
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

u-µP: The Unit-Scaled Maximal Update Parametrization

Charlie Blake, Josef Dean, Luke Y. Prince, Carlo Luschi, Douglas Orr
Graphcore CHARLIEB@GRAPHCORE.AI

Constantin Eichenberg, Lukas Balles, Björn Deiseroth, Samuel Weinbach
Aleph Alpha CONSTANTIN.EICHENBERG@ALEPH-ALPHA-IP.AI

Andres Felipe Cruz-Salinas
Cohere (work done while at Aleph Alpha)

Abstract
The Maximal Update Parametrization (µP) aims to make the optimal hyperparameters (HPs) of

a model independent of its size, allowing them to be swept using a cheap proxy model rather than the
full-size target model. We present a new scheme, u-µP, which improves upon µP by combining it with
Unit Scaling, a method for designing models that makes them easy to train in low-precision. The two
techniques have a natural affinity: µP ensures that the scale of activations is independent of model
size, and Unit Scaling ensures that activations, weights and gradients begin training with a scale of
one. This synthesis opens the door to a simpler scheme, whose default values are near-optimal. This
in turn facilitates a more efficient sweeping strategy, with u-µP models reaching a lower loss than
comparable µP models and working out-of-the-box in FP8.

1. Introduction

The algorithmic challenges of training large language models (LLMs) can be framed in terms of
stability. We consider this in three forms: feature learning stability, which ensures that parts of the
model do not learn too fast or slow relative to each other, hyperparameter stability, which ensures
that the optimal HPs for small models remain unchanged as the model size grows, and numerical
stability, which ensures that floating-point representations during training stay within the range of a
given number format.

The Maximal Update Parametrization (µP) [31, 34] targets the first two sources of instability. µP
defines a set of scaling rules that in principle make a model’s optimal HP values consistent across
model sizes and ensure ‘maximal feature learning’ in the infinite-width limit. The practical benefits
of this are that models continue to improve as they get larger, and that practitioners can re-use a set
of HP values (especially the learning rate) found for a small proxy version of their model, on a larger
target model.

However, in practice µP does not necessarily provide the kind of simple, stable scaling which a
user might expect. To address this, we propose the Unit-Scaled Maximal Update Parametrization
(u-µP). u-µP combines µP with another closely-related training innovation, Unit Scaling [2]. µP
ideally provides consistent training dynamics across model sizes, but says little about what those
dynamics should be. Unit Scaling addresses this by proposing an ideal principle for dynamics: unit
variance for all activations, weights and gradients. Unit Scaling was initially designed to ensure
stable numerics, but in the context of µP the principle of unit-scale brings many additional benefits.

© C. Blake, J. Dean, L.Y. Prince, C. Luschi, D. Orr, C. Eichenberg, L. Balles, B. Deiseroth, S. Weinbach & A.F. Cruz-Salinas.

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

These include a more efficient approach to HP search, improved HP transfer, and the facilitation
of a simpler HP scheme, all of which we demonstrate here, alongside the ability to perform out-of-
the-box FP8 training.

2. Background

2.1. The Maximal Update Parametrization

Tensor Programs V [34] defines a parametrization as ‘a rule for how to change [HPs] when the widths
of a neural network change’. They show that µP is the only parametrization that gives ‘maximal
feature learning’ in the limit, whereas standard parametrization (SP) has imbalanced learning.

µP can be defined in terms of the abc-parametrization. This describes a model in terms of three
scaling factors per-weight-tensor: AW , BW , CW , where Wt = AW · wt, w0 ∼ N (0, B2

W), wt+1 =
wt + CW · Φt (Φt is the weight update at time t). Each factor is a function of the model-width. The
particular scaling factors used for µP are given in Table 4 (see Appendix D.1). A key property of
these parametrizations is that they are subject to abc-symmetry, which states that a model’s dynamics
(under Adam) are invariant to changes of the form AW ×= θ,BW ÷= θ, CW ÷= θ for a fixed θ.

A consequence of improved stability is that learning dynamics under µP are ideally independent
of model-size, as are optimal HPs. This facilitates µTransfer, the process of training smaller proxy
models to evaluate candidate HPs, taking the best-performing ones to train a larger target model.

2.2. Unit Scaling

Unit Scaling [2] is a method for designing models that can be trained in low-precision via a simple cast
operation. Unit scaled models insert static scaling factors after each op in both forward and backward
passes, such that each weight, activation and gradient tensor has unit variance at initialization.

This is a useful criterion as it places values around the center of floating-point formats’ absolute
range. This applies to all tensors, meaning every operation in the network requires a scaling factor
that ensures unit-scaled outputs, assuming unit-scaled inputs. We provide an example of deriving the
Unit Scaling rule for a matmul op in Appendix D.3, resulting in the scaling factor: 1/

√
dfan-in. We

accompany this example with a full recipe for applying Unit Scaling to an arbitrary model.

Table 1: Scaling rules for µP versus u-µP, including associated HPs (assuming the extended set in
Table 6). These rules constitute the definition of u-µP, along with the unit-scaled ops in Appendix B.

ABC-multiplier
Weight Type

ResidualInput Hidden Output

parameter (AW) αemb 1 (or αattn) αout
base-fan-in

fan-in

√
base-depth

depth

µP initialization (BW) σinit σinit

√
base-fan-in

fan-in σinit —

Adam LR (CW) η η̂emb η base-fan-in
fan-in η

√
base-depth

depth

parameter* (AW) 1 1√
fan-in

1
fan-in

1√
depth

u-µP initialization (BW) 1 1 1 —

Adam LR (CW) η 1√
fan-out

η 1√
fan-in

η 1√
depth

*u-µP’s α HPs are associated with operations, not weights, so are not included here (see Appendix E.1).

2

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

In contrast, other low-precision methods require dynamic calculation of scaling factors during
training, adding complexity (see Appendix D.2). As unit-scaled models begin with all tensors having
an ‘ideal’ starting scale, over time this appears to be sufficient to keep them within numerical range,
despite the scale-changes resulting from training.

3. The Unit-Scaled Maximal Update Parametrization

Whereas Unit Scaling provides rules for scaling all operations, µP only does so for parametrized
ones. It’s these operations we need to address to arrive at a unified scheme, resolving differences in
the scaling rules each recommends. We begin with the expressions for the AW , BW , CW scaling
factors in Equation (11), and substitute in the µP rules defined in Table 4. This results in a complete
implementation of µP, shown in the top half of Table 1. We set out to turn this into a valid Unit Scaling
scheme, which requires unit initializations BW = 1, and matmuls scaled by AW = 1/

√
fan-in.

Our first step is to drop the σW and base-fan-in HPs entirely, and associate the αW HPs with
certain functions instead of weights (as outlined in Appendix B). This new HP scheme is designed
to satisfy four criteria: minimal cardinality, maximal expressivity, minimal interdependency and
interpretability.

With these changes applied, hidden weights now have: AW , BW , CW = (1, 1/
√
fan-in, η/fan-in)

which differs from our Unit Scaling criteria. However, using the abc-symmetry we can shift scales
by a factor of

√
fan-in, arriving at a unit-scaled scheme: (1/

√
fan-in, 1, η/

√
fan-in).

