

000 001 MINOR FIRST, MAJOR LAST: A DEPTH-INDUCED IM- 002 PLICIT BIAS OF SHARPNESS-AWARE MINIMIZATION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 We study the implicit bias of sharpness-aware minimization (SAM) when training
012 L -layer linear diagonal networks on linearly separable binary classification. For
013 linear models ($L = 1$), both ℓ_∞ - and ℓ_2 -SAM recover the ℓ_2 max-margin clas-
014 sifier, matching gradient descent (GD). However, for depth $L = 2$, the behavior
015 changes drastically—even on a single-example dataset. For ℓ_∞ -SAM, the limit
016 direction depends critically on initialization and can converge to 0 or to any stan-
017 dard basis vector, in stark contrast to GD, whose limit aligns with the basis vector
018 of the dominant data coordinate. For ℓ_2 -SAM, we **show that although its limit**
019 **direction matches the ℓ_1 max-margin solution as in the case of GD, its finite-time**
020 **dynamics exhibit a phenomenon we call *sequential feature discovery***, in which
021 the predictor initially relies on minor coordinates and gradually shifts to larger
022 ones as training proceeds or initialization increases. Our theoretical analysis at-
023 tributes this phenomenon to ℓ_2 -SAM’s gradient normalization factor applied in its
024 perturbation, which amplifies minor coordinates early and allows major ones to
025 dominate later, **giving a concrete example where infinite-time implicit-bias analy-**
026 **ses are insufficient**. Synthetic and real-data experiments corroborate our findings.

027 1 INTRODUCTION 028

029 Modern deep networks often generalize well despite extreme over-parameterization. One explana-
030 tion emphasizes the geometry of the objective: models perform better when optimization settles in
031 flatter regions of the landscape (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016; Neyshabur
032 et al., 2017; Jiang et al., 2019). Motivated by this view, Foret et al. (2020) introduce Sharpness-
033 Aware Minimization (SAM), which seeks parameters that minimize the worst-case loss within a
034 small neighborhood. Following its empirical success (Chen et al., 2021; Bahri et al., 2021; Kaddour
035 et al., 2022a), various theoretical works have analyzed SAM’s implicit bias to understand its effec-
036 tiveness (Andriushchenko & Flammarion, 2022; Behdin & Mazumder, 2023a; Zhou et al., 2025).
037 However, these analyses primarily apply to scenarios with attainable finite minimizers (e.g., squared
038 loss), leaving open the case of losses whose infimum lies at infinity (e.g., logistic loss).

039 We consider the implicit bias of SAM when training L -layer linear diagonal networks on linearly
040 separable classification datasets with logistic loss. We study two variants of SAM, ℓ_∞ -SAM and
041 ℓ_2 -SAM, named after the norm defining their local perturbation (See Section 2). For $L = 1$ (linear
042 models), gradient descent (GD) is known to converge in direction to the ℓ_2 max-margin classi-
043 fier (Soudry et al., 2018). For both ℓ_∞ -SAM and ℓ_2 -SAM, we show that they also align with the
044 same limit direction. Thus, SAM does not change the implicit bias here, as shown in Figure 1a.

045 However, for 2-layer diagonal linear networks, we find that the trajectory of the linear coefficient
046 vector $\beta(t)$ under both ℓ_∞ - and ℓ_2 -SAM can differ substantially from the maximum ℓ_1 -margin
047 implicit bias of GD (Gunasekar et al., 2018b). In Figure 1b, we consider a toy separable dataset
048 $\{(\mu, +1)\}$ with $\mu = (1, 2)$. In this case, the ℓ_1 max-margin direction is $e_2 = (0, 1)$, the standard
049 basis vector for the major component of μ . As predicted, all GD trajectories and some SAM trajec-
050 tories show increasing alignment of $\beta(t)$ with e_2 . However, for some initializations, we observe that
051 some trajectories of $\beta(t)$ under ℓ_∞ -SAM and ℓ_2 -SAM instead converge to zero, or even align with
052 $e_1 = (1, 0)$ —a seemingly paradoxical implicit bias favoring the *minor* feature rather than the major
053 one. It is interesting that the addition of a single layer—from $L = 1$ to $L = 2$ —introduces this
054 peculiar behavior of SAM different from GD, even for the simple setting: linear diagonal networks
055 trained with a single example.

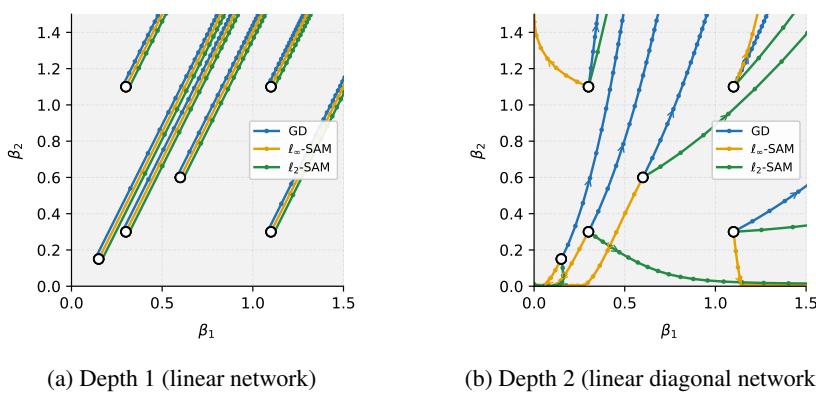


Figure 1: Trajectories of the predictor $\beta(t) \in \mathbb{R}^2$ from identical initial conditions under discrete GD, ℓ_∞ -SAM and ℓ_2 -SAM on $\{(\mu, +1)\}$ with $\mu = (1, 2)$. We used $\eta = 0.3$ and $\rho = 1$ for SAM.

1.1 SUMMARY OF OUR CONTRIBUTIONS

We analyze the optimization trajectory and implicit bias of ℓ_∞ -SAM and ℓ_2 -SAM in L -layer linear diagonal networks trained on linearly separable data with logistic loss. For theoretical analysis, we analyze the evolution of the linear coefficient $\beta(t)$ of the linear diagonal network under *continuous-time* versions of SAM, ℓ_∞ -SAM **flow** and ℓ_2 -SAM **flow**. We characterize their limit directions, obtained when training on general linearly separable data, and their pre-asymptotic behavior before aligning with the limit directions, analyzed on a single-example dataset $\{(\mu, +1)\}$.

- **Depth 1 (linear).** For linear models ($L = 1$), both ℓ_∞ -SAM flow and ℓ_2 -SAM flow have the same ℓ_2 max-margin implicit bias as GD on linearly separable data; in the single-example setting, we further show that the ℓ_∞ -SAM coincides exactly with the GD trajectory.
- **Depth L , ℓ_∞ -SAM.** For $L \geq 2$ and ℓ_∞ -SAM flow, we characterize the coordinate-wise trajectory of $\beta(t)$ determined by the relative scale of each coordinate at initialization and the perturbation radius of ℓ_∞ -SAM (Theorem 3.2). For almost all initializations, $\beta(t)$ diverges and its limit direction is one of the standard basis vectors e_1, \dots, e_d or it converges to a finite point (Corollary 3.5). Compared to GD, the limit direction of ℓ_∞ -SAM becomes more sensitive to initialization.
- **Depth 2, ℓ_2 -SAM.** For $L = 2$ and ℓ_2 -SAM flow, we first prove that the limit direction (if convergent to zero loss) is the ℓ_1 max-margin solution (Theorem 4.2); however, this infinite-time characterization does not explain our observation from Figure 1b. We empirically investigate the finite-time trajectory of $\beta(t)$ and identify the **sequential feature discovery** phenomenon, in which $\beta(t)$ initially relies on minor coordinates and gradually shifts to larger ones as t increases or initialization scale grows. We provide a theoretical explanation of both time-wise (Theorem 4.4) and initialization-wise (Theorem 4.5) aspects of the phenomenon. This example shows that focusing only on the $t \rightarrow \infty$ limit can overlook aspects of the training dynamics. SAM provides a clear instance where a *finite-time* view is essential to understanding how its implicit bias emerges.
- In Appendix E, we present synthetic and real-data experiments to corroborate our findings.

1.2 RELATED WORK

Implicit Bias of GD on Linear Diagonal Networks. Soudry et al. (2018) show that under linearly separable data with logistic loss, the weight of a linear model diverges while the direction converges to the ℓ_2 max-margin classifier. For linear diagonal networks, gradient descent biases toward sparse predictors (Gunasekar et al., 2018b), with 2-layer models converging to ℓ_1 max-margin direction under the assumption of directional convergence. This directional convergence has later been formally established for gradient flow (Ji & Telgarsky, 2020), supporting the validity of this assumption. Subsequent papers have studied linear diagonal networks in sparse regression, in which initialization scale governs the implicit bias: large initialization favors ℓ_2 -type bias, while small initialization favors ℓ_1 -type sparsity (Woodworth et al., 2020; Yun et al., 2020; Moroshko et al., 2020). Stochastic gradient descent (SGD)'s noise provides implicit regularization toward sparser solutions (Pesme et al., 2021), amplified at large learning rates (Even et al., 2023). Nacson et al. (2022) show that large GD step sizes push solutions out of the kernel regime, enabling sparse solutions. Beyond GD and SGD, recent works analyze implicit bias in diagonal linear networks through mirror-flow and

related continuous-time formulations (Jacobs et al., 2025; Wang & Klabjan, 2024; Papazov et al., 2024; Jacobs & Burkholz, 2024); we provide a brief overview in Appendix A.2.1. Prior work on small-initialization GD under squared loss in the same diagonal network setting shows incremental *saddle-to-saddle* learning dynamics, where coordinates become active in discrete stages as the predictor moves between saddles (Berthier, 2023; Pesme & Flammarion, 2023). We provide a detailed comparison between our setting and these saddle-to-saddle dynamics in Appendix A.2.2.

Properties of Sharpness-Aware Minimization. Motivated by the relationship between sharpness and generalization (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016; Jiang et al., 2019; Neyshabur et al., 2017), Foret et al. (2020) propose SAM. SAM exhibits distinctive valley-bouncing dynamics (Bartlett et al., 2022; Wen et al., 2022) and convergence instability near local minima (Si & Yun, 2023; Kim et al., 2023). SAM prefers low-rank solutions (Andriushchenko et al., 2023), with its normalization term playing a crucial role (Dai et al., 2023). Extensive empirical work has demonstrated the superior performance of SAM and its variants across various tasks and architectures (Sun et al., 2024; Kwon et al., 2021; Li et al., 2024b; Liu et al., 2022; Yun & Yang, 2023; Bahri et al., 2021; Zhuang et al., 2022; Kaddour et al., 2022b). Complementing these empirical findings, theoretical work has analyzed SAM’s optimization dynamics, generalization, and implicit bias (Li et al., 2024a; Behdin & Mazumder, 2023b; Zhang et al., 2024; Agarwala & Dauphin, 2023; Wen et al., 2023; Long & Bartlett, 2024; Zhou et al., 2024; Springer et al., 2024; Baek et al., 2024; Chen et al., 2023), including results in simplified settings such as diagonal linear networks on MSE loss (Andriushchenko & Flammarion, 2022; Clara et al., 2025). A more detailed discussion of these diagonal-network results of SAM is deferred to Appendix A.2.3.

2 PRELIMINARIES

Notation. We write the i -th standard basis vector as e_i . For $n \in \mathbb{N}$, let $[n] = \{1, \dots, n\}$. For a vector $\mathbf{v} \in \mathbb{R}^d$, we denote its coordinates by $\mathbf{v} = (v_1, \dots, v_d)$. For any block vector $\mathbf{Z} = (z^{(1)}, \dots, z^{(L)}) \in (\mathbb{R}^d)^L$, we denote its ℓ -th block by $\mathbf{Z}^{(\ell)} := z^{(\ell)} \in \mathbb{R}^d$. For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^d$, $\mathbf{a} \odot \mathbf{b}$ denotes the element-wise product; for a collection $\{\mathbf{a}^{(\ell)}\}_{\ell=1}^L$, we write $\bigodot_{\ell=1}^L \mathbf{a}_\ell := \mathbf{a}^{(1)} \odot \dots \odot \mathbf{a}^{(L)}$.

Model. We consider L -layer linear diagonal networks, a simple family of homogeneous networks widely used for the study of implicit bias (See Section 1.2). Let $\boldsymbol{\theta} = (\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(L)}) \in (\mathbb{R}^d)^L$ be the parameter vector. For $\mathbf{x} \in \mathbb{R}^d$, let the linear coefficient vector $\boldsymbol{\beta}(\boldsymbol{\theta})$ and output $f(\mathbf{x})$ be

$$\boldsymbol{\beta}(\boldsymbol{\theta}) := \bigodot_{\ell=1}^L \mathbf{w}^{(\ell)} \in \mathbb{R}^d, \quad f(\mathbf{x}) := \langle \boldsymbol{\beta}(\boldsymbol{\theta}), \mathbf{x} \rangle.$$

Data and Loss. We consider the standard supervised learning setting where a binary classification dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$ is given. Let the logistic loss be $\ell(u) = \log(1 + \exp(-u))$. Then the training loss function is defined as $\mathcal{L}(\boldsymbol{\theta}) := \frac{1}{N} \sum_{i=1}^N \ell(y_i \langle \boldsymbol{\beta}(\boldsymbol{\theta}), \mathbf{x}_i \rangle)$. We write the gradient of \mathcal{L} with respect to $\boldsymbol{\theta}$ in a block form, as $\nabla \mathcal{L}(\boldsymbol{\theta}) = (\nabla_{\mathbf{w}^{(1)}} \mathcal{L}(\boldsymbol{\theta}), \dots, \nabla_{\mathbf{w}^{(L)}} \mathcal{L}(\boldsymbol{\theta}))$.

Optimization Algorithms. In this paper, we mainly consider the implicit bias of **Sharpness-Aware Minimization (SAM, Foret et al. (2020))** and how depth causes it to deviate from the baseline algorithm, **gradient descent (GD)**. At iteration t , a GD update reads $\boldsymbol{\theta}(t+1) := \boldsymbol{\theta}(t) - \eta \nabla \mathcal{L}(\boldsymbol{\theta}(t))$, where $\eta > 0$ is called the step size or learning rate.

On the other hand, SAM updates parameters by evaluating the gradient at a perturbed one:

$$\hat{\boldsymbol{\theta}}(t) := \boldsymbol{\theta}(t) + \boldsymbol{\varepsilon}_p(\boldsymbol{\theta}(t)), \quad \boldsymbol{\theta}(t+1) := \boldsymbol{\theta}(t) - \eta \nabla \mathcal{L}(\hat{\boldsymbol{\theta}}(t)),$$

where the perturbation $\boldsymbol{\varepsilon}_p(\boldsymbol{\theta}(t))$ is the approximate worst-case direction inside the ℓ_p -ball of perturbation radius $\rho > 0$: $\boldsymbol{\varepsilon}_p(\boldsymbol{\theta}) := \arg \max_{\|\boldsymbol{\varepsilon}\|_p \leq \rho} \boldsymbol{\varepsilon}^\top \nabla \mathcal{L}(\boldsymbol{\theta})$. We refer to $\hat{\boldsymbol{\theta}}$ as the ascent point. Since $\boldsymbol{\theta} = (\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(L)})$ has a block structure, we also write $\hat{\boldsymbol{\theta}} = (\hat{\mathbf{w}}^{(1)}, \dots, \hat{\mathbf{w}}^{(L)})$ and $\boldsymbol{\varepsilon}_p(\boldsymbol{\theta}) = (\boldsymbol{\varepsilon}_p^{(1)}(\boldsymbol{\theta}), \dots, \boldsymbol{\varepsilon}_p^{(L)}(\boldsymbol{\theta}))$ so that we can say $\hat{\mathbf{w}}^{(i)} = \mathbf{w}^{(i)} + \boldsymbol{\varepsilon}_p^{(i)}(\boldsymbol{\theta})$. For $p = 2$ and ∞ , the perturbation $\boldsymbol{\varepsilon}_p(\boldsymbol{\theta})$ has clean closed-form solutions:

$$\boldsymbol{\varepsilon}_2(\boldsymbol{\theta}) := \rho \frac{\nabla \mathcal{L}(\boldsymbol{\theta})}{\|\nabla \mathcal{L}(\boldsymbol{\theta})\|_2}, \quad \boldsymbol{\varepsilon}_\infty(\boldsymbol{\theta}) := \rho \text{sign}(\nabla \mathcal{L}(\boldsymbol{\theta})),$$

and we consider the two variants, referred to as ℓ_2 -SAM when $p = 2$ and ℓ_∞ -SAM when $p = \infty$. For $p = \infty$, the maximizer is not unique when a coordinate of the gradient is zero. To make sure that the update is uniquely determined, we adopt the convention $\text{sign}(0) := 0$, applied coordinate-wise.

162 **Continuous-time Flows.** In the study of optimization algorithms, it is often useful to reduce the
 163 original discrete-time updates of an optimizer to a corresponding continuous-time flow. Unless
 164 the step size is too large, continuous-time flows offer a good approximation of the discrete-time
 165 optimizers, while allowing for clean and simplified analyses.

166 For GD, a common continuous-time counterpart is **gradient flow (GF)**: $\dot{\theta}(\tau) = -\nabla \mathcal{L}(\theta(\tau))$. With
 167 gradient flow, the analysis of GD trajectory boils down to solving an ordinary differential equation
 168 (ODE). Likewise, we define and study the flow counterparts of SAM, governed by the ODE
 169

$$170 \quad \dot{\theta}(\tau) = -\nabla \mathcal{L}(\hat{\theta}(\tau)). \quad (1)$$

171 Depending on the choice of norm, we will use the terms ℓ_∞ -SAM flow and ℓ_2 -SAM flow to refer
 172 to the continuous-time versions of SAM. Figure 6 in Appendix A.1 plots the trajectory of ℓ_∞ -SAM
 173 flow and ℓ_2 -SAM flow under the same setup of Figure 1. We observe that the trajectories stay
 174 almost the same and the surprising implicit bias of SAM carries over to SAM flows. Hence, we aim
 175 to understand this unusual behavior of SAM by studying the corresponding SAM flows.

176 **Rescaled Flows.** As shown in Appendix A.3, for the special case of single-example dataset
 177 $\{(\mu, +1)\}$, the ℓ_p -SAM flow ($p = 2, \infty$) of the i -th layer weight follows the *same spatial trajectory*
 178 as the following **rescaled ℓ_p -SAM flow**:

$$180 \quad \dot{w}^{(i)}(t) = \mu \odot \left(\bigodot_{\ell \neq i} (w^{(\ell)}(t) + \varepsilon_p^{(\ell)}(\theta(t))) \right), \quad (2)$$

182 obtained by taking out the loss derivative $-\ell'(\langle \beta(\hat{\theta}(t)), \mu \rangle) > 0$ from the original ℓ_p -SAM flow.
 183 Note that the original ℓ_p -SAM flow (1) and the rescaled flow in (2) differ only by a *reparameterization*
 184 of time. Let $w_{\text{orig}}(t_{\text{orig}})$ denote the original SAM flow and $w(t)$ the rescaled flow. Then there
 185 exists a strictly increasing map $t_{\text{orig}} = \tau(t)$ such that $w_{\text{orig}}(\tau(t)) = w(t)$. Applying the chain rule
 186 yields the relation

$$187 \quad \frac{dw}{dt} = \frac{dw_{\text{orig}}}{d\tau} \frac{d\tau}{dt} = -\frac{\nabla \mathcal{L}(w(t))}{\ell'(\beta(\hat{\theta}(t))^\top \mu)}, \quad \frac{d\tau}{dt} = -\frac{1}{\ell'(\beta(\hat{\theta}(t))^\top \mu)}.$$

190 Since $\ell'(u) \uparrow 0$ as $u \rightarrow \infty$, the rescaled flow accelerates time in the large-margin regime. Formally,

$$191 \quad \tau(t) = \int_0^t -\frac{1}{\ell'(\beta(\hat{\theta}(s))^\top \mu)} ds.$$

194 The rescaled flow makes the analysis easier due to the omitted term. Since our goal is to gain a
 195 better understanding of the spatial trajectory, we study the rescaled SAM flows in our analysis.

196 **Directional Convergence.** Let $\beta : [0, T_{\max}) \rightarrow \mathbb{R}^d$ be a trajectory with maximal existence time
 197 $T_{\max} \in (0, \infty]$. We say that $\beta(t)$ **converges in direction** if the limit $\bar{\beta}^\infty = \lim_{t \rightarrow T_{\max}} \frac{\beta(t)}{\|\beta(t)\|}$ exists.
 198 In this case, $\bar{\beta}^\infty$ is called the **limit direction** of β .

200 3 SAM WITH ℓ_∞ -PERTURBATIONS

202 We begin with ℓ_∞ -SAM. For single-example data, its counterpart—rescaled ℓ_∞ -SAM flow—has
 203 the nice property that each coordinate evolves independently, enabling an exact characterization of
 204 the trajectory for any depth L .

205 3.1 DEPTH-1 NETWORKS

207 We start with the depth-1 case, in which the implicit bias of ℓ_∞ -SAM coincides with that of GD.

208 **Theorem 3.1.** For almost every dataset which is linearly separable, any perturbation radius ρ
 209 and any initialization, consider the linear model $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ trained with logistic loss. Then,
 210 ℓ_∞ -SAM flow converges in the ℓ_2 max-margin direction.

211 The proof is deferred to Appendix C.1. Since Theorem 3.1 holds for any ρ , it also recovers the
 212 implicit bias of GF. While Theorem 3.1 characterizes the limit direction for almost all linearly separable
 213 datasets, Theorem C.1 shows that, for the single-example data, the ℓ_∞ -SAM flow follows the
 214 same trajectory as GF. The yellow lines in Figure 6a depict the flows. As $t \rightarrow \infty$, $\mathbf{w}(t)$ converges in
 215 direction to the ℓ_2 max-margin direction μ . Hence, when $L = 1$, GD and ℓ_∞ -SAM share the same
 bias toward the ℓ_2 max-margin solution, independent of the initialization.

216 3.2 DEEPER NETWORKS ($L \geq 2$).

217 To isolate the depth-induced implicit bias of SAM from effects of data-point configuration, we
 218 analyze the minimalist separable dataset $\mathcal{D}_\mu := \{(\mu, +1)\}$ with feature vector $\mu \in \mathbb{R}^d$ satisfying
 219 $0 < \mu_1 < \dots < \mu_d$; without loss of generality, we assume this monotone ordering of μ_i 's.
 220

221 In the multi-point setting, as $\mathbf{w}(t)$ diverges the SAM perturbation becomes asymptotically negligible,
 222 so SAM and GD share the same long-term behavior. The regime where they differ is precisely
 223 when the ρ -perturbation is non-negligible, but in the multi-point case the resulting gradients (and
 224 thus SAM updates) become considerably complex for a tractable characterization of the SAM flow
 225 in the regime where SAM and GD diverge. This motivates our focus on the single-example dataset
 226 $\mathcal{D}_\mu = \{(\mu, +1)\}$, where the SAM dynamics admit a tractable dynamical characterization while
 227 still capturing depth-dependent phenomena unique to SAM. In Appendix C.5, we empirically verify
 228 that these behaviors persist under multi-point datasets and discrete SAM updates, indicating that our
 229 insights extend beyond the single-point setting.
 230

231 In contrast to the depth-1 case, for deeper (linear diagonal) networks, the implicit bias of ℓ_∞ -SAM
 232 differs from GD. For example, when $L = 2$, while GD always aligns with the major feature,
 233 ℓ_∞ -SAM can favor minor features depending on the initial condition. For $L \geq 3$, we show that
 234 the implicit bias of ℓ_∞ -SAM is more sensitive to initialization than GD, in the sense that a wider
 235 range of initialization leads to solutions focusing on minor features. The next theorem characterizes
 236 the trajectory selected by the flow for different choices of initialization.
 237

Theorem 3.2. *For $i \in [L]$, suppose $\mathbf{w}^{(i)}(0) = \alpha \in \mathbb{R}_+^d$. Let $\mathbf{w}^{(i)}(t)$ follow the rescaled ℓ_∞ -SAM
 238 flow (2) with perturbation radius $\rho > 0$ on the dataset \mathcal{D}_μ . Then, for the j -th coordinate of $\beta(t)$:*

- 239 • *If $\alpha_j < \rho$, then $\beta_j(t)$ converges to 0 if L is even, or ρ^L if L is odd.*
- 240 • *If $\alpha_j = \rho$, then $\beta_j(t) = \rho^L$ for all $t \geq 0$.*
- 241 • *If $\alpha_j > \rho$ and $L = 2$, then $\beta_j(t)$ grows exponentially: $\beta_j(t) = \Theta(\exp(2\mu_j t))$.*
- 242 • *If $\alpha_j > \rho$ and $L > 2$, let $J := \arg \max_{j: \alpha_j > \rho} \mu_j(\alpha_j - \rho)^{L-2}$, and also let $T :=$
 243 $\min_{k \in J} 1/((L-2)\mu_k(\alpha_k - \rho)^{L-2})$. If $j \in J$, then $\beta_j(t) \rightarrow \infty$ as $t \rightarrow T$; otherwise, $\beta_j(t)$ stays
 244 bounded for all $t < T$.*

245 We provide the proof of Theorem 3.2 in Appendix C.2. The behavior of each coordinate $\beta_j(t)$
 246 is completely determined by whether the initialization α_j lies below, at, or above the threshold ρ .
 247 In each of these three regimes, $\beta_j(t)$ is monotone in t . Recall that $\varepsilon_\infty(\theta) := \rho \text{sign}(\nabla \mathcal{L}(\theta))$.
 248 For \mathcal{D}_μ , the sign of the gradient (5) is determined coordinate-wise. Thus, the rescaled ℓ_∞ -SAM
 249 flow (2) decouples across coordinates, and each $\beta_j(t)$ evolves independently, allowing us to state
 250 Theorem 3.2 for each separate trajectory of $\beta_j(t)$.

251 *Remark 3.3* (Interpretation of the Finite-time Blow-up). For $L > 2$, the rescaled ℓ_∞ -SAM flow
 252 (2) exhibits finite-time blow-up: some coordinates satisfy $\beta_j(t) \rightarrow \infty$ as $t \rightarrow T$. Interpreting this
 253 phenomenon in the original SAM time scale, the blow-up corresponds to *infinite time* in the original
 254 SAM flow. Indeed, as $\hat{\beta}(t)^\top \mu \rightarrow \infty$, we have $\ell'(\hat{\beta}(t)^\top \mu) \rightarrow 0^-$, and therefore

$$255 \tau(t) = \int_0^t -\frac{1}{\ell'(\hat{\beta}(s)^\top \mu)} ds \rightarrow \infty \quad \text{as } t \rightarrow T.$$

256 Thus, in the original SAM flow, only the coordinates in J diverge as the original time $\tau(t) \rightarrow \infty$,
 257 while all other coordinates remain bounded.

258 *Remark 3.4* (Interpretation of Exponential Growth). For $L = 2$, each coordinate $\beta_j(t)$ with $\alpha_j > \rho$
 259 grows exponentially as $t \rightarrow \infty$. Since $\tau(t) \rightarrow \infty$ as $t \rightarrow \infty$, divergence occurs on the same infinite-
 260 time limit in both the rescaled and original ℓ_∞ -SAM flows. Nevertheless, because the dynamics are
 261 obtained after a time reparameterization, the exponential rate observed in the rescaled flow should
 262 not be directly interpreted as the actual divergence speed in the original SAM dynamics. Still, for
 263 fixed $L = 2$, all coordinates share the same rescaled time, so their relative growth can be compared.
 264 Among the coordinates with $\alpha_j > \rho$, the one with the largest feature weight μ_j dominates asymptotically
 265 and the ℓ_∞ -SAM flow therefore converges in that coordinate direction. We formalize these
 266 conclusions for general L in the following corollary, characterizing the dominant direction.
 267

268 **Corollary 3.5.** *Under the assumptions of Theorem 3.2, let $S := \{j : \alpha_j > \rho\}$ and assume $S \neq \emptyset$.
 269 If there is a unique maximizing index $j^* := \arg \max_{j \in S} \mu_j(\alpha_j - \rho)^{L-2}$, then the ℓ_∞ -SAM flow
 270 converges in the e_{j^*} direction. In particular, when $L = 2$, we have $j^* := \arg \max_{j \in S} \mu_j$.*

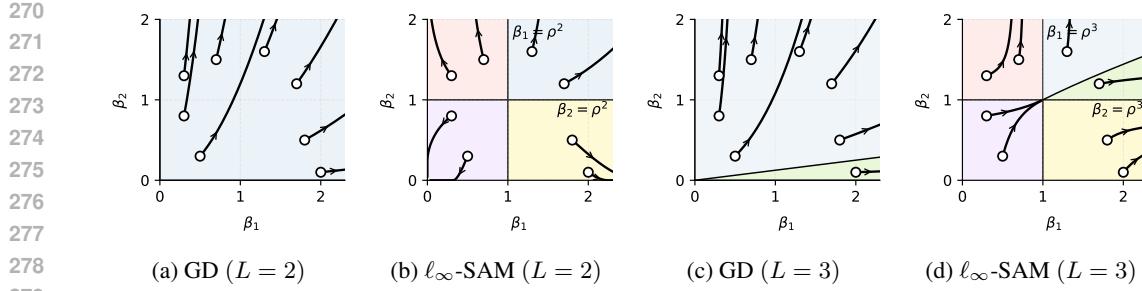


Figure 2: Trajectories $\beta(t)$ from identical initializations under GF and ℓ_∞ -SAM flow with $d = 2$ and $\mu = (1, 2)$. For SAM, $\rho = 1$.

The proof is deferred to Appendix C.3. When $L = 2$ and $\alpha \in \mathbb{R}_{++}^d$, setting $\rho = 0$ in Corollary 3.5 yields $S = [d]$. Hence, Corollary 3.5 recovers that the GF always aligns in the e_d direction—the ℓ_1 max-margin direction—regardless of the initialization.

Illustrative Example. Figure 2 shows the trajectories of $\beta(t)$ under GF and ℓ_∞ -SAM flow with $L = 2, 3$ and $\mu = (1, 2)$. Figure 2a depicts the $L = 2$, GF case, where GF always aligns in the e_2 direction. For $L = 2$ and ℓ_∞ -SAM (Figure 2b), the plane (β_1, β_2) is partitioned by the thresholds $\beta_j = \alpha_j^2 = \rho^2$. If $\alpha_2 > \rho$ (so $2 \in S$), the ℓ_∞ -SAM flow shows directional convergence in e_2 (red/blue regions). In the yellow region, $2 \notin S$ and $1 \in S$, so the limit direction is e_1 —the “minor” feature. If all coordinates satisfy $\alpha_j < \rho$, the flow converges to $\mathbf{0}$ (purple region), by Theorem 3.2.

For $L > 2$ (Figures 2c and 2d), the blue regions get partitioned once more because large α_1 leads to $\mu_1(\alpha_1 - \rho)^{L-2} > \mu_2(\alpha_2 - \rho)^{L-2}$, leading to directional convergence toward e_1 . Comparing the green regions in Figures 2c and 2d shows that the slope of the boundary between blue and green regions is steeper in ℓ_∞ -SAM flow than that of GF. Considering that initializations in the yellow region also result in the limit direction e_1 , these together indicate that ℓ_∞ -SAM exhibits a greater sensitivity to initialization and stronger implicit bias toward minor features than GD.

4 SAM WITH ℓ_2 -PERTURBATIONS: SEQUENTIAL FEATURE DISCOVERY

We now turn to ℓ_2 -SAM, which is the form most commonly used in practice.

4.1 ASYMPTOTIC BEHAVIOR ON DEPTH-1 AND DEPTH-2 NETWORKS

For depth-1 models, ℓ_2 -SAM converges in the ℓ_2 max-margin direction regardless of initialization, matching the implicit bias of GD and ℓ_∞ -SAM. We prove the following theorem in Appendix D.1:

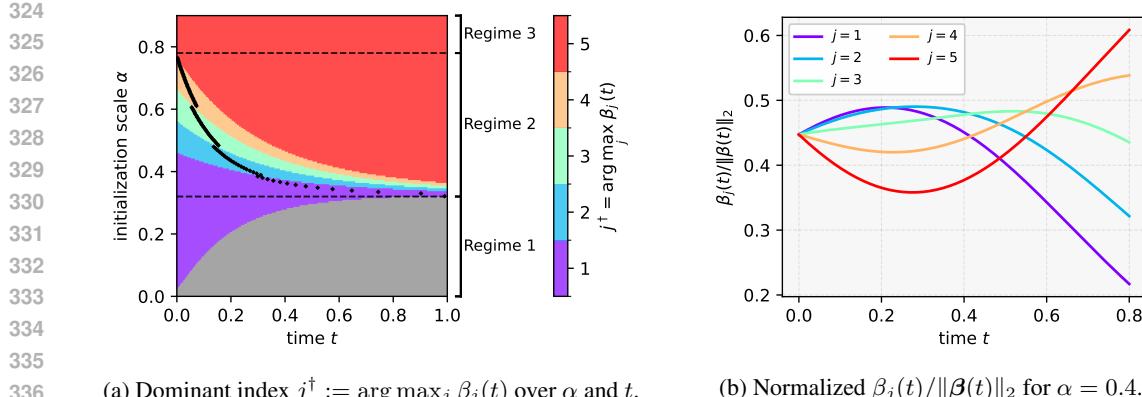
Theorem 4.1. *For almost every dataset which is linearly separable, any perturbation radius ρ and any initialization, consider the linear model $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ trained with logistic loss. Then, ℓ_2 -SAM flow converges in the ℓ_2 max-margin direction.*

While Theorem 4.1 characterizes the limit direction for linearly separable datasets, Theorem D.1 shows that, for the single-example data, the ℓ_∞ -SAM flow follows the same trajectory as GF.

For depth-2 models, ℓ_2 -SAM asymptotically converges in the ℓ_1 max-margin direction as the loss converges to zero, independently of the initialization scale. This parallels the well-known behavior of GD (Gunasekar et al., 2018b). We formalize this below, with the proof in Appendix D.3.

Theorem 4.2. *For almost every dataset which is linearly separable, and any perturbation radius ρ , consider the linear diagonal network of depth 2, $f(\mathbf{x}) = \langle \mathbf{w}^{(1)} \odot \mathbf{w}^{(2)}, \mathbf{x} \rangle$ trained with logistic loss. Let $(\mathbf{w}^{(1)}(t), \mathbf{w}^{(2)}(t))$ follow the ℓ_2 -SAM flow with $\mathbf{w}^{(1)}(0) = \mathbf{w}^{(2)}(0)$. Assume (a) the loss vanishes, $\mathcal{L}(\mathbf{w}^{(1)}(t), \mathbf{w}^{(2)}(t)) \rightarrow 0$, (b) the predictor $\beta(t) := \mathbf{w}^{(1)}(t) \odot \mathbf{w}^{(2)}(t)$ converges in direction. Then the limit direction of $\beta(t)$ is the ℓ_1 max-margin direction.*

Since Theorems 4.1 and 4.2 holds for any ρ , it also recovers the implicit bias of GF. We now revisit Figure 6, which is the flow counterpart of Figure 1, and compare the trajectories with the asymptotic directional convergence results above. First, the green lines in Figure 6a visualize the trajectories of ℓ_2 -SAM flow for $L = 1$, and we can check that the trajectories coincide with GD’s, as expected by theory. In the $L = 2$ case (Figure 6b), the green ℓ_2 -SAM flow curves include ones that (i) drift

Figure 3: Rescaled ℓ_2 -SAM flow on \mathcal{D}_μ with $\mu = (4, 5, 6, 7, 8) \in \mathbb{R}^5$ and $\rho = 1$.

toward the origin, and those that (ii) initially align with e_1 , a direction *orthogonal* to the ℓ_1 max-margin direction e_2 . Such behaviors are not explained by Theorem 4.2. Hence, to account for what is observed in Figure 6b, we move on to analyze the dynamics of ℓ_2 -SAM in finite time.

4.2 PRE-ASYMPTOTIC BEHAVIOR ON DEPTH-2 NETWORKS

We investigate the pre-asymptotic dynamics of ℓ_2 -SAM on depth-2 linear diagonal networks and show that the trajectory exhibits a behavior markedly different from its asymptotic limit. This contrast highlights the need for a *finite-time* analysis to understand how the implicit bias of SAM actually emerges. In this section, we retain the toy dataset $\mathcal{D}_\mu := \{(\mu, +1)\}$ with $\mu \in \mathbb{R}^d$ satisfying $0 < \mu_1 < \dots < \mu_d$. We further present experiments on multi-point datasets, discrete-time ℓ_2 -SAM, and deeper models ($L \geq 3$) in Appendix D.8, which confirm that the qualitative behaviors identified in the depth-2 single-point ℓ_2 -SAM flow persist in these more realistic settings. Moreover, to capture the effect of the initialization scale with a single parameter, we adopt a coordinate-wise and layer-wise uniform initialization $w^{(1)}(0) = w^{(2)}(0) = \alpha \mathbf{1}$ throughout this subsection. We additionally report similar empirical results under random Gaussian initialization in Appendix E.2.

4.2.1 SEQUENTIAL FEATURE DISCOVERY

We begin by describing a newly observed and surprising phenomenon of ℓ_2 -SAM—**sequential feature discovery**. For certain initialization scales α and times t , ℓ_2 -SAM first aligns with minor features; as t increases or as α increases, the dominant coordinate transitions from minor, intermediate to major features. In contrast, GD selects the major feature regardless of α and t . We visualize this using rescaled ℓ_2 -SAM flow in Figure 3a and show the GF and ℓ_∞ -SAM flow counterparts in Figure 7. To quantify the phenomenon along the two axes—time t and initialization scale α —at each t and α , we track the index $j^* = \arg \min_j \beta_j(t)$ and color the grid (t, α) according to j^* . Regions where β is negligibly small are shown in gray, indicating convergence to 0. Based on the observations from Figure 3a, we partition the initialization scale α into three regimes.

(Regime 1) Starting from any α in this range, the trajectory eventually collapses to the origin as training proceeds; effectively no feature is expressed and the loss does not vanish.

(Regime 2) Time-wise sequential feature discovery emerges. With a fixed α chosen from this regime and increasing t , there exists the period where the dominant coordinate index j^* increases over time, transitioning from minor to major features. As shown in Figure 3b, j^* sequentially changes from 1 to 5 over time for $\alpha = 0.4$.

(Regime 3) β aligns with the major feature from the outset and maintains this alignment throughout.

Beyond the time-wise phenomenon, Figure 3a also suggests that sequential feature discovery also happens in the α -axis. To see this, consider a fixed slice of time t and navigate through the α -axis: for small α , the predictor β remains near the origin with no feature discovered. As α grows, the dominant coordinate at t shifts sequentially— β_1 becomes largest first, then β_2 , and so on. However, this is *not* a fair comparison between trajectories, because Figure 3a is obtained from the rescaled flow; each trajectory (for each α) has a different time scale.

378 Nevertheless, we can compare between trajectories if we base our comparison on trajectory-wise
 379 maxima. More concretely, we calculate the trajectory-wise most-amplified index, to understand how
 380 the initialization scale α affects the “amplification” of minor components. For each coordinate j , we
 381 track the ratio $\beta_j(t)/\beta_d(t)$ over the entire trajectory, and define $j^*(\alpha) := \arg \max_j \max_t \beta_j(t)/\beta_d(t)$ as
 382 the coordinate with the greatest maximum relative amplification. In Figure 3a, for each value of α
 383 in Regime 2, we plot the time step that attains the maximum value of $\beta_{j^*(\alpha)}(t)/\beta_d(t)$ in black dots; we
 384 can clearly observe that $j^*(\alpha)$ increases from the minor index 1 to second-most major index $d - 1$
 385 in Regime 2. We call this phenomenon **initialization-wise sequential feature discovery**.

