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Abstract
We propose MusicRL, the first music generation
system finetuned from human feedback. Appre-
ciation of text-to-music models is particularly
subjective since the concept of musicality as well
as the specific intention behind a caption are user-
dependent (e.g. a caption such as “upbeat work-
out music” can map to a retro guitar solo or a
technopop beat). Not only this makes supervised
training of such models challenging, but it also
calls for integrating continuous human feedback
in their post-deployment finetuning. MusicRL is
a pretrained autoregressive MusicLM (Agostinelli
et al., 2023) model of discrete audio tokens fine-
tuned with reinforcement learning to maximize
sequence-level rewards. We design reward func-
tions related specifically to text-adherence and au-
dio quality with the help from selected raters, and
use those to finetune MusicLM into MusicRL-R.
We deploy MusicLM to users and collect a sub-
stantial dataset comprising 300,000 pairwise pref-
erences. Using Reinforcement Learning from Hu-
man Feedback (RLHF), we train MusicRL-U,
the first text-to-music model that incorporates hu-
man feedback at scale. Human evaluations show
that both MusicRL-R and MusicRL-U are pre-
ferred to the baseline. Ultimately, MusicRL-RU
combines the two approaches and results in the
best model according to human raters. Ablation
studies shed light on the musical attributes in-
fluencing human preferences, indicating that text
adherence and quality only account for a part of
it. This underscores the prevalence of subjectivity
in musical appreciation and calls for further in-
volvement of human listeners in the finetuning of
music generation models. Website with samples.
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1. Introduction
Generative modeling of music has experienced a leap for-
ward: while it was until recently either limited to the fine
modeling of individual instruments (Engel et al., 2017;
Défossez et al., 2018; Engel et al., 2020) or the coarse gen-
eration of polyphonic music (Dhariwal et al., 2020), models
can now handle open-ended, high-fidelity text-controlled
music generation (Forsgren & Martiros, 2022; Agostinelli
et al., 2023; Liu et al., 2023; Copet et al., 2023). In partic-
ular, text-to-music systems such as MusicLM (Agostinelli
et al., 2023) and MusicGen (Copet et al., 2023) build on
audio language models, as they cast the generative process
as an autoregressive prediction task in the discrete represen-
tation space of a neural audio codec (Zeghidour et al., 2022;
Défossez et al., 2022). While this approach has demon-
strated its ability to generate realistic speech (Borsos et al.,
2023a; Wang et al., 2023; Borsos et al., 2023b), sound
events (Kreuk et al., 2022) and music, it suffers from a few
shortcomings. First, the next-token prediction task used
to train these systems — while generic enough to model
arbitrary audio signals — lacks any prior knowledge about
musicality that could bias those towards generating music
that is more appealing to listeners. Second, while the tem-
perature sampling used at inference allows for generating
diverse audio from a single text caption, this diversity is
only desirable along certain axes such as melody or per-
formance, while musicality and adherence to the prompt
should remain consistently high.

These fundamental issues of autoregressive generative mod-
els have been extensively observed and addressed in the
context of language modeling. For example, several works
have explored finetuning machine translation models to
maximize the BLEU score (Ranzato et al., 2016; Wu et al.,
2016) or summarization models to improve the relevant
ROUGE metric (Ranzato et al., 2016; Wu & Hu, 2018; Roit
et al., 2023). Such metrics are typically sequence-level,
and evaluate the output of a non-differentiable sampling
process (e.g., greedy decoding, temperature sampling).
This is typically circumvented by using a reinforcement
learning method which models the metric of interest of a
reward function and the generative model as a policy. The
underlying algorithmic similarity between such text gen-
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Figure 1. Results of the qualitative side-by-side evaluation for the RLHF finetuned models. In each X vs. Y comparison, the green bar
corresponds to the percentage of times model X was preferred, the yellow bar to the percentage of ties and the red bar to the percentage
of times model Y was preferred. MusicRL-R is the MusicLM model finetuned on quality and text adherence reward. MusicRL-U is
finetuned on a reward model of user preferences. MusicRL-RU is finetuned sequentially on quality and adherence to text and then on a
reward model of user preferences. While every RLHF finetuned version of MusicLM significantly outperforms MusicLM, MusicRL-R
and MusicRL-U achieve comparable performance, while MusicRL-RU is overall the preferred model.

eration systems and autoregressive music models suggests
that — given the proper reward functions— one could use
reinforcement learning to improve music generation.

Music generated given a prompt should exhibit three prop-
erties: adherence to the input text, high acoustic quality (ab-
sence of artifacts), and “musicality” or general pleasantness.
Automatic metrics have been proposed to quantify the text
adherence like Classifier KLD (Yang et al., 2022) or Mu-
Lan Cycle Consistency (Agostinelli et al., 2023) as well as
acoustic quality with Fréchet Audio Distance (Kilgour et al.,
2019). Such metrics could be used as reward functions.
Yet, designing automatic proxies to measure musicality is
challenging. Most of the previous approaches (Jaques et al.,
2017; Kotecha, 2018; Guimaraes et al., 2017; Latif et al.,
2023) rely on complex music theory rules, are restricted
to specific musical domains (e.g., classical piano) and only
partially align with human preferences. This gap between
automatic metrics and human preferences has again been
extensively studied in language modeling, with RLHF (Re-
inforcement Learning from Human Preferences) becoming
the de facto way of aligning conversational models (Achiam
et al., 2023; Team et al., 2023) with human feedback.

