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ABSTRACT

We study the implicit bias of sharpness-aware minimization (SAM) when training
L-layer linear diagonal networks on linearly separable binary classification. For
linear models (L. = 1), both £,- and ¢5-SAM recover the /o max-margin clas-
sifier, matching gradient descent (GD). However, for depth L = 2, the behavior
changes drastically—even on a single-example dataset. For {..-SAM, the limit
direction depends critically on initialization and can converge to 0 or to any stan-
dard basis vector, in stark contrast to GD, whose limit aligns with the basis vector
of the dominant data coordinate. For /5-SAM, we show that although its limit
direction matches the /1 max-margin solution as in the case of GD, its finite-time
dynamics exhibit a phenomenon we call sequential feature discovery, in which
the predictor initially relies on minor coordinates and gradually shifts to larger
ones as training proceeds or initialization increases. Our theoretical analysis at-
tributes this phenomenon to £5-SAM’s gradient normalization factor applied in its
perturbation, which amplifies minor coordinates early and allows major ones to
dominate later, giving a concrete example where infinite-time implicit-bias analy-
ses are insufficient. Synthetic and real-data experiments corroborate our findings.

1 INTRODUCTION

Modern deep networks often generalize well despite extreme over-parameterization. One explana-
tion emphasizes the geometry of the objective: models perform better when optimization settles in
flatter regions of the landscape (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016; Neyshabur
et al., 2017; Jiang et al., 2019). Motivated by this view, Foret et al. (2020) introduce Sharpness-
Aware Minimization (SAM), which seeks parameters that minimize the worst-case loss within a
small neighborhood. Following its empirical success (Chen et al., 2021; Bahri et al., 2021; Kaddour
et al., 2022a), various theoretical works have analyzed SAM’s implicit bias to understand its effec-
tiveness (Andriushchenko & Flammarion, 2022; Behdin & Mazumder, 2023a; Zhou et al., 2025).
However, these analyses primarily apply to scenarios with attainable finite minimizers (e.g., squared
loss), leaving open the case of losses whose infimum lies at infinity (e.g., logistic loss).

We consider the implicit bias of SAM when training L-layer linear diagonal networks on linearly
separable classification datasets with logistic loss. We study two variants of SAM, ¢,,-SAM and
£5-SAM, named after the norm defining their local perturbation (See Section 2). For L = 1 (linear
models), gradient descent (GD) is known to converge in direction to the 5 max-margin classi-
fier (Soudry et al., 2018). For both ¢,,-SAM and ¢5-SAM, we show that they also align with the
same limit direction. Thus, SAM does not change the implicit bias here, as shown in Figure 1a.

However, for 2-layer diagonal linear networks, we find that the trajectory of the linear coefficient
vector 3(t) under both /.- and ¢5-SAM can differ substantially from the maximum ¢;-margin
implicit bias of GD (Gunasekar et al., 2018b). In Figure 1b, we consider a toy separable dataset
{(p,+1)} with g = (1,2). In this case, the ¢; max-margin direction is es = (0, 1), the standard
basis vector for the major component of . As predicted, all GD trajectories and some SAM trajec-
tories show increasing alignment of 3(¢) with eo. However, for some initializations, we observe that
some trajectories of 3(t) under ¢.,-SAM and ¢5-SAM instead converge to zero, or even align with
e; = (1,0)—a seemingly paradoxical implicit bias favoring the minor feature rather than the major
one. It is interesting that the addition of a single layer—from L = 1 to L = 2—introduces this
peculiar behavior of SAM different from GD, even for the simple setting: linear diagonal networks
trained with a single example.
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Figure 1: Trajectories of the predictor 3(t) € R? from identical initial conditions under discrete
GD, /o,-SAM and /5-SAM on {(p, +1)} with o = (1,2). We used 7 = 0.3 and p = 1 for SAM.

1.1 SUMMARY OF OUR CONTRIBUTIONS

We analyze the optimization trajectory and implicit bias of /,,-SAM and ¢5-SAM in L-layer linear
diagonal networks trained on linearly separable data with logistic loss. For theoretical analysis, we
analyze the evolution of the linear coefficient 3(t) of the linear diagonal network under continuous-
time versions of SAM, /..-SAM flow and ¢,-SAM flow. We characterize their limit directions,
obtained when training on general linearly separable data, and their pre-asymptotic behavior before
aligning with the limit directions, analyzed on a single-example dataset { (g, +1)}.

* Depth 1 (linear). For linear models (L = 1), both £,,-SAM flow and ¢5-SAM flow have the same
{5 max-margin implicit bias as GD on linearly separable data; in the single-example setting, we
further show that the /,,-SAM coincides exactly with the GD trajectory.

* Depth L, /.-SAM. For L > 2 and /,-SAM flow, we characterize the coordinate-wise trajectory
of B(t) determined by the relative scale of each coordinate at initialization and the perturbation
radius of £,-SAM (Theorem 3.2). For almost all initializations, 3(t) diverges and its limit direc-
tion is one of the standard basis vectors ey, . . . , 4 or it converges to a finite point (Corollary 3.5).
Compared to GD, the limit direction of ¢,,-SAM becomes more sensitive to initialization.

* Depth 2, /,-SAM. For L = 2 and ¢5-SAM flow, we first prove that the limit direction (if con-
vergent to zero loss) is the ¢; max-margin solution (Theorem 4.2); however, this infinite-time
characterization does not explain our observation from Figure 1b. We empirically investigate the
finite-time trajectory of (3(t) and identify the sequential feature discovery phenomenon, in which
(3(t) initially relies on minor coordinates and gradually shifts to larger ones as ¢ increases or ini-
tialization scale grows. We provide a theoretical explaination of both time-wise (Theorem 4.4) and
initialization-wise (Theorem 4.5) aspects of the phenomenon. This example shows that focusing
only on the £ — oo limit can overlook aspects of the training dynamics. SAM provides a clear
instance where a finite-time view is essential to understanding how its implicit bias emerges.

* In Appendix E, we present synthetic and real-data experiments to corroborate our findings.

1.2 RELATED WORK

Implicit Bias of GD on Linear Diagonal Networks. Soudry et al. (2018) show that under linearly
separable data with logistic loss, the weight of a linear model diverges while the direction converges
to the /5 max-margin classifier. For linear diagonal networks, gradient descent biases toward sparse
predictors (Gunasekar et al., 2018b), with 2-layer models converging to ¢; max-margin direction un-
der the assumption of directional convergence. This directional convergence has later been formally
established for gradient flow (Ji & Telgarsky, 2020), supporting the validity of this assumption.
Subsequent papers have studied linear diagonal networks in sparse regression, in which initializa-
tion scale governs the implicit bias: large initialization favors ¢5-type bias, while small initialization
favors ¢;-type sparsity (Woodworth et al., 2020; Yun et al., 2020; Moroshko et al., 2020). Stochas-
tic gradient descent (SGD)’s noise provides implicit regularization toward sparser solutions (Pesme
et al., 2021), amplified at large learning rates (Even et al., 2023). Nacson et al. (2022) show that
large GD step sizes push solutions out of the kernel regime, enabling sparse solutions. Beyond GD
and SGD, recent works analyze implicit bias in diagonal linear networks through mirror-flow and
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related continuous-time formulations (Jacobs et al., 2025; Wang & Klabjan, 2024; Papazov et al.,
2024; Jacobs & Burkholz, 2024); we provide a brief overview in Appendix A.2.1. Prior work on
small-initialization GD under squared loss in the same diagonal network setting shows incremental
saddle-to-saddle learning dynamics, where coordinates become active in discrete stages as the pre-
dictor moves between saddles (Berthier, 2023; Pesme & Flammarion, 2023). We provide a detailed
comparison between our setting and these saddle-to-saddle dynamics in Appendix A.2.2.

Properties of Sharpness-Aware Minimization. Motivated by the relationship between sharp-
ness and generalization (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016; Jiang et al., 2019;
Neyshabur et al., 2017), Foret et al. (2020) propose SAM. SAM exhibits distinctive valley-bouncing
dynamics (Bartlett et al., 2022; Wen et al., 2022) and convergence instability near local minima (Si
& Yun, 2023; Kim et al., 2023). SAM prefers low-rank solutions (Andriushchenko et al., 2023),
with its normalization term playing a crucial role (Dai et al., 2023). Extensive empirical work has
demonstrated the superior performance of SAM and its variants across various tasks and architec-
tures (Sun et al., 2024; Kwon et al., 2021; Li et al., 2024b; Liu et al., 2022; Yun & Yang, 2023;
Bahri et al., 2021; Zhuang et al., 2022; Kaddour et al., 2022b). Complementing these empirical
findings, theoretical work has analyzed SAM’s optimization dynamics, generalization, and implicit
bias (Li et al., 2024a; Behdin & Mazumder, 2023b; Zhang et al., 2024; Agarwala & Dauphin, 2023;
Wen et al., 2023; Long & Bartlett, 2024; Zhou et al., 2024; Springer et al., 2024; Baek et al., 2024;
Chen et al., 2023), including results in simplified settings such as diagonal linear networks on MSE
loss (Andriushchenko & Flammarion, 2022; Clara et al., 2025). A more detailed discussion of these
diagonal-network results of SAM is deferred to Appendix A.2.3.

2 PRELIMINARIES

Notation. We write the i-th standard basis vector as e;. Forn € N, let [n] = {1, -+ ,n}.
For a vector v € R% we denote its coordinates by v = (v1,-+-,vq). For any block vector
Z = (z1,..., 20 ¢ (R))F, we denote its /-th block by Z(©) := 2() ¢ R?. Fora,b € R%, a®b
denotes the element-wise product; for a collection {a¥ } 1, , we write ©F_, a; := aVo- - -0a).
Model. We consider L-layer linear diagonal networks, a simple family of homogeneous networks

widely used for the study of implicit bias (See Section 1.2). Let @ = (w") ... w®)) € (R?)” be
the parameter vector. For ¢ € R?, let the linear coefficient vector 3(0) and output f(x) be

B0) =0, w eR’, f(z):=(5(6).2).

Data and Loss. We consider the standard supervised learning setting where a binary classification
dataset {(z;, y;)} Y, is given. Let the logistic loss be ¢(u) = log (1 + exp(—u)). Then the training
loss function is defined as £(6) := + vazl 0(y;(B(0),x;)). We write the gradient of £ with
respect to 0 in a block form, as VL(0) = (V) L(0), ..., V) L(0)).

Optimization Algorithms. In this paper, we mainly consider the implicit bias of Sharpness-Aware
Minimization (SAM, Foret et al. (2020)) and how depth causes it to deviate from the baseline
algorithm, gradient descent (GD). At iteration ¢, a GD update reads 6(t+1) := 0(t) —nVL(0(t)),
where 77 > 0 is called the step size or learning rate.

On the other hand, SAM updates parameters by evaluating the gradient at a perturbed one:

0(t) == 0(t) +€,(0(t), O(t+1):=86(t) —nVLAO®1)),

where the perturbation €,(60(t)) is the approximate worst-case direction inside the ¢,,-ball of per-
ell,<p e VL(8). We refer to 6 as the ascent point.
Since 8 = (w®,...,w")) has a block structure, we also write § = (w®),...,%")) and
£,(0) = (e57(0),...,e5)(8)) so that we can say w(® = w® + (). For p = 2 and o,
the perturbation €,,(6) has clean closed-form solutions:

€2(0) == prorals:  €oo(B) == psign(VL(B)),

and we consider the two variants, referred to as /5-SAM when p = 2 and ¢,,-SAM when p = co.
For p = o0, the maximizer is not unique when a coordinate of the gradient is zero. To make sure that
the update is uniquely determined, we adopt the convention sign(0) := 0, applied coordinate-wise.

turbation radius p > 0: €,(0) = argmax
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Continuous-time Flows. In the study of optimization algorithms, it is often useful to reduce the
original discrete-time updates of an optimizer to a corresponding continuous-time flow. Unless
the step size is too large, continuous-time flows offer a good approximation of the discrete-time
optimizers, while allowing for clean and simplified analyses.

For GD, a common continuous-time counterpart is gradient flow (GF): 8(7) = —VL((7)). With
gradient flow, the analysis of GD trajectory boils down to solving an ordinary differential equation
(ODE). Likewise, we define and study the flow counterparts of SAM, governed by the ODE

(1) = —VL(6(7)). (D)
Depending on the choice of norm, we will use the terms £.,-SAM flow and />-SAM flow to refer
to the continuous-time versions of SAM. Figure 6 in Appendix A.1 plots the trajectory of {,,-SAM
flow and ¢5-SAM flow under the same setup of Figure 1. We observe that the trajectories stay
almost the same and the surprising implicit bias of SAM carries over to SAM flows. Hence, we aim
to understand this unusual behavior of SAM by studying the corresponding SAM flows.

Rescaled Flows. As shown in Appendix A.3, for the special case of single-example dataset
{(p,+1)}, the £,-SAM flow (p = 2, 00) of the i-th layer weight follows the same spatial trajectory
as the following rescaled ¢,,-SAM flow:

- () (1) — ¢ ¢

() = po (@Z# (w® (1) +€;)(9(t)))), )
obtained by taking out the loss derivative —¢((3(8(t)), u)) > 0 from the original £,-SAM flow.
Note that the original £,-SAM flow (1) and the rescaled flow in (2) differ only by a reparameteriza-
tion of time. Let Woyig (torig) denote the original SAM flow and w(t) the rescaled flow. Then there
exists a strictly increasing map ¢,y = 7(t) such that weyis(7(t)) = w(t). Applying the chain rule
yields the relation

dw  dwerig dr VL(w(t)) dr 1

~ 5 —

dt  drdt p(B(0(t)T ) dt— (BOt)Th)

Since ¢'(u) 1 0 as u — oo, the rescaled flow accelerates time in the large-margin regime. Formally,

;
1
T(t) = / - ds
o L'(B(0(s))" 1)

The rescaled flow makes the analysis easier due to the omitted term. Since our goal is to gain a
better understanding of the spatial trajectory, we study the rescaled SAM flows in our analysis.
Directional Convergence. Let 3 : [0, Tinax) — R% be a trajectory with maximal existence time
Tiax € (0,00]. We say that 3() converges in direction if the limit 3 = lim; 7, % exists.
In this case, 3 is called the limit direction of 3.

3 SAM WITH /,,-PERTURBATIONS

We begin with ¢,,-SAM. For single-example data, its counterpart—rescaled ¢,-SAM flow—has
the nice property that each coordinate evolves independently, enabling an exact characterization of
the trajectory for any depth L.

3.1 DEPTH-1 NETWORKS
We start with the depth-1 case, in which the implicit bias of ¢,,-SAM coincides with that of GD.

Theorem 3.1. For almost every dataset which is linearly separable, any perturbation radius p
and any initialization, consider the linear model f(x) = (w,x) trained with logistic loss. Then,
loo-SAM flow converges in the {5 max-margin direction.

The proof is deferred to Appendix C.1. Since Theorem 3.1 holds for any p, it also recovers the
implicit bias of GF. While Theorem 3.1 characterizes the limit direction for almost all linearly sepa-
rable datasets, Theorem C.1 shows that, for the single-example data, the /..-SAM flow follows the
same trajectory as GF. The yellow lines in Figure 6a depict the flows. As ¢t — oo, w(t) converges in
direction to the /> max-margin direction . Hence, when L = 1, GD and /,,-SAM share the same
bias toward the /> max-margin solution, independent of the initialization.

4
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3.2 DEEPER NETWORKS (L > 2).

To isolate the depth-induced implicit bias of SAM from effects of data-point configuration, we
analyze the minimalist separable dataset D,, := {(p, +1)} with feature vector p € R? satisfying
0 < pp < -+ < pg; without loss of generality, we assume this monotone ordering of y;’s.

In the multi-point setting, as w(t) diverges the SAM perturbation becomes asymptotically negligi-
ble, so SAM and GD share the same long-term behavior. The regime where they differ is precisely
when the p-perturbation is non-negligible, but in the multi-point case the resulting gradients (and
thus SAM updates) become considerably complex for a tractable characterization of the SAM flow
in the regime where SAM and GD diverge. This motivates our focus on the single-example dataset
D, = {(p,+1)}, where the SAM dynamics admit a tractable dynamical characterization while
still capturing depth-dependent phenomena unique to SAM. In Appendix C.5, we empirically verify
that these behaviors persist under multi-point datasets and discrete SAM updates, indicating that our
insights extend beyond the single-point setting.

In contrast to the depth-1 case, for deeper (linear diagonal) networks, the implicit bias of /,,-SAM
differs from GD. For example, when L = 2, while GD always aligns with the major feature,
£5o-SAM can favor minor features depending on the initial condition. For L > 3, we show that
the implicit bias of ¢,,-SAM is more sensitive to initialization than GD, in the sense that a wider
range of initialization leads to solutions focusing on minor features. The next theorem characterizes
the trajectory selected by the flow for different choices of initialization.

Theorem 3.2. For i € [L], suppose w')(0) = o € RL. Let w'¥) (t) follow the rescaled {»-SAM
flow (2) with perturbation radius p > 0 on the dataset D,,. Then, for the j-th coordinate of 3(t):

o Ifay < p, then B3;(t) converges to 0 if L is even, or p* if L is odd.
e Ifaj = p, then B;(t) = p forall t > 0.
* If oj > pand L = 2, then (3;(t) grows exponentially: (;(t) = O(exp(2/;t)).

sIf oy > pand L > 2, let J = argmaxj.a,>,p;(a; — p)*=2 and also let T :=
minge s Y/ (L-2)ur(an—p)2 =2 If j € J, then B;(t) — oo ast — T'; otherwise, (;(t) stays
bounded for all t < T.

We provide the proof of Theorem 3.2 in Appendix C.2. The behavior of each coordinate 3;(t)
is completely determined by whether the initialization «; lies below, at, or above the threshold p.
In each of these three regimes, §;(t) is monotone in ¢. Recall that e, (0) = psign(VL(0)).
For D,,, the sign of the gradient (5) is determined coordinate-wise. Thus, the rescaled {,,-SAM
flow (2) decouples across coordinates, and each 3;(t) evolves independently, allowing us to state
Theorem 3.2 for each separate trajectory of 5 (t).

Remark 3.3 (Interpretation of the Finite-time Blow-up). For L > 2, the rescaled /.-SAM flow
(2) exhibits finite-time blow-up: some coordinates satisfy (3;(t) — oo as ¢ — T Interpreting this
phenomenon in the original SAM time scale, the blow-up corresponds to infinite time in the original

SAM flow. Indeed, as B(t) T 1 — oo, we have ¢/ (B(t) T ) — 0™, and therefore

it

1

T(t):/ —————ds—oo as t—T.
o U(B(s)Tp)

Thus, in the original SAM flow, only the coordinates in J diverge as the original time 7(t) — oo,

while all other coordinates remain bounded.

Remark 3.4 (Interpretation of Exponential Growth). For L = 2, each coordinate 3;(t) with o;; > p
grows exponentially as t — oo. Since 7(¢) — o0 as t — oo, divergence occurs on the same infinite-
time limit in both the rescaled and original /,.-SAM flows. Nevertheless, because the dynamics are
obtained after a time reparameterization, the exponential rate observed in the rescaled flow should
not be directly interpreted as the actual divergence speed in the original SAM dynamics. Still, for
fixed L = 2, all coordinates share the same rescaled time, so their relative growth can be compared.
Among the coordinates with a;; > p, the one with the largest feature weight ;; dominates asymp-
totically and the /..-SAM flow therefore converges in that coordinate direction. We formalize these
conclusions for general L in the following corollary, characterizing the dominant direction.