386 4.2.2 UNDERSTANDING THE EFFECT OF ℓ_2 -SAM

388 Before analyzing sequential feature discovery, we describe the rescaled ℓ_2 -SAM flow for depth-2
 389 linear diagonal networks and offer an intuitive explanation of the sequential feature discovery phe-
 390 nomenon. With initialization $\mathbf{w}^{(1)}(0) = \mathbf{w}^{(2)}(0) \in \mathbb{R}_+^d$, we have $\mathbf{w}^{(1)}(t) = \mathbf{w}^{(2)}(t) =: \mathbf{w}(t)$ for
 391 all $t \geq 0$. Using this, we derive in Appendix D.2 that the rescaled ℓ_2 -SAM flow for $\mathbf{w}(t)$ reads

$$392 \dot{\mathbf{w}}(t) = \boldsymbol{\mu} \odot \left(\mathbf{w}(t) - \rho \frac{\boldsymbol{\mu} \odot \mathbf{w}(t)}{n_{\boldsymbol{\theta}}(t)} \right), \text{ where } n_{\boldsymbol{\theta}}(t) := \sqrt{2 \|\boldsymbol{\mu} \odot \mathbf{w}(t)\|_2^2}. \quad (3)$$

395 Compared to the $\rho = 0$ case, the extra term scales $\boldsymbol{\mu} \odot \mathbf{w}(t)$ coordinate-wise by $1 - \rho \frac{\boldsymbol{\mu}}{n_{\boldsymbol{\theta}}(t)} < 1$.
 396 When $n_{\boldsymbol{\theta}}(t)$ is large (e.g., under large initialization or after sufficient training), this factor is close
 397 to one and the dynamics becomes close to GF. When $n_{\boldsymbol{\theta}}(t)$ is small (e.g., small initialization), the
 398 coordinate-wise scaling factor multiplies different scalars to different coordinates, some of which
 399 can even be negative and decrease the corresponding coordinates of $\mathbf{w}(t)$. Notice that larger μ_j
 400 leads to smaller $1 - \rho \frac{\mu_j}{n_{\boldsymbol{\theta}}(t)}$. Thus, in the early stage of training, major features are suppressed while
 401 minor features are comparatively amplified, yielding the observed emphasis on minor features.

402 4.2.3 ANALYSIS OF TIME-WISE SEQUENTIAL FEATURE DISCOVERY

404 We next provide a theoretical account of the time-wise sequential feature discovery. At each time t ,
 405 we analyze the instantaneous growth rate of each coordinate $\beta_j(t)$, viewed as a function of both t
 406 and the initialization scale α . This reveals how the growth behavior of different coordinates evolves
 407 across the training trajectory. In particular, we derive a coordinate-wise growth rule of $\beta_j(t)$, in a
 408 form analogous to Equation (3). The proof is provided in Appendix D.4.3, and an extension to the
 409 *L*-layer setting—where an analogous growth rate can be derived—is given in Appendix D.5.

410 **Lemma 4.3.** *The rescaled ℓ_2 -SAM flow (2) is $\dot{\beta}_j(t) = r_j(t)\beta_j(t)$ with $r_j(t) := 2\mu_j \left(1 - \frac{\rho\mu_j}{n_{\boldsymbol{\theta}}(t)}\right)$.*

412 By Lemma 4.3, the rate $r_j(t)$ controls the instantaneous growth or decay of $\beta_j(t)$. For fixed t ,
 413 $r_j(t)$ is concave quadratic in μ_j , maximized at $\mu_j = m_c(t) := \frac{n_{\boldsymbol{\theta}}(t)}{2\rho}$. Hence, indices with μ_j
 414 closest to $m_c(t)$ attain the largest $r_j(t)$; **coordinates with feature strength μ_j nearest to $m_c(t)$**
 415 **are amplified the most**, while those farther away may even decay. Consequently, the trajectory of
 416 $m_c(t)$ dictates the feature-amplification dynamics, and it exhibits three regimes depending on the
 417 initialization scale. Recall that $0 < \mu_1 < \dots < \mu_d$.

418 **Theorem 4.4.** *There exists a unique α_1 such that $\alpha_0 := \rho \frac{\mu_1}{\sqrt{2}\|\boldsymbol{\mu}\|_2} < \alpha_1 < \rho \frac{\|\boldsymbol{\mu}\|_4^4}{\sqrt{2}\|\boldsymbol{\mu}\|_2\|\boldsymbol{\mu}\|_3^3} < \alpha_2 :=$
 419 $\rho \frac{\mu_{d-1} + \mu_d}{\sqrt{2}\|\boldsymbol{\mu}\|_2}$ and the trajectory of $m_c(t)$ falls into one of the following three regimes.*

422 **(Regime 1)** *If $\alpha < \alpha_1$, then $m_c(t)$ strictly decreases for all $t \geq 0$ and there exists T_1 such that for
 423 $j \in [d]$, $\beta_j(t)$ strictly decreases for all $t \geq T_1$.*

424 **(Regime 2)** *If $\alpha_1 < \alpha < \alpha_2$, there exists T_2 such that $m_c(T_2) < \frac{\mu_{d-1} + \mu_d}{2}$ and $m_c(t)$ strictly
 425 increases for all $t \geq T_2$.*

427 **(Regime 3)** *If $\alpha > \alpha_2$, then $m_c(t) > \frac{\mu_{d-1} + \mu_d}{2}$, and $\beta_d(t)$ has the largest growth rate for all $t \geq 0$.*

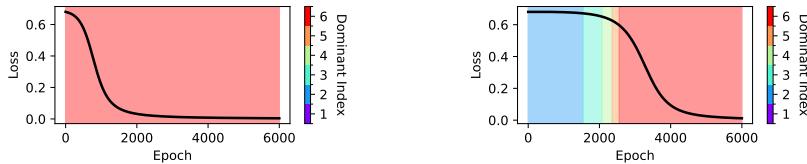
428 The proof of Theorem 4.4 is provided in Appendix D.4.5. Theorem 4.4 identifies three regimes of
 429 the $m_c(t)$ dynamics, each corresponding to a qualitatively different pattern of feature amplification.

431 **Regime 1.** $m_c(t)$ decreases for all $t \geq 0$, and reaches $\frac{\mu_1}{2}$ at time T_1 . Once $m_c(t) \leq \frac{\mu_1}{2}$, every
 432 coordinate satisfies $r_j(t) \leq 0$ by the form of $r_j(t)$, and thus $\beta_j(t)$ strictly decreases for all $j \in [d]$.

432 **Regime 3.** When $m_c(t) > \frac{\mu_d + \mu_{d-1}}{2}$, the closest feature strength to $m_c(t)$ is μ_d , so $\beta_d(t)$ attains the
 433 largest growth rate. This explains why the major feature remains dominant throughout this regime.
 434

435 **Regime 2.** When $m_c(T_2) < \frac{\mu_d + \mu_{d-1}}{2}$, the closest index j_c satisfies $j_c < d$. At this time, the
 436 largest growth rate is therefore achieved by the non-major coordinate $\beta_{j_c}(T_2)$. Since $m_c(t)$ strictly
 437 increases for all $t \geq T_2$, the coordinate with the largest growth rate increases, exhibiting the *time-
 438 wise sequential feature discovery* observed empirically in Section 4.2.1. In Regime 2, there also exist
 439 instances where $m_c(t)$ initially *decreases* and later increases, leading to a *non-monotonic* sequential
 440 feature discovery phenomenon. We discuss this in Appendix A.5.
 441

442 Regime 2 also leaves a clear trace in the training loss. SAM exhibits an early plateau while it mainly
 443 amplifies minor coordinates, and the loss drops quickly only after it shifts to major coordinates,
 444 whereas GD shows a steadier decrease without this minor-to-major transition. The corresponding
 445 loss curves and further explanation are given in Figure 4 and Appendix E.1.
 446



447 Figure 4: Loss curves of GD (left) and ℓ_2 -SAM (right) on a 2-layer diagonal network in Regime 2
 448 ($\alpha = 0.35$, $\mu = (1, 2, 3, 4, 5, 6)$, $\rho = 0.1$). Colored regions mark the coordinate with highest growth.
 449

450 4.2.4 ANALYSIS OF INITIALIZATION-WISE SEQUENTIAL FEATURE DISCOVERY

451 In the previous subsection, we examined which coordinate attains the maximal instantaneous growth
 452 rate. We now turn to the cumulative update over time and study initialization-wise sequential feature
 453 discovery. In Theorem 4.4, we characterize the range of α (Regime 2) in which sequential feature
 454 discovery can occur. Here, we quantify the strength of amplification within Regime 2 as a function
 455 of α . Since a coordinate $\beta_j(t)$ can diverge, we assess which feature is amplified—and by how
 456 much—via the ratio of the j -th feature to the major feature, $\beta_j(t)/\beta_d(t)$. For a given initialization
 457 scale α , we track and bound how large the amplification ratio $\beta_j(t)/\beta_d(t)$ can be along the trajectory.
 458

459 Integrating the rescaled ℓ_2 -SAM flow (3) (derived in Appendix D.6.1) yields the coordinate ODE
 460

$$\beta_j(t) = \beta_j(0) \exp(2\mu_j t - 2\rho\mu_j^2 I(t)) \quad \text{where } I(t) := \int_0^t \frac{1}{n_\theta(s)} ds \quad \text{for } j \in [d]. \quad (4)$$

461 The behavior of β in (4) is determined by $I(t)$. Recall that $n_\theta(t)$ controls the behavior of ℓ_2 -SAM
 462 in Section 4.2.2 and is used to characterize the instantaneous growth rate in Section 4.2.3. Here, we
 463 focus on cumulative updates over time, where the time integral $I(t)$ of $1/n_\theta$ becomes decisive. By
 464 bounding $I(t)$, we quantify how strongly each feature is amplified relative to the major feature.
 465

466 **Theorem 4.5.** Let α_0, α_2 be defined in Theorem 4.4 and α_1 be the threshold from there. Suppose
 467 $\alpha_1 < \alpha \leq \rho \frac{\mu_1 + \mu_d}{\sqrt{2} \|\mu\|_2} < \alpha_2$. Then, for $j \in [d]$, there exists T_j such that
 468

$$\frac{\beta_j(T_j)}{\beta_d(T_j)} \geq \text{LB}_j(\alpha) := \exp\left(2R'_j \left((R_j - 1) \log\left(\frac{1}{1 - \alpha_0/\alpha}\right) + \log\left(\frac{1}{\alpha_0/\alpha}\right) - C(R_j) \right)\right)$$

469 where $R_j := (\mu_j + \mu_d)/\mu_1 > 2$, $R'_j := (\mu_d - \mu_j)/\mu_1$ and $C(R) := R \log R - (R - 1) \log(R - 1)$.
 470

471 The proof follows from a lower bound on $I(t)$, and is deferred to Appendix D.6.2. A numerical
 472 illustration of $\text{LB}_j(\alpha)$ for several choices of μ is provided in Appendix D.7. Theorem 4.5 applies to
 473 the small- α portion of Regime 2. For each coordinate j , we select the time T_j maximizing $\frac{\beta_j(t)}{\beta_d(t)}$ over
 474 the entire trajectory, and obtain a nontrivial lower bound $\text{LB}_j(\alpha)$ for this maximal amplification.
 475

476 The theorem goes beyond the qualitative picture in Figure 3a, which only identifies which coordinate
 477 becomes dominant (the index j^\dagger). Theorem 4.5 additionally quantifies *how large* this dominant co-
 478 ordinate must grow: as shown in Appendix D.7, $\text{LB}_j(\alpha)$ often exceeds 10, indicating that the minor
 479 to intermediate coordinates can take values more than ten times larger than the major coordinate.
 480

481 **Dependence on α .** For all α in Regime 2, the ratio α_0/α lies in $(0, 1)$, so both logarithmic terms
 482 in $\text{LB}_j(\alpha)$ are positive. Since $R_j > 2$, the first logarithmic term dominates the exponent, making
 483 $\text{LB}_j(\alpha)$ grow rapidly as $\alpha \rightarrow \alpha_1$. Thus smaller α in Regime 2 produces stronger amplification as
 484

486 shown in Appendix D.7. This is substantiated by Figure 3a: smaller α in Regime 2 keeps the dynamics aligned with minor-intermediate features for a longer time t , leading to greater amplification.
 487
 488

489 **Dependence on Feature Geometry.** The coefficients R_j and R'_j increase with the spectral gap
 490 μ_d/μ_1 , so datasets with larger feature contrast amplify more strongly as shown in Appendix D.7.
 491

492 Since $\text{LB}_j(\alpha)$ varies across j , it is natural to ask which coordinate experiences the strongest amplification.
 493 Proposition 4.6 identifies the maximizing index $j^*(\alpha)$, with the proof in Appendix D.6.3.
 494

495 **Proposition 4.6.** *Under the conditions of Theorem 4.5, define $j^*(\alpha) := \arg \max_{j \in [d]} \text{LB}_j(\alpha)$ and
 496 set $\alpha_0^* := \alpha_0$. Then, there exist thresholds $\alpha_0^* < \alpha_1^* < \dots < \alpha_m^* \leq \rho \frac{\mu_1 + \mu_d}{\sqrt{2} \|\mu\|_2}$ for some $m \leq d - 1$
 497 such that $j^*(\alpha) = j$ for $\alpha \in (\alpha_{j-1}^*, \alpha_j^*]$.*

498 Proposition 4.6 shows $j^*(\alpha)$ monotonically increases sequentially from 1 to m on $\alpha \in (\alpha_0, \alpha_m^*]$.
 499 Namely, as the initialization scale α grows, the index that maximizes the lower bound $\text{LB}_j(\alpha)$ shifts
 500 monotonically from minor to intermediate features. This matches the *initialization-wise sequential
 501 feature discovery* discussed in Section 4.2.1 (i.e., the black dots in Figure 3a). Within Regime 2, the
 502 our theoretical bound predicts a progression of the most-amplified coordinate from 1 to m .
 503

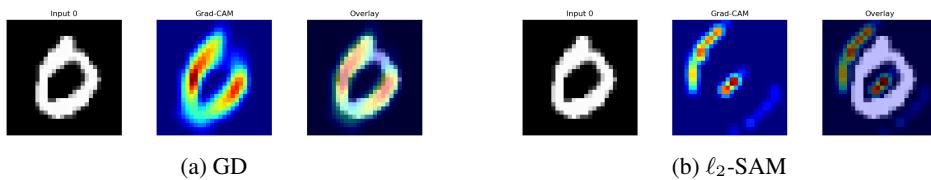
504 Lastly, through the cumulative update analysis, we characterize the asymptotic behavior of ℓ_2 -SAM
 505 flow for some extreme ranges of α . We prove the following proposition in Appendix D.6.4.
 506

507 **Proposition 4.7.** *Consider α_0 defined in Theorem 4.4. (i) If $\alpha < \alpha_0$, then $\beta(t)$ converges to zero.
 508 (ii) If $\alpha > \rho \frac{\|\mu\|_2^2}{\sqrt{2d} (\prod_{i=1}^d \mu_i)^{1/d} \|\mu\|_1}$, then $\beta(t)$ converge in ℓ_1 max-margin direction.*
 509

510 Recall that Theorem 4.2 assumes that the loss vanishes and the limit direction exists. Proposition 4.7(i) shows that for small α in Regime 1, the loss never vanishes. Proposition 4.7(ii) shows that for some α 's in Regimes 2 or 3, the limit direction exists and is the ℓ_1 max-margin direction.
 511

5 EXPERIMENTS

513 Our investigation shows how depth, perturbation geometry, and initialization jointly shape SAM's
 514 optimization trajectory. We substantiate these findings with controlled experiments: 2-layer CNNs
 515 and linear networks on synthetic banded data, where we systematically vary the dataset construc-
 516 tion and metrics across architectures (Appendix E.3), as well as multi-point (Appendix D.8.2) and
 517 deeper-depth diagonal models (Appendix D.8.3). We also present experiments with practical CNNs
 518 trained on MNIST, where we use Grad-CAM (Selvaraju et al., 2017) to visualize which image pix-
 519 els are emphasized (Figure 5 and Appendix E.4). These experiments show that ℓ_2 -SAM allocates
 520 relatively bigger emphasis to weaker/background pixels than GD, qualitatively matching our theory.
 521



522 Figure 5: Grad-CAM comparison of GD and ℓ_2 -SAM on a CNN trained on MNIST. GD focuses on
 523 dominant digit pixels, whereas ℓ_2 -SAM highlights minor background regions.
 524

6 CONCLUSION

525 We characterize how network depth changes SAM's implicit bias on linear diagonal networks. For
 526 depth 1, SAM preserves GD's implicit bias. For deeper networks ($L \geq 2$) with ℓ_∞ -SAM, we de-
 527 rive precise weight trajectories depending on initialization scale and perturbation radius, where each
 528 weight coordinate either diverges toward a standard basis vector or converges to a finite point. The
 529 most interesting regime occurs for $L = 2$ with ℓ_2 -SAM: while the limit direction converges to the
 530 ℓ_1 max-margin solution, the finite-time dynamics exhibit *sequential feature discovery*, where the
 531 weight coordinate initially relies on minor coordinates and gradually shifts to larger ones. These
 532 observations suggest that implicit bias statements made only in the $t \rightarrow \infty$ limit can overlook im-
 533 portant finite-time behaviors. SAM provides a concrete example where a *finite-time* view is essential
 534 to see how implicit bias actually emerges.
 535

540 REFERENCES
541

542 Atish Agarwala and Yann Dauphin. Sam operates far from home: eigenvalue regularization as a
543 dynamical phenomenon. In *International Conference on Machine Learning*, pp. 152–168. PMLR,
544 2023.

545 Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
546 mization. In *International conference on machine learning*, pp. 639–668. PMLR, 2022.

547 Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-aware
548 minimization leads to low-rank features. *Advances in Neural Information Processing Systems*, 36:
549 47032–47051, 2023.

550 Christina Baek, Zico Kolter, and Aditi Raghunathan. Why is sam robust to label noise? *arXiv
551 preprint arXiv:2405.03676*, 2024.

552 Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
553 generalization. *arXiv preprint arXiv:2110.08529*, 2021.

554 Peter L Bartlett, Philip M Long, and Olivier Bousquet. The dynamics of sharpness-aware
555 minimization: Bouncing across ravines and drifting towards wide minima. *arXiv preprint
556 arXiv:2210.01513*, 2022.

557 Kayhan Behdin and Rahul Mazumder. Sharpness-aware minimization: An implicit regularization
558 perspective. *arXiv preprint arXiv:2302.11836*, 2023a.

559 Kayhan Behdin and Rahul Mazumder. On statistical properties of sharpness-aware minimization:
560 Provable guarantees. *arXiv preprint arXiv:2302.11836*, 2023b.

561 Raphaël Berthier. Incremental learning in diagonal linear networks. *Journal of Machine Learning
562 Research*, 24(171):1–26, 2023.

563 Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
564 without pre-training or strong data augmentations. *arXiv preprint arXiv:2106.01548*, 2021.

565 Zixiang Chen, Junkai Zhang, Yiwen Kou, Xiangning Chen, Cho-Jui Hsieh, and Quanquan Gu. Why
566 does sharpness-aware minimization generalize better than sgd? *Advances in neural information
567 processing systems*, 36:72325–72376, 2023.

568 Gabriel Clara, Sophie Langer, and Johannes Schmidt-Hieber. Training diagonal linear networks
569 with stochastic sharpness-aware minimization. *arXiv preprint arXiv:2503.11891*, 2025.

570 Yan Dai, Kwangjun Ahn, and Suvrit Sra. The crucial role of normalization in sharpness-aware
571 minimization. *Advances in Neural Information Processing Systems*, 36:67741–67770, 2023.

572 Li Deng. The mnist database of handwritten digit images for machine learning research. *IEEE
573 Signal Processing Magazine*, 29(6):141–142, 2012.

574 Mathieu Even, Scott Pesme, Suriya Gunasekar, and Nicolas Flammarion. (s) gd over diagonal linear
575 networks: Implicit bias, large stepsizes and edge of stability. *Advances in Neural Information
576 Processing Systems*, 36:29406–29448, 2023.

577 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
578 tion for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

579 Jacob Gildenblat and contributors. Pytorch library for cam methods. <https://github.com/jacobgil/pytorch-grad-cam>, 2021.

580 Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
581 terms of optimization geometry. In *International Conference on Machine Learning*, pp. 1832–
582 1841. PMLR, 2018a.

583 Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
584 on linear convolutional networks. *Advances in neural information processing systems*, 31, 2018b.

594 Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima.
 595 *Advances in neural information processing systems*, 7, 1994.
 596

597 Tom Jacobs and Rebekka Burkholz. Mask in the mirror: Implicit sparsification. *arXiv preprint*
 598 *arXiv:2408.09966*, 2024.

599 Tom Jacobs, Chao Zhou, and Rebekka Burkholz. Mirror, mirror of the flow: How does regularization
 600 shape implicit bias? *arXiv preprint arXiv:2504.12883*, 2025.
 601

602 Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In
 603 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-*
 604 *ral Information Processing Systems*, volume 33, pp. 17176–17186. Curran Associates, Inc.,
 605 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/c76e4b2fa54f8506719a5c0dc14c2eb9-Paper.pdf.
 606

607 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
 608 generalization measures and where to find them. *arXiv preprint arXiv:1912.02178*, 2019.
 609

610 Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt Kusner. When do flat minima optimizers work?
 611 In *Advances in Neural Information Processing Systems*, 2022a.

612 Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J Kusner. When do flat minima optimizers
 613 work? *Advances in Neural Information Processing Systems*, 35:16577–16595, 2022b.
 614

615 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 616 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv*
 617 *preprint arXiv:1609.04836*, 2016.

618 Hoki Kim, Jinseong Park, Yujin Choi, Woojin Lee, and Jaewook Lee. Exploring the effect of multi-
 619 step ascent in sharpness-aware minimization. *arXiv preprint arXiv:2302.10181*, 2023.
 620

621 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 622 2009.

623 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
 624 aware minimization for scale-invariant learning of deep neural networks. In *International confer-*
 625 *ence on machine learning*, pp. 5905–5914. PMLR, 2021.

626

627 Bingcong Li, Liang Zhang, and Niao He. Implicit regularization of sharpness-aware minimization
 628 for scale-invariant problems. *Advances in neural information processing systems*, 37:44444–
 629 44478, 2024a.

630 Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, and Xiaolin Huang. Friendly sharpness-aware
 631 minimization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recog-*
 632 *nition*, pp. 5631–5640, 2024b.

633

634 Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Random
 635 sharpness-aware minimization. *Advances in neural information processing systems*, 35:24543–
 636 24556, 2022.

637 Philip M Long and Peter L Bartlett. Sharpness-aware minimization and the edge of stability. *Journal*
 638 *of Machine Learning Research*, 25(179):1–20, 2024.

639

640 Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
 641 *arXiv preprint arXiv:1906.05890*, 2019.

642

643 Edward Moroshko, Blake E Woodworth, Suriya Gunasekar, Jason D Lee, Nati Srebro, and Daniel
 644 Soudry. Implicit bias in deep linear classification: Initialization scale vs training accuracy. *Ad-*
 645 *vances in neural information processing systems*, 33:22182–22193, 2020.

646

647 Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit bias of the
 648 step size in linear diagonal neural networks. In *International Conference on Machine Learning*,
 649 pp. 16270–16295. PMLR, 2022.

648 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 649 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep*
 650 *learning and unsupervised feature learning*, volume 2011, pp. 7. Granada, 2011.

651

652 Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
 653 ization in deep learning. *Advances in neural information processing systems*, 30, 2017.

654 Hristo Papazov, Scott Pesme, and Nicolas Flammarion. Leveraging continuous time to understand
 655 momentum when training diagonal linear networks. In *International Conference on Artificial*
 656 *Intelligence and Statistics*, pp. 3556–3564. PMLR, 2024.

657

658 Scott Pesme and Nicolas Flammarion. Saddle-to-saddle dynamics in diagonal linear networks. *Ad-*
 659 *vances in Neural Information Processing Systems*, 36:7475–7505, 2023.

660

661 Scott Pesme, Lucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for diagonal
 662 linear networks: a provable benefit of stochasticity. *Advances in Neural Information Processing*
 663 *Systems*, 34:29218–29230, 2021.

664 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 665 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 666 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 667 2017.

668 Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 669 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based lo-
 670 calization. *International Journal of Computer Vision*, 128(2):336–359, October 2019. ISSN
 671 1573-1405. doi: 10.1007/s11263-019-01228-7. URL <http://dx.doi.org/10.1007/s11263-019-01228-7>.

673

674 Dongkuk Si and Chulhee Yun. Practical sharpness-aware minimization cannot converge all the way
 675 to optima. *Advances in Neural Information Processing Systems*, 36:26190–26228, 2023.

676 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
 677 plicit bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):
 678 1–57, 2018.

679

680 Jacob Mitchell Springer, Vaishnav Nagarajan, and Aditi Raghunathan. Sharpness-aware minimiza-
 681 tion enhances feature quality via balanced learning. *arXiv preprint arXiv:2405.20439*, 2024.

682

683 Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang Chen, Jingwei Sun, Jing Li, Guangzhong
 684 Sun, and Dacheng Tao. Adasam: Boosting sharpness-aware minimization with adaptive learning
 685 rate and momentum for training deep neural networks. *Neural Networks*, 169:506–519, 2024.

686

687 Shuyang Wang and Diego Klabjan. A mirror descent perspective of smoothed sign descent. *arXiv*
 688 *preprint arXiv:2410.14158*, 2024.

689

690 Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
 691 sharpness? *arXiv preprint arXiv:2211.05729*, 2022.

692

693 Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only minimize
 694 sharpness to achieve better generalization. *Advances in Neural Information Processing Systems*,
 695 36:1024–1035, 2023.

696

697 Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
 698 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
 699 *Conference on Learning Theory*, pp. 3635–3673. PMLR, 2020.

700

701 Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in training
 702 linear neural networks. *arXiv preprint arXiv:2010.02501*, 2020.

Jihun Yun and Eunho Yang. Riemannian sam: Sharpness-aware minimization on riemannian mani-
 703 folds. *Advances in Neural Information Processing Systems*, 36:65784–65800, 2023.

702 Yihao Zhang, Hangzhou He, Jingyu Zhu, Huanran Chen, Yifei Wang, and Zeming Wei. On
703 the duality between sharpness-aware minimization and adversarial training. *arXiv preprint*
704 *arXiv:2402.15152*, 2024.

705 Zhanpeng Zhou, Mingze Wang, Yuchen Mao, Bingrui Li, and Junchi Yan. Sharpness-aware min-
706 imization efficiently selects flatter minima late in training. *arXiv preprint arXiv:2410.10373*,
707 2024.

709 Zhanpeng Zhou, Mingze Wang, Yuchen Mao, Bingrui Li, and Junchi Yan. Sharpness-aware mini-
710 mization efficiently selects flatter minima late in training, 2025. URL <https://arxiv.org/abs/2410.10373>.

712 Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
713 Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
714 training. *arXiv preprint arXiv:2203.08065*, 2022.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

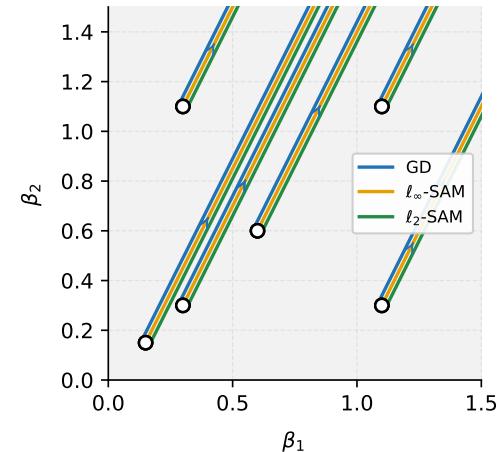
753

754

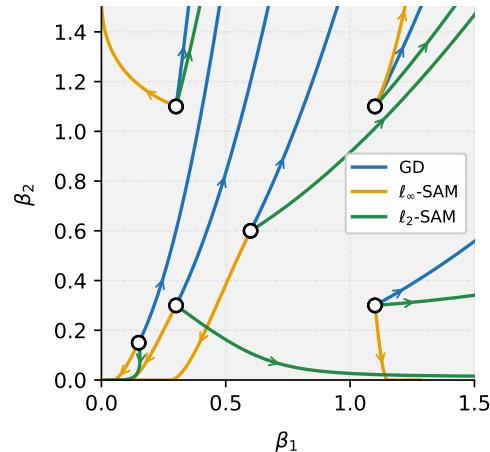
755

756	CONTENTS	
757		
758		
759	1 Introduction	1
760	1.1 Summary of Our Contributions	2
761	1.2 Related Work	2
762		
763		
764	2 Preliminaries	3
765		
766	3 SAM with ℓ_∞-Perturbations	4
767	3.1 Depth-1 Networks	4
768	3.2 Deeper Networks ($L \geq 2$)	5
769		
770		
771	4 SAM with ℓ_2-Perturbations: Sequential Feature Discovery	6
772	4.1 Asymptotic Behavior on Depth-1 and Depth-2 Networks	6
773	4.2 Pre-asymptotic Behavior on Depth-2 Networks	7
774	4.2.1 Sequential Feature Discovery	7
775	4.2.2 Understanding the Effect of ℓ_2 -SAM	8
776	4.2.3 Analysis of Time-wise Sequential Feature Discovery	8
777	4.2.4 Analysis of Initialization-wise Sequential Feature Discovery	9
778		
779		
780		
781	5 Experiments	10
782		
783		
784	6 Conclusion	10
785		
786	A Figures and Discussions Omitted from Main Text	17
787		
788	A.1 Flow Trajectories of GD and SAM	17
789	A.2 More Discussion on Related Work	17
790	A.2.1 Recent Work on Implicit Bias in Diagonal Linear Networks	17
791	A.2.2 Comparison with Saddle-to-saddle Dynamics	17
792	A.2.3 Implicit Bias of SAM on Linear Diagonal Networks	18
793		
794		
795	A.3 Derivation of Rescaled ℓ_p -SAM flow	19
796	A.4 GD and ℓ_∞ -SAM do not exhibit sequential feature discovery	19
797		
798	A.5 Interesting Trajectory in Regime 2 of Theorem 4.4	20
799		
800	B Core Lemma for SAM on Depth-1 Networks	21
801		
802	C SAM with ℓ_∞-perturbations: Proof of Section 3	25
803		
804	C.1 Depth-1 Networks: Proof of Theorem 3.1	25
805	C.2 Proof of Theorem 3.2	25
806	C.3 Proof of Corollary 3.5	30
807		
808	C.4 Finite-time Blow-up	31
809	C.5 Empirical Verification	32

810	C.5.1	One-point Case: Discrete vs. Continuous Dynamics	33
811	C.5.2	Multi-point Case: Persistence of One-point Behavior	33
812			
813			
814	D	SAM with ℓ_2-perturbations: Proof of Section 4	35
815	D.1	Depth-1 Networks: Proof of Theorem 4.1	35
816	D.2	Derivation of ℓ_2 -SAM flow	35
817	D.3	Proof of Theorem 4.2	36
818	D.4	Proofs for Section 4.2.3	39
819	D.4.1	Recap: Basic Notation	40
820	D.4.2	Preliminary Analysis	41
821	D.4.3	Proof of Lemma 4.3	41
822	D.4.4	Preliminary Analysis for $m_c(t)$ Trajectory Analysis	42
823	D.4.5	Proof of Theorem 4.4	45
824	D.5	Extension to deeper diagonal linear networks	47
825	D.6	Proofs for Section 4.2.4	53
826	D.6.1	Derivation of the Dynamics of $\beta(t)$	53
827	D.6.2	Proof of Theorem 4.5	53
828	D.6.3	Proof of Proposition 4.6	57
829	D.6.4	Proof of Proposition 4.7	58
830	D.7	Numerical Evaluation of Theorem 4.5	59
831	D.8	Empirical Verification	60
832	D.8.1	One-point Case: Continuous vs. Discrete Dynamics	60
833	D.8.2	Multi-point Case: Persistence of One-point Behavior	63
834	D.8.3	Depth- L Case: Persistence of Depth-2 Dynamics	65
835			
836			
837	E	Experiments	67
838	E.1	Loss Dynamics	67
839	E.2	Sequential Feature Discovery under Random Initialization	67
840	E.3	Alternative 2-Layer Models	69
841	E.3.1	Linear Network	69
842	E.3.2	Convolutional Neural Network	70
843	E.4	Grad-CAM	71
844	E.4.1	MNIST	72
845	E.4.2	SVHN	74
846	E.4.3	CIFAR-10	75
847			
848			
849			
850			
851			
852			
853			
854			
855			
856			
857			
858			
859			
860			
861			
862			
863			

864 DECLARATION OF LLM USAGE
865866 We used Large Language Models (LLMs) solely to aid or polish writing. They did not generate
867 ideas, analyses, or conclusions. All LLM-assisted text was reviewed and edited by the authors.
868869 A FIGURES AND DISCUSSIONS OMITTED FROM MAIN TEXT
870871 A.1 FLOW TRAJECTORIES OF GD AND SAM
872

889 (a) Depth 1 (linear network)



889 (b) Depth 2 (linear diagonal network)

890 Figure 6: Trajectories of the predictor $\beta(t) \in \mathbb{R}^2$ from identical initial conditions under GF, ℓ_∞ -
891 SAM flow and ℓ_2 -SAM flow on $\{(\mu, +1)\}$ with $\mu = (1, 2)$. For SAM, $\rho = 1$.
892893 A.2 MORE DISCUSSION ON RELATED WORK
894895 A.2.1 RECENT WORK ON IMPLICIT BIAS IN DIAGONAL LINEAR NETWORKS
896897 Jacobs & Burkholz (2024) study continuous sparsification with time-varying weight decay, formu-
898 lating a time-dependent Bregman potential that causes the implicit bias to evolve from ℓ_2 - to ℓ_1 -type
899 behavior over the course of training. Wang & Klabjan (2024) study smoothed sign descent on a
900 quadratically parameterized regression problem, introducing a time varying mirror map, and prove
901 that the resulting limit point is an approximate KKT point of a Bregman-divergence-style objective,
902 where the stability constant ε quantifies the gap to KKT optimality. Papazov et al. (2024) analyze
903 momentum gradient descent on diagonal linear network through a momentum gradient flow, show-
904 ing that a newly defined intrinsic parameter determines the optimization trajectory and admits a
905 second order, time varying mirror-flow formulation. Within this framework, they characterize the
906 induced implicit regularization and demonstrate that smaller values of this intrinsic parameter yield
907 more balanced weights and sparser solutions compared to standard gradient flow. Jacobs et al. (2025)
908 extend the mirror flow framework to account for explicit regularization and analyze the evolution of
909 the corresponding Legendre function over time, thereby describing how the implicit bias changes in
910 different reparameterizations, including diagonal linear networks. In particular, they track how the
911 implicit bias evolves in terms of its positional bias, bias type, and range shrinking.912 A.2.2 COMPARISON WITH SADDLE-TO-SADDLE DYNAMICS
913914 In this section, we provide further details on the relation between our work and the saddle-to-saddle
915 dynamics of gradient descent/flow. Pesme & Flammarion (2023) consider diagonal linear networks
916 trained with squared loss in the infinitesimal-initialization limit. In this regime, gradient flow ex-
917 hibits incremental, stage-wise learning: the flow undergoes long plateaus near a saddle whose pre-
918 dictor is supported on the first k coordinates, then escapes along a low-dimensional “fast escape”

918 manifold to a saddle with support on $k+1$ coordinates, and so on. Sequentiality thus appears as *discrete*
 919 transitions between saddles with support size k and $k+1$. In the diagonal setting, complexity
 920 is captured by the number of active coordinates, which is constant on each plateau and changes only
 921 at these transition times.

922 In contrast, our work on the sequential feature discovery focuses on a linear diagonal *classifier*
 923 trained with ℓ_2 -SAM and logistic loss, and on a different notion of complexity: individual coordi-
 924 nates (features) ordered by the strength of the teacher signal, from minor to major features. In our
 925 setting, all coordinates are present from the beginning. Instead of coordinate jumps, we track how the
 926 coordinate-wise alignments and margins evolve both over time and as a function of the initialization
 927 scale, where by “alignment” we mean the magnitude of the predictor at each coordinate, indicating
 928 how strongly the predictor attends to each feature. We show that ℓ_2 -SAM gives rise to two comple-
 929 mentary forms of sequential feature discovery: (i) a *time-wise* ordering, where alignment with minor
 930 features is relatively amplified earlier in training and gradually shifts toward major features; and (ii)
 931 an *initialization-scale-wise* ordering, where the most-amplified feature over a finite training process
 932 changes systematically with the initialization scale. In both views, the ordering emerges through
 933 a *continuous* evolution of the alignment across coordinates, and sequentiality is captured by which
 934 feature is currently most amplified, rather than by discrete activation or deactivation of features.

935 The mechanisms underlying these two phenomena are conceptually distinct. First, saddle-to-saddle
 936 dynamics start from the zero vector and involve successive coordinate *activations*, where previously
 937 inactive coordinates become active over time. Our setting, by contrast, starts from $\alpha \mathbf{1}$ (without
 938 taking the limit $\alpha \rightarrow 0$), where all coordinates are already active, and the dynamics involve suc-
 939 cessive *amplification* of already-active coordinates. Activation and amplification are fundamentally
 940 different: even if saddle-to-saddle dynamics exhibit successive activation, the identity of the most
 941 dominant coordinate can remain unchanged, unlike in our setting where dominance itself shifts over
 942 time.

943 Second, the ordering principles differ. In our work, the ordering of amplified coordinates is driven
 944 directly by the data geometry, namely the ordering of the signal strengths μ_j . In saddle-to-saddle
 945 dynamics, the progression is governed by a dual-thresholding mechanism, tied to when integrated
 946 gradients hit constraint boundaries, and does not correspond to a minor-to-major feature progression.

947 Third, the role of initialization is opposite. Saddle-to-saddle dynamics arise in the vanishing-
 948 initialization limit ($\alpha \rightarrow 0$). In contrast, we observe sequential feature discovery across a wide
 949 range of non-vanishing initialization scales, and in fact show that increasing α induces a clear and
 950 systematic amplification ordering. Our phenomenon is therefore not a small-initialization effect.

951 Fourth, saddle points play no constructive role in our mechanism. Aside from the trivial effect
 952 that extremely small initialization can prevent SAM trajectories from escaping the origin, saddle
 953 points do not drive the sequential feature discovery we characterize. The observed dynamics are not
 954 mediated by saddle escape.

955 Finally, the problem setups are fundamentally different. Prior saddle-to-saddle works analyze re-
 956 gression under squared loss, whereas our work studies classification under logistic loss, where the
 957 optimization landscape and asymptotic behavior are qualitatively different.

958 Taken together, these observations indicate that sequential feature discovery is a SAM-specific phe-
 959 nomenon, distinct from known saddle-to-saddle or incremental learning dynamics, and does not
 960 arise under conventional gradient descent.

964 A.2.3 IMPLICIT BIAS OF SAM ON LINEAR DIAGONAL NETWORKS

966 Previous works (Andriushchenko & Flammarion, 2022; Clara et al., 2025) have studied SAM’s im-
 967 plicit bias in diagonal linear networks. Andriushchenko & Flammarion (2022) analyze 2-layer lin-
 968 ear diagonal networks under sparse regression with MSE loss, showing SAM induces better sparsity
 969 than gradient descent, but require the small- ρ assumption. Clara et al. (2025) study SAM dynamics
 970 with noise, proving weight balancing across layers and sharpness minimization, also limited to MSE
 971 loss. Our analysis removes the small- ρ assumption to capture the full perturbation effect and studies
 972 logistic loss, revealing distinct implicit bias properties compared to the squared loss setting.

