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Abstract

A notable challenge in multi-objective reinforcement learning is obtaining a Pareto
front of policies to attain optimal performance under different preferences. We
introduce Iterated Pareto Referent Optimisation (IPRO), which decomposes finding
the Pareto front into a sequence of constrained single-objective problems. This
enables us to guarantee convergence while providing an upper bound on the distance
to undiscovered Pareto optimal solutions at each step. Empirical evaluations
demonstrate that IPRO matches or outperforms methods that require additional
assumptions. Furthermore, IPRO is a general-purpose multi-objective optimisation
method, making it applicable to domains beyond reinforcement learning.

1 Introduction

In sequential decision-making problems, agents often have multiple and conflicting objectives.
Controlling a water reservoir, for example, involves a complex trade-off between environmental,
economic and social factors [Castelletti et al., 2013]. Because the objectives are conflicting, decision-
makers ultimately need to make a suitable trade-off. We employ multi-objective reinforcement
learning (MORL) to compute a set of candidate optimal policies that offer the best available trade-
offs, empowering decision-makers to select their preferred policy [Hayes et al., 2022].

We focus on learning the Pareto front, which consists of all policies leading to non-dominated
expected returns. When assuming decision-makers utilise a linear scalarisation function or allow for
stochastic policies, the resulting Pareto front is guaranteed to be convex [Roijers and Whiteson, 2017],
enabling the application of effective solution methods [Yang et al., 2019, Xu et al., 2020]. However,
when deterministic policies are preferred for safety, accountability or interpretability reasons, the
resulting Pareto front may have concave regions. Algorithms addressing this setting have been elusive,
with successful solutions limited to purely deterministic environments [Reymond et al., 2022].

To tackle general policy classes and MOMDPs, we propose Iterated Pareto Referent Optimisation
(IPRO), which decomposes this task into a sequence of constrained single-objective problems. In
multi-objective optimisation (MOO), decomposition stands as a successful paradigm for computing a
Pareto front. This approach makes use of efficient single-objective methods to solve the decomposed
problems, thereby also establishing a robust connection between advancements in multi-objective and
single-objective methods [Zhang and Li, 2007]. Notably, existing MORL algorithms dealing with a
convex Pareto front frequently employ decomposition and rely on single-objective RL algorithms to
solve the resulting problems [Lu et al., 2023, Alegre et al., 2023].
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Contributions. IPRO is an anytime algorithm that decomposes learning the Pareto front into
learning a sequence of Pareto optimal policies. We show that learning a Pareto optimal policy
corresponds to a constrained single-objective problem for which principled solution methods are
derived. Combining these, we guarantee convergence to the Pareto front and provide bounds on the
distance to undiscovered solutions at each iteration. While IPRO applies to any policy class, we
specifically demonstrate its effectiveness for deterministic policies, a class lacking general methods.
When comparing IPRO to algorithms that require additional assumptions on the structure of the
Pareto front or the underlying environment, we find that it matches or outperforms them, thereby
showcasing its efficacy.

2 Related work

When learning a single policy in MOMDPs, as is necessary in IPRO, conventional methods often
adapt single-objective RL algorithms. For example, Siddique et al. [2020] extend DQN, A2C and
PPO to learn a fair policy by optimising the generalised Gini index of the expected returns. Reymond
et al. [2023] extend this to general non-linear functions and establish a policy gradient theorem for
this setting. When maximising a concave function of the expected returns, efficient methods exist
that guarantee global convergence [Zhang et al., 2020, Zahavy et al., 2021, Geist et al., 2022].

Decomposition is a promising technique for MORL due to its ability to leverage strong single-
objective methods as a subroutine [Felten et al., 2024]. When the Pareto front is convex, many
techniques rely on the fact that it can be decomposed into a sequence of single-objective RL problems
where the scalar reward is a convex combination of the original reward vector [Yang et al., 2019, Ale-
gre et al., 2023]. When the Pareto front is non-convex, Van Moffaert et al. [2013] learn deterministic
policies on the Pareto front by decomposing the problem using the Chebyshev scalarisation function
but do not provide any theoretical guarantees and only evaluate on discrete settings.

In MOO, a related methodology was proposed by Legriel et al. [2010] to obtain approximate Pareto
fronts. Their approach iteratively proposes queries to an oracle and uses the return value to trim
sections from the search space. In contrast, we introduce an alternative technique for query selection
that ensures convergence to the exact Pareto front and aims to minimise the number of iterations.
Moreover, we introduce a procedure that deals with imperfect oracles and contribute novel results
tailored to multi-objective Markov decision processes and reinforcement learning.

