
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GETMUSIC: GENERATING MUSIC TRACKS WITH A
UNIFIED REPRESENTATION AND DIFFUSION FRAME-
WORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic music generation aims to create musical notes, which can help users
compose music, such as generating target instrument tracks based on provided
source tracks. In practical scenarios where there’s a predefined ensemble of tracks
and various composition needs, an efficient and effective generative model that
can generate any target tracks based on the other tracks becomes crucial. However,
previous efforts have fallen short in addressing this necessity due to limitations in
their music representations and models. In this paper, we introduce a framework
known as GETMusic, with “GET” standing for “GEnerate music Tracks.” This
framework encompasses a novel music representation “GETScore” and a diffusion
model “GETDiff.” GETScore represents musical notes as tokens and organizes
tokens in a 2D structure, with tracks stacked vertically and progressing horizontally
over time. At a training step, each track of a music piece is randomly selected as
either the target or source. The training involves two processes: In the forward
process, target tracks are corrupted by masking their tokens, while source tracks
remain as the ground truth; in the denoising process, GETDiff is trained to pre-
dict the masked target tokens conditioning on the source tracks. Our proposed
representation, coupled with the non-autoregressive generative model, empowers
GETMusic to generate music with any arbitrary source-target track combinations.
Our experiments demonstrate that the versatile GETMusic outperforms prior works
proposed for certain specific composition tasks. Readers are invited to listen to our
music demos.1 We promise to open our code.2

1 INTRODUCTION

Symbolic music generation aims to create musical notes, which can help users in music composition.
Due to the practical need for flexible and diverse music composition, the need for an efficient and
unified approach capable of generating arbitrary tracks based on the others is high.3 However,
current research falls short of meeting this demand due to inherent limitations imposed by their
representations and models. Consequently, these approaches are confined to specific source-target
combinations, such as generating piano accompaniments based on melodies.

Current research can be categorized into two primary approaches based on music representation:
sequence-based and image-based. On one hand, sequence-based works (Huang & Yang, 2020; Zeng
et al., 2021; Christopher, 2011) represent music as a sequence of discrete tokens, where a musical
note requires multiple tokens to describe attributes such as onset, pitch, duration, and instrument.
These tokens are arranged chronologically, resulting in the interleaving of notes from different tracks,
and are usually predicted by autoregressive models sequentially. The interleaving of tracks poses a
challenge of precise target generation because the autoregressive model implicitly determines when
to output a target-track token and avoids generating tokens from other tracks. It also complicates the

1https://getmusicdemo.github.io/
2https://anonymous.4open.science/r/Music1/
3A music typically consists of multiple instrument tracks. In this paper, given a predefined track ensemble,

we refer to the tracks to be generated as “target tracks” and those acting as conditions as “source tracks.” We
refer to such an orchestration of tracks as a “source-target combination.”

1

https://getmusicdemo.github.io/
https://anonymous.4open.science/r/Music1/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

GETDiff

GETScore

Masked

Masked

①

②

③
M

······

Music Score
Symbolic
Music

GETScore

M

Masked

Time

Tr
ac

ks

Melody

······

Denoising masked tokens

Tr
ac

ks

Time

Figure 1: The overview of GETMusic, involving a novel music representation “GETScore” and a
discrete diffusion model “GETDiff.” Given a predefined ensemble of instrument tracks, GETScore
represents the music by encoding musical notes into discrete tokens and arranging them in a two-
dimensional format that is both temporally and track-specific. GETDiff takes GETScores as inputs
and generates any desired target tracks from scratch (1⃝) or conditioning on any source tracks (2⃝).
This flexibility extends beyond track-wise generation, as it can perform zero-shot generation for any
irregular masked parts (3⃝).

specification of source and target tracks. Therefore, the existing methods (Dong et al., 2023; Ren
et al., 2020; Yu et al., 2022) typically focus on either one specific source-target track combination or
the continuation of tracks.

On the other hand, image-based research represents music as 2D images, with pianorolls4 being
a popular choice. Pianorolls represent musical notes as horizontal lines, with the vertical position
denoting pitch and the length signifying duration. A pianoroll explicitly separates tracks but it has to
incorporate the entire pitch range of instruments, resulting in large and sparse images. Due to the
challenges of generating sparse and high-resolution images, most research has focused on conditional
composition involving only a single source or target track (Dong et al., 2017; Yang et al., 2017; Shuyu
& Sung, 2023) or unconditional generation (Mittal et al., 2021).

To support the generation across flexible and diverse source-target track combinations, we propose a
unified representation and diffusion framework called GETMusic (“GET” stands for GEnerate music
Tracks), which comprises a representation named GETScore, and a discrete diffusion model (Austin
et al., 2021) named GETDiff. GETScore represents the music as a 2D structure, where tracks are
stacked vertically and progress horizontally over time. Within each track, we efficiently represent
musical notes with the same onset by a single pitch token and a single duration token, and position
them based on the onset time. At a training step, each track in a training sample is randomly selected
as either the target or the source. The training consists of two processes: In the forward process, the
target tracks are corrupted by masking tokens, while the source tracks are preserved as ground truth;
in the denoising process, GETDiff learns to predict the masked target tokens based on the provided
source. Our co-designed representation and diffusion model in GETMusic offer several advantages
compared to prior works:

• With separate and temporally aligned tracks in GETScore, coupled with a non-autoregressive
generative model, GETMusic adeptly compose music across various source-target combinations.

• GETScore is a compact multi-track music representation while effectively preserving interde-
pendencies among simultaneous notes both within and across tracks, fostering harmonious music
generation.

• Beyond track-wise generation, the mask and denoising mechanism of GETDiff enable the zero-shot
generation (i.e., denoising masked tokens at any arbitrary locations in GETScore), further enhancing
the versatility and creativity.

We demonstrate that our proposed versatile GETMusic surpasses approaches proposed for specific
tasks such as conditional accompaniment or melody generation, as well as generation from scratch.