972
973 A.3 DERIVATION OF RESCALED ℓ_p -SAM FLOW974
975 For the dataset $\{(\boldsymbol{\mu}, +1)\}$, the loss function is given as:

976
977
$$\mathcal{L}(\boldsymbol{\theta}) = \ell(\langle \boldsymbol{\beta}(\boldsymbol{\theta}), \boldsymbol{\mu} \rangle).$$

978
979
980 For each $i \in [L]$, the gradient is

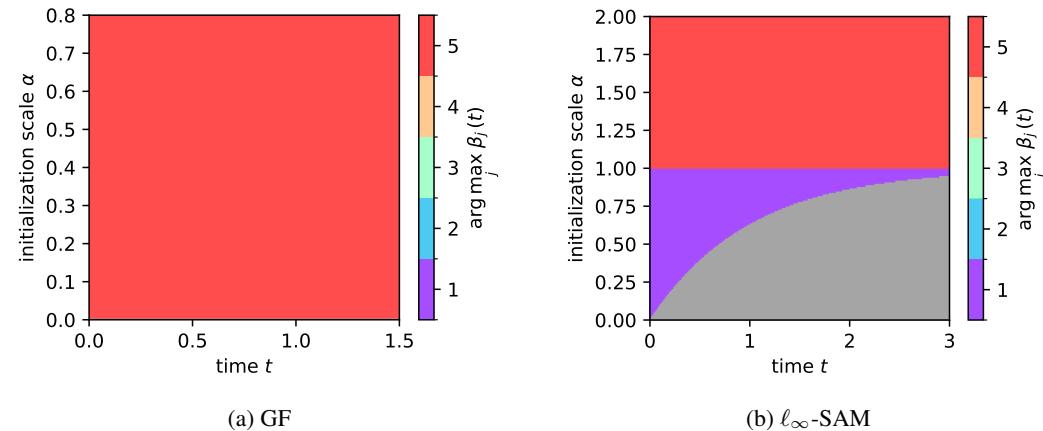
981
982
983
$$\nabla_{\mathbf{w}^{(i)}} \mathcal{L}(\boldsymbol{\theta}) = \ell'(\langle \boldsymbol{\beta}(\boldsymbol{\theta}), \boldsymbol{\mu} \rangle) \nabla_{\mathbf{w}^{(i)}} \langle \boldsymbol{\beta}(\boldsymbol{\theta}), \boldsymbol{\mu} \rangle = \ell'(\langle \boldsymbol{\beta}(\boldsymbol{\theta}), \boldsymbol{\mu} \rangle) \boldsymbol{\mu} \odot \left(\bigodot_{\ell \neq i} \mathbf{w}^{(\ell)} \right). \quad (5)$$

984
985
986
987
988 Then, we have the ℓ_p -SAM flow of $\mathbf{w}^{(i)}$ as

989
990
991
$$\dot{\mathbf{w}}^{(i)}(t) = -\nabla_{\mathbf{w}^{(i)}} \mathcal{L}(\hat{\boldsymbol{\theta}}(t)) = -\ell'(\langle \boldsymbol{\beta}(\hat{\boldsymbol{\theta}}(t)), \boldsymbol{\mu} \rangle) \boldsymbol{\mu} \odot \left(\bigodot_{\ell \neq i} \dot{\mathbf{w}}^{(\ell)}(t) \right).$$

992
993
994 Since $\ell'(u) = -\frac{1}{1+\exp(u)} < 0$, it has the same spatial trajectory (up to reparameterization of time):

995
996
997
998
$$\dot{\mathbf{w}}^{(i)}(t) = \boldsymbol{\mu} \odot \left(\bigodot_{\ell \neq i} \dot{\mathbf{w}}^{(\ell)}(t) \right) = \boldsymbol{\mu} \odot \left(\bigodot_{\ell \neq i} (\mathbf{w}^{(\ell)}(t) + \boldsymbol{\varepsilon}_p^{(\ell)}(\boldsymbol{\theta}(t))) \right).$$

1001
1002 This derivation works for any p , not just $p = 2$ and $p = \infty$.1003
1004 A.4 GD AND ℓ_∞ -SAM DO NOT EXHIBIT SEQUENTIAL FEATURE DISCOVERY1024
1025 Figure 7: Dominant index $j^\dagger := \arg \max_j \beta_j(t)$ for GF and ℓ_∞ -SAM flow over (t, α) on \mathcal{D}_μ with $\mu = (4, 5, 6, 7, 8) \in \mathbb{R}^5$.

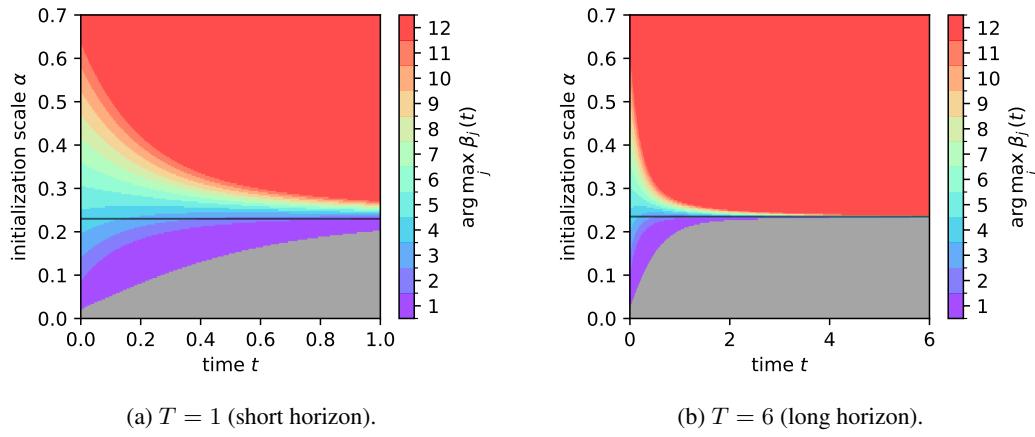
1026
1027
1028
A.5 INTERESTING TRAJECTORY IN REGIME 2 OF THEOREM 4.4
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 8: Dominant index for ℓ_2 -SAM flow with $\mu = (1, 2, \dots, 12)$. The black line indicates the interesting trajectory.

In Regime 2 of Theorem 4.4, there is also an interesting sub-regime that corresponds to smaller values of α with the range of Regime 2. Define a critical threshold $\alpha_{\text{crit}} := \frac{\rho \|\mu\|_4^4}{\sqrt{2} \|\mu\|_2 \|\mu\|_3^3} \in (\alpha_1, \alpha_2)$. When $\alpha_1 < \alpha < \alpha_{\text{crit}}$, the trajectory $m_c(t)$ initially decreases to a minimum above $\frac{\mu_1}{2}$ and then increases. During this decreasing phase, the ℓ_2 -SAM flow amplifies coordinates with smaller indices $j < j_c(0)$ than the most-amplified index at initialization $j_c(0) \in \arg \min_j |\mu_j - m_c(0)|$, enabling an aggressive exploration of weaker features before transitioning to the standard minor-first-major-last sequential discovery pattern. Along the black path in Figure 8, this manifests as the most-amplified coordinate starting at β_4 , then stepping down to β_1 sequentially during the initial decrease, and—after sufficient time—stepping back up sequentially toward β_d as $m_c(t)$ increases.

1080 **B CORE LEMMA FOR SAM ON DEPTH-1 NETWORKS**
1081

1082 Although our argument is inspired by the simple proof of Theorem 9 in Soudry et al. (2018), ex-
1083 tends that analysis from gradient descent to the SAM flow is far from straightforward. In GD the
1084 gradient has a clean exponential form and all coefficients are fixed, which makes the support/non-
1085 support decomposition almost immediate.

1086 In contrast, SAM evaluates the gradient at the perturbed point $\hat{w}(t)$, introducing the time-dependent
1087 factors $\gamma_n(t)$ and the perturbed margins $\hat{m}_n(t)$, neither of which appear in GD. Controlling these
1088 additional terms turns out to be technically delicate: one must show that the SAM-induced coeffi-
1089 cients remain uniformly bounded, that the perturbed margins stay within a fixed range, and that the
1090 resulting two-variable function $\psi(z, \delta)$ admits a uniform upper bound. Only after establishing these
1091 new ingredients can the GD-style argument be recovered. The proof below develops these steps and
1092 shows that, despite the additional complexity, the SAM flow converges to the same ℓ_2 max-margin
1093 direction as GD.

1094 **Lemma B.1.** *For almost every dataset which is linearly separable, any perturbation radius ρ and
1095 any initialization, consider the linear model $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ trained with logistic loss. For any SAM
1096 perturbation of the form*

$$\hat{\mathbf{w}} = \mathbf{w} + \varepsilon(\mathbf{w})$$

1097 with a perturbation direction $\varepsilon(\mathbf{w})$ satisfying

$$\|\varepsilon(\mathbf{w})\|_2 \leq B \quad \text{for some finite constant } B < \infty \text{ and all } \mathbf{w},$$

1098 the resulting SAM flow converges in ℓ_2 max-margin direction.

1103 *Proof.* Let $\{(\mathbf{x}_n, y_n)\}_{n=1}^N \subset \mathbb{R}^d \times \{\pm 1\}$ be a linearly separable dataset, that is, there exists a vector
1104 \mathbf{w}_* such that

$$y_n \mathbf{x}_n^\top \mathbf{w}_* > 0 \quad \text{for all } n.$$

1105 As usual in this setting, we absorb the labels into the inputs and assume without loss of generality
1106 that all labels are $y_n = 1$. In other words, we redefine $\mathbf{x}_n \leftarrow y_n \mathbf{x}_n$ and work with a dataset $\{\mathbf{x}_n\}_{n=1}^N$
1107 such that

$$\exists \mathbf{w}_* \text{ with } \mathbf{x}_n^\top \mathbf{w}_* > 0 \quad \text{for all } n.$$

1108 For the linear model $f(\mathbf{x}) = \mathbf{x}^\top \mathbf{w}$, the logistic loss is

$$\mathcal{L}(\mathbf{w}) = \sum_{n=1}^N \ell(\mathbf{x}_n^\top \mathbf{w}), \quad \ell(u) = \log(1 + e^{-u}), \quad \ell'(u) = -\frac{e^{-u}}{1 + e^{-u}}.$$

1109 The SAM flow with perturbation $\varepsilon(\mathbf{w})$ is the gradient flow

$$\dot{\mathbf{w}}(t) = -\nabla \mathcal{L}(\hat{\mathbf{w}}(t)), \quad \hat{\mathbf{w}}(t) = \mathbf{w}(t) + \varepsilon(\mathbf{w}). \quad (6)$$

1110 Let $m_n(t) = \mathbf{x}_n^\top \mathbf{w}(t)$ and $\hat{m}_n(t) = \mathbf{x}_n^\top \hat{\mathbf{w}}(t)$. Then

$$\nabla \mathcal{L}(\hat{\mathbf{w}}(t)) = - \sum_{n=1}^N \frac{e^{-\hat{m}_n(t)}}{1 + e^{-\hat{m}_n(t)}} \mathbf{x}_n = - \sum_{n=1}^N \gamma_n(t) e^{-m_n(t)} \mathbf{x}_n,$$

1111 with

$$\gamma_n(t) = \frac{e^{-(\hat{m}_n(t) - m_n(t))}}{1 + e^{-\hat{m}_n(t)}} \geq 0.$$

1112 Because $\hat{\mathbf{w}}(t) - \mathbf{w}(t) = \varepsilon(\mathbf{w}(t))$ and $\|\varepsilon(\mathbf{w}(t))\|_2 \leq B$, if the data are bounded, say $\|\mathbf{x}_n\|_2 \leq R$,
1113 then

$$|\hat{m}_n(t) - m_n(t)| = |\mathbf{x}_n^\top (\hat{\mathbf{w}}(t) - \mathbf{w}(t))| \leq BR =: C \quad (7)$$

1114 for all n, t . Hence there is a constant $A > 0$ such that

$$0 \leq \gamma_n(t) \leq A \quad \text{for all } n, t.$$

1134 The SAM flow equation 6 can therefore be written as
 1135

$$1136 \quad \dot{\mathbf{w}}(t) = \sum_{n=1}^N \gamma_n(t) e^{-m_n(t)} \mathbf{x}_n, \quad 0 \leq \gamma_n(t) \leq A. \quad (8)$$

1139 Let \mathbf{w}^* denote the ℓ_2 max-margin solution
 1140

$$1141 \quad \mathbf{w}^* = \arg \min_{\mathbf{w}} \|\mathbf{w}\|_2 \quad \text{s.t.} \quad \mathbf{x}_n^\top \mathbf{w} \geq 1 \text{ for all } n.$$

1142 Let $S = \{n : \mathbf{x}_n^\top \mathbf{w}^* = 1\}$ be the support set. Standard KKT conditions yield coefficients $b_n > 0$
 1143 for $n \in S$ with $\sum_{n \in S} b_n = 1$ such that
 1144

$$1145 \quad \mathbf{w}^* = \sum_{n \in S} b_n \mathbf{x}_n.$$

1147 Define the residual
 1148

$$1149 \quad \mathbf{r}(t) = \mathbf{w}(t) - \mathbf{w}^* \log t.$$

1150 Our goal is to show that $\mathbf{r}(t)$ is bounded. This will imply that
 1151

$$1152 \quad \frac{\mathbf{w}(t)}{\|\mathbf{w}(t)\|} = \frac{\mathbf{w}^* \log t + \mathbf{r}(t)}{\|\mathbf{w}^* \log t + o(\log t)} \rightarrow \frac{\mathbf{w}^*}{\|\mathbf{w}^*\|},$$

1154 that is, the SAM flow converges in the ℓ_2 max-margin direction.
 1155

Differentiating and substituting equation 8, we obtain
 1156

$$1157 \quad \dot{\mathbf{r}}(t) = \dot{\mathbf{w}}(t) - \frac{\mathbf{w}^*}{t} = \sum_{n=1}^N \gamma_n(t) e^{-m_n(t)} \mathbf{x}_n - \frac{\mathbf{w}^*}{t}.$$

1159 We split the sum over the support and non-support points:
 1160

$$1161 \quad \dot{\mathbf{r}}(t) = \sum_{n \in S} \gamma_n(t) e^{-m_n(t)} \mathbf{x}_n + \sum_{n \notin S} \gamma_n(t) e^{-m_n(t)} \mathbf{x}_n - \frac{\mathbf{w}^*}{t}.$$

1164 For $n \in S$ we have $\mathbf{x}_n^\top \mathbf{w}^* = 1$, so
 1165

$$1166 \quad m_n(t) = \mathbf{x}_n^\top \mathbf{w}(t) = \mathbf{x}_n^\top \mathbf{w}^* \log t + \mathbf{x}_n^\top \mathbf{r}(t) = \log t + \mathbf{x}_n^\top \mathbf{r}(t),$$

1167 and therefore
 1168

$$te^{-m_n(t)} = e^{-\mathbf{x}_n^\top \mathbf{r}(t)}.$$

1169 For $n \notin S$ we have
 1170

$$e^{-m_n(t)} = e^{-\mathbf{x}_n^\top \mathbf{w}^* \log t - \mathbf{x}_n^\top \mathbf{r}(t)} = t^{-\mathbf{x}_n^\top \mathbf{w}^*} e^{-\mathbf{x}_n^\top \mathbf{r}(t)}.$$

1172 Using $\mathbf{w}^* = \sum_{n \in S} b_n \mathbf{x}_n$ we rewrite
 1173

$$1174 \quad \dot{\mathbf{r}}(t) = \frac{1}{t} \sum_{n \in S} b_n \left[\frac{\gamma_n(t)}{b_n} e^{-\mathbf{x}_n^\top \mathbf{r}(t)} - 1 \right] \mathbf{x}_n + \sum_{n \notin S} \gamma_n(t) t^{-\mathbf{x}_n^\top \mathbf{w}^*} e^{-\mathbf{x}_n^\top \mathbf{r}(t)} \mathbf{x}_n. \quad (9)$$

1177 Consider the squared norm:
 1178

$$1179 \quad \frac{1}{2} \frac{d}{dt} \|\mathbf{r}(t)\|^2 = \mathbf{r}(t)^\top \dot{\mathbf{r}}(t) = T_1(t) + T_2(t),$$

1181 where $T_1(t)$ and $T_2(t)$ are the contributions of the two terms in equation 9. For the non-support term
 1182 $T_2(t)$ in equation 9, we have
 1183

$$1184 \quad T_2(t) = \sum_{n \notin S} \gamma_n(t) t^{-\mathbf{x}_n^\top \mathbf{w}^*} e^{-\mathbf{x}_n^\top \mathbf{r}(t)} \mathbf{x}_n^\top \mathbf{r}(t).$$

1186 There is a margin gap $\theta > 0$ such that $\mathbf{x}_n^\top \mathbf{w}^* \geq 1 + \theta$ when $n \notin S$. Then
 1187

$$t^{-\mathbf{x}_n^\top \mathbf{w}^*} \leq t^{-(1+\theta)},$$

1188 and using $\gamma_n(t) \leq A$ and $\forall z e^{-z}z \leq 1$, we have
 1189

$$1190 \quad 1191 \quad T_2(t) \leq \frac{A}{t^{1+\theta}}.$$

1192 For the support points, write $z_n(t) = \mathbf{x}_n^\top \mathbf{r}(t)$ and define
 1193

$$1194 \quad 1195 \quad \delta_n(t) := \frac{\gamma_n(t)}{b_n}, \quad \psi_n(t) = (\delta_n(t)e^{-z_n(t)} - 1)z_n(t),$$

1196 so that

$$1197 \quad 1198 \quad T_1(t) = \frac{1}{t} \sum_{n \in S} b_n \psi_n(t).$$

1200 We first justify that the coefficients $\delta_n(t) = \gamma_n(t)/b_n$ remain in a fixed compact interval. By
 1201 equation 7,

$$1202 \quad |\hat{m}_n(t) - m_n(t)| \leq C.$$

1203 Since

$$1204 \quad 1205 \quad \gamma_n(t) = \frac{e^{-(\hat{m}_n(t) - m_n(t))}}{1 + e^{-\hat{m}_n(t)}},$$

1206 and the denominator satisfies $1 + e^{-\hat{m}_n(t)} \geq 1$, we obtain the uniform bound

$$1207 \quad 1208 \quad 0 \leq \gamma_n(t) \leq e^{-(\hat{m}_n(t) - m_n(t))} \leq e^C \quad \text{for all } n, t.$$

1209 Thus each $\gamma_n(t)$ lies in the compact interval

$$1210 \quad 1211 \quad [0, e^C].$$

1212 Next, since every $b_n > 0$ for $n \in S$ and S is a finite set, define

$$1214 \quad 1215 \quad b_{\min} := \min_{n \in S} b_n > 0, \quad b_{\max} := \max_{n \in S} b_n.$$

1216 Therefore

$$1217 \quad 1218 \quad \delta_n(t) = \frac{\gamma_n(t)}{b_n} \quad \Rightarrow \quad 0 \leq \delta_n(t) \leq \frac{e^C}{b_{\min}} \quad \text{for all } n \in S \text{ and all } t.$$

1220 Hence $\delta_n(t)$ ranges over the compact interval

$$1222 \quad 1223 \quad [\delta_{\min}, \delta_{\max}] = \left[0, \frac{e^C}{b_{\min}} \right].$$

1224 For each fixed $\delta > 0$, consider the function

$$1226 \quad 1227 \quad \psi(z, \delta) := (\delta e^{-z} - 1)z.$$

1228 As $z \rightarrow \pm\infty$ we have $\psi(z, \delta) \rightarrow -\infty$, and therefore $\psi(z, \delta)$ attains a finite global maximum on \mathbb{R} .
 1229 Since $\delta_n(t) \in [\delta_{\min}, \delta_{\max}]$ for all t , there exists a constant $C_\psi > 0$ such that

$$1230 \quad 1231 \quad \psi(z, \delta) \leq C_\psi \quad \forall z \in \mathbb{R}, \forall \delta \in [\delta_{\min}, \delta_{\max}].$$

1232 Consequently,

$$1233 \quad \psi_n(t) = \psi(z_n(t), \delta_n(t)) \leq C_\psi \quad \forall n \in S, \forall t,$$

1234 and therefore

$$1235 \quad 1236 \quad T_1(t) \leq \frac{C_1}{t}, \quad C_1 := C_\psi \sum_{n \in S} b_n.$$

1238 Combining the two bounds on $T_1(t), T_2(t)$, for sufficiently large t ,

$$1239 \quad 1240 \quad \frac{1}{2} \frac{d}{dt} \|\mathbf{r}(t)\|^2 = T_1(t) + T_2(t) \leq \frac{C_1}{t} + \frac{A}{t^{1+\theta}} \leq \frac{C_2}{t},$$

1241 for some constant $C_2 > 0$.

1242 Integrating from t_0 to t gives
 1243

$$1244 \quad \|r(t)\|^2 \leq \|r(t_0)\|^2 + 2C_2 \int_{t_0}^t u^{-1} du = \|r(t_0)\|^2 + 2C_2 \log\left(\frac{t}{t_0}\right),$$

1246 so

$$1247 \quad \|r(t)\| = O(\sqrt{\log t}) = o(\log t).$$

1249 Since

$$1250 \quad w(t) = w^* \log t + r(t), \quad \|r(t)\| = o(\log t),$$

1251 we obtain

$$1252 \quad \frac{w(t)}{\|w(t)\|} = \frac{w^*}{\|w^*\|} + o(1),$$

1254 which proves

$$1255 \quad \frac{w(t)}{\|w(t)\|} \rightarrow \frac{w^*}{\|w^*\|_2}.$$

1257 Thus ℓ_2 -SAM flow converges in the ℓ_2 max-margin direction for any initialization and any fixed
 1258 $\rho > 0$. \square

1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 C SAM WITH ℓ_∞ -PERTURBATIONS: PROOF OF SECTION 3
12971298 C.1 DEPTH-1 NETWORKS: PROOF OF THEOREM 3.1
12991300 **Theorem 3.1.** *For almost every dataset which is linearly separable, any perturbation radius ρ*
1301 *and any initialization, consider the linear model $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ trained with logistic loss. Then,*
1302 *ℓ_∞ -SAM flow converges in the ℓ_2 max-margin direction.*1304 *Proof.* Apply Lemma B.1 with $\varepsilon(\mathbf{w}) = \rho \operatorname{sign}(\nabla \mathcal{L}(\boldsymbol{\theta}))$. Then $\|\varepsilon(\mathbf{w})\|_2 \leq \rho \sqrt{d}$ for all \mathbf{w} , so the
1305 conditions of Lemma B.1 hold. Thus, the flow converges to the ℓ_2 max-margin direction. \square
13061307 **Theorem C.1.** *Consider the linear model $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ trained on the dataset \mathcal{D}_μ with loss*
1308 *$\mathcal{L}(\mathbf{w}) = \ell(\langle \mathbf{w}, \mathbf{x} \rangle)$ where $\ell'(u) < 0$ for all u . Then, GF and ℓ_∞ -SAM flow, starting from any $\mathbf{w}(0)$,*
1309 *evolve on the same affine line $\mathbf{w}(0) + \operatorname{span}\{\mu\}$ and have the same spatial trajectory.*1310 *Proof.* The model is $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle = \mathbf{w}^\top \mathbf{x}$. The loss is $\mathcal{L}(\mathbf{w}) = \ell(\mathbf{w}^\top \mu)$. The gradient is
1311 $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \ell'(\mathbf{w}^\top \mu) \cdot \mu$ with $\ell'(s) < 0$.
13121313 **Gradient Descent** The GF is
1314

1315
$$\begin{aligned} \dot{\mathbf{w}} &= -\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) \\ &= -\ell'(\mathbf{w}^\top \mu) \cdot \mu. \end{aligned}$$

1316

1318 **SAM with ℓ_∞ perturbation** The ascent point is
1319

1320
$$\begin{aligned} \hat{\mathbf{w}} &= \mathbf{w} + \rho \varepsilon_\infty(\mathbf{w}) \\ &= \mathbf{w} + \rho \operatorname{sign}(\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})) \\ &= \mathbf{w} - \rho \operatorname{sign}(\mu). \end{aligned}$$

1321

1324 The equation of ℓ_∞ -SAM flow is
1325

1326
$$\begin{aligned} \dot{\mathbf{w}} &= -\nabla_{\mathbf{w}} \mathcal{L}(\hat{\mathbf{w}}) \\ &= -\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w} - \rho \operatorname{sign}(\mu)) \\ &= -\ell'(\mathbf{w}^\top \mu - \rho \operatorname{sign}(\mu)^\top \mu) \cdot \mu \\ &= -\ell'(\mathbf{w}^\top \mu - \rho \|\mu\|_1) \cdot \mu. \end{aligned}$$

1327

1331 Therefore, they have the same spatial trajectory as:
1332

1333
$$\dot{\mathbf{w}} = \mu.$$

1334

1335 The term $-\ell'(\mathbf{w}^\top \mu - \rho \|\mu\|_1)$ is the acceleration in terms of t since $-\ell'(s)$ is decreasing in s . \square
13361337 C.2 PROOF OF THEOREM 3.2
13381339 **Theorem 3.2.** *For $i \in [L]$, suppose $\mathbf{w}^{(i)}(0) = \alpha \in \mathbb{R}_+^d$. Let $\mathbf{w}^{(i)}(t)$ follow the rescaled ℓ_∞ -SAM*
1340 *flow (2) with perturbation radius $\rho > 0$ on the dataset \mathcal{D}_μ . Then, for the j -th coordinate of $\beta(t)$:*1341

- If $\alpha_j < \rho$, then $\beta_j(t)$ converges to 0 if L is even, or ρ^L if L is odd.
- If $\alpha_j = \rho$, then $\beta_j(t) = \rho^L$ for all $t \geq 0$.
- If $\alpha_j > \rho$ and $L = 2$, then $\beta_j(t)$ grows exponentially: $\beta_j(t) = \Theta(\exp(2\mu_j t))$.
- If $\alpha_j > \rho$ and $L > 2$, let $J := \arg \max_{j: \alpha_j > \rho} \mu_j (\alpha_j - \rho)^{L-2}$, and also let $T := \min_{k \in J} 1/(L-2)\mu_k(\alpha_k - \rho)^{L-2}$. If $j \in J$, then $\beta_j(t) \rightarrow \infty$ as $t \rightarrow T$; otherwise, $\beta_j(t)$ stays bounded for all $t < T$.

13481349 *Proof.* Since we suppose $\mathbf{w}^{(i)}(0) = \alpha \in \mathbb{R}_+^d$ for all $i \in [L]$, and the dynamics of the linear diagonal
network are invariant under any permutation of the layer indices $\{1, \dots, L\}$, we obtain

1350
1351
1352

$$\mathbf{w}^{(1)}(t) = \mathbf{w}^{(2)}(t) = \cdots = \mathbf{w}^{(L)}(t) =: \mathbf{w}(t) \quad \text{for all } t \geq 0.$$

1353 With ℓ_∞ perturbation, the rescaled ℓ_∞ -SAM flow (2) becomes

1354
1355
1356
1357
1358
1359
1360
1361
$$\begin{aligned} \dot{\mathbf{w}}^{(i)}(t) &= \boldsymbol{\mu} \odot \left(\bigodot_{\ell \neq i} (\mathbf{w}^{(\ell)}(t) + \varepsilon_\infty^{(\ell)}(\boldsymbol{\theta}(t))) \right) \\ &= \boldsymbol{\mu} \odot \left(\bigodot_{\ell \neq i} (\mathbf{w}^{(\ell)}(t) + \rho \operatorname{sign}(\nabla_{\mathbf{w}^{(\ell)}} \mathcal{L}(\boldsymbol{\theta}(t)))) \right). \end{aligned}$$

1362 Recall the gradient (5)

1363
1364
1365
1366
$$\nabla_{\mathbf{w}^{(\ell)}} \mathcal{L}(\boldsymbol{\theta}(t)) = \ell'(\langle \boldsymbol{\beta}(\boldsymbol{\theta}(t)), \boldsymbol{\mu} \rangle) \boldsymbol{\mu} \odot \left(\bigodot_{\ell \neq i} \mathbf{w}^{(\ell)}(t) \right),$$

1367 where $\ell'(u) = -\frac{1}{1+\exp(u)} < 0$. Since we also have $\boldsymbol{\mu} > 0$ (element-wise), we have

1368
1369
1370
1371
1372
1373
1374
$$\begin{aligned} \operatorname{sign}(\nabla_{\mathbf{w}^{(\ell)}} \mathcal{L}(\boldsymbol{\theta}(t))) &= -\operatorname{sign} \left(\bigodot_{\ell \neq i} \mathbf{w}^{(\ell)}(t) \right) \\ &\stackrel{(a)}{=} -\operatorname{sign} \left(\bigodot_{\ell=1}^{L-1} \mathbf{w}^{(\ell)}(t) \right), \end{aligned}$$

1375 where (a) follows from the fact that $\mathbf{w}^{(i)}(t) = \mathbf{w}(t)$ for all $i \in [L]$. Using this fact again, we have
1376 the ODE

1377
1378
1379
1380
1381
1382
1383
$$\begin{aligned} \dot{\mathbf{w}}(t) &= \dot{\mathbf{w}}^{(i)}(t) = \boldsymbol{\mu} \odot \left(\bigodot_{\ell \neq i} \left(\mathbf{w}(t) - \rho \operatorname{sign} \left(\bigodot_{\ell=1}^{L-1} \mathbf{w}(t) \right) \right) \right) \\ &= \boldsymbol{\mu} \odot \left(\bigodot_{\ell=1}^{L-1} \left(\mathbf{w}(t) - \rho \operatorname{sign} \left(\bigodot_{\ell=1}^{L-1} \mathbf{w}(t) \right) \right) \right). \end{aligned}$$

1384 This can be written as coordinate-wise as

1385
1386
$$\dot{w}_j(t) = \mu_j (w_j(t) - \rho \operatorname{sign}(w_j(t)^{L-1}))^{L-1} \quad \text{for } j \in [d].$$

1387 Divide into three cases:

1389
1390 **Case 1:** $L = 2$.

1391
1392
$$\dot{w}_j(t) = \mu_j (w_j(t) - \rho \operatorname{sign}(w_j(t))).$$

1393 By Lemma C.2, we have

1394
1395
1396
1397
1398
$$w_j(t) = \begin{cases} \rho + (w_j(0) - \rho) e^{\mu_j t} & \text{if } w_j(0) > \rho, \\ \rho & \text{if } w_j(0) = \rho, \\ \rho + (w_j(0) - \rho) e^{\mu_j t} (t < T), & 0 (t \geq T) \quad \text{if } w_j(0) < \rho, \\ 0 & \text{if } w_j(0) = 0, \end{cases}$$

1399
1400 where $T := \frac{1}{\mu_j} \log \left(\frac{\rho}{\rho - w_j(0)} \right)$. Then, we have

1401
1402
1403
$$\beta_j(t) = w_j(t)^L \rightarrow \begin{cases} \Theta(e^{2\mu_j t}) & \text{if } \alpha_j > \rho, \\ \rho^L & \text{if } \alpha_j = \rho, \\ 0 & \text{if } \alpha_j < \rho, \end{cases} \quad \text{as } t \rightarrow \infty.$$

1404 **Case 2: $L > 2$ and L is even.**

1405

$$1406 \quad \dot{w}_j(t) = \mu_j (w_j(t) - \rho \operatorname{sign}(w_j(t)))^{L-1}.$$

1407

1408 By Lemma C.3, we have

1409

$$1410 \quad w_j(t) = \begin{cases} \rho + \left(- (L-2) \mu_j t + \frac{1}{(w_j(0) - \rho)^{L-2}} \right)^{-\frac{1}{L-2}} & \text{if } w_j(0) > \rho, \\ \rho & \text{if } w_j(0) = \rho, \\ 1411 \quad \rho - \left(- (L-2) \mu_j t + \frac{1}{(w_j(0) - \rho)^{L-2}} \right)^{-\frac{1}{L-2}} & (t < T), \quad 0 (t \geq T) \quad \text{if } w_j(0) < \rho, \\ 1412 \quad 0 & \text{if } w_j(0) = 0, \end{cases}$$

1413

1414 where $T := \frac{(\rho - w_j(0))^{-(L-2)} - \rho^{-(L-2)}}{(L-2)\mu_j}$. Then, we have

1415

1416

$$1417 \quad \beta_j(t) = w_j(t)^L \rightarrow \begin{cases} \Theta((t^* - t)^{-\frac{L}{L-2}}) & \text{if } \alpha_j > \rho, \text{ as } t \rightarrow t^*, \\ 1418 \quad \rho^L & \text{if } \alpha_j = \rho, \text{ as } t \rightarrow \infty, \\ 1419 \quad 0 & \text{if } \alpha_j < \rho, \text{ as } t \rightarrow \infty, \end{cases}$$

1420

1421 where $t^* = 1/(L-2)\mu_j(w_j(0) - \rho)^{L-2}$

1422

1423 **Case 3: $L > 2$ and L is odd.**

1424

$$1425 \quad \dot{w}_j(t) = \mu_j (w_j(t) - \rho)^{L-1}.$$

1426

1427 By Lemma C.4, we have

1428

$$1429 \quad w_j(t) = \begin{cases} \rho & \text{if } w_j(0) = \rho, \\ 1430 \quad \rho + \left(- (L-2) \mu_j t + \frac{1}{(w_j(0) - \rho)^{L-2}} \right)^{-\frac{1}{L-2}} & \text{if } w_j(0) \neq \rho. \end{cases}$$

1431

1432 Then, we have

1433

$$1434 \quad \beta_j(t) = w_j(t)^L \rightarrow \begin{cases} \Theta((t^* - t)^{-\frac{L}{L-2}}) & \text{if } \alpha_j > \rho, \text{ as } t \rightarrow t^*, \\ 1435 \quad \rho^L & \text{if } \alpha_j \leq \rho, \text{ as } t \rightarrow \infty, \end{cases}$$

1436

1437 where $t^* = 1/(L-2)\mu_j(w_j(0) - \rho)^{L-2}$.

1438

1439 These cases of L cover all possible cases in Theorem 3.2. □

1440

1441 The following three lemmas (Lemmas C.2 to C.4) are used in the proof of Theorem 3.2 and corre-
1442 spond, respectively, to the three cases.

1443

1444 **Lemma C.2.** *Let $\mu > 0$ and $\rho > 0$. Consider*

1445

$$1446 \quad \dot{w}(t) = \mu (w(t) - \rho \operatorname{sign}(w(t))).$$

1447

1448 Then, there exists the solution w such that it is absolutely continuous (AC) and satisfies

1449

$$1450 \quad w(t) = w(0) + \int_0^t \dot{w}(s) ds. \tag{10}$$

1451

1452 *In particular,*

1453

$$1454 \quad w(t) = \begin{cases} \rho + (w(0) - \rho)e^{\mu t} & \text{if } w(0) > \rho, \\ 1455 \quad \rho & \text{if } w(0) = \rho, \\ 1456 \quad \rho + (w(0) - \rho)e^{\mu t} (t < T), \quad 0 (t \geq T) & \text{if } w(0) < \rho, \\ 1457 \quad 0 & \text{if } w(0) = 0, \end{cases}$$

1458 where $T := \frac{1}{\mu} \log \left(\frac{\rho}{\rho - w(0)} \right)$.

1458 *Proof.* **Case 1:** $w(0) = 0$. The constant function $w(t) = 0$ is AC, and

$$1460 \quad \int_0^t \mu(0 - \rho \operatorname{sign}(0)) ds = \int_0^t 0 ds = 0.$$

1462 Thus, Equation (10) holds.

1463 **Case 2:** $w(0) = \rho$. The constant function $w(t) = \rho$ is AC, and since $\operatorname{sign}(w(t)) = 1$, we have

$$1465 \quad \int_0^t \mu(\rho - \rho \cdot 1) ds = \int_0^t 0 ds = 0.$$

1467 Thus, Equation (10) holds.

1468 **Case 3:** $w(0) > \rho$. At $t = 0$, we have $\dot{w}(0) = \mu(w(0) - \rho) > 0$. Assume, for contradiction,
1469 that there exists $t_* > 0$ with $w(t_*) = \rho$. Then on $[0, t_*]$ we have $w(t) > \rho$ and hence $\dot{w}(t) =$
1470 $\mu(w(t) - \rho) > 0$, so w is strictly increasing on $[0, t_*]$. An increasing function cannot reach the
1471 smaller value ρ starting from $w(0) > \rho$: contradiction. Thus $w(t) > \rho$ for all $t \geq 0$. On the region
1472 $\{w(t) > \rho\}$, $\operatorname{sign}(w(t)) = 1$ and the ODE reduces to the linear equation

$$1474 \quad \dot{w} = \mu(w - \rho).$$

1475 Then, we have

$$\begin{aligned} 1476 \quad & \frac{\dot{w}(t)}{w(t) - \rho} = \mu \\ 1477 \quad & \Rightarrow \int_0^t \frac{\dot{w}(s)}{w(s) - \rho} ds = \int_0^t \mu ds \\ 1478 \quad & \Rightarrow \log \left| \frac{w(t) - \rho}{w(0) - \rho} \right| = \mu t \\ 1479 \quad & \Rightarrow w(t) = \rho + (w(0) - \rho)e^{\mu t}. \end{aligned}$$

1485 This function is AC and satisfies Equation (10).

1486 **Case 4:** $0 < w(0) < \rho$. Initially $\operatorname{sign}(w(0)) = 1$, so again $\dot{w} = \mu(w - \rho)$ and

$$1488 \quad w(t) = \rho + (w(0) - \rho)e^{\mu t}.$$

1489 Since $w(0) - \rho < 0$, the function w is strictly decreasing and reaches 0 exactly once at

$$1491 \quad T := \frac{1}{\mu} \log \left(\frac{\rho}{\rho - w(0)} \right) > 0.$$

1493 On $[0, T]$, this solution is AC and satisfies Equation (10). Define $w(t) := 0$ for all $t \geq T$. Then,
1494 using $\operatorname{sign}(0) = 0$,

$$1496 \quad w(t) = w(T) + \int_T^t \mu(0 - \rho \operatorname{sign}(0)) ds = 0 + \int_T^t 0 ds = 0,$$

1498 so Equation (10) also holds on $[T, \infty)$. The function w is AC on $[0, T]$ and on $[T, \infty)$, and it is
1499 continuous at $t = T$, hence it is absolutely continuous. \square

1500 **Lemma C.3.** *Let $\mu > 0$, $\rho > 0$, and L is even. Consider*

$$1502 \quad \dot{w}(t) = \mu(w(t) - \rho \operatorname{sign}(w(t)))^{L-1}.$$

1503 *Then, there exists the solution w such that it is absolutely continuous (AC) and satisfies Equa-
1504 tion (10). In particular,*

$$1505 \quad w(t) = \begin{cases} \rho + \left(- (L-2)\mu t + \frac{1}{(w(0)-\rho)^{L-2}} \right)^{-\frac{1}{L-2}} & \text{if } w(0) > \rho, \\ 1506 \quad \rho & \text{if } w(0) = \rho, \\ 1507 \quad \rho - \left(- (L-2)\mu t + \frac{1}{(w(0)-\rho)^{L-2}} \right)^{-\frac{1}{L-2}} (t < T), \quad 0 (t \geq T) & \text{if } w(0) < \rho, \\ 1508 \quad 0 & \text{if } w(0) = 0, \end{cases}$$

1511 where $T := \frac{(\rho-w(0))^{-(L-2)} - \rho^{-(L-2)}}{(L-2)\mu}$.

