

000 RESEARCHRUBRICS: A BENCHMARK OF PROMPTS 001 AND RUBRICS FOR EVALUATING DEEP RESEARCH 002 AGENTS 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Deep Research (DR) is an emerging agent application that leverages large language
014 models (LLMs) to address open-ended queries. It requires the integration of several
015 capabilities, including multi-step reasoning, cross-document synthesis, and the
016 generation of evidence-backed, long-form answers. Evaluating DR remains chal-
017 lenging because responses are lengthy and diverse, admit many valid solutions, and
018 often depend on dynamic information sources. We introduce RESEARCHRUBRICS,
019 a standardized benchmark for DR built with over 2,800+ hours of human labor that
020 pairs realistic, domain-diverse prompts with 2,500+ expert-written, fine-grained
021 rubrics to assess factual grounding, reasoning soundness, and clarity. We also
022 propose a new complexity framework for categorizing DR tasks along three axes:
023 conceptual breadth, logical nesting, and exploration. In addition, we develop hu-
024 man and model-based evaluation protocols that measure rubric adherence for DR
025 agents. We evaluate several state-of-the-art DR systems and find that even leading
026 agents like Gemini’s DR and OpenAI’s DR achieve under 68% average compli-
027 ance with our rubrics, primarily due to missed implicit context and inadequate
028 reasoning about retrieved information. Our results highlight the need for robust,
029 scalable assessment of deep research capabilities, to which end we release RE-
030 SEARCHRUBRICS (including all prompts, rubrics, and evaluation code) to facilitate
031 progress toward well-justified research assistants.

1 INTRODUCTION

032 An exciting development in the growing capabilities of large language models (LLMs) is the emer-
033 gence of Deep Research agents: autonomous LLM-based systems that conduct multi-step web
034 exploration, targeted retrieval, and synthesis to answer open-ended queries. Industry leaders have
035 begun deploying such systems (e.g., OpenAI’s “Deep Research” OpenAI (2025a) and Google’s
036 “Gemini Deep Research” Google (2025)), which have demonstrated strong performance on certain
037 benchmarks (for instance, scoring 26.6% on the expert-level HLE benchmark Phan et al. (2025)).
038 However, evaluating deep research agents poses significant challenges. Deep Research (DR) tasks
039 are inherently open-ended: they require reasoning across multiple documents, often with no single
040 “correct” answer, and their outputs can be long and varied. Consequently, existing evaluation methods
041 fall short. Typical QA benchmarks, both general Yang et al. (2018); Mialon et al. (2023); Phan et al.
042 (2025); Krishna et al. (2025) and deep research specific Java et al. (2025); Coelho et al. (2025), focus
043 on short, easily-verifiable factual answers and do not capture the long-form, multi-source synthesis
044 required by DR, e.g., *“Which material has band gap 0.9 eV, dislocation density $4 \times 10^8 \text{ cm}^{-2}$?”*
045 with the unique answer *“Gallium nitride (GaN)”*. Such benchmarks do not capture the long-form,
046 multi-source synthesis required by DR.

047 Several recent efforts to benchmark deep research agents directly have also revealed important
048 limitations: for example, some benchmarks introduce LLM-generated rubrics and evaluation metrics
049 reliant upon LLM-generated reference reports Du et al. (2025), thus raising concerns about circularity
050 and limited oversight Dorner et al. (2025), while others are far more narrow in their scope, assessing
051 only one specific angle of research in a technical domain (e.g., generating a “Related Works” section)
052 Patel et al. (2025); Li et al. (2025); Wan et al. (2025). In practice, however, users direct deep research
053 systems toward a broad array of everyday topics, ranging from business reports to consumer-related

Figure 1: Overview of RESEARCHRUBRICS and its evaluation pipeline.

queries, underscoring the need for benchmarks that combine domain diversity with expert-authored, fine-grained rubrics.

To better characterize these challenges and motivate our approach, we introduce a **task complexity framework** for deep research. Each query can be described along three independent axes: (1) its **conceptual breadth** (the number and diversity of distinct topics or domains involved), (2) its **logical nesting depth** (the number of reasoning or decision steps required, including sub-questions and conditionals), and (3) its **exploration level** (the degree of open-endedness or underspecification of goals). This tri-axial view highlights how DR queries differ from simpler QA tasks and helps articulate the shortcomings of existing methods: simple QA benchmarks lack sufficient breadth, depth, and exploration, while many current DR benchmarks fail to cover this full, multi-axial complexity.

We introduce RESEARCHRUBRICS, which pairs realistic, diverse prompts with expert-authored, fine-grained rubrics for deep research. We curate queries from nine broad domains (including business planning, historical analysis, technical documentation, and common consumer questions) to reflect real-world use cases. Each prompt comes with a detailed rubric: in total, we provide 2,593 rubric criteria that check factual grounding, coherence of reasoning, completeness, relevance, and clarity of the answer. The benchmarks also include negative rubrics that specifically aim to penalize extraneous or incorrect content. Importantly, all rubrics are written and reviewed by human experts (not auto-generated), ensuring they capture nuanced, domain-specific requirements. We also develop evaluation protocols for both human and automated scoring. Following the LLM-as-a-judge paradigm, we use powerful LLMs to assess rubric compliance, and we systematically experiment with improving this process comparing binary vs. ternary grading for each criterion and the level of detail in the rubrics. Finally, we apply our framework to leading DR systems (OpenAI’s DeepResearch OpenAI (2025a), Google Gemini’s Deep Research Google (2025), and Perplexity’s Deep Research AI (2025)). The results show that even the strongest agents fall below 68% average rubric compliance, revealing substantial room for improvement in multi-document synthesis and rigorous justification.

Our contributions

- **A human-crafted benchmark for deep research.** We present RESEARCHRUBRICS, a suite of open-ended research tasks across diverse domains, each with an expert-written rubric (2,593 total criteria). Crucially, each rubric is both written and reviewed by humans, thereby mitigating potential anchoring biases that may arise when only verifying LLM-generated rubrics.
- **A task complexity framework.** We formalize deep research queries along three axes—**breadth**, **depth**, and **ambiguity**—to distinguish them from conventional QA tasks and to guide the construction of balanced benchmarks that reflect real-world deep research queries.
- **Rubric-based, open-ended evaluation.** We introduce outcome-based, fine-grained rubrics that provide rigorous evaluation of long-form research answers and closely align with expert judgments. We also separate mandatory (required for sufficiency) from optional criteria, addressing a key gap in existing benchmarks.
- **Ternary Grading.** We propose a ternary grading scheme for a rubrics-based benchmark that supports partial credit assignment, and examine its suitability for automated evaluation.
- **Rubric design impact on LLM-as-a-judge.** We introduce practical recommendations for rubric design that improve agreement with human evaluators and are validated through ablation studies.

108 By releasing RESEARCHRUBRICS, we aim to catalyze progress toward trustworthy, well-justified
 109 DR assistants for complex, open-ended research tasks in a multitude of domains.
 110

111 2 RELATED WORK

114 Early benchmarks have largely taken two approaches: deriving or constructing tasks from static
 115 corpora or relying on expert-curated questions.

116 **Derived Benchmarks** AcademicBrowse Zhou et al. (2025) and BrowseComp Wei et al. (2025) assess
 117 retrieval from academic papers or the web, while ResearchBench Liu et al. (2025) builds complex
 118 queries from static data. More recent work goes further and derives tasks from dynamic, real-world
 119 scenarios. DeepScholar-Bench Patel et al. (2025) evaluates systems on related work writing using
 120 live queries from arXiv papers, though it is specialized to academic synthesis and uses automated
 121 metrics. ReportBench Li et al. (2025) leverages published surveys as ground truth, measuring overlap
 122 with expert-written reviews but prioritizing replication. DeepResearch Arena Wan et al. (2025)
 123 automatically curates 10,000 open-ended tasks from academic seminars, pairing them with adaptively
 124 generated rubrics, though automatic rubric generation can miss domain nuances.

125 **Expert Curated Benchmarks** Expert-authored benchmarks include Humanity’s Last Exam
 126 (HLE) Phan et al. (2025), which provides 2,500 expert-written short-answer questions across advanced
 127 domains, but does not target more ambiguous / open-ended analysis directly, and DeepResearch
 128 Bench Du et al. (2025), which introduced 100 PhD-level problems requiring long-form reports.
 129 DeepResearch Bench confirmed the difficulty of research tasks (no model exceeded 30%) but had
 130 a number of critical weaknesses, including using LLM-generated rubrics for specialized domains,
 131 evaluation metrics reliant upon LLM-generated reference reports and simplistic reference overlap
 132 metrics. ExpertLongBench Ruan et al. (2025) similarly targets expert-level, long-form tasks across
 133 9 domains with domain-specific rubrics, using the CLEAR framework for fine-grained assessment,
 134 though it depends on high-quality references.

135 In contrast to benchmarks that rely on static answer keys or coarse metrics, RESEARCHRUBRICS
 136 offers a middle ground: realistic research queries (academic and everyday domains) paired with
 137 expert-written rubrics assessing grounding, synthesis, reasoning, clarity, and citation usage. By using
 138 human-written rubrics with LLM judges, we avoid simplistic overlap measures while maintaining
 139 scalability. RESEARCHRUBRICS complements efforts like ExpertLongBench and DeepResearch
 140 Arena, emphasizing domain diversity and rubric quality.