4https://en.wikipedia.org/wiki/Piano_roll

2

https://en.wikipedia.org/wiki/Piano_roll

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

00000000

5
5
5

6
2
6

5
5
5

6
0
0

5
5
5

6
2
6

5
5
5

6
0
1

6
6

2

6
4

2

5
0

8

22222222

3
6
2

1
4
7

3
6
2

1
4
7

3
6
2

1
4
7

3
6
2

1
4
7

(d) GETScore

(a) Music Score

Piano

Melody

Drum

Time Unit Pitch tokens Duration tokens

(c) Pianoroll

(b) Sequence Representation

Piano

Melody

Drum

Bar0, TS4/4 , Position0, BPM120, Trackpiano , ↲
PitchA3, Duration2, Velocity62, PitchC4, ↲
Duration2, Velocity62, PitchF4, Duration2, Velocity62, ↲
Bar0, TS4/4 , Position0, BPM120, Trackdrum, ↲
Pitchcymbal_2, Velocity62, Pitchbass_drum, Velocity62, ↲

Bar0, TS4/4 , Position2, BPM120, Trackpiano , ↲
PitchF3, Duration2, Velocity62, Bar0, TS4/4 , Position2, ↲
Trackmelody , PitchF3, Duration8, Velocity62, Bar0, TS4/4, ↲
Position2, Trackdrum , Pitchcymbal_1, Velocity62, ↲
Bar0, TS4/4 , Position4, BPM120, Trackpiano , PitchA3, ……

8
8
P
ixe
ls

Piano

Melody

Drum

paddings

6
P
ixe
ls

Figure 2: Different representations for the same piece of music. Figure (a) is the music score. Figure
(b) illustrates the sequence-based representation in REMI (Huang & Yang, 2020) style, and due to the
length of the sequence, we only show the portion enclosed by the dashed box in Figure (a). Figure
(c) shows a sparse pianoroll that represents notes by lines. In Figure (d), GETScore separates and
aligns tracks, forming the basis for unifying generation across various source-target combinations. It
efficiently preserves the interdependencies among simultaneous notes, fostering generation harmony.
Numbers in (d) denote token indices.

2 BACKGROUND

2.1 SYMBOLIC MUSIC GENERATION

Symbolic music generation aims to generate musical notes, whether from scratch (Mittal et al., 2021;
Yu et al., 2022) or based on given conditions such as chords, tracks (Shuyu & Sung, 2023; Huang &
Yang, 2020; Dong et al., 2017), lyrics (Lv et al., 2022; Ju et al., 2021; Sheng et al., 2020), or other
musical properties (Zhang et al., 2022), which can assist users in composing music. In practical
music composition, a common user need is to create instrumental tracks from scratch or conditioning
on existing ones. Given a predefined ensemble of tracks and considering flexible composition needs
in practice, a generative model capable of handling arbitrary source-target combination is crucial.
However, neither of the existing approaches can integrate generation across multiple source-target
combinations, primarily due to inherent limitations in their representations and models.

Current approaches can be broadly categorized into two main categories with respect to adopted
representation: sequence-based and image-based. In sequence-based methods (Huang & Yang, 2020;
Hsiao et al., 2021; Zeng et al., 2021; Ren et al., 2020), music is represented as a sequence of discrete
tokens. A token corresponds to a specific attribute of a musical note, such as onset (the beginning
time of a note), pitch (note frequency), duration, and instrument, and tokens are usually arranged
chronologically. Consequently, notes that represent different tracks usually interleave, as shown in
Figure 2(b) where the tracks are differentiated by colors. Typically, an autoregressive model is applied
to processes the sequence, predicting tokens one by one. The interwove tracks and the autoregressive
generation force the model to implicitly determine when to output tokens of desired target tracks
and avoid incorporating tokens belonging to other tracks, which poses a challenge to the precise
generation of the desired tracks; the sequential representation and modeling do not explicitly preserve
the interdependencies among simultaneous notes, which impact the harmony of the generated music;
furthermore, the model is required to be highly capable of learning long-term dependencies (Bengio
et al., 1994) given the lengthy sequences. Some unconventional methods (Ens & Pasquier, 2020)
organize tokens according to the track order in order to eliminate track interleaving. However, it
comes with a trade-off, as it results in weaker dependencies both in the long term and across tracks.

Image-based methods mainly employ pianoroll representations which depict notes as horizontal lines
in 2D images, with the vertical position denoting pitch and the length signifying duration. However,
pianorolls need to include the entire pitch range of the instrument, resulting in images that are both
large and sparse. For instance, Figure 2(c) illustrates a pianoroll representation of a three-track music
piece, which spans a width of hundreds of pixels, yet only the bold lines within it carry musical

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

information. Most works focus on conditional composition involving only a single source/target
track (Dong et al., 2017; Yang et al., 2017; Shuyu & Sung, 2023) or unconditional generation (Mittal
et al., 2021) because generating a sparse and high-resolution image is challenging.

Our proposed GETMusic addresses above limitations with a co-designed representation and a discrete
diffusion model which together provide an effective solution to versatile track generation.

2.2 DIFFUSION MODELS

Diffusion models, initially proposed by (Sohl-Dickstein et al., 2015) and further improved by
subsequent research (Ho et al., 2020; Song et al., 2021; Ho & Salimans, 2021; Dhariwal & Nichol,
2021), have demonstrated impressive capabilities in modeling complex distributions. These models
consist of two key processes: a forward (diffusion) process and a reverse (denoising) process. The

forward process q(x1:T |x0) =
T∏

t=1
q(xt|xt−1) introduces noise to the original data x0 iteratively

for T steps, corrupting it towards a prior distribution p(xT) that is independent of x0. The goal of
diffusion models is to learn a reverse process pθ(xt−1|xt) that gradually denoises xT to the data
distribution. The model is trained by optimizing the variational lower bound (VLB) (Ho et al., 2020):

Lvlb = Eq[− log pθ(x0|x1)] +DKL[q(xT |x0)||p(xT)]]

