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ABSTRACT

Deep Research (DR) is an emerging agent application that leverages large language mod-
els (LLMs) to address open-ended queries. It requires the integration of several capa-
bilities, including multi-step reasoning, cross-document synthesis, and the generation of
evidence-backed, long-form answers. Evaluating DR remains challenging because re-
sponses are lengthy and diverse, admit many valid solutions, and often depend on dynamic
information sources. We introduce RESEARCHRUBRICS, a standardized benchmark for
DR that pairs realistic, domain-diverse prompts with expert-written, fine-grained rubrics
to assess factual grounding, reasoning soundness, and clarity. We also propose a new com-
plexity framework for categorizing DR tasks along three axes: conceptual breadth, logical
nesting, and exploration. In addition, we develop human and model-based evaluation pro-
tocols that measure rubric adherence for DR agents. We evaluate several state-of-the-art
DR systems and find that even leading agents like Gemini’s DR and OpenAI’s DR achieve
under 59% average compliance with our rubrics, primarily due to missed implicit con-
text and inadequate reasoning about retrieved information. Our results highlight the need
for robust, scalable assessment of deep research capabilities, to which end we release
RESEARCHRUBRICS (including all prompts, rubrics, and evaluation tools) to facilitate
progress toward well-justified research assistants.

1 INTRODUCTION

An exciting development in the growing capabilities of large language models (LLMs) is the emergence of
Deep Research agents: autonomous LLM-based systems that conduct multi-step web exploration, targeted
retrieval, and synthesis to answer open-ended queries. Industry leaders have begun deploying such systems
(e.g., OpenAI’s “Deep Research” (OpenAI, 2025a) and Google’s “Gemini Deep Research” (Google, 2025)),
which have demonstrated strong performance on certain benchmarks (for instance, scoring 26.6% on the
expert-level HLE benchmark Phan et al. (2025)). However, evaluating deep research agents poses significant
challenges. Deep Research (DR) tasks are inherently open-ended: they require reasoning across multiple
documents often with no single “correct” answer, and their outputs can be long and varied. Consequently,
existing evaluation methods fall short: typical QA benchmarks, both general (Yang et al., 2018; Mialon
et al., 2023; Phan et al., 2025; Krishna et al., 2025) and deep research specific (Java et al., 2025), focus on
short, easily-verifiable factual answers and do not capture the long-form, multi-source synthesis required
by DR (for example, “Which material has band gap=0.9eV , dislocation density=4 × 108cm−2?” with the
unique answer “GaN”).

To better characterize these challenges, we introduce a task complexity framework for deep research. Each
query can be described along three independent axes: (1) its conceptual breadth (the number and diversity
of distinct topics or domains involved), (2) its logical nesting depth (the number of reasoning or decision
steps required, including sub-questions and conditionals), and (3) its exploration level (the degree of open-
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endedness or underspecification of goals). This tri-axial view highlights how DR queries differ from simpler
QA tasks and motivates the need for a benchmark with fine-grained assessment criteria. Several recent
efforts have sought to benchmark deep research agents, but each exhibits important limitations: for example,
some benchmarks introduce LLM-generated rubrics and evaluation metrics reliant upon LLM-generated
reference reports (Du et al., 2025) (thus raising concerns about circularity and limited oversight (Dorner
et al., 2025)), while others are far more narrow in their scope, assessing only one specific angle of research
in a technical domain (e.g., generating a “Related Works” section) (Patel et al., 2025; Li et al., 2025; Wan
et al., 2025). In practice, however, users direct deep research systems toward a broad array of everyday
topics, ranging from product comparisons to legal, financial, and health-related queries—underscoring the
need for benchmarks that combine domain diversity with expert-authored, fine-grained rubrics capable of
capturing the full spectrum of research performance.

To address these gaps, we introduce RESEARCHRUBRICS, which pairs realistic, diverse prompts with expert-
authored, fine-grained rubrics for deep research. We curate queries from eight broad domains (including
STEM, health, finance, legal, and common consumer questions) to reflect real-world use cases. Each prompt
comes with a detailed rubric: in total, we provide 1,868 rubric criteria that check factual grounding, coher-
ence of reasoning, completeness, relevance, and clarity of the answer. The benchmarks also include negative
rubrics that specifically aim to penalize extraneous or incorrect content. Crucially, all rubrics are written
and reviewed by human experts (not auto-generated), ensuring they capture nuanced, domain-specific re-
quirements. We also develop evaluation protocols for both human and automated scoring. Following the
LLM-as-judge paradigm, we use powerful LLMs to assess rubric compliance, and we systematically ex-
periment with improving this process comparing binary vs. ternary grading for each criterion and the level
of detail in the rubrics. Finally, we apply our framework to leading DR systems (OpenAI’s DeepResearch
(OpenAI, 2025a), Google Gemini’s Deep Research (Google, 2025), and Perplexity’s Deep Research (AI,
2025)). The results show that even the strongest agents fall below 59% average rubric compliance, revealing
substantial room for improvement in multi-document synthesis and rigorous justification.

Our contributions are as follows:

• A human-crafted benchmark for deep research. We present RESEARCHRUBRICS, a suite of open-
ended research tasks across diverse domains, each with an expert-written rubric (1,800 + total criteria).
This is, to our knowledge, the first benchmark combining such domain breadth with fine-grained human
evaluation for DR agents.

• A task complexity framework. We formalize deep research queries along three axes – breadth,
depth, and ambiguity – to distinguish them from conventional QA tasks and to guide the construction
of balanced benchmarks.

• Rubric-based, open-ended evaluation. We demonstrate that fine-grained rubrics provide rigorous,
multi-dimensional evaluation of long-form, multi-source research answers that closely align with expert
judgments, while also enabling diagnoses of model strengths and weaknesses.

• Scalable LLM judging with ablations. We introduce enhanced prompt design and scoring recommen-
dations for LLM-as-a-judge evaluation that improve agreement with human evaluators and are validated
through ablation studies.

By releasing RESEARCHRUBRICS and its tools, we aim to catalyze progress toward trustworthy, well-
justified DR assistants for complex, open-ended research tasks in a multitude of domains.

