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ABSTRACT

In this paper, we present F2ED-LEARNING, the first federated learning protocol
simultaneously defending against both a semi-honest server and Byzantine mali-
cious clients. Using a robust mean estimator called FilterL2, F2ED-LEARNING
is the first FL protocol providing dimension-free estimation error against Byzan-
tine malicious clients. Besides, F2ED-LEARNING leverages secure aggregation to
protect the clients from a semi-honest server who wants to infer the clients’ infor-
mation from the legitimate updates. The main challenge stems from the incompat-
ibility between FilterL2 and secure aggregation. Specifically, to run FilterL2, the
server needs to access individual updates from clients while secure aggregation
hides those updates from it. We propose to split the clients into shards, securely
aggregate each shard’s updates and run FilterL2 on the updates from different
shards. The evaluation shows that F2ED-LEARNING consistently achieves opti-
mal or close-to-optimal performance under three attacks among five robust FL
protocols.

1 INTRODUCTION

Federated learning (FL) has drawn numerous attention in the past few years as a new distributed
learning paradigm. In federated learning, the users collaboratively train a model with the help of a
centralized server when all the data is held locally to preserve the users’ privacy. The privacy guaran-
tee can be further enhanced using secure aggregation technique (Bonawitz et al., 2017) which hides
the individual local updates and only reveals the aggregated global update. The graceful balance
between utility and privacy popularizes federated learning in a variety of sensitive applications such
as Google GBoard, healthcare service and self-driving cars.

The above threat model assumes that all the users honestly upload their local updates. However, it is
likely that a small number of clients are malicious in a large-scale FL system with tens of thousands
of clients. Besides, in most SGD-based FL algorithms used today (McMahan & Ramage, 2017),
the centralized server averages the local updates to obtain the global update, which is vulnerable to
even only one malicious client. Therefore, a malicious client can arbitrarily craft its update to either
prevent the global model from converging or lead it to a sub-optimal minimum. This kind of attack
in federated learning is well-studied by Bhagoji et al. (2019); Fang et al. (2019); Bagdasaryan et al.
(2020); Sun et al. (2020).

To mitigate these attacks, various Byzantine-robust FL protocols (Blanchard et al., 2017; Yin et al.,
2018; Fu et al., 2019; Pillutla et al., 2019) are proposed to reduce the impact of the contaminated
updates. These protocols replace trivial averaging with well-designed Byzantine-robust mean esti-
mators. These estimators suppress the influence of the malicious updates and output a mean estima-
tion as accurate as possible. Nevertheless, almost all of these aggregators suffer from the curse of
dimensionality. Specifically, the estimation error scales up with the size of the model in a square-
root fashion. As a concrete example, a three-layer MLP on MNIST contains more than 50,000
parameters and leads to a 223-fold increase of the estimation error, which is prohibitive in prac-
tice. Draco (Chen et al., 2018), BULYAN (Mhamdi et al., 2018) and ByzatineSGD (Alistarh et al.,
2018) are the only three works that state to yield dimension-free estimation error. However, Draco
is designed for distributed learning and is incompatible with federated learning because it requires
redundant updates from each worker. On the other hand, although Bulyan (Mhamdi et al., 2018)
and ByzantineSGD (Alistarh et al., 2018) provide dimension-free estimation error, it is based on
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much stronger assumptions than other works. When the assumptions are relaxed to the common
case, Bulyan’s estimation error still scales up with the square root of the model size as discussed in
Section 2.

In addition, these robust FL protocols have incompatible implementation with secure aggregation
techniques. The robust estimators have to access local updates while secure aggregation hides them
from the server. Consequently, the system cannot simultaneously protect the server and the clients,
but has to place complete trust in either of them. The lack of two-way protection severely harms
the people’s confidence in the FL system and prevents federated learning from being used in many
sensitive applications such as home monitoring and self-driving cars.