Corollary 3.5. Under the assumptions of Theorem 3.2, let S := {j : oj > p} and assume S # .
If there is a unique maximizing index j* := argmax;eg ft;(a; — p)L=2, then the (o.-SAM flow
converges in the e ;- direction. In particular, when L = 2, we have j* := argmaxjcg [4;.
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Figure 2: Trajectories 5(t) from identical initializations under GF and ¢,-SAM flow with d = 2
and g = (1,2). For SAM, p = 1.

The proof is deferred to Appendix C.3. When L = 2 and o € Ri 1, setting p = 0 in Corollary 3.5
yields S = [d]. Hence, Corollary 3.5 recovers that the GF always aligns in the e direction—the ¢;
max-margin direction—regardless of the initialization.

Illustrative Example. Figure 2 shows the trajectories of 3(¢) under GF and /,-SAM flow with
L =2,3and p = (1,2). Figure 2a depicts the L = 2, GF case, where GF always aligns in the e
direction. For L = 2 and /,-SAM (Figure 2b), the plane (3, 82) is partitioned by the thresholds
Bj = ai = p* Ifay > p(s02 € 5), the {o.-SAM flow shows directional convergence in e,
(red/blue regions). In the yellow region, 2 ¢ S and 1 € S, so the limit direction is e;—the “minor”
feature. If all coordinates satisfy «; < p, the flow converges to 0 (purple region), by Theorem 3.2.

For L > 2 (Figures 2c and 2d), the blue regions get partitioned once more because large a; leads
to pu1(ar — p)t=2 > po(as — p)F~2, leading to directional convergence toward e;. Comparing
the green regions in Figures 2c and 2d shows that the slope of the boundary between blue and green
regions is steeper in {,,-SAM flow than that of GF. Considering that initializations in the yellow
region also result in the limit direction e, these together indicate that /.,-SAM exhibits a greater
sensitivity to initialization and stronger implicit bias toward minor features than GD.

4 SAM WITH /5-PERTURBATIONS: SEQUENTIAL FEATURE DISCOVERY

We now turn to ¢2-SAM, which is the form most commonly used in practice.

4.1 ASYMPTOTIC BEHAVIOR ON DEPTH-1 AND DEPTH-2 NETWORKS

For depth-1 models, ¢3-SAM converges in the /5 max-margin direction regardless of initialization,
matching the implicit bias of GD and /.,,-SAM. We prove the following theorem in Appendix D.1:

Theorem 4.1. For almost every dataset which is linearly separable, any perturbation radius p and
any initialization, consider the linear model f(x) = (w, x) trained with logistic loss. Then, {5-SAM
flow converges in the {5 max-margin direction.

While Theorem 4.1 characterizes the limit direction for linearly separable datasets, Theorem D.1
shows that, for the single-example data, the /..-SAM flow follows the same trajectory as GF.

For depth-2 models, ¢5-SAM asymptotically converges in the ¢; max-margin direction as the loss
converges to zero, independently of the initialization scale. This parallels the well-known behavior
of GD (Gunasekar et al., 2018b). We formalize this below, with the proof in Appendix D.3.

Theorem 4.2. For almost every dataset which is linearly separable, and any perturbation radius
p, consider the linear diagonal network of depth 2, f(x) = (w") © w® x) trained with logistic
loss. Let (w ™M (t), w®(t)) follow the l3-SAM flow with w™(0) = w®(0). Assume (a) the
loss vanishes, L(w™M) (t),w® (t)) = 0, (b) the predictor B(t) := w™ (t) © w?(t) converges in
direction. Then the limit direction of B(t) is the {1 max-margin direction.

Since Theorems 4.1 and 4.2 holds for any p, it also recovers the implicit bias of GF. We now revisit
Figure 6, which is the flow counterpart of Figure 1, and compare the trajectories with the asymptotic
directional convergence results above. First, the green lines in Figure 6a visualize the trajectories
of ¢5-SAM flow for L = 1, and we can check that the trajectories coincide with GD’s, as expected
by theory. In the L. = 2 case (Figure 6b), the green ¢5-SAM flow curves include ones that (i) drift
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Figure 3: Rescaled ¢2-SAM flow on D, with p = (4,5,6,7,8) € R5and p = 1.

toward the origin, and those that (ii) initially align with e, a direction orthogonal to the ¢; max-
margin direction es. Such behaviors are not explained by Theorem 4.2. Hence, to account for what
is observed in Figure 6b, we move on to analyze the dynamics of £5-SAM in finite time.

4.2 PRE-ASYMPTOTIC BEHAVIOR ON DEPTH-2 NETWORKS

We investigate the pre-asymptotic dynamics of £5-SAM on depth-2 linear diagonal networks and
show that the trajectory exhibits a behavior markedly different from its asymptotic limit. This con-
trast highlights the need for a finite-time analysis to understand how the implicit bias of SAM actu-
ally emerges. In this section, we retain the toy dataset D, := {(p,+1)} with pp € R? satisfying
0 < p1 < -+ < pg. We further present experiments on multi-point datasets, discrete-time (-
SAM, and deeper models (L > 3) in Appendix D.8, which confirm that the qualitative behaviors
identified in the depth-2 single-point /o-SAM flow persist in these more realistic settings. Moreover,
to capture the effect of the initialization scale with a single parameter, we adopt a coordinate-wise
and layer-wise uniform initialization w()(0) = w(® (0) = a1 throughout this subsection. We
additionally report similar empirical results under random Gaussian initialization in Appendix E.2.

4.2.1 SEQUENTIAL FEATURE DISCOVERY

We begin by describing a newly observed and surprising phenomenon of /5-SAM—sequential fea-
ture discovery. For certain initialization scales « and times ¢, ¢5-SAM first aligns with minor
features; as ¢ increases or as « increases, the dominant coordinate transitions from minor, interme-
diate to major features. In contrast, GD selects the major feature regardless of o and ¢. We visualize
this using rescaled ¢3-SAM flow in Figure 3a and show the GF and /.-SAM flow counterparts in
Figure 7. To quantify the phenomenon along the two axes—time ¢ and initialization scale a—at
each ¢ and a, we track the index ;T = arg min; 3;(t) and color the grid (¢, «) according to gt
Regions where 3 is negligibly small are shown in gray, indicating convergence to 0. Based on the
observations from Figure 3a, we partition the initialization scale « into three regimes.

(Regime 1) Starting from any « in this range, the trajectory eventually collapses to the origin as
training proceeds; effectively no feature is expressed and the loss does not vanish.

(Regime 2) Time-wise sequential feature discovery emerges. With a fixed o chosen from this
regime and increasing ¢, there exists the period where the dominant coordinate index j*
increases over time, transitioning from minor to major features. As shown in Figure 3b,
41 sequentially changes from 1 to 5 over time for o = 0.4.

(Regime 3) (3 aligns with the major feature from the outset and maintains this alignment throughout.

Beyond the time-wise phenomenon, Figure 3a also suggests that sequential feature discovery also
happens in the a-axis. To see this, consider a fixed slice of time ¢ and navigate through the a-axis:
for small o, the predictor 3 remains near the origin with no feature discovered. As « grows, the
dominant coordinate at ¢ shifts sequentially—/; becomes largest first, then (35, and so on. However,
this is not a fair comparison between trajectories, because Figure 3a is obtained from the rescaled
flow; each trajectory (for each ) has a different time scale.
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Nevertheless, we can compare between trajectories if we base our comparison on trajectory-wise
maxima. More concretely, we calculate the trajectory-wise most-amplified index, to understand how
the initialization scale « affects the “amplification” of minor components. For each coordinate j, we
track the ratio i (t)/s,(t) over the entire trajectory, and define j* () := arg max; max; #;(t)/4(t) as
the coordinate with the greatest maximum relative amplification. In Figure 3a, for each value of o
in Regime 2, we plot the time step that attains the maximum value of 85~ (=) (t)/84(¢) in black dots; we
can clearly observe that j*(«) increases from the minor index 1 to second-most major index d — 1

in Regime 2. We call this phenomenon initialization-wise sequential feature discovery.

4.2.2 UNDERSTANDING THE EFFECT OF /5-SAM

Before analyzing sequential feature discovery, we describe the rescaled ¢2-SAM flow for depth-2
linear diagonal networks and offer an intuitive explanation of the sequential feature discovery phe-
nomenon. With initialization w™®) (0) = w®(0) € R?, we have wV () = w®(t) =: w(¢) for
all ¢ > 0. Using this, we derive in Appendix D.2 that the rescaled ¢2-SAM flow for w(t) reads

w(t) = p o (w(t) - pr2 ) where ng(t) i= /2]l ® w(b)]3. 3)

Compared to the p = 0 case, the extra term scales g ® w(t) coordinate-wise by 1 — p#(t) < 1.

When ng(t) is large (e.g., under large initialization or after sufficient training), this factor is close
to one and the dynamics becomes close to GF. When ng(t) is small (e.g., small initialization), the
coordinate-wise scaling factor multiplies different scalars to different coordinates, some of which
can even be negative and decrease the corresponding coordinates of w(t). Notice that larger 1,
leads to smaller 1 — pn;‘gt) . Thus, in the early stage of training, major features are suppressed while
minor features are comparatively amplified, yielding the observed emphasis on minor features.

4.2.3 ANALYSIS OF TIME-WISE SEQUENTIAL FEATURE DISCOVERY

We next provide a theoretical account of the time-wise sequential feature discovery. At each time ¢,
we analyze the instantaneous growth rate of each coordinate j3;(t), viewed as a function of both ¢
and the initialization scale .. This reveals how the growth behavior of different coordinates evolves
across the training trajectory. In particular, we derive a coordinate-wise growth rule of §;(t), in a
form analogous to Equation (3). The proof is provided in Appendix D.4.3, and an extension to the
L-layer setting—where an analogous growth rate can be derived—is given in Appendix D.5.

Lemma 4.3. The rescaled {3-SAM flow (2) is 3;(t) = () B; (t) with r;(t) == 2p; (1 - n’;’%)

By Lemma 4.3, the rate r;(t) controls the instantaneous growth or decay of /5;(t). For fixed ¢,

r;(t) is concave quadratic in y;, maximized at p; = mc(t) = ";E)t). Hence, indices with

closest to mc(t) attain the largest 7;(¢); coordinates with feature strength ;; nearest to m.(t)
are amplified the most, while those farther away may even decay. Consequently, the trajectory of
me(t) dictates the feature-amplification dynamics, and it exhibits three regimes depending on the
initialization scale. Recall that 0 < p1 < - -+ < pgq.

4
Theorem 4.4. There exists a unique o such that o = pm <ap < p\ﬁH““H4 < g =

pllzllell3
pE \%ﬁ:”“ < and the trajectory of m(t) falls into one of the following three regimes.
2

(Regime 1) If o < «, then mc(t) strictly decreases for all t > 0 and there exists Ty such that for
J € [d], B;(t) strictly decreases for all t > T .

(Regime 2) If a1 < a < ag, there exists Ty such that m.(Ty) < ’L”’L;“d and m(t) strictly
increases for all t > Tb.

(Regime 3) If & > a, then m¢(t) > W and B4(t) has the largest growth rate for all t > 0.

The proof of Theorem 4.4 is provided in Appendix D.4.5. Theorem 4.4 identifies three regimes of
the m.(t) dynamics, each corresponding to a qualitatively different pattern of feature amplification.

Regime 1. m.(t) decreases for all £ > 0, and reaches &' at time 7. Once m.(t) < &F, every

coordinate satisfies r;(t) < 0 by the form of 7;(t), and thus 3, (¢) strictly decreases for all 5 € [d].
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Regime 3. When m(t) > %, the closest feature strength to mc(t) is g4, so Bq(t) attains the
largest growth rate. This explains why the major feature remains dominant throughout this regime.

Regime 2. When m.(T3) < %, the closest index j. satisfies j. < d. At this time, the
largest growth rate is therefore achieved by the non-major coordinate 3; (7%). Since mc(t) strictly
increases for all £ > T5, the coordinate with the largest growth rate increases, exhibiting the time-
wise sequential feature discovery observed empirically in Section 4.2.1. In Regime 2, there also exist
instances where m,(t) initially decreases and later increases, leading to a non-monotonic sequential
feature discovery phenomenon. We discuss this in Appendix A.5.

Regime 2 also leaves a clear trace in the training loss. SAM exhibits an early plateau while it mainly
amplifies minor coordinates, and the loss drops quickly only after it shifts to major coordinates,
whereas GD shows a steadier decrease without this minor-to-major transition. The corresponding
loss curves and further explanation are given in Figure 4 and Appendix E.1.
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Figure 4: Loss curves of GD (left) and /5-SAM (right) on a 2-layer diagonal network in Regime 2
(=0.35,u=(1,2,3,4,5,6), p = 0.1). Colored regions mark the coordinate with highest growth.

4.2.4 ANALYSIS OF INITIALIZATION-WISE SEQUENTIAL FEATURE DISCOVERY

In the previous subsection, we examined which coordinate attains the maximal instantaneous growth
rate. We now turn to the cumulative update over time and study initialization-wise sequential feature
discovery. In Theorem 4.4, we characterize the range of o (Regime 2) in which sequential feature
discovery can occur. Here, we quantify the strength of amplification within Regime 2 as a function
of . Since a coordinate 3;(t) can diverge, we assess which feature is amplified—and by how
much—via the ratio of the j-th feature to the major feature, 8i(t)/g4(¢). For a given initialization
scale «, we track and bound how large the amplification ratio 8;(#)/g,(t) can be along the trajectory.

Integrating the rescaled ¢3-SAM flow (3) (derived in Appendix D.6.1) yields the coordinate ODE
B;(t) = B;(0) exp (2u;t — QpM?I(t)) where I(t) := [ #(S)ds forje[d. &)

The behavior of 3 in (4) is determined by I(¢). Recall that ng(t) controls the behavior of {5-SAM
in Section 4.2.2 and is used to characterize the instantaneous growth rate in Section 4.2.3. Here, we
focus on cumulative updates over time, where the time integral I(t) of 1/ng becomes decisive. By
bounding I(t), we quantify how strongly each feature is amplified relative to the major feature.

Theorem 4.5. Let o, oo be defined in Theorem 4.4 and o be the threshold from there. Suppose
ap <a< p\‘%ﬁ;ﬁ < . Then, for j € [d], there exists T such that
2

B;(T; _
/ﬁETig > LBj(«a) := exp <2R;- ((Rj —1)log (717(10/() + log (ﬁ) - C(Rj)))
where R := (i tia)/y, > 2, R := (ma=13)/p, and C(R) := Rlog R — (R — 1) log(R — 1).

The proof follows from a lower bound on I(t), and is deferred to Appendix D.6.2. A numerical
illustration of LB () for several choices of p is provided in Appendix D.7. Theorem 4.5 applies to

the small-o portion of Regime 2. For each coordinate j, we select the time 7; maximizing ai 8 over

the entire trajectory, and obtain a nontrivial lower bound LB; («) for this maximal amplification.

The theorem goes beyond the qualitative picture in Figure 3a, which only identifies which coordinate
becomes dominant (the index ;). Theorem 4.5 additionally quantifies how large this dominant co-
ordinate must grow: as shown in Appendix D.7, LB, («) often exceeds 10, indicating that the minor
to intermediate coordinates can take values more than ten times larger than the major coordinate.

Dependence on . For all o in Regime 2, the ratio g/« lies in (0, 1), so both logarithmic terms
in LBj(a) are positive. Since I?; > 2, the first logarithmic term dominates the exponent, making
LB, () grow rapidly as « — a4. Thus smaller « in Regime 2 produces stronger amplification as
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shown in Appendix D.7. This is substantiated by Figure 3a: smaller o in Regime 2 keeps the dy-
namics aligned with minor-intermediate features for a longer time ¢, leading to greater amplification.

Dependence on Feature Geometry. The coefficients R; and R; increase with the spectral gap
a/ 11, so datasets with larger feature contrast amplify more strongly as shown in Appendix D.7.

Since LB () varies across 7, it is natural to ask which coordinate experiences the strongest ampli-
fication. Proposition 4.6 identifies the maximizing index j*(«), with the proof in Appendix D.6.3.

Proposition 4.6. Under the conditions of Theorem 4.5, define j*(«) := arg max;c(q LB;(cv) and

set ay := . Then, there exist thresholds of < o] < -+ < aj, < p% for somem < d—1
2

such that j*(a) = j for a € (aj_y,aj].
Proposition 4.6 shows j*(«) monotonically increases sequentially from 1 to m on a € (g, o).
Namely, as the initialization scale « grows, the index that maximizes the lower bound LB («) shifts
monotonically from minor to intermediate features. This matches the initialization-wise sequential
feature discovery discussed in Section 4.2.1 (i.e., the black dots in Figure 3a). Within Regime 2, the
our theoretical bound predicts a progression of the most-amplified coordinate from 1 to m.

Lastly, through the cumulative update analysis, we characterize the asymptotic behavior of /5-SAM
flow for some extreme ranges of «v. We prove the following proposition in Appendix D.6.4.
Proposition 4.7. Consider «q defined in Theorem 4.4. (i) If a« < «, then B(t) converges to zero.

2
(ii) IfO{ > p\/ﬁ(nduu‘b

TR

then B(t) converge in {1 max-margin direction.

Recall that Theorem 4.2 assumes that the loss vanishes and the limit direction exists. Proposi-
tion 4.7(i) shows that for small o in Regime 1, the loss never vanishes. Proposition 4.7(ii) shows
that for some a’s in Regimes 2 or 3, the limit direction exists and is the ¢; max-margin direction.

5 EXPERIMENTS

Our investigation shows how depth, perturbation geometry, and initialization jointly shape SAM’s
optimization trajectory. We substantiate these findings with controlled experiments: 2-layer CNNs
and linear networks on synthetic banded data, where we systematically vary the dataset construc-
tion and metrics across architectures (Appendix E.3), as well as multi-point (Appendix D.8.2) and
deeper-depth diagonal models (Appendix D.8.3). We also present experiments with practical CNNs
trained on MNIST, where we use Grad-CAM (Selvaraju et al., 2017) to visualize which image pix-
els are emphasized (Figure 5 and Appendix E.4). These experiments show that /o-SAM allocates
relatively bigger emphasis to weaker/background pixels than GD, qualitatively matching our theory.

Input 0 Grad-CAM Overlay Input 0

(a) GD (b) £>-SAM

Figure 5: Grad-CAM comparison of GD and ¢5-SAM on a CNN trained on MNIST. GD focuses on
dominant digit pixels, whereas /2-SAM highlights minor background regions.

6 CONCLUSION

We characterize how network depth changes SAM’s implicit bias on linear diagonal networks. For
depth 1, SAM preserves GD’s implicit bias. For deeper networks (L > 2) with /,,-SAM, we de-
rive precise weight trajectories depending on initialization scale and perturbation radius, where each
weight coordinate either diverges toward a standard basis vector or converges to a finite point. The
most interesting regime occurs for L = 2 with 5-SAM: while the limit direction converges to the
¢ max-margin solution, the finite-time dynamics exhibit sequential feature discovery, where the
weight coordinate initially relies on minor coordinates and gradually shifts to larger ones. These
observations suggest that implicit bias statements made only in the ¢ — oo limit can overlook im-
portant finite-time behaviors. SAM provides a concrete example where a finite-time view is essential
to see how implicit bias actually emerges.