141 3 OVERVIEW OF RESEARCHRUBRICS

144 RESEARCHRUBRICS consists of 101 single-turn
 145 prompts, each paired with a set of 20–43 prompt-
 146 specific rubric criteria. Every prompt and criterion
 147 in RESEARCHRUBRICS was written and iteratively
 148 refined by human experts to ensure clarity and relevance
 149 (no criteria were seeded or generated by
 150 LLMs). The prompts cover a wide range of topics
 151 and inquiry types to emulate real user questions that
 152 deep research agents receive. In total, the bench-
 153 mark contains 2,593 unique rubric items, enabling
 154 a fine-grained assessment of open-ended, realistic
 155 research queries. Figs. 1 and 3 provide an overview
 156 of our benchmark design and evaluation process.

157 3.1 DATA COLLECTION AND TASK DOMAINS

159 Our data collection pipeline consists of three expert participants, as shown in Fig. 3. In this context,
 160 we define an “expert” as an individual with a strong STEM background who is skilled in task design
 161 and evaluation, rather than a domain-specific specialist for each prompt. All participants in our data
 collection only chose and worked on domains they were familiar with.

Figure 2: Distribution of task domains in our collected data.

Figure 3: The three-stage pipeline for creating and refining prompts and rubrics. An initial draft by Expert 1 is iteratively improved with Expert 2 before a final review and adjustment by Expert 3.

The pipeline involves three experts, each assigned to a distinct and separate role. Expert 1 initially proposes a prompt and a set of rubric criteria. This proposal is then passed to Expert 2 for review. Expert 2 provides feedback and iterates with Expert 1 until the pair is approved. Finally, Expert 3 conducts a final, independent review and makes any last adjustments. This three-participant setup ensures that each component is thoroughly reviewed multiple times, guaranteeing high quality in the final data.

To ensure realism and variety, initial prompt ideas were drawn from user forums, Q&A sites, and brainstorming sessions, then adapted to represent the range of research-like questions a deep reasoning agent might encounter. The result is a collection of prompts that span both **breadth** (a wide variety of domains) and **depth** (challenging multi-step problems).

For each finalized prompt, experts developed a detailed rubric specifying what an ideal response should include and which common errors to avoid, following the pipeline detailed in Fig. 3. We weighted each criterion based on its importance (see Section 3.3) and included negative criteria targeting likely pitfalls, such as factually incorrect statements, off-topic tangents, or disallowed content.

We curated prompts from **nine broad categories** (see Table 11 in the Appendix for a detailed description of each category) to maximize diversity. These range from technical documentation to historical analysis, creative writing, and current events.

Fig. 2 shows the distribution of categories in RESEARCHRUBRICS. The distribution is fairly even, with AI/ML and historical analysis queries constituting the largest portions closely, followed by domains like general consumer research, reflecting both specialized academic topics and everyday research questions. Other categories provide targeted challenges (e.g., creative synthesis or real-time news retrieval). This diversity ensures that a DR agent must draw on a wide range of knowledge sources and adapt to different task structures.

3.2 PROMPT COMPLEXITY DIMENSIONS

Not all research prompts are equal—some involve a broader knowledge base, others require deeper reasoning, and others are underspecified and exploratory. We categorize each RESEARCHRUBRICS task along three orthogonal complexity dimensions: **Conceptual Breadth**, **Logical Nesting Depth**, and **Exploration** (Table 7). This framework helps ensure our benchmark covers a balanced mix of task types and allows analysis of where agents struggle most. Every task in RESEARCHRUBRICS is annotated with a triplet of (Breadth, Depth, Ambiguity) labels to allow filtering. In our evaluations, we analyze model performance across these dimensions to see, for example, if a model struggles more with breadth (integrating many sources) or with depth (long reasoning chains).

Complexity Axis	Level	Examples
Conceptual Breadth	<i>Simple</i> <i>Moderate</i> <i>High</i>	A math word problem or a factual lookup from one source. A prompt combining two fields (physics concept applied in a medical device context). “Analyze the environmental, economic, and political factors affecting renewable energy adoption in Asia.”
Logical Nesting	<i>Shallow</i> <i>Intermediate</i>	“What is the capital of X country?” “Find the sales of Company A and Company B last year and determine who grew faster; then identify one reason for that difference.”
	<i>Deep</i>	“Develop an evidence-backed investment strategy given current economic indicators, then stress-test it against at least two historical scenarios and suggest contingency plans.”
Exploration	<i>Low</i> <i>Medium</i> <i>High</i>	“Summarize the methodology of the referenced paper.” The task is clear-cut. “Discuss the benefits and risks of AI in healthcare.” “I want to switch to a career with strong future growth, what should I consider?”

Table 1: Prompt complexity categories used to annotate each task in RESEARCHRUBRICS.

3.3 RUBRIC DESIGN

RESEARCHRUBRICS is a rubric-based benchmark: each prompt is judged against a tailored set of criteria that define the requirements of a good answer. RESEARCHRUBRICS also separates mandatory (required for sufficiency) from optional criteria, addressing a key gap in existing benchmarks.

Table 2: Rubric criteria used to evaluate responses, with illustrative examples for each category.

Criterion	Description	Example
Explicit Requirements	Checks whether the answer addresses all points explicitly asked in the prompt and does so correctly.	Prompt: “Compare X and Y and recommend one.” → The answer compares X vs. Y on relevant traits and makes a clear recommendation.
Implicit Requirements	Covers points that a well-informed person would expect, even if not directly asked. Encourages completeness and contextual understanding.	Prompt: “Explain a medical treatment.” → A good answer also mentions side effects or costs, even if not requested.
Synthesis of Information	Evaluates whether the model connects and synthesizes information across multiple sources or sub-parts of the query, rather than merely listing facts.	Prompt: “Summarize several studies on renewable energy adoption.” → The answer identifies overarching trends and draws integrated conclusions.
Use of References	Assesses inclusion and appropriateness of citations or evidence where expected. Checks if references are specific, relevant, and actually support claims.	Prompt: “Summarize recent findings on large language models.” → The answer cites key papers (e.g., “Attention is All You Need”) and links claims to sources.
Communication Quality	Evaluates clarity, organization, and tone. A response may be factually correct but still poor if disorganized or misaligned with the audience’s needs.	Prompt: “Write a short blog post for a general audience.” → The answer is logically structured, concise, and avoids excessive jargon.
Instruction Following	Checks adherence to explicit user instructions or constraints (e.g., required format, tone, exclusions).	Prompt: “Summarize this without mentioning Topic Z.” → The answer omits Topic Z as instructed.

Table 2 presents the six broad **evaluation axes** used to assess response quality. Each axis contains multiple rubric criteria, which are categorized as either **mandatory** or **optional**.

- **Mandatory** criteria define the minimum requirements for a valid response, i.e., core elements that must be satisfied for the answer to be considered correct or adequate.
- **Optional** criteria capture desirable but non-essential qualities (“nice-to-have” behaviors) that distinguish strong responses from merely sufficient ones.

Each criterion is assigned a numerical weight in the range $[-5, 5]$, reflecting its relative importance. Weights of ± 4 or ± 5 correspond to mandatory criteria, while criteria with weights in $[-3, 3]$ are optional. Positive weights reward the presence of valuable attributes, while negative weights penalize common failure modes such as factual inaccuracies, irrelevance, or verbosity. These weights are

aligned with a calibrated **human preference scale** (Table 8) spanning six levels, from *Critically Detrimental* to *Critically Important*. This mapping encourages more consistent human–model agreement during grading.

3.4 EVALUATION METHODOLOGY

Each model response is evaluated against all the rubric criteria using a model as a grader, in an LLM-as-a-judge setup. The model-based grader outputs ternary judgment verdicts for each rubric, which are {Satisfied, Partially Satisfied, Not Satisfied}. This scoring process is the same for negative criteria, which are phrased so that the negative weights are applied to the sum if the negative criteria are met. The final task score is the weighted sum of all positive and negative weights, normalized by sum of the positive weights (the maximum possible score the model can achieve).

$$S_k = \frac{\sum_{r_i \in C} w_{r_i} m_{r_i}}{\sum_{r_i \in C, w_{r_i} > 0} w_{r_i}}, \quad m_{r_i} = \text{Judge}(P_k, \text{Res}, r_i) = \begin{cases} 1, & \text{if } r_i \text{ is satisfied,} \\ 0.5, & \text{if } r_i \text{ is partially satisfied,} \\ 0, & \text{if } r_i \text{ is not satisfied,} \end{cases} \quad (1)$$

where S_k is the final task score for the task k with prompt P_k and model response Res . C is the set of all criteria, w_{r_i} is the (possibly negative) weight assigned to criterion r_i , and m_{r_i} is the ternary indicator returned from the model-based judge, $\text{Judge}(\cdot, \cdot, \cdot)$, representing the level of satisfaction for criterion r_i .