Contribution. In this paper, we propose FEDERATED LEARNING WITH FENCE, abbreviately
F2ED-LEARNING. F2ED-LEARNING integrates a robust mean estimator with dimension-free er-
ror (Steinhardt, 2018) and secure aggregation (Bonawitz et al., 2017) to defend against both the
Byzantine malicious clients and the semi-honest server. In particular, F2ED-LEARNING is the first
Byzantine-robust FL system with dimension-free estimation error. To address the incompatibility,
the clients are split into multiple shards, the local updates from the same shard are securely aggre-
gated at the centralized server, and the robust estimator is run on the aggregated local updates from
different shards. Surprisingly, sharding also consolidates the independently and identically dis-
tributed (IID) assumption required by the robust estimator even under heterogeneous data distribu-
tion. According to Lindeberg central limitation theorem (Lindeberg, 1922), despite the heterogene-
ity of the individual local updates, the aggregated local updates from the shards will approximately
follow an IID Gaussian distribution.

2 LOOPHOLE IN BULYAN AND BYZANTINESGD & RELATED WORK

Byzantine-robust aggregation has drawn enormous attention in the past few years due to the emer-
gence of various distributed attacks in federated learning. Fang et al. (2019) formalize the attack as
an optimization problem and successfully migrate the data poisoning attack to federated learning.
The proposed attacks even work under Byzantine-robust federated learning. Sun et al. (2020) man-
age to launch data poisoning attack on the multi-task federated learning framework. Bhagoji et al.
(2019) and Bagdasaryan et al. (2020) even manage to insert backdoor functionalities into the model
via local model poisoning or local model replacement.

A variety of Byzantine-robust FL protocols are proposed to defend against these attacks.
Krum (Blanchard et al., 2017) picks the subset of updates with enough close neighbors and av-
erages the subset. Yin et al. (2018) leverage traditional robust estimators like trimmed mean or
median to achieve order-optimal statistical error rate under strongly convex assumptions. Yin et al.
(2019) propose to use robust mean estimators to defend against saddle point attack. Mhamdi et al.
(2018) pointed out that Krum, trimmed mean and median all suffers from O(

√
d) (d is the model

size) estimation error and proposed a general framework Bulyan to reduce the error to O(1). How-
ever, we point out that the improvement of Bulyan actually comes from its stronger assumption. In
particular, Bulyan assumes that expectation of the distance between two benign updates is bounded
by a constant σ1, while Krum assumes that the distance is bounded by σ2

√
d. We can easily see that

if σ1 = σ2

√
d, Bulyan falls back to the same order of estimation error as Krum. The same loophole

exists in the analysis of ByzantineSGD (Alistarh et al., 2018). Consequently, there is no known
federated learning protocol with dimension-free estimation error against Byzantine adversaries.

3 PROBLEM SETUP

In this section, we review the general pipeline of federated learning, introduce the threat model, and
establish the notation system. We use bold lower-case letters (e.g. a,b,c) to denote vectors, and bold
upper-case letters (e.g. A, B, C) for matrices. We denote 1 · · ·n with [n].

Federated Learning Pipeline. In a federated learning system, there are one server S and n clients
Ci, i ∈ [n]. Each client holds data samples drawn from some unknown distributionD. Let `(w; z) be
the loss function on the model parameter w ∈ Rd and a data sample z. Let L(w) = Ez∼D[`(w; z)] be
the population loss function. Our goal is to learn the model w such that the population loss function
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is minimized:
w∗ = arg min

w∈W
L(w).

To learn w∗, the whole system runs a T -round federated learning protocol. Initially, the server stores
a global model w0. In the tth round, S broadcasts the global model wt−1 to them clients. The clients
then run the local optimizers (e.g. SGD, Adam, and RMSprop), compute the difference g(i)

t between
the optimized model and the global model, and upload the difference to S . In the tth round, S takes
the average of the differences and update the global model wt = wt−1 + 1

n

∑n
i=1 g(i)

t .

Threat Model & Defence Goal. We assume that the centralized server S is semi-honest. The
server can launch whatever attacks such as inference attack using legitimate updates from the clients
as the only inputs. However, the server cannot deviate from the protocol for the sake of regulation or
reputation pressure. Specifically, we want to emphasize there is no collusion between the server and
the clients. On the other hand, we assume that the clients are ε-Byzantine malicious, which means
at most εm clients can be malicious. Malicious clients can arbitrarily deviate from the protocol and
tamper with their own updates without being detected.