2 RELATED WORK

Early benchmarks have largely taken two approaches: deriving or constructing tasks from static corpora or
relying on expert-curated questions.
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Derived Benchmarks AcademicBrowse (Zhou et al., 2025) and BrowseComp (Wei et al., 2025) assess
retrieval from academic papers or the web, while ResearchBench (Liu et al., 2025) builds complex queries
from static data. More recent work goes further and derives tasks from dynamic, real-world scenarios.
DeepScholar-Bench (Patel et al., 2025) evaluates systems on related work writing using live queries from
arXiv papers, though it is specialized to academic synthesis and uses automated metrics. ReportBench (Li
et al., 2025) leverages published surveys as ground truth, measuring overlap with expert-written reviews
but prioritizing replication. DeepResearch Arena (Wan et al., 2025) automatically curates 10,000 open-
ended tasks from academic seminars, pairing them with adaptively generated rubrics, though automatic
rubric generation can miss domain nuances. However, static datasets risk data leakage, cannot adapt to new
information, and automatic rubric generation can miss domain nuances.

Expert Curated Benchmarks Expert-authored benchmarks include Humanity’s Last Exam (HLE) (Phan
et al., 2025), which provides 2,500 expert-written short-answer questions across advanced domains, but does
not target more ambiguous / open-ended analysis directly, and DeepResearch Bench (Du et al., 2025), which
introduced 100 PhD-level problems requiring long-form reports. DeepResearch Bench confirmed the diffi-
culty of research tasks (no model exceeded 30%) but had a number of critical weaknesses, including using
LLM-generated rubrics for specialized domans, evaluation metrics reliant upon LLM-generated reference
reports and simplistic reference overlap metrics. ExpertLongBench (Ruan et al., 2025) similarly targets
expert-level, long-form tasks across 9 domains with domain-specific rubrics, using the CLEAR framework
for fine-grained assessment, though it depends on high-quality references.

In contrast to benchmarks that rely on static answer keys or coarse metrics, RESEARCHRUBRICS of-
fers a middle ground: realistic research queries (academic and everyday domains) paired with expert-
written rubrics assessing grounding, synthesis, reasoning, clarity, and citation usage. By using human-
written rubrics with LLM judges, we avoid simplistic overlap measures while maintaining scalability. RE-
SEARCHRUBRICS complements efforts like ExpertLongBench and DeepResearch Arena, emphasizing do-
main diversity and rubric quality.

3 OVERVIEW OF RESEARCHRUBRICS

RESEARCHRUBRICS consists of 75 single-turn prompts, each paired with a set of 20–60 prompt-specific
rubric criteria. Every prompt and criterion in RESEARCHRUBRICS was written and iteratively refined by
human experts to ensure clarity and relevance (no criteria were seeded or generated by LLMs). The prompts
cover a wide range of topics and inquiry types to emulate real user questions that deep research agents
receive. In total, the benchmark contains 1,868 unique rubric items, enabling a fine-grained assessment of
open-ended, realistic research queries. Figs. 2 and 3 provides an overview of our benchmark design and
evaluation process.1

3.1 DATA COLLECTION AND TASK DOMAINS

Our data collection pipeline consists of three expert participants, as shown in Fig. 3. In this context, we define
an “expert” as an individual with a strong STEM background who is skilled in task design and evaluation,
rather than a domain-specific specialist for each prompt. All participants in our data collection only chose
and worked on domains they were familiar with.

Expert 1 initially proposes a prompt and a set of rubric criteria. The initial proposal is reviewed by Expert 2,
who provides feedback and an updated prompt and rubrics. Experts 1 and 2 continue iterating until Expert
2 approves the pair of prompt and rubric. Finally, Expert 3 reviews the proposed prompt and rubrics and

1A selection of the benchmark tasks have been uploaded as supplementary material. A public release of the dataset
will shortly follow. The code to auto-evaluate on this benchmark will also be publicly released soon.
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makes final adjustments to the data. This three-participant setup ensures high quality in the final data, thanks
to the numerous reviews of each component of each sample.

We curated prompts from eight broad categories (Fig. 1a) to maximize diversity, namely General Con-
sumer Research, STEM, Technical Documentation, Creative Writing, Creative Writing, Hypotheticals
and Philosophy, Current Events, and Business Planning and Research. For more details, see Table 8 in
Section A.8.

STEM

22.1%

General Consumer Research

11.7%

Technical Documentation

11.7%

Hypotheticals & Philosophy 13.0%

Historical Analysis

10.4%

Business Planning & Research

11.7%
Creative Writing

7.8%
Current Events

5.2%

Other6.5%

(a) Distribution of task domains in our collected data. The
dataset has a fairly even spread across the task domains.

Explicit Criteria

28.7%

Implicit Criteria 38.5%

Synthesis of Information

17.4% References & Citation Quality

3.6%
Communication Quality

7.0%

Instruction Following4.7%
Miscellaneous0.2%

(b) Distribution of rubric criteria. The majority of rubric
criteria is either an Explicit Criterion (28.7%) or an Implicit
Criterion (38.5%).

Figure 1: Overview of the dataset composition, showing the distribution of (a) task domains and (b) rubric
evaluation criteria.

To compile realistic questions, we drew inspiration from user forums, Q&A sites, and brainstorming ses-
sions, then had domain experts refine each prompt for clarity and appropriate difficulty. Our goal was to
cover both breadth (many different domains) and depth (challenging multi-step problems) in the dataset.
Each prompt was then assigned to one or more expert annotators to create the rubric: a list of criteria specify-
ing what an ideal answer should include and common errors to avoid. The rubric creation process involved
multiple passes to ensure completeness and remove ambiguity. We weighted each criterion based on its
importance (see Section 3.3) and included negative criteria targeting likely pitfalls (e.g., factually incorrect
statements, off-topic tangents, or disallowed content).

STEM and general consumer queries constitute the largest portions, reflecting both specialized academic
topics and everyday research questions. Other categories provide targeted challenges (e.g., historical sources,
creative synthesis, or real-time news retrieval). This diversity ensures that a DR agent must draw on a wide
range of knowledge sources and adapt to different task structures.

3.2 PROMPT COMPLEXITY DIMENSIONS

Not all research prompts are equal—some involve a broader knowledge base, others require deeper rea-
soning, and others are underspecified and exploratory. We categorize each RESEARCHRUBRICS task along
three orthogonal complexity dimensions: Conceptual Breadth, Logical Nesting Depth, and Exploration
(Table 1). This framework helps ensure our benchmark covers a balanced mix of task types and allows
analysis of where agents struggle most.

Every task in RESEARCHRUBRICS is annotated with a triplet of (Breadth, Depth, Ambiguity) labels. In our
evaluations, we analyze model performance across these dimensions to see, for example, if a model strug-
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Complexity
Axis

Level Examples

Conceptual
Breadth

Simple A math word problem or a factual lookup from one source.
Moderate A prompt combining two fields (physics concept applied in a medical device context).
High “Analyze the environmental, economic, and political factors affecting renewable energy

adoption in Asia.”