10
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A FIGURES AND DISCUSSIONS OMITTED FROM MAIN TEXT

A.1 FLOW TRAJECTORIES OF GD AND SAM

1.4 1 1.4 1
1.2 1 1.2 1
1.0 A / 1.0 A
— GD — GD
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B1 B1
(a) Depth 1 (linear network) (b) Depth 2 (linear diagonal network)

Figure 6: Trajectories of the predictor 3(t) € R? from identical initial conditions under GF, -
SAM flow and ¢5-SAM flow on {(p, +1)} with g = (1,2). For SAM, p = 1.

A.2 MORE DISCUSSION ON RELATED WORK
A.2.1 RECENT WORK ON IMPLICIT BIAS IN DIAGONAL LINEAR NETWORKS

Jacobs & Burkholz (2024) study continuous sparsification with time-varying weight decay, formu-
lating a time-dependent Bregman potential that causes the implicit bias to evolve from /5- to ¢1-type
behavior over the course of training. Wang & Klabjan (2024) study smoothed sign descent on a
quadratically parameterized regression problem, introducing a time varying mirror map. and prove
that the resulting limit point is an approximate KKT point of a Bregman-divergence—style objective,
where the stability constant € quantifies the gap to KKT optimality. Papazov et al. (2024) analyze
momentum gradient descent on diagonal linear network through a momentum gradient flow, show-
ing that a newly defined intrinsic parameter determines the optimization trajectory and admits a
second order, time varying mirror-flow formulation. Within this framework, they characterize the
induced implicit regularization and demonstrate that smaller values of this intrinsic parameter yield
more balanced weights and sparser solutions compared to standard gradient flow. Jacobs et al. (2025)
extend the mirror flow framework to account for explicit regularization and analyze the evolution of
the corresponding Legendre function over time, thereby describing how the implicit bias changes in
different reparameterizations, including diagonal linear networks. In particular, they track how the
implicit bias evolves in terms of its positional bias, bias type, and range shrinking.

A.2.2 COMPARISON WITH SADDLE-TO-SADDLE DYNAMICS

In this section, we provide further details on the relation between our work and the saddle-to-saddle
dynamics of gradient descent/flow. Pesme & Flammarion (2023) consider diagonal linear networks
trained with squared loss in the infinitesimal-initialization limit. In this regime, gradient flow ex-
hibits incremental, stage-wise learning: the flow undergoes long plateaus near a saddle whose pre-
dictor is supported on the first k£ coordinates, then escapes along a low-dimensional “fast escape”
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manifold to a saddle with support on k+1 coordinates, and so on. Sequentiality thus appears as dis-
crete transitions between saddles with support size k£ and k+1. In the diagonal setting, complexity
is captured by the number of active coordinates, which is constant on each plateau and changes only
at these transition times.

In contrast, our work on the sequential feature discovery focuses on a linear diagonal classifier
trained with /5-SAM and logistic loss, and on a different notion of complexity: individual coordi-
nates (features) ordered by the strength of the teacher signal, from minor to major features. In our
setting, all coordinates are present from the beginning. Instead of coordinate jumps, we track how the
coordinate-wise alignments and margins evolve both over time and as a function of the initialization
scale, where by “alignment” we mean the magnitude of the predictor at each coordinate, indicating
how strongly the predictor attends to each feature. We show that {5-SAM gives rise to two comple-
mentary forms of sequential feature discovery: (i) a time-wise ordering, where alignment with minor
features is relatively amplified earlier in training and gradually shifts toward major features; and (ii)
an initialization-scale-wise ordering, where the most-amplified feature over a finite training process
changes systematically with the initialization scale. In both views, the ordering emerges through
a continuous evolution of the alignment across coordinates, and sequentiality is captured by which
feature is currently most amplified, rather than by discrete activation or deactivation of features.

The mechanisms underlying these two phenomena are conceptually distinct. First, saddle-to-saddle
dynamics start from the zero vector and involve successive coordinate activations, where previously
inactive coordinates become active over time. Our setting, by contrast, starts from a1 (without
taking the limit &« — 0), where all coordinates are already active, and the dynamics involve suc-
cessive amplification of already-active coordinates. Activation and amplification are fundamentally
different: even if saddle-to-saddle dynamics exhibit successive activation, the identity of the most
dominant coordinate can remain unchanged, unlike in our setting where dominance itself shifts over
time.

Second, the ordering principles differ. In our work, the ordering of amplified coordinates is driven
directly by the data geometry, namely the ordering of the signal strengths yi;. In saddle-to-saddle
dynamics, the progression is governed by a dual-thresholding mechanism, tied to when integrated
gradients hit constraint boundaries, and does not correspond to a minor-to-major feature progression.

Third, the role of initialization is opposite. Saddle-to-saddle dynamics arise in the vanishing-
initialization limit (¢ — 0). In contrast, we observe sequential feature discovery across a wide
range of non-vanishing initialization scales, and in fact show that increasing « induces a clear and
systematic amplification ordering. Our phenomenon is therefore not a small-initialization effect.

Fourth, saddle points play no constructive role in our mechanism. Aside from the trivial effect
that extremely small initialization can prevent SAM trajectories from escaping the origin, saddle
points do not drive the sequential feature discovery we characterize. The observed dynamics are not
mediated by saddle escape.

Finally, the problem setups are fundamentally different. Prior saddle-to-saddle works analyze re-
gression under squared loss, whereas our work studies classification under logistic loss, where the
optimization landscape and asymptotic behavior are qualitatively different.

Taken together, these observations indicate that sequential feature discovery is a SAM-specific phe-
nomenon, distinct from known saddle-to-saddle or incremental learning dynamics, and does not
arise under conventional gradient descent.

A.2.3 IMPLICIT BIAS OF SAM ON LINEAR DIAGONAL NETWORKS

Previous works (Andriushchenko & Flammarion, 2022; Clara et al., 2025) have studied SAM’s im-
plicit bias in diagonal linear networks. Andriushchenko & Flammarion (2022) analyze 2-layer lin-
ear diagonal networks under sparse regression with MSE loss, showing SAM induces better sparsity
than gradient descent, but require the small-p assumption. Clara et al. (2025) study SAM dynamics
with noise, proving weight balancing across layers and sharpness minimization, also limited to MSE
loss. Our analysis removes the small-p assumption to capture the full perturbation effect and studies
logistic loss, revealing distinct implicit bias properties compared to the squared loss setting.
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A.3 DERIVATION OF RESCALED ¢,-SAM FLOW

For the dataset {(p, +1)}, the loss function is given as:

For each ¢ € [L], the gradient is

Va1 £(0) = €' ((8(8), 1)) Vi (B(0), )= ((B(0), ) © ( D).

(5)
L4
Then, we have the £,-SAM flow of w(") as
W () = ~ Voo L) = £ ((BO®) m)) o (D w”(1)).
L#i
Since ¢/ (u) = — m < 0, it has the same spatial trajectory (up to reparameterization of time):
() =po (Qu1) =no (O @I +061)).
£#£i L#i
This derivation works for any p, not just p = 2 and p = oo.
A.4 GD AND /,,-SAM DO NOT EXHIBIT SEQUENTIAL FEATURE DISCOVERY
2.00
5 1.75 5
é . o 1.50 4
4 © )
2 - E 1.25 -
S 3 8- S 1.00 33
= € T €
X 2 N 0.75 o
.© 2© © 2 ©
z Z 0.50
1 0.25 1
. 0.00
0.0 0.5 1.0 1.5 0 1 2
time t time t
(a) GF (b) £oo-SAM

Figure 7: Dominant index j' := arg max; 3;(t) for GF and £,,-SAM flow over (¢, a) on D,, with

pw=(4,56,7,8) € R,
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A.5 INTERESTING TRAJECTORY IN REGIME 2 OF THEOREM 4.4

0.7 12 0.7 12
0.6 11 0.6 11
S 10 S 10
(] (]
= 0.5 9 = = 0.5 9 =
b 8 & @ 8 &
c 04 7 % c 04 7 x
2 ©.— o ©.—
© 0.3 6 ¢ ® 0.3 6 €
£ 5 9 £ 5 9
202 4 © 202 4 ©
£ 3 £ 3
0.1 2 0.1 2
0.0 L 0.0 L
00 02 04 06 08 1.0 0 2 4 6
time t time t
(a) T' = 1 (short horizon). (b) T' = 6 (long horizon).

Figure 8: Dominant index for £3-SAM flow with p = (1,2,...,12). The black line indicates the
interesting trajectory.

In Regime 2 of Theorem 4.4, there is also an interesting sub-regime that corresponds to smaller

4
values of o with the range of Regime 2. Define a critical threshold a.; := ﬁﬁﬂﬂt ”||M||3 € (ag,as).
2 3

When a1 < o < O, the trajectory me(t) initially decreases to a minimum above 4! and then
increases. During this decreasing phase, the ¢5-SAM flow amplifies coordinates with smaller indices
J < jc(0) than the most-amplified index at initialization j.(0) € arg min; |u; — m.(0)|, enabling an
aggressive exploration of weaker features before transitioning to the standard minor-first-major-last
sequential discovery pattern. Along the black path in Figure 8, this manifests as the most-amplified
coordinate starting at (34, then stepping down to 3; sequentially during the initial decrease, and—
after sufficient time—stepping back up sequentially toward 34 as m.(t) increases.
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B CORE LEMMA FOR SAM ON DEPTH-1 NETWORKS

Although our argument is inspired by the simple proof of Theorem 9 in Soudry et al. (2018), ex-
tending that analysis from gradient descent to the SAM flow is far from straightforward. In GD the
gradient has a clean exponential form and all coefficients are fixed, which makes the support/non-
support decomposition almost immediate.

In contrast, SAM evaluates the gradient at the perturbed point w(t), introducing the time—dependent
factors 7, (¢) and the perturbed margins 7, (t), neither of which appear in GD. Controlling these
additional terms turns out to be technically delicate: one must show that the SAM-induced coeffi-
cients remain uniformly bounded, that the perturbed margins stay within a fixed range, and that the
resulting two-variable function ¢)(z, §) admits a uniform upper bound. Only after establishing these
new ingredients can the GD-style argument be recovered. The proof below develops these steps and
shows that, despite the additional complexity, the SAM flow converges to the same /5 max-margin
direction as GD.

Lemma B.1. For almost every dataset which is linearly separable, any perturbation radius p and
any initialization, consider the linear model f(x) = (w, x) trained with logistic loss. For any SAM
perturbation of the form
W =w+ e(w)
with a perturbation direction €(w) satisfying
lle(w)||l2 < B for some finite constant B < oo and all w,

the resulting SAM flow converges in {5 max-margin direction.

Proof. Let {(Tn,yn)}Y_; C RYx {1} be alinearly separable dataset, that is, there exists a vector
w, such that
Yn xlw* >0 forall n.

As usual in this setting, we absorb the labels into the inputs and assume without loss of generality
that all labels are y,, = 1. In other words, we redefine x,, <— y,,x,, and work with a dataset {wn}ﬁy:l
such that

Jw, with me* > (0 forall n.

For the linear model f(x) = = " w, the logistic loss is

N —Uu
T —u _ €
L(w) = ;e(mn w),  l(u)=log(l+e™),  l(u)=—1 =
The SAM flow with perturbation &(w) is the gradient flow
w(t) = -VL(w(t), () =w(t)+e(w). (6)

Let m,,(t) = «, w(t) and M, (t) = «,) w(t). Then

N e_ﬁ'n (t)

N
VL@®) = =Y 7o @ =~ 2 e Oy,

n=1 n=1
with
o (P (£)=mn (1))
Tiemm Y
Because w(t) — w(t) = e(w(t)) and |le(w(t))|l2 < B, if the data are bounded, say ||z, |2 < R,
then

Tn (t) -

[0 (t) = M (t)] = |2, (@(t) — w(t)| < BR=: C Q)

for all n, t. Hence there is a constant A > 0 such that

0 <7,(t) <A foralln,t.
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The SAM flow equation 6 can therefore be written as
N
w(t) = wmt)e ™ Ve, 0<y,(t) <A ®)
n=1

Let w* denote the ¢, max-margin solution

w* = argmin |w|[ stz w > 1 foralln.
w

Let S = {n : ] w* = 1} be the support set. Standard KKT conditions yield coefficients b,, > 0

forn € S with Zn: b, = 1 such that
w* = Z bpx,,.
nes

nes

Define the residual
r(t) =w(t) — w*logt.
Our goal is to show that r(¢) is bounded. This will imply that
w(t)  w'logt+r(l) w*
lw®)|| — [lw*|[logt + o(logt)  [lw*||’

that is, the SAM flow converges in the /o max-margin direction.
Differentiating and substituting equation 8, we obtain
*

« N
. : w -m w
7(t) = w(t) — P ZV"(t)e Mg, — o
n=1

We split the sum over the support and non-support points:

*

() = " t —mup (t) " " t —my, (t) " — w .
#1) = 3 O O+ 3 e ™ Oy - 2
nes n¢sS
For n € S we have a:,TL'w* =1, s0

mu(t) =z wt) = x w logt + =, r(t) =logt + z, r(t),

and therefore .
te_mn(t) — e—m"r(t).

Forn ¢ S we have

efmn(t) _ efw;rw* log tfw;:r(t) _ tfmzw*efmzr(t)'
Using w* = ) ¢ b,x, We rewrite
1 e .
#(t) =2 3 ba Pbb—()e—mwt) . 1] o+ > (B O, )

nes n¢sS
Consider the squared norm:
S llr@®)? =rt) #(t) = Ta(t) + Ta(t),

where T (t) and T5(t) are the contributions of the two terms in equation 9. For the non-support term
T5(t) in equation 9, we have

Ty(t) = Y ()t =@ e e Oglr ().
n¢sS
There is a margin gap 6 > 0 such that & w* > 1 + 6 when n ¢ S. Then

tfm:w* < t7(1+0),
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and using v, (t) < Aand Vz e=*z < 1, we have

A
To(t) < —.
t
For the support points, write z,,(t) = «,' 7(t) and define
Yn(t —-

so that

nes
We first justify that the coefficients d,,(t) = 7,(t)/b, remain in a fixed compact interval.
equation 7,
|7 (t) — mau(t)] < C.
Since
e~ (Mn () —mn ()
Yu(t) = o
and the denominator satisfies 1 + e~ (®) > 1, we obtain the uniform bound
0 <7,(t) < e~ (Mn(t)=mn(t)) < C for all n, t.
Thus each ~,, () lies in the compact interval
[0,e€].
Next, since every b, > 0 for n € S and S is a finite set, define
bmin = glelg b, >0, bmax := Igbleaé{ by, .
Therefore
n(t “
oty =7 ) = 0<8(t) < —
bn bmin
Hence 0,,(t) ranges over the compact interval
c
e
6min7 6max - |:07 i| .
[ } bmin

0=7 3 batl®)

For each fixed 6 > 0, consider the function

P(z,0) = (0e™% —1)z.

As z — +oo we have ¢(z, ) — —oo, and therefore 1)(z, §) attains a finite global maximum on R.

Since 0, (t) € [dmin, Omax] for all ¢, there exists a constant C, > 0 such that

w(z,é) < Cw Vz € R, Vo € [6min,6max].

Consequently,
Un(t) =

and therefore

Ti(t) <

P(2n(t),0n(t)) < Cy

Vn € S, Vt,

C
71, Cl = Cwan

nes

Combining the two bounds on T (t), T>(t), for sufficiently large ¢,

S ()

for some constant Cy > 0.

I* =

Ty(t) + Ta(t) <

23
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A

-t 140 =

Cy
t

1)zn(®),

for all n € S and all ¢.
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Integrating from ¢ to ¢ gives

t
t
PO < [l +2C2 | utdu = fr(to) P+ 2C2 log (),
to

o)
[r(@®)]l = O(logt) = o(logt).
Since
w(t) = w'logt + r(t), l=(®)|| = o(logt),
we obtain 0
w(t w*
T = T+ o(1),
lw(@®)  [lw*|
which proves
w(t) w*
— T
lw(@®] w2
Thus /5-SAM flow converges in the /5 max-margin direction for any initialization and any fixed
p > 0. O
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C SAM WITH {.-PERTURBATIONS: PROOF OF SECTION 3

C.1 DEPTH-1 NETWORKS: PROOF OF THEOREM 3.1

Theorem 3.1. For almost every dataset which is linearly separable, any perturbation radius p
and any initialization, consider the linear model f(x) = (w,x) trained with logistic loss. Then,
loo-SAM flow converges in the {5 max-margin direction.

Proof. Apply Lemma B.1 with e(w) = p sign(VL(8)). Then ||e(w)|2 < pv/d for all w, so the
conditions of Lemma B.1 hold. Thus, the flow converges to the /o max-margin direction. O

Theorem C.1. Consider the linear model f(x) = (w,x) trained on the dataset D, with loss
L(w) = £({w, x)) where ¢'(u) < 0 for all u. Then, GF and {-,-SAM flow, starting from any w(0),
evolve on the same affine line w(0) + span{u} and have the same spatial trajectory.

Proof. The model is f(x) = (w,x

) = w'x. The loss is L(w) = ¢(w' p). The gradient is
VwLl(w) =0 (w"p) - pwith '(s) < 0.

Gradient Descent The GF is
w = —VyuL(w)
=—l(w'p)-p.
SAM with /., perturbation The ascent point is
W = w + peoo(w)
= w + psign(Vy L(w))
= w — psign(p).
The equation of {,-SAM flow is
W = =V, L(W)
= —VyL(w — psign(p)
= —l'(w' p— psign(p) "p) - p
= —l(w"p—plulh) - p
Therefore, they have the same spatial trajectory as:

w = .
The term —¢'(w " g — p||pe|1) is the accelation in terms of ¢ since —¢'(s) is decreasing in s. O

C.2 PROOF OF THEOREM 3.2

Theorem 3.2. For i € [L], suppose w')(0) = o € R4. Let w'")(t) follow the rescaled {~.-SAM
flow (2) with perturbation radius p > 0 on the dataset D,,. Then, for the j-th coordinate of 3(t):

* Ifa; < p, then B;(t) converges to 0 if L is even, or pLif L is odd.
o Ifa; = p, then B3;(t) = p* forall t > 0.
* If oj > pand L = 2, then (3;(t) grows exponentially: (;(t) = O(exp(2/;t)).

slfaj > pand L > 2, let J := argmax;.q;>, pj(o; — p)E=2, and also let T :=
minge 7 Y/ (L-2)pu(ar—p)t =2 If j € J, then Bj(t) — oo ast — T, otherwise, [3;(t) stays
bounded for allt < T.

Proof. Since we suppose w( (0) = o € R? forall i € [L], and the dynamics of the linear diagonal
network are invariant under any permutation of the layer indices {1, ..., L}, we obtain
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wM () =wP )=  =wP(t) = w(t) forallt>0.
With /., perturbation, the rescaled {,,-SAM flow (2) becomes

b (1) = po [ O (W) +20(1))
044

—po @ (w(é) (t) + psign(V,o L(0(1))))
£

Recall the gradient (5)

Vo LO) = ((BO),m)po [ (Dw (1) |,
04

where ¢/ (u) = < 0. Since we also have p& > 0 (element-wise), we have

1
" T4exp(u)

sign (V0 L(0(t))) = —sign | () w ) (#)
i

L—1
o —sign (@ w(t)) ,

{=1

where (a) follows from the fact that w(?) (t) = w(t) for all i € [L]. Using this fact again, we have
the ODE

wt) =w(t)=po

This can be written as coordinate-wise as
w;(t) = pj (w;(t) — psign (wj(t)Lfl))Lfl for j € [d].
Divide into three cases:
Casel: L =2.
Wi (t) = py (w;(t) — psign (w;(t))) .