+

T∑
t=2

DKL [q(xt−1|xt, x0)||pθ(xt−1|xt))] .
(1)

The models that operate within the latent space are commonly referred to as continuous diffusion
models, whereas the discrete diffusion models (Sohl-Dickstein et al., 2015) were developed for binary
sequence learning. (Hoogeboom et al., 2021) extended these models to handle categorical random
variables, while D3PM (Austin et al., 2021) introduced a more structured categorical forward process:
the forward process is a Markov chain defined by transition matrices, which transitions a token at
time t− 1 to another at time t by probability. In the reverse process, a pivotal technique known as
x0-parameterization was introduced by (Austin et al., 2021). Instead of directly predicting xt−1 at
time step t, the model learns to fit the noiseless original data x0 and corrupts the predicted x̃0 to
obtain xt−1. Consequently, an auxiliary term scaled by a hyper-parameter λ is added to the VLB:

Lλ = Lvlb + λEq

[
T∑

t=2

− log pθ(x0|xt)

]
. (2)

Mittal et al. (2021) first applied continuous diffusion models to music generation. However, due
to technical limitations at the time, their approach is not fully end-to-end and is restricted to gener-
ating single-track music unconditionally. They opted for a pianoroll representation in their model.
SDMuse (Zhang et al., 2022) considered the limitations inherent in the pianoroll and sequence
representation. They first employ a continuous diffusion model that operates on pianoroll, followed
by an autoregressive model to refine the music sequence converted from generated pianorolls. This
two-stage pipeline significantly increases the computational cost but it does not fundamentally address
the performance bottleneck, i.e., accurately generating sparse and high-resolution pianorolls.

In contrast to these prior works, our GETDiff is an end-to-end discrete diffusion model. The rationale
behind the discrete model lies in the fact that GETDiff is specifically crafted to operate on GETScore,
which comprises discrete tokens, aligning perfectly with the inherently discrete nature of symbolic
music. Moreover, recent studies (Gu et al., 2022; Tang et al., 2022) have demonstrated that, for
conditional generation, discrete diffusion models offer many advantages over continuous diffusion
models. Meanwhile, our novel representation combines the strengths of conventional representations
while circumventing their shortcomings, thereby overcoming the obstacles associated with generating
high-quality content.

3 GETMUSIC

In this section, we introduce two key components in GETMusic: the representation GETScore and
the diffusion model GETDiff. We first provide an overview of each component, and then highlight
their advantages in supporting the flexible and diverse generation of any tracks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

M MM 0M000MM0

55
5

M55
5

M55
5

62
6

M60
1

22222222

36
2

14
7

36
2

14
7

36
2

14
7

36
2

14
7

𝒙𝒕

Piano

Melody

Drum

Emptied

0M000000

55
5

62
6

55
5

M55
5

62
6

55
5

60
1

22222222

36
2

14
7

36
2

14
7

36
2

14
7

36
2

14
7

Piano

Melody

Drum

Emptied

𝒙𝒕−𝟏

Figure 3: An overview of training the GETDiff using a 3-track GETScore. Note that GETScore
is capable of accommodating any number of tracks, with this example serving as a toy example.
During this training step, the piano track is randomly selected as the source and the drum track as
the target, while the melody track is ignored. Thus, xt consists of the ground truth piano track, an
emptied melody track, and a corrupted drum track. GETDiff generates all tokens simultaneously in a
non-autoregressive manner which may modify tokens in its output. Therefore, when xt−1 is obtained,
the sources are recovered with the ground truth while ignored tracks are emptied again.

3.1 GETSCORE

Our goal is to design an efficient and effective representation for modeling multi-track music, which
allows for flexible specification of source and target tracks and thereby laying the foundation of the
diverse track generation tasks. Our novel representation GETScore involves two core ideas: (1) the
2D track arrangement and (2) the musical note tokenization.

Track arrangement We derive inspiration from music scores to arrange tracks vertically, with each
track progressing horizontally over time. The horizontal axis is divided into fine-grained temporal
units, with each unit equivalent to the duration of a 16th note. This level of temporal detail is sufficient
to the majority of our training data. This arrangement of tracks brings several benefits:

• It prevents content of different tracks from interleaving, which simplifies the specification of
source and target tracks, and facilitates the precise generation of desired tracks.

• Because tracks are temporally aligned like music scores, their interdependencies are well preserved.

Note tokenization To represent musical notes, we focus on two attributes: pitch and duration,
which are directly associated with composition. Some dynamic factors like velocity and tempo
variation fall outside the scope of our study. We use two distinct tokens to denote a note’s pitch and
duration, respectively. These paired pitch-duration tokens are placed in accordance with the onset
time and track within GETScore. Some positions within GETScore may remain unoccupied by any
tokens; in such instances, we employ padding tokens to fill them, as illustrated by the blank blocks in
Figure 2(d). Each track has its own pitch token vocabulary but shares a common duration vocabulary,
considering pitch characteristics are instrument-dependent, whereas duration is a universal feature
across all tracks. To broaden the applicability of GETScore, we need to address two more problems:

(1) How to use single pitch and duration tokens to represent a group of notes played simultaneously
within a track? We propose merging pitch tokens of a group of simultaneous notes into a single
compound pitch token. Furthermore, we identify the most frequently occurring duration token within
the group as the final duration token. This simplification of duration representation is supported by
our observation from the entire training data, in only 0.5% groups, the maximum duration difference
among notes exceeds a temporal unit. These findings suggest that this simplification has minimal
impact on the expressive quality of GETScore. Figure 2(d) illustrates the compound token: in the
piano track, we combine three simultaneous 1/8 notes played at the first beat, namely, “La”, “Do”,
and “Fa,” into a single pitch token indexed with “147” alongside a duration token “2.”

(2) How to represent percussive instruments, such as drums, which do not involve the concepts of
”pitch” and ”duration?” We treat individual drum actions (e.g., kick, snare, hats, toms, and cymbals)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

as pitch tokens and align them with a special duration token. The drum track in Figure 2(d) illustrates
our approach.

