Under review as a conference paper at ICLR 2022

FAST AND EFFICIENT ONCE-FOR-ALL NETWORKS
FOR DIVERSE HARDWARE DEPLOYMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Convolutional neural networks are widely used in practical application in many
diverse environments. Each different environment requires a different optimized
network to maximize accuracy under its unique hardware constraints and latency
requirements. To find models for this varied array of potential deployment tar-
gets, once-for-all (OFA) was introduced as a way to simultaneously co-train many
models at once, while keeping the total training cost constant. However, the to-
tal training cost is very high, requiring up to 1200 GPU-hours. Compound OFA
(compOFA) decreased the training cost of OFA by 2x by coupling model dimen-
sions to reduce the search space of possible models by orders of magnitude, while
also simplifying the training procedure.

In this work, we continue the effort to reduce the training cost of OFA methods.
While both OFA and compOFA use a pre-trained teacher network, we propose an
in-place knowledge distillation procedure to train the super-network simultane-
ously with the sub-networks. Within this in-place distillation framework, we de-
velop an upper-attentive sample technique that reduces the training cost per epoch
while maintaining accuracy. Through experiments on ImageNet, we demonstrate
that, we can achieve a 2x - 3x (1.5x - 1.8x) reduction in training time compared
to the state of the art OFA and compOFA, respectively, without loss of optimality.

1 INTRODUCTION

Convolutional neural networks (CNNs) are overwhelmingly successful in many machine learning
applications. These applications may have different inference constraints (e.g., latency) and are de-
ployed in different hardware platforms that range from server-grade platforms to edge devices such
as smartphones. Optimal network architectures need to be designed to meet the requirement for a
target deployment scenario. However, naively designing a specialized architecture for each scenario
is very expensive as it requires to fully retrain the model each time. This is an excessively expensive
process in terms of the required machine learning expertise, time, energy and CO4 emission.

Recently, researchers have proposed efficient methods which are based on training a super net-
work only once. Then, for a specific deployment scenario, a sub-network is sampled from the
super-network that meet the deployment constraints with the best accuracy. The weight of the sam-
pled network is shared with original super network, hence retraining is not required. Once-for-all
(OFA) (Cai et al., 2020) is among the first methods proposed to tackle this problem. The OFA
method trains a once-for-all network that jointly optimizes the accuracy of a large number of sub-
networks (more than 10'?) sampled from the once-for-all network. Each sub-network is selected
from the once-for-all network where layer depths, channel widths, kernel sizes and input resolu-
tion are scaled independently. Such scaling provides a family of CNNs networks with different
computation and representation power to flexibly support deployment under diverse platforms and
configurations. With this massive search space, OFA co-trains all the sub-networks by a complex
four-stage progressive training process which is prohibitively expensive and costs around 1200 GPU
hours.

Compound OFA (CompOFA) (Sahni et al., |2020) builds upon the original OFA by shrinking the
design space of possible sub-networks. This is done by only considering networks whose dimensions
are coupled. This reduces the number of possible models by 17 orders of magnitudes, from 10'°
down to 243. |Sahni et al.| (2020) demonstrate that this smaller design space is sufficient, as most

Under review as a conference paper at ICLR 2022

OFA teacher training elastic kernel elastic depth elastic width
compOFA teacher training compound training
fOFA warmup phase in-place distillation

Figure 1: Comparison of training schedules for OFA, CompOFA, and fOFA. Length on the horizon-
tal axis is proportional to the number of epochs in each phase. For OFA, “elastic kernel,” “elastic
width,” and “elastic depth” are the phases of training specified in |Cai et al.| (2020)) that are not used
in CompOFA and fOFA.

sub-networks in the original OFA design space are far from the optimal accuracy-latency frontier.
With this smaller space, the training procedure can be simplified as well as these suboptimal sub-
networks are no longer influencing the training process. CompOFA reduces the four stages of the
original OFA process to two stages, and this optimization speeds up the training time of CompOFA
by a factor of 2x over OFA.