In this paper, we aim to achieve a dimension-free error for the mean estimation in each round. Let
µ be the true mean of the benign distribution and the output of a protocol with contaminated inputs
be µ̂. The estimation error is defined by the `2 distance between the true mean and the estimation
‖µ̂− µ‖2.

4 F2ED-LEARNING: ROBUST PRIVACY-PRESERVING DISTRIBUTED FL

In this section, we formally present our main protocol: F2ED-LEARNING. We first introduce F2ED-
LEARNING step by step and formally establish the robustness and security guarantees. Then we
discuss the effect of sharding on the IID distribution assumption.

4.1 F2ED-LEARNING: BYZANTINE-ROBUST PRIVACY-PRESERVING FEDERATED LEARNING

The complete F2ED-LEARNING protocol is presented in Algorithm 1. F2ED-LEARNING iteratively
executes the following steps: (1) the server broadcasts the global model to the clients; (2) clients
train the global model with their local data; (3) clients in the same shard run secure aggregation
protocol to upload the mean of their updates to the server; (4) the server aggregates the received
updates using robust mean estimation; (5) the server updates the global model with the aggregated
global update. We highlight step (3) and (4) newly proposed in F2ED-LEARNING.

Sharded Secure Aggregation (line 8-10, 12, 16). Secure aggregation is developed by Bonawitz
et al. (2017) to defend against the honest but curious server in federated learning. Secure aggregation
allows the server to obtain the sum of the clients’ updates but hides the individual updates crypto-
graphically. We introduce an oversimplified version of secure aggregation as follows for the ease
of clarification. As the first step, each client samples random values for the other clients and send
the values to the corresponding clients (line 8-10). After receiving all the values from other clients,
each client sums up the received values and subtracts the values generated by itself to produce a
random mask (line 12). Each client blinds its local update with the random mask and sends the
blinded update to the server (line 13). The server then sums up all the blinded updates and obtains
the summed update in plaintext (line 15). Obviously, all the masks cancel out during aggregation
and the server receives the plaintext sum. Secure aggregation provides strong privacy guarantee for
the clients that the server cannot see anything but the aggregated global update and each client is
hidden in thousands of other clients.

However, in our threat model, vanilla secure aggregation is insufficient since it provides no protec-
tion for the server. As the individual updates are completely hidden, there is no way that the server
can identify the malicious clients even after detecting the attack. To address the issue, we propose
to split the clients into multiple shards and run secure aggregation within each shard. The size of
the shards provides a trade-off between the protection for the server or the clients. The smaller the
size is, the more information is revealed to the server, thus the easier to defend against Byzantine
malicious clients and the harder to fight off the semi-honest server. The trade-off is discussed in
detail in Section 4.2.
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Algorithm 1: F2ED-LEARNING: Robust Privacy-Preserving Sharded Federated Learning.
1 for t← [T ] do
2 Server:
3 Split n clients into p shards {Hj}j∈[p]

4 Broadcast {Hj}j∈[p] and the global model wt−1 to all the clients
5 Client:
6 foreach client i ∈ [n] do
7 Locate its own shard j
8 Generate random masks u(j)

ik , k ∈ Hj/i
9 foreach k ∈ Hj/i do

10 Send uik to k
11 Train the local model w(i)

t using wt as initialization
12 g(i)

t = w(i)
t − wt−1 +

∑
k 6=i,i∈Hj ,k∈Hj u(j)

ik −
∑
k 6=i,i∈Hj ,k∈Hj u(j)

ki

13 Send g(i)
t to the server

14 Server:
15 foreach Hj ∈ {Hj}j∈[p] do
16 gHjt =

∑
k∈Hj g(k)

t

17 gt = 1
|Hj |FilterL2({gHjt }j∈[p])

18 wt = wt−1 + gt

Robust Mean Estimation (line 17). The core step in Byzantine-robust federated learning is to
estimate the true mean of the benign updates as accurate as possible even with some malicious
clients. The most commonly used aggregator, averaging, is proven to be vulnerable to even only
one malicious client. All other works addressing the issue such as Krum (Blanchard et al., 2017)
and Bulyan (Mhamdi et al., 2018) suffer from a dimension-dependent estimation error. Such error
is unacceptable even for training a 3-layer MLP on MNIST, not to mention more complicated tasks
and models such as VGG16 or ResNet50.