Our output layer also has unit initialization, but AW = 1/fan-in. This differs from the Unit
Scaling rule, but in the forward pass this is permissible as there are no subsequent matmuls of
a transformer. In the backward pass this mis-scaling would propagate, so we apply the desired
1/
√
fan-in factor. Using different forward and backward scales in this way is usually not allowed,

but is valid for output layers due to the cut-edge rule (see [2], Section 5.1).
The final change we make is to the input LR scaling rule. In Figure 1 we show empirically that

µP’s cW = 1 rule is mis-specified for embeddings, with the optimal value scaling with 1/
√
fan-out

24 26 28

Cemb

2.8

3.0

3.2

3.4

3.6

V
al

id
at

io
n

L
os

s

2−12 2−10 2−8 2−6 2−4

Learning Rate

Proxy
Optimum

Proposed
Transfer Rule

cemb ← 1/
√

fan-out

µP
Transfer

Rule
cemb ← 1

Improved
Optimum
Transfer

Recall: wt+1 = wt + Cemb · Φt(∇L0, ...,∇Lt), Cemb ← ηemb
cemb

cembbase

Width

128 (Base Width)

256

512

1024

2048

4096

Embedding LR rule

cemb ← 1

cemb ← 1/
√

fan-out

models shared across plots

Figure 1: (Left) holding the embedding LR multiplier (Cemb) constant, vs. scaling with
√

1/width,
both with a fixed global LR. This suggests the µP embedding LR rule (cemb) should follow the latter
scaling. (Right) we test this by sweeping the global LR under the two scaling rules. The new rule
leads to lower loss on large models. (Dot/cross markers represent the same runs across both graphs).

3

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

instead, which we adopt for u-µP. With these changes made, we arrive at our final u-µP scheme,
given in Table 1. It’s important to note that the scaling rules in this table must be combined with the
standard Unit Scaling rules for other non-matmul operations (covered in Appendix B).

4. Experiments

Our experiments use the Llama [24] architecture trained on WikiText-103 [15] (full settings are given
in Table 2). In accordance with our analysis of requirements for effective µTransfer in Appendix C,
we remove parameters from norm layers and use independent AdamW.

4.1. Hyperparameter search

Our new HP scheme, designed for improved separability, enables HPs to be swept more efficiently.
This is shown in Figure 4 (a). Random search is the standard approach in the literature, which
we compare to our proposed independent search (outlined in Appendix A.3) which sweeps HPs
independently and combines them.

Independent search begins with a simple LR sweep. This alone is sufficient for u-µP to reach
near-optimal loss (using only 9 runs). During this phase other HPs are fixed at 1, which for u-µP
means that the inputs to operations are generally unit-scaled. Consequently, we conclude that unit
scale at initialization is close to ideal scaling for effective learning here. In contrast µP still requires
non-LR HPs to be swept to attain a reasonable loss. The ‘combined mults’ phase causes the loss to
spike for µP. This is due to the HP dependencies shown in Figure 5, which mean HPs cannot be swept
independently and used together, necessitating random search which can require hundreds of runs.

4.2. Hyperparameter transfer

We demonstrate that our scheme provides HP transfer, with Figure 4(b) showing LR transfer across
width, Figure 2 showing it across training steps, batch size and depth, and Figure 8 for other HPs. We
find that the optimal LR is constant for all widths under u-µP. The optimal LR is also approximately
constant for steps, batch size and depth. This means we can scale our proxy model down across all
axes and maintain LR transfer. Of these, width appears most stable and depth least.

Whereas µP sees diminishing returns for larger widths in Figure 4(b), u-µP continues to benefit
from width, with the 2048 u-µP model matching the 4096 µP model. We attribute this to our improved
embedding LR rule. The optimal values found for non-LR HPs are all close to 1. In practice this
means that dropping these HPs entirely is potentially viable for similar models and training setups.

4.3. Numerical properties

Figure 3 shows the RMS over all linear modules, with more detailed analysis in Figures 9 and 10.
RMS captures the larger of the mean and scale of a distribution, and as such can be a good test
of whether a tensor is likely to suffer over/underflow in low-precision number formats. Detailed
analysis of these statistics is given in Appendix A.5, with our results supporting the central thesis of
Unit Scaling: that tensors are well-scaled at initialization and largely remain so across training.

Based on this we propose our FP8 scheme: we cast the input, weight and grad-output tensors for
each matmul to FP8 E4M3, except the inputs to FFN and self-attention final projections, which are
cast to FP8 E5M2 to accommodate their growing scale. This simply requires FP8 casts to be inserted
into the model, avoiding more complex scaling methods that have been proposed for FP8.

4

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

4.4. FP8 training

We now show that u-µP can indeed be trained in our FP8 scheme. Figure 4 (c) demonstrates the
application of our FP8 scheme to training at width 4096. We use the HPs suggested by the sweep
in Figure 4 (a), but transferred to the larger model-width. µP fails entirely under our FP8 scheme
due to gradient underflow, indicating the need for a more complex scaling scheme under regular µP,
whereas using just this simple cast u-µP trains in FP8 with only a small increase in validation loss.

5. Related Work

Techniques introduced to facilitate FP8 training include those covered in Appendix D.2 and more
[14, 21, 25]. These largely concern the quantizing of activations, weights and gradients, though [20]
also explore FP8 optimizer states and comms. [27] show that unstable training dynamics can result
from attention logit growth (fixed by QK-norm [4]) and from divergent output logits (fixed by z-loss
[3]). [1] investigate how pre-training settings affect instabilities during post-training quantization.

6. Conclusions

We present an improved version of µP, underpinned by the principle of Unit Scaling. This provides
the simple low-precision training that comes with unit-scale, but also provides a platform for solving
other problems with µP. These include more efficient HP search under u-µP, which can even drop
non-LR HPs and still reach near-optimal loss. Our improved embedding LR scaling facilitates better
performance at large widths, and we see strong HP transfer across width, depth, batch size and steps.
Overall, u-µP simplifies and strengthens the practical application of µP, and provides further evidence
that the principle of Unit Scaling is beneficial for model design.

2−2 20 22 24

Learning Rate

3.0

3.2

3.4

3.6

3.8

V
al

id
at

io
n

L
os

s

Training Steps

4096

8192

16384

32768

2−2 20 22 24

Learning Rate

u-µP

Batch Size

32

64

128

256

2−2 20 22 24

Learning Rate

Depth

1

2

4

8

16

Figure 2: LR transfer for u-µP over training steps, batch size and depth. The default shape parameter
for other panels is shown in bold. The shaded area shows the 95% confidence interval for the mean.

5

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Figure 3: Per-tensor RMS =
√

σ2 + µ2 across u-µP and µP models at initialization (left) and after
training (right). u-µP tensors have RMS that starts close to 1 and remains within E4M3 range at the
end of training. Dashed and solid red lines show each format’s min. normal and subnormal values.

100 101 102 103

Run Count

3.2

3.3

3.4

3.5

3.6

B
es

t
V

al
id

at
io

n
L

os
s

u-µP256

µP256

(a) More Efficient HP Sweeps

HP Sweep Strategy
u-µP

µP

Random Search

Independent Search

↪→ LR

↪→ Mults

↪→ Combined Mults

2−11 | 2−2 2−9 | 20 2−7 | 22 2−5 | 24

µP | u-µP Learning Rate

2.8

3.0

3.2

3.4

3.6

u-µP256

u-µP4096

µP256

(b) Better HP Transfer

Widths
128

256

512

1024

2048

4096

0 2500 5000 7500

Training Step

2

4

6

8

10

(c) Simple FP8 Training

u-µP4096

µP4096

Precision
FP32 FP8

µP4096

Figure 4: (a) Two different HP sweeping processes used for µP and u-µP proxy models. Unlike µP,
u-µP admits independent (1D) search due to careful HP design. The first part of independent search is
an LR sweep, which alone reaches near-optimal loss for u-µP. (b) Using the best proxy HPs from (a),
we train many models at different widths and LRs. The best LR for width 256 is ~optimal for 4096,
showing LR transfer along with lower loss. (c) We re-train with a simple un-scaled .to(float8)
cast on matmul inputs. This would fail for other models, but u-µP trains with minimal degradation.