However, 2 x faster than OFA’s 1200 GPU-hours is still 600 GPU-hours. Even with this significant
improvement, the training cost remains vary expensive, especially when effects on the environment
are considered (Strubell et al.,[2019). While some of this cost can be mitigated by improvements
in hardware efficiency and the continued development of specialized platforms for training CNNss,
algorithmic enhancements still have a large role to play. While CompOFA greatly simplifies the pro-
gressive shrinking training procedure used in OFA, it is still dependent on pre-training a supernet-
work to act as a teacher for the sub-network co-training process, which uses knowledge distillation
Hinton et al.[(2015)). Due to the optimizations in the co-training process, training the supernetwork
in CompOFA requires more than half (180 out of 330) of the total training epochs.

In this work, we propose several optimizations to the once-for-all training process that produces a
one-stage training algorithm for fast and efficient neural architecture search. The key features of our
method are:

* We co-train all of the sub-networks from scratch without pre-training a teacher network,
using the concept of in-place distillation (Yu et al. 2020). The largest network we train
using in-place distillation is smaller than the pre-trained teacher network used in |Cai et al.
(2020) and |Sahni et al.[(2020).

* During the co-training process, we develop an upper-attentive sampling method which al-
ways sample the full-sized sub-net at each iteration to help co-train the rest sub-networks.

* Before co-training, we use an upper-attentive warmup technique which trains only the full-
sized sub-net for a few epochs before co-training to further improve the performance.

* With these optimizations, we can decrease the number of sampled sub-networks in each
iteration of training, further improving performance.

The benefits of our proposed fast OFA (fOFA) method are shown in Figure [T} Furthermore, since
our method has only a single stage, we can easily increase the training time and improve on the
accuracy of previous methods while still requiring less training time.

The rest of this paper is organized as follows. We describe related work in more detail in Section 2]
and illustrate our method in depth in Section[3] We report on our experimental results in Section {4
and finish the paper with conclusions in[6]

2 RELATED WORK

Neural architecture search (NAS) aims to automatically find the optimal network architecture given
hardware constraints, such as FLOPs or latency. Early NAS works mainly adapted reinforcement
learning (Zoph et al., 2018 Zoph & Lel 2016), evolutionary search (Real et al., [2019; [2017)), or
sparse connection learning (Kim et al., 2018) to sample different architectures. However, each
sampled architecture needed to be trained from scratch, resulting in a huge and intractable computing
cost. More recent NAS works greatly reduce the cost by training an over-parameterized network

Under review as a conference paper at ICLR 2022

named a super-network, and then sample various sub-networks which share the weights with the
super-network. Such super-network-based methods can be further divided into two main categories
as follows:

2.1 TWO-STAGE TRAINING

The main idea of the two-stage training methods (Berman et al.| [2020; Bender et al.l [2018; Brock
et al., 2017; \Guo et al), 2019} |Liu et al., [2018}; Pham et al., [2018)) is that after searching for the
best architectures in the first stage of training, the best architectures then have to be retrained from
scratch to obtain a final model. Generally, a single two-stage search experiment can only target a
single resource budget or a narrow range of resource budgets at a time, which is inefficient.

2.2 ONE-STAGE TRAINING

To alleviate the inefficiency of two-stage training, Once-For-All (OFA) (Cai et al.| |2020) was pro-
posed to jointly train various sub-networks of the super-network in a single stage. By doing so,
the sub-networks could be directly deployed into different hardware platform without retraining.
However, to support an extremely large number of sub-networks (i.e., 101%), such one-stage training
involves multi-steps to gradually add more sub-networks by using the proposed progressive shrink-
ing technique. Moreover, OFA also needs to train a single full-sized teacher network (same size
as super-network) from scratch firstly to guide the training of the sub-networks by using knowl-
edge distillation. Thus, due to the complex training procedure, OFA still suffers from a prohibitive
training cost, requiring around 1200 GPU hours.

More recently, inspired by studies on neural network design spaces (Tan & Le, |2019; Radosavovic
et al., 2020), CompOFA (Sahni et al.l 2020) proposes a compound sub-network scaling method,
which couples the depth and width configuration of the sampled sub-networks to constrain the search
space, reducing the space to only 243 number of sub-networks without losing accuracy. Although
CompOFA achieves a 2 x training cost reduction compared with OFA, it follows the similar training
procedure that also needs to train a teacher model from scratch. A similar approach is investigated in
Yang et al.| (2020), which couples network width and input resolution into a single mutual learning
framework.