By Lemma C.2, we have

p+ (w;(0) — p)etit if w; (0) > p,

wi(t) =4° if w; (0) = p,
! p+ (wi(0) = p)etit (t <T), 0(t=T) ifw;(0)<p,
0 if w;(0) = 0,

P p
where T := 0 log (p—wj(o))' Then, we have

O(e?*t) if oy > p,

Bi(t) = w; ()" — { p* ifaj =p, ast— oo.
0 if o < p,
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Case 2: L > 2 and L is even.

by (1) = py (w; (1) — psign (w; (1))

By Lemma C.3, we have

p+ (—(L—Q)th+W) if w; (0) > p,
w;(t) =47 R et =
p= (~L =it + =) T <D, 0(@=T) ifwy(0) <p.
0 if w; (0) = 0,
where T := (pfwj(o)zg(_:;);pi@iz). Then, we have
@((t*—t)—ﬁ) if a; > past — t*,
Bi(t) = wi(t)" — pl if aj = p,ast — oo,
0 if o < p,ast — oo,
where t* = 1/(L—2)u; (w; (0)—p)" 2
Case 3: L > 2 and L is odd.
L1
w;(t) = pj (w;(t) — p)

By Lemma C.4, we have

w;(t) = -t

p if w; (0) = p,
1
Pt (‘(L = 2)ust + (ij)fp)H) P

Then, we have

@(t*ft’ﬁ) if o > p,ast — t*,
8y(t) = wy (1) — § O\ 0T )T > pas

ot if a; < p,ast — oo,
where t* = 1/(L—2)u; (w; (0)—p)* 2.
These cases of L cover all possible cases in Theorem 3.2.

O

The following three lemmas (Lemmas C.2 to C.4) are used in the proof of Theorem 3.2 and corre-
spond, respectively, to the three cases.

Lemma C.2. Let ;1 > 0 and p > 0. Consider
(t) = p (w(t) — psign(w(t)))

Then, there exists the solution w such that it is absolutely continuous (AC) and satisfies

w(t) = w(0) + /0 w(s)ds. (10)
In particular,
p+ (w(0) — p)et* ifw(0) > p,
() =2° ifw(0) = p,
p+ W(0) = ekt (L <T), 0(t>T) ifw(0)<p,
0 ifw(0) = 0,

— 1 p
where T := m log (p—w(()))'
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Proof. Case 1: w(0) = 0. The constant function w(¢) = 0 is AC, and

t t
/ (0 — psign(0)) ds = / 0ds =0.
0 0
Thus, Equation (10) holds.

Case 2: w(0) = p. The constant function w(t) = p is AC, and since sign(w(t)) = 1, we have
¢ ¢
/ u(p—p~1)ds:/ 0ds = 0.
0 0

Case 3: w(0) > p. Att = 0, we have w(0) = p(w(0) — p) > 0. Assume, for contradiction,
that there exists ¢, > 0 with w(¢,) = p. Then on [0,¢,) we have w(t) > p and hence w(t) =
u(w(t) — p) > 0, so w is strictly increasing on [0, ). An increasing function cannot reach the
smaller value p starting from w(0) > p: contradiction. Thus w(t) > p for all ¢ > 0. On the region
{w(t) > p}, sign(w(t)) = 1 and the ODE reduces to the linear equation

Thus, Equation (10) holds.

W= p(w = p).
Then, we have
w(t i
w(t) —p
¢ t
= w(s) ds = / uds
o w(s)—p 0
w(t) — p‘
=lo = ut
Elw)—p| ~

This function is AC and satisfies Equation (10).

Case 4: 0 < w(0) < p. Initially sign(w(0)) = 1, so again v = u(w — p) and

w(t) = p+ (w(0) — p)et.
Since w(0) — p < 0, the function w is strictly decreasing and reaches 0 exactly once at
1 P
T:= flog(i) > 0.
po o\ p —w(0)
On [0, T, this solution is AC and satisfies Equation (10). Define w(t) := 0 for all ¢ > T. Then,
using sign(0) = 0,

w(t):w(T)+/T,u(O—psign(O))ds=0+/TOds=0,

so Equation (10) also holds on [T, c0). The function w is AC on [0, 7] and on [T, c0), and it is
continuous at t = 7', hence it is absolutely continuous. O

Lemma C.3. Let ;1 > 0, p > 0, and L is even. Consider
(t) = p(w(t) — psign(w(t)))

Then, there exists the solution w such that it is absolutely continuous (AC) and satisfies Equa-
tion (10). In particular,

L—-1

1

L—-2

PJF(*(L*Q)WHL W) ifw(0) > p,
wit) = 1P . ifw(0) = p,
p— (L -2t + =) T (E<T), 0(¢2T) ifw(0) <p.
0 if w(0) = 0,

(L=2)_ ,—(L-2)

. (p—w(0))~
where T := =

28



Under review as a conference paper at ICLR 2026

Proof. The proof is similar to the proof of Lemma C.2.

Case 1: w(0) = 0. The constant function w(t) = 0 is AC, and

t t
/ (0 — ,osign(O))L_1 ds = / pw-0E"tds =0.
0 0
Thus, Equation (10) holds.

Case 2: w(0) = p. The constant function w(t) = p is AC, and since sign(w(t)) = 1, we have

t t
/ u(p—p-l)L_ldSZ/ pw-0E"tds =0.
0 0
Thus, Equation (10) holds.

Case 3: w(0) > p. Att = 0, we have w(0) = p(w(0) — p)L_1 > 0. Assume, for contradiction,
that there exists ¢, > 0 with w(t,) = p. Then on [0,¢,) we have w(t) > p and hence w(t) =
p(w(t) — p) > 0, so w is strictly increasing on [0,%,). An increasing function cannot reach the
smaller value p starting from w(0) > p: contradiction. Thus w(t) > p for all ¢ > 0. On the region
{w(t) > p}, sign(w(t)) = 1 and the ODE reduces to

W = p(w — p)Ft
Then, we have
w(t) _
(w(t) —py—t
t ’IU(S) . t S
:‘/o (w(e) - pE 1% = / -
1 1 1

T I-2 ((w(t) — o2 (w(0) - p)LQ) -

) = 7 = (=Dt + s )

L—2

where (a) follows from w(¢) — rho > 0. This function is AC and satisfies Equation (10).

u(t) = p+ (2 -2t +

Case 4: 0 < w(0) < p. Initially sign(w(0)) = 1, so again 1 = pu(w — p)L~! and

(w0 = 2 = (=L =Dt + ot )

Since w(0) — p < 0 and L is even, we have

1
w10 == (=20t + grres)

The function w is strictly decreasing and reaches 0 exactly once at
(p = w(0) -2 — p= -2
(L—2)p

On [0, T, this solution is AC and satisfies Equation (10). Define w(t) := 0 for all ¢ > T. Then,
using sign(0) = 0,

L—2

T .=

> 0.

=w t — psign L=t s = t s =
wlt) = (T)+/Tu(0 psign(0))* " d O+/TOd 0,

so Equation (10) also holds on [T, 00). The function w is AC on [0, 7] and on [T, c0), and it is
continuous at t = 7', hence it is absolutely continuous. O
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Lemma C4. Let ;1 > 0, p > 0 and L is odd. Consider

w(t) = p(w(t) - p)

Then, there exists the solution w such that it is absolutely continuous (AC) and satisfies Equa-
tion (10). In particular,

L—-1

“ p o e =p,
w = —T—-3
p+ (—L =Dt + Grrtar=) T w0 £,

Proof. The proof is similar to the proof of Lemma C.2.

Case 1: w(0) = p. The constant function w(t) = p is AC, and
t t
/ u(p—p)dSZ/ 0ds =0.
0 0

Case 2: w(0) # p. Separate variables:

Thus, Equation (10) holds.

dw

wppt M

Integrating from O to ¢ gives

1 1 1
L2 <(w(t) — )2 (w(0) - P)L‘2> -

Solving for w yields

o
)=+ (-2t + )

The function is AC and satisfies Equation (10).

C.3 PROOF OF COROLLARY 3.5

Corollary 3.5. Under the assumptions of Theorem 3.2, let S := {j : oj > p} and assume S # .
If there is a unique maximizing index j* := argmax;egs pj(a; — p)L=2, then the (o.-SAM flow
converges in the e ;- direction. In particular, when L = 2, we have j* := argmaxjcg [4;.

Proof. Work under the assumptions of Theorem 3.2 and let

)L72

)

S={j: o >p}#2, j= arg_n;ax wila; —p
JjeE

where the maximizer is unique. We prove that the (rescaled) ¢,,—SAM flow satisfies
t
B( ) — €jx.
18@)]|2
Case L = 2. By Theorem 3.2, for j € S,
BJ (t) = @(e 2,LL‘7‘t) )

whereas for j ¢ S we have either 3;(t) — 0 (if L even) or 3;(t) = p’ when a; = p; in any event
these coordinates stay bounded. Since the maximizer is unique and L — 2 = 0,

Jj* = argmax p;,
jes
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hence for every k € S\ {j*},

Br(t)
Bj-(t)

and for k& ¢ .S we also have [ (t)/5;+(t) — 0 because the denominator grows exponentially while
the numerator is bounded. Therefore 3(t)/[|3(t)||2 — €;-.

:@(6—2(uj*—uk)t> — 0,

Case L > 2. By Theorem 3.2, for each j € S there is a blow-up time

1
t* - )
T (L =2) (o —p)?

and ast 1T t%,
B;(t) = @((t;‘ — t)—l/(L—2)>.

If j ¢ S, then 3;(t) is bounded (either converging to 0 when L is even, or equal to p” when a; = p).
The uniqueness of j* implies

the = rjxggtj and t;. <tp Vke S\ {j"}.

Hence, for any fixed ¢ < t;‘-‘* , all coordinates with k # j* are finite; moreover,

im Out)
1t B+ (1)

=0 for every k # j*,

because ;- (t) — oo while () remains finite as ¢ < ¢;. Consequently,

B()

lim = €.
e |82

Combining the two cases establishes the claim. In particular, when L = 2 we have j* =
arg max;cg fl;- O

C.4 FINITE-TIME BLOW-UP

In the setting of Theorem C.1, the /,,-SAM flow evolves independently across coordinates. In the
rescaled /,,-SAM flow, each coordinate indeed admits a finite blow-up time. However, as explained
in Remark 3.3, the smallest of these blow-up times corresponds to ¢,,i; = 00 in the original SAM
time scale. Consequently, both the original flow and the rescaled flow terminate at this same time
and cannot be extended beyond it.

To illustrate this behavior concretely, we provide Figures 9 and 10 using p = (1,2,3,4,5), p = 1,
and a depth-L = 3 network. In the original flow, only one coordinate diverges as torig — 0.
As shown in Figure 9b, the normalized trajectories 5,(t)/||3(¢)|| show that the remaining coordi-
nates grow much more slowly than the dominant one—indeed, they remain bounded. Because their
growth is negligible compared to the blow-up coordinate, their normalized values converge to zero.
Thus, in this example, the trajectory converges to the direction es.

In contrast, Figure 10a shows that in the rescaled /..-SAM flow, each coordinate 3; (t) has its own
finite blow-up time. However, Theorem 3.2 identifies the blow-up time 7" = W for
any j € J, which is the minimum of these blow-up times—only the coordinates in .J blow up at T',
while all remaining coordinates stay bounded. Since this rescaled time 1" corresponds to tq,j; = 00,

the flow cannot proceed past 7. In this example, 7" ~ 0.25.

Because the rescaled system is simply a time reparameterization of the original one, the two plots
differ only in their x-axis scaling. Before reaching 7', the two flows exhibit the same evolution along
the y-axis. Indeed, reparameterizing the original trajectory (Figure 9) by 7(t) reproduces the same
curve as shown in Figure 10 before 7.
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Original £.-SAM Flow: B;(t) trajectories Original £.-SAM Flow: B;(t)/||B(t)| trajectorie
91— Ba(t) 0.84 — BW/IBW)|| —m8
gl — B0 — BB

Bs(t) 0.7 1 Bs()/[1B(O]
7 A Ba(t) Ba®)/|B®)]]
— Bsl(t) ?0.6' — Bs@)/|IB®I]
=X ]
o Z o051
851 o
3 0.4
4 -
34 0.3
2 1 0.2 .
00 05 10 15 20 25 3.0 00 05 10 15 20 25 30
time time
(a) B;(t) trajectory. (b) Normalized j3; (t) trajectory.
Figure 9: §;(t) and normalized j3;(t) trajectory of the original £o,-SAM flow.
00(l)kescaled £--SAM Flow: Bj(t) trajectories Rescaled /.-SAM Flow: B;(t)/||B(t)| trajectorit
— Bu(t) 1.01 — ButM|IBB)]|
— Balt) — Ba(t)/]|B(D)]]
8000 1 Ba(t) 0.8 Ba(O/]IB(D)]
Ba(t) Ba)/11B(D)]]
— Bs(t) = — Bs()/[|B®)]]
= 6000 - D 0.6
= Q
8 =
9] -
24000 - £ o044
Ko}
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o J J 0.0 1
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time time
(a) B;(t) trajectory. (b) Normalized 3, (t) trajectory.

Figure 10: $;(t) and normalized 3;(t) trajectory of the rescaled {-SAM flow.

C.5 EMPIRICAL VERIFICATION

Our theoretical analysis (Theorem 3.2 and Corollary 3.5) establishes the behavior of the /,.-SAM
flow in the one-point setting D,,. In this section, we investigate whether these phenomena extend be-
yond the idealized one-point regime. We first examine the discrete-time dynamics (GD and discrete
{+-SAM) on the one-point dataset and verify that they exhibit exactly the same trajectory patterns
predicted by the continuous-time theory. We then turn to multi-point datasets and demonstrate that
the same qualitative behaviors persist in both the continuous-time flows and their discrete counter-
parts. Taken together, these experiments empirically confirm that the insights obtained from D,,
carry over robustly to multi-point datasets and to practical discrete SAM updates.

For reproducibility, we detail the exact initialization used in all experiments. We adopt the layer-wise
balanced initialization w(") (0) = « for every i € [L], consistent with the setup of Theorem 3.2. The

black-edged dot in Figures 11 and 13 indicates the initial predictor 3(0). We set w( (0) = B(0)/*

element-wise so that 3(0) = @iL:1 w(0) holds exactly. For the continuous-time trajectories, we
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approximate the flow using the corresponding discrete updates with a small step size = 1073 via
an explicit Euler scheme.

C.5.1 ONE-POINT CASE: DISCRETE VS. CONTINUOUS DYNAMICS

To verify that our continuous-time analysis faithfully predicts the behavior of the corresponding
discrete algorithms, we repeat the experiments in Figure 2 using exactly the same initializations,
SAM radius p, and feature vector pr. We simulate both the gradient flows (black curves) and their
discrete counterparts (blue dots), including GD and discrete /~.-SAM updates. As shown below, the
discrete trajectories closely trace the qualitative evolution of their continuous-time versions.

B>

B2

N
o

1 1
0  Q—— 0 q&\ .
o 1 2 3 4 o 1 2 3 4
B1 B1
(2)GD (L = 2) (1) £oo-SAM (L = 2)
4 - 4-
3 3
& 2 & 2-

\

0 g

0 T T T 1 T T 1
0 1 2 3 4 0 1 2 3 4
B1 B1
(¢)GD (L = 3) (d) £oo-SAM (L = 3)

Figure 11: Trajectories 3(t) under GF, {..-SAM flow (black line), GD, and discrete £..-SAM
updates (blue dots) for d = 2 and p = (1,2). For SAM, we set p = 1. For GD and discrete
lso-SAM, we use step size n = 0.1.

C.5.2 MULTI-POINT CASE: PERSISTENCE OF ONE-POINT BEHAVIOR

To examine whether the qualitative behaviors identified in the one-point analysis persist on more
realistic datasets, we construct random linearly separable binary data by sampling two Gaussian
clusters centered at 4+ and — e as shown in Figure 12. Specifically, we draw

wgf) =p+ey, Yn=-+1, mq(;) =—p+e,, Yn=-1,
with €, ~ N(0,021;) and use N/2 samples per class (with g = (1,2), N = 100, 0 = 0.5).

Figures 11 and 13 show that the same qualitative patterns predicted by our one-point theory—such
as the asymptotic trajectory structure—also emerge clearly in this multi-point setting. Importantly,
these behaviors are observed not only in the continuous-time flows but also in their discrete coun-
terparts (GD and discrete /,-SAM). This empirical evidence demonstrates that the phenomena
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described in Theorem 3.2 and Corollary 3.5 extend robustly beyond the one-point setting to general
linearly separable datasets.

3 +lclass *°% &
o B g
2 -1class | 8 8%,
% 290
IDO
o ® o o
14 e
g 0 +°
_1_
_2_
_3_
T T T
-2 0 2
X1

Figure 12: A randomly generated linearly separable dataset used in our multi-point experiments. We
sample two Gaussian clusters centered at +-p = +(1,2) with isotropic noise (¢ ~ N(0,0.5%I5))
and assign labels +1 and —1 accordingly. This dataset is used to evaluate whether the one-point
phenomena from Theorem 3.2 and Corollary 3.5 persist in the multi-point regime.

4 4 -

B
8,
P

. 0/ 1
0 T T T 1 O ik T 1
0 1 2 3 4 0 1 2 3 4
B1 B1
(2)GD (L = 2) (b) £oo-SAM (L = 2)
4- 4-
3 A 34
& 21 & 21 /
| T ==
0 T T T 1 0 T T 1
0 1 2 3 4 0 1 2 3 4
B1 B1
(©)GD (L = 3) (d) £oo-SAM (L = 3)

Figure 13: Trajectories 3(t) under GF, {»,-SAM flow (black line), GD, and discrete ¢~,-SAM
updates (blue dots) for d = 2 on random multi-point dataset in Figure 12. For SAM, we set p = 1.
For GD and discrete /-.-SAM, we use step size 7 = 0.1.
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D SAM WITH ¢5-PERTURBATIONS: PROOF OF SECTION 4

D.1 DEPTH-1 NETWORKS: PROOF OF THEOREM 4.1

Theorem 4.1. For almost every dataset which is linearly separable, any perturbation radius p and
any initialization, consider the linear model f(x) = (w, x) trained with logistic loss. Then, {2-SAM
flow converges in the {5 max-margin direction.

Proof. Apply Lemma B.1 with e(w) = p%. Then |le(w)]||2 < p for all w, so the conditions
of Lemma B.1 hold. Thus, the flow converges to the ¢, max-margin direction. [

Theorem D.1. Consider the linear model f(x) = (w,x) trained on the dataset D,, with loss
L(w) = L({w,x)) where ¢'(u) < 0 for all u. Then, GF and {2-SAM flow, starting from any w(0),
evolve on the same affine line w(0) + span{u} and have the same spatial trajectory.

Proof. The model is f(x) = (w,x

) = w'x. The loss is L(w) = ¢(w' u). The gradient is
Vwl(w) = (w'p) - puwith #/(s) < 0.

Gradient Descent GF is
W= -V, L(w)
=—l(w'p) - p.