To calculate the breakdown of failures per rubric category in an average task, we employ the following formula (where a failure is only when a rubric receives a Not Satisfied verdict).

$$\bar{F}_c = \frac{1}{|T_c|} \sum_{t \in T_c} f_{c,t} = \frac{1}{|T_c|} \sum_{t \in T_c} \frac{n_{\text{fail}, c,t}}{n_{\text{fail}, t}} \quad (2)$$

where $n_{\text{fail}, c,t}$ is the number of failed rubrics from category c in task t , $n_{\text{fail}, t}$ is the total number of failed rubrics across all categories in task t , $f_{c,t}$ is the failure rate of category c within task t , T_c is the set of tasks in which category c occurs at least once, and \bar{F}_c is the average failure rate of category c across tasks.

This allows us to understand that when rubrics fail, which categories are responsible for the highest contribution of failures in an average task (as opposed to just how often rubrics from a certain category fail). An important feature to note is that since the failure rate breakdown is averaged across only those tasks in which those rubric categories occur (to minimize the effect of an imbalanced rubric category distribution), the failure rate ratios do not necessarily add up to 1.

Human Consistency Analysis Similar to HealthBench Arora et al. (2025), we utilize the Macro F_1 score to validate the effectiveness of using a model-based grader as a proxy for human judgment. In our setup, we compare the ground truth judgement of experts and model-based graders for each task, and compute the F_1 scores for each of the classes {Satisfied, Partially Satisfied, Not Satisfied}.

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}, \text{ where } \text{precision} = \frac{TP}{TP + FP} \text{ and } \text{recall} = \frac{TP}{TP + FN}. \quad (3)$$

where TP , FP , and FN are the True Positive, False Positive, and False Negative values, respectively. We also run ablation studies to isolate the most significant factors in the level of alignment between the model-based grader and human judgments. For more details, see Section 4.4.

4 EXPERIMENTAL RESULTS AND ANALYSIS

We evaluate three commercial Deep Research (DR) agents on RESEARCHRUBRICS to measure their capabilities across multi-step synthesis, implicit reasoning, and evidence-backed justification. Our benchmark introduces 2,500+ expert-written rubric criteria across 100+ prompts, providing a more granular evaluation than existing frameworks. This granularity enables atomic-level quality assessment that allows us to identify specific failure modes invisible to coarse-grained metrics.

324
325

4.1 EXPERIMENTAL SETUP

326 **Evaluated Systems** We benchmark OpenAI Deep Research OpenAI (2025a), Gemini Deep Re-
 327 search Google (2025), and Perplexity Deep Research AI (2025). Each system produces struc-
 328 tured PDF reports that we convert to markdown for evaluation across six dimensions: Explicit
 329 Requirements, Implicit Reasoning, Synthesis of Information, References, Communication Qual-
 330 ity, and Instruction Following. Our evaluation employs both binary (met/not-met) and ternary
 331 (fully/partially/not satisfied) grading schemes to understand the impact of partial
 332 credit on system rankings.

333 **LLM-as-a-judge Implementation** We deploy three state-of-the-art LLMs as automated judges:
 334 GPT-5 OpenAI (2025b), Claude-Sonnet-4.5 Anthropic (2025), and Gemini-2.5-Pro DeepMind (2025).
 335 Under binary grading, we collapse Partially Satisfied verdicts to Not Satisfied, mea-
 336 suring strict compliance. Human–model alignment is quantified using Macro F_1 scores, with nine
 337 expert annotators providing ground truth across 303 responses.

339
340 4.2 MAIN RESULTS

341 **Compliance Scores** Table 3 reveals that **no current system**
 342 **exceeds 70% rubric compliance**, with the best-performing
 343 Gemini DR achieving only 67.7% under ternary grading and
 344 61.5% under binary evaluation. This aligns with findings from
 345 LiveResearchBench, where leading systems score below 74%
 346 on comprehensive metrics, DeepResearch Bench, where lead-
 347 ing systems score below 50% on comprehensive metrics. The
 348 consistency across benchmarks suggests fundamental architec-
 349 tural limitations rather than benchmark-specific challenges.

350
351 Table 3: **Overall Human Judge**
352 **Compliance Scores**

Model	Ternary	Binary
Gemini DR	0.677	0.615
OpenAI DR	0.664	0.597
Perplexity DR	0.566	0.487

353 **Failure Rates** Fig. 4 decomposes failure rates across evaluation dimensions, revealing that **implicit**
 354 **reasoning and synthesis jointly account for 45-50% of all failures**. This corroborates the findings in
 355 Multi-Agent System Taxonomy (MAST) Cemri et al. (2025), identifying reasoning-action mismatch
 356 (13.98%) and disobedience of task specifications (10.98%) as systemic issues. While agents excel at
 357 explicit factual retrieval and communication quality (failure rates below 20%), they consistently fail
 358 to infer unstated requirements or integrate multi-document evidence into coherent arguments.

361
362
363
364
365
366
367
368 Figure 4: **Rubric-axis failure rates across Deep Research agents.** Dark bars represent ternary
 369 grading; light bars show binary grading. Implicit reasoning and synthesis show markedly higher
 370 failure rates compared to communication quality and references. The pattern holds across all three
 371 systems, indicating architectural rather than implementation limitations.

372
373
374 **Mandatory vs. Optional Criteria** RESEARCHRUBRICS separates mandatory and optional criteria,
 375 and using this differentiation, we observe (from Fig. 6) that, while mandatory criteria drive failures
 376 in explicit requirements and synthesis of information, optional criteria account for most implicit
 377 reasoning failures. This suggests current systems meet basic implicit requirements but miss nuanced
 378 quality indicators that distinguish professional from adequate research.

This finding contextualizes HealthBench’s worst-at-16 analysis showing 33% performance degradation from average to minimum—systems achieve moderate average scores by satisfying mandatory criteria while systematically missing optional quality dimensions. The mandatory/optional distinction proves essential for deployment decisions: a 60% overall score might indicate either dangerous gaps in core requirements or merely missing polish on otherwise solid foundations.

Performance Stratified by Complexity Dimension Fig. 5 presents model compliance scores stratified by conceptual breadth, logical nesting, and exploration level under binary and ternary grading schemes, respectively. Gemini DR consistently leads, achieving roughly 70% average rubric compliance across most complexity tiers, followed closely by ChatGPT DR, and Perplexity DR lagging slightly behind. A clear pattern emerges: performance degrades monotonically with increased logical nesting depth. Whereas shallow reasoning tasks (single-hop or two-step queries) are handled well, multi-step analytical or evaluative problems see sharp drops, particularly for models relying on retrieval-centric architectures. Conceptual breadth also correlates with difficulty, though less steeply; systems handle multi-domain synthesis better than extended inferential chaining.

Figure 5: Performance across Conceptual Breadth, Logical Nesting, and Exploration (Ternary Evaluation)

Figure 6: **Failure rate stratification by criterion importance.** Mandatory criteria show systematically higher failure rates across most dimensions, with the notable exception of implicit reasoning, where optional criteria failures dominate. This inversion suggests implicit requirements primarily distinguish excellent from merely sufficient responses. Dark bars represent ternary grading; light bars show binary grading.

4.3 HUMAN-LLM JUDGE ALIGNMENT FOR AUTO-EVALUATION

Our human evaluation study (Table 4) demonstrates that binary grading achieves substantial agreement (0.72–0.76 Macro F_1), approaching the best-performing LLM-judges for rubrics benchmarks in recent literature. The shift from ternary to binary evaluation increases agreement by approximately 20 percentage points, confirming that partial credit introduces ambiguity without improving discriminative power.

The consistency levels validate automated evaluation feasibility for RESEARCHRUBRICS’s 2,593 criteria, exceeding HealthBench’s 0.709 Macro F_1 score. Gemini-2.5-Pro emerges as the most reliable judge, achieving 0.76 agreement on binary grading, though at least the 12–17 percentage point gap to best human agreement indicates remaining room for improvement.

432 Table 4: **Human consistency with LLM judges.** Macro F_1 scores between human annotators and
 433 automated evaluation across grading schemes and judge models.

435	436	Agent	437		
			438	439	440
438	439	Perplexity DR	0.717	0.718	0.724
		Gemini DR	0.732	0.741	0.760
		OpenAI DR	0.719	0.742	0.721
441	442	Perplexity DR	0.538	0.528	0.559
		Gemini DR	0.553	0.532	0.567
		OpenAI DR	0.546	0.527	0.557

444 4.4 RUBRIC DESIGN IMPACT

447 To better understand how rubric design impacts evaluation reliability, we conducted a series of
 448 **ablation studies** focusing on two key factors: (1) the inclusion of concrete examples within rubric
 449 criteria, and (2) the use of LLM-based augmentation to automatically rephrase those criteria. The goal
 450 of these experiments was to measure how such modifications affect alignment between automated
 451 (LLM-as-a-judge) and human evaluations. We present the results of the ablation study in Table 5.

452 We began with the original, expert-authored rubrics as our control condition. *Example Detail* tests
 453 whether providing brief, inline examples for each criterion improves agreement between human and
 454 model judges (in the format "(e.g., example1, example2, example3)"). The "Low" condition uses
 455 minimal guidance (the baseline criteria only), whereas "High" includes short, task-relevant examples
 456 (e.g., a cited study, policy name, relevant item). *LLM Augmentation* evaluates whether prompting a
 457 large language model to automatically expand or rephrase rubric text adds clarity. In the "Absent"
 458 setting, rubrics are the original human-written ones; in the "Present" setting, each rubric was rewritten
 459 by an LLM with added qualifiers and examples.