Logical
Nesting

Shallow “What is the capital of X country?”
Intermediate “Find the sales of Company A and Company B last year and determine who grew faster;

then identify one reason for that difference.”
Deep “Develop an evidence-backed investment strategy given current economic indicators,

then stress-test it against at least two historical scenarios and suggest contingency plans.”

Exploration
Low “Summarize the methodology of the referenced paper.” The task is clear-cut.
Medium “Discuss the benefits and risks of AI in healthcare.”
High “I want to switch to a career with strong future growth, what should I consider?”

Table 1: Prompt complexity categories used to annotate each task in RESEARCHRUBRICS.

gles more with breadth (integrating many sources) or with depth (long reasoning chains). This also helps
researchers filter the benchmark for specific experiment focuses (e.g., testing only high-depth reasoning
tasks).

3.3 RUBRIC DESIGN AND EVALUATION SCHEME

RESEARCHRUBRICS is fundamentally a rubric-based benchmark: each prompt is judged against a tailored
set of criteria that define the requirements of a good answer. Table 2 provides an overview of the types of
rubric criteria we include. The criteria are grouped into six broad evaluation axes to cover different aspects
of quality. The weights for the criteria are in the range -5 to 5, with each weight corresponding to a clear

Domain-by-Domain Analysis

# Mental Health and Well-being 
- Positive E�ects: Social media platforms have created 
valuable support networks for mental health 
awareness, enabling individuals to access resources 
and connect with others facing similar challenges.
- Negative E�ects: The evidence overwhelmingly 
demonstrates significant mental health harms. 
- Verdict: Detrimental. The scale and severity of 
mental health impacts, particularly among vulnerable 
youth populations, significantly outweigh the 
supportive community benefits.
…

# Political and Democratic Processes
…

# Economic Development 
…

# Education and Learning Social Relationships
…

Model ResponseDeep 
Research 

Model
Conduct an analysis to determine whether social media's overall 
impact on society has been more beneficial or detrimental.

Argument should be structured by examining social media's impact 
across key domains of society. For each domain you must evaluate 
both positive and negative e�ects, using evidence from academic 
studies, journalist reports, case studies. After analyzing each 
domain, …

Prompt

Rubrics

1) The response identifies at least 5 societal domains 
(e.g., mental health, relationships, politics/civic 
engagement, the information ecosystem, the 
economy).

+5

2) Response highlights policy or regulatory 
responses to social media's e�ects in at least one 
domain (e.g., Section 230 of the CDA, COPPA, the 
SAFE act, New York's Child Data Protection Act).

+3

3) The response contains blanket statements 
especially regarding mental health impacts (e.g., 
body dysmorphia, increased anxiety, emotional 
distress triggers, disruption of sleep patterns) 
without citations.

-4

Ternary Evaluation

Binary Evaluation

1) The response identifies at least 5 societal domains (e.g., 
mental health, relationships, politics/civic engagement, the 
information ecosystem, the economy).

+5

2) Response highlights policy or regulatory responses to social 
media's e�ects in at least one domain (e.g., Section 230 of the 
CDA, COPPA, the SAFE act, New York's Child Data Protection 
Act).

+3

3) The response contains blanket statements especially 
regarding mental health impacts (e.g., body dysmorphia, 
increased anxiety, emotional distress triggers, disruption of 
sleep patterns) without citations.

-4

 

(+5)

 

(+0)

 

(-2.0)

= 3.0

1) The response identifies at least 5 societal domains (e.g., 
mental health, relationships, politics/civic engagement, the 
information ecosystem, the economy).

+5

2) Response highlights policy or regulatory responses to social 
media's e�ects in at least one domain (e.g., Section 230 of the 
CDA, COPPA, the SAFE act, New York's Child Data Protection 
Act).

+3

3) The response contains blanket statements especially 
regarding mental health impacts (e.g., body dysmorphia, 
increased anxiety, emotional distress triggers, disruption of 
sleep patterns) without citations.

-4

 

(+5)

 

(+0)

 

(+0)

= 5.0

Human Judge

LLM Judge

Legend
 Fully Satisfied
 Partially Satisfied
 Not Satisfied

Judge

Figure 2: Overview of RESEARCHRUBRICS and its evaluation pipeline.

human preference (Critically Detrimental, Detrimental, Slightly Detrimental, Slightly Important, Important,
Critically Important) as described in Table 7, to encourage better agreement of the model-based grader.
Criteria with weights in the ranges [−4,−5] and [4, 5] are mandatory criteria, while criteria with weights
in the range [−3, 3] are optional. Criteria with mandatory weights consist of guidelines for a minimum
viable response, while criteria with optional weights include “nice-to-have” behaviors. Negative criteria are
carefully chosen by experts to target common mistakes a response may make and prevent the model from
reward hacking for unnecessary length and detail in the responses.
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Criterion Description

Explicit
Requirements

Checks whether the answer addressed all points explicitly asked in the prompt, and did so correctly.
For example, if the prompt says “compare X and Y and recommend one,” the rubric will have items
to verify that the answer compared X vs. Y on relevant traits and made a clear recommendation.

Implicit
Requirements

These criteria cover relevant points that a well-informed person might expect, even if not directly
asked. For instance, a question about a medical treatment might implicitly require mentioning side
effects or costs. We include such criteria to reward comprehensive answers that demonstrate a deep
understanding of the context.

Synthesis
of Information

These criteria evaluate the model’s ability to connect and synthesize information across multiple
sources or sub-parts of the query. Rather than just listing facts, does the answer draw novel insights
or conclusions? For example, after gathering evidence from several studies, a synthesis criterion
might check if the answer provided an integrated comparison or identified an overarching trend.

Use of
References For tasks that expect external citations or evidence, these criteria check whether the answer included

specific appropriate references (e.g., particularly relevant URLs or academic citations by name) and
whether those references actually support the claims.

Communication
Quality

We include criteria on clarity, organization, and style, as a factually correct answer may still fail
on these. These check whether the answer is well-structured (with logical flow, headings or bullet
points if appropriate), whether it is concise yet complete, and whether it uses a tone and terminology
suitable for the audience (e.g., not too much jargon if a casual medium, e.g., a blog is requested).

Instruction
Following If the user prompt contains specific instructions or constraints (formatting requirements, a request

for a certain perspective, exclusion of some info, etc.), we include criteria to verify adherence. For
example, if the prompt says “do not discuss Topic Z,” a negative criterion will trigger if the answer
mentions Topic Z. Following user instructions is critical for useful assistance.

Table 2: Rubric criteria used to evaluate responses.