Actually, the above problem is well studied in statistics under the name “robust mean estimation”
and there already exist several robust mean estimators with dimension-free estimation error (Di-
akonikolas et al. (2019); Charikar et al. (2017); Steinhardt (2018); Cheng et al. (2019); Dong et al.
(2019)). Therefore, instead of reinventing the wheel, we choose to leverage a representative robust
mean estimator: FilterL2 (Algorithm 2). The following formulation is related to the presentation
given in Steinhardt (2018).

Algorithm 2: FilterL2: dimension-free robust mean estimation (Steinhardt (2018)).

Input: g1, · · · , gn ∈ Rd, η > 1
1 Let c1, · · · , cn = 1
2 µ̂c = (

∑n
i=1 cigi)/(

∑n
i=1 ci)

3 Σ̂c = (
∑n
i=1 ci(gi − µ̂c)(gi − µ̂c)>)/(

∑n
i=1 ci)

4 Let v be the maximum eigenvector of Σ̂c, and let σ̂2
c = v>Σ̂cv

5 if σ̂2
c ≤ ησ2 then return µ̂c

6 else let τ = 〈xi − µ̂c〉2, and update ci ← ci · (1− τi/τmax), where τmax = maxi τi
7 Go back to line 2

Specifically, FilterL2 assigns each update a weight and iteratively updates the weights until the
weights for the malicious updates are small enough. As mentioned, FilterL2 provides dimension-
free error rate formally presented as follows.

Theorem 1 (Steinhardt (2018)). Let D be the honest dataset and D∗ be the contaminated version
of D by inserting malicious samples. Suppose that |D∗| ≤ |D|/(1 − ε), ε ≤ 1

12 , and further

4



Under review as a conference paper at ICLR 2021

suppose that MEAN[D] = µ and ‖COV[D]‖op ≤ σ2. Then given D∗, Algorithm 2 outputs µ̂ s.t.
‖µ̂− µ‖2 = O(σ

√
ε) using POLY(n, d) time.

Although Algorithm 2 only takes polynomial time to run, the per-round time complexity isO(nd2) if
implemented with power iteration. Given d is large, the running time is still quite expensive in prac-
tice. To address the issue, we cut the update vectors into k sections and apply the robust estimator to
each of the sections. The acceleration scheme reduces the per-round running time to O(nd2/k) but
increases the estimation error to O(σ

√
k). For instance, if we take k =

√
d, the per-round running

time becomes O(nd) while the estimation error grows to O(σ
4
√
σ2d). Despite the compromise for

acceleration, FilterL2 still gives the known optimal estimation error and outperforms other robust
FL protocols by multiple magnitudes.

4.2 ROBUSTNESS & SECURITY ANALYSIS

In this section, we rigorously present the security and robustness guarantee of F2ED-LEARNING.

Security Guarantee. We first give the security guarantee of F2ED-LEARNING as follows. Intu-
itively, no more information about the clients except the averaged updates from the shards is revealed
to the centralized server. Thus, each client’s update is hidden in all the other clients in its shard. The
proof is deferred to A.
Corollary 1 (Security against honest-but-curious server; Informal). There exists a PPT (probabilis-
tic polynomial Turing machine) simulator which can only see the averaged updates from the shards
and its output is computationally indistinguishable from the transcript of F2ED-LEARNING.

Robustness Guarantee. We now give the formal robustness guarantee of F2ED-LEARNING. The
proof is deferred to Appendix B.
Corollary 2 (Robustness against Byzantine adversaries). Given the number of clients n, the number
of shards p and the fraction of corrupted clients ε, F2ED-LEARNING provides a mean estimation
with dimension-free error as long as 12εn < p.