Human preferences as referred in previous work (Ouyang
et al., 2022; Stiennon et al., 2020) mainly refers to the
preferences of raters. Raters may not be representative of the
population interacting with the model (e.g. rating services
such as Amazon Mechanical Turk1 uses a global workforce).
Especially in the context of music, this population gap can
have a significant impact on the preferences (Trehub et al.,
2015). Collecting large scale user preferences data allows to
bridge the population gap and to collect considerably more

1https://www.mturk.com/

interactions in constrast with raters.

In this work, we introduce MusicRL, a text-to-music gen-
erative model finetuned with reinforcement learning. Start-
ing from a strong MusicLM baseline, we use an automatic
measure of text adherence as well as a new acoustic fidelity
metric as reward functions to perform RL finetuning. Hu-
man evaluations indicate that generations from the resulting
MusicRL-R are preferred over those from MusicLM 83%
of the time, as measured by win/(win+ loss). Secondly,
to explicitly align the model with human judgment, we
collect a dataset of pairwise preferences from users in-
teracting with MusicLM to fit a reward model. Ablation
studies on the reward model trained on user interaction data
demonstrate that user preferences strongly correlate with
musicality. Extensive human evaluations reveal that the
music generations coming from the resulting MusicRL-U
are preferred over the base model 74% of the time. Thirdly,
we combine automatic rewards and human feedback to fine-
tune MusicRL-R into MusicRL-RU and show that this
models outperforms all alternatives more than 62% of the
time. To the best of our knowledge, this work is the first
attempt at leveraging human feedback at scale to improve
an audio generative model.

2. Related Work
Music generation. While earlier approches to musical au-
dio generation were limited in terms of producing high qual-
ity outputs (Dhariwal et al., 2020) or semantically consis-
tent long audios (Hawthorne et al., 2022), recent research
has achieved a level of quality that allows for an enjoyable
listening experience. A first line of work casts the task of
music generation as categorical prediction in the discrete
token space provided by a neural audio codec (Zeghidour
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et al., 2022; Défossez et al., 2022), and trains a Transformer-
based (Vaswani et al., 2017) for next token prediction (Bor-
sos et al., 2023a) or parallel token decoding (Borsos et al.,
2023b; Garcia et al., 2023; Parker et al., 2024). Combin-
ing this generative backbone with text-conditioning either
through a text encoder or text-audio embeddings (Elizalde
et al., 2022; Huang et al., 2022) provides high-quality text-
to-music models (Agostinelli et al., 2023; Copet et al.,
2023). A parallel line of work relies on diffusion models
and casts the task of music generation as denoising of au-
dio waveforms and spectrograms (Huang et al., 2023) or
learned latent representations (Schneider et al., 2023; Liu
et al., 2023; Lam et al., 2023; Evans et al., 2024). In both
cases, the models are trained offline on a collection of exist-
ing musical recordings and inference is run a stochastic fash-
ion (e.g. diffusion or temperature sampling), which provides
diversity but also uncertainty on the outputs (e.g. in terms
of text-adherence or quality). Previous work (Kharitonov
et al., 2023) has circumvented this issue by sampling many
sequences, ranking them with a score function (e.g. a
reference-free audio quality estimator) and returning the
best candidate. This considerably increases inference cost
and requires well-defined score functions.

MusicRL addresses these limitations by finetuning a
MusicLM (Agostinelli et al., 2023) model with reinforce-
ment learning, using reward functions derived from auto-
matic metrics, small scale high-quality human ratings, and
large scale user feedback. To the best of our knowledge,
MusicRL is the first music generation system that shows
the benefits from integrating feedback from hundreds of
thousands of users.

RL-finetuning of music generation models. Most pre-
vious works in RL-finetuning music generation models
involve designing handmade reward signals based on prin-
ciples of music theory (Jaques et al., 2017; Kotecha, 2018;
Guimaraes et al., 2017; Latif et al., 2023) or simple pat-
terns like repetitions (Karbasi et al., 2021). Jaques et al.
(2017) use a set of rules inspired by a melodic composition
theory (Gauldin, 1988) (e.g., stay in key, play motifs and
repeat them, avoid excessively repeating notes) in combi-
nation with a KL regularization term. These approaches
have several limitations: the rule sets can be incomplete or
contradictory, practitioners must find the correct balance
between different rewards, and the rules themselves derive
from music theory, which is an imperfect approximation of
human musical preferences. Jiang et al. (2020) finetune an
online music accompaniment generation model with four
reward models learned from data and rule-based reward
that assign -1 when a note is excessively repeated. Each
reward model corresponds to the probability of a chunk of
the generation given a context (the context and the chunk
to predict is different for each reward). These rewards are
learned with a masked language model (Devlin et al., 2019)

Figure 2. Given a dataset of music captions, MusicLM generates
audio samples that are scored with a reward function. The RL
algorithm finetune the model to maximize the received reward.

loss on a music dataset. Yet, such methods only apply to
restricted musical domains (e.g. monophonic piano) or sym-
bolic generation. In contrast with previous work, MusicRL
learns human preferences from its own raw audio gener-
ations. This allows for improving music generation across
the whole spectrum of musical genres and styles, from lo-fi
hip-hop to orchestral symphonies and modal jazz.