Evaluation Methodology Each model response is evaluated against all the rubric criteria using a model as
a grader, in an LLM-as-a-judge setup. The model-based grader outputs ternary judgment verdicts for each
rubric, which are {Satisfied, Partially Satisfied, Not Satisfied}. This scoring process
is the same for negative criteria, which are phrased so that the negative weights are applied to the sum if
the negative criteria are met. The final task score is the weighted sum of all positive and negative weights,
normalized by sum of the absolute weights (to prevent heavy penalization for any negative rubrics).

Sk =

∑
ri∈C wrimri∑
ri∈C abs(wri)

, mri = Judge(Pk,Res, ri) (1)

where Sk is the final task score for the task k with prompt Pk, C is the set of all criteria, wri is the weight
of criterion ri (positive or negative), and mri is the ternary indicator returned from the model-based judge
Judge as a score dependent on the task prompt, model response and i-th rubric item with the following
output space: mri = 1 if criterion ri is satisfied, mri = 0.5 if criterion ri is partially satisfied, and mri = 0
if criterion ri is not satisfied.

Human Consistency Analysis. Similarly to HealthBench (Arora et al., 2025), we utilize the Macro F1 score
to validate the effectiveness of using a model-based grader as a proxy for human judgment. In our setup, we
compare the ground truth predictions of experts and model-based graders for each task, and compute the F1
scores for each of the classes {Satisfied, Partially Satisfied, Not Satisfied}.

F1 = 2 · precision · recall
precision + recall

, where precision =
TP

TP + FP
and recall =

TP

TP + FN
(2)
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We also run ablation studies to isolate the most significant factors in the level of alignment between the
model-based grader and human judgments. For more details see Appendix A.7.

4 EXPERIMENTAL RESULTS

We evaluated several state-of-the-art deep research agents and baseline LLMs on RESEARCHRUBRICS.

Evaluated Agents & Models. We focus primarily on three commercial, closed-source state-of-the-art Deep
Research Agents: OpenAI Deep Research OpenAI (2025a), Gemini Deep Research Google (2025), and
Perplexity Deep Research AI (2025) for which we also curate gold standard, human-judged evaluations.
These systems represent the most widely deployed frontier-level agents for retrieval-augmented reasoning
and multi-step synthesis. For a comparative baseline, we also tested baseline LLMs with integrated search
tools, using the Open Deep Search framework Alzubi et al. (2025), though these outputs are excluded from
the human agreement study due to tradeoffs regarding resource constraints and their especially poor perfor-
mance. Full results and per-category failure breakdowns are presented in Table 3, Table 4, and Table 5.

Implementation Details. For evaluation, we investigate the effectiveness of four LLMs-as-judges: GPT-
4.o (OpenAI, 2025b), GPT-5 (OpenAI, 2025c), Claude-Opus-4.1 (Anthropic, 2025) and Gemini-2.5-
Pro DeepMind (2025). Alignment with human annotations was measured using Macro F1 under both
ternary {Satisfied, Partially Satisfied, Not Satisfied} and binary {Satisfied,
Not Satisfied} grading regimes.

4.1 MAIN RESULTS: AGENT PERFORMANCE

Table 3 presents the overall rubric compliance scores for each system, calculated using the formula described
in 1. Several clear trends emerge:

Table 3: Evaluation results for commercial DR agents and LLMs with search tools. The ’Final Score’
column shows the final score averaged across all tasks, while the remaining columns report failure rates (in
%) per category (ratios of how many rubrics of a specific category failed compared to all the failed rubrics).

Final Score Failure Rates (%)

Grader
Verdicts Model Overall Comm.

Quality
Explicit Implicit Instruct.

Follow.

Refer-
ences Synthesis

of Info.

Deep Research Agent

Human-
evaluated

Ternary
Perplexity DR 0.490 14.2% 27.1% 47.9% 18.8% 17.3% 26.3%
Gemini DR 0.586 15.6% 31.0% 45.1% 22.4% 16.6% 30.4%
OpenAI DR 0.569 15.8% 28.0% 47.9% 22.5% 16.1% 28.3%

Binary
Perplexity DR 0.425 10.9% 24.5% 43.2% 12.6% 13.3% 26.9%
Gemini DR 0.535 13.0% 26.7% 42.2% 17.1% 13.4% 27.3%
OpenAI DR 0.512 12.8% 25.2% 44.0% 15.6% 13.3% 26.9%

LLM with Search Tools

Model-
evaluated Binary

Claude-4.1-Opus 0.026 8.71% 28.85% 39.96% 8.56% 7.36% 21.45%
Gemini-2.5-Pro -0.008 8.34% 28.76% 39.42% 8.53% 7.12% 21.04%
GPT-5 0.163 9.41% 26.92% 41.11% 10.85% 8.19% 24.97%
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• Agent Performance Variability: Based on Table 3, Google’s Gemini DR agent achieves the highest over-
all compliance under both the ternary (∼0.59) and binary (∼0.54) grading schemes, with OpenAI’s DR
agent a close second overall (∼0.57 for ternary and ∼0.51 for binary), while Perplexity’s agent lags with
∼0.49 overall for ternary (and ∼0.43 for binary). Implicit criteria account for the lion’s share of rubric
failures across the 3 agents, but when compared to rubric axes distribution in the benchmark1, most of the
categories are overrepresented in the failure rates of the agents: references (∼ 4% vs. 17%), instruction
following (∼ 5% vs. 21%), implicit (∼ 38% vs. 47%), synthesis of Information (∼ 17% vs. 28%) and
communication quality (∼ 7% vs. 14%); only explicit criteria seems to be represented consistently (∼ 27%
vs. 28%). This suggests that the agents are generally effective at relaying accurate facts (explicit criteria)
but face challenges in integrating knowledge, reasoning implicitly and conveying it effectively.

• Binary vs. Ternary Scoring: Introducing ternary judgments doesn’t seem to offer more granularity com-
pared to binary verdicts, as we see only slight increases in performance through assigning partial credit.
Switching to binary judgments reduces absolute scores as expected, but the relative ranking of agents re-
mains unchanged. Therefore, rubric benchmarks can comprehensively be graded via binary judgments.

• Baseline LLM+Tools: Table 3 also reports results for LLMs with search tools under the binary rubric.
These models are not directly comparable to the specialized Deep Research Agents, as they are prompted
from scratch for each query and receive no fine-tuning on research tasks, but probe the importance of search
in such an agent via the benchmark. Among them, GPT-5 achieved the highest final score (0.163), while
Claude-4.1 and Gemini-2.5-Pro performed far lower overall (0.026 and -0.008, respectively, with similar
patterns of relative strengths and weaknesses. A pattern we noticed was that LLMs with search tools
often struggled with the hypothetical questions in the benchmark, as they often fell outside the purview
of retrieved content. These results indicate that while LLMs with search tools can handle straightforward
tasks and maintain good performance in communication and referencing, they remain far behind specialized
agents in integrating knowledge and satisfying nuanced rubric criteria.