1512 *Proof.* The proof is similar to the proof of Lemma C.2.
 1513

1514 **Case 1:** $w(0) = 0$. The constant function $w(t) = 0$ is AC, and

$$1515 \quad 1516 \quad \int_0^t \mu(0 - \rho \operatorname{sign}(0))^{L-1} ds = \int_0^t \mu \cdot 0^{L-1} ds = 0.$$

1517 Thus, Equation (10) holds.
 1518

1519 **Case 2:** $w(0) = \rho$. The constant function $w(t) = \rho$ is AC, and since $\operatorname{sign}(w(t)) = 1$, we have
 1520

$$1521 \quad \int_0^t \mu(\rho - \rho \cdot 1)^{L-1} ds = \int_0^t \mu \cdot 0^{L-1} ds = 0.$$

1523 Thus, Equation (10) holds.
 1524

1525 **Case 3:** $w(0) > \rho$. At $t = 0$, we have $\dot{w}(0) = \mu(w(0) - \rho)^{L-1} > 0$. Assume, for contradiction,
 1526 that there exists $t_* > 0$ with $w(t_*) = \rho$. Then on $[0, t_*]$ we have $w(t) > \rho$ and hence $\dot{w}(t) =$
 1527 $\mu(w(t) - \rho) > 0$, so w is strictly increasing on $[0, t_*]$. An increasing function cannot reach the
 1528 smaller value ρ starting from $w(0) > \rho$: contradiction. Thus $w(t) > \rho$ for all $t \geq 0$. On the region
 1529 $\{w(t) > \rho\}$, $\operatorname{sign}(w(t)) = 1$ and the ODE reduces to

$$1530 \quad \dot{w} = \mu(w - \rho)^{L-1}.$$

1531 Then, we have
 1532

$$\begin{aligned} 1533 \quad & \frac{\dot{w}(t)}{(w(t) - \rho)^{L-1}} = \mu \\ 1534 \quad & \Rightarrow \int_0^t \frac{\dot{w}(s)}{(w(s) - \rho)^{L-1}} ds = \int_0^t \mu ds \\ 1535 \quad & \Rightarrow -\frac{1}{L-2} \left(\frac{1}{(w(t) - \rho)^{L-2}} - \frac{1}{(w(0) - \rho)^{L-2}} \right) = \mu t \\ 1536 \quad & \Rightarrow (w(t) - \rho)^{L-2} = \left(-(L-2)\mu t + \frac{1}{(w(0) - \rho)^{L-2}} \right)^{-1} \\ 1537 \quad & \Rightarrow w(t) = \rho + \left(-(L-2)\mu t + \frac{1}{(w(0) - \rho)^{L-2}} \right)^{-\frac{1}{L-2}}, \\ 1538 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1539 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1540 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1541 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1542 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1543 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1544 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1545 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1546 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1547 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1548 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1549 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1550 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1551 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1552 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1553 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1554 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1555 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1556 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1557 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1558 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1559 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1560 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1561 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1562 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1563 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1564 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \\ 1565 \quad & \text{where (a) follows from } w(t) - rho > 0. \text{ This function is AC and satisfies Equation (10).} \end{aligned}$$

1545 where (a) follows from $w(t) - rho > 0$. This function is AC and satisfies Equation (10).
 1546

1547 **Case 4:** $0 < w(0) < \rho$. Initially $\operatorname{sign}(w(0)) = 1$, so again $\dot{w} = \mu(w - \rho)^{L-1}$ and
 1548

$$1549 \quad (w(t) - \rho)^{L-2} = \left(-(L-2)\mu t + \frac{1}{(w(0) - \rho)^{L-2}} \right)^{-1}.$$

1551 Since $w(0) - \rho < 0$ and L is even, we have
 1552

$$1553 \quad w(t) = \rho - \left(-(L-2)\mu t + \frac{1}{(w(0) - \rho)^{L-2}} \right)^{-\frac{1}{L-2}}.$$

1555 The function w is strictly decreasing and reaches 0 exactly once at
 1556

$$1557 \quad T := \frac{(\rho - w(0))^{-(L-2)} - \rho^{-(L-2)}}{(L-2)\mu} > 0.$$

1559 On $[0, T]$, this solution is AC and satisfies Equation (10). Define $w(t) := 0$ for all $t \geq T$. Then,
 1560 using $\operatorname{sign}(0) = 0$,

$$1562 \quad 1563 \quad w(t) = w(T) + \int_T^t \mu(0 - \rho \operatorname{sign}(0))^{L-1} ds = 0 + \int_T^t 0 ds = 0,$$

1564 so Equation (10) also holds on $[T, \infty)$. The function w is AC on $[0, T]$ and on $[T, \infty)$, and it is
 1565 continuous at $t = T$, hence it is absolutely continuous. \square

1566 **Lemma C.4.** Let $\mu > 0$, $\rho > 0$ and L is odd. Consider

$$1568 \quad \dot{w}(t) = \mu (w(t) - \rho)^{L-1}.$$

1569 Then, there exists the solution w such that it is absolutely continuous (AC) and satisfies Equation 10. In particular,

$$1572 \quad w(t) = \begin{cases} \rho & \text{if } w(0) = \rho, \\ 1573 \quad \rho + \left(-(L-2)\mu t + \frac{1}{(w(0)-\rho)^{L-2}} \right)^{-\frac{1}{L-2}} & \text{if } w(0) \neq \rho, \end{cases}$$

1576 *Proof.* The proof is similar to the proof of Lemma C.2.

1578 **Case 1:** $w(0) = \rho$. The constant function $w(t) = \rho$ is AC, and

$$1580 \quad \int_0^t \mu(\rho - \rho) ds = \int_0^t 0 ds = 0.$$

1582 Thus, Equation (10) holds.

1584 **Case 2:** $w(0) \neq \rho$. Separate variables:

$$1585 \quad \frac{dw}{(w - \rho)^{L-1}} = \mu dt.$$

1588 Integrating from 0 to t gives

$$1590 \quad -\frac{1}{L-2} \left(\frac{1}{(w(t) - \rho)^{L-2}} - \frac{1}{(w(0) - \rho)^{L-2}} \right) = \mu t.$$

1592 Solving for w yields

$$1594 \quad w(t) = \rho + \left(-(L-2)\mu t + \frac{1}{(w(0) - \rho)^{L-2}} \right)^{-\frac{1}{L-2}}.$$

1596 The function is AC and satisfies Equation (10). □

1600 C.3 PROOF OF COROLLARY 3.5

1602 **Corollary 3.5.** Under the assumptions of Theorem 3.2, let $S := \{j : \alpha_j > \rho\}$ and assume $S \neq \emptyset$.
1603 If there is a unique maximizing index $j^* := \arg \max_{j \in S} \mu_j (\alpha_j - \rho)^{L-2}$, then the ℓ_∞ -SAM flow
1604 converges in the e_{j^*} direction. In particular, when $L = 2$, we have $j^* := \arg \max_{j \in S} \mu_j$.

1605 *Proof.* Work under the assumptions of Theorem 3.2 and let

$$1607 \quad S := \{j : \alpha_j > \rho\} \neq \emptyset, \quad j^* := \arg \max_{j \in S} \mu_j (\alpha_j - \rho)^{L-2},$$

1609 where the maximizer is unique. We prove that the (rescaled) ℓ_∞ -SAM flow satisfies

$$1611 \quad \frac{\beta(t)}{\|\beta(t)\|_2} \longrightarrow e_{j^*}.$$

1613 **Case $L = 2$.** By Theorem 3.2, for $j \in S$,

$$1615 \quad \beta_j(t) = \Theta(e^{2\mu_j t}),$$

1617 whereas for $j \notin S$ we have either $\beta_j(t) \rightarrow 0$ (if L even) or $\beta_j(t) \equiv \rho^L$ when $\alpha_j = \rho$; in any event
1618 these coordinates stay bounded. Since the maximizer is unique and $L - 2 = 0$,

$$1619 \quad j^* = \arg \max_{j \in S} \mu_j,$$

1620 hence for every $k \in S \setminus \{j^*\}$,

$$1622 \quad \frac{\beta_k(t)}{\beta_{j^*}(t)} = \Theta\left(e^{-2(\mu_{j^*} - \mu_k)t}\right) \rightarrow 0,$$

1625 and for $k \notin S$ we also have $\beta_k(t)/\beta_{j^*}(t) \rightarrow 0$ because the denominator grows exponentially while
1626 the numerator is bounded. Therefore $\beta(t)/\|\beta(t)\|_2 \rightarrow e_{j^*}$.

1627 **Case $L > 2$.** By Theorem 3.2, for each $j \in S$ there is a blow-up time

$$1629 \quad t_j^* = \frac{1}{(L-2)\mu_j(\alpha_j - \rho)^{L-2}},$$

1631 and as $t \uparrow t_j^*$,

$$1633 \quad \beta_j(t) = \Theta\left((t_j^* - t)^{-1/(L-2)}\right).$$

1635 If $j \notin S$, then $\beta_j(t)$ is bounded (either converging to 0 when L is even, or equal to ρ^L when $\alpha_j = \rho$).
1636 The uniqueness of j^* implies

$$1637 \quad t_{j^*}^* = \min_{j \in S} t_j^* \quad \text{and} \quad t_{j^*}^* < t_k^* \quad \forall k \in S \setminus \{j^*\}.$$

1640 Hence, for any fixed $t < t_{j^*}^*$, all coordinates with $k \neq j^*$ are finite; moreover,

$$1642 \quad \lim_{t \uparrow t_{j^*}^*} \frac{\beta_k(t)}{\beta_{j^*}(t)} = 0 \quad \text{for every } k \neq j^*,$$

1644 because $\beta_{j^*}(t) \rightarrow \infty$ while $\beta_k(t)$ remains finite as $t < t_k^*$. Consequently,

$$1646 \quad \lim_{t \uparrow t_{j^*}^*} \frac{\beta(t)}{\|\beta(t)\|_2} = e_{j^*}.$$

1649 Combining the two cases establishes the claim. In particular, when $L = 2$ we have $j^* = \arg \max_{j \in S} \mu_j$. \square

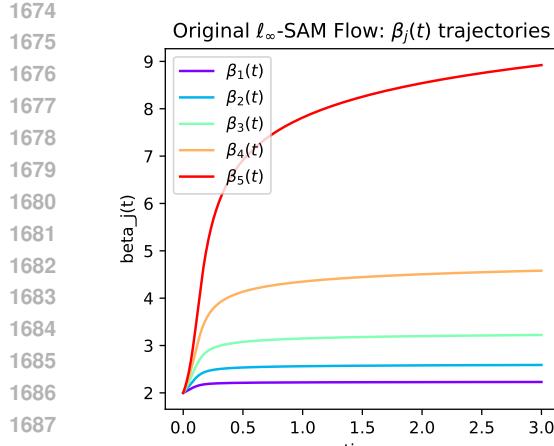
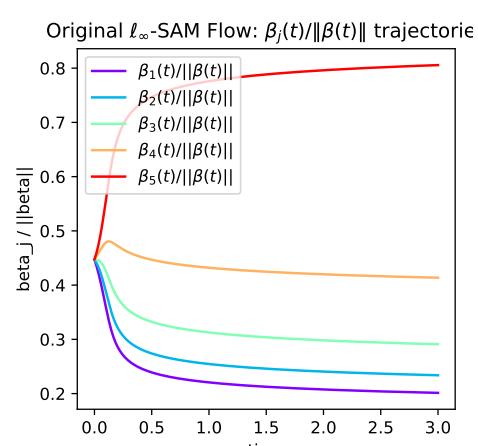
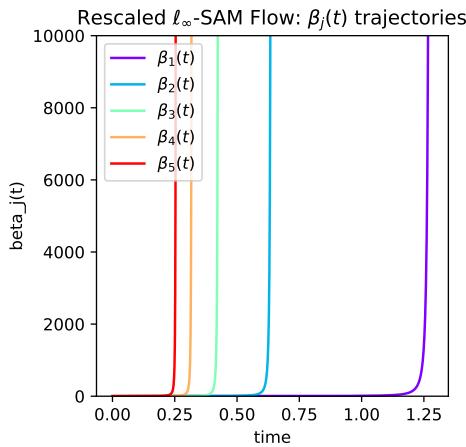
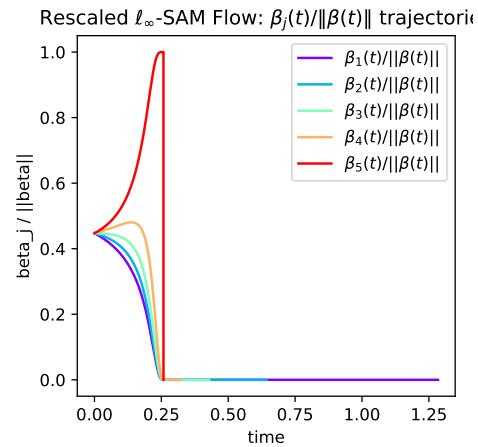
1652 C.4 FINITE-TIME BLOW-UP

1654 In the setting of Theorem C.1, the ℓ_∞ -SAM flow evolves independently across coordinates. In the
1655 rescaled ℓ_∞ -SAM flow, each coordinate indeed admits a finite blow-up time. However, as explained
1656 in Remark 3.3, the smallest of these blow-up times corresponds to $t_{\text{orig}} = \infty$ in the original SAM
1657 time scale. Consequently, both the original flow and the rescaled flow terminate at this same time
1658 and cannot be extended beyond it.

1659 To illustrate this behavior concretely, we provide Figures 9 and 10 using $\mu = (1, 2, 3, 4, 5)$, $\rho = 1$,
1660 and a depth- $L = 3$ network. In the original flow, only one coordinate diverges as $t_{\text{orig}} \rightarrow \infty$.
1661 As shown in Figure 9b, the normalized trajectories $\beta_j(t)/\|\beta(t)\|$ show that the remaining coordinates
1662 grow much more slowly than the dominant one—indeed, they remain bounded. Because their
1663 growth is negligible compared to the blow-up coordinate, their normalized values converge to zero.
1664 Thus, in this example, the trajectory converges to the direction e_5 .

1665 In contrast, Figure 10a shows that in the rescaled ℓ_∞ -SAM flow, each coordinate $\beta_j(t)$ has its own
1666 finite blow-up time. However, Theorem 3.2 identifies the blow-up time $T = \frac{1}{(L-2)\mu_j(\alpha_j - \rho)^{L-2}}$ for
1667 any $j \in J$, which is the minimum of these blow-up times—only the coordinates in J blow up at T ,
1668 while all remaining coordinates stay bounded. Since this rescaled time T corresponds to $t_{\text{orig}} = \infty$,
1669 the flow cannot proceed past T . In this example, $T \approx 0.25$.

1671 Because the rescaled system is simply a time reparameterization of the original one, the two plots
1672 differ only in their x -axis scaling. Before reaching T , the two flows exhibit the same evolution along
1673 the y -axis. Indeed, reparameterizing the original trajectory (Figure 9) by $\tau(t)$ reproduces the same
curve as shown in Figure 10 before T .

(a) $\beta_j(t)$ trajectory.(b) Normalized $\beta_j(t)$ trajectory.Figure 9: $\beta_j(t)$ and normalized $\beta_j(t)$ trajectory of the original ℓ_∞ -SAM flow.(a) $\beta_j(t)$ trajectory.(b) Normalized $\beta_j(t)$ trajectory.Figure 10: $\beta_j(t)$ and normalized $\beta_j(t)$ trajectory of the rescaled ℓ_∞ -SAM flow.

C.5 EMPIRICAL VERIFICATION

Our theoretical analysis (Theorem 3.2 and Corollary 3.5) establishes the behavior of the ℓ_∞ -SAM flow in the one-point setting \mathcal{D}_μ . In this section, we investigate whether these phenomena extend beyond the idealized one-point regime. We first examine the discrete-time dynamics (GD and discrete ℓ_∞ -SAM) on the one-point dataset and verify that they exhibit exactly the same trajectory patterns predicted by the continuous-time theory. We then turn to multi-point datasets and demonstrate that the same qualitative behaviors persist in both the continuous-time flows and their discrete counterparts. Taken together, these experiments empirically confirm that the insights obtained from \mathcal{D}_μ carry over robustly to multi-point datasets and to practical discrete SAM updates.

For reproducibility, we detail the exact initialization used in all experiments. We adopt the layer-wise balanced initialization $\mathbf{w}^{(i)}(0) = \alpha$ for every $i \in [L]$, consistent with the setup of Theorem 3.2. The black-edged dot in Figures 11 and 13 indicates the initial predictor $\beta(0)$. We set $\mathbf{w}^{(i)}(0) = \beta(0)^{1/L}$ element-wise so that $\beta(0) = \bigodot_{i=1}^L \mathbf{w}^{(i)}(0)$ holds exactly. For the continuous-time trajectories, we

approximate the flow using the corresponding discrete updates with a small step size $\eta = 10^{-3}$ via an explicit Euler scheme.

C.5.1 ONE-POINT CASE: DISCRETE VS. CONTINUOUS DYNAMICS

To verify that our continuous-time analysis faithfully predicts the behavior of the corresponding discrete algorithms, we repeat the experiments in Figure 2 using exactly the same initializations, SAM radius ρ , and feature vector μ . We simulate both the gradient flows (black curves) and their discrete counterparts (blue dots), including GD and discrete ℓ_∞ -SAM updates. As shown below, the discrete trajectories closely trace the qualitative evolution of their continuous-time versions.

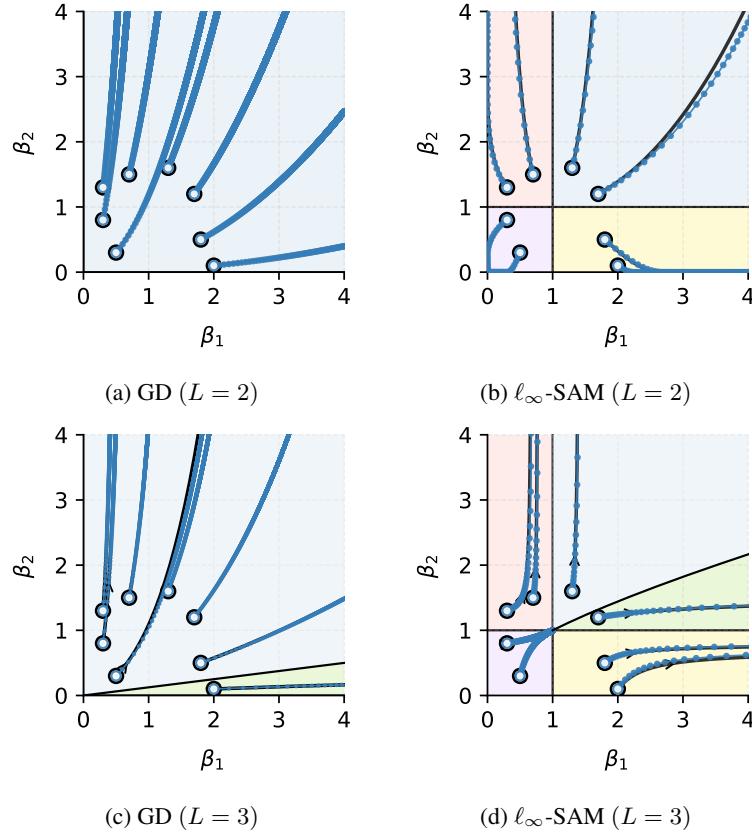


Figure 11: Trajectories $\beta(t)$ under GF, ℓ_∞ -SAM flow (black line), GD, and discrete ℓ_∞ -SAM updates (blue dots) for $d = 2$ and $\mu = (1, 2)$. For SAM, we set $\rho = 1$. For GD and discrete ℓ_∞ -SAM, we use step size $\eta = 0.1$.

C.5.2 MULTI-POINT CASE: PERSISTENCE OF ONE-POINT BEHAVIOR

To examine whether the qualitative behaviors identified in the one-point analysis persist on more realistic datasets, we construct random linearly separable binary data by sampling two Gaussian clusters centered at $+\mu$ and $-\mu$ as shown in Figure 12. Specifically, we draw

$$x_n^{(+)} = \mu + \varepsilon_n, \quad y_n = +1, \quad x_n^{(-)} = -\mu + \varepsilon_n, \quad y_n = -1,$$

with $\varepsilon_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ and use $N/2$ samples per class (with $\mu = (1, 2)$, $N = 100$, $\sigma = 0.5$).

Figures 11 and 13 show that the same qualitative patterns predicted by our one-point theory—such as the asymptotic trajectory structure—also emerge clearly in this multi-point setting. Importantly, these behaviors are observed not only in the continuous-time flows but also in their discrete counterparts (GD and discrete ℓ_∞ -SAM). This empirical evidence demonstrates that the phenomena

described in Theorem 3.2 and Corollary 3.5 extend robustly beyond the one-point setting to general linearly separable datasets.

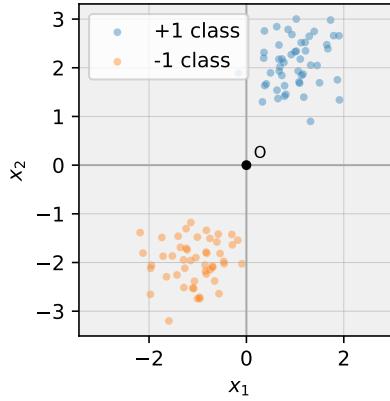


Figure 12: A randomly generated linearly separable dataset used in our multi-point experiments. We sample two Gaussian clusters centered at $\pm\mu = \pm(1, 2)$ with isotropic noise ($\varepsilon \sim \mathcal{N}(0, 0.5^2 I_2)$) and assign labels $+1$ and -1 accordingly. This dataset is used to evaluate whether the one-point phenomena from Theorem 3.2 and Corollary 3.5 persist in the multi-point regime.

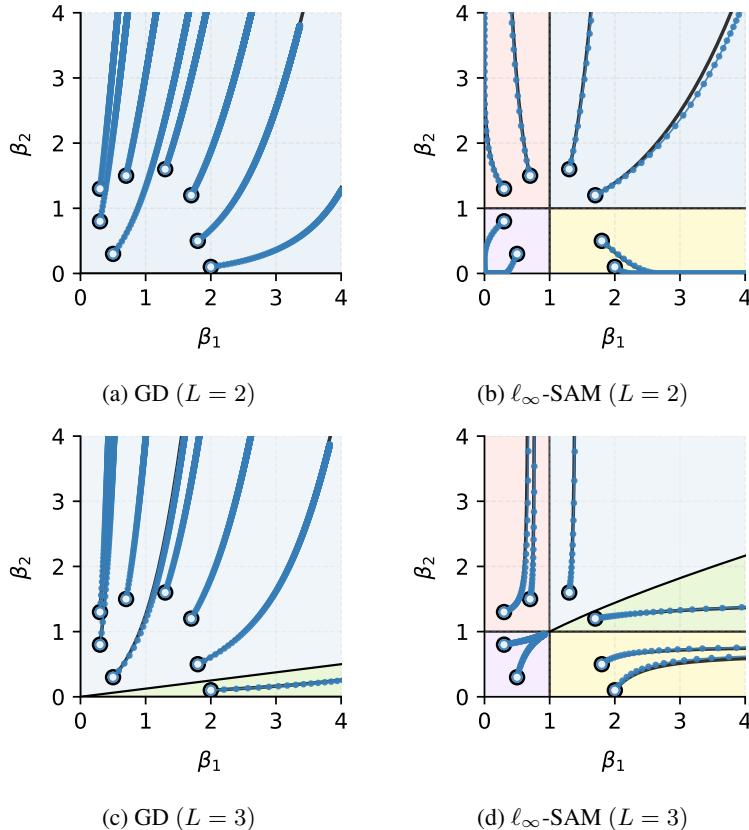


Figure 13: Trajectories $\beta(t)$ under GF, ℓ_∞ -SAM flow (black line), GD, and discrete ℓ_∞ -SAM updates (blue dots) for $d = 2$ on random multi-point dataset in Figure 12. For SAM, we set $\rho = 1$. For GD and discrete ℓ_∞ -SAM, we use step size $\eta = 0.1$.

1836 **D SAM WITH ℓ_2 -PERTURBATIONS: PROOF OF SECTION 4**
18371838 **D.1 DEPTH-1 NETWORKS: PROOF OF THEOREM 4.1**
18391840 **Theorem 4.1.** *For almost every dataset which is linearly separable, any perturbation radius ρ and*
1841 *any initialization, consider the linear model $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ trained with logistic loss. Then, ℓ_2 -SAM*
1842 *flow converges in the ℓ_2 max-margin direction.*1843 *Proof.* Apply Lemma B.1 with $\varepsilon(\mathbf{w}) = \rho \frac{\nabla \mathcal{L}(\mathbf{w})}{\|\nabla \mathcal{L}(\mathbf{w})\|_2}$. Then $\|\varepsilon(\mathbf{w})\|_2 \leq \rho$ for all \mathbf{w} , so the conditions
1844 of Lemma B.1 hold. Thus, the flow converges to the ℓ_2 max-margin direction. \square
18451846 **Theorem D.1.** *Consider the linear model $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ trained on the dataset \mathcal{D}_μ with loss*
1847 *$\mathcal{L}(\mathbf{w}) = \ell(\langle \mathbf{w}, \mathbf{x} \rangle)$ where $\ell'(u) < 0$ for all u . Then, GF and ℓ_2 -SAM flow, starting from any $\mathbf{w}(0)$,*
1848 *evolve on the same affine line $\mathbf{w}(0) + \text{span}\{\mu\}$ and have the same spatial trajectory.*
18491850 *Proof.* The model is $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle = \mathbf{w}^\top \mathbf{x}$. The loss is $\mathcal{L}(\mathbf{w}) = \ell(\mathbf{w}^\top \mu)$. The gradient is
1851 $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \ell'(\mathbf{w}^\top \mu) \cdot \mu$ with $\ell'(s) < 0$.
18521853 **Gradient Descent** GF is
1854

1855
$$\begin{aligned} \dot{\mathbf{w}} &= -\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) \\ &= -\ell'(\mathbf{w}^\top \mu) \cdot \mu. \end{aligned}$$

1856

1857 **SAM with ℓ_2 perturbation** The ascent point is
1858

1859
$$\begin{aligned} \hat{\mathbf{w}} &= \mathbf{w} + \rho \varepsilon_2(\mathbf{w}) \\ &= \mathbf{w} + \rho \frac{\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})}{\|\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})\|_2} \\ &= \mathbf{w} - \rho \frac{\mu}{\|\mu\|_2}. \end{aligned}$$

1860

1861 The update of ℓ_2 -SAM flow is
1862

1863
$$\begin{aligned} \dot{\mathbf{w}} &= -\nabla_{\mathbf{w}} \mathcal{L}(\hat{\mathbf{w}}) \\ &= -\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w} - \rho \frac{\mu}{\|\mu\|_2}) \\ &= -\ell'(\mathbf{w}^\top \mu - \rho \frac{\mu^\top \mu}{\|\mu\|_2}) \cdot \mu \\ &= -\ell'(\mathbf{w}^\top \mu - \rho \|\mu\|_2) \cdot \mu. \end{aligned}$$

1864

1865 Therefore, they have the same spatial trajectory as:
1866

1867
$$\dot{\mathbf{w}} = \mu.$$

1868

1869 The term $-\ell'(\mathbf{w}^\top \mu - \rho \|\mu\|_2)$ is the acceleration in terms of t since $-\ell'(s)$ is decreasing in s . \square
18701871 **D.2 DERIVATION OF ℓ_2 -SAM FLOW**
18721873 Let us get the ℓ_2 -SAM flow. The gradient is
1874

1875
$$\begin{aligned} \nabla_{\mathbf{w}^{(i)}} \mathcal{L}(\boldsymbol{\theta}) &= \ell'(\langle \boldsymbol{\beta}(\boldsymbol{\theta}), \mu \rangle) \nabla_{\mathbf{w}^{(i)}} \langle \boldsymbol{\beta}(\boldsymbol{\theta}), \mu \rangle \\ &= \ell'(\langle \boldsymbol{\beta}(\boldsymbol{\theta}), \mu \rangle) \mu \odot \mathbf{w}^{(\ell)} \end{aligned} \quad \text{for } (i, l) \in \{(1, 2), (2, 1)\}.$$

1876

1877 From the gradient, we have
1878

1879
$$\varepsilon_2^{(i)}(\boldsymbol{\theta}) = \rho \frac{\nabla_{\mathbf{w}^{(i)}} \mathcal{L}(\boldsymbol{\theta})}{\|\nabla \mathcal{L}(\boldsymbol{\theta})\|_2} \stackrel{(a)}{=} -\rho \frac{\mu \odot \mathbf{w}^{(\ell)}}{\sqrt{\|\mu \odot \mathbf{w}^{(1)}\|_2^2 + \|\mu \odot \mathbf{w}^{(2)}\|_2^2}} = -\rho \frac{\mu \odot \mathbf{w}^{(\ell)}}{n_{\boldsymbol{\theta}}}$$

1890 for $(i, l) \in \{(1, 2), (2, 1)\}$, where $n_{\theta} = \sqrt{\|\mu \odot \mathbf{w}^{(1)}\|_2^2 + \|\mu \odot \mathbf{w}^{(2)}\|_2^2}$ and (a) follows from
 1891 $\ell'(u) = -\frac{1}{1+e^u} < 0$.
 1892

1893 We consider the initialization $\mathbf{w}^{(1)}(0) = \mathbf{w}^{(2)}(0) \in \mathbb{R}_+^d$. Then, since the loss function and dynamics
 1894 are invariant under exchanging $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$, we have $\mathbf{w}^{(1)}(t) = \mathbf{w}^{(2)}(t) =: \mathbf{w}(t)$ for all $t \geq 0$.
 1895 Therefore, the update on $\mathbf{w}(t)$ by rescaled ℓ_2 -SAM flow is given as
 1896

$$1897 \quad \ddot{\mathbf{w}}(t) = \mu \odot \left(\mathbf{w}(t) - \rho \frac{\mu \odot \mathbf{w}(t)}{n_{\theta}(t)} \right).$$

1899 **D.3 PROOF OF THEOREM 4.2**

1900 **Theorem 4.2.** *For almost every dataset which is linearly separable, and any perturbation radius
 1901 ρ , consider the linear diagonal network of depth 2, $f(\mathbf{x}) = \langle \mathbf{w}^{(1)} \odot \mathbf{w}^{(2)}, \mathbf{x} \rangle$ trained with logistic
 1902 loss. Let $(\mathbf{w}^{(1)}(t), \mathbf{w}^{(2)}(t))$ follow the ℓ_2 -SAM flow with $\mathbf{w}^{(1)}(0) = \mathbf{w}^{(2)}(0)$. Assume (a) the
 1903 loss vanishes, $\mathcal{L}(\mathbf{w}^{(1)}(t), \mathbf{w}^{(2)}(t)) \rightarrow 0$, (b) the predictor $\beta(t) := \mathbf{w}^{(1)}(t) \odot \mathbf{w}^{(2)}(t)$ converges in
 1904 direction. Then the limit direction of $\beta(t)$ is the ℓ_1 max-margin direction.*

1905 *Proof.* Let $\{(\mathbf{x}_n, y_n)\}_{n=1}^N \subset \mathbb{R}^d \times \{\pm 1\}$ be a linearly separable dataset, meaning that there exists
 1906 $\mathbf{w}_* \in \mathbb{R}^d$ such that

$$1907 \quad y_n \mathbf{x}_n^\top \mathbf{w}_* > 0 \quad \forall n.$$

1908 As usual, we absorb the labels into the inputs by redefining $\mathbf{x}_n \leftarrow y_n \mathbf{x}_n$, so that we may assume
 1909 $y_n = 1$ for all n and

$$1910 \quad \exists \mathbf{w}_* \text{ such that } \mathbf{x}_n^\top \mathbf{w}_* > 0 \quad \forall n.$$

1911 We consider a depth-2 diagonal linear network with parameters $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^d$, defining the predictor

$$1912 \quad f(\mathbf{x}; \mathbf{w}_1, \mathbf{w}_2) = (\mathbf{w}_1 \odot \mathbf{w}_2)^\top \mathbf{x} = \beta^\top \mathbf{x}, \quad \beta := \mathbf{w}_1 \odot \mathbf{w}_2.$$

1913 The loss function is logistic:

$$1914 \quad \mathcal{L}(\mathbf{w}_1, \mathbf{w}_2) = \sum_{n=1}^N \ell(\beta^\top \mathbf{x}_n), \quad \ell(u) = \log(1 + e^{-u}), \quad \ell'(u) = -\frac{e^{-u}}{1 + e^{-u}}.$$

1915 We study the ℓ_2 -SAM flow with fixed perturbation radius $\rho > 0$:

$$1916 \quad \dot{\mathbf{w}}_1(t) = -\nabla_{\mathbf{w}_1} \mathcal{L}(\widehat{\mathbf{w}}_1(t), \widehat{\mathbf{w}}_2(t)), \quad \dot{\mathbf{w}}_2(t) = -\nabla_{\mathbf{w}_2} \mathcal{L}(\widehat{\mathbf{w}}_1(t), \widehat{\mathbf{w}}_2(t)),$$

1917 where

$$1918 \quad \widehat{\mathbf{w}}_i(t) = \mathbf{w}_i(t) + \rho \frac{\nabla_{\mathbf{w}_i} \mathcal{L}(\mathbf{w}_1(t), \mathbf{w}_2(t))}{\|\nabla_{\mathbf{w}_i} \mathcal{L}(\mathbf{w}_1(t), \mathbf{w}_2(t))\|_2}, \quad i = 1, 2.$$

1919 **Step 1: Balanced initialization removes layer imbalance.** Let

$$1920 \quad z_j(t) := w_j^{(1)}(t) - w_j^{(2)}(t).$$

1921 From the SAM flow and

$$1922 \quad \frac{\partial \mathcal{L}}{\partial w_j^{(1)}}(\widehat{\mathbf{w}}) = \sum_{n=1}^N \ell'(\widehat{\beta}^\top \mathbf{x}_n) x_{n,j} \widehat{w}_j^{(2)}, \quad \frac{\partial \mathcal{L}}{\partial w_j^{(2)}}(\widehat{\mathbf{w}}) = \sum_{n=1}^N \ell'(\widehat{\beta}^\top \mathbf{x}_n) x_{n,j} \widehat{w}_j^{(1)},$$

1923 one obtains

$$1924 \quad \dot{z}_j(t) = -G_j(t)(w_j^{(2)}(t) - w_j^{(1)}(t))(1 + o(1)), \quad G_j(t) = \sum_{n=1}^N \ell'(\widehat{\beta}^\top \mathbf{x}_n) x_{n,j}.$$

1925 Here the factor $1 + o(1)$ arises because the gradients in the SAM update are evaluated at the perturbed
 1926 parameter

$$1927 \quad \widehat{\mathbf{w}}(t) = \mathbf{w}(t) + \rho \frac{\nabla \mathcal{L}(\mathbf{w}(t))}{\|\nabla \mathcal{L}(\mathbf{w}(t))\|_2},$$

rather than at $\mathbf{w}(t)$ itself. Since the perturbation has fixed magnitude ρ while the parameter norm satisfies $\|\mathbf{w}(t)\| \rightarrow \infty$ along any vanishing-loss trajectory of a 2-homogeneous model, the relative perturbation decays:

$$\frac{\|\widehat{\mathbf{w}}(t) - \mathbf{w}(t)\|_2}{\|\mathbf{w}(t)\|_2} = \frac{\rho}{\|\mathbf{w}(t)\|_2} \rightarrow 0.$$

Consequently, the gradients $\nabla \mathcal{L}(\widehat{\mathbf{w}}(t))$ and $\nabla \mathcal{L}(\mathbf{w}(t))$ become asymptotically colinear, and replacing the latter by the former introduces only a vanishing multiplicative error $1 + o(1)$ in the imbalance ODE for $z_j(t)$.

Since $z_j(0) = 0$ under balanced initialization and the ODE $\dot{z}_j(t) = -G_j(t)z_j(t)(1 + o(1))$ is linear with a Lipschitz right-hand side, uniqueness of solutions implies $z_j(t) \equiv 0$ for all t . Hence for all t

$$w_j^{(1)}(t) = w_j^{(2)}(t) =: a_j(t), \quad \beta_j(t) = a_j(t)^2.$$

Step 2: Predictor ODE. From the SAM ODE,

$$\dot{a}_j(t) = -a_j(t)G_j(t)(1 + o(1)).$$

Hence

$$\dot{\beta}_j(t) = 2a_j(t)\dot{a}_j(t) = -2a_j(t)^2G_j(t)(1 + o(1)) = -2\beta_j(t)G_j(t)(1 + o(1)).$$

Noting that

$$\nabla_{\beta} \mathcal{L}(\beta)_j = \sum_{n=1}^N \ell'(\beta^{\top} \mathbf{x}_n) x_{n,j},$$

since

$$G_j(t) = \sum_{n=1}^N \ell'(\widehat{\beta}^{\top} \mathbf{x}_n) x_{n,j} = \sum_{n=1}^N \ell'(\beta(t)^{\top} \mathbf{x}_n) x_{n,j} (1 + o(1)),$$

we have

$$G_j(t) = \nabla_{\beta_j} \mathcal{L}(\beta(t)) (1 + o(1)).$$

Hence the coordinate-wise predictor dynamics

$$\dot{\beta}_j(t) = -2\beta_j(t)G_j(t)(1 + o(1))$$

become

$$\dot{\beta}_j(t) = -2\beta_j(t)\nabla_{\beta_j} \mathcal{L}(\beta(t)) (1 + o(1)).$$

Writing this in vector form using $\text{diag}(\beta)\nabla_{\beta} \mathcal{L} = (\beta_1 \nabla_{\beta_1} \mathcal{L}, \dots, \beta_d \nabla_{\beta_d} \mathcal{L})^{\top}$, we obtain

$$\dot{\beta}(t) = -2\text{diag}(\beta(t))\nabla_{\beta} \mathcal{L}(\beta(t)) (1 + o(1)). \quad (11)$$

Step 3: Geometry induced by the diagonal parameterization. To characterize the optimization geometry associated with the depth-2 diagonal model, we invoke Lemma D.2. The lemma shows that, for the parameterization

$$\beta = \mathbf{w}^{(1)} \odot \mathbf{w}^{(2)} \quad \text{and} \quad R(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}) = \frac{1}{2}(\|\mathbf{w}^{(1)}\|_2^2 + \|\mathbf{w}^{(2)}\|_2^2),$$

the induced predictor norm is exactly the ℓ_1 norm:

$$\|\beta\|_{\mathcal{N}} := \min_{\mathbf{w}^{(1)} \odot \mathbf{w}^{(2)} = \beta} R(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}) = \|\beta\|_1.$$

Moreover, on the balanced submanifold $\mathbf{w}^{(1)} = \mathbf{w}^{(2)} = \mathbf{a}$ with $\beta = \mathbf{a}^{\odot 2}$, the lemma establishes that the Riemannian metric induced on predictor space is

$$\langle \mathbf{u}, \mathbf{v} \rangle_{\mathcal{N}} = \mathbf{u}^{\top} M(\beta) \mathbf{v}, \quad M(\beta) = 2 \text{diag}(\beta).$$

Therefore, the natural-gradient steepest-descent flow with respect to the induced norm $\|\cdot\|_{\mathcal{N}}$ takes the form

$$\dot{\beta}(t) = -M(\beta(t))\nabla_{\beta} \mathcal{L}(\beta(t)) = -2\text{diag}(\beta(t))\nabla_{\beta} \mathcal{L}(\beta(t)).$$

We next compare this asymptotic steepest-descent flow with the predictor ODE arising from the ℓ_2 -SAM dynamics.