RL from human feedback. RLHF recently became a crit-
ical step in the training of conversational models used in
applications such as Bard (Gemini Team, 2023) or GPT-4
(OpenAI, 2023). RLHF has first been applied to solve Atari
games (Christiano et al., 2017) before being used widely,
for example in natural language tasks (Ziegler et al., 2019;
Stiennon et al., 2020; Ouyang et al., 2022; Jaques et al.,
2019; Bai et al., 2022) or in image generation (Lee et al.,
2023; Wallace et al., 2023). Wallace et al. (2023) uses Di-
rect Optimization Algorithm (DPO) (Rafailov et al., 2023)
to finetune a diffusion model on human preference data. To
the best of our knowledge, we are the first to apply RLHF
to music generation models.

3. Method
3.1. MusicLM

MusicLM (Agostinelli et al., 2023) is an autoregressive
model for generating music from text descriptions. Follow-
ing the design of AudioLM (Borsos et al., 2023a), MusicLM
relies on two different types of audio representations for
generation: semantic tokens, which are quantized repre-
sentations of masked audio language models such as w2v-
BERT (Chung et al., 2021) and acoustic tokens, the dis-
crete representations produced by neural audio codecs such
as SoundStream (Zeghidour et al., 2022). While the se-
mantic tokens ensure the long-term structural coherence of
the generation process, the acoustic tokens tokens allow for
high-quality synthesis. To ensure high-bitrate reconstruc-
tions, SoundStream uses residual vector quantization (RVQ)
— a stack of vector quantizers where each quantizer oper-
ates on the residual produced by the previous quantizers —
to discretize the continuous audio representations, impos-
ing a hierarchical structure on the acoustic tokens. Addi-
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tionally, MusicLM relies on MuLan (Huang et al., 2022), a
joint music-text contrastive model, for conditioning the au-
dio generation task on descriptive text.

MusicLM was initially introduced as a 3-stage Transformer-
based autoregressive model. The first stage learns the
mapping between MuLan and semantic tokens. The sec-
ond stage predicts the first levels from the output of the
SoundStream RVQ (coarse acoustic tokens) from MuLan
and semantic tokens. The last stage predicts the remaining
SoundStream RVQ levels (fine acoustic tokens) from coarse
acoustic tokens.

For the purpose of RL finetuning, we choose to optimize the
semantic and coarse acoustic modeling stages, which are the
most important contributors to acoustic quality, adherence
to the text and overall appeal of the generated music. We
address the challenges of jointly optimizing semantic and
coarse acoustic modeling by using a single autoregressive
stage that operates on frame-interleaved semantic and acous-
tic tokens. While simplifying the RL setup and problem for-
mulation, this approach increases modeled token sequence
length. We address this with a hierarchical transformer, simi-
larly to Lee et al. (2022); Yu et al. (2023); Yang et al. (2023).
Finally, instead of the original autoregressive fine acoustic
modeling stage of MusicLM, we use Soundstorm (Borsos
et al., 2023b) for achieving efficient parallel generation.

For simplicity, by referring to MusicLM in this work, we re-
fer only to the autoregressive modeling stage of interleaved
semantic and coarse acoustic tokens, which is the text con-
ditioned modeling stage that can be finetuned with RL.

3.2. RL finetuning procedure

We use the standard formulation of RL in the context of
finetuning large language models as done in previous work
(Ziegler et al., 2019). Figure 2 illustrates the RL train-
ing loop. The agent acts according to its policy πθ with
θ the weights that parameterize the policy. The policy is
an autoregressive model taking as input a0, . . . , at−1, the
sequence of previously generated tokens and outputs a
probability distribution over the next action, i.e., the next
token to pick : at ∼ πθ(.|a0 . . . at−1). The RL finetuning
phase aims at maximizing Eπθ

[
∑
t r(a0 . . . at)] with r a

given reward function. We use a KL regularized version
of the REINFORCE algorithm (Williams, 1992; Jaques
et al., 2017) to update the policy weights. Given a trajectory
(at)

T
t=0 and denoting st = (a0...at−1), the corresponding

policy gradient objective to maximize is

J(θ) = (1− α)[
T∑
t=0

log πθ(at|st)(
T∑
i=t

r(si)− Vφ(st))]

−α
T∑
t=0

∑
a∈A

[log(πθ(a|st)/πθ0(a|st))],

with A the action space which here corresponds to the code-
book, α the KL regularization strength, and Vφ the baseline.
The baseline value function Vφ is used to decrease the vari-
ance in the policy gradient objective (Sutton & Barto, 2018)
and it is trained to estimate the mean return of the current
policy. The baseline is learned as follows:

min
φ

Eπθ

∑
t

(

T∑
k=t

r(sk)− Vφ(st))2.

Both the policy and the value function are initialized from
the initial MusicLM checkpoint with weight θ0.

3.3. Reward Signals

Text adherence. We derive a reward model for text adher-
ence from pretrained MuLan (Huang et al., 2022) embed-
dings. MuLan is a contrastive audio-text embedding model
trained on music clips and weakly-associated, free-form
text annotations. We compute the cosine similarity between
the text embedding of the input prompt and the audio em-
bedding of the generated music, resulting in a reward value
in [−1; 1]. We refer to this metric as MuLan score. Be-
cause our models generate 30-second audios, while MuLan
is trained on 10-second audio clips, we divide each audio
into three segments, we calculate MuLan scores for each
segment, and we average the results.

Acoustic quality. Another main attribute of musical gen-
eration is acoustic quality, e.g. whether a clip sounds like a
professional recording or is contaminated with artifacts. We
rely on a reference-free quality estimator trained to predict
the human Mean Opinion Score (MOS - between 1 and
5) of a 20 second music clip. The model architecture is a
Conformer (Gulati et al., 2020). We train the model on a
dataset of ≈ 5000 samples that are a mix of human-created
and MusicLM-generated music clips, where each clip was
rated by 3 raters. The raters were tasked to judge only the
acoustic quality, to avoid confounding factors such as musi-
cality. We refer to this metric as the quality score. Because
our models generate 30-second clips, we compute quality
scores on the first 20 seconds and on the last 20 seconds,
and average the two scores.