Overall, the results confirm that no current system is close to “passing” our benchmark. The best agents
are around 60% compliance. Qualitatively, we found that agents often do well in gathering factual informa-
tion (especially OpenAI and Gemini), but they falter in higher-order synthesis.

4.2 HUMAN CONSISTENCY OF LLM JUDGING

We next assess how closely the LLM-based rubric evaluations align with human judgments. We had 9 expert
annotators manually grade the outputs of the three commercial agents on the entire benchmark (total of 225
responses). Table 4 summarizes the consistency results.

Table 4: Human consistency evaluation of Deep Research Agents under binary and ternary grading schemes.
Values represent the Macro F1 scores between the human and model judgments.

Agent Human Consistency Evaluation

GPT-4o GPT-5 Claude-4.1
(Opus)

Gemini-2.5-
Pro

Binary
Perplexity DR 0.687 0.725 0.687 0.742
Gemini DR 0.682 0.742 0.719 0.737
OpenAI DR 0.679 0.725 0.707 0.727

Ternary
Perplexity DR 0.478 0.547 0.524 0.554
Gemini DR 0.513 0.538 0.511 0.549
OpenAI DR 0.488 0.547 0.545 0.547
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Using the ternary rubric, human consistency with the top-performing agents ranged from approximately
0.478 to 0.554 (Macro F1), indicating moderate agreement among graders. Agreement was highest for
Gemini-2.5-Pro, followed closely by GPT-5, reflecting more consistent judgments on clear successes and
failures, while borderline cases still showed some variability. When collapsed to a binary setup, the Macro
F1 values increased, with the highest consistency reached by 0.742 for Gemini-2.5-Pro (and occasionally
matched by GPT-5) across different agents, demonstrating substantial agreement once partial credit was
treated as a failure. Overall, these results suggest that human graders are generally reliable on these tasks,
particularly for high-performing agents, and the level of agreement is comparable to prior studies of LLM
evaluations on open-ended research tasks (e.g., (Arora et al., 2025; Du et al., 2025; Patel et al., 2025)).

4.3 ABLATION: EXAMPLES AND RUBRIC AUGMENTATION

Table 5 compares agent performance under variations in rubric detail and LLM augmentation. Providing
detailed examples slightly improved agreement with human judgments, with scores increasing by roughly
2–3 percentage points across agents, while overall model rankings remained stable. In contrast, LLM-
augmented rubrics, where criteria were rephrased by an LLM to add more detail and examples, significantly
lowered performance, suggesting that the original expert-written criteria were already clear and that auto-
matic rephrasing may introduce ambiguity. These results reinforce practical recommendations to provide
brief illustrative examples for potentially ambiguous rubric items to enhance consistency and involve expert
guidance in writing rubrics as much as possible.

Table 5: Evaluation of the grader model (GPT-4o) alignment (Macro F1 scores) under different conditions of
example detail and LLM augmentation. Columns ‘Low’ and ‘High’ report scores for prompts with minimal
versus detailed examples, while ‘Absent’ and ‘Present’ indicate whether LLM augmentation was used.

Model Example Detail LLM-Augmentation

Low High Absent Present

Perplexity DR 0.665 0.687 0.687 0.497
Gemini DR 0.680 0.682 0.682 0.565
OpenAI DR 0.652 0.679 0.679 0.518

Perplexity DR 0.418 0.478 0.478 0.332
Gemini DR 0.457 0.513 0.513 0.361
OpenAI DR 0.433 0.488 0.488 0.340

5 CONCLUSION AND FUTURE WORK

We introduced RESEARCHRUBRICS, a new benchmark and evaluation framework for deep research agents
that emphasizes fine-grained, human-aligned assessment. Through 75 diverse research challenges and
over 1,868 expert-crafted rubric criteria, our benchmark provides a multi-dimensional lens on an agent’s
performance—checking not just factual recall, but the completeness, reasoning soundness, source usage,
and clarity of its responses. Our experiments with state-of-the-art systems reveal that today’s best agents
achieve only around 60% compliance with these rigorous rubrics, leaving significant room for improve-
ment. In particular, agents often fall short in integrating information across documents and in providing
well-justified answers with proper citations. These findings echo the broader observation that current LLMs,
despite their fluency, can struggle with the deeper validation and synthesis needed for trustworthy research
assistance.
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Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
A benchmark for general ai assistants, 2023. URL https://doi.org/10.48550/arXiv.2311.
12983.

OpenAI. Introducing deep research, 2025a. URL https://openai.com/index/
introducing-deep-research/. Accessed: 2025-09-18.

OpenAI. Introducing gpt-4.1, 2025b. URL https://openai.com/index/gpt-4-1/.

OpenAI. Introducing gpt-5, 2025c. URL https://openai.com/gpt-5/.

OpenAI. Introducing openai o3 and o4-mini, 2025d. URL https://openai.com/index/
introducing-o3-and-o4-mini/.

Liana Patel, Negar Arabzadeh, Harshit Gupta, Ankita Sundar, Ion Stoica, Matei Zaharia, and Carlos
Guestrin. Deepscholar-bench: A live benchmark and automated evaluation for generative research syn-
thesis. arXiv preprint arXiv:2508.20033, 2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Jie Ruan, Inderjeet Nair, Shuyang Cao, Amy Liu, Sheza Munir, Micah Pollens-Dempsey, Tiffany Chiang,
Lucy Kates, Nicholas David, Sihan Chen, Ruxin Yang, Yuqian Yang, Jasmine Gump, Tessa Bialek, Vivek
Sankaran, Margo Schlanger, and Lu Wang. Expertlongbench: Benchmarking language models on expert-
level long-form generation tasks with structured checklists. arXiv preprint arXiv:2506.01241, 2025.

Guijin Son, Jiwoo Hong, Honglu Fan, Heejeong Nam, Hyunwoo Ko, Seungwon Lim, Jinyeop Song, Jinha
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A APPENDIX

A.1 AI USE DISCLOSURE

LLMs were used as writing assistants, both to rephrase human-written text and generate initial drafts that
were refactored by people.