Remark. Given the formal security and robustness guarantee, we can see that F2ED-LEARNING
actually provides a convenient way to calibrate the protection for the server or the clients. Con-
cretely, F2ED-LEARNING can tolerate up to b p12c−1 malicious clients and hide each honest client’s
update in the mean of bnp c updates.

4.3 DISCUSSION ON THE I.I.D. DISTRIBUTION ASSUMPTION IN COROLLARY 2

To derive Corollary B, we assume that the updates from the benign clients are drawn IID from some
distribution D. In this section, we explore the rationality of the assumption.

Source of Non-IID updates in FL. It is well known that in FL, data is heterogeneously distributed
across clients. Therefore, the collected updates typically do not follow IID distribution under any
proper distribution. Another source of non-IID updates in FL is the random initialization of local
models. As known, many neural networks is permutation-invariant. For instance, in a two-layer
fully connected network, the neurons in the two layers can be permuted correspondingly without
changing the functionality of the network. Therefore, even with the same training data, different
initialization can lead to different models within the same permutation-invariant class.

To overcome the second issue, we take the old-fashioned solution by requiring the clients to share
the same initialization before the training phase starts. Note that there is a line of work (Yurochkin
et al., 2019a;b; Wang et al., 2020) focusing on addressing the issue using matching algorithm and
Bayesian non-parametric model. We deem it as an interesting future direction to integrate these
works in F2ED-LEARNING.

For the rest of the section, we ignore the second issue and focus on the first issue. We formally model
the heterogeneous data distribution under some explicit assumptions and discuss how sharding ad-
dresses the first issue under such assumptions. Note that with sharding we do not solve the slow
convergence issue in FL due to non-IID updates. Instead, we only create an IID distribution among
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shards to solidate the IID assumption required in the proof of 2. However, the distribution is highly
biased and still suffers from low convergence rate due to the intrinsic non-IID data distribution.

From non-I.I.D. to I.I.D. It is a widely accepted assumption in traditional distributed learning
theory that the updates should be independently and identically distributed. The assumption is rea-
sonable in the sense that the server can decide how to distribute the data to the workers in traditional
distributed learning. However, in federated learning, the data is generated by the clients locally so
the updates are not necessarily and typically not IID distributed. This poses a challenge on the ro-
bustness analysis. Now we propose a novel perspective to conduct robustness analysis in federated
learning. Succinctly, by aggregating the shards first, we are able to reduce the non-IID distribution
to an IID distribution. As the first step, we model the heterogeneous update distribution in federated
learning as follows.
Definition 1 (Heterogeneous Distribution). Let D be a set of k distributions D = {Di}i∈[k] where
E[Di] = µi and V[Di] = σ2

i . Each client Cj’s update gj follows a distribution Dφ(j) where φ is a
mapping from the client index to the distribution index.

Note that in the definition we use scalar data for the ease of clarification. The formalization can be
easily extended to data vectors by separately considering each dimension. The definition captures
the most important feature that each client’s update is drawn from different distributions.

As the second step, we analyze the influence of sharding on the update distribution. Surprisingly,
sharding pushes the non-IID distribution to a well-regulated IID distribution according to Lindeberg
central limit theorem.
Theorem 2 (Lindeberg Central Limit Theorem (Linnik (1959))). Suppose {X1, · · · , Xn} is a se-
quence of independence random variables (not necessarily identically distributed), each with finite
expected value µi and variance σ2

i . Define s2
n =

∑n
i=1 σ

2
i . Suppose that ∀ε > 0,

lim
n→∞

1

s2
n

n∑
i=1

E[(Xi − µi)2 · 1{|Xi − µi| > εsn}] = 0.

Then the distribution of the standardized sums converges towards the standard normal distribution.