3 Preliminaries

Pareto dominance. For two vectors v,v′ ∈ Rd we say that v Pareto dominates v′, denoted v ≻ v′,
when ∀j ∈ {1, . . . , d} : vj ≥ v′j and v ̸= v′. When dropping the second condition, we write v ⪰ v′.
We say that v strictly Pareto dominates v′, denoted v > v′ when ∀j ∈ {1, . . . , d} : vj > v′j . When a
vector is not pairwise (strictly) Pareto dominated, it is (strictly) Pareto optimal. Finally, a vector is
weakly Pareto optimal whenever there is no other vector that strictly Pareto dominates it.

In multi-objective decision-making, Pareto optimal vectors are relevant when considering decision-
makers with monotonically increasing utility functions. In particular, if v ≻ v′, then v will be
preferred over v′ by all decision-makers. The set of all pairwise Pareto non-dominated vectors
is called the Pareto front, denoted V∗, and an approximate Pareto front Vτ with tolerance τ is an
approximation to V∗ such that ∀v ∈ V∗,∃v′ ∈ Vτ : ∥v − v′∥∞ ≤ τ . We refer to the least upper
bound of the Pareto front as the ideal vi, and the greatest lower bound as the nadir vn (see Figure 1).

Achievement scalarising functions. Achievement scalarising functions (ASFs) scalarise a multi-
objective problem such that an optimal solution to the single-objective problem is (weakly) Pareto
optimal [Miettinen, 1998]. Such functions are parameterised by a reference point r, also called the
referent. We refer to the points dominating the referent as the target region. We consider two types
of ASFs, known as order representing and order approximating ASFs. For any reference point r,
an ASF sr is order representing when it is strictly increasing, i.e. v > v′ =⇒ sr(v) > sr(v

′),
and only returns a non-negative value for a vector v when v ⪰ r. On the other hand, the ASF is
order approximating when it is strongly increasing, i.e. v ≻ v′ =⇒ sr(v) > sr(v

′) but may give
non-negative value to solutions outside the target region. An ASF cannot be strongly increasing while
also exclusively attributing non-negative values to vectors in its target region [Wierzbicki, 1982].
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Figure 1: (a) The bounding box B, defined by the nadir vn and ideal vi, contains all Pareto optimal
solutions. The dominated set D and infeasible set I are defined by the current approximation to the
Pareto front V = {v1,v2,v3} and are shaded. The lower bounds l ∈ L are highlighted in green,
while the upper bounds u ∈ U are highlighted in blue. (b) After querying the Pareto oracle Ωτ with
l2, v4 is added to the Pareto front and L and U are updated to represent the new corners of D and I
respectively. (c) When the Pareto oracle cannot find a feasible solution strictly dominating l4, it is
added to the completed set C and the shaded orange area is added to the infeasible set I.

For a set X of feasible solutions and an order representing ASF, v∗ = argmaxv∈X sr(v) is
guaranteed to be weakly Pareto optimal. Moreover, for an order approximating ASF, v∗ is guaranteed
to be Pareto optimal. As such, ASFs ensure that any (weakly) Pareto optimal solution can be obtained
by changing the reference point. One example of an ASF that is frequently employed is the augmented
Chebyshev scalarisation function [Nikulin et al., 2012, Van Moffaert et al., 2013], which we also
utilise in this work.

Problem setup. We consider sequential multi-objective decision-making problems, modelled as
a multi-objective Markov decision process (MOMDP). A MOMDP is a tuple M = ⟨S,A,P,R,
µ, γ⟩ where S is a set of states, A a set of actions, P a transition function, R : S × A × S → Rd

a vectorial reward function with d ≥ 2 the number of objectives, µ a distribution over initial
states and γ a discount factor. Since there is generally not a single policy that maximises the
expected return for all objectives, we introduce a partial ordering over policies on the basis of Pareto
dominance. We say that a policy π ∈ Π Pareto dominates another if its expected return, defined as
vπ := Eπ,µ [

∑∞
t=0 γ

tR(st, at, st+1)], Pareto dominates the expected return of the other policy.