In addition, bigNAS (Yu et al.,|2020) proposed replacing OFA’s multi-step training by a single step,
namely one-shot NAS, challenging the usual practice of progressive training in OFA. The idea of
the one-shot NAS is to jointly train sub-networks from scratch directly by using the sandwich rule
and in-place distillation techniques proposed for slimmable networks (Yu et al |2018). Based on
bigNAS, [Wang et al.[(2020) points out the unnecessary updates on sub-optimal models in one-stage
training, and uses attention mechanisms to push the Pareto front. However, the primary objective of
these two works is to obtain better accuracy, thus still suffer from high training cost, e.g., bigNAS
needs over 2300 TPU hours for O(1012) models. In addition, (Li et al.,|2021)) works to improve the
trade-off between accuracy and computation complexity based for slimmable networks by introduc-
ing a dynamic gating mechanism and in-place ensemble bootstrapping to increase training stability..
However, it requires a one more gating training step, resulting in larger training cost.

Our approach also follows the direction of the one-shot model. Differentiating from bigNAS, the
primary objective of this work is to reduce the training cost without loss of Pareto optimality under
the design space of OFA and CompOFA.

3 METHODS

3.1 BUILDING THE SEARCH SPACE

A neural network A is a function that takes an input set X and generates a set of outputs ¢ (N, X).
In this work, we focus on a fixed input set (i.e., ImageNet), and thus write the network output as
8 (NV). In the supervised learning setting, the performance of the neural network is evaluated against
a set of labels Yp.

Following the standard practice in neural architecture search, we limit our neural network space to
the set of architectures that consists of a sequence of blocks B1, Bo, ..., B,,, where m = 5 is a

Under review as a conference paper at ICLR 2022

D copies

Conv2D SeparableConv2D Squeeze Conv2D
BatchNorm BatchNorm q e
Activation Activation and Excitation BatchNorm

inverted

depth convolution
bottleneck W b

shortcut

Figure 2: The search space used for fOFA, based on the architecture space of MobileNetV3 (Howard
et al., 2019). The dimension K refers to the size of the convolutional kernel, W to the channel
expansion ratio, and D to the number of repetitions of the block.

typical value. Each block is based on the inverted residual in the architecture space of MobileNetV3
(Howard et al.,[2019). A block is parameterized by three dimensions: the depth (number of layers
in the block) D, the width (channel expansion ratio) W, and the convolution kernel size K. This
search space is illustrated in Figure[2]

To reduce the size of the search space, we use the same coupling heuristic as CompOFA (Sahni et al.,
2020); that is, if there are n choices for the depth dimension and n choices for the width dimension,
we sample the ith largest depth w; whenever we sample the ith largest depth d; for each layer in
the block. While OFA uses an elastic kernel that allows for different kernel sizes within blocks,
we follow CompOFA and use a fixed kernel size within each block. We call the network where the
values of K, D, and W are each their largest possible value the full-sized network or super-net, and
the network created by any other choice of these values a sub-network.

As in CompOFA, we choose three possible values for D € {2,3,4} and three possible values for
W € {3,4,6} and fix the kernel size to that of (Howard et al., [2019), that is, K = 3 in the first,
third, and fourth blocks, and K = 5 in the second and fifth blocks. Thus, with five blocks, we have
3% = 243 models in our search space.

In neural architecture search, the input resolution can vary as well, up to a maximum size of 224 x
224 for ImageNet (Deng et al.,[2009). In this work, we use an elastic resolution, where input images
are resized to be square with dimension in the set {128,160, 192, 224}.

3.2 ONCE-FOR-ALL TRAINING

Both OFA and CompOFA use knowledge distillation to guide the super-net co-training procedure. In
general, co-training all the sub-networks with a teacher model can be considered as a multi-objective
optimization problem, which can be formulated as:

m&nzcwai,/\fT,YD), (1)

where N denotes the weights of the full-sized network, N is the additional pre-trained teacher
model, and N, is a random sub-network of N where a; specified the sub-network architecture.
The loss function £ is

L (Na“NT, Yp)=L(6 (Nai) JYp)+ B8+ L(6 (Nai) +0 (NT)) 2)

where § denotes the distillation weight. This optimization function aims to co-train all the sub-
networks during the training using both the target label and output of the teacher network using
knowledge distillation. However, because there are so many sub-networks, it is not practical to
compute this loss function in its entirety. So, following the approach of OFA and CompOFA, we
randomly sample n sub-networks in each training iteration. The loss function is thus reformulated
as