1

sn

n∑
i=1

(Xi − µi)
d→ N(0, 1) (1)

Give Definition 1 and Theorem 2, the following corollary follows naturally. The proof is deferred to
Appendix C.
Corollary 3 (IID after Sharding). Assume that the updates from the clients follow Definition 1
where k � n

p . Besides, lim|H|→∞
1
s2H

∑
i∈H E[(gi − µi)2 · 1{|gi − µi| > εsH}] = 0 where s2

H =∑
i∈H σ

2
φ(i). Given the uniform randomness of sharding, we can view the distribution index φ(j) as

drawn from some distribution Φ on [k]. Let µ̄ =
∑
x∈[k] Φ(x = i)µi and σ̄2 =

∑
x∈[k] Φ(x = i)σ2

i .
Then,

1

|H|
∑
i∈H

gi
d→ N(µ̄,

σ̄2

|H|
)

.
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Figure 1: Distribution w/ (w/o) sharding.

Empirical Validation. To validate the claim empir-
ically, we simulate heterogeneous data distribution by
assigning MNIST samples with different labels to 25
clients. These clients are split into 5 shards. We plot the
distributions of the updates before and after sharding as
shown in Figure 1. Each line represents the weight dis-
tribution within one update. Figure 1a plots five updates
from the same shard and Figure 1b plots the averaged
updates from the five shards. It is obvious that after
sharding the distributions are more densely and identi-
cally distributed as discussed above.
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5 EVALUATION

In this section, we want to answer the following questions using empirical evaluation: (1) Does
FilterL2 outperforms other aggregators when used alone? (2) Does F2ED-LEARNING outperform
other robust FL protocols augmented with sharded secure aggregation?

5.1 ATTACKS

To answer the above questions, we evaluated the robust estimators without attack and with several
representative attacks. We focus on three of these attacks in the main text and defer one another
attack to Appendix D.

The first and second attacks we used are the model poisoning attacks from Fang et al. (2019). The
aim of the model poisoning attacks is to increase the error rate of the converged model even facing
Byzantine-robust protocols. In these attacks, the malicious clients search for poisoning updates by
solving an optimization problem. We employ two attacks proposed in their work targeting at Krum
and Trimmed Mean. These two attacks are henceforth referred to as Krum attack (KA) and trimmed
mean attack (TMA).

The third attack we considered is a backdoor attack from Bhagoji et al. (2019). The attack aims to
insert a backdoor functionality while preserving high accuracy on the validation set. Similarly, the
search for the attack gradient is formalized as an optimization problem and the authors tweak the
objective function with some stealth metrics to make the attack gradient hard to detect. We refer to
the attack as Model Poisoning Attack (MPA) in the rest of the section.

5.2 EXPERIMENTAL SETUP

We selected two datasets: MNIST (LeCun et al. (2010)) and FashionMNIST (Xiao et al. (2017)),
and three other Byzantine-robust federated learning protocols to compare with: (1) Krum (Blan-
chard et al. (2017)); (2) Trimmed Mean (Yin et al. (2018)); and (3) Bulyan (Mhamdi et al. (2018)).
Note that Bulyan acts like a wrapper around other robust estimators so in the evaluation we have two
versions of Bulyan: Bulyan Krum and Bulyan Trimmed Mean. We ran all the protocols on the two
datasets and present the attack performance under these protocols. Attack performance is measured
differently according to the different attack targets. For KA and TMA, we use the model accuracy
as the metric for characterizing attack performance. Higher model accuracy indicates stronger ro-
bustness. For MPA, we use the percentage of the remembered backdoors to represent the attack
performance. The fewer backdoors remembered, the more robust the estimator is. In the IID setting,
the data is shuffled and partitioned into all the clients, each receiving the same number of examples.
In the non-IID setting, each client is assigned data with 3 labels. FilterL2 used in the evaluation is
the accelerated version as discussed in Section 4.1.

5.3 EVALUATION RESULTS

FilterL2 Performance. To answer question (1), we evaluated 6 aggregators on MNIST and Fash-
ionMNIST as shown in Figure 2 and Figure 3. We ran the protocols with 20 clients with IID data
distributions. 5 of the clients are malicious under attacks. Note that the number of the malicious
clients actually exceeds the bound in Corollary 2 because some attacks only work with enough
malicious clients.