In conclusion, besides the benefits from track arrangement, our GETScore also gains advantages
through this note tokenization:

• Each track requires only two rows to accommodate the pitch and duration tokens, significantly
enhancing the efficiency of GETScore.

• The compound token preserves the interdependecies within a track. When a token is generated, the
harmony is guaranteed because the corresponding note group is derived from real-world data.

3.2 GETDIFF

We first introduce the forward and the denoising process of GETDiff. Next, we introduce the inference
procedure and outline GETDiff’s benefits for diverse generation needs.

The forward process Our discrete diffusion model GETDiff takes GETScores as inputs. We
introduce a special token [MASK] into the vocabulary as the absorbing state of the forward process.
At time t − 1, a normal token remains in its current state with a probability of αt and transitions
to [MASK] (i.e., corrupts to noise) with a probability of γt = 1 − αt. As GETScore includes
a fixed number of tracks that GETMusic supports, and the composition does not always involve
all tracks, we fill the uninvolved tracks with another special token [EMPTY]. [EMPTY] never
transitions to other tokens, nor can it be transitioned to from any other tokens. This design prevents
any interference from uninvolved tracks in certain compositions. Formally, a transition matrix
[Qt]mn = q(xt = m|xt−1 = n) ∈ RK×K defines the transition probability from the n-th token at
time t− 1 to the m-th token at time t:

Qt =


αt 0 . . . 0 0
0 αt . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
γt γt . . . 0 1

 , (3)

where K is the total vocabulary size, including two special tokens. The last two columns of
Qt correspond to the probability q (xt|xt−1 = [EMPTY]) and q (xt|xt−1 = [MASK]), respectively.
Denoting v(x) as a one-hot column vector indicating the category of x and considering the Markovian
nature of the forward process, we can express the marginal at t, and the posterior at t− 1 as:

q(xt|x0) = v⊤(xt)Qtv(x0), with Qt = Qt . . . Q1. (4)

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
=

(
v⊤(xt)Qtv(xt−1)

) (
v⊤(xt−1)Qt−1v(x0)

)
v⊤(xt)Qtv(x0)

. (5)

The denoising process Figure 3 provides an overview of GETDiff denoising a three-track training
sample of a length of L time units. GETDiff has three main components: an embedding module,
Roformer (Su et al., 2021) layers, and a decoding module. Roformer is a Transformer (Vaswani et al.,
2017) variant that incorporates relative position information into the attention matrix, which enhances
the model’s ability to length extrapolation during inference.

During training, GETDiff needs to cover the various source-target combinations for a music piece
with I tracks, represented as a GETScore with 2I rows. To achieve this, m tracks (resulting in
2m rows in GETScore) are randomly chosen as the source, while n tracks (resulting in 2n rows in
GETScore) are selected as the target, m ≥ 0, n > 0, and m+ n ≤ I .

At a randomly sampled time t, to obtain xt from the original GETScore x0, tokens in target tracks are
transitioned according to Qt, tokens in the source tracks remain as the ground truth, and uninvolved
tracks are emptied. GETDiff denoises xt in four steps, as shown in Figure 3:

(1) All tokens in GETScore are embedded into d-dimensional embeddings, forming an embedding
matrix of size 2Id× L.

(2) Two types of learnable embeddings, named condition flags, are added to the matrix. These flags
differentiate whether a token originates from the provided source (“True”) or is generated by the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

model (“False”). The rationale behind this design is as follows: GETScore is designed to mimic a
music score where each token, including paddings that signify rests or cadences, carries information.
Because the tokens predicted at the current time step can act as conditions in the subsequent time
step, any inaccuracies in these tokens can lead to deviations from the intended denoising direction
during inference, especially in the first few steps. Condition flags explicitly indicates the reliability of
the tokens upon which the model is conditioned, thereby enhancing the quality of generation.

(3) The embedding matrix is resized to GETDiff’s input dimension dmodel using an MLP, and then
fed into the Roformer model.

(4) The output matrix passes through a classification head to obtain the token distribution over the
vocabulary of size K and we obtain the final tokens using the gumbel-softmax technique.

GETDiff employs the x0-parameterization (Austin et al., 2021) (see §2.2) and thus the training
objective is defined as Eq.2. The posterior computation for the Lvlb term in Eq.2 is provided by Eq.5.

Inference During inference, users can specify any target and source tracks. The resulting GETScore
representation is then constructed accordingly, denoted as xT , which contains the ground truth of
source tracks, masked target tracks, and emptied tracks (if any). GETDiff then denoises xT step by
step to obtain x0. As GETDiff generates all tokens simultaneously in a non-autoregressive manner,
potentially modifying source tokens in the output, we need to ensure the consistent guidance from
source tracks: when xt−1 is acquired, tokens in source tracks are recovered to their ground truth
values, while tokens in uninvolved tracks are once again emptied.

Considering the combined benefits of the representation and the diffusion model, our GETMusic
framework offers several major advantages in addressing the diverse composition needs:

• Through a unified diffusion model, GETMusic has the capability to compose music across a range
of source-target combinations without requiring re-training.

• Beyond the track-wise generation, the mask and denoising mechanism of GETDiff enables the zero-
shot generation of any arbitrary masked locations in GETScore, which further enhances versatility
and creativity. An illustration of this can be found in case 3⃝ in Figure 1.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Data Due to the data-hungry nature of the diffusion model, we ensured adequate data preparation
for its training and testing. We gathered 1,569,469 MIDI files from Musescore.5 We processed the
crawled data basically following the approach outlined in (Ren et al., 2020), resulting in symbolic
music data comprising I = 6 instrumental tracks: bass, drum, guitar, piano, string, melody, along
with an additional chord progression track. Further details are provided in Appendix A. After
implementing rigorous cleansing and filtering procedures, we produced approximately 140,000
high-quality GETScores, equivalent to approximately 3,000 hours, with the maximum L as 512. We
sampled 1,000 GETScores for validation, 1,000 for testing, and the rest for training.