Under review as a conference paper at ICLR 2022

full-sized
network

= m [will

r randomly
selected
- sub-networks

)

B

)
75|45

ml o _

Batch 1 Batch 2 Batch n

Figure 3: In upper attentive sampling, the largest possible model (in our case with D = 4 and
W = 6 for all blocks, shown in red) is selected during each batch of the training process. The other
models selected at each batch are randomly chosen from all possible sub-networks. Upper attentive
sampling differs from the “sandwich model” of [Yu et al.| (2020) in that the smallest possible model
(shown in blue) need not be selected at each batch.

n
Hjl\%'n Z £ (Nrand(ai)’ WT’ YD) ’ (3)

where n = 4 is a typical value of the number of sub-networks to sample.

3.3 IN-PLACE DISTILLATION

Requiring the training of a teacher model N adds significant overhead to the total training time,
as teacher training must be completed before the training of subnets can begin. (Sahni et al.l 2020)
reports that teacher training takes up 17.6% of the wall time for OFA and 35.0% for CompOFA.

In this work, we propose to eliminate training the teacher model and instead co-training the sub-
networks from scratch. If we remove N7 from the loss function above, we reformulate a random
sampling loss function

Hjl\%_n Z L (Nrand(ai)’ YD) ’ @

where £ (N,,,Yp) = L (6 (N,,),Yp) for any network N,,. However, this naive sampling method
results in significant accuracy drops if co-training sub-networks from scratch. To improve accuracy,
BigNAS (Yu et al.,2020) uses the “sandwich model” from (Yu & Huang||[2019), wherein the largest
and smallest possible sub-networks are always sampled. Its loss function is

n—2
Hjl\%,n <£ (Mnaxa YD) + ; L (Nrand(ai)m/\[max) + L (NHliII7MrlaX)>) (5)

where Npax denotes the full-sized network and My,i, denotes the smallest sub-network. The full-
sized network is thus trained in parallel with the smaller models.

3.4 UPPER ATTENTIVE SAMPLING

The sandwich model proposed for BigNAS applies to a high training cost scenario where 10'2
models are being evaluated. In our scenario, with only 243 models, we find that including the

Under review as a conference paper at ICLR 2022

Table 1: Training schedule for fOFA. We replace the lengthy teacher training phase with in-place
distillation, preceded by a short warmup phase. We also decrease the size of the teacher kernels
from K = 7to K = 3 or K = 5, as described in Section 3.1.

Method Phase K D \%% Nosampie Epochs
Teacher 7 4 6 1 180

CompOFA | Compound 3/5 2,3,4 3,4,6 4 25
Compound 3/5 2,3,4 3,4,6 4 125
Warmup 3/5 4 6 1 5

fOFA In-place Distillation | 3/5 4 6 1 180
(simultaneous) 3/5 2,3,4 3,4,6 2,3 180

smallest model Ny, adversely affects the overall accuracy. To address this issue, we develop a new
upper-attentive sampling method, which always samples the full-sized sub-network in each iteration,
and n — 1 random sub-networks. The loss function of upper-attentive sampling is:

n—1
H/l\i/,n (C (Nrnaxu YD) + ; L (Nrand(ai)m/\/‘max)) (6)

Where Ny.x represents the largest sub-network. During training, the largest sub-network is max-
imized only with respect to the ground truth labels, while the additional sub-networks are trained
with respect to the output of the largest sub-network.

A schematic of upper attentive sampling is shown in Figure [3| With upper attentive sampling, we
may either choose to replace the smallest model with a randomly selected sub-network, or choose
to remove it entirely, effectively reducing the number of sampled networks by 1 when compared to
CompOFA or BigNAS. Intuitively, removing the smallest network will result in faster training than
replacing it, but may have a negative impact on accuracy. We study both the removing and replacing
options in Section [

3.5 WARMUP PHASE

Because the full-sized sub-network Ny, is a soft target for the other sub-networks, we find training
benefits from a warmup phase so that the initial target for the smaller sub-networks is not random at
the start. We find that first training the largest sub-network for a few epochs provides good results
and is still much faster than training a teacher from scratch for 180 epochs.

3.6 SUB-NETWORK SELECTION PROCEDURE

Again, following (Sahni et al., [2020) and (Cai et al., [2020), we use evolutionary search (Real et al.,
2019) to retrieve specific sub-networks that are optimized for a given hardware target. This search
finds trained networks that maximize accuracy subject to the target latency or FLOP constraint.
For hardware targets such as the Samsung Note10, latency can be estimated using a look-up table
estimator from (Cai et al., 2020)).