User preferences. We deploy the pretrained text-to-music
MusicLM model through the AITK web-based interface2

(Figure 3) to a large scale userbase. We choose to collect
feedback through pairwise (Christiano et al., 2017): when
a user seizes a prompt, we generate two 20s candidate clips
and let the user optionally assign a trophy to one of them.
An important design choice implied by this process is the
absence of specific instructions, which is intended not to
bias users towards precise musical attributes and rather
communicate their overall subjective taste. We only con-

2https://aitestkitchen.withgoogle.com/
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Figure 3. The AI Test Kitchen MusicLM interface. The user can write a prompt or choose from suggestions. Each prompt generates two
20s clips, and the user can label their favorite clip among the two with a trophy.

sider preferences from users that listen to both generations.
After filtering, we obtain a dataset of pairwise user data of
size 300,000. This dataset minimizes the biases that often
arise from human raters (as detailed in Appendix D).

Our reward model takes as input the caption’s text and cor-
responding audio tokens and outputs a scalar score. This
model is trained with a Bradley-Terry Model (Bradley &
Terry, 1952) as in Christiano et al. (2017), which enables
learning a pointwise ELO score from pairwise preferences.
It is initialized with the MusicLM checkpoint, as first re-
sults demonstrated that, starting from scratch, the reward
model was not able to do better than chance at predicting
human preferences. We split the user preference dataset
into a train split of size 285,000 and an evaluation split of
size 15,000. After training for 10,000 steps on batches of
32 pairs, the reward model achieves 60% of accuracy on
the evaluation set (see Figure 6).

To pre-assess the performance of the reward model, we con-
duct an internal small-scale human evaluation on 156 audio
comparisons from the user preference dataset. In 60% of
cases, our team’s preferences aligned with the established
preferences in the dataset. This result is comparable to
the performance of the reward model. Furthermore, this
low agreement rate highlights the inherent subjectivity in
judging music preferences, compared to domains such as
summarization where Stiennon et al. (2020) estimated at 73-
77% the agreement rate for the OpenAI human preference
dataset. When finetuning MusicLM on the user preference
reward model, since our models generate 30-second audios,
we average the scores computed from the first and last 20
seconds of audio.

4. Experimental Setup
4.1. Datasets

Given the pretrained reward signals as described in Sec-
tion 3.3, the RL finetuning step uses a dataset exclusively
composed of captions, used for prompting all MusicLM-
based models. Consequently, no ground-truth audio is in-
volved in the finetuning process. We follow the same proce-
dure as Huang et al. (2023) for synthetically generating cap-
tions from three sources. We use the LaMDA model (Thop-
pilan et al., 2022) to generate descriptions of 150,000 popu-
lar songs. After providing song titles and artists, LaMDA’s
responses are processed into 4 million descriptive sentences
about the music. We split 10,028 captions from Music-
Caps (Agostinelli et al., 2023) into 35,333 single sentences
describing music. Furthermore, we collect 23,906 short-
form music tags from MusicCaps. Additionally, we extend
the previous captions with the 300,000 prompts collected
from users, as described in Section 3.3. We randomly split
the data, using 90% for training and 10% for evaluation.

4.2. Training procedure

In the following experiments, we RL-finetune the MusicLM
model with the same RL algorithm and the same hyperpa-
rameters. The common decoding scheme is temperature
sampling with temperature T = 0.99. The temperature was
chosen with subjective inspection to have a good quality-
diversity tradeoff for the generations of MusicLM. The
RL-finetuned models differs only with the reward function
employed during their training process.
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MusicRL-R. We RL-finetune MusicLM for 20,000 train-
ing steps (1) with the MuLan reward, (2) with the quality
reward, and (3) with a linear combination of the MuLan
and the quality reward: the resulting models are respec-
tively called MusicRL-MuLan, MusicRL-Quality,
and MusicRL-R. Throughout our experiments, we nor-
malize the quality reward from [1; 5] to [0; 1] as preliminary
experiments have shown that the combination of the Mu-
Lan and the quality reward gives the best results when both
rewards are on the same scale. We still display in figures
the un-normalized scores.

MusicRL-U. We RL-finetune MusicLM for 5000 training
steps with the user preference reward model to obtain a
model that we call MusicRL-U.

MusicRL-RU. To combine all the reward signals, we
RL-finetune MusicRL-R for 1000 training steps on the
user preference reward model. For this experiment, the
KL regularization is computed between the model being
finetuned and MusicRL-R. The resulting model is called
MusicRL-RU. We find that the sequential approach of first
finetuning on MuLan and quality and then finetuning on the
user preference reward outperforms learning from the three
rewards at the same time. We hypothesize this comes from
the fact that it takes a small number of gradient steps (under
2000) before over optimizing on the user preference reward
while it takes around 10,000 steps to optimize the other re-
wards. Moreover, using the user preference reward model
in a final stage in this matter may allow the model to align
better on the human preferences.

4.3. Evaluation

The main metrics we report in our experiments are the
quality reward, the MuLan reward, and the user preference
reward model. We report the metrics either against the train-
ing step to show progress along the training, or against the
KL divergence to the base model. This is typically used
as a proxy to measure the distance to the base checkpoint
and thus the retention of the original capabilities of the
model (Christiano et al., 2017; Roit et al., 2023).