Tasks and baselines We consider three symbolic music generation tasks: (1) accompaniment
generation based on the melody, (2) melody generation based on the accompaniments, and (3)
generating tracks from scratch.

For Task 1 and 2, we compare GETMusic with PopMAG (Ren et al., 2020), which is an autoregressive
Transformer encoder-decoder model that processes a sequence representation MuMIDI. To be
comparable, we restrict the generated music to a maximum length of 128 beats, which is the longest
composition length for PopMAG. Both PopMAG and GETMusic always employ the ground truth
chord progression as a condition (i.e., a source track) for generation in these tasks. For the third task,
we compare GETMusic with Museformer (Yu et al., 2022), one of the most competitive unconditional
music generation models. For fair comparison, we train all baselines on our crawled data. Task 1 and
2 are evaluated on the test set, while Task 3 is evaluated by unconditionally generating 1,000 pieces
of music using different random seeds.

5https://musescore.com/

7

https://musescore.com/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Training details We set diffusion timesteps T = 100 and the auxiliary loss scale λ = 0.001. For
the transition matrix Qt, we linearly increase γt (cumulative γt) from 0 to 1 and decrease αt from 1
to 0. GETDiff has 12 Roformer layers with d = 96 and dmodel = 768, where there are about 86M
trainable parameters. During training, we use AdamW optimizer with a learning rate of 1e− 4, β1 =
0.9, β2 = 0.999. The learning rate warmups first 1000 steps and then linearly decays. The training is
conducted on 8 × 32G Nvidia V100 GPUs and the batch size on each GPU is 3. We train the model
for 50 epochs and validate it every 1000 steps. Checkpoints are selected based on the validation loss.

4.2 EVALUATION METRICS

Objective evaluation We introduce objective metrics that quantitatively evaluates the generation
quality. Following Ren et al. (2020), we evaluate the models from two aspects:

(1) Chord accuracy: For Task 1 and 2, we measure the chord accuracy CA between generated target
tracks and their ground truth to evaluate the melodic coherence:

CA =
1

Ntracks ×Nchords

Ntracks∑
i=1

Nchords∑
j=1

1(C
′
i,j = Ci,j). (6)

Here, Ntracks and Nchords represent the number of tracks and chords, respectively. C
′

i,j and Ci,j

denote the j-th chord in the i-th generated target track and the ground truth, respectively. Note that
this metric is not suitable for the third task. Instead, melodic evaluation for the third task relies on
both the pitch distribution and human evaluation, which are discussed later.

(2) Feature distribution divergence: For the first two tasks, we assess the distributions of important
musical features in generated and ground truth tracks: note pitch, duration (Dur) and Inter-Onset
Interval (IOI) that measures the temporal interval between two consecutive notes within a bar.
First, we quantize the duration and IOI into 16 classes, then convert the histograms into probability
density functions (PDFs) using Gaussian kernel density estimation. Finally, we compute the KL-
divergence (Kullback & Leibler, 1951) KL{Pitch,Dur,IOI} between PDFs of generated target tracks
and ground truth. For task 3, we compute KL{Pitch,Dur,IOI} between PDFs of generated target
tracks and the corresponding distribution of training data. In this definition, KLPitch reflects the
melody consistency, whereas KLDur and KLIOI are indicative of rhythm consistency.

Human evaluation 30 evaluators, who possessed a basic knowledge of music, were divided into
three groups, each comprising 10 members. Each group took part in a blind test dedicated to one of the
three tasks, evaluating all music created by GETMusic and baseline models in this task. Evaluation
metrics include “melodic,” “rhythmic,” and “musical structure,” etc., as outlined in Appendix B.

4.3 GENERATION RESULTS

Comparison with previous SOTA methods Table 1 presents the objective evaluation results of
three tasks. In Task 1 and 2, GETMusic significantly outperforms PopMAG across all metrics with a
p-value of less than 0.01 in the t-test. This highlights its ability to create music with more harmonious
melodies (higher CA and lower KLPitch) and more suitable rhythms (lower KLDur and KLIOI)
that align well with the provided source tracks. In Task 2, where all five accompaniment instruments
serve as source tracks, we achieve better scores in all metrics compared to the first task which relies
solely on the melody as the source track. This improvement caused by more generation conditions
aligns with intuitive expectations. In Task 3, GETMusic outperforms the competitive baseline
Museformer in most metrics. Subjective evaluations further confirm our effectiveness (Figure 4): In
every aspect, GETMusic’s human ratings outperform the competitive baselines. κ values for three
tasks are 0.69, 0.72, and 0.62, all indicating a substantial agreement among the evaluators.

Zero-shot generation Although GETMusic is trained for track-wise generation, it can zero-shot
recover masked tokens at any arbitrary locations, due to its the mask and denoising mechanism. The
zero-shot generation is examplified in case 3⃝ in Figure 1. This capability enhances the versatility and
creativity of GETMusic. For example, we can insert mask tokens in the middle of two different songs
to connect them: GETMusic generates a harmonious bridge by iteratively denoising the masked
tokens while preserving the rest of the tokens unchanged. Despite the challenges in evaluation, the
7th and 8th demos on the demo page showcase our approach’s flexibility and creativity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Objective evaluation on three representative tasks: the accompaniment/melody generation as
well as generating from scratch. In the third task, where ground truth chord progressions are absent,
CA evaluation is unavailable.

Method CA(%) ↑ KLPitch ↓ KLDur ↓ KLIOI ↓
Task 1: Accompaniment Generation

PopMAG 61.17 10.98 7.00 6.92
GETMusic 65.48 10.05 4.21 4.22

Task 2: Lead Melody Generation

PopMAG 73.70 10.64 3.97 4.03
GETMusic 81.88 9.82 3.67 3.49

Task 3: Generation from Scratch

Museformer - 8.19 3.34 5.71
GETMusic - 7.99 3.38 5.33

Melodic Rhythmic Integrity Overall
3.0

3.2

3.4

3.6

3.8

4.0

4.2

ra
tin

g

PopMAG
GETMusic

(a) Accompaniment Generation

Melodic Rhythmic Integrity Overall
3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

ra
tin

g

PopMAG
GETMusic

(b) Melody Generation

Melodic STS LTS Overall
3.0

3.2

3.4

3.6

3.8

4.0

4.2

ra
tin

g Museformer
GETMusic

(c) Generation from Scratch

Figure 4: Human evaluation ratings across three tasks.