Our goal is to learn a Pareto front of memory-based deterministic policies in MOMDPs. Such policies
are relevant in safety-critical settings, where stochastic policies may have catastrophic outcomes but
can Pareto dominate deterministic policies [Delgrange et al., 2020]. Furthermore, for deterministic
policies, it can be shown that memory-based policies may Pareto dominate stationary policies [Roijers
and Whiteson, 2017]. In this setting, it is known that the Pareto front may be non-convex and thus
cannot be fully recovered by methods based on linear scalarisation. Furthermore, to the best of our
knowledge, no algorithm exists that produces a Pareto front for such policies in general MOMDPs.

4 Iterated Pareto referent optimisation

We present Iterated Pareto Referent Optimisation (IPRO) to learn a Pareto front in MOMDPs.
IPRO generates a sequence of constrained single-objective problems and uses the solutions to these
problems to retain a set of guaranteed lower and upper bounds to the Pareto front. We prove that
IPRO monotonically improves these bounds in each iteration, thereby establishing an upper bound
on the distance to undiscovered Pareto optimal values and guaranteeing convergence. An example
execution of IPRO is illustrated in Figure 1.

4.1 Algorithm overview

The core idea of IPRO is to bound the search space that may contain value vectors corresponding to
Pareto optimal policies and iteratively remove sections from this space. This is achieved by leveraging
an oracle to obtain a policy with its value vector in some target region and utilising this to update the
boundaries of the search space. Detailed pseudocode is given in Algorithm 1.

3



Bounding the search space. It is necessary to bound the space in which Pareto non-dominated
solutions may exist. By definition, the box spanned by the nadir vn and ideal vi contains
all such points (shown as B in Figure 1). We obtain the ideal by maximising each objec-
tive independently, effectively reducing the MOMDP to a regular MDP. The solutions consti-
tuting the ideal are further used to instantiate the Pareto front V . Since obtaining the nadir
is generally more complicated [Miettinen, 1998], we compute a lower bound of the nadir
by minimising each objective independently, analogous to the instantiation of the ideal.

Algorithm 1 The IPRO algorithm.

Input: A Pareto oracle Ωτ with tolerance τ
Output: A τ -Pareto front V

1: Get maximal points {v1, . . . ,vd} to create the
ideal vi

2: Get minimal points to estimate the nadir vn

3: Form a bounding box B from vn and vi

4: U ← {vi}, L ← {vn}
5: V ← {v1, . . . ,vd} and C ← ∅
6: for v ∈ {v1, . . . ,vd} do
7: Update L using v (see Appendix A)
8: end for
9: while maxu∈U minv′∈V ∥u− v′∥∞ > τ do

10: l← SELECT(L)
11: SUCCESS,v∗ ← Ωτ (l)
12: if SUCCESS then
13: V ← V ∪ {v∗}
14: else
15: C ← C ∪ {l}
16: end if
17: Update L and U (see Appendix A)
18: end while

Obtaining a Pareto optimal policy. To obtain
individual Pareto optimal policies we introduce
a Pareto oracle. Informally, a Pareto oracle Ωτ

with tolerance τ takes as input a referent r and
attempts to return a weakly Pareto optimal pol-
icy π whose expected return vπ strictly domi-
nates the referent. When the oracle evaluation
was successful (Figure 1b), it is guaranteed that
vπ is weakly Pareto optimal and therefore all
points dominated by vπ do not correspond to
Pareto optimal policies. Moreover, all points
strictly dominating vπ are guaranteed to be in-
feasible, as otherwise π would not have been
returned. When the evaluation was unsuccess-
ful (Figure 1c), all points strictly dominating r
may be excluded as they are guaranteed to be
infeasible or within the tolerance τ . We refer to
Section 5 for a rigorous definition and theoret-
ical results for Pareto oracles.

Reducing the search space. We use the Pareto
oracle to exclude sections of the search space by
maintaining a dominated set D and infeasible
set I , that respectively contain points dominated
by the current Pareto front and points guaranteed infeasible by a previous iteration (Figure 1a). A
naive approach would be to iteratively query the oracle and adjust D and I until they cover the entire
bounding box. However, when Pareto oracle evaluations are expensive, such as when learning policies
in a MOMDP, a more systematic approach is preferable to minimise the number of evaluations.