1998 **Step 4: Asymptotic identification with ℓ_1 steepest descent.** Comparing equation 11 with the
 1999 steepest-descent flow above shows that the SAM predictor dynamics coincide with the ℓ_1 steepest-
 2000 descent dynamics up to a multiplicative factor $1 + o(1)$ and a vanishing perturbation. Assumptions
 2001 (a) and (b) guarantee that these perturbations do not change the limiting direction of $\beta(t)/\|\beta(t)\|_2$.
 2002

2003 **Step 5: Conclude ℓ_1 max-margin.** By the max-margin theorem for steepest descent in a given
 2004 norm (Gunasekar et al. (2018a), Thm. 5; extended to logistic loss by Lyu & Li (2019)), any trajectory
 2005 following ℓ_1 steepest descent and satisfying $\mathcal{L}(\beta(t)) \rightarrow 0$ converges in direction to the ℓ_1 max-
 2006 margin solution. Since the SAM predictor dynamics are asymptotically equivalent to ℓ_1 steepest
 2007 descent, and by (b) the direction limit exists, we obtain

$$\bar{\beta} \parallel \beta^*, \quad \beta^* \in \arg \min_{\beta} \|\beta\|_1 \text{ s.t. } \beta^\top x_n \geq 1.$$

□

2012 **Lemma D.2** (Induced Norm and Natural Gradient Metric for Depth-2 Diagonal Models). *Consider
 2013 the depth-2 diagonal parameterization*

$$\beta = w^{(1)} \odot w^{(2)} \in \mathbb{R}^d,$$

2014 *and the quadratic parameter regularizer*

$$R(w^{(1)}, w^{(2)}) := \frac{1}{2} \left(\|w^{(1)}\|_2^2 + \|w^{(2)}\|_2^2 \right).$$

2018 *Then the induced predictor norm*

$$\|\beta\|_{\mathcal{N}} := \min_{w^{(1)} \odot w^{(2)} = \beta} R(w^{(1)}, w^{(2)})$$

2024 *satisfies*

$$\|\beta\|_{\mathcal{N}} = \|\beta\|_1.$$

2026 *Moreover, on the submanifold where $w^{(1)} = w^{(2)} = a$ and $\beta = a^{\odot 2}$, the Riemannian metric
 2027 induced on the predictor space by R is*

$$\langle u, v \rangle_{\mathcal{N}} = u^\top M(\beta)v, \quad M(\beta) = 2 \operatorname{diag}(\beta).$$

2029 *Consequently, the natural-gradient steepest-descent flow w.r.t. $\|\cdot\|_{\mathcal{N}}$ is*

$$\dot{\beta} = -M(\beta) \nabla_{\beta} \mathcal{L}(\beta) = -2 \operatorname{diag}(\beta) \nabla_{\beta} \mathcal{L}(\beta).$$

2034 *Proof. (i) Computation of the induced norm.* For each coordinate j , the constraint $\beta_j = w_j^{(1)} w_j^{(2)}$
 2035 decouples. If $\beta_j = 0$, the minimum is attained at $(w_j^{(1)}, w_j^{(2)}) = (0, 0)$ and equals $0 = |\beta_j|$.
 2036

2037 For $\beta_j \neq 0$, eliminate $w_j^{(2)}$ via $w_j^{(2)} = \beta_j/w_j^{(1)}$ and minimize

$$\phi_j(w) := \frac{1}{2} \left(w^2 + \frac{\beta_j^2}{w^2} \right), \quad w \neq 0.$$

2043 Differentiation yields $\phi_j'(w) = w - \beta_j^2 w^{-3}$, whose nonzero roots satisfy $w^4 = \beta_j^2$, so that $|w| =$
 2044 $|\beta_j|^{1/2}$. Substitution gives $\phi_j(w^*) = |\beta_j|$. Summing over j yields the induced norm
 2045

$$\|\beta\|_{\mathcal{N}} = \sum_{j=1}^d |\beta_j| = \|\beta\|_1.$$

2049 **(ii) Local parametrization and Jacobian.** On the balanced submanifold $w^{(1)} = w^{(2)} = a \in \mathbb{R}^d$,
 2050 the predictor is

$$\beta_j = a_j^2.$$

2052 Hence the Jacobian of the map $\alpha \mapsto \beta$ is diagonal:
 2053

$$\frac{\partial \beta_j}{\partial \alpha_k} = 2a_j \delta_{jk}.$$

2056 **(iii) Riemannian metric induced from R .** The regularizer restricted to α becomes
 2057

$$R(\alpha, \alpha) = \|\alpha\|_2^2.$$

2058 Thus the parameter-space metric is Euclidean on α . For a tangent predictor perturbation $d\beta$, the
 2059 corresponding parameter perturbation is
 2060

$$d\alpha_j = \frac{d\beta_j}{2a_j} = \frac{d\beta_j}{2\sqrt{\beta_j}}.$$

2063 Thus the squared parameter differential is
 2064

$$\|d\alpha\|_2^2 = \sum_{j=1}^d \left(\frac{d\beta_j}{2\sqrt{\beta_j}} \right)^2 = \sum_{j=1}^d \frac{(d\beta_j)^2}{4\beta_j}.$$

2068 Therefore the predictor-space inner product induced by R is
 2069

$$\langle u, v \rangle_{\mathcal{N}} = \sum_{j=1}^d \frac{u_j v_j}{4\beta_j}.$$

2072 Equivalently,

$$M(\beta)^{-1} = \frac{1}{4} \text{diag}(\beta_1^{-1}, \dots, \beta_d^{-1}).$$

2075 Inverting yields
 2076

$$M(\beta) = 4 \text{diag}(\beta_1, \dots, \beta_d).$$

2077 **(iv) Removal of irrelevant constant factor.** Steepest-descent flows are invariant to multiplication
 2078 of M by any positive scalar constant. Thus $M(\beta)$ is equivalent, for optimization dynamics, to
 2079

$$M(\beta) = 2 \text{diag}(\beta),$$

2080 which is the conventional normalization in the induced-norm literature.
 2081

2082 **(v) Natural gradient flow.** By definition of steepest descent under the induced norm,
 2083

$$\dot{\beta} = -M(\beta) \nabla_{\beta} \mathcal{L}(\beta) = -2 \text{diag}(\beta) \nabla_{\beta} \mathcal{L}(\beta).$$

2084 \square

2087 D.4 PROOFS FOR SECTION 4.2.3

2089 In this section, we provide detailed proofs for the trajectory analysis of SAM flow, with a focus
 2090 on the roles of the initialization scale α , the perturbation radius ρ , and the feature vector μ . For
 2091 notational simplicity, we omit the time dependence (t) when the context is clear.

2092 **Assumption D.3.** the initial weight parameters are positive and symmetric: $w^{(1)}(0) = w^{(2)}(0) =$
 2093 $\alpha \mathbf{1}$ for some scaling factor $\alpha > 0$.

2094 **Assumption D.4.** the vector μ has strictly positive, increasing coordinates: $0 < \mu_1 < \dots < \mu_d$.
 2095 (Equivalently, up to a fixed permutation we may assume the coordinates are monotone.)
 2096

2097 We introduce two auxiliary quantities. Define the normalized weights $p_j(t) := \frac{\mu_j^2 \beta_j(t)}{\sum_{k=1}^d \mu_k^2 \beta_k(t)}$ and
 2098 their moments $M_k(t) := \sum_{j=1}^d \mu_j^k p_j(t)$. Using these, we set the thresholds
 2099

$$m_L := \frac{\mu_1}{2}, \quad m_H(t) := \frac{M_2(t)}{2M_1(t)}.$$

2102 In the proof, we consider $\ell(\langle \beta, \mu \rangle)$ term, so not only considering the spatial trajectory but full
 2103 gradient flow without any reparameterization. We define the margins at the current and perturbed
 2104 parameters as $s(t) := \langle \beta(t), \mu \rangle$ and $\hat{s}(t) := \langle \hat{\beta}(t), \mu \rangle$. Set $\hat{\lambda}(t) := |\ell'(\hat{s}(t))|$, the slope of the loss
 2105 with respect to the margin evaluated at the perturbed margin.

2106 D.4.1 RECAP: BASIC NOTATION
21072108 Recall the margin $s = \langle \beta, \mu \rangle$ and the loss $\mathcal{L}(s) = \log(1 + \exp(-s))$. The derivatives of the loss
2109 with respect to the margin s are:

2110
2111
$$\frac{d\mathcal{L}}{ds} = -\sigma(-s) = -\frac{1}{1 + \exp(s)},$$

2112
2113
$$\frac{d^2\mathcal{L}}{ds^2} = \sigma(s)\sigma(-s) > 0,$$

2114

2115 where $\sigma(s) = (1 + \exp(-s))^{-1}$ is the sigmoid function. We define $\lambda := \sigma(-s) \in (0, 1)$ as the
2116 logistic loss slope magnitude. The gradients with respect to the weight parameters, obtained via the
2117 chain rule, are:

2118
2119
$$\frac{d\mathcal{L}}{dw_j^{(1)}} := \frac{d\mathcal{L}}{ds} \frac{ds}{dw_j^{(1)}} = -\lambda \mu_j w_j^{(2)}, \quad \frac{d\mathcal{L}}{dw_j^{(2)}} := \frac{d\mathcal{L}}{ds} \frac{ds}{dw_j^{(2)}} = -\lambda \mu_j w_j^{(1)}.$$

2120
2121

2122 The squared norm of the gradient vector is:

2123
2124
$$\|\nabla_{\theta} \mathcal{L}\|^2 = \sum_{j=1}^d \lambda^2 \mu_j^2 \left((w_j^{(2)})^2 + (w_j^{(1)})^2 \right) = \lambda^2 n_{\theta}^2,$$

2125
2126

2127 where $n_{\theta} := \sqrt{\sum_{j=1}^d \mu_j^2 \left((w_j^{(1)})^2 + (w_j^{(2)})^2 \right)}$. SAM perturbs parameters by taking a step of
2128 size ρ along the normalized gradient direction.

2129
2130
$$\begin{aligned} \varepsilon_2 &:= \rho \frac{\nabla_{\theta} \mathcal{L}}{\|\nabla_{\theta} \mathcal{L}\|_2}, \\ (\varepsilon_2)_{w_j^{(1)}} &= -\frac{\rho \mu_j w_j^{(2)}}{n_{\theta}}, \\ (\varepsilon_2)_{w_j^{(2)}} &= -\frac{\rho \mu_j w_j^{(1)}}{n_{\theta}}. \end{aligned}$$

2131
2132
2133
2134
2135
2136
2137
2138

2139 The perturbed weight parameters are

2140
2141
$$(\hat{w}_1)_j := w_j^{(1)} - \frac{\rho \mu_j w_j^{(2)}}{n_{\theta}}, \quad (\hat{w}_2)_j := w_j^{(2)} - \frac{\rho \mu_j w_j^{(1)}}{n_{\theta}}.$$

2142
2143

2144 The perturbed β_j becomes

2145
2146
$$\begin{aligned} \hat{\beta}_j &:= \hat{w}_j^{(1)} \hat{w}_j^{(2)} \\ &= w_j^{(1)} w_j^{(2)} - \frac{\rho \mu_j}{n_{\theta}} \left((w_j^{(1)})^2 + (w_j^{(2)})^2 \right) + \frac{\rho^2 \mu_j^2}{n_{\theta}^2} w_j^{(1)} w_j^{(2)} \\ &= \beta_j \left(1 + \frac{\rho^2 \mu_j^2}{n_{\theta}^2} \right) - \frac{\rho \mu_j}{n_{\theta}} \left((w_j^{(1)})^2 + (w_j^{(2)})^2 \right). \end{aligned}$$

2147
2148
2149
2150
2151
2152

2153 The perturbed margin and loss slope magnitude are

2154
2155
$$\hat{s} := \langle \hat{\beta}, \mu \rangle = \sum_{j=1}^d \mu_j \hat{\beta}_j, \quad \hat{\lambda} := \sigma(-\hat{s}).$$

2156
2157

2158 Recall that the SAM flow dynamics are given by:

2159
$$\dot{\theta} = -\nabla_{\theta} \mathcal{L}(\hat{\theta}).$$

2160 D.4.2 PRELIMINARY ANALYSIS
2161

2162 We first establish a key property of the SAM flow: the balancedness of the weights.

2163 **Lemma D.5.** *Under Assumption D.4, the SAM flow decays the quantity $w_j^{(1)}(t) - w_j^{(2)}(t)$ exponentially to zero.*
21642166 *Proof.* Define $\Delta_j := w_j^{(1)} - w_j^{(2)}$. The SAM dynamics yield
2167

2168
$$\dot{w}_j^{(1)} = \hat{\lambda}\mu_j \hat{w}_j^{(2)}, \quad (\dot{w}_j^{(2)})_j = \hat{\lambda}\mu_j \hat{w}_j^{(1)}.$$

2169

2170 The time derivative of Δ_j is

2171
$$\begin{aligned} \dot{\Delta}_j &= \dot{w}_j^{(1)} - \dot{w}_j^{(2)} \\ &= \hat{\lambda}\mu_j \hat{w}_j^{(2)} - \hat{\lambda}\mu_j \hat{w}_j^{(1)} \\ &= \hat{\lambda}\mu_j \left(w_j^{(2)} - \frac{\rho\mu_j w_j^{(1)}}{n_\theta} \right) - \hat{\lambda}\mu_j \left(w_j^{(1)} - \frac{\rho\mu_j w_j^{(2)}}{n_\theta} \right) \\ &= -\hat{\lambda}\mu_j \left(1 + \frac{\rho\mu_j}{n_\theta} \right) \Delta_j. \end{aligned}$$

2172

2173 Since $\hat{\lambda}$ is positive and $\mu_j > 0$, it gives exponential decay.
2174

2175
$$\Delta_j(T) = \Delta_j(0) \cdot \exp \left(-\mu_j \int_0^T \hat{\lambda} \left(1 + \frac{\rho\mu_j}{n_\theta} \right) dt \right).$$

2176

2177 Hence, the quantity $w_j^{(1)}(t) - w_j^{(2)}(t)$ decays exponentially. \square
21782179 **Proposition D.6.** *Under initialization with $w_j^{(1)}(0) = w_j^{(2)}(0)$ and Assumption D.4, the equality $w_j^{(1)}(t) = w_j^{(2)}(t)$ is preserved for all $t \geq 0$. Furthermore, the sign of $w_j^{(1)}(t)$ and $w_j^{(2)}(t)$ remains unchanged throughout the dynamics.*
21802181 *Proof.* With $w_j^{(1)}(0) = w_j^{(2)}(0)$, we have $\Delta_j(0) = w_j^{(1)}(0) - w_j^{(2)}(0) = 0$. By Lemma D.5,
2182 $\Delta_j(t) = 0$ for all $t \geq 0$. Given this balancedness, each coordinate evolves multiplicatively according
2183 to
2184

2185
$$\dot{w}_j^{(1)} = \hat{\lambda}\mu_j \hat{w}_j^{(2)} = \hat{\lambda}\mu_j \left(w_j^{(1)} - \frac{\rho\mu_j w_j^{(1)}}{n_\theta} \right) = \hat{\lambda}\mu_j \left(1 - \frac{\rho\mu_j}{n_\theta} \right) w_j^{(1)}.$$

2186

2187 This differential equation has the unique solution
2188

2189
$$w_j^{(1)}(T) = w_j^{(1)}(0) \cdot \exp \left(\mu_j \cdot \int_0^T \hat{\lambda}(t) \left(1 - \frac{\rho\mu_j}{n_\theta} \right) dt \right).$$

2190

2191 Since the exponential function is always positive, $w_j^{(1)}(t)$ and $w_j^{(2)}(t)$ maintain the same sign as
2192 their initial values throughout the dynamics. \square
21932194 D.4.3 PROOF OF LEMMA 4.3
21952196 We begin by restating Lemma 4.3.
21972198 **Lemma 4.3.** *The rescaled ℓ_2 -SAM flow (2) is $\dot{\beta}_j(t) = r_j(t)\beta_j(t)$ with $r_j(t) := 2\mu_j \left(1 - \frac{\rho\mu_j}{n_\theta(t)} \right)$.*
21992200 *Proof.* Under Assumption D.3 and Assumption D.4, the Proposition D.6 holds, which ensures that
2201 $w_j^{(1)} = w_j^{(2)} = \sqrt{\beta_j}$ for all $t \geq 0$. So we have
2202

2203
$$\left(w_j^{(1)} \right)^2 + \left(w_j^{(2)} \right)^2 = 2\beta_j, \quad n_\theta^2 = 2 \sum_{j=1}^d \mu_j^2 \beta_j.$$

2204

2214 The evolution equation for β_j is
 2215

$$\begin{aligned} \dot{\beta}_j &= \dot{w}_j^{(1)} w_j^{(2)} + w_j^{(1)} \dot{w}_j^{(2)} \\ &= 2\hat{\lambda}\mu_j\beta_j \left(1 - \frac{\rho\mu_j}{n_{\theta}}\right). \end{aligned} \quad (12)$$

2220 This yields
 2221

$$\beta_j(T) = \beta_j(0) \cdot \exp \left(2\mu_j \int_0^T \hat{\lambda} \left(1 - \frac{\rho\mu_j}{n_{\theta}}\right) dt \right).$$

2224 Let $r_j := 2\hat{\lambda}\mu_j \left(1 - \frac{\rho\mu_j}{n_{\theta}}\right)$. When $r_j > 0$, β_j grows locally exponentially. Otherwise, it decays locally exponentially. The key insight is that each β_j 's growth rate depends on the interaction between the gradient magnitude $\hat{\lambda}$ and the perturbation term $\frac{\rho\mu_j}{n_{\theta}}$. This interaction drives SAM's implicit bias. \square
 2225
 2226
 2227
 2228

2230 D.4.4 PRELIMINARY ANALYSIS FOR $m_c(t)$ TRAJECTORY ANALYSIS

2231 Before proving Theorem 4.4, we establish some preliminary results that will be used in the proof.

2232 **Lemma D.7.** *Under Assumption D.3 and Assumption D.4, the time derivative of $m_c(t)$ is given by*

$$2234 \quad \dot{m}_c = \hat{\lambda}(t) M_1(t) (m_c(t) - m_H(t)).$$

2235 *Proof.* Recall that $m_H = \frac{M_2}{2M_1}$, where
 2236

$$2237 \quad M_r := \sum_{j=1}^d p_j \mu_j^r, \quad p_j := \frac{\mu_j^2 \beta_j}{\sum_{k=1}^d \mu_k^2 \beta_k}. \quad (13)$$

2238 Substituting the definition of p_j , we obtain
 2239

$$2240 \quad M_2 = \frac{\sum_j \mu_j^4 \beta_j}{\sum_k \mu_k^2 \beta_k} = \frac{2 \sum_j \mu_j^4 \beta_j}{n_{\theta}^2}, \quad M_1 = \frac{\sum_j \mu_j^3 \beta_j}{\sum_k \mu_k^2 \beta_k} = \frac{2 \sum_j \mu_j^3 \beta_j}{n_{\theta}^2}.$$

2241 Since $\mu_1 < \dots < \mu_d$ and $p_j \geq 0$ with $\sum_j p_j = 1$, we have $\frac{\mu_1}{2} \leq m_H = \frac{M_2}{2M_1} \leq \frac{\mu_d}{2}$. We define a new expression for m_c .
 2242

$$2243 \quad m_c(t) = \frac{\sqrt{S}}{2\rho}, \quad \text{where } S := n_{\theta}^2. \quad (14)$$

2244 Taking the time derivative of S , we have
 2245

$$2246 \quad \dot{S} = 2 \sum_{j=1}^d \mu_j^2 \dot{\beta}_j.$$

2247 From Lemma 4.3, we have $\dot{\beta}_j = r_j \beta_j$ where $r_j = 2\hat{\lambda} \cdot \mu_j \left(1 - \frac{\rho\mu_j}{n_{\theta}}\right) = 2\hat{\lambda} \cdot \left(\mu_j - \frac{\mu_j^2}{2m_c}\right)$. Substituting this into the expression for \dot{S} , we get
 2248

$$\begin{aligned} 2249 \quad \dot{S} &= 2 \sum_{j=1}^d \mu_j^2 \cdot 2\hat{\lambda} \cdot \left(\mu_j - \frac{\mu_j^2}{2m_c}\right) \cdot \beta_j \\ 2250 &= 4\hat{\lambda} \sum_{j=1}^d \mu_j^2 \beta_j \left(\mu_j - \frac{\mu_j^2}{2m_c}\right) \\ 2251 &= 4\hat{\lambda} \sum_{j=1}^d \left(\mu_j^3 \beta_j - \frac{\mu_j^4 \beta_j}{2m_c}\right). \end{aligned}$$

2268 Recalling that $M_1 = \frac{2 \sum_{j=1}^d \mu_j^3 \beta_j}{S}$ and $M_2 = \frac{2 \sum_{j=1}^d \mu_j^4 \beta_j}{S}$, we can rewrite the sums as
 2269

2270
$$\sum_{j=1}^d \mu_j^3 \beta_j = \frac{M_1 S}{2}, \quad \sum_{j=1}^d \mu_j^4 \beta_j = \frac{M_2 S}{2}.$$

 2271
 2272

2273 Therefore, we have

2274
$$\begin{aligned} \dot{S} &= 4\hat{\lambda} \left(\frac{M_1 S}{2} - \frac{M_2 S}{2 \cdot 2m_c} \right) \\ 2275 &= 2\hat{\lambda} S \left(M_1 - \frac{M_2}{2m_c} \right). \end{aligned}$$

 2276
 2277
 2278

2279 Since $m_c = \frac{\sqrt{S}}{2\rho}$, we have:

2280
$$\dot{m}_c = \frac{1}{2\rho} \cdot \frac{\dot{S}}{2\sqrt{S}} = \frac{\dot{S}}{4\rho\sqrt{S}}.$$

 2281
 2282

2283 Substituting our expression for \dot{S} :

2284
$$\begin{aligned} \dot{m}_c &= \frac{2\hat{\lambda} S \left(M_1 - \frac{M_2}{2m_c} \right)}{4\rho\sqrt{S}} \\ 2285 &= \frac{\hat{\lambda}\sqrt{S}}{2\rho} \left(M_1 - \frac{M_2}{2m_c} \right) \\ 2286 &= \hat{\lambda} m_c \left(M_1 - \frac{M_2}{2m_c} \right) \\ 2287 &= \hat{\lambda} M_1 \left(m_c - \frac{M_2}{2M_1} \right) \\ 2288 &= \hat{\lambda} M_1 (m_c - m_H). \end{aligned}$$

 2289
 2290
 2291
 2292
 2293
 2294
 2295

2296 \square

2297 Next, we derive the time derivative of m_H .

2298 **Lemma D.8.** *Under Assumption D.3 and Assumption D.4, the time derivative of m_H is given by*

2299
$$\dot{m}_H = \frac{\hat{\lambda}}{2(M_1)^2 m_c} (2m_c \Gamma_1 - \Gamma_2),$$

 2300
 2301

2302 where $\Gamma_1 := M_1 M_3 - M_2^2$ and $\Gamma_2 := M_1 M_4 - M_2 M_3$.
 2303

2304 *Proof.* Starting from $m_H = \frac{M_2}{2M_1}$, we have
 2305

2306
$$\begin{aligned} \dot{m}_H &= \frac{\dot{M}_2 M_1 - M_2 \dot{M}_1}{2(M_1)^2} \\ 2307 &= \frac{1}{2M_1} \left(\dot{M}_2 - \frac{M_2}{M_1} \dot{M}_1 \right) \\ 2308 &= \frac{1}{2M_1} \left(\sum_{j=1}^d \dot{p}_j \mu_j^2 - \frac{M_2}{M_1} \cdot \sum_{j=1}^d \dot{p}_j \mu_j \right) \\ 2309 &= \frac{1}{2M_1} \sum_{j=1}^d \dot{p}_j (\mu_j^2 - 2m_H \mu_j). \end{aligned}$$

 2310
 2311
 2312
 2313
 2314
 2315
 2316

2317 Since $\dot{\beta}_j = r_j \beta_j$ where $r_j = 2\hat{\lambda} \left(\mu_j - \frac{\mu_j^2}{2m_c} \right)$, we can compute
 2318

2319
$$\dot{p}_j = \frac{(\mu_j^2 \beta_j) \cdot r_j \cdot \left(\sum_{k=1}^d \mu_k^2 \beta_k \right) - (\mu_j^2 \beta_j) \cdot \left(\sum_{k=1}^d \mu_k^2 \beta_k r_k \right)}{\left(\sum_{k=1}^d \mu_k^2 \beta_k \right)^2}$$

 2320
 2321

$$\begin{aligned}
&= p_j \left(r_j - \sum_{k=1}^d p_k r_k \right) \\
&= p_j \cdot 2\hat{\lambda} \left(\left(\mu_j - \frac{\mu_j^2}{2m_c} \right) - \sum_{k=1}^d p_k \cdot \left(\mu_k - \frac{\mu_k^2}{2m_c} \right) \right) \\
&= p_j \cdot 2\hat{\lambda} \left((\mu_j - M_1) - \frac{1}{2m_c} (\mu_j^2 - M_2) \right).
\end{aligned}$$

Substituting this into the expression for \dot{m}_H , we have

$$\dot{m}_H = \frac{\hat{\lambda}}{M_1} \sum_{j=1}^d p_j \left((\mu_j - M_1) - \frac{1}{2m_c} (\mu_j^2 - M_2) \right) (\mu_j^2 - 2m_H \mu_j).$$

We split the sum into two components:

$$\text{First term: } C_1 = \sum_j p_j (\mu_j - M_1) (\mu_j^2 - 2m_H \mu_j),$$

$$\text{Second term: } C_2 = \sum_j p_j (\mu_j^2 - M_2) (\mu_j^2 - 2m_H \mu_j).$$

For the first term,

$$\begin{aligned}
C_1 &= \sum_j p_j \mu_j^3 - 2m_H \sum_j p_j \mu_j^2 - M_1 \sum_j p_j \mu_j^2 + 2m_H M_1 \sum_j p_j \mu_j \\
&= M_3 - 2m_H M_2 - M_1 M_2 + 2m_H M_1^2 \\
&= M_3 - \frac{M_2^2}{M_1} = \frac{M_1 M_3 - M_2^2}{M_1} = \frac{\Gamma_1}{M_1}.
\end{aligned}$$

For the second term,

$$\begin{aligned}
C_2 &= \sum_j p_j \mu_j^4 - 2m_H \sum_j p_j \mu_j^3 - M_2 \sum_j p_j \mu_j^2 + 2m_H M_2 \sum_j p_j \mu_j \\
&= M_4 - 2m_H M_3 - M_2^2 + 2m_H M_1 M_2 \\
&= M_4 - \frac{M_2 M_3}{M_1} = \frac{M_1 M_4 - M_2 M_3}{M_1} = \frac{\Gamma_2}{M_1}.
\end{aligned}$$

Therefore, we have

$$\begin{aligned}
\dot{m}_H &= \frac{\hat{\lambda}}{M_1} \sum_{j=1}^d p_j \cdot \left((\mu_j - M_1) - \frac{1}{2m_c} (\mu_j^2 - M_2) \right) (\mu_j^2 - 2m_H \mu_j) \\
&= \frac{\hat{\lambda}}{M_1} \left(\frac{\Gamma_1}{M_1} - \frac{\Gamma_2}{2m_c M_1} \right) \\
&= \frac{\hat{\lambda}}{2(M_1)^2 m_c} (2m_c \Gamma_1 - \Gamma_2).
\end{aligned}$$

□

Next, we establish a key inequalities involving the threshold m_H .

Proposition D.9. $\Gamma_1 \geq 0$ and $\Gamma_2 \geq 0$.

Proof. Γ_1 and Γ_2 are defined in Lemma D.8. M_r and p_j are defined in Equation 13. Let $M_r := \sum_{j=1}^d p_j \mu_j^r = \mathbb{E}_{\mathbf{p}} [\mu_j^r]$. By Cauchy–Schwarz with $X = \boldsymbol{\mu}^{1/2}$ and $Y = \boldsymbol{\mu}^{3/2}$,

$$(\mathbb{E}_{\mathbf{p}} [\boldsymbol{\mu}^2])^2 \leq \mathbb{E}_{\mathbf{p}} [\boldsymbol{\mu}] \mathbb{E}_{\mathbf{p}} [\boldsymbol{\mu}^3] \implies \Gamma_1 = M_1 M_3 - M_2^2 \geq 0.$$

2376 By Cauchy–Schwarz with $X = \mu$ and $Y = \mu^2$,

$$2377 \quad (\mathbb{E}_p[\mu^3])^2 \leq \mathbb{E}_p[\mu^2] \mathbb{E}_p[\mu^4].$$

2378 Multiplying the two inequalities gives

$$2380 \quad \mathbb{E}_p[\mu^2] \mathbb{E}_p[\mu^3] \leq \mathbb{E}_p[\mu] \mathbb{E}_p[\mu^4] \implies \Gamma_2 = M_1 M_4 - M_2 M_3 \geq 0.$$

□

2382 **Proposition D.10.** Let $m_D := \frac{\Gamma_2}{2\Gamma_1}$. We have $m_D \geq m_H$ for all $t \geq 0$.

2384 *Proof.* We use same notation as in the proof of Proposition D.9. Let $a := \frac{M_2}{M_1}$. $\Gamma_1 \geq 0$ and $\Gamma_2 \geq 0$
2385 by Proposition D.9. Then we have

$$2387 \quad \mathbb{E}_p[(\mu^2 - a\mu)^2] = \mathbb{E}_p[\mu^4] - 2a \mathbb{E}_p[\mu^3] + a^2 \mathbb{E}_p[\mu^2] \\ 2388 \quad = M_4 - 2aM_3 + a^2 M_2.$$

2389 Substituting $a = \frac{M_2}{M_1}$ and multiplying by M_1^2 gives

$$2391 \quad M_1^2 \mathbb{E}_p[(\mu^2 - \frac{M_2}{M_1}\mu)^2] = M_1^2 M_4 - 2M_1 M_2 M_3 + M_2^3.$$

2393 Since an expectation of a square is nonnegative and $M_1^2 \geq 0$, it follows that

$$2394 \quad M_1^2 M_4 - 2M_1 M_2 M_3 + M_2^3 \geq 0.$$

2395 Therefore, we have

$$2396 \quad \frac{\Gamma_2}{2\Gamma_1} \geq \frac{M_2}{2M_1} = m_H.$$

□

2399 D.4.5 PROOF OF THEOREM 4.4

2401 We begin by restating Theorem 4.4 for convenience.

2402 **Theorem 4.4.** There exists a unique α_1 such that $\alpha_0 := \rho \frac{\mu_1}{\sqrt{2}\|\mu\|_2} < \alpha_1 < \rho \frac{\|\mu\|_4^4}{\sqrt{2}\|\mu\|_2\|\mu\|_3^3} < \alpha_2 :=$
2403 $\rho \frac{\mu_{d-1} + \mu_d}{\sqrt{2}\|\mu\|_2}$ and the trajectory of $m_c(t)$ falls into one of the following three regimes.

2404 **(Regime 1)** If $\alpha < \alpha_1$, then $m_c(t)$ strictly decreases for all $t \geq 0$ and there exists T_1 such that for
2405 $j \in [d]$, $\beta_j(t)$ strictly decreases for all $t \geq T_1$.

2406 **(Regime 2)** If $\alpha_1 < \alpha < \alpha_2$, there exists T_2 such that $m_c(T_2) < \frac{\mu_{d-1} + \mu_d}{2}$ and $m_c(t)$ strictly
2407 increases for all $t \geq T_2$.

2408 **(Regime 3)** If $\alpha > \alpha_2$, then $m_c(t) > \frac{\mu_{d-1} + \mu_d}{2}$, and $\beta_d(t)$ has the largest growth rate for all $t \geq 0$.

2409 *Proof.* From Lemma D.7 and Lemma D.8, we have

$$2410 \quad \dot{m}_c = \hat{\lambda} M_1 (m_c - m_H),$$

$$2411 \quad \dot{m}_H = \frac{\hat{\lambda}}{2(M_1)^2 m_c} (2m_c \Gamma_1 - \Gamma_2).$$

2412 Recall that M_r and p_j are defined in Equation 13. Γ_1 and Γ_2 are defined in Lemma D.8. m_D
2413 is defined in Proposition D.10. We define $A(t) := \hat{\lambda} M_1(t)$ and $B(t) := m_c(t) - m_H(t)$ so that
2414 $\dot{m}_c = A(t)B(t)$.

2415 **Regime 1.** For any $t \geq 0$, if $m_c(t) < m_L$, then $m_c(t) < \frac{\mu_1}{2} < m_H(t)$. Hence $B(t) < 0$, and
2416 therefore $\dot{m}_c(t) < 0$. Consequently, for any $t \geq 0$, whenever $m_c(t) < m_L$, the function $m_c(\cdot)$
2417 is strictly decreasing. Since $m_c(0) < m_L$, we have $m_c(t) < m_L$ for all $t \geq 0$, and it is strictly
2418 decreasing.

2419 Moreover, since $m_c(t) < m_L = \frac{\mu_1}{2}$, we have $2m_c(t) < \mu_1 \leq \mu_j$. Therefore,

$$2420 \quad r_j(t) = 2\hat{\lambda}(t) \cdot \left(\mu_j - \frac{\mu_j^2}{2m_c(t)} \right) < 0,$$

2421 Thus $\dot{\beta}_j(t) = \beta_j(t)r_j(t) < 0$, and $\beta_j(t)$ decays exponentially for all $t \geq 0$.

2430 **Regime 2.** When $m_L < m_c(0) < m_H(0)$, we have $B(0) < 0$ and thus $\dot{m}_c(0) = A(0)B(0) < 0$,
 2431 so m_c initially drifts downward. While $B(t) < 0$, the $m_c < m_D$ holds so the m_H drifts downward:
 2432 $\dot{m}_H(t) < 0$. Note that we get the following equality:
 2433

$$2434 \quad \dot{m}_c = AB, \\ 2435 \quad \dot{B} = \dot{m}_c - \dot{m}_H = AB - \dot{m}_H.$$

2437 Let $I(t) := \exp\left(-\int_0^t A(\tau)d\tau\right)$. Then:
 2438

$$2439 \quad I\dot{B} = IAB - I\dot{m}_H, \quad (15)$$

$$2441 \quad \frac{d}{dt}(IB) = \dot{I}B + I\dot{B} = -IAB + I\dot{B} = -I\dot{m}_H, \quad (16)$$

$$2443 \quad I(t)B(t) - I(0)B(0) = - \int_0^t I(u)\dot{m}_H(u)du. \quad (17)$$

2445 Note that $\frac{d}{dt}(IB) > 0$ while $B(t) < 0$.
 2446

2447 **Existence of Regime 2 threshold** For an initialization $m_0 \in (m_L, m_H(0))$, define the budget to
 2448 the floor:
 2449

$$2450 \quad \psi(m_0) := I(0)B(0) + \int_0^{t_{\text{floor}}(m_0)} \frac{d}{dt}(I(t)B(t)) \\ 2451 \quad = (m_0 - m_H(0)) + \int_0^{t_{\text{floor}}(m_0)} I(u)(-\dot{m}_H(u))du.$$

2455 where $t_{\text{floor}}(m_0)$ is the first time when $m_c(t) = m_L$, or $+\infty$ if it never meets. Note that $m_c(t)$ meets
 2456 the threshold $m_H(t)$ before the floor m_L if and only if the accumulated area $\int I(-\dot{m}_H)$ reaches
 2457 $m_H(0) - m_0$ before time t_{floor} . Therefore, we can consider two different cases.
 2458

- 2460 • $\psi(m_0) > 0 \Rightarrow m_c$ meets m_H before it meets m_L , the trajectory of m_c will first decreases,
 2461 and it drifts at a point bigger than m_L , and then increases.
- 2462 • $\psi(m_0) < 0 \Rightarrow$ then the m_c meets m_L , then it goes to Regime 1.

2464 Also, the ODEs have continuous right hand sides, and solutions depend continuously on m_0 . so for
 2465 any fixed $\tau > 0$, the truncated map

$$2467 \quad \psi_\tau(m_0) := (m_0 - m_H(0)) + \int_0^{\min\{\tau, t_{\text{floor}}(m_0)\}} I(u)(-\dot{m}_H(u))du$$

2470 is continuous in m_0 . As $\tau \uparrow t_{\text{floor}}(m_0)$, we have $\psi_\tau(m_0) \rightarrow \psi(m_0)$. by monotone convergence
 2471 (integrand is positive while $B(t) < 0$). Hence ψ is continuous on $(m_L, m_H(0))$. based on ψ , we get
 2472 the signs at the endpoints.
 2473

- 2474 • As $m_0 \downarrow m_L$, we get $t_{\text{floor}}(m_0) \downarrow 0$, so the integral $\rightarrow 0$. Hence,

$$2476 \quad \psi(m_0) \rightarrow -(m_H(0) - m_L) < 0.$$

- 2478 • As $m_0 \uparrow m_H(0)$, we have $B(0) \downarrow 0$. Since the integral is nonnegative, we get

$$2480 \quad \liminf_{m_0 \uparrow m_H(0)} \psi(m_0) \geq 0.$$

2482 By continuity and the opposite signs at the endpoints, there exists at least one $m_{\text{dip}} \in (m_L, m_H(0))$
 2483 such that $\psi(m_{\text{dip}}) = 0$.

2484 **Uniqueness of Regime 2 threshold.** Define the two possible first events for the trajectory started
 2485 at m_0 :

2487 • hit : first time when $B = m_c - m_H = 0$.
 2488 • floor : first time when $m_c(t) = m_L$

2491 Then we define the event map $E(m_0) \in \{hit, floor\}$ by which event happens first. If the first event
 2492 is hit at time τ , then we have $B = 0$ and $\dot{B} = -AB > 0$. If the first event is floor at time τ ,
 2493 then we have $m_c = m_L$ and $\frac{d}{dt}(m_c - m_L) < 0$. Because the ODE right-hand sides are smooth,
 2494 solutions depend continuously on the initial value m_0 . So, we have near a hit point, the zero of
 2495 B persists. Also, near a floor point, the zero of $m_c - m_L$ persists. This means that $S_{hit} = \{m_0 : E(m_0) = hit\}$ and
 2496 $S_{floor} = \{m_0 : E(m_0) = floor\}$ are disjoint open sets whose union is the whole
 2497 interval $(m_L, m_H(0))$. So, there exists a unique $m_c \in (m_L, m_H(0))$ that becomes a unique Regime
 2498 2 threshold.

2499 **Regime 3.** When $m_c(0) > m_H(0)$, we have $B(0) > 0$ and thus $\dot{m}_c(0) = A(0)B(0) > 0$, so m_c
 2500 initially increases. We now show that $B(t) > 0$ for all $t \geq 0$. Suppose for contradiction that there
 2501 exists a first time $\tau > 0$ such that $B(\tau) = 0$ (i.e., $m_c(\tau) = m_H(\tau)$). Then

$$\begin{aligned} 2503 \quad \dot{B}(\tau) &= \dot{m}_c(\tau) - \dot{m}_H(\tau) \\ 2504 \quad &= A(\tau)B(\tau) - \dot{m}_H(\tau) \\ 2505 \quad &= 0 - \dot{m}_H(\tau) \\ 2507 \quad &= -\frac{\hat{\lambda}(\tau)}{2(M_1(\tau))^2 m_c(\tau)} (2m_c(\tau)\Gamma_1(\tau) - \Gamma_2(\tau)). \end{aligned}$$

2509 Proposition D.10 gives $m_D(\tau) \geq m_H(\tau)$. Therefore, we have $2m_c(\tau)\Gamma_1(\tau) - \Gamma_2(\tau) \leq 0$ and
 2510 $\dot{B}(\tau) > 0$. However, for B to reach zero from above for the first time, we must have $\dot{B}(\tau) \leq 0$.
 2511 This is a contradiction. Therefore, $B(t) > 0$ for all $t \geq 0$, which means $m_c(t) > m_H(t)$ for all
 2512 $t \geq 0$. Since $A(t) = \hat{\lambda}M_1(t) > 0$ and $B(t) > 0$ for all $t \geq 0$, we have

$$2514 \quad \dot{m}_c(t) = A(t)B(t) > 0$$

2515 for all $t \geq 0$, so $m_c(t)$ is strictly increasing for all time. \square

2519 D.5 EXTENSION TO DEEPER DIAGONAL LINEAR NETWORKS

2520 In this section, we extend our analysis to L -layer diagonal linear networks. As the depth increases
 2521 ($L > 2$), some notational adjustments are necessary.