SAM with /; perturbation The ascent point is
W = w + pea(w)
Vuwl(w)

[V L(w)]|2

_ H
=w-—p—o.
1]l
The update of ¢5-SAM flow is
W = =V L(W)

= —Vyupl(w—p——
[l ]2
p'p
lleell2
=l (w"p—plul) - p

)

= —l(w'p—p—r)-p

Therefore, they have the same spatial trajectory as:

w = p.
The term —¢'(w " p — p||pe||2) is the accelation in terms of ¢ since —¢'(s) is decreasing in s. O

D.2 DERIVATION OF /5-SAM FLOW

Let us get the /2-SAM flow. The gradient is
vw(l)L(e) = gl(</8(0)a “>) vw(i) </6(0)7 /'l'>
= (((B(6), 1)) p O w for (i,1) € {(1,2), (2, 1)}-

From the gradient, we have

Vi £(0) wow? pnow®

e’ (9)

=P o o P =-p
IVE@)l2 @ /[l © w5 + [ © w3 ne
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for (i,1) € {(1 2),(2,1)}, where ng = /[|p® wD |2+ [ ©w@ |2 and (a) follows from
U'(u) = — 3= < 0.

We consider the initialization w() (0) = w(® (0) € R%. Then, since the loss function and dynamics
are invariant under exchanging w(!) and w(®, we have w() (t) = w®(t) =: w(t) for all t > 0.
Therefore, the update on w(t) by rescaled £2-SAM flow is given as

w(t)=po <'w(t) - p%) .

D.3 PROOF OF THEOREM 4.2

Theorem 4.2. For almost every dataset which is linearly separable, and any perturbation radius
p, consider the linear diagonal network of depth 2, f(x) = <w(1) ow?, x) trained with logistic
loss. Let (w™M(t),w®)(t)) follow the l5-SAM flow with w™ (0) = w®(0). Assume (a) the
loss vanishes, L(w™ (t),w® (t)) — 0, (b) the predictor 3(t) := w) (t) ® w'? (t) converges in
direction. Then the limit direction of B(t) is the {1 max-margin direction.

Proof. Let {(x,,yn)}Y_; C R? x {41} be a linearly separable dataset, meaning that there exists
w, € R? such that
Y T, W, >0 vn.

As usual, we absorb the labels into the inputs by redefining x,, < y,x,, so that we may assume
yn = 1 for all n and
Jw, such that :B:L—w* >0 Vn.

We consider a depth-2 diagonal linear network with parameters wy, wo € R?, defining the predictor
fl@swi,we) = (w1 Ows) 'z =6, B = w; © ws.
The loss function is logistic:

—Uu

L(wy, ws) Zf L(u) =log(1+e "), (u) = Ty

We study the /5-SAM flow with fixed perturbation radius p > 0:
w1 (1) = =V, L(w: (1), w(t)),  wa(t) = =V, L(wi (1), wa(t)),

where

Vi, L(wi (1), wa(t))

@Zt:wzt-l- 5 221,2
0= il H P9, (0. w0
Step 1: Balanced initialization removes layer imbalance. Let
1 2
2(t) == wiV () — ) (2).
From the SAM flow and
/ ~(2) ' ~(1)
0w Zf wn T, W57, w (2 ZE :vn T, W57,

one obtains
N
5(t) = G0 (P () —wVO)(1+0(1),  Git) = (BT xn) zn.

Here the factor 1+0(1) arises because the gradients in the SAM update are evaluated at the perturbed

parameter
S L(w(1))
O =)+ St
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rather than at w(t) itself. Since the perturbation has fixed magnitude p while the parameter norm
satisfies ||w(t)|| — oo along any vanishing-loss trajectory of a 2-homogeneous model, the relative

perturbation decays:
e ¢

[w(#)]l2 [w(#)ll2

Consequently, the gradients V.L(w(t)) and VL (w(t)) become asymptotically colinear, and replac-
ing the latter by the former introduces only a vanishing multiplicative error 1+ 0(1) in the imbalance
ODE for z;(t).

Since z;(0) = 0 under balanced initialization and the ODE Z;(t) = —G(t)z;(t)(1 4+ o(1)) is linear
with a Lipschitz right-hand side, uniqueness of solutions implies z;(¢) = 0 for all ¢. Hence for all ¢

w1 = w0 = as(t), B0 = a;(1)".
Step 2: Predictor ODE. From the SAM ODE,
a;(t) = —a;(t) G;(t) (1 + o(1)).

Hence
Bi(t) = 2a;(t)a; (t) = —2a;(t)*G5(t)(1 + o(1)) = =28;(1)G; (£)(1 + o(1)).
Noting that
VeL(B ]726' T) T s
since

Txn) an (14 0(1),

an

N
Git) =D l(B @)z, =
n=1

we have
G;(t) = Vg, L(B(1)) (14 o(1)).
Hence the coordinate-wise predictor dynamics
Bi(t) = =28;() G;(t) (1 + (1))
become )
Bi(t) = =25;(t) V5, LB()) (1 + o(1)).
Writing this in vector form using diag(8)VgL = (81V, L, ..., B4V s,L) ", we obtain

B(t) = —2diag(B(1) VaL(B(t)) (1 +o(1)). (11)

Step 3: Geometry induced by the diagonal parameterization. To characterize the optimization
geometry associated with the depth-2 diagonal model, we invoke Lemma D.2. The lemma shows
that, for the parameterization

B=wVow? and R w®)=3(lw?]3+[lw?|3),

the induced predictor norm is exactly the ¢; norm:

_ : (1) 0@ —

Il = min R, w®) = 8],
Moreover, on the balanced submanifold w) = w® = @ with 8 = a®2, the lemma establishes
that the Riemannian metric induced on predictor space is

(u, v)§ = uTM(,B)v, M(B) = 2diag(B).

Therefore, the natural-gradient steepest-descent flow with respect to the induced norm || - ||z takes

the form )

B(t) = —M(B(t)) VL(B(t)) = —2diag(B(t)) VL(B(1))-
We next compare this asymptotic steepest-descent flow with the predictor ODE arising from the
{5-SAM dynamics.
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Step 4: Asymptotic identification with /; steepest descent. Comparing equation 11 with the
steepest-descent flow above shows that the SAM predictor dynamics coincide with the /; steepest-
descent dynamics up to a multiplicative factor 1 + o(1) and a vanishing perturbation. Assumptions
(a) and (b) guarantee that these perturbations do not change the limiting direction of 3(¢)/||3(t)||2.

Step 5: Conclude /; max-margin. By the max-margin theorem for steepest descent in a given
norm (Gunasekar et al. (2018a), Thm. 5; extended to logistic loss by Lyu & Li (2019)), any trajectory
following ¢, steepest descent and satisfying £(3(t)) — 0 converges in direction to the ¢; max-
margin solution. Since the SAM predictor dynamics are asymptotically equivalent to /1 steepest
descent, and by (b) the direction limit exists, we obtain

8| 8%, B* € argmin ||B|; s.t. BTz, > 1.
B
O

Lemma D.2 (Induced Norm and Natural Gradient Metric for Depth-2 Diagonal Models). Consider
the depth-2 diagonal parameterization

B =wbow? ecRr?

and the quadratic parameter regularizer

1
R(w ™, w®) = 2 (w3 + [w®3) .
Then the induced predictor norm
.: : 1) @)
1Bl = min,  R(w!, w™)
satisfies
1Bl = 1181

Moreover, on the submanifold where w") = w?) = a and B = a®?, the Riemannian metric
induced on the predictor space by R is

<’u,,’U>N = ’U,TM(IB)’U, M(ﬁ) = 2dla‘g(6)

Consequently, the natural-gradient steepest-descent flow w.rt. || - ||z is

B =—M(B)VpL(B) = —2diag(B) VsL(A).

Proof. (i) Computation of the induced norm. For each coordinate j, the constraint 3; = w§1)wj(-2)

decouples. If 5; = 0, the minimum is attained at (w§1), w§2)) = (0,0) and equals 0 = |3,

(2

@) g (1) N,
;7 viaw;” = f;/w;"’ and minimize

2
¢j(w);—1<w2+ﬁ'>, w # 0.

For 3; # 0, eliminate w

2
2 w?
2
J 9
|3;|1/2. Substitution gives ¢, (w*) = |3;|. Summing over j yields the induced norm

Differentiation yields ¢, (w) = w — 3w, whose nonzero roots satisfy wt = so that |w| =

d
1Bl =D 1851 = 18I
j=1

(i) Local parametrization and Jacobian. On the balanced submanifold w") = w? = a € RY,
the predictor is

2
ﬁj :aj.
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Hence the Jacobian of the map a — (3 is diagonal:

aB; -
2 = 2(Lj Ojk'

aak:

(iii) Riemannian metric induced from R. The regularizer restricted to a becomes
2
R(a,a) = ||al}3.

Thus the parameter-space metric is Euclidean on a. For a tangent predictor perturbation d3, the
corresponding parameter perturbation is

_dg; _ dB;

da; = .
J 2(1j 2 “6]'

Thus the squared parameter differential is

<[ ag \’ dB;)?
ldaf3 =3 (2 %_) =2 (f/;f :

Jj=1 Jj=1

Therefore the predictor-space inner product induced by R is

d

U;V5
<’Ll,,’l)>N = 27
2.5

Jj=1
Equivalently,
y — 1 3 - n
M(B)™ = diag(By ... 55 ).
Inverting yields

M(B) = 4diag(p1, ..., Ba)-

(iv) Removal of irrelevant constant factor. Steepest-descent flows are invariant to multiplication
of M by any positive scalar constant. Thus M (3) is equivalent, for optimization dynamics, to

M(B) = 2 diag(8),

which is the conventional normalization in the induced-norm literature.

(v) Natural gradient flow. By definition of steepest descent under the induced norm,
B =—M(B)VsL(B) = —2diag(B) VsL(A).

D.4 PROOFS FOR SECTION 4.2.3

In this section, we provide detailed proofs for the trajectory analysis of SAM flow, with a focus
on the roles of the initialization scale «, the perturbation radius p, and the feature vector . For
notational simplicity, we omit the time dependence (¢) when the context is clear.

Assumption D.3. the initial weight parameters are positive and symmetric: w(" (0) = w(?(0) =
a1 for some scaling factor o > 0.

Assumption D.4. the vector p has strictly positive, increasing coordinates: 0 < pp < -+ < pg.
(Equivalently, up to a fixed permutation we may assume the coordinates are monotone.)

1385 (t)

- Sl 12 Bk(t) and

We introduce two auxiliary quantities. Define the normalized weights p;(¢) :

their moments M (t) := Z?Zl ,ug?pj (t). Using these, we set the thresholds

— _ Ms(t)
my = — mH(t) = 2M1(t)

In the proof, we consider ¢({3, u)) term, so not only considering the spatial trajectory but full
gradient flow without any reparameterization. We define the margins at the current and perturbed

parameters as s(t) := (8(t), p) and 3(¢) := (B(t), ). Set A(t) := |¢'(3(t))], the slope of the loss
with respect to the margin evaluated at the perturbed margin.
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D.4.1 RECAP: BASIC NOTATION

Recall the margin s = (3, ) and the loss L£(s) = log (1 + exp(—s)). The derivatives of the loss
with respect to the margin s are:

c _ —o(—s) = L
ds  1+exp(s)’
d’L

s o(s)o(—s) >0,

where o(s) = (1 + exp(—s))~! is the sigmoid function. We define \ := o(—s) € (0,1) as the
logistic loss slope magnitude. The gradients with respect to the weight parameters, obtained via the
chain rule, are:

dc  dL ds

_dac - @) dL 7d£ ds
dwj(-l). ds dwj(.l)

= = =AW
dw]@) ds dw](?) 7

The squared norm of the gradient vector is:

pwoctt =300 () (u57)") =

2 2
where ng = Z?Zl ,u? ((w](l)) + (wj(?)) ) SAM perturbs parameters by taking a step of
size p along the normalized gradient direction.
o VoLl
>INl
(0 = 2
2 w;l) ne )
(e = 22
2) o
The perturbed weight parameters are
(1) pujw@) ©) Pﬂjw(‘l)
A o J R _ J
(W1); :=w; " — g (W2); = w; T

The perturbed 3; becomes

, 2 2 212
_ My _ P ((w]@)) + () ) 7 0@
ne Ny

2,2
_ PRGN PHs (DY 4 (@)
5j<1+ ngﬁ)ﬂgﬂ((wj ) +(wj ) .

The perturbed margin and loss slope magnitude are

d
§:= <B7/’L> = Z/J’ija 5‘ = O(_‘g)'
j=1

Recall that the SAM flow dynamics are given by:

6 =—VoLl(6).
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D.4.2 PRELIMINARY ANALYSIS

We first establish a key property of the SAM flow: the balancedness of the weights.

Lemma D.5. Under Assumption D.4, the SAM flow decays the quantity w](-l) (t)— w§-2) (t) exponen-
tially to zero.

Proof. Define Aj := w§1) — wgz)' The SAM dynamics yield

2
j 5‘)7 (w (2)]_>\/J“] .

Ay = i) — o?
= S~ Ay
3 2 Pﬂjw( ) 3 (1) PH;W ( :
= Ay | w; z —Aui | w
e ne

= —S\,uj <1 + F%) Aj.
ne

Since \ is positive and p; > 0, it gives exponential decay.

A;(T) = A;(0) - exp (—,uj /OT)\ (1 + o ) dt)

(2)

Hence, the quantity w§-1) (t) — w;™ () decays exponentially. O
Proposition D.6. Under initialization with w(l)(O) = (2)(0) and Assumption D.4, the equality
](1)( ) = w!? )( t) is preserved for all t > 0. Furthermore, the sign ofw ( ) and w( )( t) remains

unchanged throughout the dynamics.

Proof. With w{"(0) = w!®(0), we have A;(0) = w!"(0) — w{”(0) = 0. By Lemma D.5,
Aj(t) = 0forallt > 0. Given this balancedness, each coordinate evolves multiplicatively according

to
(1)
WD = Al = (1) _ PRI ) PH; 1)

This differential equation has the unique solution

w (1) = " (0) - exp (M' / i (1’;*;) dt)-

Since the exponential function is always positive, w(l)(t) and w§2) (t) maintain the same sign as
their initial values throughout the dynamics. O

D.4.3 PROOF OF LEMMA 4.3

We begin by restating Lemma 4.3.

Lemma 4.3. The rescaled (2-SAM flow (2) is (;(t) = r;(t)5;(t) with 7;(t) := 2u; (1 - n’?é))

Proof. Under Assumption D.3 and Assumption D.4, the Proposition D.6 holds, which ensures that
w](-l) (2) = /B; forallt > 0. So we have

d
2 2
(wj(»l)) + (wj@)) = 205, ng =2 E M?/Bj.
j=1
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The evolution equation for 3; is

b = P
= 23,5, (1 - ’;‘j) : (12)

This yields

Bi(T) = B;(0) - exp <2,Uj /OT A (1 - p:ej) dt) .

Letr; := 25\,uj (1 — ’Z—‘;) When r; > 0, 8; grows locally exponentially. Otherwise, it decays lo-

cally exponentially. The key insight is that each 3;’s growth rate depends on the interaction between

the gradient magnitude A and the perturbation term %. This interaction drives SAM’s implicit

bias. O
D.4.4 PRELIMINARY ANALYSIS FOR m(t)TRAJECTORY ANALYSIS

Before proving Theorem 4.4, we establish some preliminary results that will be used in the proof.

Lemma D.7. Under Assumption D.3 and Assumption D.4, the time derivative of m.(t) is given by

me = ;\(t)Ml(t) (me(t) —mu(t)).

Proof. Recall that my = 242, where

- 2M1 ’
d 2
w5 By
My =) piuf,  pji= g (13)
j=1 Dkt KB
Substituting the definition of p;, we obtain
M, = Zj ﬂ?ﬂj _ 223‘ N?ﬂj M, = Zj ﬂ?ﬂj _ 223‘ M?ﬂj.
Dk Bk ng >k HiBe ng
Since p < -+ < pg and p; > 0 with ijj = 1, we have &8 < my = 2%21 < B We define a
new expression for m,.
S
me(t) = \2/;, where S := n3. (14)

Taking the time derivative of .S, we have
. d .
S=2% 43
=1

. ~ ~ 2
From Lemma 4.3, we have 3; = r;3; where r; = 2\ - (1 - M) =2X- (Mj - 2“—7;%) Substi-

ne
tuting this into the expression for S, we get

d 2
. “ 05
S =2 2.9)\. 59 ).,
g %
= 4N 2B, (uj - 2njlc>
j=1

d 4
< 1585
=4\ (M;?ﬁj — 2ij> :
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239, ulB;
==~ and M, =

d d
Mls MQS
IR SIS
j=1 j=1

2 thi:1 #?ﬁj
S

Recalling that M7 = , We can rewrite the sums as

2

Therefore, we have

2 2 2me
. M.
=2)\S <M1 -2 > :
2me
Since m. = *2/—5, we have:
.1 s S
mC = — — =
2p 2v/S  4pVS
Substituting our expression for S:
208 (M — 22
me = -
¢ 4p\/§
= ﬁ (M1 _ M )
2p 2m,
= Am, <M1 _ M )
2me
~ Ms
=M c—
! <m 2M1)
= 5\M1 (mc — mH)

Next, we derive the time derivative of my.
Lemma D.8. Under Assumption D.3 and Assumption D.4, the time derivative of my is given by

Mg =
(M) 2me
where Fl = M1M3 — M22 and FQ = M1M4 — M2M3.

2mcF1 — Fg) 5

Proof. Starting from my = 242, we have

oM,
P My My — My M,
e 2(M;)?
1 (. M.
2M; ( 2T M, 1)
1 d d
j— A . 2_
M ijﬂj M Zp]:u’j
j=1 Jj=1
1y

: < 2
Since 3; = r;3; where r; = 2\ <uj - 2‘%

(28) i - (Sioy mdBe) — (28,) - (o mdBure)
(ZZ=1 ﬂzﬂk)2

), we can compute

Dj =
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o o)
oa((o- ) o-4)

=p]-2§<( M1)—1(?—M2)>~

2m

Substituting this into the expression for niyg, we have

C

¢ d
A 1
o AL ij ((Mj — My) — o (3 — Mz)) (13 — 2mu ;).
j=1
We split the sum into two components:

First term: C); = ij My) (15 — 2mup;)
Second term: Cy = ij My) (13 — 2mup;) -

For the first term,
Ci=> pjpl—2mu Yy pipd — My pipl +2mubyy  pjp;
J J J J
= M3 — 2myMsy — My My + 2my M}
M3 My M3 — M3 Iy
M, My M
For the second term,
Co=> pjus—2mu »_pip — My Y pjpd +2muby y  pjp;
J J J J
4 — 2mHM3 — M22 + ZmHMlMQ
MoMs — MyMy— MaMz — To

— M — = - —.
4 M1 M1 Ml
Therefore, we have
p 1
i 2 2
my = ﬁ 2_: ( 1) - 2me (Mj - Mz)) (Mj - 2mHMj)
_ A (T D
TOM; \ M, 2mcM;
A
= 2m.I I
2 (M1)2 me ( ot 2)

Next, we establish a key inequalities involving the threshold my.
Proposition D.9. 'y > 0and T’y > 0.