A.2 EXTENDED RELATED WORK

The rapid emergence of deep research agents has been accompanied by several efforts to characterize and
evaluate their capabilities. Recent surveys and roadmap papers highlight the promise and challenges of
autonomous LLM-based research assistants. For example, Huang et al. (2025) provide a systematic exami-
nation of Deep Research agents, analyzing their tool integration and planning strategies, while Xu & Peng
(2025) offer a comprehensive survey of deep research systems and applications. These works underscore
the need for robust evaluation frameworks aligned with the complex, open-ended nature of research tasks.

Early benchmarks for deep research agents have largely taken one of two approaches: constructing tasks
from static corpora or relying on expert-curated questions. In the first category, benchmarks like Aca-
demicBrowse (Zhou et al., 2025) and BrowseComp (Wei et al., 2025) assess an agent’s ability to navigate
and retrieve information from academic papers or the web. AcademicBrowse focuses on literature-based
queries (e.g., browsing academic papers for answers), and BrowseComp comprises over 1,200 web ques-
tions that demand multi-hop searching across sites. While these benchmarks test long-horizon retrieval and
factual accuracy, their questions tend to have a predetermined scope or “ground truth” answers, which sim-
plifies evaluation to matching reference facts. This limits their ability to capture the open-ended synthesis
and exploratory aspect of real research inquiries. Another example is ResearchBench (Liu et al., 2025),
which builds complex search questions from static data; however, static benchmarks risk data leakage (i.e.,
answers appearing in training data) and cannot adapt to newly emerging information.

The second category of benchmarks uses expert-authored tasks to evaluate research reasoning. Human-
ity’s Last Exam (HLE) (Phan et al., 2025) is an expansive evaluation of 2,500 expert-written questions
covering advanced domains ranging from mathematics to medicine. HLE revealed significant gaps in state-
of-the-art models’ knowledge, but it primarily consists of challenging short-answer questions, rather than
multi-document analytical tasks. Closer to our setting, DeepResearch Bench (Du et al., 2025) introduced
100 PhD-level research problems across 22 fields (e.g., scientific analysis, legal reasoning), each requir-
ing a long-form report. Their evaluation combines reference-based metrics and adaptive criteria, including
measuring the number and accuracy of citations. This benchmark confirmed the difficulty of deep research
tasks, where no model exceeded roughly 30% on their overall metrics, yet its scoring approach leans heav-
ily on overlap with reference solutions and simple citation counts. Similarly, ExpertLongBench (Ruan
et al., 2025) targets expert-level, long-form tasks in 9 domains (law, finance, healthcare, etc.), providing
11 complex prompts each accompanied by a domain-specific checklist or rubric. ExpertLongBench intro-
duced the CLEAR evaluation framework, which extracts a structured checklist from both the model’s output
and a gold reference, then compares them for alignment. This method enables fine-grained assessment of
content requirements, but it depends on high-quality reference outputs for each task. In contrast, our work
uses expert-written criteria without assuming an ideal reference answer, and evaluates responses directly via
LLM-as-a-judge – avoiding potential biases from any single ground-truth essay.

More recent benchmarks have moved toward dynamic, real-world research scenarios. DeepScholar-
Bench (Patel et al., 2025) focuses on generative research synthesis: it draws live queries from recent arXiv
papers and evaluates systems on writing a related work section by retrieving and summarizing up-to-date
literature. Its evaluation emphasizes three axes (knowledge synthesis, retrieval quality, and verifiability),
rewarding comprehensive coverage of relevant work and correct citation of sources. However, DeepScholar-
Bench is specialized to academic writing tasks, and uses automated metrics (including LLM-generated
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scores) which may introduce evaluation circularity. ReportBench (Li et al., 2025) takes another auto-
mated approach by leveraging existing survey articles as ground truth for evaluation. It generates academic
survey-style prompts and measures the overlap between the AI agent’s citations and statements and those in
a published survey on the same topic. This provides a concrete correctness signal (since an expert-written
literature review is treated as the gold standard), but inherently prioritizes replication of the reference content
over creative or divergent but valid answers. Meanwhile, DeepResearch Arena (Wan et al., 2025) addresses
the authenticity of research prompts: it automatically curates over 10,000 open-ended tasks from transcripts
of academic seminars across 12 disciplines. By capturing questions that arise organically in expert dis-
cussions, DeepResearch Arena aims to evaluate agents on more ill-defined, exploratory problems. Their
evaluation combines factual grounding checks with adaptively generated rubrics (checklists) to handle the
breadth of tasks. One limitation, however, is that fully automatic rubric generation can miss domain nuances
or implicitly favor certain solution paths.

In parallel to benchmarking efforts, researchers have begun exploring AI “co-scientist” systems that au-
tonomously propose hypotheses or experimental plans beyond just information retrieval. Notably, Gottweis
et al. (2025) present an AI Co-Scientist built on a multi-agent Gemini 2.0 system, which iteratively gen-
erates and refines scientific hypotheses (demonstrated in drug discovery and biology domains). The advent
of such systems raises the stakes for evaluation: beyond finding correct facts, we must assess whether an
AI’s reasoning and conclusions hold up to expert scrutiny. Initial work in this vein includes benchmarks
like SPOT (Son et al., 2025), which checks AI-generated scientific papers for logical errors or inconsisten-
cies. Overall, as deep research agents expand from answering questions to performing nuanced scientific
investigations, the need for fine-grained, human-aligned evaluation becomes ever more critical.

Our work builds directly on these prior insights. In contrast to previous benchmarks that either rely on
static answer keys or on coarse-grained metrics, RESEARCHRUBRICS offers a new middle ground: a broad
collection of realistic research queries (spanning academic and everyday domains) paired with expertly
crafted rubrics that detail the requirements of a good answer. This approach enables evaluation of multi-
ple dimensions – factual grounding, cross-source synthesis, reasoning validity, clarity, and citation usage –
within a single unified framework. By using human-written rubrics and having LLM judges apply them,
we avoid reward hacking based on simplistic overlap measures, while still achieving scalable scoring. RE-
SEARCHRUBRICS is complementary to contemporaneous efforts like ExpertLongBench and DeepResearch
Arena: those benchmarks target either highly specialized expert tasks or massive automatically generated
task suites, whereas we prioritize diversity of domains and manually quality-checked criteria. Together,
these efforts push toward a more rigorous and comprehensive assessment of deep research capabilities.