4 RESULTS

4.1 TRAINING SETUP

We performed our experiments on an NVIDIA DGX-A100 server with 8 GPUs. Experiments were
run in version 21.03 of the NVIDIA NGC pytorch containeﬂ which includes Python 3.8, pytorch
1.9.0, and NVIDIA CUDA 11.2. Horovod version 0.19.3 was used for multi-GPU training.

1https ://docs.nvidia.com/deeplearning/frameworks/pytorch-release—-notes/
rel _21-03.html

https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_21-03.html
https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel_21-03.html

Under review as a conference paper at ICLR 2022

The training schedule for fOFA is listed in Table[T]and comparisons with CompOFA and fOFA are
shown in Figure|l] CompOFA requires 330 total epochs, of which over half (180) are dedicated to
training the full-size teacher model. For fOFA, we require 185 total epochs. Of these, only 5 epochs
are used for warming up the full-size model in advance of in-place distillation, wherein the supernet
and the randomly selected networks are trained simultaneously.

Directly following CompOFA (Sahni et al., 2020) , we perform the model search over the Mo-
bileNetV3 space with expansion ratio 1. We use 8 GPUs, a batch size of 256 per GPU, and a
learning rate of 0.325. For a fair comparison, all other hyper-parameters are set to the same values
as OFA and CompOFA, including a cosine learning rate schedule, momentum of 0.9, batch-norm
momentum of 0.1, weight decay of 3e-5, label smoothing of 0.1, dropout rate of 0.1. Also, as fOFA
is trained from scratch instead of fine-tuning on the pre-trained teacher model, a gradient clipping
threshold of 1.0 is adapted to make the training stable, following bigNAS (Yu et al., [2020).

4.2 TRAINING RESULTS

Table 2: Mean Top-1 Accuracy on ImageNet
Method | Epochs | Training Cost (GPU h) | Mean Top-1 Accuracy

OFA 605 672 (1.0x) 755
CompOFA | 330 336 (2.0x) 75.4
fOFA (n=3) | 185 184 (3.7x) 75.5
fOFA (n=4) | 185 216 (3.1x) 75.5
fOFA (n=4) | 300 350 (1.9x) 75.6

Table [2| shows the average accuracy over the generated models. For fOFA, n = 3 means that the
smallest model from the sandwich rule of (Yu et al. |2020) has been removed, and we are training
with the largest model and two randomly selected sub-networks. n = 4 means that the smallest
model has been replaced, and we are training with the largest model and three randomly selected
sub-networks.

For CompOFA and fOFA, the mean top-1 accuracy is computed over all 243 models generated by
the training process. Since OFA has an extremely large number of sub-networks, we calculate this
average by selecting the same 243 models that are used in CompOFA and fOFA. We see that while
CompOFA is 2.0x faster than OFA, with 185 epochs, fOFA is a further 1.55 x faster than CompOFA
if we sample four sub-networks during training, and a further 1.83 x faster if we sample only three
sub-networks. In both cases, our accuracy is equal to OFA and 0.1% greater than CompOFA. If
we sample four sub-networks and extend our training time to approximately match the number of
GPU-hours required for CompOFA, we generate an average accuracy 0.1% greater than OFA.

4.3 HARDWARE LATENCY

Table 3: Top-1 Accuracy on Latency Constrained Models for a Samsung Note10

Method Epochs Latency Constraint
15ms | 20ms | 25 ms | 30 ms
OFA 605 71.93 | 73.95 | 74.94 | 75.41

compOFA 330 72.08 | 73.94 | 7494 | 75.58
fOFA (n=3) 185 72.02 | 74.06 | 75.06 | 75.60
fOFA (n=4) 185 71.74 | 73778 | 7477 | T5.47

Table[3|shows the performance of the once-for-all methods for the hardware deployment scenario of
a Samsung Note10. We used the latency estimator for the Note10 CPU provided by|Cai et al.| (2020).
The latency thresholds of 15, 20, 25, and 30 milliseconds are selected to match the latency targets

’In|Cai et al.| (2020), results are reported with an expansion ratio of 1.2, so the numbers reported here are
not identical.