We propose instead to select referents from a set of guaranteed lower bounds to ensure maximal
improvement in each iteration. Intuitively, any remaining Pareto optimal solution v∗ must strictly
dominate some point on the boundary of the dominated set D. Furthermore, v∗ is necessarily upper
bounded by some point on the boundary of the infeasible set I. This insight allows us to define the
lower bounds L and upper bounds U , covering the inner corners of the dominated and infeasible sets
respectively (Figure 1a). By definition of the lower bounds, v∗ strictly dominates at least one l ∈ L,
further implying that v∗ can be found by a Pareto oracle. IPRO iteratively selects lower bounds from
L to present to the oracle and uses its return to adjust the boundaries for the next iteration. This
procedure is repeated until the distance for every upper bound to its closest lower bound falls below a
user-provided tolerance threshold τ , at which point it is guaranteed that a τ -Pareto front is obtained.

While in Figure 1 all unexplored sections are contained in isolated rectangles, this is a special
property of bi-objective problems. In general, feasible solutions may dominate multiple lower
bounds, necessitating careful updates. We refer to Appendix A for additional discussion on IPRO
and pseudocode for tracking the lower and upper bounds. Additionally, we propose IPRO-2D for
bi-objective problems in Appendix A.3 that modifies this update rule by exploiting the special
property.

4.2 Upper bounding the error

Since U contains an upper bound for all remaining feasible solutions, we can use it to bound the
distance between the current approximation of the Pareto front Vt and the remaining Pareto optimal
solutions V∗ \ Vt. Let the true approximation error ε∗t from Vt to the true Pareto front V∗ at timestep
t be defined as supv∗∈V∗\Vt

minv∈Vt
∥v∗ − v∥∞. As U is finite for any t <∞ by construction, we
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can substitute the supv∗∈V∗\Vt
by a maxu∈U , resulting in an upper bound on the true approximation

error ε∗t . We formalise this in Theorem 4.1 and provide a proof in Appendix B.4.

Theorem 4.1. Let V∗ be the true Pareto front, Vt the approximate Pareto front obtained by IPRO
and ε∗t the true approximation error at timestep t. Then the following inequality holds,

ε∗t ≤ max
u∈Ut

min
v∈Vt

∥u− v∥∞. (1)

One can verify this in Figure 1b where U = {u1,u3,u4} contains the upper bounds on the remaining
Pareto optimal solutions. Note that while approximate Pareto fronts are commonly computed with
regard to the L∞ norm, this result can be extended more generally to other distance metrics.

4.3 Convergence to a Pareto front

As IPRO progresses, the sequence of errors generated by Theorem 4.1 can be shown to be mono-
tonically decreasing and converges to zero. Intuitively, this can be observed in Figure 1b where the
retrieval of a new Pareto optimal point reduces the distance to the upper bounds. Additionally, the
closure of a section, illustrated in Figure 1c, results in the removal of the upper point which subse-
quently reduces the remaining search space. Since IPRO terminates when the true approximation
error is guaranteed to be at most equal to the tolerance τ , this results in a τ -Pareto front. We provide
a proof of Theorem 4.2 in Appendix B.5 with a mild assumption on the Pareto oracle that ensures
sufficient progress in each iteration.

Theorem 4.2. Given a Pareto oracle Ωτ and tolerance τ > 0, IPRO converges to a τ -Pareto front in
a finite number of iterations. For a Pareto oracle Ωτ with tolerance τ = 0, IPRO converges to the
exact Pareto front as t→∞.

4.4 Dealing with imperfect Pareto oracles

While IPRO relies on a Pareto oracle that solves the scalar problem exactly, this condition cannot
always be guaranteed when dealing with function approximators or heuristic solvers. To overcome
this, we introduce a backtracking procedure that maintains the sequence {(lt,vt)}t∈N of lower
bounds and retrieved solution in each iteration. When, at iteration n, the returned solution vn strictly
dominates a point c ∈ Cn or v∗ ∈ Vn, it indicates an incorrect oracle evaluation in a previous iteration
and we initiate a replay of the sequence.

Let t̄ denote the time step at which the incorrect result was returned. For the subsequence
{(lt,vt)}0≤t<t̄, we replay the pairs using the standard IPRO updates and consider vn as the re-
trieved solution for lt̄. For the remaining pairs {(lt,vt)}t̄<t<n, we verify for every (vt, lt) whether
the evaluation was originally successful. If this is the case, vt was weakly Pareto optimal and if a
new lower bound l′ exists that is dominated by vt, we perform an update with (l′,vt). If the original
evaluation was unsuccessful, lt was deemed to be completed and we check whether a new lower
bound l′ dominates lt. If this is the case, l′ is considered completed as well.

5 Pareto oracle

Obtaining a solution in a designated region is central to IPRO. We introduce Pareto oracles for this
purpose and derive theoretically sound methods that lead to effective implementations in practice.