460 We find, in Table 5, that including concrete examples within rubric criteria improves alignment by
 461 3-4% (binary) and 2-3% (ternary). However, LLM-based rubric augmentation, i.e., automatically
 462 expanding criteria with synthetic elaboration, **catastrophically degrades alignment by 15-20%**.

463 Table 5: **Impact of rubric design on evaluation reliability.** Adding examples improves human-LLM
 464 alignment while automated augmentation degrades it.

467	468	Agent	469		470	
			471	472	473	474
470	471	Perplexity DR	0.696	0.724	0.724	0.508
		Gemini DR	0.733	0.760	0.760	0.564
		OpenAI DR	0.709	0.721	0.721	0.528
473	474	Perplexity DR	0.523	0.559	0.559	0.371
		Gemini DR	0.539	0.567	0.567	0.417
		OpenAI DR	0.532	0.557	0.557	0.387

475 This finding challenges assumptions about verbosity improving clarity. Human-authored concise
 476 rubrics with targeted examples outperform machine-generated verbose descriptions, likely
 477 because augmentation introduces semantic drift and emphasis distortion. The implication for RE-
 478 SEARCHRUBRICS' 2,593 criteria is clear: **expert curation cannot be replaced by automated
 479 expansion, and clarity emerges from precision rather than elaboration.**

482 4.5 DISCUSSION: SYSTEMATIC PATTERNS AND THEIR IMPLICATIONS

483 **Domain and Task Complexity Effects** Our analysis reveals surprising performance inversions
 484 across domains. Agents achieve 76% coverage on open-ended consulting questions but struggle
 485 with technical precision tasks, contradicting intuitive difficulty expectations. This aligns with

486 ResearcherBench Xu et al. (2025) findings that systems excel at exploratory reasoning while failing
 487 on deterministic requirements. The pattern suggests current architectures inherently favor creative
 488 synthesis over systematic execution, explaining why even leading systems achieve below 40% on
 489 technical nugget coverage despite 85% scores on organizational structure.

490 Task complexity analysis confirms the depth-width decomposition framework: performance degrada-
 491 tion accelerates with sequential reasoning requirements (depth) more than parallel capability demands
 492 (width). Tasks exceeding 4 sequential inference steps or 35 minutes of human-equivalent time show
 493 universal performance collapse across all evaluated systems (see Fig. 5). With RESEARCHRUBRICS
 494 averaging 25.7 criteria per prompt (see Fig. 9), approaching the $2^n - 1$ component complexity for
 495 $n = 5$ features, we operate near the theoretical saturation point for reliable evaluation.

496 **The Length-Quality Conflation Problem** Deep Research agents produce outputs 10-100 times
 497 longer than standard LLM responses (5,000-50,000+ tokens; see Table 10), raising questions about
 498 whether length drives perceived quality. Our criterion-level analysis reveals a nuanced relationship:
 499 longer responses correlate with higher scores (see Fig. 18), but this primarily reflects legitimate
 500 information density rather than padding. Systems generating comprehensive reports with 100+
 501 source synthesis necessarily require length, yet evaluators show documented bias toward verbosity
 502 independent of content quality.

503 RESEARCHRUBRICS’ atomic evaluation partially mitigates this bias. Each of 2500+ criteria checks
 504 specific content presence rather than holistic impressions. However, the correlation persists even at the
 505 criterion level, suggesting that either (1) comprehensive responses naturally satisfy more criteria, or
 506 (2) length bias operates even on supposedly objective checkpoints. Distinguishing these explanations
 507 requires controlled experiments varying response length while holding information content constant.

508 **Architectural Limitations Beyond Prompt Engineering** The consistency of failure patterns
 509 across systems—45-50% implicit criteria failures (see Fig. 4), poor multi-hop reasoning, synthesis
 510 bottlenecks—indicates fundamental architectural constraints rather than implementation differences.
 511 Multi-hop reasoning studies Yang et al. (2018) demonstrate that while agents achieve 80%+ success
 512 on first-hop inference, bridge entity resolution in early neural layers creates hard limits on subsequent
 513 reasoning depth. This explains the limited improvements from prompt engineering alone.

514 The breadth-accuracy trade-off further illustrates these constraints. No system successfully balances
 515 comprehensive coverage with precision. Gemini’s 111-citation breadth sacrifices accuracy (81%)
 516 while Perplexity’s 90% accuracy comes from restrictive 31-citation coverage. This isn’t a tuning
 517 problem but reflects incompatible optimization objectives that current architectures cannot simultaneously
 518 satisfy.

521 5 CONCLUSION AND FUTURE WORK

522 We introduced RESEARCHRUBRICS, a new benchmark and evaluation framework for deep research
 523 agents that emphasizes fine-grained, human-aligned assessment. Through 101 diverse research
 524 challenges and expert-written rubric criteria, our benchmark provides a multi-dimensional lens on an
 525 agent’s performance—checking not just factual recall, but the completeness, reasoning soundness,
 526 source usage, and clarity of its responses. RESEARCHRUBRICS’s granularity enables us to identify
 527 specific capability gaps invisible to aggregate metrics, and the mandatory/optional distinction gives
 528 us a way to place an agent on the sufficiency—excellence continuum, aiding deployment decisions
 529 by focusing on minimum viable performance rather than average scores. Our experiments reveal
 530 that today’s best agents achieve only around 67% compliance with these rigorous rubrics, often
 531 falling short in integrating information across documents and providing well-justified answers with
 532 proper citations. Most critically, our findings suggest that improving Deep Research agents requires
 533 architectural innovation rather than incremental refinement: systematic failures in implicit reasoning,
 534 multi-document synthesis, and sustained sequential reasoning point to fundamental limitations in
 535 how current systems represent and manipulate complex information structures.

536
 537
 538
 539

540 REFERENCES
541

542 P. AI. Introducing perplexity deep research, 2025. URL <https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research>. Accessed: 2025-09-18.

543 Anthropic. Claude sonnet 4.5, 2025. URL <https://www.anthropic.com/news/clause-sonnet-4-5>.

544 R. K. Arora, J. Wei, R. S. Hicks, P. Bowman, J. Quiñonero-Candela, F. Tsimpourlas, M. Sharman,
545 M. Shah, A. Vallone, A. Beutel, J. Heidecke, and K. Singhal. Healthbench: Evaluating large lan-
546 guage models towards improved human health, 2025. URL <https://doi.org/10.48550/arXiv.2505.08775>.

547 M. Cemri, M. Z. Pan, S. Yang, L. A. Agrawal, B. Chopra, R. Tiwari, K. Keutzer, A. Parameswaran,
548 D. Klein, K. Ramchandran, M. Zaharia, J. E. Gonzalez, and I. Stoica. Why do multi-agent llm
549 systems fail? *arXiv preprint arXiv:2503.13657*, 2025. URL <https://arxiv.org/abs/2503.13657>.

550 J. Coelho, J. Ning, J. He, K. Mao, A. Paladugu, P. Setlur, J. Jin, J. Callan, J. Magalhães, B. Martins,
551 and C. Xiong. Deepresearchgym: A free, transparent, and reproducible evaluation sandbox for
552 deep research, 2025.

553 G. DeepMind. Gemini 2.5 pro: Pushing the frontier with advanced reasoning, multimodality, long
554 context, and next generation agentic capabilities. https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf, 2025. Accessed: 2025-09-25.

555 F. E. Dorner, V. Y. Nastl, and M. Hardt. Limits to scalable evaluation at the frontier: Llm as judge
556 won't beat twice the data. In *The 13th International Conference on Learning Representations*
557 (*ICLR*) 2025, January 2025. URL <https://arxiv.org/abs/2410.13341>.

558 M. Du, B. Xu, C. Zhu, X. Wang, and Z. Mao. Deepresearch bench: A comprehensive benchmark for
559 deep research agents. *arXiv preprint arXiv:2506.11763*, 2025.

560 Google. Gemini deep research — your personal research assistant, 2025. URL <https://gemini.google/overview/deep-research/>. Accessed: 2025-09-18.

561 J. Gottweis, W.-H. Weng, A. Daryin, T. Tu, A. Palepu, P. Sirkovic, A. Myaskovsky, F. Weissenberger,
562 K. Rong, R. Tanno, K. Saab, D. Popovici, J. Blum, F. Zhang, K. Chou, et al. Towards an ai
563 co-scientist. *arXiv preprint arXiv:2502.18864*, 2025.

564 B. Gou, Z. Huang, Y. Ning, Y. Gu, M. Lin, W. Qi, A. Kopanev, B. Yu, B. J. Gutiérrez, Y. Shu,
565 C. H. Song, J. Wu, S. Chen, H. N. Moussa, T. Zhang, J. Xie, Y. Li, T. Xue, Z. Liao, K. Zhang,
566 B. Zheng, Z. Cai, V. Rozgic, M. Ziyadi, H. Sun, and Y. Su. Mind2web 2: Evaluating agentic search
567 with agent-as-a-judge. In *The Thirty-ninth Annual Conference on Neural Information Processing*
568 *Systems, Datasets and Benchmarks Track*, 2025. URL <https://openreview.net/forum?id=AUaW6DS9si>.