For the qualitative evaluation, we use 101 diverse, internally-
collected prompts, representing a balanced range of musi-
cal genres (see Appendix A for the full list). We use these
prompts to generate audio samples from each evaluated
model. We select raters for their experience listening to
varied musical styles (>6 years) and fluency in written En-
glish. During the qualitative evaluation, raters are presented
with two audio clips generated by different models using the
same text prompt. We ask raters to rate each clip on a scale
of 1 to 5, considering adherence to the text prompt, acoustic
quality and overall appeal to the audio clip. Each compari-
son is performed by three different raters, totaling 303 rat-
ings per model comparison. From these ratings, we compute

a win rate metric which is defined as win/(win+ loss).

4.4. Checkpoint selection

For all RL-finetuned models, we manually select the
best checkpoint by inspecting the quantitative results and
listening to the music generations. For MusicRL-R,
MusicRL-U, and MusicRL-RU we respectively choose
the checkpoint after 10,000 training steps, 2000 training
steps, and 1000 training steps.

5. Results
We aim to answer the following questions: (1) Can RL-
finetuning on MuLan and quality rewards improve the gen-
eration quality of text-to-music models such as MusicLM?
(2) Can RLHF improve the alignment of the generated mu-
sic to generic preferences from users? (3) Is it possible to
combine all reward signals to further improve performance?

5.1. Quantitative Results

In all quantitative evaluations, we analyze model progress
during RL finetuning by tracking scores of rewards against
the KL divergence from the initial model. Regardless of
whether we train with a single reward model or a combina-
tion of both as in MusicRL-R, we evaluate model perfor-
mance on all reward signals.

Figure 4 shows that RL-finetuning successfully optimizes
both quality and MuLan scores. Specifically, finetuning on
the quality reward alone leads to the greatest increase in
quality score (from 3.5 MOS to 4.6 MOS), and a smaller in-
crease in the MuLan score (from 0.58 to 0.61). Conversely,
finetuning on only the MuLan reward maximizes the MuLan
score (from 0.58 to 0.71), with a less pronounced quality
score improvement (from 3.5 MOS to 4.1 MOS). Leverag-
ing both quality and MuLan rewards significantly improves
both scores (quality: 3.5 MOS to 4.4 MOS; MuLan: 0.58 to
0.71), while marginally increasing KL divergence. Given
the promising and stable performance in simultaneously op-
timizing MuLan and quality scores, we perform qualitative
evaluations only on MusicRL-R.

Figure 8 (in Appendix B) shows that after 10,000 finetun-
ing steps on the quality reward, the reward model trained
on user preference begins assigning lower scores to music
samples. This suggests that finetuning solely on the quality
reward is prone to reward over-optimization (Coste et al.,
2023; Ramé et al., 2024; Jiang et al., 2020).

Figure 5 demonstrates that finetuning with the user prefer-
ence reward model significantly improves generation scores,
increasing them from -1.5 to over 1.5. Figure 4 shows
that despite not training on the quality reward, the quality
score increases from 3.5 MOS to 4 MOS. The MuLan score
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Figure 4. Quality (left) or MuLan score (right) vs KL divergence for the RL-finetuned models. The KL divergence is computed between
the RL-finetuned models and MusicLM except for MusicRL-RU where the KL divergence is computed against MusicRL-R. The black
cross corresponds to the checkpoint used to start the training of MusicRL-RU. RL-finetuning successfully optimizes the quality and the
MuLan scores (MusicRL-R). Additionally, optimizing the user preference reward (MusicRL-RU, MusicRL-RU) improves the quality
score while marginally decreasing the MuLan score.
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Figure 5. User Preference Reward Model Score for the different
RL-finetuned models. The KL divergence is computed between
the RL-finetuned models and MusicLM except for MusicRL-RU
where the KL divergence is computed against MusicRL-R.
The black cross corresponds to the checkpoint used to start the
training of MusicRL-RU. RL-finetuning successfully improves
the user preference reward model score of the generations (see
MusicRL-U and MusicRL-RU curves). When trained on other
rewards (MuLan and/or quality) the user preference reward model
score slightly improves.

slightly decreases from 0.58 to 0.55. Yet, Figure 7 highlights
that over-optimizing the user preference reward model can
drastically reduce the MuLan score. Overall, this suggests
that user preference feedback particularly enhances audio
quality while having minimal impact on text adherence.

Model MOS # wins

MusicLM 3.07 133
MusicRL-R 3.54 362
MusicRL-U 3.54 372
MusicRL-RU 3.82 460

Table 1. Average mean opinion score (MOS) and number of wins
across all rating tasks, for each model. The music generated from
the RL-finetuned models are significantly scored higher in average
than the ones from MusicLM. The best performing model both in
term of MOS and number of wins is MusicRL-RU.

Figure 5 shows that optimizing the user preference reward
model on a model finetuned for 10,000 steps on quality and
MuLan improves the user preference reward model score
significantly. Figure 4 shows that the quality score slightly
increases while the MuLan score slightly decreases, which
confirms the impact of the user preference reward model
observed in the previous paragraph.