6

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

References

[1] Arash Ahmadian, Saurabh Dash, Hongyu Chen, Bharat Venkitesh, Stephen Zhen Gou, Phil
Blunsom, Ahmet Üstün, and Sara Hooker. Intriguing properties of quantization at scale. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine,
editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6c0ff499edc529c7d8c9f05c7c0ccb82-Abstract-Conference.html.

[2] Charlie Blake, Douglas Orr, and Carlo Luschi. Unit scaling: Out-of-the-box low-precision
training. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 2548–2576. PMLR, 2023. URL https://proceedings.mlr.
press/v202/blake23a.html.

[3] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju
Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan,
Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie
Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason
Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm:
Scaling language modeling with pathways. J. Mach. Learn. Res., 24:240:1–240:113, 2023.
URL http://jmlr.org/papers/v24/22-1144.html.

[4] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin,
Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Car-
los Riquelme Ruiz, Matthias Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van
Steenkiste, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine
Huot, Jasmijn Bastings, Mark Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader
Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran,
Thomas Kipf, Mario Lucic, Xiaohua Zhai, Daniel Keysers, Jeremiah J. Harmsen, and Neil
Houlsby. Scaling vision transformers to 22 billion parameters. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, In-
ternational Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pages 7480–7512. PMLR,
2023. URL https://proceedings.mlr.press/v202/dehghani23a.html.

7

http://papers.nips.cc/paper_files/paper/2023/hash/6c0ff499edc529c7d8c9f05c7c0ccb82-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6c0ff499edc529c7d8c9f05c7c0ccb82-Abstract-Conference.html
https://proceedings.mlr.press/v202/blake23a.html
https://proceedings.mlr.press/v202/blake23a.html
http://jmlr.org/papers/v24/22-1144.html
https://proceedings.mlr.press/v202/dehghani23a.html

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

[5] Nolan Dey, Gurpreet Gosal, Zhiming Chen, Hemant Khachane, William Marshall, Ribhu
Pathria, Marvin Tom, and Joel Hestness. Cerebras-GPT: Open compute-optimal language
models trained on the cerebras wafer-scale cluster. CoRR, abs/2304.03208, 2023. doi: 10.48550/
ARXIV.2304.03208. URL https://doi.org/10.48550/arXiv.2304.03208.

[6] Nolan Dey, Shane Bergsma, and Joel Hestness. Sparse maximal update parameterization: A
holistic approach to sparse training dynamics. CoRR, abs/2405.15743, 2024. URL http:
//arxiv.org/abs/2405.15743.

[7] Hadi Esmaeilzadeh, Emily R. Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Ravi R. Iyer, Qing Yang, and Antonio
González, editors, 38th International Symposium on Computer Architecture (ISCA 2011), June
4-8, 2011, San Jose, CA, USA, pages 365–376. ACM, 2011. doi: 10.1145/2000064.2000108.
URL https://doi.org/10.1145/2000064.2000108.

[8] Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zhen Leng Thai, Kai Zhang, Chongyi
Wang, Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia,
Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. MiniCPM: Unveiling the potential
of small language models with scalable training strategies. CoRR, abs/2404.06395, 2024.
doi: 10.48550/ARXIV.2404.06395. URL https://doi.org/10.48550/arXiv.2404.
06395.

[9] IEEE Computer Society. IEEE standard for floating-point arithmetic. pages 1–84, July 2019.
doi: 10.1109/IEEESTD.2019.8766229.

[10] Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Conver-
gence and generalization in neural networks. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 8580–8589, 2018. URL https://proceedings.neurips.cc/paper/2018/
hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

[11] Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vitaly Lavrukhin, Carl Case, and Paulius
Micikevicius. OpenSeq2Seq: Extensible toolkit for distributed and mixed precision training of
sequence-to-sequence models. CoRR, abs/1805.10387, 2018. URL http://arxiv.org/
abs/1805.10387.

[12] Lucas D. Lingle. A large-scale exploration of µ-transfer. CoRR, abs/2404.05728, 2024.
doi: 10.48550/ARXIV.2404.05728. URL https://doi.org/10.48550/arXiv.2404.
05728.

[13] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

8

https://doi.org/10.48550/arXiv.2304.03208
http://arxiv.org/abs/2405.15743
http://arxiv.org/abs/2405.15743
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.48550/arXiv.2404.06395
https://doi.org/10.48550/arXiv.2404.06395
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
http://arxiv.org/abs/1805.10387
http://arxiv.org/abs/1805.10387
https://doi.org/10.48550/arXiv.2404.05728
https://doi.org/10.48550/arXiv.2404.05728
https://openreview.net/forum?id=Bkg6RiCqY7

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

[14] Naveen Mellempudi, Sudarshan Srinivasan, Dipankar Das, and Bharat Kaul. Mixed precision
training with 8-bit floating point. CoRR, abs/1905.12334, 2019. URL http://arxiv.org/
abs/1905.12334.

[15] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=Byj72udxe.

[16] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David
García, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao
Wu. Mixed precision training. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=r1gs9JgRZ.

[17] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard
Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellem-
pudi, Stuart F. Oberman, Mohammad Shoeybi, Michael Y. Siu, and Hao Wu. FP8 formats
for deep learning. CoRR, abs/2209.05433, 2022. doi: 10.48550/ARXIV.2209.05433. URL
https://doi.org/10.48550/arXiv.2209.05433.

[18] Badreddine Noune, Philip Jones, Daniel Justus, Dominic Masters, and Carlo Luschi. 8-bit
numerical formats for deep neural networks. CoRR, abs/2206.02915, 2022. doi: 10.48550/
ARXIV.2206.02915. URL https://doi.org/10.48550/arXiv.2206.02915.

[19] NVIDIA. Transformer Engine. https://github.com/NVIDIA/
TransformerEngine, 2024.

[20] Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong,
Ziyue Yang, Bolin Ni, Jingcheng Hu, Ruihang Li, Miaosen Zhang, Chen Li, Jia Ning, Ruizhe
Wang, Zheng Zhang, Shuguang Liu, Joe Chau, Han Hu, and Peng Cheng. FP8-LM: training
FP8 large language models. CoRR, abs/2310.18313, 2023. doi: 10.48550/ARXIV.2310.18313.
URL https://doi.org/10.48550/arXiv.2310.18313.

[21] Sergio P. Perez, Yan Zhang, James Briggs, Charlie Blake, Josh Levy-Kramer, Paul Balanca,
Carlo Luschi, Stephen Barlow, and Andrew Fitzgibbon. Training and inference of large
language models using 8-bit floating point. CoRR, abs/2309.17224, 2023. doi: 10.48550/
ARXIV.2309.17224. URL https://doi.org/10.48550/arXiv.2309.17224.

[22] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vi-
jayalakshmi Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hy-
brid 8-bit floating point (HFP8) training and inference for deep neural networks.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 4901–
4910, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
65fc9fb4897a89789352e211ca2d398f-Abstract.html.