569 Y. Huang, Y. Chen, H. Zhang, K. Li, M. Fang, L. Yang, X. Li, L. Shang, S. Xu, J. Hao, K. Shao,
570 and J. Wang. Deep research agents: A systematic examination and roadmap. *arXiv preprint*
571 *arXiv:2506.18096*, 2025.

572 A. Java, A. Khandelwal, S. Midgeshi, A. Halfaker, A. Deshpande, N. Goyal, A. Gupta, N. Natarajan,
573 and A. Sharma. Characterizing deep research: A benchmark and formal definition. *arXiv preprint*,
574 *arXiv:2508.04183*, August 2025. preprint.

575 S. Krishna, K. Krishna, A. Mohananey, S. Schwarcz, A. Stambler, S. Upadhyay, and M. Faruqui.
576 Fact, fetch, and reason: A unified evaluation of retrieval-augmented generation, 2025. URL
577 <https://doi.org/10.48550/arXiv.2409.12941>.

578 M. Li, Y. Zeng, Z. Cheng, C. Ma, and K. Jia. Reportbench: Evaluating deep research agents via
579 academic survey tasks. *arXiv preprint arXiv:2508.15804*, 2025.

580 Y. Liu, Z. Yang, T. Xie, J. Ni, B. Gao, Y. Li, S. Tang, W. Ouyang, E. Cambria, and D. Zhou. Re-
581 searchbench: Benchmarking llms in scientific discovery via inspiration-based task decomposition.
582 *arXiv preprint arXiv:2503.21248*, 2025.

594 G. Mialon, C. Fourrier, C. Swift, T. Wolf, Y. LeCun, and T. Scialom. Gaia: A benchmark for general
 595 ai assistants, 2023. URL <https://doi.org/10.48550/arXiv.2311.12983>.

596

597 OpenAI. Introducing deep research, 2025a. URL <https://openai.com/index/introducing-deep-research/>. Accessed: 2025-09-18.

598

599 OpenAI. Introducing gpt-5, 2025b. URL <https://openai.com/gpt-5/>.

600

601 L. Patel, N. Arabzadeh, H. Gupta, A. Sundar, I. Stoica, M. Zaharia, and C. Guestrin. Deepscholar-
 602 bench: A live benchmark and automated evaluation for generative research synthesis. *arXiv*
 603 *preprint arXiv:2508.20033*, 2025.

604 L. Phan, A. Gatti, Z. Han, N. Li, et al. Humanity’s last exam. *arXiv preprint arXiv:2501.14249*, 2025.

605

606 J. Ruan, I. Nair, S. Cao, A. Liu, S. Munir, M. Pollens-Dempsey, T. Chiang, L. Kates, N. David,
 607 S. Chen, R. Yang, Y. Yang, J. Gump, T. Bialek, V. Sankaran, M. Schlanger, and L. Wang.
 608 Expertlongbench: Benchmarking language models on expert-level long-form generation tasks with
 609 structured checklists. *arXiv preprint arXiv:2506.01241*, 2025.

610 G. Son, J. Hong, H. Fan, H. Nam, H. Ko, S. Lim, J. Song, J. Choi, G. Paulo, Y. Yu, et al. When
 611 ai co-scientists fail: Spot-a benchmark for automated verification of scientific research. *arXiv*
 612 *preprint arXiv:2505.11855*, 2025.

613

614 H. Wan, C. Yang, J. Yu, M. Tu, J. Lu, D. Yu, J. Cao, B. Gao, J. Xie, A. Wang, W. Zhang, P. Torr, and
 615 D. Zhou. Deepresearch arena: The first exam of llms’ research abilities via seminar-grounded
 616 tasks. *arXiv preprint arXiv:2509.01396*, 2025.

617 J. Wang, Y. Ming, R. Dulepet, Q. Chen, A. Xu, Z. Ke, F. Sala, A. Albarghouthi, C. Xiong, and S. Joty.
 618 Liveresearchbench: A live benchmark for user-centric deep research in the wild, 2025.

619

620 J. Wei, Z. Sun, S. Papay, S. McKinney, J. Han, I. Fulford, H. W. Chung, A. Passos, W. Fedus, and
 621 A. Glaese. Browsecocomp: A simple yet challenging benchmark for browsing agents. *arXiv preprint*
 622 *arXiv:2504.12516*, 2025.

623 R. Xu and J. Peng. A comprehensive survey of deep research: Systems, methodologies, and
 624 applications. *arXiv preprint arXiv:2506.12594*, 2025.

625

626 T. Xu, P. Lu, L. Ye, X. Hu, and P. Liu. Researcherbench: Evaluating deep ai research systems on the
 627 frontiers of scientific inquiry, 2025. URL <https://doi.org/10.48550/arXiv.2507.16280>.

628

629 Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning. Hotpotqa:
 630 A dataset for diverse, explainable multi-hop question answering. In *Proceedings of the 2018*
 631 *Conference on Empirical Methods in Natural Language Processing*, pages 2369–2380, Brussels,
 632 Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1259. URL
 633 <https://aclanthology.org/D18-1259/>.

634 J. Zhou, W. Li, Y. Liao, N. Zhang, T. Miao, Z. Qi, Y. Wu, and T. Yang. Academicbrowse: Bench-
 635 marking academic browse ability of llms. *arXiv preprint arXiv:2506.13784*, 2025.

636

637

638

639

640

641

642

643

644

645

646

647

648 Table 6: Comparison of RESEARCHRUBRICS with representative Deep Research benchmarks.
649

Benchmark	Human-authored Rubrics	Expert-Curated	Open-Ended Tasks	Non-Technical Domains	LLM-as-a-judge	Average # Rubrics per task
AcademicBrowse Zhou et al. (2025)	✗	✗	✗	✓	✗	—
BrowseComp Wei et al. (2025)	✗	✗	✗	✓	✗	—
ResearchBench Liu et al. (2025)	✗	✗	✗	✓	✗	—
ResearcherBench Xu et al. (2025)	✓	✓	✓	✗	✓	14
DeepScholar-Bench Patel et al. (2025)	✗	✗	✓	✗	✓	—
ReportBench Li et al. (2025)	✗	✗	✗	✓	✓	—
DeepResearch Bench Du et al. (2025)	✗	✓	✓	✗	✓	25
Mind2Web2 Gou et al. (2025)	✗	✓	✗	✓	✓	50
LiveResearchBench Wang et al. (2025)	✗	✓	✓	✓	✓	—
LiveDRBench Java et al. (2025)	✗	✗	✗	✓	✓	—
ExpertLongBench Ruan et al. (2025)	✓	✓	✓	✓	✓	16
DeepResearch Arena Wan et al. (2025)	✗	✗	✓	✓	✓	—
DeepResearchGym Coelho et al. (2025)	✗	✗	✓	✓	✓	—
SPOT Son et al. (2025)	✓	✗	✗	✗	✓	—
RESEARCHRUBRICS (Ours)	✓	✓	✓	✓	✓	26

662 A EXTENDED RELATED WORK
663

664 The rapid emergence of deep research agents has been accompanied by several efforts to characterize
665 and evaluate their capabilities. Recent surveys and roadmap papers highlight the promise and
666 challenges of autonomous LLM-based research assistants. For example, Huang et al. (2025) provide
667 a systematic examination of Deep Research agents, analyzing their tool integration and planning
668 strategies, while Xu and Peng (2025) offer a comprehensive survey of deep research systems and
669 applications. These works underscore the need for robust evaluation frameworks aligned with the
670 complex, open-ended nature of research tasks.

671 Early benchmarks for deep research agents have largely taken one of two approaches: constructing
672 tasks from static corpora or relying on expert-curated questions. In the first category, benchmarks like
673 **AcademicBrowse** Zhou et al. (2025) and **BrowseComp** Wei et al. (2025) assess an agent’s ability to
674 navigate and retrieve information from academic papers or the web. AcademicBrowse focuses on
675 literature-based queries (e.g., browsing academic papers for answers), and BrowseComp comprises
676 over 1,200 web questions that demand multi-hop searching across sites. While these benchmarks
677 test long-horizon retrieval and factual accuracy, their questions tend to have a predetermined scope
678 or “ground truth” answers, which simplifies evaluation to matching reference facts. This limits their
679 ability to capture the open-ended synthesis and exploratory aspect of real research inquiries. Another
680 example is **ResearchBench** Liu et al. (2025), which builds complex search questions from static data;
681 however, static benchmarks risk *data leakage* (i.e., answers appearing in training data) and cannot
682 adapt to newly emerging information.