2523 Recall that the margin is given by

$$2524 \quad s = \langle \beta, \mu \rangle = \langle w^{(1)} \odot w^{(2)} \odot \dots \odot w^{(L)}, \mu \rangle,$$

2526 where \odot denotes elementwise (Hadamard) product.

2528 The gradient of the loss \mathcal{L} with respect to a particular weight $w_j^{(l)}$ can be computed via the chain
 2529 rule:

$$2530 \quad \frac{d\mathcal{L}}{dw_j^{(l)}} = \frac{d\mathcal{L}}{ds} \cdot \frac{ds}{dw_j^{(l)}} = -\lambda \mu_j \prod_{k \neq l} w_j^{(k)},$$

2532 where λ is as before, and $k \neq l$ indicates multiplication over all layers except l .

2534 The squared Euclidean norm of the gradient vector $\nabla_{\theta} \mathcal{L}$ is then

$$2536 \quad \|\nabla_{\theta} \mathcal{L}\|^2 = \sum_{j=1}^d \sum_{l=1}^L \left(\frac{d\mathcal{L}}{dw_j^{(l)}} \right)^2 = \lambda^2 \sum_{j=1}^d \sum_{l=1}^L \mu_j^2 \left(\prod_{k \neq l} w_j^{(k)} \right)^2.$$

2538 Accordingly, we define
 2539

$$2540 \quad 2541 \quad 2542 \quad 2543 \quad n_{\theta} := \sqrt{\sum_{j=1}^d \sum_{l=1}^L \mu_j^2 \left(\prod_{k \neq l} w_j^{(k)} \right)^2}.$$

2544 The resulting perturbation is:
 2545

$$2546 \quad 2547 \quad 2548 \quad 2549 \quad \varepsilon_2 := \rho \frac{\nabla_{\theta} \mathcal{L}}{\|\nabla_{\theta} \mathcal{L}\|_2},$$

$$(\varepsilon_2)_{w_j^{(l)}} = -\frac{\rho \mu_j}{n_{\theta}} \prod_{k \neq l} w_j^{(k)}.$$

2550 Thus, the perturbed weights are given by
 2551

$$2552 \quad 2553 \quad 2554 \quad \hat{w}_j^{(l)} := w_j^{(l)} - \frac{\rho \mu_j}{n_{\theta}} \prod_{k \neq l} w_j^{(k)}.$$

2555 The perturbed product then takes the form
 2556

$$2557 \quad 2558 \quad 2559 \quad 2560 \quad \hat{\beta}_j := \prod_{l=1}^L \hat{w}_j^{(l)}.$$

2561 Therefore, the ODE for each coordinate is:
 2562

$$2563 \quad 2564 \quad 2565 \quad \dot{w}_j^{(l)} = -\frac{\partial \mathcal{L}(\hat{\theta})}{\partial w_j^{(l)}} = \hat{\lambda} \mu_j \prod_{k \neq l} w_j^{(k)}.$$

2566 Additionally, we define an assumption on the weight initialization scheme:
 2567

2568 **Assumption D.11.** The weights are initialized symmetrically at $t = 0$, that is, $w_j^{(1)}(0) = w_j^{(2)}(0) = \dots = w_j^{(L)}(0) = w_j(0)$ for all j .
 2569

2570 Now we show the balancedness-preserving property of the SAM flow.
 2571

2572 **Lemma D.12.** *Suppose Assumption D.11 holds. Then for all $t \geq 0$,*
 2573

$$2574 \quad w_j^{(l)}(t) = w_j(t) \quad \text{for every } l, j.$$

2575 Furthermore, the sign of $w_j(t)$ is preserved for all $t \geq 0$.
 2576

2577 *Proof.* Fix j . Assume that at some time t all weights corresponding to j across the layers are equal, i.e.,
 2578

$$2579 \quad 2580 \quad w_j^{(1)}(t) = w_j^{(2)}(t) = \dots = w_j^{(L)}(t) = w_j(t).$$

2581 Then $n_{\theta}^2(t)$ simplifies as follows:
 2582

$$2583 \quad 2584 \quad 2585 \quad 2586 \quad 2587 \quad 2588 \quad 2589 \quad 2590 \quad 2591 \quad n_{\theta}^2(t) = \sum_{j=1}^d \sum_{l=1}^L \mu_j^2 \left(\prod_{k \neq l} w_j^{(k)}(t) \right)^2$$

$$= \sum_{j=1}^d \sum_{l=1}^L \mu_j^2 (w_j(t)^{L-1})^2$$

$$= \sum_{j=1}^d L \mu_j^2 (w_j(t))^{2L-2}.$$

2592 Therefore, the perturbed weight for each layer l simplifies to:
 2593

$$\begin{aligned} 2594 \hat{w}_j^{(l)}(t) &= w_j^{(l)}(t) - \frac{\rho\mu_j}{n_{\theta}(t)} \prod_{k \neq l} w_j^{(k)}(t) \\ 2595 \\ 2596 &= w_j(t) - \frac{\rho\mu_j}{n_{\theta}(t)} w_j(t)^{L-1}, \\ 2597 \end{aligned}$$

2598 which is independent of l . Hence,
 2599

$$2600 \hat{w}_j^{(1)}(t) = \hat{w}_j^{(2)}(t) = \dots = \hat{w}_j^{(L)}(t) =: \hat{w}_j(t). \\ 2601$$

2602 Substituting this into the SAM flow equation yields:
 2603

$$2604 \dot{w}_j^{(l)}(t) = \hat{\lambda}(t)\mu_j \hat{w}_j(t)^{L-1},$$

2605 which is likewise independent of l .
 2606

2607 Now, for a fixed j , consider the L -dimensional vector
 2608

$$2609 u_j(t) := (w_j^{(1)}(t), w_j^{(2)}(t), \dots, w_j^{(L)}(t)).$$

2610 The SAM dynamics specify the ODE:
 2611

$$2612 \dot{u}_j(t) = F_j(u_j(t), \theta(t)),$$

2613 where F_j is the vector whose l -th entry is $\hat{\lambda}(t)\mu_j \prod_{k \neq l} \hat{w}_j^{(k)}(t)$. This ODE is locally Lipschitz in
 2614 u_j , ensuring uniqueness of solutions for given initial conditions.
 2615

2616 Consider the one-dimensional diagonal manifold
 2617

$$2618 \mathcal{D}_j := \{(x, \dots, x) \in \mathbb{R}^L : x \in \mathbb{R}\}.$$

2619 if $u_j(t) \in \mathcal{D}_j$, then $\dot{u}_j(t) \in \mathcal{D}_j$ as well, because all coordinates have the same derivative. So \mathcal{D}_j is
 2620 invariant under the flow.
 2621

2622 Since the initial condition $u_j(0)$ lies in \mathcal{D}_j due to symmetric initialization, and the ODE solution is
 2623 unique, we conclude that $u_j(t) \in \mathcal{D}_j$ for all $t \geq 0$. Therefore,
 2624

$$w_j^{(l)}(t) = w_j(t) \quad \text{for all } l, j, \text{ and } t \geq 0.$$

2625 In summary, Assumption D.11 guarantees balancedness at all times for any depth L .
 2626

2627 Next, we consider the sign preservation property.
 2628

2629 Recall that on the balanced manifold, we may write $w_j^{(l)}(t) = w_j(t)$ for all l, j , and $t \geq 0$, so the
 2630 per-coordinate dynamics reduce to
 2631

$$2632 \dot{w}_j(t) = \hat{\lambda}(t)\mu_j \left(w_j(t) - \rho \frac{\mu_j}{n_{\theta}(t)} w_j(t)^{L-1} \right)^{L-1}. \\ 2633$$

2634 We claim that the sign of $w_j(t)$ is preserved for all $t \geq 0$. To see this, observe that the right-hand
 2635 side of the ODE is a smooth (in fact, polynomial) function of w_j , so it is locally Lipschitz in w_j for
 2636 each fixed t . In particular, if at some time τ we have $w_j(\tau) = 0$, then $\dot{w}_j(\tau) = 0$, so $w_j(t) \equiv 0$ for
 2637 all $t \geq \tau$ is a solution with the same initial value. By uniqueness of solutions to ODEs with Lipschitz
 2638 right-hand side, it follows that once w_j reaches zero, it remains identically zero for all future time
 2639 and cannot cross to the opposite sign. Therefore, if $w_j(0) \neq 0$, the sign of $w_j(t)$ is preserved for all
 2640 $t \geq 0$ by continuity; if $w_j(0) = 0$, it remains zero.
 2641

2642 In summary, the sign of $w_j(t)$ cannot change during the flow. □
 2643

2644 Utilizing the balancedness-preserving property, we can now extend the lemma for the depth- L diag-
 2645 onal network.
 2646

2646 **Lemma D.13.** *Under Assumption D.11 and Assumption D.4, the rescaled ℓ_2 SAM flow satisfies, for
2647 each coordinate j ,*

$$2648 \quad \frac{d}{dt} \beta_j(t) = r_j^{(L)}(t) \beta_j(t),$$

2651 *where*

$$2652 \quad r_j^{(L)}(t) = L \mu_j \beta_j(t)^{(1-2/L)} \left(1 - \frac{\rho \mu_j}{n_{\theta}(t)} \beta_j(t)^{(L-2)/L} \right)^{(L-1)},$$

2654 *and*

$$2656 \quad \beta_j(t) = w_j(t)^L, \quad n_{\theta}(t) = L \sum_{k=1}^d \mu_k^2 w_k(t)^{(2L-2)}.$$

2659 *Proof.* Now define the effective coefficient per coordinate, for general depth L :

$$2661 \quad \beta_j(t) := \prod_{l=1}^L w_j^{(l)}(t) = w_j(t)^{(L)}.$$

2664 Under the balanced ℓ_2 SAM flow, the coordinate dynamics become:

$$2667 \quad \dot{\beta}_j(t) = \frac{d}{dt} (w_j(t)^L) = L w_j(t)^{(L-1)} \dot{w}_j(t) \\ 2668 \quad = L w_j^{(L-1)} \hat{\lambda} \mu_j \hat{w}_j^{(L-1)}.$$

2671 We first compute the perturbed weight for coordinate j :

$$2673 \quad \hat{w}_j = w_j - \frac{\rho \mu_j}{n_{\theta}} w_j^{L-1} = w_j \left(1 - \frac{\rho \mu_j}{n_{\theta}} w_j^{L-2} \right).$$

2676 Substituting this into the expression for $\dot{\beta}_j(t)$ gives:

$$2678 \quad \dot{\beta}_j(t) = L \hat{\lambda}(t) \mu_j w_j^{2L-2} \left(1 - \frac{\rho \mu_j}{n_{\theta}(t)} w_j^{L-2} \right)^{L-1}.$$

2680 To express this in terms of $\beta_j = w_j^L$, note that

$$2682 \quad w_j^{2L-2} = \beta_j^{2-2/L}, \quad w_j^{L-2} = \beta_j^{(L-2)/L}.$$

2684 Therefore, we obtain:

$$2686 \quad \dot{\beta}_j(t) = L \hat{\lambda}(t) \mu_j \beta_j(t)^{2-2/L} \left(1 - \frac{\rho \mu_j}{n_{\theta}(t)} \beta_j(t)^{(L-2)/L} \right)^{L-1}.$$

2689 \square

2691 Absorbing $\hat{\lambda}(t)$ into the time parameter yields the rescaled SAM flow equation:

$$2693 \quad \frac{d}{dt} \beta_j(t) = r_j^{(L)}(t) \beta_j(t),$$

2695 *where*

$$2697 \quad r_j^{(L)}(t) := L \mu_j \beta_j(t)^{1-2/L} \left(1 - \frac{\rho \mu_j}{n_{\theta}(t)} \beta_j(t)^{(L-2)/L} \right)^{L-1}.$$

2699 This provides the Depth- L generalization of the SAM feature amplification dynamics.

2700
 2701 **Proposition D.14.** Consider the depth- L diagonal network under Assumption D.11 and Assumption
 2702 D.4. Define

2703 $\beta_j(t) := \prod_{l=1}^L w_j^{(l)}(t) = w_j(t)^L, \quad z_j(t) := \mu_j w_j(t)^{L-2}, \quad n_{\theta}^2(t) := L \sum_{k=1}^d \mu_k^2 w_k(t)^{(2L-2)},$
 2704
 2705

2706 and the critical effective scale:

2707 $z_c(t) := \frac{n_{\theta}(t)}{\rho L}.$
 2708

2709 Then for each time t , we have

2710
 2711 $\frac{d}{dt} \beta_j(t) = L z_j(t) \left(1 - \frac{\rho}{n_{\theta}(t)} z_j(t)\right)^{L-1} =: \phi_t(z_j(t)).$
 2712

2713 The function $z \mapsto \phi_t(z)$ is strictly increasing on $(0, z_c(t))$, strictly decreasing on $(z_c(t), n_{\theta}(t)/\rho)$,
 2714 and possesses a unique interior maximum at $z = z_c(t)$.

2715 In particular, at any fixed t , the coordinate(s) whose effective scale $z_j(t)$ is closest to the peak of ϕ_t ,
 2716 i.e., near $z_c(t)$, experience the largest instantaneous growth in β_j .

2717
 2718 *Proof.* In rescaled SAM time, we have

2719
 2720 $\frac{d}{dt} \beta_j(t) = L \mu_j \beta_j(t)^{1-2/L} \left(1 - \frac{\rho \mu_j}{n_{\theta}(t)} \beta_j(t)^{(L-2)/L}\right)^{L-1},$
 2721
 2722

2723 where

2724
 2725 $n_{\theta}^2(t) = L \sum_{k=1}^d \mu_k^2 w_k(t)^{2L-2}.$
 2726

2727 Define the effective z -scale by

2728 $z_j(t) := \mu_j w_j(t)^{L-2}.$

2729 Note that

2730 $\mu_j \beta_j^{(L-2)/L} = \mu_j w_j^{L-2} = z_j.$

2731 Plugging this into the β_j ODE yields

2732
 2733 $\frac{d}{dt} \beta_j(t) = L z_j(t) \left(1 - \frac{\rho}{n_{\theta}(t)} z_j(t)\right)^{L-1}.$
 2734
 2735

2736 We may rewrite this as

2737
 2738 $\frac{d}{dt} \beta_j(t) = \phi_t(z_j(t)), \quad \text{where } \phi_t(z) := L z \left(1 - \frac{\rho}{n_{\theta}(t)} z\right)^{L-1}.$
 2739

2740 Define the critical effective scale:

2741
 2742 $z_c(t) := \frac{n_{\theta}(t)}{\rho L}.$
 2743

2744 Consider $\phi_t(z) = L z (1 - cz)^{L-1}$, where $c = \frac{\rho}{n_{\theta}(t)} > 0$. Its derivative with respect to z is:

2745
 2746 $\frac{d}{dz} \phi_t(z) = L (1 - cz)^{L-2} (1 - Lcz),$
 2747
 2748

2749 so that:

2750
 2751

- $\phi_t'(z) > 0$ for $0 < z < z_c(t)$,

2752

- $\phi_t'(z) = 0$ when $z = z_c(t)$,

2753

- $\phi_t'(z) < 0$ for $z_c(t) < z < n_{\theta}(t)/\rho$.

2754 Therefore, for each fixed t , the function $z \mapsto \phi_t(z)$ is strictly increasing on $(0, z_c(t))$, strictly
 2755 decreasing on $(z_c(t), n_\theta(t)/\rho)$, and has a unique interior maximum at $z = z_c(t)$.
 2756

□

2759 Unlike the depth-2 case, where each μ_j is a fixed constant and their order remains unchanged
 2760 throughout training, in the depth- L case the effective quantities $z_j(t)$ are time-dependent and could,
 2761 in principle, change order as the SAM flow evolves. However, the following proposition establishes
 2762 that the order of $z_j(t)$ is actually preserved throughout the entire SAM trajectory.

2763 **Proposition D.15.** *Under Assumptions D.11 and D.4, the order of the $z_j(t)$ is preserved in the
 2764 depth- L SAM flow. That is, if $\mu_1 < \dots < \mu_d$, then $z_1(t) < z_2(t) < \dots < z_d(t)$ for all $t \geq 0$.*

2766 *Proof.* We first compute the ODE satisfied by $z_j(t)$. By definition,

$$2768 \quad z_j = \mu_j w_j^{L-2},$$

2770 Taking the time derivative, we get

$$2771 \quad \dot{z}_j = \mu_j (L-2) w_j^{(L-3)} \dot{w}_j$$

$$2773 \quad = \mu_j (L-2) w_j^{(L-3)} \left(\hat{\lambda} \mu_j \hat{w}_j^{(L-1)} \right)$$

2776 Therefore, the perturbed weight is

$$2778 \quad \hat{w}_j = w_j \left(1 - \frac{\rho \mu_j}{n_\theta} w_j^{(L-2)} \right).$$

2781 Also, we get

$$2782 \quad w_j^{(L-3)} \hat{w}_j^{(L-1)} = w_j^{(2L-4)} \left(1 - \frac{\rho \mu_j}{n_\theta} w_j^{(L-2)} \right)^{(L-1)}.$$

2784 Using $w_j^{(L-2)} = \frac{z_j}{\mu_j}$ and $w_j^{(2L-4)} = \frac{z_j^2}{\mu_j^2}$, we obtain

$$2787 \quad \dot{z}_j = (L-2) \hat{\lambda} \mu_j^2 \frac{z_j^2}{\mu_j^2} \left(1 - \frac{\rho \mu_j}{n_\theta} \frac{z_j}{\mu_j} \right)^{(L-1)} = (L-2) \hat{\lambda} z_j^2 \left(1 - \frac{\rho z_j}{n_\theta} \right)^{(L-1)}.$$

2790 Thus, the ODE for $z_j(t)$ can be expressed as

$$2792 \quad \dot{z}_j(t) = f(t, z_j(t)) := (L-2) \hat{\lambda} z_j(t)^2 \left(1 - \frac{\rho z_j(t)}{n_\theta(t)} \right)^{L-1}.$$

2794 Notice that in this expression, the dependence on j appears only through $z_j(t)$; both $\hat{\lambda}$ and $n_\theta(t)$
 2795 are time-dependent scalars shared across all coordinates. So each $z_j(t)$ solves the same scalar non-
 2796 autonomous ODE,

$$2798 \quad \dot{z}(t) = f(t, z(t)),$$

2799 with $z(t) = z_j(t)$.

2800 Now at $t = 0$, under symmetric positive init $w_j(0) = \alpha > 0$, we have $z_j(0) = \mu_j \alpha^{L-2}$. Since
 2801 $\mu_1 < \dots < \mu_d$ and $\alpha^{L-2} > 0$, we have $z_1(0) < z_2(0) < \dots < z_d(0)$. For this ODE with f is
 2802 smooth and locally Lipschitz in z , the two different solutions $z_j(t)$ cannot cross each other. If two
 2803 solutions ever meet (same values at some time), then uniqueness makes them to be identical for all
 2804 times. So the order of $z_j(t)$ is preserved for all $t \geq 0$. Thus, we have $z_1(t) < z_2(t) < \dots < z_d(t)$
 2805 for all $t \geq 0$.

□

2808 D.6 PROOFS FOR SECTION 4.2.4
28092810 D.6.1 DERIVATION OF THE DYNAMICS OF $\beta(t)$
28112812 The dynamics of $\beta(t) = \mathbf{w}(t) \odot \mathbf{w}(t)$ is given by
2813

2814
$$\dot{\beta}(t) = \dot{\mathbf{w}}(t) \odot \mathbf{w}(t) + \mathbf{w}(t) \odot \dot{\mathbf{w}}(t).$$

2815 By Equation (3), it is given as
2816

2817
$$\begin{aligned} \dot{\beta}(t) &= 2\mu \odot \mathbf{w}(t) \odot \left(\mathbf{w}(t) - \rho \frac{\mu \odot \mathbf{w}(t)}{n_{\theta}(t)} \right) \\ &= 2\mu \odot \left(\beta(t) - \rho \frac{\mu \odot \beta(t)}{n_{\theta}(t)} \right). \end{aligned}$$

2821

2822 Coordinate-wise, we have the linear equation
2823

2824
$$\dot{\beta}_j(t) = 2\mu_j \left(\beta_j(t) - \rho \frac{\mu_j \beta_j(t)}{n_{\theta}(t)} \right) = 2\mu_j \beta_j(t) \left(1 - \rho \frac{\mu_j}{n_{\theta}(t)} \right).$$

2826

2827 Therefore, separating variables and integrating, we get
2828

2829
$$\begin{aligned} \frac{\dot{\beta}_j(t)}{\beta_j(t)} &= 2\mu_j - 2\rho \frac{\mu_j^2}{n_{\theta}(t)} \\ &\Rightarrow \int_0^t \frac{\dot{\beta}_j(s)}{\beta_j(s)} ds = \int_0^t \left(2\mu_j - 2\rho \frac{\mu_j^2}{n_{\theta}(s)} \right) ds \\ &\Rightarrow \log \frac{\beta_j(t)}{\beta_j(0)} = 2\mu_j t - 2\rho \mu_j^2 \int_0^t \frac{1}{n_{\theta}(s)} ds. \end{aligned}$$

2836

2837 Define $I(t) := \int_0^t \frac{1}{n_{\theta}(s)} ds$. Then, the solution is given by
2838

2839
$$\beta_j(t) = \beta_j(0) \exp \left(2\mu_j t - 2\rho \mu_j^2 I(t) \right) \quad \text{for } j \in [d].$$

2840

2841 D.6.2 PROOF OF THEOREM 4.5
28422843 Before proving Theorem 4.5, we establish Theorem D.16, which provides lower and upper bounds
2844 for $I(t)$ and serves as a key ingredient in the proof of Theorem 4.5 below.2845 **Theorem D.16.** Suppose $\mathbf{w}^{(1)} = \mathbf{w}^{(2)} = \alpha \in \mathbb{R}^d$. Let $(\mathbf{w}^{(1)}(t))_{t \geq 0}$ and $(\mathbf{w}^{(2)}(t))_{t \geq 0}$ follow
2846 the rescaled ℓ_2 -SAM flow (2) reduced to (3) with perturbation radius ρ and data point μ . Define
2847 $C_{\mu, \alpha} = \frac{\mu_1}{\sqrt{2 \sum_{j=1}^d \mu_j^2 \alpha_j^2}}$ and $\bar{C}_{\mu, \alpha} = \frac{\|\mu\|_2^2}{\sqrt{2d} (\prod_{j=1}^d \mu_j \alpha_j)^{1/d} \|\mu\|_1}$. Then,
28482849
$$\begin{aligned} (a) \quad I(t) &\geq \frac{1}{\rho \mu_1^2} \log \left(\frac{1}{\rho \bar{C}_{\mu, \alpha} \exp(-\mu_1 t) + 1 - \rho \bar{C}_{\mu, \alpha}} \right) \text{ when } \frac{I(t)}{t} \geq \frac{1}{\rho(\mu_1 + \mu_2)}, \\ (b) \quad I(t) &\leq \frac{d}{\rho \|\mu\|_2^2} \log \left(\frac{1}{\rho \bar{C}_{\mu, \alpha} \exp(-\frac{\|\mu\|_1}{d} t) + 1 - \rho \bar{C}_{\mu, \alpha}} \right). \end{aligned}$$

28542855 *Proof.* From the definition of $I(t)$, $I(t) := \int_0^t \frac{1}{n_{\theta}(s)} ds$, we have $I'(t) = \frac{1}{n_{\theta}(t)}$.
28562857 Since we suppose $\mathbf{w}^{(1)}(0) = \mathbf{w}^{(2)}(0)$, and the loss function and dynamics are invariant under
2858 exchanging $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$, we have $\mathbf{w}^{(1)}(t) = \mathbf{w}^{(2)}(t) =: \mathbf{w}(t)$ for all $t \geq 0$.
28592860 From the definition of $n_{\theta}(t)$, we have
2861

2862
$$n_{\theta}(t) = \sqrt{\|\mu \odot \mathbf{w}^{(1)}(t)\|_2^2 + \|\mu \odot \mathbf{w}^{(2)}(t)\|_2^2}$$

$$\begin{aligned}
&= \sqrt{2\|\boldsymbol{\mu} \odot \mathbf{w}(t)\|_2^2} \\
&= \sqrt{2 \left(\sum_{j=1}^d \mu_j^2 w_j(t)^2 \right)} \\
&= \sqrt{2 \left(\sum_{j=1}^d \mu_j^2 \beta_j(t) \right)}.
\end{aligned}$$

From Equation (4), which is $\beta_j(t) = \beta_j(0) \exp(2\mu_j t - 2\rho\mu_j^2 I(t))$, we have

$$n_{\boldsymbol{\theta}}(t) = \sqrt{2 \left(\sum_{j=1}^d \mu_j^2 \beta_j(0) \exp(2\mu_j t - 2\rho\mu_j^2 I(t)) \right)},$$

and therefore,

$$I'(t) = \frac{1}{\sqrt{2 \left(\sum_{j=1}^d \mu_j^2 \beta_j(0) \exp(2\mu_j t - 2\rho\mu_j^2 I(t)) \right)}}.$$

(a) When $\frac{I(t)}{t} \geq \frac{1}{\rho(\mu_1 + \mu_2)} \geq \frac{1}{\rho(\mu_1 + \mu_j)}$ for $j = 2, \dots, d$, it holds that

$$(2\mu_j t - 2\rho\mu_j^2 I(t)) - (2\mu_1 t - 2\rho\mu_1^2 I(t)) = 2(\mu_j - \mu_1)(t - \rho(\mu_j + \mu_1)I(t)) \geq 0.$$

Therefore,

$$\begin{aligned}
I'(t) &= \frac{1}{\sqrt{2 \sum_{j=1}^d \mu_j^2 \beta_j(0) \exp(2\mu_j t - 2\rho\mu_j^2 I(t))}} \\
&\leq \frac{1}{\sqrt{2 \sum_{j=1}^d \mu_j^2 \beta_j(0) \exp(2\mu_1 t - 2\rho\mu_1^2 I(t))}} \\
&= \frac{1}{\sqrt{2 \sum_{j=1}^d \mu_j^2 \beta_j(0) \exp(\mu_1 t - \rho\mu_1^2 I(t))}}
\end{aligned}$$

Separating variables and integrating, we get

$$\begin{aligned}
&\exp(-\rho\mu_1^2 I(t)) dI \leq \frac{1}{\sqrt{2 \sum_{j=1}^d \mu_j^2 \beta_j(0)}} \exp(-\mu_1 t) dt \\
&\Rightarrow \int_{I(0)}^{I(t)} \exp(-\rho\mu_1^2 u) du \leq \int_0^t \frac{1}{\sqrt{2 \sum_{j=1}^d \mu_j(s)^2 \beta_j(0)}} \exp(-\mu_1 s) ds \\
&\Rightarrow -\frac{1}{\rho\mu_1^2} (\exp(-\rho\mu_1^2 I(t)) - \exp(-\rho\mu_1^2 I(0))) \leq -\frac{1}{\sqrt{2 \sum_{j=1}^d \mu_j(s)^2 \beta_j(0)}} \frac{1}{\mu_1} (\exp(-\mu_1 t) - \exp(-\mu_1 0)) \\
&\Rightarrow \frac{1}{\rho\mu_1^2} (\exp(-\rho\mu_1^2 I(t)) - 1) \geq \frac{1}{\sqrt{2 \sum_{j=1}^d \mu_j(s)^2 \beta_j(0)}} \frac{1}{\mu_1} (\exp(-\mu_1 t) - 1) \\
&\Rightarrow \exp(-\rho\mu_1^2 I(t)) \geq \rho \frac{\mu_1}{\sqrt{2 \sum_{j=1}^d \mu_j(s)^2 \beta_j(0)}} (\exp(-\mu_1 t) - 1) + 1 \\
&\Rightarrow -\rho\mu_1^2 I(t) \geq \log(\rho \underline{C}_{\boldsymbol{\mu}, \boldsymbol{\alpha}} (\exp(-\mu_1 t) - 1) + 1) \\
&\Rightarrow I(t) \geq \frac{1}{\rho\mu_1^2} \log \left(\frac{1}{\rho \underline{C}_{\boldsymbol{\mu}, \boldsymbol{\alpha}} \exp(-\mu_1 t) + 1 - \rho \underline{C}_{\boldsymbol{\mu}, \boldsymbol{\alpha}}} \right),
\end{aligned}$$

2916

2917

2918 where (a) holds since $I(0) = 0$ from the definition of $I(t)$.

2919 (b) By AM-GM inequality, we have

2920

$$\begin{aligned}
 I'(t) &= \frac{1}{\sqrt{2 \sum_{j=1}^d \mu_j^2 \beta_j(0) \exp(2\mu_j t - 2\rho\mu_j^2 I(t))}} \\
 &\leq \frac{1}{\sqrt{2d \left(\prod_{j=1}^d \mu_j^2 \beta_j(0) \exp(2\mu_j t - 2\rho\mu_j^2 I(t)) \right)^{1/d}}} \\
 &= \frac{1}{\sqrt{2d \left(\prod_{j=1}^d \mu_j^2 \beta_j(0) \right)^{1/d} \exp\left(\frac{2 \sum_{j=1}^d \mu_j}{d} t - \frac{2\rho \sum_{j=1}^d \mu_j^2}{d} I(t)\right)}} \\
 &= \frac{1}{\sqrt{2d \left(\prod_{j=1}^d \mu_j^2 \alpha_j^2 \right)^{1/d} \exp\left(\frac{2\|\boldsymbol{\mu}\|_1}{d} t - \frac{2\rho\|\boldsymbol{\mu}\|_2^2}{d} I(t)\right)}} \\
 &= \frac{1}{\sqrt{2d} \left(\prod_{j=1}^d \mu_j \alpha_j \right)^{1/d} \exp\left(\frac{\|\boldsymbol{\mu}\|_1}{d} t - \frac{\rho\|\boldsymbol{\mu}\|_2^2}{d} I(t)\right)}
 \end{aligned}$$

2921

2922

2923 Separating variables and integrating, we get

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

$$\exp\left(-\frac{\rho\|\boldsymbol{\mu}\|_2^2}{d} I(t)\right) dI \leq \frac{1}{\sqrt{2d} \left(\prod_{j=1}^d \mu_j \alpha_j \right)^{1/d}} \exp\left(-\frac{\|\boldsymbol{\mu}\|_1}{d} t\right) dt$$

$$\Rightarrow \int_{I(0)}^{I(t)} \exp\left(-\frac{\rho\|\boldsymbol{\mu}\|_2^2}{d} u\right) du \leq \int_0^t \frac{1}{\sqrt{2d} \left(\prod_{j=1}^d \mu_j \alpha_j \right)^{1/d}} \exp\left(-\frac{\|\boldsymbol{\mu}\|_1}{d} s\right) ds$$

$$\Rightarrow -\frac{d}{\rho\|\boldsymbol{\mu}\|_2^2} (\exp(-\frac{\rho\|\boldsymbol{\mu}\|_2^2}{d} I(t)) - \exp(-\frac{\rho\|\boldsymbol{\mu}\|_2^2}{d} I(0))) \leq -\frac{1}{\sqrt{2d} \left(\prod_{j=1}^d \mu_j \alpha_j \right)^{1/d}} \frac{d}{\|\boldsymbol{\mu}\|_1} (\exp(-\frac{\|\boldsymbol{\mu}\|_1}{d} t) - 1)$$

$$\Rightarrow \exp(-\frac{\rho\|\boldsymbol{\mu}\|_2^2}{d} I(t)) \geq \rho \frac{\|\boldsymbol{\mu}\|_2^2}{\sqrt{2d} \left(\prod_{j=1}^d \mu_j \alpha_j \right)^{1/d} \|\boldsymbol{\mu}\|_1} (\exp(-\frac{\|\boldsymbol{\mu}\|_1}{d} t) - 1) + 1$$

$$\Rightarrow -\rho \frac{\|\boldsymbol{\mu}\|_2^2}{d} I(t) \geq \log\left(\rho \bar{C}_{\boldsymbol{\mu}, \boldsymbol{\alpha}} (\exp(-\frac{\|\boldsymbol{\mu}\|_1}{d} t) - 1) + 1\right)$$

$$\Rightarrow I(t) \leq \frac{d}{\rho\|\boldsymbol{\mu}\|_2^2} \log\left(\frac{1}{\rho \bar{C}_{\boldsymbol{\mu}, \boldsymbol{\alpha}} \exp(-\frac{\|\boldsymbol{\mu}\|_1}{d} t) + 1 - \rho \bar{C}_{\boldsymbol{\mu}, \boldsymbol{\alpha}}}\right).$$

□

2960

2961

2962 **Theorem 4.5.** Let α_0, α_2 be defined in Theorem 4.4 and α_1 be the threshold from there. Suppose $\alpha_1 < \alpha \leq \rho \frac{\mu_1 + \mu_d}{\sqrt{2}\|\boldsymbol{\mu}\|_2} < \alpha_2$. Then, for $j \in [d]$, there exists T_j such that

2963

2964

$$\frac{\beta_j(T_j)}{\beta_d(T_j)} \geq \text{LB}_j(\alpha) := \exp\left(2R'_j \left((R_j - 1) \log\left(\frac{1}{1 - \alpha_0/\alpha}\right) + \log\left(\frac{1}{\alpha_0/\alpha}\right) - C(R_j) \right)\right)$$

2965

where $R_j := (\mu_j + \mu_d)/\mu_1 > 2$, $R'_j := (\mu_d - \mu_j)/\mu_1$ and $C(R) := R \log R - (R - 1) \log(R - 1)$.

2966

2967

2968 *Proof.* By the assumption $\alpha_0 < \alpha_1 < \alpha$, we have $\underline{C}_{\boldsymbol{\mu}, \boldsymbol{\alpha}} = \frac{\alpha_0}{\rho\alpha} < \frac{1}{\rho}$. We also have

2969

$$\underline{C}_{\boldsymbol{\mu}, \boldsymbol{\alpha}} = \frac{\mu_1}{\sqrt{2}\|\boldsymbol{\mu}\|_2 \alpha} \geq \frac{\mu_1}{\sqrt{2}\|\boldsymbol{\mu}\|_2 \rho \alpha_{\boldsymbol{\mu}}^{(2)}} = \frac{\mu_1}{\rho(\mu_1 + \mu_d)} \geq \frac{\mu_1}{\rho(\mu_j + \mu_d)} = \frac{1}{\rho R_j} \quad \text{for all } j \in [d].$$

2970 $\Rightarrow \frac{1 - \rho \underline{C}_{\mu, \alpha}}{\rho \underline{C}_{\mu, \alpha}} = \frac{1}{\rho \underline{C}_{\mu, \alpha}} - 1 < R_j - 1$ for all $j \in [d]$.
 2971
 2972

2973 Let $T_j := \frac{1}{\mu_1} \log \left(\frac{\rho \underline{C}_{\mu, \alpha}}{1 - \rho \underline{C}_{\mu, \alpha}} (R_j - 1) \right) \geq 0$.
 2974

2975 From Theorem D.16, we have

2976 $I(T_j) \geq \frac{1}{\rho \mu_1^2} \log \left(\frac{1}{\rho \underline{C}_{\mu, \alpha} \exp(-\mu_1 T_j) + 1 - \rho \underline{C}_{\mu, \alpha}} \right)$
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997

$$\begin{aligned} I(T_j) &= \frac{1}{\rho \mu_1^2} \log \left(\frac{1}{\rho \underline{C}_{\mu, \alpha} \exp \left(\log \left(\frac{1 - \rho \underline{C}_{\mu, \alpha}}{\rho \underline{C}_{\mu, \alpha} (R_j - 1)} \right) \right) + 1 - \rho \underline{C}_{\mu, \alpha}} \right) \\ &= \frac{1}{\rho \mu_1^2} \log \left(\frac{1}{\frac{1 - \rho \underline{C}_{\mu, \alpha}}{R_j - 1} + 1 - \rho \underline{C}_{\mu, \alpha}} \right) \\ &= \frac{1}{\rho \mu_1^2} \log \left(\frac{1}{(1 - \rho \underline{C}_{\mu, \alpha}) \left(1 + \frac{1}{R_j - 1} \right)} \right) \\ &= \frac{1}{\rho \mu_1^2} \log \left(\frac{1}{(1 - \rho \underline{C}_{\mu, \alpha}) \left(\frac{R_j}{R_j - 1} \right)} \right) \\ &= \frac{1}{\rho \mu_1^2} \log \left(\frac{1 - \frac{1}{R_j}}{1 - \rho \underline{C}_{\mu, \alpha}} \right). \end{aligned}$$

Recall from Equation (4) that

$$\beta_j(T_j) = \beta_j(0) \exp(2\mu_j T_j - 2\rho\mu_j^2 I(T_j)) \text{ for } j \in [d].$$

Thus, for $j \in [d]$, we have

3001 $\frac{\beta_j(T_j)}{\beta_d(T_j)} = \exp(-2(\mu_d - \mu_j)T_j + 2\rho(\mu_d^2 - \mu_j^2)I(T_j))$
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023

$$\begin{aligned} &= \exp \left(-2 \frac{\mu_d - \mu_j}{\mu_1} \log \left(\frac{\rho \underline{C}_{\mu, \alpha}}{1 - \rho \underline{C}_{\mu, \alpha}} (R_j - 1) \right) + 2\rho(\mu_d^2 - \mu_j^2)I(T_j) \right) \\ &\geq \exp \left(-2 \frac{\mu_d - \mu_j}{\mu_1} \log \left(\frac{\rho \underline{C}_{\mu, \alpha}}{1 - \rho \underline{C}_{\mu, \alpha}} (R_j - 1) \right) + 2 \frac{\mu_d^2 - \mu_j^2}{\mu_1^2} \log \left(\frac{1 - \frac{1}{R_j}}{1 - \rho \underline{C}_{\mu, \alpha}} \right) \right) \\ &= \exp \left(2 \frac{\mu_d - \mu_j}{\mu_1} \left(\frac{\mu_d + \mu_j}{\mu_1} \log \left(\frac{1 - \frac{1}{R_j}}{1 - \rho \underline{C}_{\mu, \alpha}} \right) - \log \left(\frac{\rho \underline{C}_{\mu, \alpha}}{1 - \rho \underline{C}_{\mu, \alpha}} (R_j - 1) \right) \right) \right) \\ &= \exp \left(2R'_j \left(R_j \log \left(\frac{1 - \frac{1}{R_j}}{1 - \rho \underline{C}_{\mu, \alpha}} \right) - \log \left(\frac{\rho \underline{C}_{\mu, \alpha}}{1 - \rho \underline{C}_{\mu, \alpha}} (R_j - 1) \right) \right) \right) \\ &= \exp \left(2R'_j \left(R_j \log \left(\frac{\frac{R_j - 1}{R_j}}{1 - \frac{\rho \alpha_0}{\alpha}} \right) - \log \left(\frac{\frac{\rho \alpha_0}{\alpha}}{1 - \frac{\rho \alpha_0}{\alpha}} (R_j - 1) \right) \right) \right) \\ &= \exp \left(2R'_j \left((R_j - 1) \log(R_j - 1) - R_j \log(R_j) - (R_j - 1) \log \left(1 - \frac{\rho \alpha_0}{\alpha} \right) - \log \left(\frac{\rho \alpha_0}{\alpha} \right) \right) \right) \\ &= \exp \left(2R'_j \left(-C(R_j) - (R_j - 1) \log \left(1 - \frac{\rho \alpha_0}{\alpha} \right) - \log \left(\frac{\rho \alpha_0}{\alpha} \right) \right) \right) \\ &= \exp \left(2R'_j \left((R_j - 1) \log \left(\frac{1}{1 - \rho \alpha_0/\alpha} \right) + \log \left(\frac{1}{\rho \alpha_0/\alpha} \right) - C(R_j) \right) \right) \end{aligned}$$

□

3024 D.6.3 PROOF OF PROPOSITION 4.6
3025

3026 **Proposition 4.6.** *Under the conditions of Theorem 4.5, define $j^*(\alpha) := \arg \max_{j \in [d]} \text{LB}_j(\alpha)$ and*
 3027 *set $\alpha_0^* := \alpha_0$. Then, there exist thresholds $\alpha_0^* < \alpha_1^* < \dots < \alpha_m^* \leq \rho \frac{\mu_1 + \mu_d}{\sqrt{2} \|\mu\|_2}$ for some $m \leq d - 1$*
 3028 *such that $j^*(\alpha) = j$ for $\alpha \in (\alpha_{j-1}^*, \alpha_j^*]$.*

3029
3030 *Proof.* For $\alpha \in (\alpha_0, \rho \frac{\mu_1 + \mu_d}{\sqrt{2} \|\mu\|_2})$, let $x = \alpha_0/\alpha \in (0, 1)$ and write
3031

$$3032 \quad 3033 \quad G_j(x) = \log \text{LB}_j(\alpha) = 2R'_j \Phi_{R_j}(x),$$

3034 where

$$3035 \quad \Phi_R(x) = (R - 1) \log \frac{1}{1 - x} + \log \frac{1}{x} - C(R), \quad C(R) = R \log R - (R - 1) \log(R - 1),$$

3036 and $R_j = (\mu_j + \mu_d)/\mu_1 > 1$, $R'_j = (\mu_d - \mu_j)/\mu_1 \geq 0$.