Proof. T'y and I'y are defined in Lemma D.8. M, and p; are defined in Equation 13. Let M, :=

Z;l:l p;uy = Ep [u5]. By Cauchy-Schwarz with X = p'/? and Y = p3/2,

(Bp [12])° < Ep[p] Ep [p)] = T1=MMs— M3 >0.
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By Cauchy-Schwarz with X = pand Y = p?,
(Bp [17])° < By [1°] By [1"].
Multiplying the two inequalities gives
Ep [#°] Ep [1°] <Eplp] Ep [p!] = To= MMy — MyM; > 0.

Proposition D.10. Let mp := 2% We have mp > my forall t > 0.

Proof. We use same notation as in the proof of Proposition D.9. Let a := ]A([Tf T'n >0and '3 >0
by Proposition D.9. Then we have

Ep (1 — ap)?] = Ep[u'] — 20 E,[1°] + a® B, [p?]
= My — 2aMs + a®Ms.
Substituting a = % and multiplying by M? gives
2 2 Mo, 2| _ g2 3
M2E, [(p, — My } — M2M, — 2M, Mo M; + M.
Since an expectation of a square is nonnegative and M12 > 0, it follows that

M3EMy — 2M; My M3 + M > 0.

Therefore, we have
Iy My
> —
2y — 2M,

my.

D.4.5 PROOF OF THEOREM 4.4

We begin by restating Theorem 4.4 for convenience.

4
Theorem 4.4. There exists a unique o1 such that oy = p—=21— < ay < B e
N que o1 0= PAfull; = NS Pl
Hd—1THd

e and the trajectory of m.(t) falls into one of the following three regimes.
2

< Qg =

(Regime 1) If o < «, then m(t) strictly decreases for all t > 0 and there exists Ty such that for
J € [d], B;(t) strictly decreases for all t > T .

(Regime 2) If a1 < a < «g, there exists Ty such that m¢(T>) < ”d%ﬂ‘d and mc(t) strictly
increases for all t > Tb.

(Regime 3) If o > i, then mc(t) > ’”%W and [34(t) has the largest growth rate for all t > 0.

Proof. From Lemma D.7 and Lemma D.8, we have

Tflc = ;\Ml (mc — mH),

B A
2 (M1 )2 me
Recall that M, and p; are defined in Equation 13. T'y and I'y are defined in Lemma D.8. mp

is defined in Proposition D.10. We define A(t) := AM;(t) and B(t) := mc(t) — mu(t) so that
me = A(t)B(t).

My (2mCF1 — PQ) .

Regime 1. For any ¢t > 0, if m¢(t) < mg, then m(t) < & < mu(t). Hence B(t) < 0, and
therefore m(¢f) < 0. Consequently, for any ¢ > 0, whenever m(t) < my, the function m.(-)
is strictly decreasing. Since m.(0) < myr, we have m(t) < my for all ¢ > 0, and it is strictly

decreasing.

Moreover, since mc(t) < mp = 5, we have 2mc(t) < p1 < p;. Therefore,

rj(t):25\(t)~<,uj— “5 ><0,

2m(t)
Thus 3;(t) = B;(t)r;(t) < 0, and B;(t) decays exponentially for all ¢ > 0.
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Regime 2. When m; < m.(0) < my(0), we have B(0) < 0 and thus m.(0) = A(0)B(0) < 0,
s0 my initially drifts downward. While B(t) < 0, the m. < mp holds so the my drifts downward:
mig(t) < 0. Note that we get the following equality:

me = AB,

B = me — nig = AB — nig.

Let I(t) := exp (— fot A(T)dT). Then:

IB =IAB — Inny, (15)

% (IB)=IB+IB=—IAB+ IB = —Imy, (16)
t

I(t)B(t) — I(0)B(0) = — / I(w)rig (u)du. (17)
0

Note that & (1B) > 0 while B(t) < 0.

Existence of Regime 2 threshold For an initialization mg € (mg, mg(0)), define the budget to
the floor:

toor (120) d

¢Wm%=H®B®%+/ (1(1)B(1))

3
toor (M0)
= (o —mn(0) & [ 10 (=in(w)du

where tgoor (120 is the first time when m,(t) = my, or 400 if it never meets. Note that m.(¢) meets
the threshold my(t) before the floor my, if and only if the accumulated area [ I(—rhy) reaches
mpu(0) — mg before time tgo0r. Therefore, we can consider two different cases.

* (mg) > 0 = m, meets my before it meets my, the trajectory of m, will first decreases,
and it drifts at a point bigger than mp,, and then increases.
* ¢)(mp) < 0 = then the m, meets my, then it goes to Regime 1.

Also, the ODEs have continuous right hand sides, and solutions depend continuously on mg. so for
any fixed 7 > 0, the truncated map

min{7,taoor(Mo)}
e (mg) := (mo — my(0)) +/0 I(u) (—my(u)) du

is continuous in mg. As T T tgoor(mo), We have 1. (mg) — 1(mp). by monotone convergence
(integrand is positive while B(t) < 0). Hence 1) is continuous on (mp, myu(0)). based on 1, we get
the signs at the endpoints.

o As mg J mp, we get taoor(mo) J 0, so the integral — 0. Hence,
¥(mo) = — (mu(0) —mr) <0.
* Asmg T mu(0), we have B(0) | 0. Since the integral is nonnegative, we get
liminf t(mg) > 0.

moTmu(0)

By continuity and the opposite signs at the endpoints, there exists at least one mgp, € (mr, mu(0))
such that 1 (mgip) = 0.
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Uniqueness of Regime 2 threshold. Define the two possible first events for the trajectory started
at mg:

e hit : first time when B = m, — myg = 0.

* floor : first time when m..(t) = my

Then we define the event map E(my) € {hit, floor} by which event happens first. If the first event
is hit at time 7, then we have B = 0 and B = —AB > 0. If the first event is floor at time T,
then we have m; = my, and % (me —mp) < 0. Because the ODE right-hand sides are smooth,
solutions depend continuoisly on the initial value mg. So, we have near a hit point, the zero of
B persists. Also, near a floor point, the zero of m, — my, persists. This means that Sy, = {my :
E(mg) = hit} and Sgoor = {mo : E(mg) = floor} are disjoint open sets whose union is the whole
interval (mp, mu(0)). So, there exists a unique m. € (mr, mu(0)) that becomes a unique Regime
2 threshold.

Regime 3. When m.(0) > my(0), we have B(0) > 0 and thus m.(0) = A(0)B(0) > 0, so m,
initially increases. We now show that B(t) > 0 for all ¢ > 0. Suppose for contradiction that there
exists a first time 7 > 0 such that B(7) = 0 (i.e., m¢(7) = myu(7)). Then

B(r) = nic(r) — nin(r)
= A(7)B(7) — nin(7)
:()me(T)
=— (r 2me (7)1 (1) — T'a(7)) .
2(M1(7'))2mc(7')( o(T)T1(7) = Ta(7))
Proposition D.10 gives mp(7) > mu(7). Therefore, we have 2m¢(7)I'1(7) — I'2(7) < 0 and

B() > 0. However, for B to reach zero from above for the first time, we must have B(7) < 0.
This is a contradiction. Therefore, B(¢) > 0 for all ¢ > 0, which means mc(t) > my(t) for all

t > 0. Since A(t) = AM;(t) > 0 and B(t) > 0 forall t > 0, we have
me(t) = A(t)B(t) > 0

P

forall t > 0, so m(¢) is strictly increasing for all time. O

D.5 EXTENSION TO DEEPER DIAGONAL LINEAR NETWORKS

In this section, we extend our analysis to L-layer diagonal linear networks. As the depth increases
(L > 2), some notational adjustments are necessary.

Recall that the margin is given by

s= (B, ) =< DWow?o...owh, u>,

where ® denotes elementwise (Hadamard) product.
0]
J

d’ d[: dS
duv@ T ds dw L Hw ’
) ket

The gradient of the loss £ with respect to a particular weight w;
rule:

can be computed via the chain

where A is as before, and k # [ indicates multlphcatlon over all layers except .

The squared Euclidean norm of the gradient vector Vg L is then

IVoLl? = ZZ( )=AZIX_D Hw

j=11=1
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2538
2539
2540 d L

noi= |30 (TTw®
2542 j=11=1 k#l
2543

2544  The resulting perturbation is:

2545

2546 €2 1= PLeﬁ
2547

2548 (Eg)w(z) S w(k).
2549 !

2550

2551 Thus, the perturbed weights are given by
2552
2553 ’LU]» = wj - ’LU]»
2554 k#l
2555

o556  The perturbed product then takes the form

2557 L

2 A ~ (1)
2559 =1
2560

2561 Therefore, the ODE for each coordinate is:
2562 (A)
(1 0L(O Q k
2222 w) = === = [[ )"
ow ; ktl

2565
2566
2567 1 2
2568 Assumption D.11. The weights are initialized symmetrically at ¢ = 0, that is, wj( ) (0) = wj( )(O) =
2569 ... = w!M(0) = w;(0) for all j.
2570
2571 Now we show the balancedness-preserving property of the SAM flow.
2572 Lemma D.12. Suppose Assumption D.11 holds. Then for all t > 0,
2573

! )
2574 w§ )(t) =w;(t) foreveryl, j.

2575
o576  Furthermore, the sign of w;(t) is preserved for all t > 0.

Accordingly, we define

Additionally, we define an assumption on the weight initialization scheme:

2577
2578  Proof. Fix j. Assume that at some time ¢ all weights corresponding to j across the layers are equal,

2579 i.e.,

(1) (2) (L)
2580 w () = wP(t) = - = Wi () = w;(1).
2581 o .
P Then ng(t) simplifies as follows:
2583 B 9
2584 k
- ng(t) =3 ui | [T i@
j=11=1 k£l
2586
2587 & 5 o172
2588 - Z o (wi )
2589 J;ll:1
2590 5 ol o
2591 =3 L (w (1)* 2
j=1
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Therefore, the perturbed weight for each layer [ simplifies to:

@ (1) = wi () - n/ZZ) IR0

k#l
=wy(t) = S
which is independent of /. Hence,
(1) = 0 0) =+ = @l (1) = (1)

Substituting this into the SAM flow equation yields:
(1 2 N -
) (£) = Aty (1),
which is likewise independent of [.

Now, for a fixed j, consider the L-dimensional vector

ui(t) = (w§1>(t), w® ), ..., w" (t)) .
The SAM dynamics specify the ODE:
u;(t) = Fj (u;(t),0(t))
where F is the vector whose [-th entry is A(t) i T os w§’“> (t). This ODE is locally Lipschitz in
u,, ensuring uniqueness of solutions for given initial conditions.
Consider the one-dimensional diagonal manifold
D;:={(z,...,2) eRF :z € R}.

if u;(t) € Dj, then u,;(t) € D; as well, because all coordinates have the same derivative. So D; is
invariant under the flow.

Since the initial condition u;(0) lies in D; due to symmetric initialization, and the ODE solution is
unique, we conclude that uj(t) € Dj forall t > 0. Therefore,

wy)(t) = w;(t) forall/, j, and ¢ > 0.
In summary, Assumption D.11 guarantees balancedness at all times for any depth L.

Next, we consider the sign preservation property.

Recall that on the balanced manifold, we may write w§l)(t) = wj (t) forall [, j, and t > 0, so the
per-coordinate dynamics reduce to

. L-1
30 = 30m; (w0 = o 2w 0P )

We claim that the sign of w;(t) is preserved for all ¢ > 0. To see this, observe that the right-hand
side of the ODE is a smooth (in fact, polynomial) function of wyj, so it is locally Lipschitz in w; for
each fixed ¢. In particular, if at some time 7 we have w;(7) = 0, then w,;(7) = 0, so w;(t) = 0 for
all ¢ > 7 is a solution with the same initial value. By uniqueness of solutions to ODEs with Lipschitz
right-hand side, it follows that once w; reaches zero, it remains identically zero for all future time
and cannot cross to the opposite sign. Therefore, if w;(0) # 0, the sign of w;(¢) is preserved for all
t > 0 by continuity; if w;(0) = 0, it remains zero.

In summary, the sign of w; () cannot change during the flow.
O

Utilizing the balancedness-preserving property, we can now extend the lemma for the depth-L diag-
onal network.
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2645 L emma D.13. Under Assumption D.11 and Assumption D.4, the rescaled {5 SAM flow satisfies, for

2647 each coordinate 7,
2648 d

2649 a

2650

2651 -1

2652 (1)(4) = Ly B; (£)1-2/D) (1 PLi g (t)(L—Q)/L>( Y
T~ = - — 5. ,

2653 J Hik ne(t)"”’

2654

2655 d

2656 Bi() = wi)",  me(t) = L' pdun ().

2657 k=1

2658

2659

2660

2661 L 0 @)

2662 Bi(t) = [Jw;” (t) = w;(t)™.

2663 =1

2664 Under the balanced /5 SAM flow, the coordinate dynamics become:

2665

2666

2667 . d L L—1) -

2668 Bj (t) = & (wj (t) ) = ij (t)( )wj (t)

2669 _ (L-1)5 ~(L—1)

. = ij )\,ujwj .

2671

2672

2673 . PHj 11 )

2674 wjzwj—n—ejwj = wj 1 — ! .

2675 )

2676 Substituting this into the expression for /() gives:

22;; PHL; o

3 (t) = LAy w2 (1 — Lol qph2 :
- B;(t) (t)pj w3 w

2680 o .
2681 To express this in terms of §; = wj’, note that

2682

2L—2 _ p2-2/L L—2 _ p(L—=2)/L
2683 Wy =B; ; wi =0 :
2684
2685

2686 : ] 2-2/L PH (L-2)/L o
ne(t)
2688

2689 O
2690
2691
2692
2693 d L
2694 G50 =" 055,
2695
2696 -1
2697 L) 4\ o 70 B (1) 1-2/L ( _ PHG 45 (Lz)/L)

r ) =L t 1 t .
s j (1) 122} 5J( ) ng(t)ﬁj( )
2699

B;(t) = i ()8;(),

where

and

Proof. Now define the effective coefficient per coordinate, for general depth L:

We first compute the perturbed weight for coordinate j:

Therefore, we obtain:

Absorbing S\(t) into the time parameter yields the rescaled SAM flow equation:

where

This provides the Depth- L generalization of the SAM feature amplification dynamics.
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Proposition D.14. Consider the depth-L diagonal network under Assumption D.11 and Assump-
tion D.4. Define

L d
l - _
G;(t) = [Twl® =w; )", @) = w2 ng() = LY pwn ()2,
=1 k=1
and the critical effective scale:
ng(t)
t) == .

Then for each time t, we have

d

GH0 =150 (1- L)) = o).

ne(t)

The function z — ¢¢(2) is strictly increasing on (0, z.(t)), strictly decreasing on (z.(t),ng(t)/p),
and possesses a unique interior maximum at z = z.(t).

In particular, at any fixed t, the coordinate(s) whose effective scale z;(t) is closest to the peak of ¢y,
i.e., near z.(t), experience the largest instantaneous growth in [3;.

Proof. Inrescaled SAM time, we have

d ) L-1
Bj(t) = Ly B;(t)'>/* (1 - T%ﬂj(t)(LQ)/L) ,

dt
where

d
n3(t) = LY w2,
k=1

Define the effective z-scale by
2 (t) i= pyw; ()2
Note that
I,

J
Plugging this into the 3; ODE yields

d p L—-1
GH0 =50 (1- Losm)

ne(

We may rewrite this as

L—1
%ﬂj (t) = &e(z(2)), where ¢.(z) := Lz (1 - ngp(t) z) .
Define the critical effective scale: no(t)
ze(t) == z T
Consider ¢ (z) = Lz (1 — ¢z)" ™", where ¢ = #@ > (. Its derivative with respect to z is:

digbt(z) =L(1—c2)"?(1-Lez),
z
so that:

* $i(2) > 0for0 < z < z(t),
o ¢(z) =0 when z = z.(t),
o« ¢(2) < Ofor z.(t) < z < ne(t)/p.
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Therefore, for each fixed ¢, the function z — ¢;(z) is strictly increasing on (0, z.(t)), strictly
decreasing on (z.(t),ng(t)/p), and has a unique interior maximum at z = z.(¢).

OJ

Unlike the depth-2 case, where each ji; is a fixed constant and their order remains unchanged
throughout training, in the depth-L case the effective quantities z;(¢) are time-dependent and could,
in principle, change order as the SAM flow evolves. However, the following proposition establishes
that the order of z;(¢) is actually preserved throughout the entire SAM trajectory.

Proposition D.15. Under Assumptions D.11 and D.4, the order of the z;(t) is preserved in the
depth-L SAM flow. That is, if pi1 < -+ < jiq, then z1(t) < z2(t) < -+ < z4(t) forall t > 0.

Proof. We first compute the ODE satisfied by z;(t). By definition,

_ L2
zj = pjw; ",

Taking the time derivative, we get

. L—3) .
2j=pj (L—2) w‘g )wj

=y (L= 2)w("™? (5\/@'@?71))

Therefore, the perturbed weight is

g
Also, we get
(L—3) ~(L—1) (2L—4) PHj  (L—2) (E=1)
—3) (L—-1) _ _ j _
w; w; =w, (1 — n—ewj ) .
o (D=2) oz (2L-4) _ % -
Using w; = and w; = we obtain
2 SN (L1 X N (L-1)
2= (L—2)\i2 =L (1—”’“”23> — (L —2)A2? (1—%) .
M5 ne [j ne
Thus, the ODE for z;(t) can be expressed as
. 3 2 Pz (t) Lt
2i(t) = f(t,2;(t) = (L —=2)Az ()" |1 — ——+ -
ne(t)

Notice that in this expression, the dependence on j appears only through z;(t); both \ and ne(t)
are time-dependent scalars shared across all coordinates. So each z;(t) solves the same scalar non-
autonomous ODE,

() = f(t, 2(1)),
with z(t) = z;(t).
Now at ¢ = 0, under symmetric positive init w;(0) = « > 0, we have z;(0) = p;ja’"2. Since
p1 < -+ < pgand of=2 > 0, we have 21 (0) < 22(0) < -+ < 24(0). For this ODE with f is
smooth and locally Lipschitz in z, the two different solutions z;(t) cannot cross each other. If two
solutions ever meet (same values at some time), then uniqueness makes them to be identical for all

times. So the order of z;(t) is preserved for all ¢ > 0. Thus, we have z1(t) < z2(t) < --- < z4(t)
forall t > 0.

O
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D.6 PROOFS FOR SECTION 4.2.4
D.6.1 DERIVATION OF THE DYNAMICS OF 3(t)
The dynamics of 3(t) = w(t) ©® w(t) is given by
B(t) = w(t) ©w(t) +w(t) ©w(t).

By Equation (3), it is given as

B(t) =2u0w(t)® ('w(t) _ p/’i"(v‘t’)(ﬂ>
= _HOB1)
=20 (B(t) s )

Coordinate-wise, we have the linear equation

Bit6) =205 (5500 = o200 ) — 3py0) (1 -2

Therefore, separating variables and integrating, we get

B;(t) 1
8(t) 2 00)

"Bis) ! H
Bl (2’“‘2”%(@) o
B (t) 9, 4 2 t
oy =2t 2o s

Define I(t fo ne(s) ds. Then, the solution is given by

B;(t) = B;(0) exp (Zujt - prjl(t)) for j € [d].

= log

D.6.2 PROOF OF THEOREM 4.5

Before proving Theorem 4.5, we establish Theorem D.16, which provides lower and upper bounds
for I(t) and serves as a key ingredient in the proof of Theorem 4.5 below.