5 METHOD ANALYSIS

GETScore and GETDiff are complementary. To demonstrate this, we replace GETDiff with
an autoregressive model. For the accompaniment generation task, we train a Transformer decoder
equipped with 14 prediction heads. At each decoding step, it predicts tokens in a column of GETScore.
This is denoted as GETMusic (AR). Table 2 highlights its suboptimal performance when compared to
the original GETMusic. Additionally, we present the average time required in seconds for composing
each musical piece using an Nvidia A100-80G GPU. Due to the considerably fewer denoising steps
(T = 100) compared to the extensive prediction steps required by an autoregressive model, GETDiff
exhibits notable speed advantages.

While it would be more informative to evaluate diffusion models trained with traditional sequence
representations, this approach is intractable. Firstly, due to the inherently higher computational
resource requirements of training a diffusion model compared to an autoregressive model, coupled
with the fact that traditional sequence representations are usually orders of magnitude longer than
GETScore when representing the same musical piece, the training cost becomes unaffordable for our
source. Furthermore, diffusion models require the specification of the generation length in advance.
Yet, the length of traditional sequences representing the same number of bars can vary in a wide
range, leading to uncontrollable variations in the generated music’s length and structure.

Based on above results and analyses, we contend that our GETScore and GETDiff together provide
an efficient and effective solution for versatile and diverse symbolic music generation.

Table 2: Ablation study on generation paradigms: Autoregressive vs. Non-autoregressive.

Method CA(%) ↑ KLPitch ↓ KLDur ↓ KLIOI ↓ Time ↓
PopMAG 61.17 10.98 7.00 6.92 23.32
GETMusic (AR) 46.25 11.91 7.08 6.49 17.13

GETMusic 65.48 10.05 4.21 4.22 4.80

Discrete diffusion models are better suited for symbolic music. Unlike continuous diffusion
models, which require thousands of denoising steps to generate a piece of music (Mittal et al.,
2021), discrete diffusion models achieve better results with just a hundred steps. As evidence of
this, we trained a continuous variant (abbr. CON) of our discrete diffusion model (abbr. DIS), with
hyperparameters following those detailed in (Mittal et al., 2021). The results are shown in Table 3.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Comparing a discrete diffusion model verse a continuous diffusion model.

Method CA(%) ↑ KLPitch ↓ KLDur ↓ KLIOI ↓
Accompaniment Generation

CON. 63.22 10.10 4.49 4.54
DIS. 65.48 10.05 4.21 4.22

Lead Melody Generation

CON. 78.51 10.25 3.80 3.88
DIS. 81.88 9.82 3.67 3.49

Generation from Scratch

CON. - 8.07 3.63 5.82
DIS. - 7.99 3.38 5.33

Performance across varied lengths is stable. In §4.3, Task 3 was tested with variable music
lengths, whereas the first two tasks maintained a fixed length of 128 beats. To investigate performance
across various lengths, we conducted the accompaniment generation with controlled lengths of 64
and 96 beats, respectively. Table 4 demonstrates the superior and stable performance of our method.

Table 4: Performance across varied lengths (Accompaniment Generation).

Method CA ↑ KLPitch ↓ KLDur ↓ KLIOI ↓
PopMAG (64 beats) 67.22 10.83 7.17 6.86
GETMusic (64 beats) 76.50 9.98 4.23 4.15
PopMAG (96 beats) 63.35 10.71 7.36 6.97
GETMusic (96 beats) 68.05 9.99 4.24 4.20

5.1 EXPLORING LEARNED EMBEDDINGS: A CASE STUDY ON GETSCORE

We have discovered that certain learned features within GETScore closely align with principles of
music theory. For instance, although C and Cm share two same notes out of their total three, the
relationship between these two chords resembles that of “gear” and “fear” in language—they seem
similar at first glance but diverge significantly in semantics. C and Cm fulfill distinct roles in chord
progression: while C evokes brightness, Cm evokes emotional feelings. The cosine similarity between
their GETScore embeddings is measured at 0.12. Nonetheless, disparate tonalities do not inherently
signify disconnection; for instance, C exhibits a stronger correlation with Am, its relative minor,
boasting a similarity score of 0.43. These learned features within our GETScore closely adhere to
music theories and underscore the effectiveness of GETScore.

5.2 EFFECTIVENESS OF CONDITION FLAGS

To evaluate the effectiveness of the condition flags, we remove them and re-train a diffusion model.
We compare the new diffusion model with the original GETDiff in accompaniment generation task.
We do not include the unconditional generation task in our report because the condition flags are all
designated as “False,” and their removal has minimal impact. The results are shown in Table 5. Given
the comparable loss, removing the condition flags has minimal impact on training and convergence,
but it leads to worse generation quality. This demonstrates that condition flags guide the model to
generate high-quality music, particularly in conditional generation scenarios.

Table 5: Ablation study on condition flags.

Method CA ↑ KLPitch ↓ KLDur ↓ KLIOI ↓ Loss ↓
GETMusic (AG) 65.48 10.05 4.21 4.22 1.39
− condition flags 45.16 10.89 6.32 5.34 1.40

6 CONCLUSION

We propose GETMusic, a unified representation and diffusion framework to effectively and efficiently
generate desired target tracks from scratch or based on user-provided source tracks, which can address
diverse composition needs. It has two core components: a novel representation GETScore and a
diffusion model GETDiff. GETMusic can compose music across various source-target combinations
and perform flexible zero-shot generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=h7-XixPCAL.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994. doi: 10.1109/72.279181.