9

http://arxiv.org/abs/1905.12334
http://arxiv.org/abs/1905.12334
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.48550/arXiv.2209.05433
https://doi.org/10.48550/arXiv.2206.02915
https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TransformerEngine
https://doi.org/10.48550/arXiv.2310.18313
https://doi.org/10.48550/arXiv.2309.17224
https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/65fc9fb4897a89789352e211ca2d398f-Abstract.html

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

[23] Thomas N. Theis and H.-S. Philip Wong. The end of Moore’s law: A new beginning for
information technology. Comput. Sci. Eng., 19(2):41–50, 2017. doi: 10.1109/MCSE.2017.29.
URL https://doi.org/10.1109/MCSE.2017.29.

[24] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023. doi: 10.48550/ARXIV.2302.13971. URL
https://doi.org/10.48550/arXiv.2302.13971.

[25] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan.
Training deep neural networks with 8-bit floating point numbers. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 7686–7695, 2018. URL https://proceedings.neurips.cc/paper/2018/
hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html.

[26] Xi Wang and Laurence Aitchison. How to set adamw’s weight decay as you scale model
and dataset size. CoRR, abs/2405.13698, 2024. doi: 10.48550/ARXIV.2405.13698. URL
https://doi.org/10.48550/arXiv.2405.13698.

[27] Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D.
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-
Dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies
for large-scale transformer training instabilities. CoRR, abs/2309.14322, 2023. doi: 10.48550/
ARXIV.2309.14322. URL https://doi.org/10.48550/arXiv.2309.14322.

[28] Greg Yang. Tensor programs I: Wide feedforward or recurrent neural networks of any archi-
tecture are Gaussian processes. CoRR, abs/1910.12478, 2019. URL http://arxiv.org/
abs/1910.12478.

[29] Greg Yang. Tensor programs II: Neural tangent kernel for any architecture. CoRR,
abs/2006.14548, 2020. URL https://arxiv.org/abs/2006.14548.

[30] Greg Yang. Tensor programs III: Neural matrix laws. CoRR, abs/2009.10685, 2020. URL
https://arxiv.org/abs/2009.10685.

[31] Greg Yang and Edward J. Hu. Tensor programs IV: Feature learning in infinite-width neural
networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, pages 11727–11737. PMLR, 2021. URL
http://proceedings.mlr.press/v139/yang21c.html.

[32] Greg Yang and Etai Littwin. Tensor programs IIb: Architectural universality of neural tangent
kernel training dynamics. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 11762–11772. PMLR, 2021.
URL http://proceedings.mlr.press/v139/yang21f.html.

10

https://doi.org/10.1109/MCSE.2017.29
https://doi.org/10.48550/arXiv.2302.13971
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/335d3d1cd7ef05ec77714a215134914c-Abstract.html
https://doi.org/10.48550/arXiv.2405.13698
https://doi.org/10.48550/arXiv.2309.14322
http://arxiv.org/abs/1910.12478
http://arxiv.org/abs/1910.12478
https://arxiv.org/abs/2006.14548
https://arxiv.org/abs/2009.10685
http://proceedings.mlr.press/v139/yang21c.html
http://proceedings.mlr.press/v139/yang21f.html

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

[33] Greg Yang and Etai Littwin. Tensor programs IVb: Adaptive optimization in the infinite-
width limit. CoRR, abs/2308.01814, 2023. doi: 10.48550/ARXIV.2308.01814. URL https:
//doi.org/10.48550/arXiv.2308.01814.

[34] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi,
Nick Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs V: Tuning
large neural networks via zero-shot hyperparameter transfer. CoRR, abs/2203.03466, 2022.
doi: 10.48550/ARXIV.2203.03466. URL https://doi.org/10.48550/arXiv.2203.
03466.

[35] Greg Yang, James B. Simon, and Jeremy Bernstein. A spectral condition for feature learning.
CoRR, abs/2310.17813, 2023. doi: 10.48550/ARXIV.2310.17813. URL https://doi.
org/10.48550/arXiv.2310.17813.

[36] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: Feature learning
in infinite-depth neural networks. CoRR, abs/2310.02244, 2023. doi: 10.48550/ARXIV.2310.
02244. URL https://doi.org/10.48550/arXiv.2310.02244.

11

https://doi.org/10.48550/arXiv.2308.01814
https://doi.org/10.48550/arXiv.2308.01814
https://doi.org/10.48550/arXiv.2203.03466
https://doi.org/10.48550/arXiv.2203.03466
https://doi.org/10.48550/arXiv.2310.17813
https://doi.org/10.48550/arXiv.2310.17813
https://doi.org/10.48550/arXiv.2310.02244

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Appendix A. Additional experimental details

A.1. Experimental Setup

Our experimental analysis of u-µP was conducted by adapting the codebase used for Tensor Programs
V, allowing us to compare µP and u-µP in the same setting. We change various experimental settings
from the µP paper to make our experiments better reflect standard training procedures, particularly
the dataset which we switch from WikiText-2 to the larger WikiText-103 [15]. Where not specified
otherwise, the default setting used in our experiments are given in Table 2. These also represent the
settings of our proxy model.

Dataset WikiText-103 [15]

Sequence length 256

Vocab size 32000

Training set tokens 138M

Architecture Llama [24] (Transformer, PreNorm, RMSNorm, SwiGLU, RoPE,
“untied” embeddings), non-trainable RMSNorm parameters.

Width 256 (scaled up to 4096)

Depth 4

Number of heads 4 (scaled up to 64)

Head dimension 64

Total parameters 19.5M (scaled up to 1.07B)

Batch size 64

Training steps 8192 (0.97 epochs)

LR schedule Cosine to 10%, 2000 steps warm-up

Optimizer AdamW (β1, β2, ϵ) = (0.9, 0.999, 10−8)

Weight decay 2−13, independent [13]

Dropout 0.0

µP HP search range η ∈ [2−10, 2−6]

η̂emb ∈ [20, 28]

σinit, αemb, αattn, αoutput ∈ [2−2, 22]

u-µP HP search range η ∈ [2−1, 23]

αattn ∈ [2−2, 22]

αresidual, αresidual-attn-ratio, αffn-act, αoutput ∈ [2−3, 23]

µP HP defaults σinit = αemb = αattn = αoutput = η̂emb = 1

u-µP HP defaults αresidual = αresidual-attn-ratio = αffn-act = αoutput = αattn = 1

Table 2: Default hyperparameters and training settings.

12

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

η η̂ em
b
σ init

α em
b
αat

tn
αou

tp
ut

η

η̂emb

σinit

αemb

αattn

αoutput

µP

η α res α res
-at

tn
-ra

tio

αat
tn
αffn-a

ct

αou
tp

ut

η

αres

αres-attn-ratio

αattn

αffn-act

αoutput

u-µP

0.0

0.1

0.2

T
ran

sfer
E

rror

fixed HP

transfer HP

Figure 5: A visualization of the dependencies between pairs of HPs under each scheme. Transfer
error measures the extent to which the optimal value of the transfer HP depends on the fixed HP (see
Algorithm 1). On average, µP has a transfer error of 0.03, whereas u-µP has 0.005.

A.2. Hyperparameter interdependence

Our principled approach to HPs (see Appendix E.1 for details) contains the requirement that their
optimal values should depend minimally on the value of other HPs. Here we investigate this
empirically, conducting a 2D sweep over every pair of HPs for µP and u-µP.

To derive an empirical measure of HP dependency, we introduce the notion of transfer error
(see Algorithm 1). This considers a pair of HPs, with one ‘fixed’ and the other for ‘transfer’. We
take the best value of the transfer HP for each non-optimal value of the fixed HP, and use it with the
optimal value of the fixed HP. The transfer error is the difference between the losses obtained and the
minimum loss. Figure 5 shows this measure for each pair of HPs under µP and u-µP, reflecting the
improvement in HP dependency as a result of our scheme. This gives u-µP a reduced risk of small
transfer errors leading to large degradations, and the potential to sweep HPs in a more separable way.