5.2. Qualitative Results

Figure 1 presents human rater evaluations of pairwise com-
parisons between all possible model combinations across
MusicLM, MusicRL-R, MusicRL-U and MusicRL-RU.
When compared to MusicLM, MusicRL-R wins 65% of
the time, ties 22.1% and loses 12.9%. This translates into
a 83% win rate in favor of MusicRL-R. MusicRL-U is
also strongly preferred over MusicLM as it achieves a 74%
win rate against MusicLM. The best performing model
overall is MusicRL-RU. When compared to MusicLM,
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MusicRL-RU is strongly preferred by the raters with a
87% win rate. When compared to the other RL-finetuned
models, MusicRL-RU achieves a win rate of 66% against
MusicRL-R, and 62% against MusicRL-U. All results
described above are statistically significant according to a
post-hoc analysis using the Wilcoxon signed-rank test (Rey
& Neuhäuser, 2011).

Table 1 summarizes results from all qualitative evaluations
by showing average mean opinion score (MOS) and number
of wins across all rating tasks, for each model. On both
metrics, all RL-finetuned models outperform MusicLM,
with MusicRL-RU being the best performing model.

Lastly, MusicRL-R and MusicRL-U perform compara-
bly according to raters, as shown from Figure 1 and Table 1.

5.3. Takeaway

Our results demonstrate several key findings: (1)
MusicRL-R shows that RL-finetuning on text adherence
and quality rewards improves the generation quality of
MusicLM; (2) MusicRL-U confirms the ability to lever-
age generic user preferences data to improve MusicLM; (3)
MusicRL-RU outperforms all other models, demonstrat-
ing that the above reward signals are complementary and
can be constructively combined for the highest performance.

6. Understanding Human Feedback Through
the Lens of the Reward Model

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Epochs over the training dataset

0.50
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Figure 6. Ablations on the user preference reward model. The re-
ward model is learned either with no text tokens (No Text) or with
a cropped version of the input audio (i.e. 10s, 5s, 3s). While drop-
ping the text tokens does not significantly impact the accuracy of
the reward model, cropping the audio substantially degrades perfor-
mance. This suggests that text adherence and audio quality are not
the primary factors influencing user audio preferences, as addition-
ally shown by the low accuracy when using text adherence based
(MuLan) or audio quality based predictors for user preference.

In this section, we analyze reward model accuracy to un-
cover the specific music elements that influence user prefer-
ence. This analysis directly addresses our research question:
What is the user paying attention to when rating the audio?

We categorize generated music into three components which
might drive the users choice on their audio preferences: (1)
text adherence, (2) audio quality, and (3) musicality. In
particular, defining and modeling musicality is a complex
task, which underscores our focus on human feedback as a
solution, moving beyond rule-based limitations.

6.1. Importance of the text input

To isolate the impact of text on pairwise preference evalua-
tion, we drop text tokens while training the reward model.
Accuracy remains stable as shown by Figure 6. Addition-
ally, we measure how often the clip with the highest MuLan
score corresponds to the preferred one. On the evaluation
set, these indicators only match 51.6% of the time, which is
very close to random accuracy. Overall, these findings in-
dicate that adherence to the text prompt was not a primary
driver of human preference in our experiment. This aligns
with our quantitative results in Section 5.1, which show no
significant improvement in text adherence as measured by
MuLan, when training MusicRL-U.

6.2. Importance of the audio quality

Since audio quality remains relatively consistent within a
generated sequence, a few seconds of audio should provide
sufficient information to evaluate this aspect. We train re-
ward models on different input audio tokens length corre-
sponding to 10, 5, and 3 seconds. As shown in Figure 6 the
evaluation accuracy on pairwise preference decreases as we
reduce the length of the input tokens, dropping from 60 to
56% when using 3-5 seconds of input audio. The significant
accuracy decrease suggests that other musical components
play a complementary role in user preference. Additionally,
we replicate the analysis done in 6.1 and measure how often
the clip with the highest quality score is preferred. As shown
in Figure 6 the quality predictor achieves 53.3% accuracy
on the evaluation dataset. These findings indicate that audio
quality is not the only driver of human preference, while be-
ing a better signal than text adherence. This is consistent
with our quantitative results in Section 5.1, where training
MusicRL-U improves marginally on the quality score.

Overall, this analysis shows that user preference is influ-
enced by music elements which go beyond text adherence
and audio quality.

7. Limitations and Future Work
Aligning feedback and evaluation. When training on user
preference data, a limitation of our current setup is the
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population gap between those who provide feedback to
improve the model (general users) and those who assess
the results (selected raters). A direction for future work is
to directly measure the perceived improvements from the
user’s perspective.

Using on-policy data. For the reasons explained in Sec-
tion 3.1, in this work we collected user preferences on a dif-
ferent version of MusicLM compared to the one used for RL
finetuning. A clear path for improvement is to iteratively
collect on-policy data (data generated by the model that is
being finetuned) and use it to update the model. Eventu-
ally, this would allow for real integrated feedback where
finetuned models are continuously deployed to collect new
feedback while improving the user experience.

Refining the user preference dataset. Several interesting
research directions involve refining the large user interac-
tion dataset. For instance identifying and retaining exam-
ples where users express a confident and clear preference
could reduce noise and improve the overall dataset quality.
Furthermore, focusing on techniques to train robust reward
models on smaller, but highly relevant datasets could facili-
tate research directions such as model personalization for
specific users.

8. Conclusion
In this work, we introduce MusicRL, the first text-to-music
generative model aligned with human preferences. In a first
set of experiments, we derive sequence-level reward func-
tions that inform on the adherence to the text and acoustic
quality, and we finetune a pretrained MusicLMmodel to opti-
mize these rewards with RL. The quantitative and qualitative
results show consistent improvements over the pretrained
baseline. We then show for the first time that we can align
music generation with generic preferences from users. We
collect 300,000 user generated captions and audios through
a web interface to create a model of the user preferences.
This allows improving our model through RLHF, again con-
sistently outperforming the baseline. Lastly, we combine all
reward signals to produce the highest performing model. Ad-
ditional analysis indicates that the signal extracted from user
preferences contains information beyond text adherence and
audio quality. This highlights the subjective and complex na-
ture of musical appeal, emphasizing the value of integrating
user feedback when improving music generation models.