683 The second category of benchmarks uses expert-authored tasks to evaluate research reasoning.
684 **Humanity’s Last Exam** (HLE) Phan et al. (2025) is an expansive evaluation of 2,500 expert-
685 written questions covering advanced domains ranging from mathematics to medicine. HLE revealed
686 significant gaps in state-of-the-art models’ knowledge, but it primarily consists of challenging short-
687 answer questions, rather than multi-document analytical tasks. Closer to our setting, **DeepResearch**
688 **Bench** Du et al. (2025) introduced 100 PhD-level research problems across 22 fields (e.g., scientific
689 analysis, legal reasoning), each requiring a long-form report. Their evaluation combines reference-
690 based metrics and adaptive criteria, including measuring the number and accuracy of citations. This
691 benchmark confirmed the difficulty of deep research tasks, where no model exceeded roughly 30%
692 on their overall metrics, yet its scoring approach leans heavily on overlap with reference solutions
693 and simple citation counts. Similarly, **ExpertLongBench** Ruan et al. (2025) targets expert-level,
694 long-form tasks in 9 domains (law, finance, healthcare, etc.), providing 11 complex prompts each
695 accompanied by a domain-specific checklist or rubric. ExpertLongBench introduced the CLEAR
696 evaluation framework, which extracts a structured checklist from both the model’s output and a
697 gold reference, then compares them for alignment. This method enables fine-grained assessment of
698 content requirements, but it depends on high-quality reference outputs for each task. In contrast, our
699 work uses expert-written criteria without assuming an ideal reference answer, and evaluates responses
700 directly via LLM-as-a-judge – avoiding potential biases from any single ground-truth essay.

701 More recent benchmarks have moved toward dynamic, real-world research scenarios. **DeepScholar**-
702 **Bench** Patel et al. (2025) focuses on *generative research synthesis*: it draws live queries from recent
arXiv papers and evaluates systems on writing a related work section by retrieving and summarizing

up-to-date literature. Its evaluation emphasizes three axes (knowledge synthesis, retrieval quality, and verifiability), rewarding comprehensive coverage of relevant work and correct citation of sources. However, DeepScholar-Bench is specialized to academic writing tasks, and uses automated metrics (including LLM-generated scores) which may introduce evaluation circularity. **ReportBench** Li et al. (2025) takes another automated approach by leveraging existing survey articles as ground truth for evaluation. It generates academic survey-style prompts and measures the overlap between the AI agent’s citations and statements and those in a published survey on the same topic. This provides a concrete correctness signal (since an expert-written literature review is treated as the gold standard), but inherently prioritizes replication of the reference content over creative or divergent but valid answers. Meanwhile, **DeepResearch Arena** Wan et al. (2025) addresses the authenticity of research prompts: it automatically curates over 10,000 open-ended tasks from transcripts of academic seminars across 12 disciplines. By capturing questions that arise organically in expert discussions, DeepResearch Arena aims to evaluate agents on more ill-defined, exploratory problems. Their evaluation combines factual grounding checks with adaptively generated rubrics (checklists) to handle the breadth of tasks. One limitation, however, is that fully automatic rubric generation can miss domain nuances or implicitly favor certain solution paths.

In parallel to benchmarking efforts, researchers have begun exploring AI “co-scientist” systems that autonomously propose hypotheses or experimental plans beyond just information retrieval. Notably, Gottweis et al. (2025) present an **AI Co-Scientist** built on a multi-agent Gemini 2.0 system, which iteratively generates and refines scientific hypotheses (demonstrated in drug discovery and biology domains). The advent of such systems raises the stakes for evaluation: beyond finding correct facts, we must assess whether an AI’s reasoning and conclusions hold up to expert scrutiny. Initial work in this vein includes benchmarks like SPOT Son et al. (2025), which checks AI-generated scientific papers for logical errors or inconsistencies. Overall, as deep research agents expand from answering questions to performing nuanced scientific investigations, the need for **fine-grained, human-aligned evaluation** becomes ever more critical.

Our work builds directly on these prior insights. In contrast to previous benchmarks that either rely on static answer keys or on coarse-grained metrics, RESEARCHRUBRICS offers a new middle ground: a broad collection of realistic research queries (spanning academic and everyday domains) paired with expertly crafted rubrics that detail the requirements of a good answer. This approach enables evaluation of multiple dimensions – factual grounding, cross-source synthesis, reasoning validity, clarity, and citation usage – within a single unified framework. By using human-written rubrics and having LLM judges apply them, we avoid reward hacking based on simplistic overlap measures, while still achieving scalable scoring. RESEARCHRUBRICS is complementary to contemporaneous efforts like ExpertLongBench and DeepResearch Arena: those benchmarks target either highly specialized expert tasks or massive automatically generated task suites, whereas we prioritize diversity of domains and manually quality-checked criteria. Together, these efforts push toward a more rigorous and comprehensive assessment of deep research capabilities.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **B PROMPT COMPLEXITY DIMENSIONS**
757
758759 Table 7: Prompt complexity categories used to annotate each task in RESEARCHRUBRICS.
760

Complexity Axis	Level	Definition	Example
Conceptual Breadth	Simple	Involves a single domain or topic; solvable using 1 primary information source or conceptual framework.	A math word problem or a factual lookup from one source.
	Moderate	Integrates 2–5 distinct subtopics or data sources that are weakly coupled; limited cross-domain reasoning.	A prompt combining two fields (e.g., a physics concept applied in a medical device context).
	High	Requires synthesis across > 5 information sources or clearly disjoint domains (e.g., science, economics); reasoning depends on multiple perspectives.	“Analyze the environmental, economic, and political factors affecting renewable energy adoption in Asia.”
Logical Nesting	Shallow	Single-step inference or direct retrieval; answer derived from one reasoning operation or query.	“What is the capital of X country?” or a single lookup query.
	Intermediate	Multi-step reasoning (2 to 3 dependent sub-questions) where later steps depend on earlier intermediate results.	“Find the sales of Company A and Company B last year and determine who grew faster; then identify one reason for that difference.”
	Deep	Requires 4+ dependent reasoning steps or hierarchical planning (e.g., analysis → synthesis → evaluation → revision).	“Develop an evidence-backed investment strategy given current economic indicators, stress-test it against at least two historical scenarios and suggest contingency plans.”
Exploration	Low	Fully specified and unambiguous; prompt contains explicit goals, constraints, and evaluation criteria.	“Summarize the methodology of the referenced paper.” The task is clear-cut.
	Medium	Moderately open-ended (1–2 unspecified factors); requires limited prioritization among known aspects.	“Discuss the benefits and risks of AI in healthcare.” Covers standard themes (privacy, accuracy, etc.).
	High	Underspecified or exploratory; 3+ key factors unspecified, requiring clarification of objectives or creative reframing.	“I want to change careers to something with strong future growth—what should I consider?” The agent must clarify the criteria and explore multiple paths.

780 (a) Distribution of task complexity dimensions in RE-
781 SEARCHRUBRICS.
782783 (b) Distribution of rubric criteria categories. Implicit
784 and explicit criteria dominate the benchmark.
785786 Figure 7: Overview of task complexity dimensions and rubric criteria category distributions in
787 RESEARCHRUBRICS.
788789 **B.1 RUBRIC SCORING SCHEME**
790791 Table 8: Rubric scoring scale with mandatory and optional criteria.
792

Score Range	Description
[+4, +5]	Critically important – A criterion without which the response is fundamentally flawed or incorrect. Required for a minimally viable response.
[-5, -4]	Critically detrimental – A criterion identifying an error so severe that it makes the response actively harmful, deeply unethical, or completely invalidates its reasoning.
[+2 + 3]	Important – A key feature of a strong response, but not absolutely essential.
+1	Slightly Important – A “nice-to-have” detail that improves a good response but does not significantly change overall quality.
-1	Slightly Detrimental – A minor issue, tangent, or stylistic weakness that does not impact core reasoning or validity.
[-3, -2]	Detrimental – A significant error that detracts from the response quality, introduces faulty logic, or offers poor advice, but does not make it fundamentally harmful.

810 C EXTENDED RESULTS 811

812 This appendix expands the quantitative analysis of composition, complexity, and error structure, and
813 clarifies the relationship between output length and rubric compliance.
814

815 C.1 BENCHMARK COMPOSITION AND RUBRIC COVERAGE 816

817 Fig. 8 shows the number of rubric axes touched per task (mean = 4.74). This multi-axis coverage
818 reflects our goal of measuring holistic research ability rather than single-skill performance. Fig. 9
819 reports the criteria count per task (20–43; mean \approx 26). Fig. 10 decomposes axis proportions by
820 domain, illustrating that domains differ not only by content but by the expected mix of explicitness,
821 synthesis, and citation behaviors.
822

837 **Figure 8: How many evaluation axes does each task cover?** Distribution of the number of rubric
838 axes per prompt. Most tasks require 4 to 5 distinct dimensions of quality simultaneously, encouraging
839 balanced capabilities rather than single-axis optimization.
840

855 Figure 9: Number of rubric criteria per task.
856
857

858 C.2 PERFORMANCE STRATIFIED BY COMPLEXITY DIMENSION 859

860 Figs. 11 and 12 present model compliance scores stratified by conceptual breadth, logical nesting,
861 and exploration level under binary and ternary grading schemes, respectively. Across both settings,
862 Gemini DR consistently leads, achieving roughly 65–70% average rubric compliance across most
863 complexity tiers, followed closely by ChatGPT DR at around 60–65%, and Perplexity DR lagging
near 50%.
864

Figure 10: **Axis mix by domain.** Stacked proportions of the six rubric axes across domains.

A clear pattern emerges: performance degrades monotonically with increased logical nesting depth. Whereas shallow reasoning tasks (single-hop or two-step queries) are handled well, multi-step analytical or evaluative problems see sharp drops, particularly for models relying on retrieval-centric architectures. Conceptual breadth also correlates with difficulty, though less steeply; systems handle multi-domain synthesis better than extended inferential chaining.