Under review as a conference paper at ICLR 2022

used in [Sahni et al.|(2020). At latencies larger than 20 ms, fOFA with n = 3 is more accurate than
other methods while also having the smallest training cost. At 15 ms, fOFA is slightly less accurate
than compOFA, but is still 1.83 % faster in training time.

Table 4: Top-1 Accuracy on Latency Constrained Models for GPU platforms.

Method Epochs A100 Latency Constraint Pascal Latency Constraint
4ms | 6ms | 8ms | I0ms || 15ms | 25ms | 35 ms | 40 ms
OFA 605 7255 | 76.12 | 77.02 | 77.11 | 73.86 | 76.11 | 77.00 | 77.10

compOFA 330 72778 | 76.26 | 77.40 | 77.49 || 72.84 | 76.27 | 77.45 | 77.52
fOFA (n=3) 185 73.63 | 76.08 | 77.39 | 77.55 || 74.46 | 76.28 | 77.37 | 77.46
fOFA (n=4) 185 73775 | 76.33 | 77.21 | 77.28 || 74.51 | 76.29 | 77.15 | 77.36

Table [] (left) shows the performance of the methods on a NVIDIA A100 GPU. In this setting, the
latency is measured directly using the CompOFA codeﬂ fOFA with n = 4 has the highest accuracy
at the strictest latency constraints (4 ms and 6 ms), while fOFA with n = 3 performs best at 10 ms
latency. fOFA (n=3) and compOFA have nearly identical accuracy at 8 ms. In Table [] (right), we
also show the performance of the methods for an earlier-generation GPU (Nvidia Pascal) with more
relaxed latency constrains. The results show similar trends to the A100 GPU where fOFA is superior
at the strictest constraints and has similar accuracy to CompOFA at high constraints.

Table 5: Top-1 Accuracy on Latency Constrained Models for an AMD EPYC 7763 CPU

Method Epochs Latency Constraint
22ms | 25ms | 28 ms | 31 ms
OFA 605 7434 | 7492 | 74.92 | 76.05

compOFA 330 7277 | 74.65 | 75.17 | 76.35
fOFA (n=3) 185 73.55 | 75.01 | 75.38 | 75.78
fOFA (n=4) 185 73.44 | 74.69 | 75.59 | 75.85

Table 5] shows the performance of the methods on CPU. Again, latency is measure directly using
the CompOFA code. In this setting, we find that fOFA achieves the highest accuracy at medium
constraints (25 ms and 28 ms), while compOFA achieves the best accuracy at 31ms, and OFA as 22
ms.

5 DISCUSSION

Figure [] shows the trade-off between model accuracy and number of floating-point operations for
compOFA and fOFA with n = 4. On average, fOFA is ~0.1% more accurate that CompOFA,
as listed in Table [2| and achieves greater accuracy on models with lower FLOP counts, agreeing
with results in Tables [3}f5] Despite replacing the sandwich rule with upper-attentive sampling, the
smallest model in the search space has 0.9% greater accuracy in fOFA.

We also ran fOFA using the sandwich rule (Yu & Huang|(2019)) on the same hyperparameter space.
With the sandwich rule, the average accuracy over the search space was 0.3% lower than with upper-
attentive sampling. Furthermore, the decrease in accuracy was greater on models with higher FLOP
counts, and less on models with lower FLOP counts. To explain these observations, we note that the
upper bound of the CompOFA search space is significant lower than that of the MobileNetv2 search
space from|Yu et al.[(2020). In BigNAS, the largest model in the search space required 1.8 GFLOPs
while the largest output model, BigNASModel-XL, required only 1.04 GFLOPs. In contrast, the
largest model in the CompOFA search space uses 447 MFLOPs and the models we selected for
GPU deployment in Table {4|approach this upper limit.

In our experiments, we set the convolution kernel sizes for each block to those used in MobileNetV3
(Howard et al.| (2019)) for all models in the search space, including the teacher. We also experi-
mented increasing the size of the teacher model, using K = 7 for each block in the the teacher, and

Shttps://github.com/gatech-sysml/CompOFA/tree/main/ofa

https://github.com/gatech-sysml/CompOFA/tree/main/ofa

Under review as a conference paper at ICLR 2022

~
[ee]

~ ~ ~
w ()] ~
! ! !

Top-1 accuracy
~
S

~
w
!

e fOFA (n=4)
compOFA

~
N
!