Walshaw Christopher. The abc music standard 2.1. ABC notation standard, 2011. URL http:
//abcnotation.com/wiki/abc:standard:v2.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 8780–8794. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf.

Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. Musegan: Multi-track sequential
generative adversarial networks for symbolic music generation and accompaniment, 2017. URL
https://arxiv.org/abs/1709.06298.

Hao-Wen Dong, Ke Chen, Shlomo Dubnov, Julian McAuley, and Taylor Berg-Kirkpatrick. Multitrack
music transformer. In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2023.

Jeffrey Ens and Philippe Pasquier. MMM : Exploring conditional multi-track music generation
with the transformer. CoRR, abs/2008.06048, 2020. URL https://arxiv.org/abs/2008.
06048.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10696–10706,
June 2022.

Rui Guo, Dorien Herremans, and Thor Magnusson. Midi miner - A python library for tonal tension
and track classification. CoRR, abs/1910.02049, 2019. URL http://arxiv.org/abs/1910.
02049.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021. URL https://openreview.
net/forum?id=qw8AKxfYbI.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=6nbpPqUCIi7.

Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang. Compound word transformer:
Learning to compose full-song music over dynamic directed hypergraphs. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(1):178–186, May 2021. doi: 10.1609/aaai.v35i1.16091.
URL https://ojs.aaai.org/index.php/AAAI/article/view/16091.

Yu-Siang Huang and Yi-Hsuan Yang. Pop music transformer: Beat-based modeling and generation
of expressive pop piano compositions. In Proceedings of the 28th ACM International Conference
on Multimedia, MM ’20, pp. 1180–1188, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450379885. doi: 10.1145/3394171.3413671. URL https://doi.org/
10.1145/3394171.3413671.

11

https://openreview.net/forum?id=h7-XixPCAL
http://abcnotation.com/wiki/abc:standard:v2
http://abcnotation.com/wiki/abc:standard:v2
https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
https://arxiv.org/abs/1709.06298
https://arxiv.org/abs/2008.06048
https://arxiv.org/abs/2008.06048
http://arxiv.org/abs/1910.02049
http://arxiv.org/abs/1910.02049
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=6nbpPqUCIi7
https://ojs.aaai.org/index.php/AAAI/article/view/16091
https://doi.org/10.1145/3394171.3413671
https://doi.org/10.1145/3394171.3413671

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zeqian Ju, Peiling Lu, Xu Tan, Rui Wang, Chen Zhang, Songruoyao Wu, Kejun Zhang, Xiangyang
Li, Tao Qin, and Tie-Yan Liu. Telemelody: Lyric-to-melody generation with a template-based
two-stage method. CoRR, abs/2109.09617, 2021. URL https://arxiv.org/abs/2109.
09617.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathemati-
cal statistics, 22(1):79–86, 1951.

Ang Lv, Xu Tan, Tao Qin, Tie-Yan Liu, and Rui Yan. Re-creation of creations: A new paradigm for
lyric-to-melody generation, 2022. URL https://arxiv.org/abs/2208.05697.

Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic music generation with
diffusion models, 2021. URL https://arxiv.org/abs/2103.16091.

Yi Ren, Jinzheng He, Xu Tan, Tao Qin, Zhou Zhao, and Tie-Yan Liu. Popmag: Pop mu-
sic accompaniment generation. In Proceedings of the 28th ACM International Conference
on Multimedia, MM ’20, pp. 1198–1206, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450379885. doi: 10.1145/3394171.3413721. URL https:
//doi.org/10.1145/3394171.3413721.

Zhonghao Sheng, Kaitao Song, Xu Tan, Yi Ren, Wei Ye, Shikun Zhang, and Tao Qin. Songmass:
Automatic song writing with pre-training and alignment constraint. CoRR, abs/2012.05168, 2020.
URL https://arxiv.org/abs/2012.05168.

Li Shuyu and Yunsick Sung. Melodydiffusion: Chord-conditioned melody generation using a
transformer-based diffusion model. Mathematics 11, no. 8: 1915., 2023. URL https://doi.
org/10.3390/math11081915.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL https://
proceedings.mlr.press/v37/sohl-dickstein15.html.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Inter-
national Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=St1giarCHLP.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Zhicong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Improved vector quantized
diffusion models, 2022. URL https://arxiv.org/abs/2205.16007.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. Midinet: A convolutional generative adversarial
network for symbolic-domain music generation using 1d and 2d conditions. CoRR, abs/1703.10847,
2017. URL http://arxiv.org/abs/1703.10847.

Botao Yu, Peiling Lu, Rui Wang, Wei Hu, Xu Tan, Wei Ye, Shikun Zhang, Tao Qin, and Tie-Yan
Liu. Museformer: Transformer with fine- and coarse-grained attention for music generation.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=GFiqdZOm-Ei.

Mingliang Zeng, Xu Tan, Rui Wang, Zeqian Ju, Tao Qin, and Tie-Yan Liu. MusicBERT: Symbolic
music understanding with large-scale pre-training. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pp. 791–800, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.findings-acl.70. URL https://aclanthology.org/
2021.findings-acl.70.

12

https://arxiv.org/abs/2109.09617
https://arxiv.org/abs/2109.09617
https://arxiv.org/abs/2208.05697
https://arxiv.org/abs/2103.16091
https://doi.org/10.1145/3394171.3413721
https://doi.org/10.1145/3394171.3413721
https://arxiv.org/abs/2012.05168
https://doi.org/10.3390/math11081915
https://doi.org/10.3390/math11081915
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://arxiv.org/abs/2205.16007
http://arxiv.org/abs/1703.10847
https://openreview.net/forum?id=GFiqdZOm-Ei
https://openreview.net/forum?id=GFiqdZOm-Ei
https://aclanthology.org/2021.findings-acl.70
https://aclanthology.org/2021.findings-acl.70

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chen Zhang, Yi Ren, Kejun Zhang, and Shuicheng Yan. Sdmuse: Stochastic differential music
editing and generation via hybrid representation, 2022. URL https://arxiv.org/abs/
2211.00222.