Impact Statement
A considerable concern in our research is the potential for bi-
ases from users to be integrated into music generation mod-
els. User biases can perpetuate through: 1) Unconscious
bias, where users may have biased opinion on what consti-
tutes good music; 2) Explicit bias, where some users might

provide feedback driven by explicit biases related to race,
gender, culture, or other factors; 3) Majority bias, where a
particular demographic dominates the user feedback poten-
tially marginalizing other musical styles and perspectives.
Overall such biases might limit model creativity, discrim-
inate certain groups and generally provide a negative user
experience. Mitigation strategies include data awareness,
actively seeking user feedback from diverse demographics
and develop tools for detecting and correcting such biases.
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A. Qualitative Evaluation.
For the qualitative evaluation, the list of the 101 diverse prompts is the following:

’A mid-tempo country chorus with a choir counter melody ’,
’grunge with a drum n bass beat’,
’An eerie, powerful slow metal guitar riff with drums backing that builds tension and anticipation.’,
’A wistful, nostalgic indie folk-pop song with a strong bass and a deep male voice’,
’Reggeaton with deep bass and a rapping voice’,
’A modern, romantic slow waltz played by a jazz trio’,
’A rock-steady intro with trumpets providing the backing to a gentle guitar’,
’a funky disco song with a bass player’,
’A slow rumba composition with a female voice supported by a piano a percussions’,
’A sad pop melody with piano and strings accompaniment’,
’Chinese music instruments in futuristic theme, fast pace’,
’A frantic drum machine beat and pew-pew laser noises fill the cavernous warehouse rave’,
’fast, classical music with a church organ with an eerie feeling, for a dark thriller soundtrack’,
’A fast, energetic tango played by an accordion and a violin’,
’A mellow british-rock acoustic chorus’,
’Repetitive house music with strong percussive line’,
”The sitar’s slow, meandering melody was accompanied by the tabla’s steady beat, creating a sound that was both calming
and enchanting.”,
’Energetic punk rock with a female voice singing’,
’a cheerful children song with a simple xylophone backing’,
’An energetic gospel choir performance’,
’slow, mellow, and instrumental new age music for meditation.’,
’Flamenco performance full of energy’,
’Melodic danceable brazilian music with percussions.’,
’An indie-rock chorus is played by a male singer with a small band backing.’,
’epic movie soundtrack’,
”The K-pop group’s powerful vocals were accompanied by a lush string arrangement, creating a truly epic soundscape.”,
’A funk bass intro with a guitar playing short chords and a drums backing’,
’Salsa music played by an orchestra’,
’A small band plays a latin danceable song’,
’A whistling tune for a western duel soundtrack’,
’A samba beat and a lively chorus combine to create a festive atmosphere.’,
’A jazzy pop song played by a big band’,
’a ska-punk trumpet riff supported by an up-beat guitar’,
’male bass low grave voice male-singing a medieval song with a mandolin’,
’a fast symphonic metal guitar solo with a choir backing’,
’chorus of a sweet acoustic rock ballad’,
’A bluesy piano riff drives the band as they belt out a soulful tune.’,
’A slow, swing pop song with piano and drums backing’,
’A fusion of reggaeton and electronic dance music, with a spacey, otherworldly sound.’,
’A marching band plays a catchy tune’,
’A classical orchestral waltz for a costume dance’,
’Irish folk chorus with a mandolin and team whistle’,
’A male voice sings a pop anthem accompanied by his piano’,
’A catchy pop tune is sung on top a dance drumbeat’,
”The soprano’s voice soared over the delicate accompaniment of the piano, filling the opera house with beauty and emotion.”,
’Rap song with a female melodic line’,
’a reggae song with guitar and singing’,
’A corny pop chorus sung by a female voice with a lot of autotune’,
”The marimba’s soulful melody was accompanied by the steady beat of the drums, creating a bluesy sound that was both
melancholy and uplifting.”,
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’A gospel choir sings on top a metal guitar backing’,
’A powerful female voice sings with soul and energy over a driving drum beat.’,
’A repetitive lullaby sung by a female voice with a carillon backing’,
’Traditional fast song played by a male voice with an accordion backing’,
’An up-beat reggae with a deep male voice and a piano striking the chords’,
’Slow, melodic music backed by a sitar and strings.’,
’Funky piece with a strong, danceable beat, a prominent bassline and a keyboard melody.’,
”A danceable, fast and cheerful swing tune from the 50’s”,
’a professional solo cellist playing a sad melody for solo cello on the cello, high quality recording’,
’A rock guitar riff, a slide guitar solo and a flute melody create a lively, upbeat sound.’,
’an a cappella chorus singing a christmas song’,
’nice ragtime guitar chord progression’,
”A cheerful R’n’B song is played by two singers with a trumpet melody”,
’A dance song with a fast melody taken from sampled voice, giving the impression of percussions’,
’a gospel song with a female lead singer’,
’a nostalgic tune played by accordion band’,
’A mariachi song with an epic twist and symphonic orchestra backing’,
’A middle-easter tune with percussions and flutes’,
’Jazz composition for piano and trumpet’,
’A slow blues intro with a harmonica and minimal backing.’,
’The experimental modular synthesizer created a unique soundscape by combining the sounds of water with electronic
music.’,
’a cheerful ragtime with guitar’,
’Industrial techno sounds, with hypnotic rhythms. Strings playing a repetitive melody creates an unsettling atmosphere.’,
’The microphone picked up the soulful, funky scream of the lead singer as he reached the climax of the song.’,
’The snare drum and lute played a lively duet, with the snare drum providing a steady beat and the lute playing a melody on
top.’,
’The two rappers traded verses over a pulsating synth beat, creating a sound that was both energetic and infectious.’,
’A bagpipe is playing an aggressive tune with a punk backing’,
’A string quartet plays a lively tune.’,
’A very fast piano cadenza that is hard to play.’,
’A lone harmonica plays a haunting melody over the sound of the wind blowing through the desert.’,
’An aggressive, but sad punk verse, with a prominent slow guitar melody and dark bass line.’,
’a band playing cumbia in a boat along the magdalena river in colombia’,
’A slow jamaican ska song with an organ backing’,
’The gramophone needle crackled and hissed as it spun across the vinyl record, filling the room with a warm, nostalgic sound.’,
’fast piano toccata’,
”Romantic R’n’B song with a warm female voice”,
’A cheerful bollywood-style group dance’,
’Dance music with a melodic synth line and arpeggiation’,
’The wooden bongo drums beat a deep, resonating bass as the dancers move their bodies to the music.’,
’a tenor singing with a backing guitar’,
’Slow trap song with a lot of reverb and autotune’,
’A syncopated progressive rock tune with a saxophone ’,
’A syncopated drum beat backs a hard rock guitar riff’,
’a gregorian chant’,
’A danceable folk waltz is played by an accordion’,
’A bagpipe is playing a fast catchy tune in a dance-pop song’,
’A full orchestra playing a violin concerto from the 1800s’,
’The trap beat was layered with acoustic string sounds creating a catchy chorus.’,
’A church choir sings a high-pitched, soothing melody.’,
’An energetic dance-pop song, sang by a powerful female voice’,
’An harmonica plays a melancholic solo over an acoustic guitar’,
’A fast rap chorus is sung on top of a simple catchy tune’
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B. Additional Quantitative Evaluation Plots
Figure 7 and Figure 8 show the progress of the RL-finetuned models along training as measured by the three reward signals.
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Figure 7. Quality (left) or MuLan score (right) vs step for the RL-finetuned models. The black cross corresponds to the checkpoint used to
start the training of MusicRL-RU. RL-finetuning successfully optimizes the quality and the MuLan scores (MusicRL-R). Additionally,
optimizing the user preference reward (MusicRL-RU, MusicRL-RU) improves the quality score while the MuLan score starts to be
significantly impacted when the model over optimize the user preference reward.
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Figure 8. User Preference Reward Model Score for the different RL-finetuned models. The black cross corresponds to the checkpoint used
to start the training of MusicRL-RU. RL-finetuning successfully improves the user preference reward model score of the generations
(see MusicRL-U and MusicRL-RU curves). When trained on other rewards (MuLan and/or quality) the user preference reward model
score slightly improves.

