5) as a function of the initialization
scale α, comparing GD and ℓ2-SAM.
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