A.3 EXTENDED DATA COLLECTION AND TASK DOMAINS

We curated prompts from eight broad categories (Fig. 1a) to maximize diversity. These include:

• General Consumer Research: Complex decision-making or personal advice queries, e.g., finding an
apartment given constraints, product comparisons, travel or event planning, personal finance, and legal
advice;

• STEM: Scientific and technical questions requiring synthesis from academic papers or textbooks;

• Technical Documentation: Explaining code, APIs, or engineering concepts using official docs or
manuals;

• Creative Writing: Long-form creative tasks incorporating researched facts or themes;

• Hypotheticals and Philosophy: Open-ended thought experiments, predictions, or ethical dilemmas
requiring multi-perspective analysis;

• Current Events: Queries on recent or ongoing news topics that require up-to-date information;
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is socail media good or bad for us? just tell me 
if its more benificial or detrimentle to 
everyone. use some examples.

Initial Prompt

Expert 1

1) Did it talk about di�erent stu� like 
politics? +1

2) Did it mention government rules 
for the internet? +3

3) It just says things are bad for 
people's feelings without any proof. -5

Initial Rubrics

Expert 1 and Expert 2 iterate until Expert 2 accepts the prompt and rubrics 
from the Expert 1

Discuss the societal impact of social media. Look 
at some of the pros and cons it has in di�erent 
areas, like mental health and politics. Based on 
this, has its e�ect been mostly positive or mostly 
negative?

1) The response identifies a few key 
areas where social media has an 
impact.

+5

2) The response brings up at least one 
law or government action concerning 
social media.

+3

3) The response brings up at least one 
law or government action concerning 
social media.

-4

Expert 2
Revised Prompt

Revised Rubrics

Conduct an analysis to determine whether social 
media's overall impact on society has been more 
beneficial or detrimental.

Argument should be structured by examining 
social media's impact across key domains of 
society. For each domain you must evaluate both 
positive and negative e�ects, using …

3) The response contains blanket 
statements especially regarding mental 
health impacts (e.g., body dysmorphia, 
increased anxiety, emotional distress 
triggers, disruption of sleep patterns) 
without citations.

1) The response identifies at least 5 
societal domains (e.g., mental health, 
relationships, politics/civic 
engagement, the information 
ecosystem, the economy).

+5

2) Response highlights policy or 
regulatory responses to social media's 
e�ects in at least one domain (e.g., 
Section 230 of the CDA, COPPA, the 
SAFE act, New York's Child Data 
Protection Act).

+3

-4

Expert 3

Final Prompt

Final Rubrics

Reviewer 2 makes final adjustments

Figure 3: The three-stage pipeline for creating and refining prompts and rubrics. An initial draft by Expert 1
is iteratively improved with Expert 2 before a final review and adjustment by Expert 3.

• Business Planning and Research: Tasks related to business strategy, corporate finance, law, procure-
ment, marketing, etc.;

• Other: A small number of prompts fell outside the groups defined above.

For more details, see Table 8 in Section A.8.

A.4 EXTENDED PROMPT COMPLEXITY DIMENSIONS

Including examples

A.5 EXTENDED RUBRIC DESIGN AND EVALUATION SCHEME

A.6 EXTENDED EXPERIMENTAL SETUP

Evaluated Agents & Models. We focus primarily on three commercial, closed-source state-of-the-art Deep
Research Agents: OpenAI Deep Research OpenAI (2025a), Gemini Deep Research Google (2025), and
Perplexity Deep Research AI (2025) for which we also curate gold standard, human-judged evaluations.
These systems represent the most widely deployed frontier-level agents for retrieval-augmented reasoning
and multi-step synthesis. Because their release cadence is not publicly documented, we fix the evaluation
window to July 2025. Passing each benchmark instance through the agent produced a structured report as
a PDF, which was then extracted as markdown and passed along as chunks to the LLM-as-a-judge frame-
work to evaluate along the 6 axes described in the section above. For a comparative baseline, we also tested
baseline LLMs with integrated search tools, using the Open Deep Search framework Alzubi et al. (2025),
though these outputs are excluded from the human agreement study due to their especially poor. Addition-
ally, we also investigate the tradeoffs in having binary vs. ternary criterion judgments, including 4 brief but
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Complexity
Axis

Level Description & Examples

Conceptual
Breadth

Simple Single-domain focus or very narrow topic. Example: A math word problem or a factual
lookup from one source.

Moderate Cross-domain with limited coupling. Example: A prompt combining two fields (physics
concept applied in a medical device context). Requires some integration but scope is
manageable.

High Spans disparate domains or many subtopics. Example: “Analyze the environmental,
economic, and political factors affecting renewable energy adoption in Asia.” Involves
scientific data, market trends, and policy analysis across multiple countries.

Logical
Nesting

Shallow Direct Q&A or one-step inference. Example: “What is the capital of X country?” or a
single tool query.

Intermediate Multi-step reasoning with a few (2–3) dependencies or conditionals. Example: “Find
the sales of Company A and Company B last year and determine who grew faster; then
identify one reason for that difference.”

Deep Complex, recursive reasoning or planning. Example: “Develop an evidence-backed
investment strategy given current economic indicators, then stress-test it against at least
two historical scenarios and suggest contingency plans.” Requires orchestrating many
pieces of information and analysis.

Exploration
Low Well-specified query, deterministic interpretation. Example: “Summarize the method-

ology of the referenced paper.” The task is clear-cut.
Medium Some ambiguity or breadth, but manageable. Example: “Discuss the benefits and risks

of AI in healthcare.” Open-ended but with known key points to cover (privacy, accuracy,
etc.).

High Very open-ended or vague prompt needing refinement. Example: “I want to change
careers to something with strong future growth—what should I consider?” The agent
must clarify criteria, explore multiple fields, and cannot rely on a fixed answer.

Table 6: Prompt complexity categories used to annotate each task in RESEARCHRUBRICS.

Score Range Description

[+4,+5] Critically important – A criterion without which the response is fundamentally flawed or incorrect.
Required for a minimally viable response.

[−5,−4] Critically detrimental – A criterion identifying an error so severe that it makes the response actively
harmful, deeply unethical, or completely invalidates its reasoning.

[+2 + 3] Important – A key feature of a strong response, but not absolutely essential.
+1 Slightly Important – A “nice-to-have” detail that improves a good response but does not signifi-

cantly change overall quality.
−1 Slightly Detrimental – A minor issue, tangent, or stylistic weakness that does not impact core

reasoning or validity.
[−3,−2] Detrimental – A significant error that detracts from the response quality, introduces faulty logic, or

offers poor advice, but does not make it fundamentally harmful.

Table 7: Rubric scoring scale with mandatory and optional criteria.

representative examples per rubric criterion, and LLM-augmentation applied to the rubrics. Full results and
per-category breakdowns are presented in Table 3, Table 4, and Table 5.