Not surprisingly, FilterL2 achieves optimal performance among all 6 aggregators. Besides, FilterL2
is the only aggregator that consistently achieves good performance under all three attacks. The
superiority of FilterL2 is owed to its quad-root estimation error. Due to the theoretically stronger
robustness, it is extremely hard to design targeted attacks for FilterL2 like Krum or trimmed mean.
In the non-IID setting, all the estimators cannot perform well since the IID assumption is broken.

F2ED-LEARNING Performance. To answer question (2), we evaluated six aggregators with shard-
ing on MNIST and FashionMNIST as shown in Figure 4 (homogeneous distribution) and Figure 5
(heterogeneous distribution). We ran the protocols with 100 clients, ten of which are malicious under
attacks. The 100 clients were randomly split into 25 shards.
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(a) MNIST non-attack.
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(b) MNIST under KA.
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(c) MNIST under TMA.
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(d) MNIST under MPA.
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(e) FashionMNIST non-attack.
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(f) FashionMNIST under KA.
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(g) FashionMNIST under TMA.
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(h) FashionMNIST under MPA.
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Figure 2: Attack performance under different Byzantine-robust estimators with IID data distribution.
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(a) MNIST non-attack.

0 5 10 15 20 25 30
0

20

40

60

80

100

# Epoch

M
od

el
A

cc
ur

ac
y

(%
)

(b) MNIST under KA.
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(c) MNIST under TMA.
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(d) MNIST under MPA.
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Figure 3: Attack performance under different estimators with non-IID data distribution.
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(a) MNIST non-attack.
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(b) MNIST under KA.
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(c) MNIST under TMA.
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(d) MNIST under MPA.
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(e) FashionMNIST non-attack.
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(f) FashionMNIST under KA.
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(g) FashionMNIST under TMA.
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(h) FashionMNIST under MPA.
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Figure 4: Attack performance under different estimators with sharded secure aggregation with IID data distri-
bution.
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(a) MNIST non-attack.
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(b) MNIST under KA.
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(c) MNIST under TMA.
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Figure 5: Attack performance under different estimators with sharded secure aggregation with non-IID data
distribution.

In both IID and non-IID settings, for the experiments without attack, with TMA or with MPA (Fig-
ure 4a,4c,4d,4e.4g,4h, 5a, 5c, 5d), F2ED-LEARNING still achieves optimal or close-to-optimal per-
formance. An interesting phenomenon is that KA can be successfully defended by all aggregators
when the clients are sharded (Figure 4b,4f). The reason is that KA is targeted at Krum without
sharding and wants to maximize the probability that a malicious update is chosen by Krum.

Once integrated with sharding, Krum selects from the averaged updates from the shards, and thus the
effect of the malicious update is diluted. This demonstrates that sharding itself can defend against
some attacks by diluting the effect of malicious updates. Compared with the non-IID setting without
sharding (Figure 3), all of the aggregators perform better under different attacks which benefit from
the approximate IID distribution among shards.
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Figure 6: MNIST under
TMA with different number
of shards.

Influence of Shard Size. As a new hyper-parameter: the number of
shards p (aka the shard size n

p ), is introduced in F2ED-LEARNING, we
empirically evaluate its influence as shown in Figure 6. The results in
Figure 6 also clearly exhibit the trade-off between security and robust-
ness guarantee via tuning p. When the number of shards equals the
number of clients, the system is equivalent to FilterL2 without shard-
ing and achieves optimal model accuracy. However, under such setting,
the centralized server has access to each client’s individual update and
F2ED-LEARNING provides no further security guarantee than vanilla
FL. When the number of shards converges to one, the system degrades
to simple averaging with secure aggregation with the strongest security
but the weakest robustness. When the number of shards lies between
the two extremes, the model accuracy gradually changes under TMA as shown in Figure 6.