Theorem D.16. Suppose w!) = w? = a € R Let (wM(t))i>0 and (wP (t))i>o follow
the rescaled l3-SAM flow (2) reduced to (3) with perturbation radius p and data point pu. Define
_ M and Cho = les] . Then,

C =
IRSRVED SRR V2d(ITj=y #505) /el

(a) I(t) > #bg (pC L ) when ﬁ >
1

C,, o eXp(—p1t)+1-pC,, = P(H1+H2),
1
(b) 1(t) < 7y log (pc exp(”“d'lwﬂpcm)
1 _ 1
Proof. From the definition of I(t fo 770 (5) 48, we have I'(t) = e (D)

Since we suppose w()(0) = w®(0), and the loss function and dynamics are invariant under
exchanging w(") and w(?, we have w (t) = w® () =: w(t) forall t > 0.

From the definition of ng(t), we have

ne(t) = \/Hu ©wh @[3+ lp©w® @)3
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2 o w(t)l3

d
= 2| D mBuw(e)?
j=1

d
= |2 Z M?ﬂ] (t)
j=1

From Equation (4), which is 3;(t) = 53;(0) exp (2t — 2pp31(t)), we have

ne(t) = Zuiﬁy exp (25t — 2pu21(t)) |,

and therefore,
1

I'(t) = '
NS ET——y

(2) When 22 > iy > sl for j =2, d, it holds that
1 1 j

(2u5t — 2pp3 1(1)) — (2pat — 2pp3 (1)) = 2(p; — pa ) (t — p(pg + pa)I(t)) > 0.

Therefore,

I'(t) - !
V2L 126,(0) exp (2415t — 2021 (1)
1
<
V2, 1265(0) exp (2t — 2031(1))

1

23751 126;(0) exp (uat — py3I(t))

Separating variables and integrating, we get
1

exp(—ppi(t))dI < exp(—put)dt
25201 128;(0)
I(t)
= exp(—ppiu)du </ exp(—p18)ds
1) \/2 Zj 1 15(8)%8;(0)
1 1 1
= — — (exp(—puil(t)) — exp(—ppil(0))) < — — (exp(—pat) — exp(—410))
pii V2SI i (s)28,(0) 1

! ex 2I(t ! ! ex 1it) —1
(a)p — (exp(—ppil(t)) — _\/2ZJ e )25j()ul( p(—p1t) — 1)

= exp(—p3I(t)) > 2 (exp(—put) — 1) + 1

NSRBI
= — ppiI(t) > log (pC,, o(exp(—pat) — 1) +1)

1 1
=I(t) > —5log ( ) ,
) J2%%i PCaexp(—mt) +1—pC,, o

54



Under review as a conference paper at ICLR 2026

where (a) holds since I(0) = 0 from the definition of I(¢).
(b) By AM-GM inequality, we have

1
I'(t) = — -
V2 126;(0) exp (2ut — 20121(1))
1
<
B d 2 2 1/d
20 (TTjy #28;(0) exp (20t = 2p121(1)) )
_ 1
1/d 2537 1 my 2 foa kg
%d (T 0)) " exp (2220 - 22 )
_ 1
90d (T10 - u2a2)"" exp (2l y _ 2ellill3 1y
[Ij=i1j07)  exp (=5 T 1)
1

1/d
/5d (H?ﬂ ,ujozj) exp (lellht _ pl\sl\él(t))

Separating variables and integrating, we get

2
exp(-%[(t))d] < ! 7 ©D <_‘;||lt> dt
m (H?:l ujaj)
)

I(t) 2 t
N exp(—Mu)dug exp [ —
d 1/d d
1© ° vad( )

S AN 71 SO 1 ) 1 d o lally,
= R P 0~ e EERIO) < - — (Hilujaj)”d”“”l( p(—1E) — 1)

2 2
:exp(_p”g‘H? I(t)) > p ”MHQ 73 (exp(— ||/';H1t) _ 1) +1
d
V2d (T15= i) el

2
= - p||L;||2I(t) > log (pC’”’a(exp(— ”I";”lt) 1)+ 1)

1

d
Hj:l Hjog

d 1
=1(t) < 5 log | — T — .
pllml3 PCpaexp(—"54t) +1 - pCp o
O
Theorem 4.5. Let oy, o be defined in Theorem 4.4 and o be the threshold from there. Suppose

patp ; ] X
o <a< p\/%l\#\rz < . Then, for j € [d], there exists T} such that

3 (T — /
% > LBj(a) := exp <2Rj ((Rj —1)log (ﬁ) + log (ﬁ) - O(Rj)))
where R := (i tia)/p, > 2, R) := (wa=13)/p, and C(R) := Rlog R — (R — 1) log(R — 1).

Proof. By the assumption op < oy < o, we have C), , = ;‘—g < %. We also have

H1 H1 H1 U1 1 )
Cha = z = > = forall j € [d].
V2 plea ﬂHqupaff) p(ur +pa) — p(pj +pa)  p R;
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1—pC, . 1
Pwe _ 1<R, -1 forall j € [d].
pQ;_L,a pr,q,a
Let T == L log (ﬁ%ﬁ:a (R — 1)) > 0.
From Theorem D.16, we have
1 1
I(T;) > — 1o
( ]) o :u% & <pcp,,a exp(_ﬂlcrj) +1-— pCu,a)
1 1
= —log —C
PHY PC,, o €XP (log (Wm)) +1-pC, o
I 1
- 2 1—pC
pui 4 +1-pCpa
1 1
= —5log ;
P\ (1= pC0) (14 725)
1 1
=3 log =
P (1 - pQu,a) (Rjil)
[ G o
=—lo )
Recall from Equation (4) that
Bi(T;) = B;(0) exp (245T; — 2pu71(T})) for j € [d].
Thus, for j € [d], we have
/Bj(Tj) 2 2
=exp (—2 — )T 4 2p(pg — ps ) I(T;
Bu(T)) P (=2(ua — 1) Tj + 2p(pg — 11)1(T;))
Hd — Hj Pl o 2 2
= —2 1 R;— 1)) +2p(u% — 1) I(T;
exp (2o (L (R, - 1) 4 20t - )
fd — p pg — 115 1- ¢
>exp| —2 jlg( B2 (R 1)+2 L log J
( M1 1 pr,,a ( J ) /L% 1- pr,,a
_ 1— 4 C
—exp (old M (B R, ’ 1°g< e (Rj1)>
I} P 1-pCha 1-pC,
1
R, P o
=exp | 2R/ (Rj log ( 2 ) —log < B2 (R; - 1))))
< / 1- pr,,a 1- pQu,a
ij.l poo
= exp 2R;- R;log T Jpﬂ log (1 _aﬂ (R, 1))
_ / _ _1)— R, N _ (R — _ Paoy _ P
= exp (sz ((R] 1)log(R; — 1) — R, log(R;) — (R; — 1) log (1 - ) 1 ( . )))
— exp (2R; (—C(Rj) — (R; —1)log (1 - %) ~log (%) )

((Rj ~1)log (lia/a)
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D.6.3 PROOF OF PROPOSITION 4.6

Proposition 4.6. Under the conditions of Theorem 4.5, define j*() := arg max;c(q LB;(cv) and

set oy == a. Then, there exist thresholds oy < o] < --- < o, < pf/%m':ud for somem < d—1
2

such that j*(a) = j for a € (aj_y, aj].

Proof. For o € (ap, p\‘}%ﬁr:l‘dz ). letx = ap/a € (0, 1) and write

Gj(r) = logLBj(a) = 2R PR, (z),

where

Br(z) = (R —1)log —— + log% ~C(R),  C(R)=RlogR— (R—1)log(R—1),

11—z
and R; = (uj + pa)/ 1 > 1, R = (pa — pj)/ 11 = 0.
(1) Shape of ¢ . We have

Rjz—1 R; -1 1
(I)/ — J " —_ J — >0.
Rj (J:) .’L'(l _ x)7 Rj (l‘) (1 _ x)Q + fL'2
Thus ®p; is strictly convex on (0,1) and attains its unique minimum at x = 1/R;, where

®r;(1/R;) = 0. Consequently ®r (x) > 0 for all = and it is strictly increasing on [1/R;,1).
(2) Crossing between adjacent indices. For any j € {1,...,d — 1} define

Hjyj(x) = Gjpa(z) — Gj(x) = 2(R), ®r,,, () — Rj®R, (x)).

Because Ry > R;, we have ®p, (1/Rj31) = 0 and ®g,(1/R;y1) > 0, hence
]

0
Hj15(1/Rj41) < 0. Likewise ®r,(1/R;) = 0 and ®p, ,(1/R;) 0, giving
Hji1,5(1/R;) > 0. By continuity, H;1 ; has at least one zero x5 € (1/R;1,1/R;

To show uniqueness, using the expression for @ . we obtain

2
Hjyy 4(x) = m((R;‘-&-le-&-l — RjR;j)z — (R}, — R))).
Since ( ) ) ) )
ta — k) (e + 1a)  p5— p
Ry Ry, = ; _ Ha =
1251 My

22
we obtain R/, \R; 1 — RiR; = BiThist < (). Its zero occurs at
J J 15

R
Te = Jtl J = H1 ,
RiyRj — RiR; gy + 4y
and therefore
Hjy j(x) > 0forz <, Hj .y j(x) < 0forz > ..

Hence Hj1 ;(x) is strictly increasing up to z. and strictly decreasing afterward. Since 1/R; =
w1/ (g + pa) < pi/(jer + pg), Hjp1; is strictly increasing in the interval (1/R;41,1/R;].
Because H; 11 ;(1/Rj41) < 0and H; 11 ;(1/R;) > 0, this implies that H, ; ; crosses zero exactly
once in (1/R;1,1/R;). Consequently the root x} is unique, with ;1 j(z) < 0 for x < x} and
Hji1,(z) > 0forz > 7.

(3) Thresholds and staircase structure. As « increases, T = ag/« decreases. Define o} = oo/}
When « crosses o, the maximizer between indices j and j + 1 switches once from j to j + 1.
Because the intervals (1/R,41,1/R;] are disjoint and ordered, the thresholds satisfy af < af <

o < pli + 1)/ (V2 pll2) for some m < d — 1.

Thus j*(«) takes constant values on each interval (a_;, a7}, increasing step by step until the last
threshold within the admissible range. [
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D.6.4 PROOF OF PROPOSITION 4.7

Proposition 4.7. Consider «q defined in Theorem 4.4. (i) If a« < «, then B(t) converges to zero.

2
(ii) If o > 7 dHN;‘J?)l/dHqu’ then B3(t) converge in {1 max-margin direction.
=1 F?

Proof. We use Theorem D.16 to prove the theorem. When w)(0) = w(?)(0) = a1, we have

C - 1951 - M1 - M1 _ Qo
e d N d N N
\/2 Dio1 Mol \/2 Do M Vil o
2 2
S 1 S 17

VR2A(TTS_y pja) /|l V2d(TT_, 1) | pllx

(i) By the assumption o < ag, we have Qma =% > =2 TetT := i log ( Pl ) > 0.

pC,, a1

From Theorem D.16, we have

I(t) > — log ( ! >
= i pC o exp(—pt) +1—pCp o /)"
Ast — T, we have
pQ;L,a eXp(_:U’lt) +1- pr,,a
%pgu,a exp(_lu‘lT) +1-— pr,a
pQ a 1
=pC,, 0 exp(log (p“c’>) +1-90Cp 0

“p,o

pQ a 1

.o
Since pC,, o exp(—pat) + 1 — pC,, , is strictly decreasing in ¢, we have

pC, o exp(—mt) +1—pC,, o — 0+ ast = T.
Therefore, I(t) — +ooast — T.
Recall from Equation (4) that
Bi(t) = B;(0) exp (2u;t — 2pp31(t)) for j € [d].
Ast — T, we have 3;(t) — 0 for all j € [d] since I(t) — +oc. Therefore, B3(t) — 0ast — 7.

(i) By the assumption o > p\/ﬁ(nd”“‘Ig

rai 1
we have C' < 2.
) plly” o= p

From Theorem D.16, we have

1
0= rElos ( o [PIE = ) :
pllml3 PCuaexp(—521) +1 - pCp o

For ¢t € [0, 00), we have

t)+1—-pCha <l

0<1-— p@u,a < p@ma exp(— ”Z”l

and as t — oo, we have

[l
d

pC o exp(— t)+1—pCpo —1—pCpua >0.

As t — oo, we have

d 1 d 1
I(t) < 5log | — T — — 5 log — < 00.
ol pC“,anp(— ‘let)—l—l—pCma pllwll3 1-pCh.a
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Therefore, I(t) < oo ast — oo.

Recall from Equation (4) that
Bj(t) = B;(0) exp (2u;t — 2ppF1(t)) for j € [d].
Thus, for j € [d], we have
pi(t)
Ba(t)
Ast — oo, we have 'gfi 8 — 0O forall j < d since lim,;_,o, I(t) < co. Therefore, 3(t) converges to
the direction of eg as t — oo.

= exp (=2(pa — py)t + 2p(pg — 15)1(1)) -

O

D.7 NUMERICAL EVALUATION OF THEOREM 4.5

In this section, we provide numerical illustrations of the lower bound LB, () derived in Theo-
rem 4.5. For several choices of 11, we compute the value of

LB;(a) = exp (28] ((R; = 1)log (=47 ) +1og (=4 ) = C(y)) )
and visualize how much the ratio 3;(t)/84(t) must be amplified at minimum.

Figure 14 shows that for small v in Regime 2 and for p with a large spectral gap fq/p01, LB ()
easily exceeds 10. Since this is only a lower bound, the actual amplification can be even larger,
indicating that minor-to-intermediate coordinates can grow by substantially more than the major
coordinate.

2.75 1
2.50
2.25
S 2.00-
9 1751
1.50 1
1.25 1
1.00 1
0.35 040 045 050 055 0.60 035 040 045 050 055
a a
(@ p=(4,5,6,7,8) b)) p=(1,2,3,4,5)
25 7
10000 - )
201 3
8000 — 1=
5] T 6000 =—rj=3
@ )
-
10 4000
5 2000 A \
0 01
0.40 0.45 0.50 0.55 0.40 0.45 0.50 0.55 0.60 0.65
a a
©p=(1,3,57,9) (d) p=(1,2,4,8,16)

Figure 14: Numerical evaluation of LB; () for various choices of .

For reproducibility, we describe the numerical procedure used to generate Figure 14. For each choice
of pu (with d = dim(p)), we evaluate LB, («) for all j € [d] on a uniform grid of « values. Following
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the assumptions of Theorem 4.5, we first obtain the threshold «; specified in Theorem 4.4. We then

seta € [ah P \‘/%W:‘rz} using 400 grid points. The quantities oo, R;, R’;, and C(R;) are computed

directly from their definitions in Theorems 4.4 and 4.5 using the given p. The index j € [d]
corresponds to the coordinate ordering j1; < --- < pg. Since the computation is closed-form, no
randomness is involved and the plots are exactly reproducible.

D.8 EMPIRICAL VERIFICATION

Our analysis in Section 4.2 focuses on the one-point setting D,,. We begin by verifying that the
sequential feature discovery occurs across multiple choices of w in this one-point regime: both the
continuous-time rescaled flows and the discrete /.-SAM updates exhibit the same coordinate-wise
progression, and the loss dynamics follow the theoretical prediction. We then turn to multi-point
datasets and show that the sequential feature discovery persists in this more realistic setting under
both the rescaled /2-SAM flow and discrete /2-SAM updates, as illustrated in Figure 11. Finally,
we confirm that this phenomenon is not limited to depth 2; the same coordinate-wise progression
arises in deeper diagonal networks (general depth L). Taken together, these results demonstrate that
the sequential feature discovery is a robust and widely recurring behavior: it appears consistently
across different p, across multiple multi-point datasets, across both continuous and discrete SAM
dynamics, and across depths L > 2.

To clarify the heatmap visualizations (e.g., Figures 3a and 15 to 23), for each time ¢ and initialization
scale cr, we compute jT = arg min; 3;(t) and color the grid point (¢, ) according to this index. Grid
regions where the predictor (3 becomes negligibly small are shown in gray, indicating convergence
toward 0. We use the threshold ||3(t)||2 < 1072 to define gray regions.

Following the visualization style of Figure 3a, we also partition the a—axis into the three regimes
defined in Theorem 4.4: Regime 1 (small «), Regime 2 (intermediate ), and Regime 3 (large «).
These regime boundaries are indicated by horizontal black dashed lines in heatmap figures.

For reproducibility, we detail the exact initialization used in all experiments. As mentioned in Sec-
tion 4.2, we adopt a uniform initialization across coordinates and layers: w") (0) = w®(0) = al
for depth-2 setup and w (0) = - - - = w(*)(0) = 1 for depth-L. To approximate continuous-time
trajectories, we simulate the flow using an explicit Euler scheme with a small step size n = 1074,
For discrete updates, we use a step size of n = 0.01.

D.8.1 ONE-POINT CASE: CONTINUOUS VS. DISCRETE DYNAMICS

We first verify that sequential feature discovery appears robustly across multiple choices of p in the
one-point setting. To demonstrate that this phenomenon is not limited to the continuous /5-SAM
flow, we additionally evaluate discrete £o-SAM updates. Across all tested choices of p, the resulting
heatmaps closely match the structure in Figure 3a, showing both time—wise and initialization—wise
sequential feature discovery. To better visualize the evolution of 3(t), we also provide the loss
heatmaps over («, t). In the discrete £5-SAM case, Regime 1 often appears unstable and does not
become fully gray. This occurs because the relatively large step size causes the trajectory to hover
near the origin without collapsing exactly to 0. As a result, the predictor norm stays above the gray
threshold—so it is not colored gray—ryet the loss remains large, revealing that the trajectory is still
effectively stuck in the vicinity of the origin.

For comparison, we first present the results of GF and discrete GD with u = (4,5,6,7,8). The
behavior is similar across different choices of p. Both GF and GD consistently recover the major
feature, independent of the initialization scale «, and they do not exhibit sequential feature discovery.
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Figure 15: Dominant index jT over a, ¢ and logistic loss on D,, with pu = (4, 5,6,7,8).
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61



Under review as a conference paper at ICLR 2026

0.8 5 0.8 06
s — ]
2 = @ 0.5
g 06 ‘e T 0.6 w
? % @ 042
c © . c 4 =
S 3 E s 2
‘ﬁ 0.4 g ‘é 0.4 032
s P s 02"
= + = -
£o02 ~ £02
0.1
1
0.0 0.0+ T T { Moo
j 0.0 0.5 1.0 1.5
time t time t
(a) Rescaled £2-SAM flow
0.8 5 0.8 0.6
S . E]
° = o 0.5
© 0.6 & © 0.6 @
] x u 042
c ©. c .
k) 3 E 9 =
32 = =)
'g 0.4 = K 0.4 0.3 g
© 1 G o
) 2, S 0.2
202 - £02
1 0.1
0.0 0.0+ T T { ®oo
0.0 0.5 1.0 1.5 0.0 0.5 1.0 15

time t time t

(b) Discrete £2-SAM updates (n = 0.01)

Figure 17: Dominant index ;' over «, ¢ and logistic loss on D,, with p = (1,2,3,4,5) and p = 1.
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Figure 19: Dominant index ;T over a, t and logistic loss on D,, with pp = (1,2,4,8,16) and p = 1.