Algorithm 1 Transfer Error

Require: A ‘fixed’ HP with candidate values F = {f1, · · · , fn}, a ‘transfer’ HP with candidate
values T = {t1, · · · , tm}, a function that gives the final validation loss for the pair of HPs
L : F × T → R (assuming all other HPs are fixed at default values).

err← 0
f∗, t∗ ← argmin(L)
for f in F do

if f ̸= f∗ then
t← argmin(L(f))
err += L(f∗, t)− L(f∗, t∗)

end if
end for
return err/(n− 1)

13

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

A.3. Hyperparameter search

Here we outline the particular search processes used for our µP and u-µP HP sweeps in Figure 4 (a).
The random search samples uniformly from a grid defined over all extended HPs (extended HP sets
are defined in Table 6, with grid values defined in Table 2). We perform the random search over
339 runs, each of which is a full training of the width-256 proxy model. We then simulate the effect
of shorter searches at various run-counts by taking a random sample of the results, resulting in the
smooth curve over run-count shown.

The independent search consists of the following phases:

1. Perform a 1D line search for an optimal learning rate, with other hyperparameters set to their
default values (9 runs).

2. For each hyperparameter in parallel, perform a 1D line search (330 runs).

3. Combine the best settings from step 2, and re-evaluate (6 runs).

The number of runs in the 1D line search is an order of magnitude higher than is required in
practice. We do so to form a fair comparison with the random search, which benefits from this large
number of runs. The number of runs for the 1D line search could be reduced further by using binary
search, though this would require sequential runs and limit the extent of parallelism.

A.4. Hyperparameter transfer experiments

Baseline µP transfer Figure 6 is a companion plot to Figure 2 in the body of the paper, showing
the LR transfer of the baseline µP model over the same axes. u-µP shows marginally more stable HP
transfer here relative to the baseline, and at a consistently lower loss.

LR transfer over width The transfer experiments shown in Figure 4 (b) use the non-LR HPs
found in Figure 4 (a) (indicated by the circled points), rather than using default HP values. For the
u-µP sweep we take the HPs at the end of the LR portion of the independent search, as these are
already close-to-optimal, and means only 9 runs were required in the sweep. In contrast, for µP it is
necessary to use the results of the random search over a large number of runs.

LR transfer over other axes For the training steps, batch size and depth transfer experiments
in Figure 2, all HP values are fixed to 1 except LR which is swept. As with width transfer, u-µP
outperforms µP here using these default HP values. Reducing training steps is done by fixing the
number of warm-up steps (at 2000) and still cosine-decaying the learning rate to 10%; all that changes
is the number of post-warm-up steps. We found this to be more effective than cutting-short the decay
schedule. For both Figure 4 (b) and Figure 2 we sweep the LR over a logarithmically-spaced grid of
step 21/2×, with 3 runs for each point.

Additionally, in Figure 7 we show learning rate transfer over sequence length for both µP and
u-µP fixing either tokens per batch or sequences per batch. In both scenarios u-µP shows not only
better absolute training performance, but also better transfer behavior as sequence length increases.
Since our default proxy sequence length is 256, using µP to transfer to sequence length 2048 would
result in minimal improvements or even a degradation in validation loss, whereas the u-µP shows
much greater and more consistent improvements.

14

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

2−10 2−8 2−6

Learning Rate

3.0

3.2

3.4

3.6

3.8

V
al

id
at

io
n

L
os

s

Training Steps

4096

8192

16384

32768

2−10 2−8 2−6

Learning Rate

µP

Batch Size

32

64

128

256

2−10 2−8 2−6

Learning Rate

Depth

1

2

4

8

16

Figure 6: Learning rate transfer for µP over training steps, batch size and depth. For u-µP results, see
Figure 2 in the body of the paper.

2.8

3.0

3.2

3.4

3.6

3.8

V
al

id
at

io
n

L
os

s

µP u-µP

2−10 2−8 2−6

Learning Rate

2.8

3.0

3.2

3.4

3.6

3.8

V
al

id
at

io
n

L
os

s

2−2 20 22 24

Learning Rate

Sequence Length

64

128

256

512

1024

2048

Fix tokens/batch = 16K

Fix sequences/batch = 64

Min

Figure 7: Transfer of learning rate over sequence length for µP (left) and u-µP (right). As sequence
length varies, we can fix the number of tokens per batch by inversely varying the number of sequences
per batch (top). Alternatively we can fix the sequences per batch and allow the number of tokens
per batch to vary with sequence length (bottom). In the latter case, larger sequence lengths mean
the model sees more tokens during training, though as per Table 2 this translates to >1 epoch on
WikiText-103 when sequence length goes above 256.

Other HP transfer over width For our non-LR HP transfer results in Figure 8, we note that good
transfer under µP has not been demonstrated for all HPs used in the literature. This is particularly true
for the η̂emb HP, which has poor transfer under µP. Our investigation here led to our identification of
the need to adjust the embedding LR scaling rule as shown in Figure 1. In many cases users have not
swept this HP, but instead swept the corresponding parameter multiplier αemb. How this HP interacts

15

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

with the embedding LR scaling problem identified (and our proposed fix) remains to be explored,
though we note in Figure 8 that it also appears to have poor transfer.

2−12 2−10 2−8 2−6

Learning Rate

2.8

3.0

3.2

3.4

3.6

3.8

T
ra

in
in

g
L

os
s

2−4 2−2 20 22 24

αattn

2−4 2−2 20 22 24

αoutput

2−4 2−2 20 22 24

σinit

2.8

3.0

3.2

3.4

3.6

3.8

T
ra

in
in

g
L

os
s

2−4 2−2 20 22 24

αemb

23 25 27 29

η̂emb

µP

Width

128

256

512

1024

2048

4096

2−3 2−1 21 23

Learning Rate

2.8

3.0

3.2

3.4

3.6

3.8

T
ra

in
in

g
L

os
s

2−4 2−2 20 22 24

αattn

2−4 2−2 20 22 24

αoutput

2−4 2−2 20 22 24

αresidual

2.8

3.0

3.2

3.4

3.6

3.8

T
ra

in
in

g
L

os
s

2−4 2−2 20 22 24

αresidual-attn-ratio

2−4 2−2 20 22 24

αffn-act

u-µP

Width

128

256

512

1024

2048

4096

Figure 8: Transfer of model hyperparameters over width for µP (top) and u-µP (bottom). When
one hyperparameter is being swept, all others are fixed at 1, with the exception of Learning Rate
η = (21.5, 2−7.5) for (u-µP, µP).

16

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

A.5. Numerical properties

Our analysis of the numerical properties of u-µP focuses on the RMS of tensors that we wish to
cast to FP8: linear module input activations, weights and output gradients. From the RMS training
statistics plots in Figures 3 and 9 we note that

1. µP has gradients and weights with low RMS, at risk of FP8 underflow, whereas u-µP starts
with RMS ≈ 1.

2. Many input activations do not grow RMS during training (due to a preceding non-trainable
RMSNorm), however the attention out projection and FFN down projection have unconstrained
input activations that grow considerably during training.

3. The decoder weight grows during training. Since it is preceded by a RMSNorm, the model
may require scale growth in order to increase the scale of softmax inputs. Other weights grow
slightly during training.