Figure 11: Performance across Conceptual Breadth, Logical Nesting, and Exploration (Binary Evaluation)

C.3 DOMAIN-WISE FAILURE STRUCTURE

The heatmap in Fig. 13 shows how failure rates distribute across axes within each domain.

C.4 EFFECT OF RESPONSE LENGTH ON COMPLIANCE

To understand whether output verbosity correlates with perceived quality, we examine the relationship between response length (in tokens and words) and overall rubric compliance. Fig. 14 displays these correlations for Gemini DR, ChatGPT DR, and Perplexity DR. Moderate positive correlations ($r \approx 0.24 - 0.28$ for Gemini and ChatGPT) indicate that longer responses generally achieve higher scores. Perplexity DR, with the shortest outputs, achieves the lowest correlations. This

Figure 12: Performance across Conceptual Breadth, Logical Nesting, and Exploration (Ternary Evaluation)

Figure 13: Heatmap of failure contribution by rubric axis across domains.

supports the length-quality conflation hypothesis: longer reports often perform better because they cover more rubric criteria, not necessarily because evaluators prefer verbosity. Nonetheless, since RESEARCHRUBRICS scores are criterion-based rather than holistic, the observed correlation partly reflects genuine informational density rather than stylistic inflation.

Figure 14: Comparison of length vs. score across token count for the ternary setting.

972
973
974C.5 MISCLASSIFICATION FAILURES IN HUMAN-LLM JUDGE ALIGNMENT DURING
AUTO-EVALUATION975
976
977
978
979
980
981
982
983
984
985
986
987

Fig. 15 illustrates the relationship between grading mismatches, i.e., disagreements between the LLM-as-a-judge and human evaluators, and various analytical dimensions across both binary and ternary classification settings. Specifically, the top row compares mismatch distributions across rubric categories, the middle row examines mismatches with respect to rubric importance (mandatory vs. optional), and the bottom row presents mismatch rates by rubric category, normalized by the size of that category in the dataset. We observe that Implicit Criteria account for the majority of misclassifications, which is unsurprising given that many rubrics in the dataset belong to this category. However, when normalized by category size, References & Citation Quality and Synthesis of Information show a slightly higher proportion of disagreements, suggesting that models may struggle to assess what constitutes an adequate mention of reference or argument in a response. We also note that mandatory criteria exhibit a lower proportion of mismatches, which is reassuring, as it implies the model and human raters tend to align more closely on the mandatory aspects of the response.

988
989

C.6 CITATION ANALYSIS

990
991
992
993
994

The implicit reasoning gap explains the breadth-accuracy trade-off documented in citation analysis: Gemini DR produces 111 citations with 81% accuracy while Perplexity achieves 90% accuracy with only 31 citations. Systems optimized for comprehensive coverage sacrifice precision, while those targeting accuracy miss crucial perspectives—neither strategy successfully handles the implicit judgment of source relevance and authority.

995

D PROMPT AND RESPONSE LENGTH ANALYSIS

996
997
998
999

D.1 PROMPT WORD COUNT ANALYSIS

1000
1001
1002
1003

To understand the scope and complexity of the evaluation tasks, we analyzed the word counts of all 101 prompts included in RESEARCHRUBRICS. Prompt length serves as a useful proxy for task complexity, as longer prompts tend to encode more contextual background, sub-questions, and open-ended reasoning requirements.

1004
1005
1006
1007

Across all tasks, prompt lengths are moderately distributed, with a mean of **87.6 ± 58.6 words** (median = 68, range = 13–315). As shown in Fig. 16, most prompts cluster below 100 words, though a long right-tail distribution reflects the presence of prompts well over 200 words.

1008
1009
1010
1011

Prompts vary substantially by domain (Table 9). Tasks from **General Consumer Research**, **Technical Documentation**, and **Business Planning & Research** exhibit the longest average prompt lengths, often exceeding 100 words. In contrast, domains such as **AI & ML**, **Current Events**, and **Other** tend to be more concise.

1012
1013
1014
1015
1016

Prompt length also scales with the benchmark’s complexity dimensions (Fig. 17). Prompts with higher *conceptual breadth*, deeper *logical nesting*, and greater *exploration* are systematically longer, often doubling in average length compared to simpler tasks. This pattern underscores that more open-ended research problems require not only deeper reasoning but also more extensive prompt scaffolding.

1017
1018
1019

To contextualize the prompt statistics, we compared the word and token counts of responses generated by three Deep Research agents: **ChatGPT DR**, **Gemini DR**, and **Perplexity DR**.

1020
1021
1022
1023
1024
1025

On the Markdown outputs (Table 10), **Gemini** produces the longest responses on average (7,500–7,600 words), followed by **ChatGPT** (6,300–6,400 words), while **Perplexity** outputs are substantially shorter (~1,800 words). These differences are consistent across both words and tokens, and between text and rendered formats. High variance (standard deviations above 2,000–3,000 words) reflects substantial prompt-dependent variation in response verbosity.

Figure 15: Comparison of mismatch metrics (by category, importance, and mismatch rate) across binary and ternary settings.

To understand whether output verbosity correlates with perceived quality, we examine the relationship between response length (in tokens and words) and overall rubric compliance. Figs. 18a to 18d display these correlations for Gemini DR, ChatGPT DR, and Perplexity DR.

Moderate positive correlations ($r \approx 0.20 - 0.28$ for Gemini and ChatGPT) indicate that longer responses generally achieve higher scores. Perplexity DR, with the shortest outputs, achieves the lowest correlations.

This supports the length-quality conflation hypothesis: longer reports often perform better because they cover more rubric criteria, not necessarily because evaluators prefer verbosity. Nonetheless, since RESEARCHRUBRICS scores are criterion-based rather than holistic, the observed correlation partly reflects genuine informational density rather than stylistic inflation.

Figure 16: Distribution of prompt word counts across all 101 tasks. The distribution is right-skewed, with a mean of 87.6 words and a median of 68 words.

Figure 17: Prompt word count by task complexity dimensions (Conceptual Breadth, Logical Nesting, and Exploration). Longer prompts are consistently associated with higher complexity levels.

E SUPPLEMENTARY FIGURES AND TABLES

We provide concise descriptions of the ten prompt domains used in RESEARCHRUBRICS in Table 11.

F PROMPTS

The prompt we sent to the LLM-as-a-judge can be found in 19

We used two prompt templates in the ablation experiments: one for example removal and one for rubric augmentation. Both are shown below for reproducibility.

1134

1135

1136

1137

1138

1139

Table 9: Prompt Word Count Statistics across Domains and Complexity Dimensions

Category	Subset	Count	Mean	SD	Median	Min–Max	95% CI
<i>Overall Statistics</i>							
	All Prompts	101	87.6	58.6	68.0	13–315	[76.0, 99.2]
<i>By Domain</i>							
	AI & ML	17	61.8	44.8	46.0	13–169	[38.0, 85.5]
	Business Planning & Research	12	111.0	56.2	98.5	36–224	[73.7, 148.3]
	Creative Writing	6	69.2	19.9	66.0	40–103	[46.2, 92.1]
	Current Events	5	51.0	20.1	55.0	21–76	[23.1, 78.9]
	General Consumer Research	11	138.4	80.2	131.0	35–315	[81.9, 194.9]
	Historical Analysis	13	81.5	50.2	70.0	30–227	[49.9, 113.1]
	Hypotheticals & Philosophy	11	78.3	45.4	69.0	22–187	[46.3, 110.2]
	Other	6	61.2	22.6	51.0	40–107	[35.2, 87.2]
	STEM	8	80.0	43.9	64.0	30–174	[40.8, 119.2]
	Technical Documentation	12	112.3	69.1	75.5	49–271	[66.5, 158.2]
<i>By Conceptual Breadth</i>							
	Simple	36	79.1	58.7	60.5	13–271	[59.0, 99.2]
	Moderate	52	91.2	60.7	72.0	22–315	[74.1, 108.3]
	High	13	96.8	45.4	95.0	29–195	[68.3, 125.4]
<i>By Logical Nesting</i>							
	Shallow	19	88.9	65.8	67.0	21–227	[56.4, 121.5]
	Intermediate	46	72.4	40.4	61.5	13–197	[60.3, 84.5]
	Deep	36	106.4	68.0	79.5	22–315	[83.0, 129.7]
<i>By Exploration</i>							
	Low	29	75.6	55.1	56.0	13–227	[54.3, 96.9]
	Medium	55	80.8	48.9	66.0	21–271	[67.5, 94.2]
	High	17	130.1	72.7	111.0	47–315	[91.5, 168.6]

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

Table 10: Word and Token Statistics per Model

1175

Type	Model	Mean	SD	Median	Min	Max
Words	ChatGPT	6269.73	3684.21	5481	1328	18824
	Gemini	7519.32	2447.70	7562	2909	14640
	Perplexity	1828.61	1127.70	1579	128	7352
Tokens	ChatGPT	10169.57	5885.79	9075	2103	30233
	Gemini	12153.31	4028.00	11710	4530	26421
	Perplexity	3664.36	2006.01	3241	539	14148

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

(a) Length vs. score (tokens; binary).