5.1 Formalisation

In each iteration, IPRO queries a Pareto oracle with a referent selected from the set of lower bounds
to identify a new weakly Pareto optimal policy in the target region. We define two variants of a Pareto
oracle that differ in the quality of the returned policy as well as their adherence to the target region.
First, when a tolerance of zero is required, we define weak Pareto oracles that return weakly Pareto
optimal solutions.

Definition 5.1. A weak Pareto oracle Ωτ with tolerance τ = 0 maps a referent r ∈ Rd to a weakly
Pareto optimal policy π ∈ Π such that vπ > r or returns FALSE when no such policy exists.
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(a) A weak Pareto oracle. (b) An approximate Pareto oracle.

Figure 2: An illustration of both variants of a Pareto oracle. Solutions inside the target region are
black, while solutions outside the target region are grey. (a) The weak Pareto oracle returns v4, which
is in the target region but is only weakly Pareto optimal as it is dominated by v5. (b) The approximate
Pareto oracle returns a Pareto optimal solution v5, but may fail to find v3, shown in blue.

While Definition 5.1 does not require any tolerance, the restriction to weakly Pareto optimal solutions
may be limiting in practice. To overcome this, we define approximate Pareto oracles that are
guaranteed to return Pareto optimal solutions but require a strictly positive tolerance. This ensures
that sufficient progress is made in each iteration, as either a new Pareto optimal solution is found
which is at least some minimal improvement over the lower bound or the entire section can be
closed. Moreover, since such oracles return Pareto optimal solutions rather than only weakly optimal
solutions, fewer evaluations of the oracle are necessary overall.
Definition 5.2. An approximate Pareto oracle Ωτ with intrinsic tolerance τ̄ ≥ 0 and user-provided
tolerance τ > τ̄ maps a referent r ∈ Rd to a Pareto optimal policy π ∈ Π such that vπ ⪰ r + τ or
returns FALSE when no such policy exists.

We emphasise that, unlike weak Pareto oracles, approximate Pareto oracles contain an intrinsic
tolerance τ̄ in addition to a user-provided tolerance τ . Intuitively, the intrinsic tolerance specifies
the minimal adjustment necessary for the oracle to only return solutions in the target region. The
user-provided tolerance is in turn assumed to be strictly greater and their difference represents the
minimal improvement that is acceptable to the user to warrant further consideration of the region. For
some implementations of approximate Pareto oracles, the inherent tolerance is zero, avoiding the
need to compute τ̄ and implying that the user is free to select any tolerance (see Appendix C.2).

To illustrate the difference between a weak and approximate Pareto oracle, we show a possible
evaluation of both oracles in Figure 2. We note that related concepts have been studied in multi-
objective optimisation [Papadimitriou and Yannakakis, 2000] and planning [Chatterjee et al., 2006].

5.2 Relation to achievement scalarising functions

In Section 3, we introduced order representing and order approximating achievement scalarising
functions (ASFs), highlighting their role in obtaining (weakly) Pareto optimal solutions. We now
establish a direct application of these ASFs in constructing Pareto oracles. We refer to Appendix C
for rigorous proofs of our theoretical results.

We first show that evaluating a weak Pareto oracle Ωτ can be framed as optimising an order represent-
ing ASF over a set of allowed policies Π. Since such ASFs guarantee that their maximum is reached
within the target region at some weakly optimal solution, Theorem 5.3 follows immediately.
Theorem 5.3. Let sr be an order representing ASF. Then Ωτ (r) = argmaxπ∈Π sr(v

π) with
tolerance τ = 0 is a valid weak Pareto oracle.

This ensures that weakly optimal solutions can be obtained by proposing referents to an order
representing ASF. However, practical considerations may lead us to favour an order approximating
ASF, which yields Pareto optimal solutions instead. We demonstrate in Theorem 5.4 that such ASFs
can indeed be applied to construct approximate Pareto oracles.
Theorem 5.4. Let sr be an order approximating ASF and let l ∈ Rd be a lower bound such that
only referents r are selected when r ⪰ l. Then sr has an inherent oracle tolerance τ̄ > 0 and for
any user-provided tolerance τ > τ̄ , Ωτ (r) = argmaxπ∈Π sr+τ (v

π) is a valid approximate Pareto
oracle.
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Since it may be challenging to determine τ̄ , a practical alternative is to utilise an order approximating
ASF while still optimising argmaxvπ∈Π sr(v

π), as is the case in the weak Pareto oracle. We
empirically demonstrate in Section 7 that this strategy is effective in learning a Pareto front.