C. Implementation Details
RL-finetuning. For the RL-finetuning, we use a KL regularization strength of 0.001, a policy learning rate of 0.00001, a
value learning rate of 0.0001, and 128 TPU cores of Cloud TPU v5e.

Reward Modeling. For the training of the user preference reward, we use a learning rate of 0.0001 and 32 TPU cores of
Cloud TPU v4.

For both training, we use Adafactor (Shazeer & Stern, 2018) for the optimizer.
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D. Advantages of User Data
In Section 5, we show that we could leverage a model that was trained with human rater data to improve a music generation
model with RL. However, rater data have some limitations and biases.

In behavioural sciences, the ecological validity3 of a lab study refers its potential of generalization to the real world
(Lewkowicz, 2001). In the context of music, it is crucial to experiment on real-world settings (Tervaniemi, 2023). Thomas &
Kellogg (1989) explore the ecological validity concept in the context of interface design and say that ”User-related ecological
gaps are caused by characteristics of users - such as what motivates them, their cognitive abilities, preferences, and habits
- that may vary between the lab and the target environment.” The concept of user-related ecological gaps is particularly
relevant for the finetuning and the evaluation of large language models as the raters and users are often dissimilar.

Population Gap. Raters are often not representative of the user population especially as the rating task is often outsourced
to crowdsourcing services which employ people in different countries than the ones the model is deployed in e.g. Amazon
Mechanical Turk4 proposes a global workforce for rating tasks. This population difference creates biases such as cultural
biases which can impact the music preferences (Trehub et al., 2015).

Motivation Gap. As mentioned in Thomas & Kellogg (1989), the motivation gap which corresponds to the difference of
motivations between the different users can have a significant effect on the results. In our context, while the users of music
generation models have a genuine interest in playing with the model, the incentive of the raters are very different. Hence, for
rating tasks, it is crucial to give specific set of instructions to make sure the raters make their decisions aligned with what the
creator of the rating task would expect which also can be a source of biases. Whereas for users, we are interested in general
interactions where no instructions are given.

Dataset Size. Due to the cost of rater data, the number of collected human preference is often below 100,000 (Ziegler et al.,
2019; Lee et al., 2023; Stiennon et al., 2020). On the other hand, the number of user interactions can be orders of magnitude
higher once a model is deployed.

3https://en.wikipedia.org/wiki/Ecological validity
4https://www.mturk.com/
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