6 CONCLUSION & FUTURE DIRECTION

In this paper, we designed and developed F2ED-LEARNING, the first federated learning protocol
defending against an honest but curious server and Byzantine malicious clients simultaneously. We
propose to use FilterL2 to robustly aggregate the possibly contaminated updates and secure aggrega-
tion to protect the privacy of the clients. We reconcile the contradictory components with sharding.
The evaluation results show that F2ED-LEARNING consistently achieves the optimal or close-to-
optimal performance among five robust FL protocols. As far as we can see, F2ED-LEARNING
addresses the two main privacy threats in FL systems simultaneously and shows the potential to
further popularize FL in sensitive applications.

We also identify several unsolved challenges in F2ED-LEARNING which might motivate future
works in FL with two-way protection. For instance, vanilla FilterL2 brings large overhead due
to its high complexity. Although the accelerated FilterL2 partially addresses the issue, it sacrifices
the asymptotic estimation error for the speedup. An interesting future direction is to integrate robust
mean estimators with low complexity such as Cheng et al. (2019). However, Cheng et al. (2019)’s
approach is rather complicated so designing low-complexity robust mean estimator with simple in-
tuition is also an intriguing direction.
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A PROOF OF COROLLARY 1

Proof. Corollary 1 is equivalent to the following lemma.

Lemma 1 (Lemma 6.1 in Bonawitz et al. (2017)). Given the number of the shards p, the parameter
size d, the group size q, and the updates gHi where ∀i ∈ [p], gHi ∈ Zdq , we have

{{uij
$← Zdq}i<j ,uij := −uji,∀i > j : {gHi +

∑
j∈[p]/i

uij (mod q)}i∈[p]}

≡{{vi
$← Zdq}i∈[p]} s.t.

∑
i∈[p]

vi =
∑
i∈[p]

gHi (mod q) : {vi}i∈[q]}

where ”≡” denotes that the distributions are identical.

We prove the above lemma with induction on n.

Base case: When n = 2, the first elements in the RHS of two distributions are both uniformly
random. The second element is the sum minus the first element. Thus the distributions are identical.

Inductive Hypothesis: We assume that when n = k, the two distributions are identical.

Inductive Step: If we ignore all the randomness from and for client k + 1, according to the
inductive hypothesis, the distributions of the first k clients are identical. Hence, after adding two
independently uniformly random values, the distributions are still identical. The value for the k+1th

client the the sum minus k uniformly random values. Thus, the two distributions are still identical.
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B PROOF OF COROLLARY 2

Proof. In the following analysis, we assume that the updates from the shards follow an IID distribu-
tion. The reasonableness of the assumption is further discussed in Section 4.3.

The fraction of malicious shards is bounded by the worst case where each malicious client is exclu-
sively assigned to different shards: ε′ ≤ εn

p ≤
1
12 . Given the assumption above, we have satisfied

all the requirements in Theorem 1. Hence, F2ED-LEARNING provides a mean estimation with
dimension-free error as long as 12εn < p.

C PROOF OF COROLLARY 3

Proof. By reorganizing Equation 1, we have 1
|H|

∑
i∈H gi

d→ N( 1
|H|

∑
i∈H µφ(i),

s2H
|H|2 ). Given the

multinomial distribution Φ,

• E[
∑
i∈H µφ(i)
|H| ] =

∑
i∈[k] Φ(x = i)µi = µ̄, V[

∑
i∈H µφ(i)
|H| ] =

∑
i∈[k] Φ(x=i)(µi−µ̄)2

|H| =
σ2
E
|H|

• E[
s2H
|H| ] =

∑
x∈[k] Φ(x = i)σ2

i = σ̄2, V[
s2H
|H| ] =

∑
x∈[k] Φ(x=i)(σ2

i−σ̄
2)2

|H| =
σ2
V
|H|

Thus, when |H| → ∞,
∑
i∈H µφ(i)
|H| → µ̄, s2H

|H|2 →
σ̄2

|H| .

D MODEL REPLACEMENT ATTACK

In this section, we focus on the backdoor attack introduced in Bagdasaryan et al. (2020), namely
model replacement attack. Similar to MPA, we use Attack Success Rate as the metric to measure
the robustness of an estimator. The results are included in Figure 7.
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Figure 7: FashionMNIST under Model Replacement Attack Bagdasaryan et al. (2020).
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