4. Gradients grow quickly but stabilize, except for attention out projection and FFN down
projection, whose gradients shrink as the inputs grow.

We also evaluate how RMS growth is affected by model and training hyperparameters in the
tensors that showed the highest end-training RMS, shown in Figure 10. This shows that the main
parameter affecting scale growth is learning rate, with end-training RMS increasing to the right of
the optimal LR basin, as training becomes unstable. End-training RMS is remarkably stable as width,
depth, training steps and batch size are independently increased.

17

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

2−21

2−14

2−7

20

R
M

S

Attn Q Attn K Attn V Attn Out

0 2500 5000 7500

Step

2−21

2−14

2−7

20

R
M

S

FFN Up

0 2500 5000 7500

Step

FFN Gate

0 2500 5000 7500

Step

FFN Down

0 2500 5000 7500

Step

Decoder

Layer

0

1

2

3

Tensor

input

weight

grad

2−6

2−3

20

23

26

R
M

S

Attn Q Attn K Attn V Attn Out

0 2500 5000 7500

Step

2−6

2−3

20

23

26

R
M

S

FFN Up

0 2500 5000 7500

Step

FFN Gate

0 2500 5000 7500

Step

FFN Down

0 2500 5000 7500

Step

Decoder

Layer

0

1

2

3

Tensor

input

weight

grad

Figure 9: RMS during training, for all parametrized matmul inputs, for µP (top) and u-µP (bottom).
Model width 256, default hyperparameters, η = (21, 2−8) for (u-µP, µP).

18

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

3.0

3.2

3.4

T
ra

in
lo

ss

1

10

100

(a
)

R
M

S

1

10

100

(b
)

R
M

S

0 1 2 4 8

Learning Rate

1

100

(c
)

R
M

S

256 512 1024

Width
4 8 16

Depth
8192 16384 32768

Training Steps
64 128 256

Batch Size

FP32 FP8

Figure 10: The effect of hyperparameters on FP8 training loss and on the end-training RMS of
various tensors: (a) decoder weight, (b) last-layer FFN down-projection input and (c) last-layer FFN
down-projection output gradient. Only learning rate has a substantial effect on the end-training RMS.
Vertical lines show the default setting of that hyperparameter, as used for all other plots.

19

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Appendix B. Unit-scaled op definitions

Table 3: Implementations of unit-scaled ops, building on Table A.2. from the Unit Scaling paper [2].
These are considered part of u-µP and should be used in the place of standard operations.

Op Unit Scaling factors

matmul(x,w) = xw α = 1√
fan-in

, βx = 1√
fan-out

, βw =
1√

batch-size

attention(q, k, v) = α = βq = βk = βv =

softmax
(
αattn d

−1
head (qk

⊤) ⊙ cmask
)
v 1/ log_interpolate

(
1

1+
4dhead
α2
attn

, 1,

√
log(s)

s

)
gated_silu(xin, xgate) = α = βxin = βxgate =

xin ⊙ xgate ⊙ sigmoid(αffn-act xgate) 1/ log_interpolate
(

1
1+ 1

α2
ffn-act

, 1√
2
, 12

)
residual_add(xresid., xskip) = a = τ√

τ2+1
, b = 1√

τ2+1

a xresid. + b xskip (see below for full details, inc. values for τ ,
which depends on αres and αres-attn-ratio.)

softmax_xent(x, t) =

log_softmax(αloss-softmax x)t α = 1, β = s/
√
s− 1

RoPE(x) α = β = 1 (i.e. no scaling)

RMSNorm(x) (non-trainable, see [12]) α = β = 1 (i.e. no scaling)

The Unit Scaling paper provides scaling factors for various ops, in order to make them unit-
scaled. However, these ops do not cover every case required for the Llama architecture used in our
experiments, nor do they cover our updated residual layer implementation. To address this, in this
section we outline a series of new unit-scaled ops for each of our required architectural features, as
well as existing unit-scaled ops, given in Table 3.

The presentation here is derived from that of the Unit Scaling Compendium given in [2, Table
A.2]. This makes reference to the factors α, β1, . . . , βk. α is the output scaling factor in the forward
pass, and βi are the scaling factors for the gradient of the op’s inputs in the backward pass. For
each op, a value or rule is provided for determining the required mult to ensure unit-scale. The
correct value for these multipliers is derived by analyzing the scaling behavior of each op, given
some reasonable distributional assumptions about the input and incoming gradient tensors (see
Appendix D.3 for an example).

20

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

The attention and gated-silu operations are sufficiently complex that we found an empirical
model of their scale to be more accurate than any mathematically-derived rule.

For these cases we make use of the function

log_interpolate(α, bupper, blower) = eα log(bupper)+(1−α) log(blower).

which empirically allows us to model the scaling behavior of these ops closely.

Pre-norm residual layers Our implementation of residual layers for u-µP is more complex than
other operations, as adjustments are required to make pre-norm residual networks support Unit
Scaling and satisfy our requirements for principled HPs (see Appendix E).

We consider the following definition of a pre-norm transformer:

R0(x) = cx, (1)

Rl(x) = alfl(Rl−1(x)) + blRl−1(x), l = 1, .., L (2)

where al, bl and c are scalar multipliers, and the fl alternate between self-attention and feed-forward
layers.

A standard (depth-)µP model implements residual layers using: al = αresidual/
√

L/2, bl =
1, c = αemb. For u-µP we drop (αresidual, αemb) and introduce (αres, αres-attn-ratio), and implement
the network as follows:

a2l =
τ2l

τ2l + 1
(3)

b2l =
1

τ2l + 1
(4)

c = 1, (5)

(6)

τ2l =


α̂2
a

L
2 + ℓα̂2

a + ℓα̂2
f

l is odd

α̂2
f

L
2 + (ℓ+ 1)α̂2

a + ℓα̂2
f

l is even

, ℓ =

⌊
l − 1

2

⌋
(7)

α̂2
a = α2

res-attn-ratio α̂
2
f (8)

α̂2
f =

2

α2
res-attn-ratio + 1

α2
res . (9)

This scheme is slightly more complex to implement, but satisfies two key properties. Firstly, the
variance at initialization of each Rl(x) is always 1 (i.e. we have Unit Scaling throughout), without
having reduced the expressivity of the network (assuming a final normalization layer at the end of
the residual-stack).

The second is that, unlike in the original model, our (αres, αres-attn-ratio) HPs are designed specif-
ically to determine key dynamics in the network at initialization: σ(αres) = σ

(∑L
l=1Rl

)
/σ(R0)

(the ratio of the average scale of the residuals’ contributions to those of the embedding) and

21

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

6

8

10

12

14

16

V
al

id
at

io
n

L
os

s
(a) Tensor Programs V settings

(on GPT, Wikitext-2)

2.8

3.0

3.2

3.4

3.6

3.8

4.0

(b) Standard Llama settings
(on Llama, Wikitext-103)

2.8

3.0

3.2

3.4

3.6

3.8

4.0

(c) Standard Llama settings + stability fixes
(on Llama, Wikitext-103)

2−12 2−10 2−8 2−6

Learning Rate

0

1

2

3

4

5

T
ra

in
in

g
L

os
s

2−11 2−9 2−7 2−5 2−3

Learning Rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

2−11 2−9 2−7 2−5

Learning Rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Width

128

256

512

1024

2048

4096

Min

Figure 11: Effective µTransfer does not hold across all training setups. (a) We show strong transfer
for the unrealistic setup used in Tensor Programs V (too many epochs; constant LR). (b) Moving to a
more standard Llama training setup, transfer breaks down. (c) This is restored by the introduction of
two stability fixes: non-parametric norms and independent weight decay.