~
=

150 200 250 300 350 400 450
MFLOPs

Figure 4: Comparison of floating point operation vs. accuracy for each of the 243 models in the
compOFA searchspace, for compOFA (orange) and fOFA with n = 4 (blue).

found that this results in the average accuracy decreasing to 74.8%. From this result, we propose
that an overly large teacher model, while providing a higher upper bound on accuracy, may not be
as effective for training smaller submodels, and that when the teacher model is closer in size to the
submodels, upper-attentive sampling is sufficient to achieve good accuracy throughout the search
space.

When upper-attentive sampling is used in combination with in-place distillation, the warm-up phase
is essential so that the initial target for sub-model training is better than random. After five epochs of
warm-up, the teacher model has an accuracy of 47.42% in our experiments, providing a reasonable
starting point for training. In OFA and CompOFA, this warmup phase is not needed because the
teacher model is already fully trained.

6 CONCLUSION

In this work, we introduce fast once-for-all (fOFA) and demonstrate how this methodology can
reduce expensive training cost for neural architecture search below 200 GPU-hours. This is done
by combining the approaches of CompOFA (Sahni et al., [2020) and BigNAS (Yu et al.| [2020) by
using a reduced state space to only consider models close to the Pareto-optimum, as in CompOFA,
and using in-place distillation, as in BigNAS, to eliminate the requirement of expensive teacher
training from OFA. While these methods work well together, to achieve optimal performance it was
necessary to develop methods such as upper attentive sampling and apply a warmup phase to achieve
optimal results. Our results show that we can achieve the same accuracy as OFA with a speed-up of
3.1x-3.7x, and similar accuracy to CompOFA with a speed-up of 1.5x-1.8x.

As we continue this work, we look to further investigate the relationships between training heuristics
and the choice of the network search space, so that we can better understand the theoretical reasons
for their performance and determine which methods lead to most efficient training. We also hope
to further investigate multiple network search spaces to develop new methods for finding training
schedules and network sampling approaches that optimize accuracy for both benchmark tasks such
as Imagenet classification and novel tasks such as segmentation, detection, and transfer learning.

REFERENCES

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understand-
ing and simplifying one-shot architecture search. In International Conference on Machine Learn-
ing, pp. 550-559, 2018.

Maxim Berman, Leonid Pishchulin, Ning Xu, Matthew B Blaschko, and Gérard Medioni. Aows:
Adaptive and optimal network width search with latency constraints. In Proceedings of the

Under review as a conference paper at ICLR 2022

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11217-11226, 2020.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model archi-
tecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020. URL https://arxiv.org/pdf/1908.09791.pdf.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian
Sun. Single path one-shot neural architecture search with uniform sampling. arXiv preprint
arXiv:1904.00420, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 1314—1324, 2019.

Eunwoo Kim, Chanho Ahn, and Songhwai Oh. Nestednet: Learning nested sparse structures in
deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8669—-8678, 2018.

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang. Dynamic
slimmable network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8607-8617, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollar. Designing
network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10428-10436, 2020.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International
Conference on Machine Learning, pp. 2902-2911. PMLR, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780-4789, 2019.

Manas Sahni, Shreya Varshini, Alind Khare, and Alexey Tumanov. Compofa—compound once-
for-all networks for faster multi-platform deployment. In International Conference on Learning
Representations, 2020.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, pp. 6105-6114, 2019.

Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra. Attentivenas: Improving neural archi-
tecture search via attentive sampling. arXiv preprint arXiv:2011.09011, 2020.

10

https://arxiv.org/pdf/1908.09791.pdf

Under review as a conference paper at ICLR 2022

Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi Zhang, and Andrew Willis. Mutualnet:
Adaptive convnet via mutual learning from network width and resolution. In European conference
on computer vision, pp. 299-315. Springer, 2020.

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1803—-1811,
2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural archi-
tecture search with big single-stage models. arXiv preprint arXiv:2003.11142, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures

for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697-8710, 2018.

11

	Introduction
	Related Work
	Two-stage training
	One-stage training

	Methods
	Building the search space
	Once-for-all training
	In-place distillation
	Upper attentive sampling
	Warmup phase
	Sub-network selection procedure

	Results
	Training Setup
	Training Results
	Hardware Latency

	Discussion
	Conclusion