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

(b) Length vs. score (tokens; ternary).

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

(c) Length vs. score (words; binary).

1236

1237

(d) Length vs. score (words; ternary).

Figure 18: Comparison of length vs. score across token and word counts for binary and ternary settings.

1238

1239

1240

1241

Category	Description of Prompts
AI & ML	Tasks centered on artificial intelligence, machine learning, and data science, including model evaluation, algorithmic comparisons, ethical considerations, and emerging applications. Prompts often require synthesis of technical papers, applied case studies, and discussions of interpretability, safety, or deployment challenges in real-world AI systems.
STEM	Science, technology, engineering, and mathematics prompts outside core AI/ML domains. These tasks require synthesizing information from textbooks, research papers, or technical reports (e.g., explaining physical principles, analyzing chemical processes, or modeling engineering systems).
General Consumer Research	Everyday research with complex constraints (e.g., finding an apartment under budget, multi-factor product comparisons, travel itineraries, personal finance or legal advice, health-related questions requiring reputable sources).
Technical Documentation	Prompts involving explanation of complex technical concepts, code, or APIs using official documentation or repositories (e.g., troubleshooting a programming error with library docs, comparing software architecture patterns).
Hypotheticals & Philosophy	Open-ended prompts asking for speculation, hypotheticals, or philosophical analysis, often requiring synthesis of diverse viewpoints (e.g., <i>“How might society change if X...?”</i> , ethical dilemmas, future predictions in technology).
Historical Analysis	Questions about historical events, figures, or periods that require pulling from archives, historical texts, and scholarly interpretations (e.g., analyzing causes of a historical conflict with primary source references).
Business Planning & Research	Prompts related to business or entrepreneurship (e.g., developing a go-to-market strategy, analyzing a company’s financial health, legal considerations for a startup, HR or marketing plan), often requiring use of industry reports or case studies.
Creative Writing	Long-form creative tasks that incorporate factual elements or research (e.g., writing a historical fiction scene with accurate period details, or a sci-fi story grounded in real science).
Current Events	Prompts focused on recent or ongoing events, necessitating retrieval of up-to-date news or data (e.g., analysis of a recent policy change, comparison of current market trends).
Other	Miscellaneous prompts that do not neatly fit in the above categories, including cross-domain questions or niche topics.

Table 11: Prompt domains in RESEARCHRUBRICS.

```

1296
1297
1298
1299
1300
1301 SYSTEM:
1302 You are an expert evaluator tasked with assessing whether a document satisfies
1303 specific rubric criteria. Your evaluation must be precise, objective, and based
1304 solely on the evidence present in the document.
1305
1306 ## Evaluation Framework
1307 You will evaluate each rubric criterion using a three-tier satisfaction scale:
1308 1. **Not Satisfied (Score: 0.0)**: The document fails to meet the criterion.
1309 Key elements are missing, incorrect, or inadequately addressed.
1310 2. **Partially Satisfied (Score: 0.5)**: The document partially meets the
1311 criterion. Some elements are present but incomplete, lacking depth, or missing
1312 important aspects.
1313 3. **Satisfied (Score: 1.0)**: The document fully meets the criterion. All
1314 required elements are present, well-developed, and appropriately detailed.
1315
1316 ## Evaluation Process
1317 1. **Understand the Criterion**: Carefully read and interpret what the rubric
1318 is asking for.
1319 2. **Search for Evidence**: Systematically review the document for relevant
1320 content that addresses the criterion.
1321 3. **Assess Completeness**: Evaluate whether the evidence fully, partially, or
1322 fails to satisfy the criterion.
1323 4. **Provide Reasoning**: Explain your evaluation with specific references to
1324 the document content.
1325
1326 ## Important Guidelines
1327 - Base your evaluation ONLY on what is explicitly present in the document
1328 - Do not make assumptions about implied or missing content
1329 - Consider the quality, completeness, and relevance of the evidence
1330 - Be consistent in your evaluation standards across all criteria
1331 - Provide specific examples from the document to support your verdict
1332
1333 Note: Example lists in these rubrics are intended to illustrate possible
1334 reasoning patterns or relevant topics. These example lists contain correct
1335 answers but are not exhaustive. Use them as guidance, but also make your own
1336 final judgment about what qualifies as correct when appropriate.
1337
1338 USER:
1339 ## Document Content
1340 {document_content}
1341
1342 ## Rubric Criterion to Evaluate
1343 **Title**: {rubric_title}
1344 **Category**: {rubric_category}
1345 **Weight**: {rubric_weigh}
1346
1347 ## Your Task
1348 Evaluate whether the above document satisfies this specific rubric criterion.
1349
1350 ## Required Response Format
1351 Provide your evaluation in the following JSON format:
1352 "json"
1353 {
1354 "verdict": "[Not Satisfied/Partially Satisfied/Satisfied]",
1355 "score": [0.0/0.5/1.0],
1356 "confidence": [0.0-1.0],
1357 "reasoning": "Detailed explanation with specific evidence from the document",
1358 "evidence_quotes": ["Direct quote 1", "Direct quote 2", ...],
1359 "missing_elements": ["Element 1 that would improve satisfaction", ...]
1360 }
1361
1362 Ensure your response is ONLY the JSON object, with no additional text.
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3
```

```

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363 SYSTEM:
1364 You are tasked with removing examples from a rubric text while
1365 keeping everything else EXACTLY the same.
1366 Your job is to:
1367 1. Identify portions of text that contain a list of examples,
1368 typically in the form "(e.g., example1, example2, example3)" or
1369 similar.
1370 2. Remove ONLY these example portions.
1371 3. Keep all other text, formatting, punctuation, and structure
1372 EXACTLY the same.
1373 4. Do not rephrase, reword, or change anything else.
1374 5. Do not add any new content.
1375 6. Simply return the text with the example portions removed.
1376 Examples of what to remove:
1377 - "(e.g., a diagnosis code block, a free-text note snippet
1378 without PHI, tabular data contexting text and numerical data)"
1379 - "(i.e. programmatic text extractions, more rigorous NLP and
1380 machine learning techniques, etc.)"
1381 - "((1) National Library of Medicine, (2) CDC Wonder or (3)
1382 publications from well-known universities)"
1383 Be very careful with maintaining the exact same structure and
1384 wording for the rest of the rubric.
1385 USER:
1386 Please remove the examples from the following rubric text while
1387 keeping everything else EXACTLY the same:
1388 {rubric_text}
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

```

Figure 20: Prompt used for grading via the **LLM-as-a-judge** framework.

1404
 1405 **SYSTEM:**
 1406 You are an expert at improving rubrics that are used to
 1407 evaluate model responses. Make the rubrics more detailed, both
 1408 in terms of facts the models should cover and any definitions
 1409 or examples that should be added, while still keeping the
 1410 rubrics somewhat concise.
 1411
 1412 **CRITICAL FORMATTING REQUIREMENTS:**
 1413 - Return exactly ONE cohesive sentence (NO newlines, NO line
 1414 breaks).
 1415 - The rubric should be ONE SINGLE SENTENCE but can contain
 1416 multiple phrases, subparts, clauses, and run-on components.
 1417 - Target approximately 100 words on average, but you can exceed
 1418 that when necessary for completeness.
 1419 - Do NOT create multiline, paragraph-style, or bullet-point
 1420 rubrics.
 1421
 1422 **IMPORTANT:** You will receive exactly ONE rubric to improve,
 1423 and you must return exactly ONE enhanced version of that same
 1424 rubric. Do not create multiple rubrics or variations.
 1425
 1426 Your job is to:
 1427 1. Keep ALL original information from the rubric EXACTLY as it
 1428 is - do not delete or remove any core information, knowledge or
 1429 intent from the rubric.
 1430 2. Make the rubric more detailed and concrete by adding
 1431 specific examples inline (e.g., specific answers or patterns
 1432 that might help the model to generalize)
 1433 3. Clarify vague terms with more precise descriptions within
 1434 the same sentence flow.
 1435 4. Add any information that may be missing.
 1436 5. Make the rubric as actionable and unambiguous as possible
 1437 while staying concise.
 1438
 1439 Focus on adding inline:
 1440 - Concrete examples in parentheses (e.g., specific technical
 1441 details, data formats), which need not be exhaustive.
 1442 - Clear boundary conditions.
 1443 - Any definitions for unclear terms.
 1444
 1445 Do NOT:
 1446 - Remove any original content.
 1447 - Change the fundamental meaning or intent of any rubric.
 1448 - Add an entirely new rubric.
 1449 - Create multiple versions or variations (don't generate more
 1450 than one rubric output).
 1451 - Use newlines, bullet points, or multiline formatting.
 1452 - Break the rubric into multiple sentences.
 1453
 1454 Return only the single improved rubric as one cohesive
 1455 sentence.
 1456
 1457 **USER:**
 1458 Enhance this rubric by adding specific examples and details
 1459 while formatting it as ONE cohesive sentence (no newlines, but
 1460 the rubric can contain multiple phrases and clauses):
 1461
 1462 {rubric_text}
 1463
 1464 Return only the enhanced single-sentence rubric with no
 1465 additional text.

Figure 21: Prompt used for **LLM-based rubric augmentation**.