Implementation Details. For evaluation, we investigate the effectiveness of four LLMs-as-judges: o3 (Ope-
nAI, 2025d), GPT-5 (OpenAI, 2025c), GPT-4.1 (OpenAI, 2025b), and Claude-Opus-4.1 (Anthropic, 2025).
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Agent responses were collected as PDFs and uploaded directly to the evaluator API calls as files, without
normalization or reformatting. Maximum output length was capped at 10000 tokens to ensure comparabil-
ity across models. Report-level assessments were generated by weighted averages of the scores given by
the LLM-as-a-judge model scaled by the weighted of each rubric criterion. Alignment with human anno-
tations was measured using Macro F1 under both ternary {Satisfied, Partially Satisfied,
Not Satisfied} and binary {Satisfied, Not Satisfied} regimes.

A.7 ABLATION STUDIES

• The impact of a reduced model output space, going from ternary ({Satisfied, Partially
Satisfied, Not Satisfied}) to binary ({Satisfied, Not Satisfied}) verdicts by
turning the Partially Satisfied verdicts to Not Satisfied

• The impact of the level of details in the rubrics by removing any representative examples in the
rubrics that may provide additional levels of clarity to the model-based grader

• The impact of using LLMs to augment the expert-written rubrics

A.7.1 PROMPTS USED

Example Removal

You are tasked with removing examples from rubric text while keeping everything else
EXACTLY the same.

Your job is to:
1. Identify portions of text that contain examples, typically in the form ”(e.g. example1,
example2, etc.)” or similar
2. Remove ONLY these example portions
3. Keep all other text, formatting, punctuation, and structure EXACTLY as it was
4. Do not rephrase, reword, or change anything else
5. Do not add any new content
6. Simply return the text with the example portions removed

Examples of what to remove:
- ”(e.g., a diagnosis code block, a free-text note snippet without PHI, tabular data
contexting text and numerical data)”
- ”(eg. programmatic text extractions or more rigorous NLP and machine learning
techniques)”
- ”(e.g. (1) National Library of Medicine, (2) CDC Wonder, (3) publications from
well-known universities)”

Be very careful to maintain the exact same structure and wording for everything else.

Figure 4: Example removal prompt used in the experiments.

LLM Augmentation

A.8 DISTRIBUTION

A.9 RUBRICS CRITERIA OVERVIEW
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You are an expert at improving evaluation rubrics to make them more detailed and
concrete while keeping them concise.

CRITICAL FORMATTING REQUIREMENTS:
- Return exactly ONE cohesive sentence (NO newlines, NO line breaks)
- The rubric should be ONE SINGLE SENTENCE but can contain multiple phrases,
subparts, clauses, and run-on components
- Do NOT create multiline, paragraph-style, or bullet-point rubrics

IMPORTANT: You will receive exactly ONE rubric to improve, and you must return
exactly ONE enhanced version of that same rubric. Do not create multiple rubrics or
variations.

Your job is to:
1. Keep ALL original information from the rubric EXACTLY as it was - do not delete
or remove any core information or intent
2. Make the rubric more detailed and concrete by adding specific examples inline (e.g.,
specific patterns, formats, indicators)
3. Clarify vague terms with more precise descriptions within the same sentence flow
4. Add concrete criteria and benchmarks inline where applicable
5. Make the rubric as actionable and unambiguous as possible while staying concise

Focus on adding inline:
- Concrete examples in parentheses (e.g., specific technical details, data formats)
- Specific indicators to look for
- Clear boundary conditions
- Representative examples of what qualifies

Do not:
- Remove any original content
- Change the fundamental meaning or intent
- Add entirely new rubric categories
- Create multiple versions or variations
- Generate more than one rubric output
- Break the rubric into multiple sentences

Return only the single improved rubric as one cohesive sentence.

Figure 5: Example removal prompt used in the experiments.
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Category (Approx %) Description of Prompts

STEM (22.1%) Science, technology, engineering, and math queries that require synthesizing
information from textbooks, research papers, or technical reports (e.g., explain-
ing a physics concept and related formula, summarizing the latest research on
mRNA cancer vaccines and biotech startups.

General Consumer Research
(11.7%)

Everyday research with complex constraints (e.g., finding an apartment under
budget, multi-factor product comparisons, travel itineraries, personal finance or
legal advice, health-related questions requiring reputable sources).

Technical Documentation
(11.7%)

Prompts involving explanation of complex technical concepts, code, or APIs
using official documentation or repositories (e.g., troubleshooting a program-
ming error with library docs, comparing software architecture patterns).

Hypotheticals & Philosophy
(13.0%)

Open-ended prompts asking for speculation, hypotheticals, or philosophical
analysis, often requiring synthesis of diverse viewpoints (e.g., “How might so-
ciety change if X. . . ?”, ethical dilemmas, future predictions in technology).

Historical Analysis (10.4%) Questions about historical events, figures, or periods that require pulling from
archives, historical texts, and scholarly interpretations (e.g., analyzing causes
of a historical conflict with primary source references).

Business Planning & Research
(11.7%)

Prompts related to business or entrepreneurship (e.g., developing a go-to-
market strategy, analyzing a company’s financial health, legal considerations
for a startup, HR or marketing plan), often requiring use of industry reports or
case studies.

Creative Writing (7.8%) Long-form creative tasks that incorporate factual elements or research (e.g.,
writing a historical fiction scene with accurate period details, or a sci-fi story
grounded in real science).

Current Events (5.2%) Prompts focused on recent or ongoing events, necessitating retrieval of up-to-
date news or data (e.g., analysis of a recent policy change, comparison of cur-
rent market trends).

Other (6.5%) Miscellaneous prompts that do not neatly fit in the above categories, including
cross-domain questions or niche topics.

Table 8: Distribution of prompt categories in RESEARCHRUBRICS.
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Criterion Definition
All Rubric Crite-
ria

Explicit Criteria Whether all of the points that were explicitly asked for in
the prompt were addressed correctly

Implicit Criteria Context awareness of information that is relevant context
for an answer to the prompt, but is not explicitly asked
for in the prompt

Synthesis of In-
formation

Criteria that evaluate the model’s ability to reason and
draw new insights/conclusions across different sources
(not just facts relevant to a single source)

References About any core / concrete citations/references that must
be included for the answer to be complete

Communication
Quality

Whether the response is well-structured and concise, and
whether it uses a level of technical depth and vocabulary
that is well-matched to the user.

Instruction Fol-
lowing

Many tasks involve specific user instructions, and criteria
in this category check whether the model adheres to in-
structions.

Table 9: Overview of rubric criteria.
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