σ(αres-attn-ratio) = σ
(∑L/2

l=1 R2l−1

)
/σ

(∑L/2
l=1 R2l

)
(the ratio of the scale of the attention-residuals’

contributions to those of the feed-forward-residuals). By defining our residual HPs in this way their
effects are more separable, and the optimal values we find have a natural interpretation.

We also follow the example of Unit Scaling and delay the application of our residual multiplier in
the backward pass to the base of the branch (see [2], Figure 3c). This does not change the model, and
enables unit-scale to be maintained on the residual branch regardless of the value of the multiplier.

Appendix C. The challenges with µP in practice

Lingle [12] shows that directly applying µP to a decoder LM fails to provide LR transfer across
width. Given that the primary use of µP in the literature has been LM training of this kind, this result
suggests a significant limitation. How do we reconcile this with the strong LR transfer across width
shown for language models in Tensor Programs V?

We answer this Figure 11. The first training setup (a) is aligned with that used in Tensor Programs
V (their Figure 4). There are several atypical aspects to their training setup, primarily the use of a
constant LR schedule and a high number of epochs. This overfitting regime makes validation loss
unusable, and transfer misleadingly good. When we remove these and shift to a standard Llama
training setup (b), optimal HPs begin to drift with width. This confirms Lingle’s findings that standard
µP is in fact a poor fit for modern LM training. We fix this (c) by the removal of parameters from
LayerNorms/RMSNorms, as suggested by Lingle, and the introduction of independent weight decay

22

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

for AdamW, as suggested by Wortsman et al. [27] 1 (see [26] for further analysis). With these
changes adopted, we recover the strong transfer shown in Tensor Programs V’s experiments.

Appendix D. Additional background material

D.1. The Maximal Update Parametrization

Theoretical background We do not cover the theory underpinning µP in this paper, presenting
only its resulting scaling rules (Table 4). For readers interested in this theory, the extensive Tensor
Programs series [28–30, 32, 33] builds up a framework from which µP is derived [31]. For those
requiring a more accessible introduction, [35] show that µP can be derived in a simpler and more
general way by placing a spectral scaling condition on the norm of weights and their updates.

ABC-parametrizations µP, SP, and the Neural Tangent Kernel (NTK) [10] are all instances of
abc-parametrizations. This assumes a model under training where weights are defined as:

w0 ∼ N (0, B2
W), (10)

Wt = AW · wt,

wt+1 = wt + CW · Φt(∇L0, ...,∇Lt),

with t a time-step and Φt(∇L0, ...,∇Lt) the weight update based on previous loss gradients.
A parametrization scheme such as µP is then defined specifying how scalars AW , BW , CW

change with model width. This can be expressed in terms of width-dependent factors aW , bW , cW ,
such that AW ∝ aW , BW ∝ bW , CW ∝ cW . The values these factors take are what characterize
a particular scheme. For µP these are given in Table 4. For depth a similar result has been proved
using depth-µP [36], albeit in a restricted setting. When we refer to µP in the paper we assume the
depth-µP scaling rules (Table 1, ‘Residual’ column).

Transferable HPs µP focuses on the subset of HPs whose optimal values we expect to transfer
across axes such as width and depth. We term these µTransferable HPs. All µTransferable HPs
function as multipliers and can be split into three kinds, which contribute to the three (non-HP)
multipliers given by the abc-parametrization: αW , σW , ηW where AW ∝ αW , BW ∝ σW , CW ∝
ηW . The difference between these multipliers and the ones that define a parametrization is that they
are specified by the user, rather than being a function of width.

Table 4: The scaling rules defining µP. The type of a weight is determined by whether fan-in &
fan-out both depend on width (hidden), only fan-out does (input), or only fan-in (output). Hence
fan-in is always a multiple of width here.

ABC-multiplier
Weight (W) Type

Input Hidden Output

µP
parameter (aW) 1 1 1/fan-in(W)

initialization (bW) 1 1/
√

fan-in(W) 1

Adam LR (cW) 1 1/fan-in(W) 1

1 Lingle suggests independent weight decay is unstable, but we find it to be more so than Adam or standard AdamW.

23

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Base shape Two additional (non-µTransferable) HPs introduced by µP are the base-width and
base-depth. This refers to a mechanism where a user specifies a particular shape for the model,
where its behavior under µP and SP are the same. The µP model still scales according to the abc-rules,
so for all other shapes the two models will be different. This is implemented by dividing the µP
scaling rules for the given model by those of a fixed-shape model at the base-width and base-depth.

Putting this together with our abc-parametrization given in Equation (10), and the µTransferable
HPs outlined above, we now derive our final, absolute expressions for AW , BW , CW :

AW ← αW
aW
aWbase

, BW ← σW
bW
bWbase

, CW ← ηW
cW
cWbase

(11)

Though base shapes are necessary for µP, they are not typically swept. Rather, they are considered a
preference of the user, who may wish to retain the behavior of an existing SP model at a given shape.

Choosing HPs to sweep In theory, the search space of µTransferable HPs includes αW , σW , ηW
for every parameter tensor W in the model. In practice far fewer HPs are swept, with global grouping
often used for σW and ηW , and many αW s dropped or grouped across layers.

Table 5 outlines the ways in which users of µP in the literature have approached HP sweeping.
These all follow the approach used in Tensor Programs V of a random sweep, sampling combinations
from the joint space of all HPs. The authors of Tensor Programs V note that other more complex
methods may be more efficient, but these are considered beyond the scope of their work and have not
been used widely. A Bayesian search method was used for the development of MiniCPM [8], but the
authors give no further details—as they use 400 runs in their sweep it is not clear that this approach
makes HP search easier.

Table 5: Sweeping configurations used for a selection of µP models from the literature. The sweeping
process is similar across models, the only differences being the choice of discrete or continuous
distributions and their ranges.

Model proxy/target
tokens used

proxy/target
model size

sweep
size

base
width

HPs swept

T.P.V WMT14 [34] 100% 7.1% 64
?

η, αout, αattn
T.P.V BERTlarge [34] 10% 3.7% 256 η, ηemb, αout, αattn, αLN, αbias

T.P.V GPT-3 [34] 1.3% 0.6% 350 η, σ, αemb, αout, αattn, αpos
MiniCPM [8] 0.008% 0.45% 400 256 η, σ, αemb, αresidual

Cerebras-GPT [5] 1.1% 1.5% 200 256 η, σ, αemb
SµPar [6] 6.6% 6.4% 350 256 η, σ, αemb

D.2. Low-precision training

All the major potential bottlenecks of model training—compute, communication and storage—see
roughly linear improvements as the bit-width of their number format is reduced. In modern LLM
training, the compute cost of large matrix multiplications (matmuls) means that substantial gains are
available if these can be done in low-precision (< 32 bit) formats. With the ending of Dennard scaling
and Moore’s law [7, 23], the use of low-precision formats represents one of the most promising
avenues towards increased efficiency in deep learning.

24

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

The standard numerical representations used in deep learning are the set of formats defined by the
IEEE 754 floating-point standard [9]. IEEE floats comprise three elements: a sign bit, exponent bits,
and mantissa bits. The number of exponent bits determines the range of a format, while the mantissa
determines the precision. The default format used for training is the single-precision floating-point
format, commonly known as FP32. The 16-bit FP16 and BF16 formats were later introduced, and
more recently the FP8 E5 & E4 formats [17, 18, 22]. The use of multiple formats is known as mixed
precision [16].