3037 **(1) Shape of Φ_{R_j} .** We have

$$3038 \quad \Phi'_{R_j}(x) = \frac{R_j x - 1}{x(1 - x)}, \quad \Phi''_{R_j}(x) = \frac{R_j - 1}{(1 - x)^2} + \frac{1}{x^2} > 0.$$

3039 Thus Φ_{R_j} is strictly convex on $(0, 1)$ and attains its unique minimum at $x = 1/R_j$, where
3040 $\Phi_{R_j}(1/R_j) = 0$. Consequently $\Phi_{R_j}(x) \geq 0$ for all x and it is strictly increasing on $[1/R_j, 1)$.

3041 **(2) Crossing between adjacent indices.** For any $j \in \{1, \dots, d - 1\}$ define

$$3042 \quad H_{j+1,j}(x) = G_{j+1}(x) - G_j(x) = 2(R'_{j+1} \Phi_{R_{j+1}}(x) - R'_j \Phi_{R_j}(x)).$$

3043 Because $R_{j+1} > R_j$, we have $\Phi_{R_{j+1}}(1/R_{j+1}) = 0$ and $\Phi_{R_j}(1/R_{j+1}) > 0$, hence
3044 $H_{j+1,j}(1/R_{j+1}) < 0$. Likewise $\Phi_{R_j}(1/R_j) = 0$ and $\Phi_{R_{j+1}}(1/R_j) > 0$, giving
3045 $H_{j+1,j}(1/R_j) > 0$. By continuity, $H_{j+1,j}$ has at least one zero $x_j^* \in (1/R_{j+1}, 1/R_j]$.

3046 To show uniqueness, using the expression for Φ'_{R_j} , we obtain

$$3047 \quad H'_{j+1,j}(x) = \frac{2}{x(1 - x)} ((R'_{j+1} R_{j+1} - R'_j R_j)x - (R'_{j+1} - R'_j)).$$

3048 Since

$$3049 \quad R'_k R_k = \frac{(\mu_d - \mu_k)(\mu_k + \mu_d)}{\mu_1^2} = \frac{\mu_d^2 - \mu_k^2}{\mu_1^2},$$

3050 we obtain $R'_{j+1} R_{j+1} - R'_j R_j = \frac{\mu_j^2 - \mu_{j+1}^2}{\mu_1^2} < 0$. Its zero occurs at

$$3051 \quad x_c = \frac{R'_{j+1} - R'_j}{R'_{j+1} R_{j+1} - R'_j R_j} = \frac{\mu_1}{\mu_{j+1} + \mu_j},$$

3052 and therefore

$$3053 \quad H'_{j+1,j}(x) > 0 \text{ for } x < x_c, \quad H'_{j+1,j}(x) < 0 \text{ for } x > x_c.$$

3054 Hence $H_{j+1,j}(x)$ is strictly increasing up to x_c and strictly decreasing afterward. Since $1/R_j =$
 3055 $\mu_1/(\mu_j + \mu_d) \leq \mu_1/(\mu_{j+1} + \mu_j)$, $H_{j+1,j}$ is strictly increasing in the interval $(1/R_{j+1}, 1/R_j]$.
 3056 Because $H_{j+1,j}(1/R_{j+1}) < 0$ and $H_{j+1,j}(1/R_j) > 0$, this implies that $H_{j+1,j}$ crosses zero exactly
 3057 once in $(1/R_{j+1}, 1/R_j]$. Consequently the root x_j^* is unique, with $H_{j+1,j}(x) < 0$ for $x < x_j^*$ and
 3058 $H_{j+1,j}(x) > 0$ for $x > x_j^*$.

3059 **(3) Thresholds and staircase structure.** As α increases, $x = \alpha_0/\alpha$ decreases. Define $\alpha_j^* = \alpha_0/x_j^*$.
 3060 When α crosses α_j^* , the maximizer between indices j and $j + 1$ switches once from j to $j + 1$.
 3061 Because the intervals $(1/R_{j+1}, 1/R_j]$ are disjoint and ordered, the thresholds satisfy $\alpha_0^* < \alpha_1^* <$
 3062 $\dots < \alpha_m^* \leq \rho(\mu_1 + \mu_d)/(\sqrt{2} \|\mu\|_2)$ for some $m \leq d - 1$.

3063 Thus $j^*(\alpha)$ takes constant values on each interval $(\alpha_{j-1}^*, \alpha_j^*]$, increasing step by step until the last
 3064 threshold within the admissible range. \square

3078 D.6.4 PROOF OF PROPOSITION 4.7
30793080 **Proposition 4.7.** Consider α_0 defined in Theorem 4.4. (i) If $\alpha < \alpha_0$, then $\beta(t)$ converges to zero.3081 (ii) If $\alpha > \rho \frac{\|\mu\|_2^2}{\sqrt{2d}(\prod_{i=1}^d \mu_i)^{1/d} \|\mu\|_1}$, then $\beta(t)$ converge in ℓ_1 max-margin direction.
30823083 *Proof.* We use Theorem D.16 to prove the theorem. When $\mathbf{w}^{(1)}(0) = \mathbf{w}^{(2)}(0) = \alpha \mathbf{1}$, we have
3084

3085
$$\underline{C}_{\mu, \alpha} = \frac{\mu_1}{\sqrt{2 \sum_{j=1}^d \mu_j^2 \alpha^2}} = \frac{\mu_1}{\sqrt{2 \sum_{j=1}^d \mu_j^2 \alpha}} = \frac{\mu_1}{\sqrt{2} \|\mu\|_2 \alpha} = \frac{\alpha_0}{\alpha}$$

3086
3087
$$\bar{C}_{\mu, \alpha} = \frac{\|\mu\|_2^2}{\sqrt{2d}(\prod_{j=1}^d \mu_j \alpha)^{1/d} \|\mu\|_1} = \frac{\|\mu\|_2^2}{\sqrt{2d}(\prod_{j=1}^d \mu_j)^{1/d} \alpha \|\mu\|_1}$$

3088
3089
3090

3091 (i) By the assumption $\alpha \leq \alpha_0$, we have $\underline{C}_{\mu, \alpha} = \frac{\alpha_0}{\rho \alpha} \geq \frac{1}{\rho}$. Let $T := \frac{1}{\mu_1} \log \left(\frac{\rho \underline{C}_{\mu, \alpha}}{\rho \underline{C}_{\mu, \alpha} - 1} \right) \geq 0$.
30923093 From Theorem D.16, we have
3094

3095
$$I(t) \geq \frac{1}{\rho \mu_1^2} \log \left(\frac{1}{\rho \underline{C}_{\mu, \alpha} \exp(-\mu_1 t) + 1 - \rho \underline{C}_{\mu, \alpha}} \right).$$

3096

3097 As $t \rightarrow T$, we have
3098

3099
$$\begin{aligned} & \rho \underline{C}_{\mu, \alpha} \exp(-\mu_1 t) + 1 - \rho \underline{C}_{\mu, \alpha} \\ & \rightarrow \rho \underline{C}_{\mu, \alpha} \exp(-\mu_1 T) + 1 - \rho \underline{C}_{\mu, \alpha} \\ & = \rho \underline{C}_{\mu, \alpha} \exp \left(\log \left(\frac{\rho \underline{C}_{\mu, \alpha} - 1}{\rho \underline{C}_{\mu, \alpha}} \right) \right) + 1 - \rho \underline{C}_{\mu, \alpha} \\ & = \rho \underline{C}_{\mu, \alpha} \left(\frac{\rho \underline{C}_{\mu, \alpha} - 1}{\rho \underline{C}_{\mu, \alpha}} \right) + 1 - \rho \underline{C}_{\mu, \alpha} = 0. \end{aligned}$$

3100
3101
3102
3103
3104
3105

3106 Since $\rho \underline{C}_{\mu, \alpha} \exp(-\mu_1 t) + 1 - \rho \underline{C}_{\mu, \alpha}$ is strictly decreasing in t , we have
3107

3108
$$\rho \underline{C}_{\mu, \alpha} \exp(-\mu_1 t) + 1 - \rho \underline{C}_{\mu, \alpha} \rightarrow 0^+ \text{ as } t \rightarrow T.$$

3109 Therefore, $I(t) \rightarrow +\infty$ as $t \rightarrow T$.
31103111 Recall from Equation (4) that
3112

3113
$$\beta_j(t) = \beta_j(0) \exp(2\mu_j t - 2\rho\mu_j^2 I(t)) \text{ for } j \in [d].$$

3114 As $t \rightarrow T$, we have $\beta_j(t) \rightarrow 0$ for all $j \in [d]$ since $I(t) \rightarrow +\infty$. Therefore, $\beta(t) \rightarrow \mathbf{0}$ as $t \rightarrow T$.
31153116 (ii) By the assumption $\alpha > \rho \frac{\|\mu\|_2^2}{\sqrt{2d}(\prod_{i=1}^d \mu_i)^{1/d} \|\mu\|_1}$, we have $\bar{C}_{\mu, \alpha} < \frac{1}{\rho}$.
3117From Theorem D.16, we have
3118

3119
$$I(t) \leq \frac{d}{\rho \|\mu\|_2^2} \log \left(\frac{1}{\rho \bar{C}_{\mu, \alpha} \exp(-\frac{\|\mu\|_1}{d} t) + 1 - \rho \bar{C}_{\mu, \alpha}} \right).$$

3120

3121 For $t \in [0, \infty)$, we have
3122

3123
$$0 < 1 - \rho \bar{C}_{\mu, \alpha} \leq \rho \bar{C}_{\mu, \alpha} \exp(-\frac{\|\mu\|_1}{d} t) + 1 - \rho \bar{C}_{\mu, \alpha} < 1.$$

3124

3125 and as $t \rightarrow \infty$, we have
3126

3127
$$\rho \bar{C}_{\mu, \alpha} \exp(-\frac{\|\mu\|_1}{d} t) + 1 - \rho \bar{C}_{\mu, \alpha} \rightarrow 1 - \rho \bar{C}_{\mu, \alpha} > 0.$$

3128

3129 As $t \rightarrow \infty$, we have
3130

3131
$$I(t) \leq \frac{d}{\rho \|\mu\|_2^2} \log \left(\frac{1}{\rho \bar{C}_{\mu, \alpha} \exp(-\frac{\|\mu\|_1}{d} t) + 1 - \rho \bar{C}_{\mu, \alpha}} \right) \rightarrow \frac{d}{\rho \|\mu\|_2^2} \log \left(\frac{1}{1 - \rho \bar{C}_{\mu, \alpha}} \right) < \infty.$$

3132 Therefore, $I(t) < \infty$ as $t \rightarrow \infty$.
 3133

3134 Recall from Equation (4) that

3135
$$\beta_j(t) = \beta_j(0) \exp(2\mu_j t - 2\rho\mu_j^2 I(t)) \text{ for } j \in [d].$$

 3136

3137 Thus, for $j \in [d]$, we have

3138
$$\frac{\beta_j(t)}{\beta_d(t)} = \exp(-2(\mu_d - \mu_j)t + 2\rho(\mu_d^2 - \mu_j^2)I(t)).$$

 3139

3140 As $t \rightarrow \infty$, we have $\frac{\beta_j(t)}{\beta_d(t)} \rightarrow 0$ for all $j < d$ since $\lim_{t \rightarrow \infty} I(t) < \infty$. Therefore, $\beta(t)$ converges to
 3141 the direction of e_d as $t \rightarrow \infty$.
 3142

3143 \square

3145 D.7 NUMERICAL EVALUATION OF THEOREM 4.5

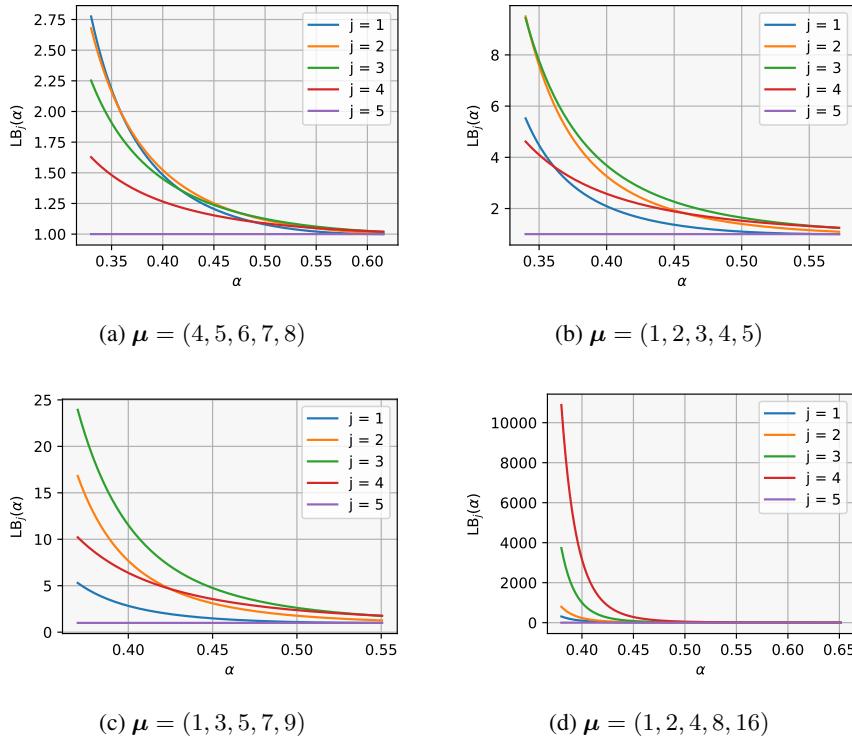
3146 In this section, we provide numerical illustrations of the lower bound $\text{LB}_j(\alpha)$ derived in Theorem 4.5. For several choices of μ , we compute the value of
 3147

3148
$$\text{LB}_j(\alpha) := \exp\left(2R'_j\left((R_j - 1) \log\left(\frac{1}{1-\alpha_0/\alpha}\right) + \log\left(\frac{1}{\alpha_0/\alpha}\right) - C(R_j)\right)\right)$$

 3149

3150 and visualize how much the ratio $\beta_j(t)/\beta_d(t)$ must be amplified at minimum.
 3151

3152 Figure 14 shows that for small α in Regime 2 and for μ with a large spectral gap μ_d/μ_1 , $\text{LB}_j(\alpha)$
 3153 easily exceeds 10. Since this is only a lower bound, the actual amplification can be even larger,
 3154 indicating that minor-to-intermediate coordinates can grow by substantially more than the major
 3155 coordinate.
 3156



3182 Figure 14: Numerical evaluation of $\text{LB}_j(\alpha)$ for various choices of μ .
 3183

3184 For reproducibility, we describe the numerical procedure used to generate Figure 14. For each choice
 3185 of μ (with $d = \dim(\mu)$), we evaluate $\text{LB}_j(\alpha)$ for all $j \in [d]$ on a uniform grid of α values. Following

3186 the assumptions of Theorem 4.5, we first obtain the threshold α_1 specified in Theorem 4.4. We then
 3187 set $\alpha \in \left[\alpha_1, \rho \frac{\mu_1 + \mu_d}{\sqrt{2} \|\mu\|_2} \right]$ using 400 grid points. The quantities α_0 , R_j , R'_j , and $C(R_j)$ are computed
 3188 directly from their definitions in Theorems 4.4 and 4.5 using the given μ . The index $j \in [d]$
 3189 corresponds to the coordinate ordering $\mu_1 < \dots < \mu_d$. Since the computation is closed-form, no
 3190 randomness is involved and the plots are exactly reproducible.
 3191

3192 D.8 EMPIRICAL VERIFICATION

3193
 3194
 3195 Our analysis in Section 4.2 focuses on the one-point setting \mathcal{D}_μ . We begin by verifying that the
 3196 sequential feature discovery occurs across multiple choices of μ in this one-point regime: both the
 3197 continuous-time rescaled flows and the discrete ℓ_∞ -SAM updates exhibit the same coordinate-wise
 3198 progression, and the loss dynamics follow the theoretical prediction. We then turn to multi-point
 3199 datasets and show that the sequential feature discovery persists in this more realistic setting under
 3200 both the rescaled ℓ_2 -SAM flow and discrete ℓ_2 -SAM updates, as illustrated in Figure 11. Finally,
 3201 we confirm that this phenomenon is not limited to depth 2; the same coordinate-wise progression
 3202 arises in deeper diagonal networks (general depth L). Taken together, these results demonstrate that
 3203 the sequential feature discovery is a robust and widely recurring behavior: it appears consistently
 3204 across different μ , across multiple multi-point datasets, across both continuous and discrete SAM
 3205 dynamics, and across depths $L \geq 2$.
 3206

3207 To clarify the heatmap visualizations (e.g., Figures 3a and 15 to 23), for each time t and initialization
 3208 scale α , we compute $j^\dagger = \arg \min_j \beta_j(t)$ and color the grid point (t, α) according to this index. Grid
 3209 regions where the predictor β becomes negligibly small are shown in gray, indicating convergence
 3210 toward 0. We use the threshold $\|\beta(t)\|_2 \leq 10^{-2}$ to define gray regions.
 3211

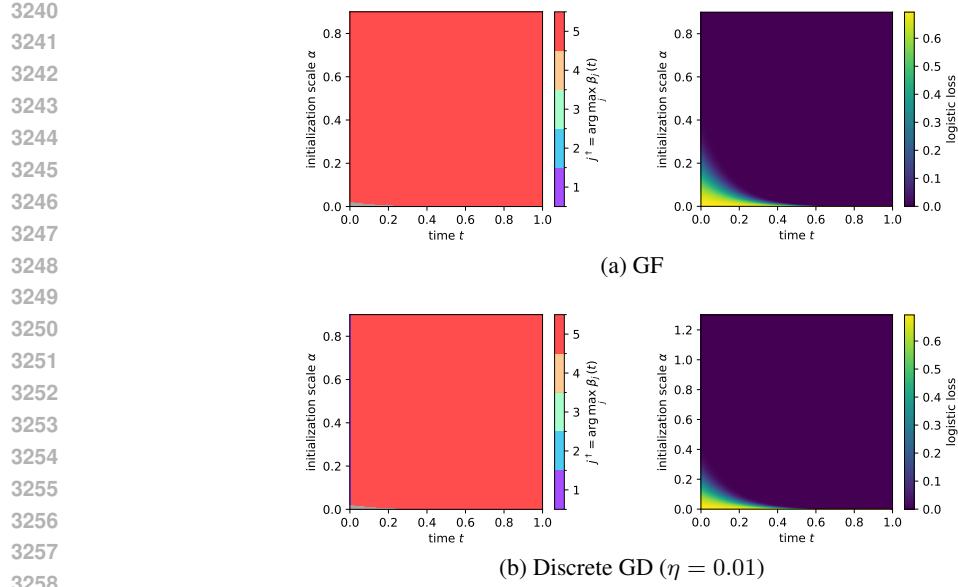
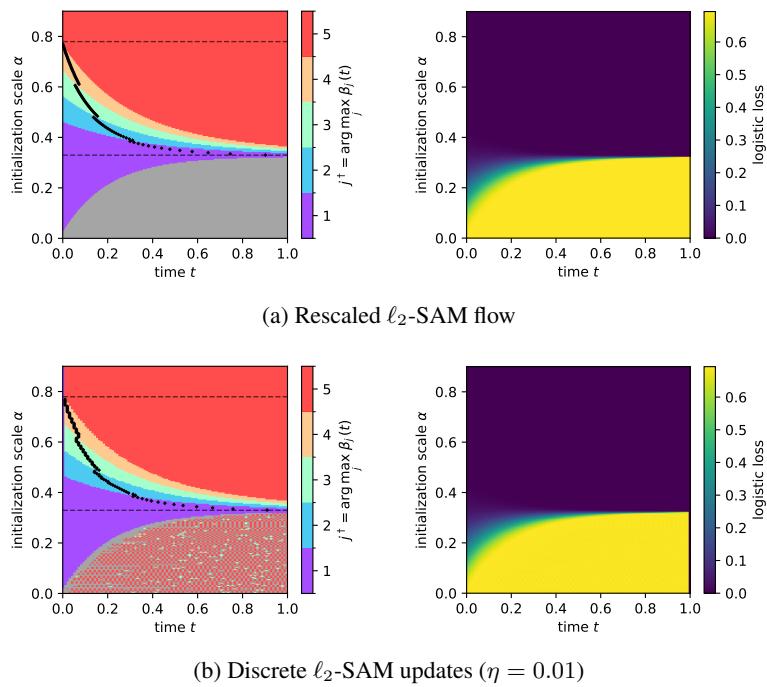
3212 Following the visualization style of Figure 3a, we also partition the α -axis into the three regimes
 3213 defined in Theorem 4.4: Regime 1 (small α), Regime 2 (intermediate α), and Regime 3 (large α).
 3214 These regime boundaries are indicated by horizontal black dashed lines in heatmap figures.
 3215

3216 For reproducibility, we detail the exact initialization used in all experiments. As mentioned in Section
 3217 4.2, we adopt a uniform initialization across coordinates and layers: $\mathbf{w}^{(1)}(0) = \mathbf{w}^{(2)}(0) = \alpha \mathbf{1}$
 3218 for depth-2 setup and $\mathbf{w}^{(1)}(0) = \dots = \mathbf{w}^{(L)}(0) = \alpha \mathbf{1}$ for depth- L . To approximate continuous-time
 3219 trajectories, we simulate the flow using an explicit Euler scheme with a small step size $\eta = 10^{-4}$.
 3220 For discrete updates, we use a step size of $\eta = 0.01$.
 3221

3222 D.8.1 ONE-POINT CASE: CONTINUOUS VS. DISCRETE DYNAMICS

3223
 3224
 3225 We first verify that sequential feature discovery appears robustly across multiple choices of μ in the
 3226 one-point setting. To demonstrate that this phenomenon is not limited to the continuous ℓ_2 -SAM
 3227 flow, we additionally evaluate discrete ℓ_2 -SAM updates. Across all tested choices of μ , the resulting
 3228 heatmaps closely match the structure in Figure 3a, showing both time-wise and initialization-wise
 3229 sequential feature discovery. To better visualize the evolution of $\beta(t)$, we also provide the loss
 3230 heatmaps over (α, t) . In the discrete ℓ_2 -SAM case, Regime 1 often appears unstable and does not
 3231 become fully gray. This occurs because the relatively large step size causes the trajectory to hover
 3232 near the origin without collapsing exactly to 0. As a result, the predictor norm stays above the gray
 3233 threshold—so it is not colored gray—yet the loss remains large, revealing that the trajectory is still
 3234 effectively stuck in the vicinity of the origin.
 3235

3236 For comparison, we first present the results of GF and discrete GD with $\mu = (4, 5, 6, 7, 8)$. The
 3237 behavior is similar across different choices of μ . Both GF and GD consistently recover the major
 3238 feature, independent of the initialization scale α , and they do not exhibit sequential feature discovery.
 3239

Figure 15: Dominant index j^\dagger over α, t and logistic loss on \mathcal{D}_μ with $\mu = (4, 5, 6, 7, 8)$.1. $\mu = (4, 5, 6, 7, 8)$ Figure 16: Dominant index j^\dagger over α, t and logistic loss on \mathcal{D}_μ with $\mu = (4, 5, 6, 7, 8)$ and $\rho = 1$.

3294 2. $\mu = (1, 2, 3, 4, 5)$

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323 3. $\mu = (1, 3, 5, 7, 9)$

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

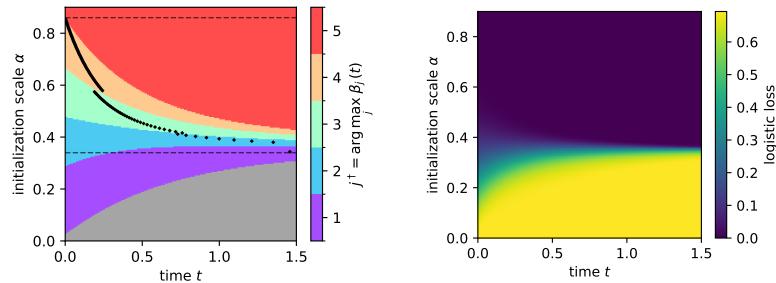
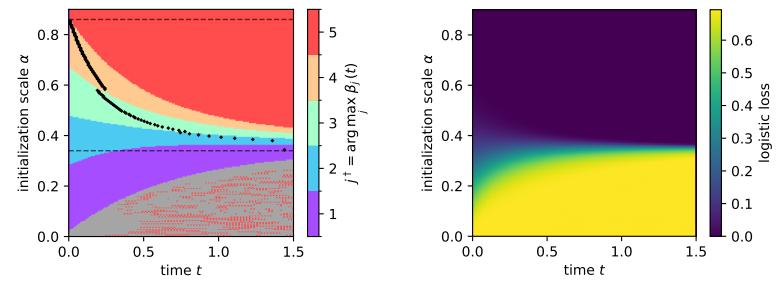
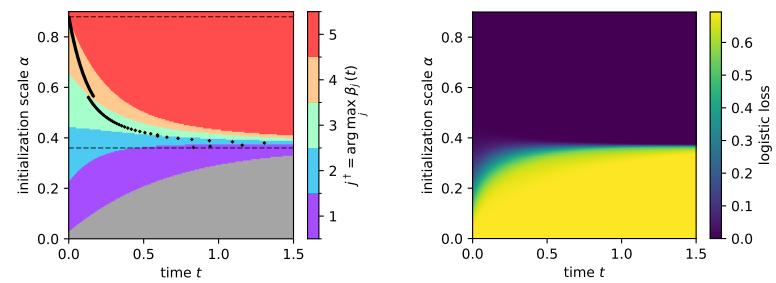
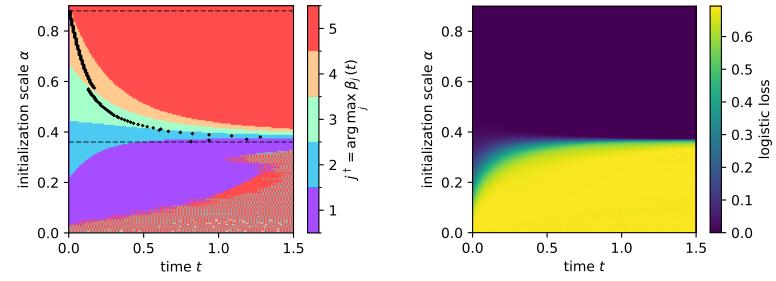
3343

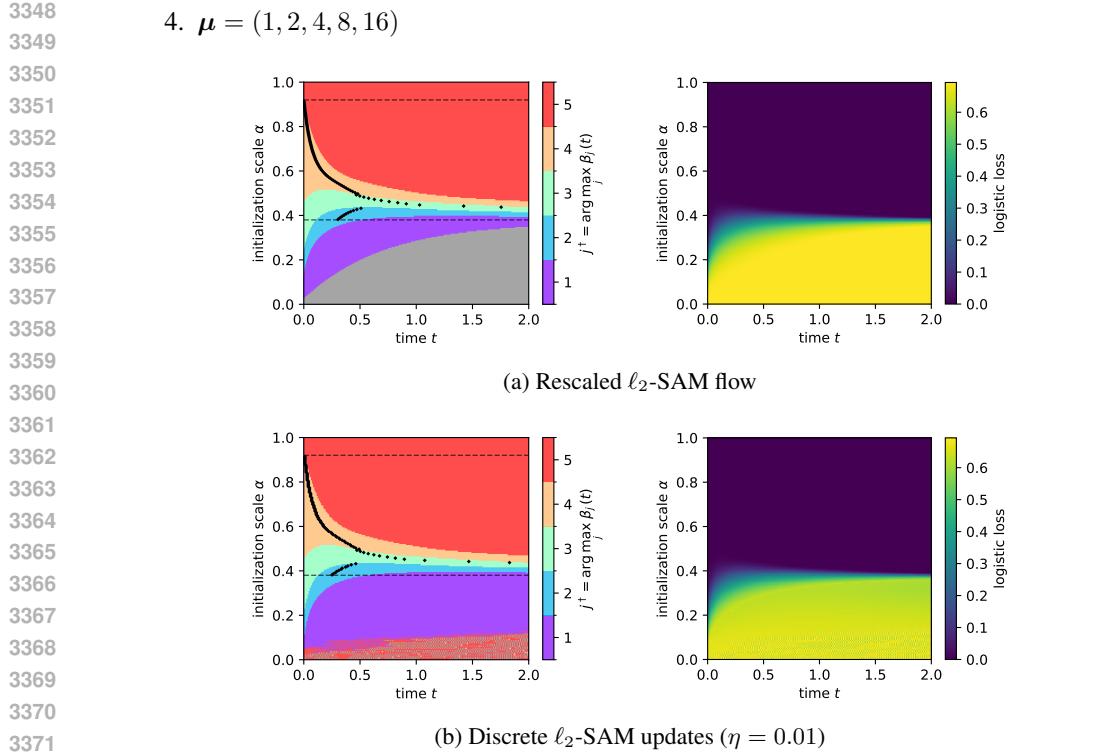
3344

3345

3346

3347

(a) Rescaled ℓ_2 -SAM flow(b) Discrete ℓ_2 -SAM updates ($\eta = 0.01$)Figure 17: Dominant index j^\dagger over α, t and logistic loss on \mathcal{D}_μ with $\mu = (1, 2, 3, 4, 5)$ and $\rho = 1$.(a) Rescaled ℓ_2 -SAM flow(b) Discrete ℓ_2 -SAM updates ($\eta = 0.01$)Figure 18: Dominant index j^\dagger over α, t and logistic loss on \mathcal{D}_μ with $\mu = (1, 3, 5, 7, 9)$ and $\rho = 1$.

Figure 19: Dominant index j^\dagger over α, t and logistic loss on \mathcal{D}_μ with $\mu = (1, 2, 4, 8, 16)$ and $\rho = 1$.

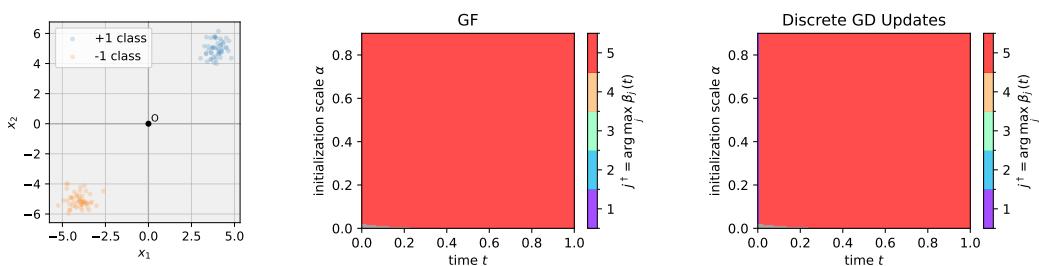
D.8.2 MULTI-POINT CASE: PERSISTENCE OF ONE-POINT BEHAVIOR

To examine whether the sequential feature discovery identified in the one-point analysis persist in more realistic datasets, we construct random linearly separable binary data by sampling two Gaussian clusters centered at $+\mu$ and $-\mu$ for various choices of μ . Specifically, we draw

$$x_n^{(+)} = \mu + \varepsilon_n, \quad y_n = +1, \quad x_n^{(-)} = -\mu + \varepsilon_n, \quad y_n = -1,$$

with $\varepsilon_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ and use $N/2$ samples per class (with $\mu = (1, 2)$, $N = 100$, $\sigma = 0.5$). For visualization, we plot only the first two dimensions of the dataset in the left panels. The middle panels show the results of the rescaled ℓ_2 -SAM flow on this dataset, and the right panels show the discrete ℓ_2 -SAM updates. Across all choices of multi-point datasets, the same sequential feature discovery behavior observed in the one-point setting persists.

For comparison, we present the results of GF and discrete GD with the multi-point dataset generated with mean $\mu = (4, 5, 6, 7, 8)$. The behavior is similar across different choices of μ . As in the one-point setting, both GF and GD consistently recover the major feature, independent of the initialization scale α , and they do not exhibit sequential feature discovery.

Figure 20: First two dimensions of \mathcal{D}_μ with $\mu = (4, 5, 6, 7, 8)$ and the dominant index j^\dagger over α, t under GF and discrete GD updates.

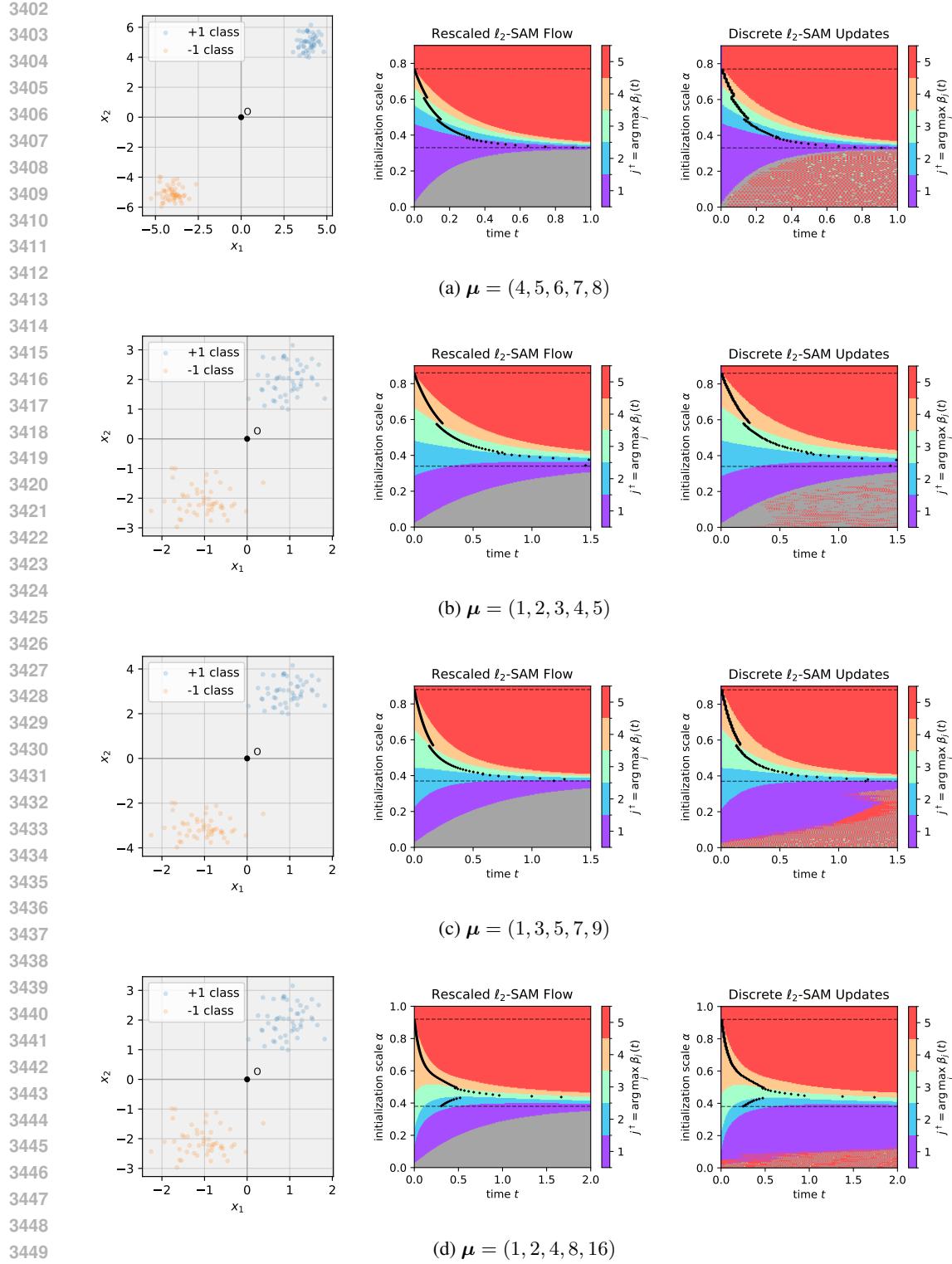
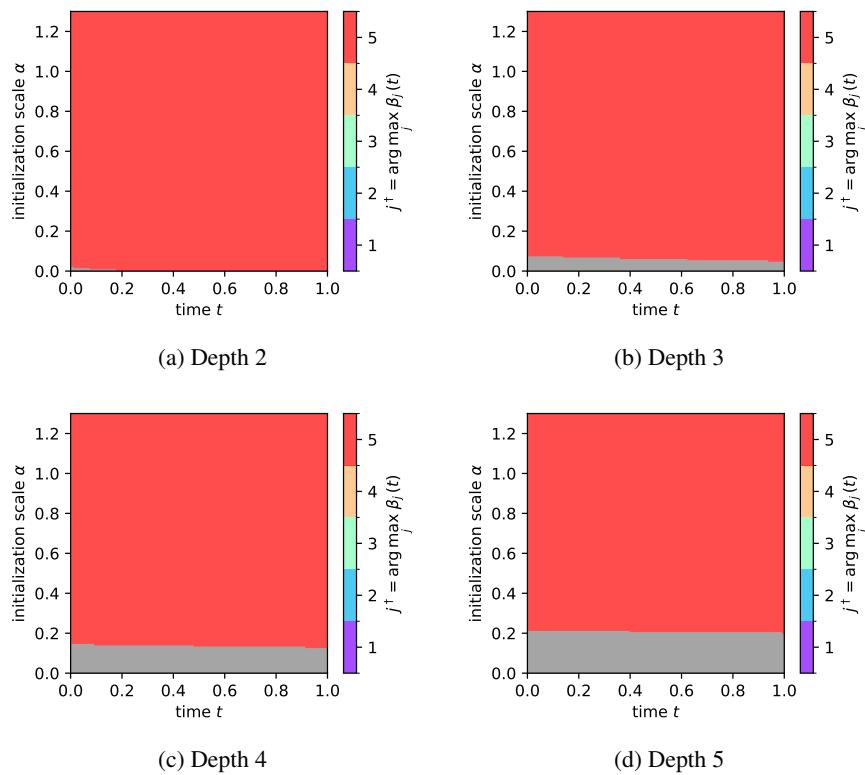


Figure 21: First two dimensions of \mathcal{D}_μ and the dominant index j^+ over α, t under the rescaled ℓ_2 -SAM flow and discrete ℓ_2 -SAM updates.