Hongyuan Zhu, Qi Liu, Nicholas Jing Yuan, Chuan Qin, Jiawei Li, Kun Zhang, Guang Zhou, Furu
Wei, Yuanchun Xu, and Enhong Chen. Xiaoice band: A melody and arrangement generation
framework for pop music. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’18, pp. 2837–2846, New York, NY, USA, 2018.
Association for Computing Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3220105.
URL https://doi.org/10.1145/3219819.3220105.

A DATA DETAILS

Cleansing data We perform a data cleansing process by four steps. Firstly, we employ MIDI
Miner (Guo et al., 2019) to identify the melody track. Secondly, we condense the remaining tracks
into five instrument types: bass, drum, guitar, piano, and string. Thirdly, we apply filtering criteria to
exclude data that contains a minimal number of notes, has less than 2 tracks, exhibits multiple tempos,
or lacks the melody track. Fourthly, for all the data, we utilize the Viterbi algorithm implemented
by Magenta6 to infer the corresponding chord progression for each music piece. This serves as an
additional guide for composition. Further details are discussed below. Lastly, we convert these data
into GETScores and segment them into fragments of up to 512 time units.

Chord progression A chord progression in music refers to a specific sequence of chords that are
played or harmonized in a particular order. Chords, which are combinations of two or more notes
played simultaneously, serve as the fundamental elements of harmony in music. The use of chord
progressions is crucial in defining the harmony and structure of a musical composition. They play a
significant role in determining the mood, emotional impact, and overall direction of the music. For
instance, “C - Am - F - G” usually evokes an atmosphere of sadness and nostalgia.7 Consequently,
chord progressions are commonly used as a guiding framework in the creation of music (Zhu et al.,
2018; Lv et al., 2022; Ju et al., 2021).

In GETScore, we arrange the chord progression as an extra track and it differs from regular instru-
mental tracks in some aspects: Although certain commonly used chords may appear in specific
instrumental tracks and have been represented as pitch tokens, we do not reuse these tokens to ensure
that the chord progression track provides equitable guidance for each individual track. GETMusic
incorporates 12 chord roots: C, C#, D, D#, E, F, F#, G, G#, A, A#, B and 8 chord
qualities: major, minor, diminished, augmented, major7, minor7, dominant, and
half-diminished. In the chord progression track, we allocate the chord root in the first row and
the quality in the second row. The chord track is entirely filled, without any paddings. Figure 5 is an
illustrative configuration of GETScore used for training.

Vocabulary In the last step of the cleansing process mentioned above, the construction of the
vocabulary is essential before converting music fragments into GETScores. In GETScore, each track
has its own pitch vocabulary, while the duration vocabulary is shared among all tracks. The maximum
duration considered in this paper is 16 time units, resulting in a total of 17 duration tokens ranging
from 0 (the special duration token for drums) to 16 time units. The final vocabulary consists of
17 duration tokens, 20 chord tokens, a padding token, a [MASK] token, an [EMPTY] token, and
specific pitch tokens for each track: 128 for lead, 853 for bass, 4,369 for drums, 1,555 for piano,
3,568 for guitar, and 1,370 for strings. In total, the vocabulary consists of 11,883 tokens.

After implementing rigorous cleansing and filtering procedures, we produced approximately 140,000
high-quality GETScores, equivalent to approximately 3,000 hours, with the maximum L as 512. We
sampled 1,000 GETScores for validation, 1,000 for testing, and the rest for training.

6https://github.com/magenta/magenta
7C, Am, and similar symbols are chord names. To provide an illustrative example, here is a song featuring

this chord progression: https://www.youtube.com/watch?v=qiiyq2xrSI0&t=53s

13

https://arxiv.org/abs/2211.00222
https://arxiv.org/abs/2211.00222
https://doi.org/10.1145/3219819.3220105
https://github.com/magenta/magenta
https://www.youtube.com/watch?v=qiiyq2xrSI0&t=53s

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0 0 0 0 0 0 0

Melody

Figure 5: An example case showing GETScores used in our experiments. It has 6 instrumental tracks
and an extra chord-progression track. During training, selected source tracks are preserved and target
tracks are corrupted, as discussed in §3.2. During inference, specified source tracks are preserved,
and all other parts are masked for the denoising process of GETDiff, resulting in the generation of
new content.

B HUMAN EVALUATION GUIDELINES AND METRICS

For the accompaniment generation task, evaluators focused on several key aspects Zhu et al. (2018):

• Melodic: Are the musical notes harmonious?

• Rhythmic: Is the accompaniment fluent with appropriate pauses?

• Integrity: Does the structure of the accompaniment feel complete and devoid of abrupt interrup-
tions?

• Overall: How well does the accompaniment integrate with the melody?

When evaluating melody generation, similar criteria were employed, with evaluators focusing on the
aspects mentioned above for the melody rather than the accompaniment.

The third task, unconditional generation, requires evaluators to consider following aspects (Yu et al.,
2022):

• Melodic: Are the musical notes harmonious?

• Short-Term Structure (STS): Are there well-crafted structures in adjacent sections, such as good
repetitions and effective development?

• Long-Term Structure (LTS): Does the piece demonstrate cohesive structures in longer distances,
like song-level repetitions?

• Overall: An aggregate rating of the generated music, which needs to consider melody, rhythm, and
structure comprehensively.

Evaluators assigned ratings on a scale from 1 (Poor) to 5 (Excellent). Each evaluator received an
hourly wage of $8, and the total evaluation process took approximately 5 hours for each group.

14

	Introduction
	Background
	Symbolic music generation
	Diffusion models

	GETMusic
	GETScore
	GETDiff

	Experiments
	Experiment settings
	Evaluation metrics
	Generation results

	Method analysis
	Exploring learned embeddings: a case study on GETScore
	Effectiveness of condition flags

	Conclusion
	Data details
	Human evaluation guidelines and metrics