Recent AI hardware offers substantial acceleration for the 8-bit FP8 E4 and E5 formats. However
the reduced range of these formats means that they cannot directly represent some values generated
during training. [16] address this by introducing a fixed global loss-scale HP, which multiplies the
loss value in the backward pass, artificially up-scaling gradients to lie within FP16 range. Automatic
loss scaling [11] builds upon this idea, making the loss-scale a dynamic value that is tuned during
training. The scaling within Transformer Engine [19] introduces per-tensor dynamic re-scaling, but
this comes at the cost of added complexity and potential overheads.

D.3. Unit Scaling

An example: the unit-scaled matmul op Here we outline the procedure for calculating the scaling
factor of a matmul op, which practitioners can use as a guide for scaling new ops that we do not
cover in this paper (see Appendix B).

There are two potential approaches here. The first is to derive scaling factors from an analysis of
an op’s dynamics. Specifically, given the assumption of unit-scaled inputs, the appropriate scaling
factor is the reciprocal of the expected output scale. For a basic matrix-matrix matmul we have,

matmul(X,W) = XW, X ∈ Rdbatch×dfan-in , W ∈ Rdfan-in×dfan-out ,

where weights and activations are sampled i.i.d. from a centered Gaussian:

Xij ∼ N (0, σ2
X), Wjk ∼ N (0, σ2

W).

From this we can derive the expected output scale (i.e. σ(matmul)):

matmul(X,W)ik =

dfan-in∑
j=1

XijWjk,

σ (matmul(X,W)ik) =
√

dfan-in σW σX .

Under Unit Scaling we have σW = σX = 1, and hence the scaling factor required to ensure a
unit-scaled output is 1/

√
dfan-in. This gives our final unit-scaled matmul:

u-matmul(X,W) = matmul(X,W)/
√
dfan-in

Applying unit scaling To apply Unit Scaling to a model and train in low-precision, the following
steps are required:

1. Scale parameter initializations to have zero-mean and unit variance.

2. Replace operations with their unit-scaled equivalents (including and especially the loss, mat-
muls and residual-adds).

25

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

3. Constrain the scales of operations which are required to have the same forward and backward
factors.

4. Place a simple .to(fp8) cast on the inputs to matmuls.

Step 3 relates to the problem of conflicting scales in the forward and backward passes. A single
linear layer in a differentiated model requires 3 matmul ops in the forward and backward passes, each
requiring a different scaling factor (1√

dfan-in
, 1√

dfan-out
, 1√

dbatch-size
). However, using these directly

would give invalid gradients. The compromise here is that the activations and activation gradients
have their scaling factors constrained such that they are equal (the Unit Scaling paper recommends
taking the geometric mean; we modify this for u-µP in Appendix B to simply use the forward scale
everywhere). Weight gradients can still be given their own scaling factor.

Appendix E. Justifying the u-µP hyperparameter scheme

E.1. A principled approach to hyperparameters

The problem of selecting HPs to sweep can be framed as choosing a subset of the per-tensor
αW , σW , ηW HPs outlined in Section 2.1, and grouping across/within layers. As shown in Table 5,
µTransfer experiments in the literature have done this in a variety ways. Practitioners have not
justified these choices, appearing to rely on a mixture of precedent and intuition. We outline two
major downsides to the lack of a principled approach.

Firstly, not all groupings of HPs are suitable. Consider the commonly-used global σinit HP. At
initialization the activations going into the FFN swish function have std(xswish) ∝ σWgate , whereas
the self-attention softmax activations have std(xattn) ∝ σWQ

σWK
. A global σ HP thus has a linear

effect on the FFN and a quadratic effect on attention, suggesting that this grouping may be unideal.
Secondly, not all HPs are independent of one another. The key example of this is the interaction

between σW and ηW . The relative size of a weight update is determined by the ratio ηW /σW , not by
either HP individually. Because of this, the optimal values for σ and η depend on each other, which
we demonstrate empirically in Appendix A.2. This can make the problem of HP search much harder,
and may be why hundreds of random-search runs have been required for sweeps in the literature.

To this end, we propose the following ideal criteria:

1. Minimal cardinality: the use of as few HPs as possible.

2. Maximal expressivity: the ability to still express any model defined using the per-tensor
αW , σW , ηW HPs outlined in Section 2.1 (in practice, we relax this slightly).

3. Minimal interdependency: the optimal value of each HP should not depend on the value of
other HPs, simplifying the search space.

4. Interpretability: there should be a clear explanation for what an HP’s value ‘means’ in the
context of the model.

The u-µP HPs given in Table 6 are designed to satisfy these criteria, to the fullest extent possible.
The placement of these HPs in the model is given in Table 3.

26

U-µP: THE UNIT-SCALED MAXIMAL UPDATE PARAMETRIZATION

Table 6: Typical transformer HPs used un-
der different schemes. Basic HPs in bold
are considered most impactful and are com-
monly swept. Extended HPs in non-bold are
not always swept, often set heuristically or
dropped.

SP µP u-µP

η η η
σ-scheme σinit

αemb|ηemb αffn-act
αattn αattn-softmax

αout αres

base-width αres-attn-ratio
base-depth αloss-softmax

Cardinality & expressivity We arrive at our set of
HPs in three steps, starting with the full αW , σW , ηW
for each weight tensor W . Firstly, we can choose to
‘drop’ any one of these three HPs by permuting under
abc-symmetry, such that one HP = 1. As we want
our weights to begin with unit scale, we choose σW ,
leaving just αW , ηW .

Secondly, we observe that several of the αW HPs
combine linearly with other αW HPs, providing an op-
portunity to re-parametrize with a single HP. We thus
associate α HPs with operations instead of weights.
This applies to all operations, unless they are unary
and k-homogeneous for k ≥ 0, in which case they
propagate scale and don’t require an HP. This results
in the set of HPs shown, with their placement in the
model given in Table 3.

Thirdly, we use a single global η and group α HPs
across layers. This breaks our expressivity criterion, but we argue represents the best trade-off
between expressivity and cardinality.

Interdependency The second stage above, moving α HPs from weights into subsequent operations,
not only reduces the number of HPs, but also minimizes the interdependence between those that
remain. Interactions between HPs are complex and unlikely to be entirely separable, but we find that
u-µP’s optimal HP values depend less on each other than under µP (see Appendix A.2).

Interpretability The combination of unit scale and reduced dependencies between HPs means that
each α can be interpreted as determining some fundamental property of the model at initialization.
For example, the αloss-softmax HP defines the (inverse of) the softmax’s temperature for a unit-scaled
input. Finally, we choose not to include base shape HPs in u-µP. They do not add to expressivity,
lack a clear interpretation (besides alignment to a base model at a particular shape), break the
interpretations of other HPs (as given above), and complicate implementation.

27

	Introduction
	Background
	The Maximal Update Parametrization
	Unit Scaling

	The Unit-Scaled Maximal Update Parametrization
	Experiments
	Hyperparameter search
	Hyperparameter transfer
	Numerical properties
	FP8 training

	Related Work
	Conclusions
	Additional experimental details
	Experimental Setup
	Hyperparameter interdependence
	Hyperparameter search
	Hyperparameter transfer experiments
	Numerical properties

	Unit-scaled op definitions
	The challenges with µP in practice
	Additional background material
	The Maximal Update Parametrization
	Low-precision training
	Unit Scaling

	Justifying the u-µP hyperparameter scheme
	A principled approach to hyperparameters