D.8.2 MULTI-POINT CASE: PERSISTENCE OF ONE-POINT BEHAVIOR

To examine whether the sequential feature discovery identified in the one-point analysis persist
in more realistic datasets, we construct random linearly separable binary data by sampling two
Gaussian clusters centered at +p and — e for various choices of p. Specifically, we draw

ng_) =M + €n, Yn = +17 .’,C,gl_) =K + En, Yn = _17

with €,, ~ N(0,021,) and use N/2 samples per class (with . = (1,2), N = 100,00 = 0.5). For
visualization, we plot only the first two dimensions of the dataset in the left panels. The middle
panels show the results of the rescaled /o-SAM flow on this dataset, and the right panels show the
discrete /5-SAM updates. Across all choices of multi-point datasets, the same sequential feature
discovery behavior observed in the one-point setting persists.

For comparison, we present the results of GF and discrete GD with the multi-point dataset gener-
ated with mean p = (4,5,6,7,8). The behavior is similar across different choices of p. As in
the one-point setting, both GF and GD consistently recover the major feature, independent of the
initialization scale o, and they do not exhibit sequential feature discovery.
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Figure 20: First two dimensions of D,, with u = (4,5, 6, 7, 8) and the dominant index j T over a, ¢
under GF and discrete GD updates.
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D.8.3 DEPTH-L CASE: PERSISTENCE OF DEPTH-2 DYNAMICS

We confirm that the sequential feature discovery is not limited to depth L = 2; the same coordinate-
wise progression arises in deeper diagonal networks (general depth L). Specifically, we observe GF
and rescaled /5-SAM flow on the one-point dataset D,, with . = (4, 5,6,7,8). The behavior re-
mains similar across different choices of 1, multi-point datasets, and under discrete updates. While
GF appears to exhibit Regime 1 (being trapped near the origin), it does not show the sequential
feature discovery, even in the deeper models. However, the rescaled ¢2-SAM flow clearly demon-
strates the sequential feature discovery for general depth L. Even though Regime 1 appears chaotic,
Regime 2 and 3 are distintcly observed. Thus, the sequential feature discovery robustly occurs not
only at depth L = 2 but also in deeper models.
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Figure 22: Dominant index ;' over o, ¢t under the GF on D,, with p = (4,5,6,7,8).
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E EXPERIMENTS

E.1 Loss DYNAMICS

For initialization scales in the intermediate regime (Regime 2 in Theorem 4.4), SAM first amplifies
minor coordinates and only later focuses on the major ones. This also affects to the training loss
curve. As shown in Figure 24, the loss curve of SAM is noticeably flatter than that of GD in the
early phase of training. In this experiment, we train the diagonal linear network with full-batch
SAM using radius p = 0.5, learning rate 0.05, and 10000 epochs. We fix the initialization scale to
a = 0.06 as a representative intermediate value. The data vector is u = (1,2,3,4,5,6), and all
other settings follow the default diagonal-network configuration.

To make this precise, we track the dominant index arg max; r;(t), where r;(t) denotes the growth
rate of 3;(t). In the early phase, this dominant index corresponds to minor features (coordinates
with small 1), while in the later phase it switches to major features (coordinates with larger 1i;).
When SAM is focusing on minor features, the loss decreases slowly, leading to a plateau; once SAM
shifts to major features, the loss drops much faster. In contrast, GD does not exhibit this minor-to-
major feature focusing behavior, and its loss decreases more rapidly from the beginning, without
such plateau.

Loss Curve for GD (alpha=0.06)

07 — Loss

0 2000 4000 6000 8000 10000
Epoch

Loss Curve with Dominant Index (alpha=0.06)

idx 0 (mu=1.0)
— | = idx 1 (mu=2.0)
= idx 2 (mu=3.0)
idx 3 (mu=4.0)
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- Loss

Loss
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Epoch

Figure 24: Training loss curves of GD (top) and SAM (bottom) on the 2-layer diagonal network in
the intermediate initialization regime (o« = 0.06). The colored areas correspond to regimes where
each feature is mostly amplified. Compared to GD, SAM exhibits an early plateau loss curve: in
this phase, SAM primarily amplifies minor coordinates, leading to slow loss decrease. Once SAM
shifts its focus to major coordinates, the loss drops rapidly. GD does not display this minor-to-major
feature focusing behavior, thereby showing a more steadily decreasing loss without such a plateau.

E.2 SEQUENTIAL FEATURE DISCOVERY UNDER RANDOM INITIALIZATION
In the main analysis, we focused on a symmetric and layer-wise balanced initialization to obtain

a clean theoretical characterization. Here, we examine whether the sequential feature discovery
phenomenon persists under more general random initialization.
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We initialize the two layers independently as
w®(0), w™ (0) ~ N(0,°1),

where the parameter o« controls the initialization scale as the standard deviation of the Gaussian
distribution.

Figure 25a shows the normalized coordinate trajectories 3;(t)/|/3(t)||2 under random initialization
(Seed 0) for « = 0.65, u = (1,2,3,4,5,6), and p = 0.1. In this case, all coordinates except
the fourth are sequentially amplified, with activation progressing roughly from the second to the
sixth coordinate. Correspondingly, Figure 25b shows that the layer-wise discrepancy ||w® (¢) —
w?) (t)||2 rapidly decays to zero, indicating fast balancing of the two layers.

A qualitatively similar but quantitatively different pattern is observed under a different random seed.
In Figure 25c (Seed 1), the sequential amplification begins from the third coordinate and proceeds
toward the sixth. Despite this seed-dependent variation in the detailed activation order, the overall
sequential feature discovery phenomenon persists. Moreover, Figure 25d confirms that the balanced-
ness property is again achieved rapidly in the early stage of training.

These empirical observations are theoretically supported by Lemma D.5, which shows that even
when the layers start from imbalanced initializations, the dynamics drive them toward a balanced
regime exponentially fast. This explains why the simplified, balanced initialization assumed in the
main analysis captures the essential behavior of the training dynamics beyond this restricted setting.
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(a) Normalized trajectories 3;(t)/]|B(t)]|2 (Seed 0) (b) Evolution of ||w™ (¢) —w® (£)]|2 (Seed 0)
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Figure 25: Sequential feature discovery under random initialization in a two-layer diagonal network.

Rows correspond to different random seeds (Seed 0 and Seed 1), and columns correspond to different
plot types (left: normalized coordinate trajectories, right: balancedness).
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E.3 ALTERNATIVE 2-LAYER MODELS

To evaluate the generality of our theoretical predictions, we conduct experiments on alternative 2-
layer models featuring different parameterizations and metrics. In all cases, the experimental settings
and hyperparameters are chosen to closely match those used in our main theoretical simulations with
the diagonal network.

E.3.1 LINEAR NETWORK

We fix a small matrix dimension d = 5. All inputs are d X d matrices. We first draw a single random
“signal” matrix ¢ € R4*¢ with i.i.d. standard normal entries, and then compute its singular value
decomposition (SVD)

p = U, diag(S,) VJ.
From this SVD, we construct an orthonormal basis of rank-1 matrices

T .
Wi =uv; , t=1,...,d,
where u; is the i-th column of U, and v, is the i-th row of VHT These p; play the role of “feature
directions”, analogous to the coordinates in the diagonal model.

We use the logistic loss, and the dataset follows the same format as in the diagonal model: we
consider the two points {4+, —u} with opposite labels {+1, —1}. The 2-layer linear network is

fo(X) = (B, X)p = (WOW® X)p,

with learnable matrices W), W (2 € R¥*? and effective weight 3 = W TW (2. Each layer is
initially set to the identity matrix, and before training we rescale all layers by a scalar «, so that
WM (0) = W (0) = aI and hence 3(0) = o?1.

For training, we use full-batch SAM with radius p = 0.5, learning rate 0.05, and a finite train-
ing epochs of 7" = 5000. We repeat the experiment over a range of initialization scales, o €
{0.20,0.21,...,0.70}.

As our tracking metric, we monitor the normalized squared alignment

ai(t) = (B ) i=1,....d

1B®IE

where 3(t) denotes the effective weight at training iteration ¢.

The results are shown in Figure 26. As plotted in the figure, the dynamics of SAM and GD are
qualitatively different. For SAM, when the initialization scale is smaller than 0.225, training does
not converge to a solution with sufficiently small loss. Beyond this regime, as the initialization
scale increases, the dominant singular direction that maximizes the alignment (i.e., arg max; a;(7"))
moves from o5 to oy, indicating that SAM sequentially aligns from the minor component to the
major component as v grows.

vs Initialization Scale (GD) i vs Initialization Scale (SAM)

Alignment(u)
Alignment(u)

04 o5 04 os
Initialization Scale (a) Initialization Scale (a)

Figure 26: Alignment of the effective weight 5(t) for GD (left) and SAM (right) across initialization
scales.
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E.3.2 CONVOLUTIONAL NEURAL NETWORK

We consider a 2-layer linear convolutional network trained on a synthetic dataset built from a single
image matrix . This experiment is designed to probe frequency-wise feature selection under SAM.

We fix an image size d = 32 and construct a single base image 1 € R'*?¥9 as a sum of cosine
plane waves with radial frequencies:

ol Lk rcosly ;| + ysinf
p(x,y) = ;wk;cos (U”TTk = dy MLy ¢k,l) :

The experiment uses K = 5 different frequency bands, where 1, are target bands, wy; > 0 are
band weights, and 6 ;, ¢;,; are random orientations and phases for each band. We take r;, €
{3,9,11,13,15} and w;, = {1.0,2.0,3.0,4.0,5.0} for all k. We set L, = 8 for all k. We then
renormalize ;o to have unit euclidean norm, then shift it slightly to be strictly positive. Next, we
define the frequency bands by constructing radial masks M C {0,---,d — 1}? in the fourier
domain. Let & denote the 2D FFT of x. The band energy of p at band k is then given by

we =y lam).
me My,

The bands are sorted by u;. As we apply low weights to low frequency bands when constructing
u, in this setting, low frequency bands have smaller pj and treated as minor features, and high
frequency bands have larger 15 and treated as major features.

The utilized model is a depth-2 convolutional network without nonlinearities. For the first convo-
lutional layer, we use 3 x 3 convolution with 32 output channels, stride 1, and padding 1. For the
second convolutional layer, we use same size of kernel, channel size, stride, and padding.

We used realistic gaussian initialization for the weights of the convolutional layers. The weights for
each layer are independently initialized. Lastly, the final FC layer is a linear layer. the input for fc
layer is squeezed 1d vector, and the output is a single logit.

Logistic loss is used, and full-batch training is employed. We use learning rate of 0.03 and p = 0.1.
We train for 6000 epochs.

Band-wise effective weights. To compare with the diagonal model, we require a band-wise de-
composition of the effective weight (@) in input space. Since the network is linear, () can be
recovered from gradients. At a given parameter vector 6, we consider the empirical margin

5(6) = Euy o)) = 5 (o) — fol—)

We compute the gradient of s(#) with respect to the input and form a “virtual gate” version of /3 in
input space:

So,
Brnap (14,0) = Eay) | (Vaol@) @), ]

which is proportional to (8(6) ® jt), ., in our linear setting. In practice, this expectation is computed
exactly by averaging over x € {u, —u}.

We then take the 2D FFT of (3,4, denoted ﬁmap, and define the band-wise effective weights by
N 2
Bu(6) = 3 |Buan(m)
me My,

For each training epoch ¢ we record the vector

(ﬂl(et)a s a/BK(et)) )
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and, in particular, the index of the dominant band
kaom (t) = arg max Br(6).

In our initialization-scale experiments, we repeat this procedure over a range of o € [0.13,0.20]
and, for each «, track both the dominant band k4o, at the end of training. This provides a CNN
analogue of the feature-selection behavior observed in the diagonal model, where coordinates are
replaced by frequency bands.

Figure 27 displays how the final dominant frequency band selected by the CNN varies with the
initialization scale . Consistent with expectations, when trained with SAM, the model emphasizes
minor features (i.e., low frequency bands) for small «, and shifts its focus to major features (high
frequency bands) as « increases. In contrast, under standard GD, the dominant frequency band
remains unchanged regardless of the initialization scale.
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Figure 27: Dominant band for GD (top) and SAM (bottom) across gaussian initialization with dif-
ferent scales. Each point shows the dominant band (the band that model mostly focuses on) at the
end of training; SAM systematically shifts from minor (low-frequency) to major(high-frequency)
bands as « increases, whereas GD remains insensitive to .

E.4 GRAD-CAM

As our theoretical analysis rigorously characterizes the dynamics of SAM in linear diagonal net-
works, we extend our empirical investigation to convolutional neural networks (CNNs) to examine
whether the same phenomena persist in more realistic architectures. Combining the results for both
l5o-SAM and ¢5-SAM, our theory predicts three practical regimes: for small initialization scale «,
SAM collapses toward the origin; for large v, SAM behaves similarly to GD; and for intermediate
a, SAM preferentially amplifies minor to intermediate features relative to GD.

To examine these predictions in practice, we train depth-2 CNNs with ReLU activations using both
SAM and GD. We then apply Grad-CAM (Selvaraju et al., 2019; Gildenblat & contributors, 2021)
to visualize which regions of the input image are emphasized by each model. In addition to quali-
tative visualizations, we compute the average values of pixels whose Grad-CAM activation exceeds
a threshold (0.5) and plot this quantity as a function of the initialization scale «. To characterize
the sequential feature discovery as a function of the initialization scale, we rescale the default ran-
dom initialization by multiplying it by « and train the model under this controlled initialization
scheme. Unlike the theoretical setting of Theorem 4.5, which assumes a structured initialization, we
use randomized initialization with rescaling in practice. In the corresponding figures, we indicate
collapse-to-origin behavior in green and blow-up behavior in purple.

We conduct experiments on MNIST (Deng, 2012), SVHN (Netzer et al., 2011), and CIFAR-10
(Krizhevsky et al., 2009). Across all datasets, we consistently observe that GD-trained models
concentrate on dominant, high-intensity pixels, whereas SAM-trained models emphasize lower-
intensity, minor pixel regions. These results demonstrate that the distinct feature prioritization
mechanism predicted by our theory persists in nonlinear CNN architectures.
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E.4.1 MNIST

We first study this phenomenon on MNIST. MNIST has a simple structure, where the black back-
ground takes the minimum pixel value (0) and the white digit takes the maximum pixel value (1).

We construct a subset of 1,000 images whose labels are in 0, 1, 2, 3 and train models using either GD
or {5-SAM. After training, we visualize the learned attention patterns using Grad-CAM, as shown in
Figure 28. We observe that the GD-trained model primarily bases its predictions on the white digit
region, whereas the ¢5-SAM-trained model concentrates more strongly on the black background
region. Unless otherwise stated, we use a learning rate of 0.1, a SAM perturbation radius of 0.5, and
train for 500 epochs with a batch size of 64. We use no momentum and no weight decay. For the

CNN architecture, we use 3 x 3 convolutional kernels and do not apply batch normalization or layer
normalization.
Overlay Overlay
Input 3 Grad-CAM Overlay Input 3 Grad-CAM Overlay

e

(a) GD (b) £2-SAM

Figure 28: Grad-CAM comparison between GD and /5-SAM on MNIST (labels 0-3).

To study the practical behavior of /.,-SAM, we train models using ¢.,-SAM on a subset of 1,000
MNIST images with labels in {0, 1}. We then visualize the Grad-CAM maps, as shown in Figure 29.
We observe a bias pattern similar to that of /5-SAM, where the model places greater emphasis on
background regions corresponding to minor features. We use the same hyperparameters as in the
previous experiment: learning rate 0.1, perturbation radius 0.5, training for 500 epochs, and a batch
size of 64.

Input 1 Grad-CAM Overlay Input 1 Grad-CAM Overlay
e |
b.
*I j’
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Figure 29: Grad-CAM comparison between GD and /.-SAM on MNIST (labels 0-1).

We now quantify the average values of activated pixels (Grad-CAM > 0.5) as a function of the
initialization scale « across different dataset subsets. In this experimental setup (Figure 30), we
observe that GD consistently concentrates more on the white digit region, which can be interpreted
as the major component in the pixel value manner, unless GD fails to minimize the loss because of
too large initialization scale. We denote as purple dots where GD blows up. Moreover, we observe
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three regimes of a of SAM. We denote as green dots where too small initialization scale fails to
escape near the origin and so the loss is not changed. Here can be seen as Regime 1. After that,
SAM concentrates on the pixels whose average is almost 0, so the background region. This implies
SAM concentrating on the minor component of the data more than GD, which can be seen as Regime
2. When GD blows up, SAM also goes out of the trend and almost blows up.
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(a) MNIST with labels 0,1,2,3. (b) 1k MNIST images with labels 0 and 1.
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(c) 1k MNIST images with labels 0,1,2,3. (d) Full MNIST 1k subset.

Figure 30: Average number of pixels with Grad-CAM activation exceeding 0.5 as a function of the
initialization scale «, comparing GD and ¢2-SAM across different MNIST subsets.

{oo-SAM exhibits a similar pattern (Figure 31). When « is small, the dynamics collapse toward the
origin. For intermediate values of «, /..-SAM tends to prioritize minor features more strongly than
GD. For sufficiently large o, however, the behavior of /,,-SAM deviates from this trend.
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Figure 31: Average number of pixels with Grad-CAM activation exceeding 0.5 as a function of the
initialization scale «, comparing GD and ¢,,-SAM on 1k MNIST images with labels 0 and 1.
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E.4.2 SVHN

We next study this phenomenon on SVHN. SVHN is more complex than MNIST, as it contains
both images with dark backgrounds and light digits, as well as images with light backgrounds and
dark digits. Nevertheless, we observe that £2-SAM consistently emphasizes the darker regions of
the image.

We construct a subset of 1,000 images with labels in {0, 1} and train models using either GD or {o-
SAM. We use a learning rate of 0.01, a SAM perturbation radius of 0.05, and train for 200 epochs.

The images in Figure 32 contain dark digits on light backgrounds. In this case, we observe that
SAM concentrates more strongly on the digit regions than the background, as the digits constitute
the minor features in these images. By contrast, the images in Figure 33 contain light digits on dark
backgrounds. For these images, SAM concentrates more strongly on the background regions than
on the digits, as the background constitutes the minor feature in this setting.
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Figure 32: Grad-CAM comparison between GD and ¢>-SAM on SVHN (1k images, labels 0-1)
with dark digits and light backgrounds.
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Figure 33: Grad-CAM comparison between GD and ¢5-SAM on SVHN (1k images, labels 0-1)
with light digits and dark backgrounds.

Across different values of «, we observe that small « causes ¢5-SAM to collapse toward the origin,
while intermediate « leads ¢2-SAM to emphasize minor features with lower pixel intensities as
shown in Figure 34, where pixel intensity is computed as the average over the three color channels.
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Figure 34: Average number of activated pixels (Grad-CAM > 0.5) as a function of the initialization
scale a, comparing GD and /5-SAM.

E.4.3 CIFAR-10

We also observe the same phenomenon on the CIFAR-10 dataset. We construct a subset of CIFAR-
10 with labels in {0, 1} and train models using a learning rate of 0.01, a SAM perturbation radius
of 0.05, for 500 epochs. As shown in Figure 35, small values of o lead SAM to emphasize minor
features, while larger values of @ make the behaviors of GD and SAM increasingly similar.
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Figure 35: Average number of activated pixels (Grad-CAM > 0.5) as a function of the initialization
scale o, comparing GD and /5-SAM.
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