3456 D.8.3 DEPTH- L CASE: PERSISTENCE OF DEPTH-2 DYNAMICS
3457

3458 We confirm that the sequential feature discovery is not limited to depth $L = 2$; the same coordinate-
3459 wise progression arises in deeper diagonal networks (general depth L). Specifically, we observe GF
3460 and rescaled ℓ_2 -SAM flow on the one-point dataset \mathcal{D}_μ with $\mu = (4, 5, 6, 7, 8)$. The behavior re-
3461 mains similar across different choices of μ , multi-point datasets, and under discrete updates. While
3462 GF appears to exhibit Regime 1 (being trapped near the origin), it does not show the sequential
3463 feature discovery, even in the deeper models. However, the rescaled ℓ_2 -SAM flow clearly demon-
3464 strates the sequential feature discovery for general depth L . Even though Regime 1 appears chaotic,
3465 Regime 2 and 3 are distinctly observed. Thus, the sequential feature discovery robustly occurs not
3466 only at depth $L = 2$ but also in deeper models.
3467



3478 Figure 22: Dominant index j^\dagger over α, t under the GF on \mathcal{D}_μ with $\mu = (4, 5, 6, 7, 8)$.
3479

3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

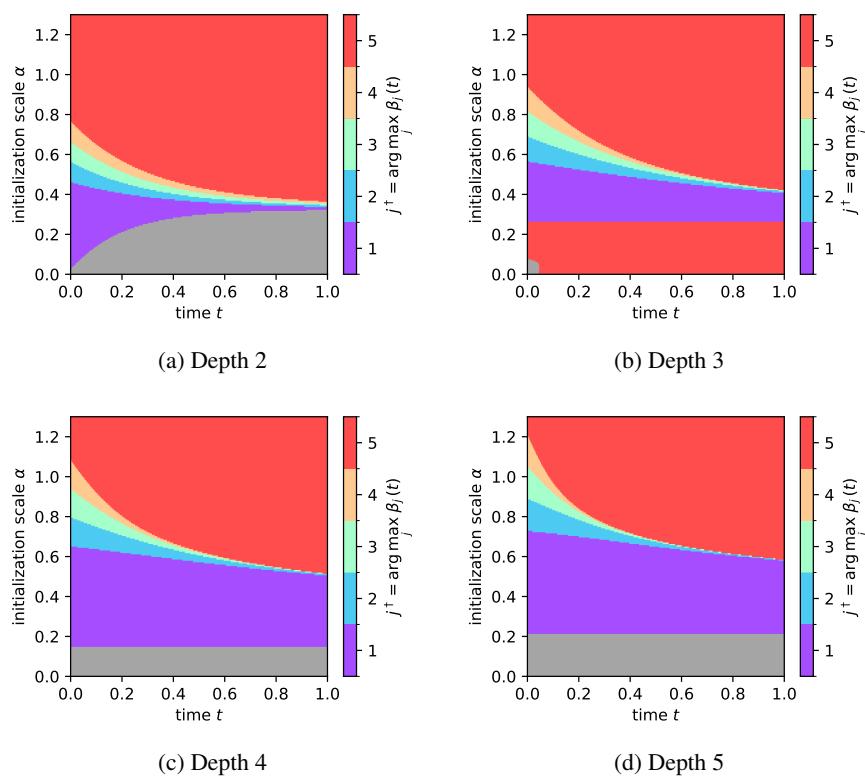


Figure 23: Dominant index j^\dagger over α, t under the rescaled ℓ_2 -SAM flow on \mathcal{D}_μ with $\mu = (4, 5, 6, 7, 8)$ and $\rho = 1$.

3564
3565

E EXPERIMENTS

3566
3567

E.1 LOSS DYNAMICS

3568
3569
3570
3571
3572
3573
3574

For initialization scales in the intermediate regime (Regime 2 in Theorem 4.4), SAM first amplifies minor coordinates and only later focuses on the major ones. This also affects to the training loss curve. As shown in Figure 24, the loss curve of SAM is noticeably flatter than that of GD in the early phase of training. In this experiment, we train the diagonal linear network with full-batch SAM using radius $\rho = 0.5$, learning rate 0.05, and 10000 epochs. We fix the initialization scale to $\alpha = 0.06$ as a representative intermediate value. The data vector is $\mu = (1, 2, 3, 4, 5, 6)$, and all other settings follow the default diagonal-network configuration.

3575
3576
3577
3578
3579
3580
3581

To make this precise, we track the dominant index $\arg \max_j r_j(t)$, where $r_j(t)$ denotes the growth rate of $\beta_j(t)$. In the early phase, this dominant index corresponds to minor features (coordinates with small μ_j), while in the later phase it switches to major features (coordinates with larger μ_j). When SAM is focusing on minor features, the loss decreases slowly, leading to a plateau; once SAM shifts to major features, the loss drops much faster. In contrast, GD does not exhibit this minor-to-major feature focusing behavior, and its loss decreases more rapidly from the beginning, without such plateau.

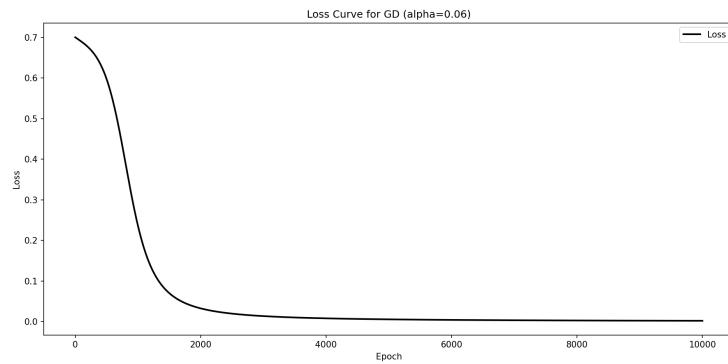
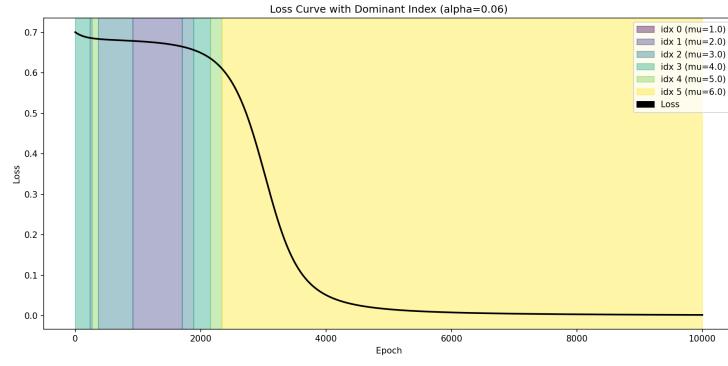
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
35923593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
36053606
3607
3608
3609
3610
3611
3612
3613

Figure 24: Training loss curves of GD (top) and SAM (bottom) on the 2-layer diagonal network in the intermediate initialization regime ($\alpha = 0.06$). The colored areas correspond to regimes where each feature is mostly amplified. Compared to GD, SAM exhibits an early plateau loss curve: in this phase, SAM primarily amplifies minor coordinates, leading to slow loss decrease. Once SAM shifts its focus to major coordinates, the loss drops rapidly. GD does not display this minor-to-major feature focusing behavior, thereby showing a more steadily decreasing loss without such a plateau.

3614
3615

E.2 SEQUENTIAL FEATURE DISCOVERY UNDER RANDOM INITIALIZATION

3616
3617

In the main analysis, we focused on a symmetric and layer-wise balanced initialization to obtain a clean theoretical characterization. Here, we examine whether the sequential feature discovery phenomenon persists under more general random initialization.

3618 We initialize the two layers independently as
 3619

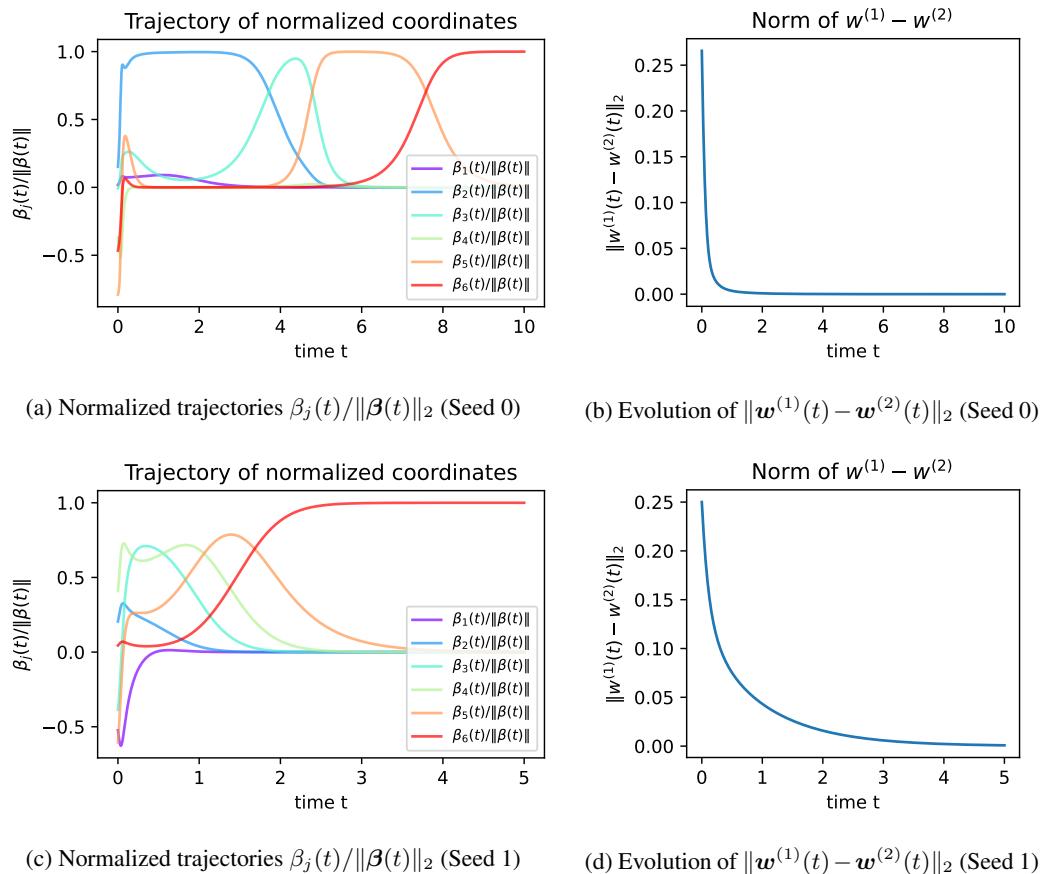
$$\mathbf{w}^{(1)}(0), \mathbf{w}^{(2)}(0) \sim \mathcal{N}(0, \alpha^2 I),$$

3620 where the parameter α controls the initialization scale as the standard deviation of the Gaussian
 3621 distribution.

3622 Figure 25a shows the normalized coordinate trajectories $\beta_j(t)/\|\beta(t)\|_2$ under random initialization
 3623 (Seed 0) for $\alpha = 0.65$, $\mu = (1, 2, 3, 4, 5, 6)$, and $\rho = 0.1$. In this case, all coordinates except
 3624 the fourth are sequentially amplified, with activation progressing roughly from the second to the
 3625 sixth coordinate. Correspondingly, Figure 25b shows that the layer-wise discrepancy $\|\mathbf{w}^{(1)}(t) -$
 3626 $\mathbf{w}^{(2)}(t)\|_2$ rapidly decays to zero, indicating fast balancing of the two layers.

3627 A qualitatively similar but quantitatively different pattern is observed under a different random seed.
 3628 In Figure 25c (Seed 1), the sequential amplification begins from the third coordinate and proceeds
 3629 toward the sixth. Despite this seed-dependent variation in the detailed activation order, the overall
 3630 sequential feature discovery phenomenon persists. Moreover, Figure 25d confirms that the balanced-
 3631 ness property is again achieved rapidly in the early stage of training.

3632 These empirical observations are theoretically supported by Lemma D.5, which shows that even
 3633 when the layers start from imbalanced initializations, the dynamics drive them toward a balanced
 3634 regime exponentially fast. This explains why the simplified, balanced initialization assumed in the
 3635 main analysis captures the essential behavior of the training dynamics beyond this restricted setting.



3668 Figure 25: Sequential feature discovery under random initialization in a two-layer diagonal network.
 3669 Rows correspond to different random seeds (Seed 0 and Seed 1), and columns correspond to different
 3670 plot types (left: normalized coordinate trajectories, right: balancedness).
 3671

3672 **E.3 ALTERNATIVE 2-LAYER MODELS**
3673

3674 To evaluate the generality of our theoretical predictions, we conduct experiments on alternative 2-
3675 layer models featuring different parameterizations and metrics. In all cases, the experimental settings
3676 and hyperparameters are chosen to closely match those used in our main theoretical simulations with
3677 the diagonal network.

3678 **E.3.1 LINEAR NETWORK**
3679

3680 We fix a small matrix dimension $d = 5$. All inputs are $d \times d$ matrices. We first draw a single random
3681 “signal” matrix $\mu \in \mathbb{R}^{d \times d}$ with i.i.d. standard normal entries, and then compute its singular value
3682 decomposition (SVD)
3683

$$\mu = U_\mu \operatorname{diag}(S_\mu) V_\mu^\top.$$

3684 From this SVD, we construct an orthonormal basis of rank-1 matrices
3685

$$\mu_i = u_i v_i^\top, \quad i = 1, \dots, d,$$

3686 where u_i is the i -th column of U_μ and v_i^\top is the i -th row of V_μ^\top . These μ_i play the role of “feature
3687 directions”, analogous to the coordinates in the diagonal model.
3688

3689 We use the logistic loss, and the dataset follows the same format as in the diagonal model: we
3690 consider the two points $\{\mu, -\mu\}$ with opposite labels $\{+1, -1\}$. The 2-layer linear network is
3691

$$f_\theta(X) = \langle \beta, X \rangle_F = \langle W^{(1)} W^{(2)}, X \rangle_F,$$

3692 with learnable matrices $W^{(1)}, W^{(2)} \in \mathbb{R}^{d \times d}$ and effective weight $\beta = W^{(1)} W^{(2)}$. Each layer is
3693 initially set to the identity matrix, and before training we rescale all layers by a scalar α , so that
3694 $W^{(1)}(0) = W^{(2)}(0) = \alpha I$ and hence $\beta(0) = \alpha^2 I$.
3695

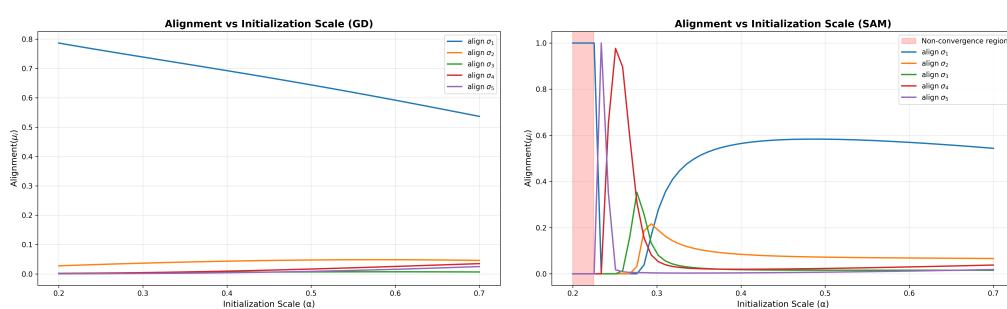
3696 For training, we use full-batch SAM with radius $\rho = 0.5$, learning rate 0.05, and a finite training
3697 epochs of $T = 5000$. We repeat the experiment over a range of initialization scales, $\alpha \in$
3698 $\{0.20, 0.21, \dots, 0.70\}$.
3699

3700 As our tracking metric, we monitor the normalized squared alignment
3701

$$a_i(t) = \frac{\langle \beta(t), \mu_i \rangle_F^2}{\|\beta(t)\|_F^2}, \quad i = 1, \dots, d,$$

3702 where $\beta(t)$ denotes the effective weight at training iteration t .
3703

3704 The results are shown in Figure 26. As plotted in the figure, the dynamics of SAM and GD are
3705 qualitatively different. For SAM, when the initialization scale is smaller than 0.225, training does
3706 not converge to a solution with sufficiently small loss. Beyond this regime, as the initialization
3707 scale increases, the dominant singular direction that maximizes the alignment (i.e., $\arg \max_i a_i(T)$)
3708 moves from σ_5 to σ_1 , indicating that SAM sequentially aligns from the minor component to the
3709 major component as α grows.
3710



3724 Figure 26: Alignment of the effective weight $\beta(t)$ for GD (left) and SAM (right) across initialization
3725 scales.

3726 E.3.2 CONVOLUTIONAL NEURAL NETWORK
37273728 We consider a 2-layer linear convolutional network trained on a synthetic dataset built from a single
3729 image matrix μ . This experiment is designed to probe frequency-wise feature selection under SAM.3730 We fix an image size $d = 32$ and construct a single base image $\mu \in \mathbb{R}^{1 \times d \times d}$ as a sum of cosine
3731 plane waves with radial frequencies:
3732

3733
$$\mu(x, y) = \sum_{k=1}^K w_k \sum_{l=1}^{L_k} \cos \left(w \pi r_k \frac{x \cos \theta_{k,l} + y \sin \theta_{k,l}}{d} + \phi_{k,l} \right),$$

3734
3735

3736 The experiment uses $K = 5$ different frequency bands, where r_k are target bands, $w_k > 0$ are
3737 band weights, and $\theta_{k,l}$, $\phi_{k,l}$ are random orientations and phases for each band. We take $r_k \in$
3738 $\{3, 9, 11, 13, 15\}$ and $w_k = \{1.0, 2.0, 3.0, 4.0, 5.0\}$ for all k . We set $L_k = 8$ for all k . We then
3739 renormalize μ to have unit euclidean norm, then shift it slightly to be strictly positive. Next, we
3740 define the frequency bands by constructing radial masks $M_k \subset \{0, \dots, d-1\}^2$ in the fourier
3741 domain. Let $\hat{\mu}$ denote the 2D FFT of μ . The band energy of μ at band k is then given by
3742

3743
$$\mu_k = \sum_{m \in M_k} |\hat{\mu}(m)|^2.$$

3744

3745 The bands are sorted by μ_k . As we apply low weights to low frequency bands when constructing
3746 μ , in this setting, low frequency bands have smaller μ_k and treated as minor features, and high
3747 frequency bands have larger μ_k and treated as major features.3748 The utilized model is a depth-2 convolutional network without nonlinearities. For the first convo-
3749 lutional layer, we use 3×3 convolution with 32 output channels, stride 1, and padding 1. For the
3750 second convolutional layer, we use same size of kernel, channel size, stride, and padding.3751 We used realistic gaussian initialization for the weights of the convolutional layers. The weights for
3752 each layer are independently initialized. Lastly, the final FC layer is a linear layer. the input for fc
3753 layer is squeezed 1d vector, and the output is a single logit.3754 Logistic loss is used, and full-batch training is employed. We use learning rate of 0.03 and $\rho = 0.1$.
3755 We train for 6000 epochs.
37563757 **Band-wise effective weights.** To compare with the diagonal model, we require a band-wise de-
3758 composition of the effective weight $\beta(\theta)$ in input space. Since the network is linear, $\beta(\theta)$ can be
3759 recovered from gradients. At a given parameter vector θ , we consider the empirical margin
3760

3761
$$s(\theta) = \mathbb{E}_{(x,y)} [y f_\theta(x)] = \frac{1}{2} (f_\theta(\mu) - f_\theta(-\mu)).$$

3762
3763

3764 We compute the gradient of $s(\theta)$ with respect to the input and form a “virtual gate” version of β in
3765 input space:
3766

3767
$$\nabla_x s(\theta)|_{x,y} = y (\nabla_x f_\theta(x)).$$

3768

3769 So,
3770

3771
$$\beta_{\text{map}}(u, v) = \mathbb{E}_{(x,y)} [(\nabla_x f_\theta(x) \odot x)_{u,v}],$$

3772 which is proportional to $(\beta(\theta) \odot \mu)_{u,v}$ in our linear setting. In practice, this expectation is computed
3773 exactly by averaging over $x \in \{\mu, -\mu\}$.
3774

3775 We then take the 2D FFT of β_{map} , denoted $\hat{\beta}_{\text{map}}$, and define the band-wise effective weights by
3776
3777

3778
$$\beta_k(\theta) = \sum_{m \in M_k} |\hat{\beta}_{\text{map}}(m)|^2.$$

3779

3780 For each training epoch t we record the vector
3781

3782
$$(\beta_1(\theta_t), \dots, \beta_K(\theta_t)),$$

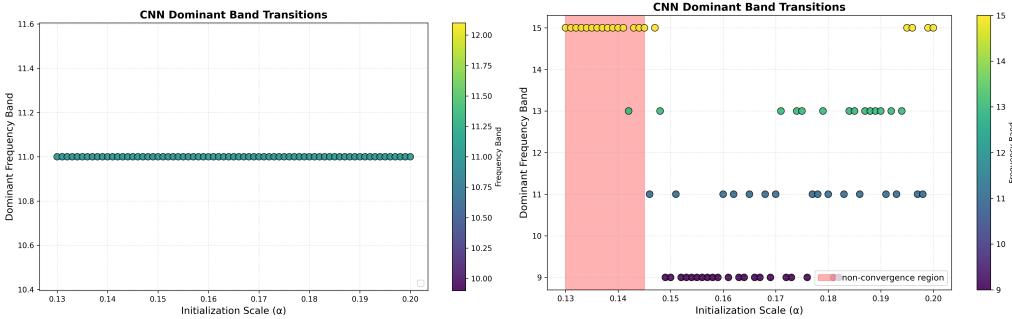
3783

3780 and, in particular, the index of the dominant band
 3781

$$k_{\text{dom}}(t) = \arg \max_k \beta_k(\theta_t).$$

3784 In our initialization-scale experiments, we repeat this procedure over a range of $\alpha \in [0.13, 0.20]$
 3785 and, for each α , track both the dominant band k_{dom} at the end of training. This provides a CNN
 3786 analogue of the feature-selection behavior observed in the diagonal model, where coordinates are
 3787 replaced by frequency bands.
 3788

3789 Figure 27 displays how the final dominant frequency band selected by the CNN varies with the
 3790 initialization scale α . Consistent with expectations, when trained with SAM, the model emphasizes
 3791 minor features (i.e., low frequency bands) for small α , and shifts its focus to major features (high
 3792 frequency bands) as α increases. In contrast, under standard GD, the dominant frequency band
 3793 remains unchanged regardless of the initialization scale.
 3794



3795 Figure 27: Dominant band for GD (top) and SAM (bottom) across gaussian initialization with
 3796 different scales. Each point shows the dominant band (the band that model mostly focuses on) at the
 3797 end of training; SAM systematically shifts from minor (low-frequency) to major(high-frequency)
 3798 bands as α increases, whereas GD remains insensitive to α .
 3799

3812 E.4 GRAD-CAM 3813

3814 As our theoretical analysis rigorously characterizes the dynamics of SAM in linear diagonal net-
 3815 works, we extend our empirical investigation to convolutional neural networks (CNNs) to examine
 3816 whether the same phenomena persist in more realistic architectures. Combining the results for both
 3817 ℓ_∞ -SAM and ℓ_2 -SAM, our theory predicts three practical regimes: for small initialization scale α ,
 3818 SAM collapses toward the origin; for large α , SAM behaves similarly to GD; and for intermediate
 3819 α , SAM preferentially amplifies minor to intermediate features relative to GD.
 3820

3821 To examine these predictions in practice, we train depth-2 CNNs with ReLU activations using both
 3822 SAM and GD. We then apply Grad-CAM (Selvaraju et al., 2019; Gildenblat & contributors, 2021)
 3823 to visualize which regions of the input image are emphasized by each model. In addition to qual-
 3824 itative visualizations, we compute the average values of pixels whose Grad-CAM activation exceeds
 3825 a threshold (0.5) and plot this quantity as a function of the initialization scale α . To characterize
 3826 the sequential feature discovery as a function of the initialization scale, we rescale the default ran-
 3827 dom initialization by multiplying it by α and train the model under this controlled initialization
 3828 scheme. Unlike the theoretical setting of Theorem 4.5, which assumes a structured initialization, we
 3829 use randomized initialization with rescaling in practice. In the corresponding figures, we indicate
 3830 collapse-to-origin behavior in green and blow-up behavior in purple.
 3831

3832 We conduct experiments on MNIST (Deng, 2012), SVHN (Netzer et al., 2011), and CIFAR-10
 3833 (Krizhevsky et al., 2009). Across all datasets, we consistently observe that GD-trained models
 3834 concentrate on dominant, high-intensity pixels, whereas SAM-trained models emphasize lower-
 3835 intensity, minor pixel regions. These results demonstrate that the distinct feature prioritization
 3836 mechanism predicted by our theory persists in nonlinear CNN architectures.
 3837

3834
3835

E.4.1 MNIST

3836
3837

We first study this phenomenon on MNIST. MNIST has a simple structure, where the black background takes the minimum pixel value (0) and the white digit takes the maximum pixel value (1).

3838
3839
3840
3841
3842
3843
3844
3845

We construct a subset of 1,000 images whose labels are in 0, 1, 2, 3 and train models using either GD or ℓ_2 -SAM. After training, we visualize the learned attention patterns using Grad-CAM, as shown in Figure 28. We observe that the GD-trained model primarily bases its predictions on the white digit region, whereas the ℓ_2 -SAM-trained model concentrates more strongly on the black background region. Unless otherwise stated, we use a learning rate of 0.1, a SAM perturbation radius of 0.5, and train for 500 epochs with a batch size of 64. We use no momentum and no weight decay. For the CNN architecture, we use 3×3 convolutional kernels and do not apply batch normalization or layer normalization.

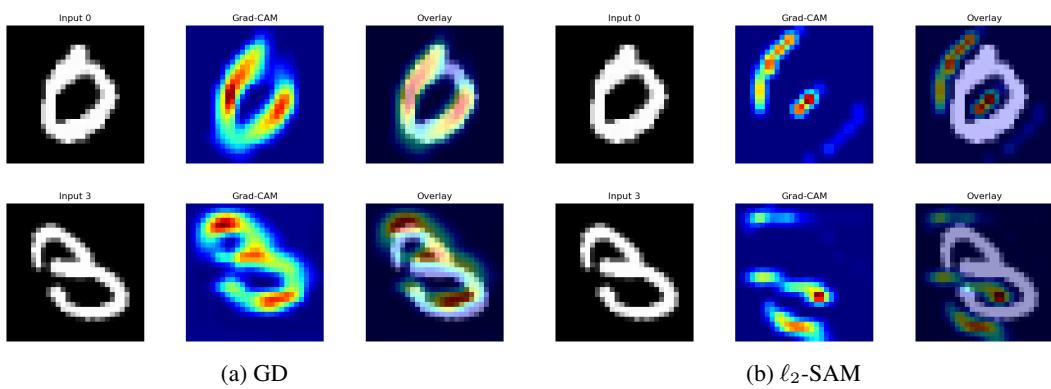
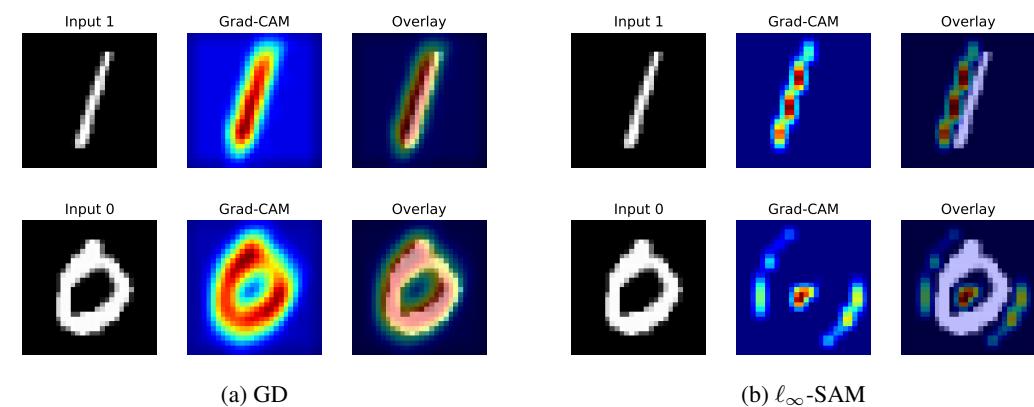
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
38583859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883

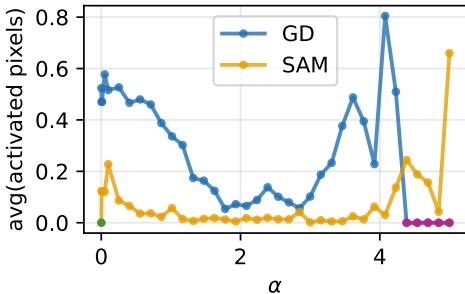
Figure 28: Grad-CAM comparison between GD and ℓ_2 -SAM on MNIST (labels 0–3).

To study the practical behavior of ℓ_∞ -SAM, we train models using ℓ_∞ -SAM on a subset of 1,000 MNIST images with labels in $\{0, 1\}$. We then visualize the Grad-CAM maps, as shown in Figure 29. We observe a bias pattern similar to that of ℓ_2 -SAM, where the model places greater emphasis on background regions corresponding to minor features. We use the same hyperparameters as in the previous experiment: learning rate 0.1, perturbation radius 0.5, training for 500 epochs, and a batch size of 64.

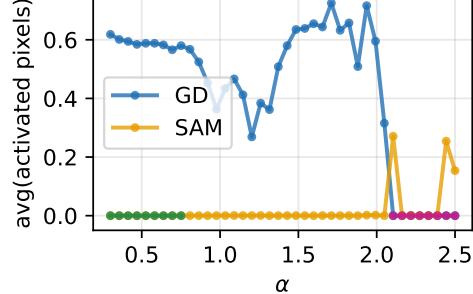
3881
3882
3883
3884
3885
3886
3887

We now quantify the average values of activated pixels (Grad-CAM > 0.5) as a function of the initialization scale α across different dataset subsets. In this experimental setup (Figure 30), we observe that GD consistently concentrates more on the white digit region, which can be interpreted as the major component in the pixel value manner, unless GD fails to minimize the loss because of too large initialization scale. We denote as purple dots where GD blows up. Moreover, we observe

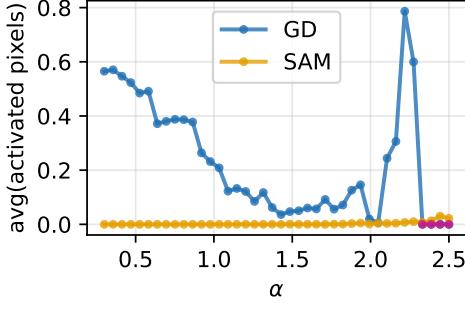
three regimes of α of SAM. We denote as green dots where too small initialization scale fails to escape near the origin and so the loss is not changed. Here can be seen as Regime 1. After that, SAM concentrates on the pixels whose average is almost 0, so the background region. This implies SAM concentrating on the minor component of the data more than GD, which can be seen as Regime 2. When GD blows up, SAM also goes out of the trend and almost blows up.



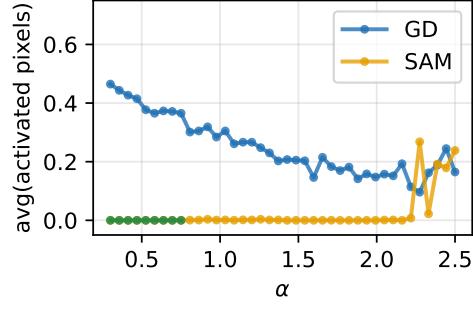
(a) MNIST with labels 0,1,2,3.



(b) 1k MNIST images with labels 0 and 1.



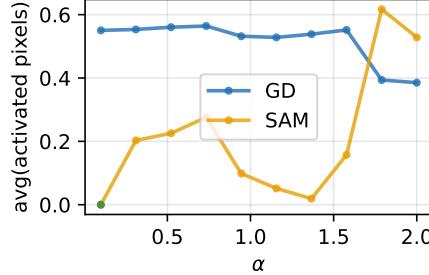
(c) 1k MNIST images with labels 0,1,2,3.



(d) Full MNIST 1k subset.

Figure 30: Average number of pixels with Grad-CAM activation exceeding 0.5 as a function of the initialization scale α , comparing GD and ℓ_2 -SAM across different MNIST subsets.

ℓ_∞ -SAM exhibits a similar pattern (Figure 31). When α is small, the dynamics collapse toward the origin. For intermediate values of α , ℓ_∞ -SAM tends to prioritize minor features more strongly than GD. For sufficiently large α , however, the behavior of ℓ_∞ -SAM deviates from this trend.

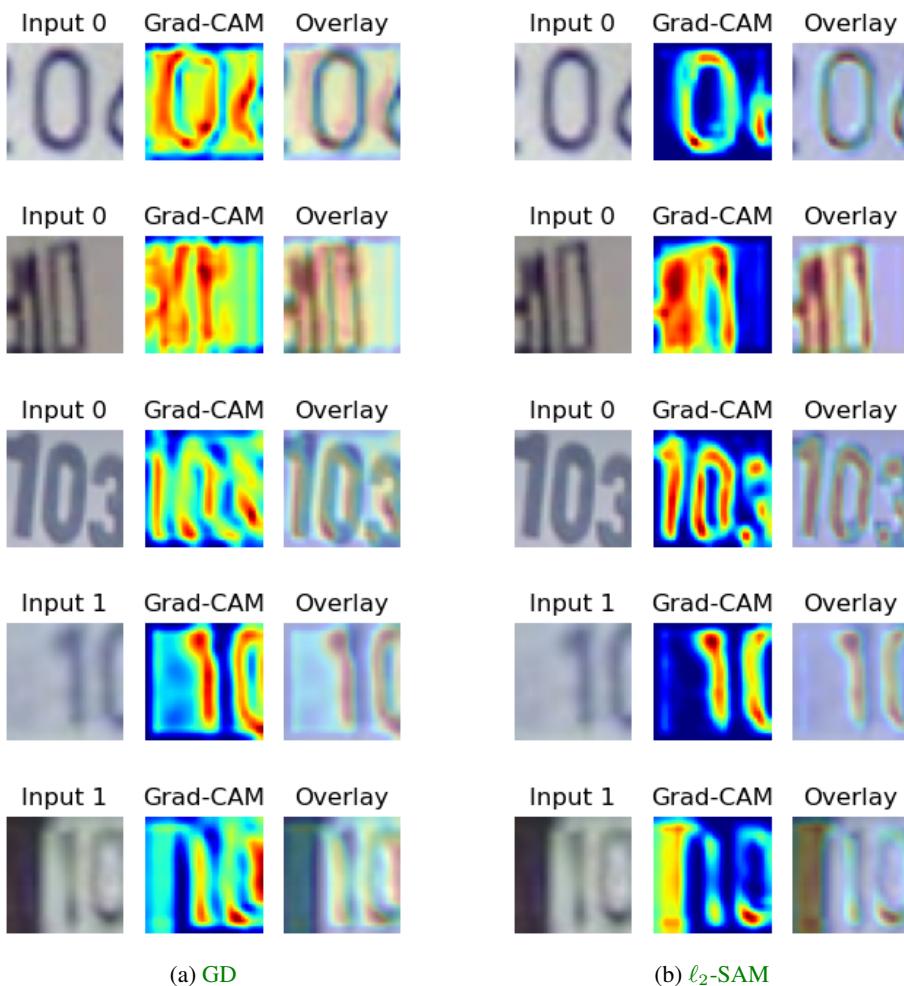
Figure 31: Average number of pixels with Grad-CAM activation exceeding 0.5 as a function of the initialization scale α , comparing GD and ℓ_∞ -SAM on 1k MNIST images with labels 0 and 1.

3942 E.4.2 SVHN
3943
3944
3945

3946 We next study this phenomenon on SVHN. SVHN is more complex than MNIST, as it contains
 3947 both images with dark backgrounds and light digits, as well as images with light backgrounds and
 3948 dark digits. Nevertheless, we observe that ℓ_2 -SAM consistently emphasizes the darker regions of
 3949 the image.

3950 We construct a subset of 1,000 images with labels in $\{0, 1\}$ and train models using either GD or ℓ_2 -
 3951 SAM. We use a learning rate of 0.01, a SAM perturbation radius of 0.05, and train for 200 epochs.

3952 The images in Figure 32 contain dark digits on light backgrounds. In this case, we observe that
 3953 SAM concentrates more strongly on the digit regions than the background, as the digits constitute
 3954 the minor features in these images. By contrast, the images in Figure 33 contain light digits on dark
 3955 backgrounds. For these images, SAM concentrates more strongly on the background regions than
 3956 on the digits, as the background constitutes the minor feature in this setting.



3994 Figure 32: Grad-CAM comparison between GD and ℓ_2 -SAM on SVHN (1k images, labels 0–1)
 3995 with dark digits and light backgrounds.

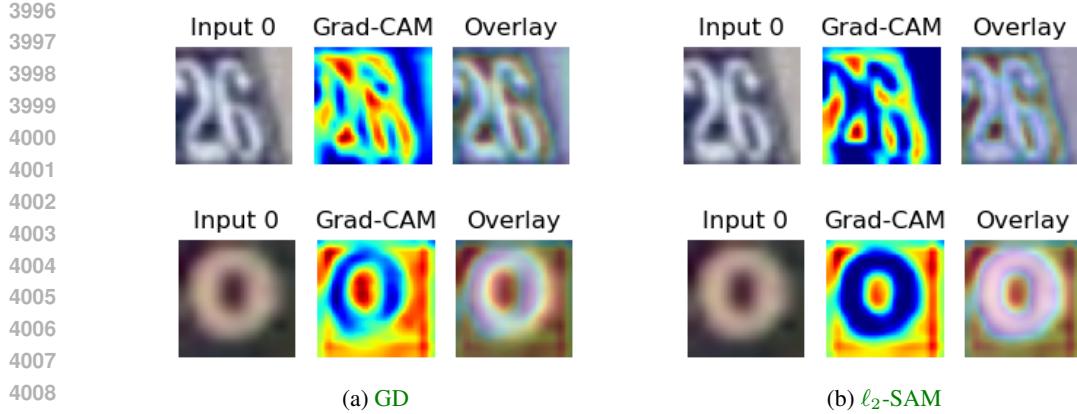


Figure 33: **Grad-CAM comparison between GD and ℓ_2 -SAM on SVHN (1k images, labels 0–1) with light digits and dark backgrounds.**

Across different values of α , we observe that small α causes ℓ_2 -SAM to collapse toward the origin, while intermediate α leads ℓ_2 -SAM to emphasize minor features with lower pixel intensities as shown in Figure 34, where pixel intensity is computed as the average over the three color channels.

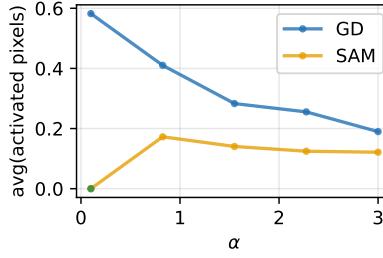


Figure 34: **Average number of activated pixels (Grad-CAM > 0.5) as a function of the initialization scale α , comparing GD and ℓ_2 -SAM.**

E.4.3 CIFAR-10

We also observe the same phenomenon on the CIFAR-10 dataset. We construct a subset of CIFAR-10 with labels in $\{0, 1\}$ and train models using a learning rate of 0.01, a SAM perturbation radius of 0.05, for 500 epochs. As shown in Figure 35, small values of α lead SAM to emphasize minor features, while larger values of α make the behaviors of GD and SAM increasingly similar.

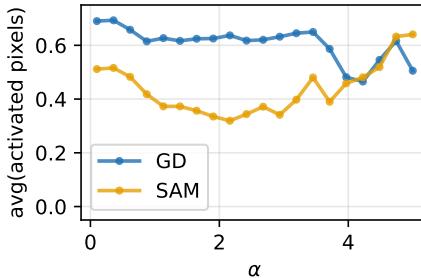


Figure 35: **Average number of activated pixels (Grad-CAM > 0.5) as a function of the initialization scale α , comparing GD and ℓ_2 -SAM.**