5.3 Principled implementations

While Theorems 5.3 and 5.4 establish that Pareto oracles may be implemented using an ASF,
optimising the ASF over a given policy class may still be challenging. Here, we show that efficient
implementations can be derived from existing literature. First, the proposed approach using ASFs
can be implemented by solving an auxiliary convex MDP. In such models, the goal is to minimise a
convex function over a set of admissible stationary distributions [Zahavy et al., 2021]. Importantly,
recent work has proposed multiple methods that come with strong convergence guarantees to solve
convex MDPs [Zhang et al., 2020, Zahavy et al., 2021, Geist et al., 2022].

Corollary 5.5. Let sr be an ASF that is concave for any r ∈ Rd. Then, for any r ∈ Rd and tolerance
τ ≥ 0, a valid weak or approximate Pareto oracle Ωτ can be implemented for the class of stochastic
policies by solving an auxiliary convex MDP.

In addition, approximate Pareto oracles can be implemented without optimising an ASF but rather
by solving an auxiliary constrained MDP. In a constrained MDP, an agent maximises a single
reward function, but needs to adhere to additional constraints. The oracle can then be constructed by
optimising the sum of rewards, while staying in the target region with some positive tolerance.

Corollary 5.6. For any referent r ∈ Rd, tolerance τ > 0 and policy class, a valid approximate
Pareto oracle Ωτ can be implemented by solving an auxiliary constrained MDP.

When the constrained MDP is known and both state and action sets are finite, computing an optimal
policy can be done in polynomial time [Altman, 1999]. Additionally, several algorithms with
theoretical foundations have been proposed for solving such models within a reinforcement learning
context [Achiam et al., 2017, Ding et al., 2021]. We provide an extended discussion of these results
with related proofs in Appendix C.2.

6 Deterministic memory-based policies

As shown in Sections 4 and 5, IPRO obtains the Pareto front for any policy class with a valid Pareto
oracle. We now design a Pareto oracle for deterministic memory-based policies, which are particularly
relevant in safety-critical scenarios or when prioritising explainability and interpretability.

6.1 ASF selection

In our experimental evaluation, we utilise the well-known augmented Chebyshev scalarisation
function [Nikulin et al., 2012], shown in Equation (2). We highlight that this ASF is concave for all
referents, implying its applicability together with Corollary 5.5 for stochastic policies as well.

sr(v) = min
j∈{1,...,d}

λj(vj − rj) + ρ

d∑
j=1

λj(vj − rj) (2)

Here, λ > 0 serves as a normalisation constant for the different objectives, and ρ is a parameter
determining the strength of the augmentation term. Selecting λ = (vi − vn)−1 scales any vector v
relative to the distance between the nadir vn and ideal vi, thereby ensuring a balanced scale across all
objectives. This normalisation prevents the dominance of one objective over another, a challenge that
is otherwise difficult to overcome [Abdolmaleki et al., 2020].

Equation (2) serves as a weak or approximate Pareto oracle, depending on the augmentation parameter
ρ. When ρ = 0, the augmentation term is cancelled and the minimum ensures that only vectors in
the target region have non-negative values. However, optimising a minimum may result in weakly
Pareto optimal solutions (e.g. (1, 2) and (1, 1) share the same minimum). For ρ > 0, the optimal
solution will be Pareto optimal (the sum of (1, 2) is greater than that of (1, 1)) but may exceed the
target region.
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6.2 Practical implementation

In Section 5.3 we showed that Pareto oracles implementations for stochastic policies exist and come
with strong guarantees. In contrast, obtaining a Pareto optimal policy that dominates a given referent is
known to be NP-hard for memory-based deterministic policies [Chatterjee et al., 2006]. To overcome
this challenge, we extend single-objective reinforcement learning algorithms to optimise the ASF
in Equation (2). It is common in MORL to encode the memory of a policy by its accrued reward at
timestep t defined as vacc

t :=
∑t−1

k=0 γ
kR(sk, ak, sk+1). In our implementation, this accrued reward

is added to the observation.

DQN. We extend the GGF-DQN algorithm, which optimises for the generalised Gini welfare of
the expected returns [Siddique et al., 2020], to optimise any scalarisation function f . We note that
GGF-DQN is itself an extension of DQN [Mnih et al., 2015]. Concretely, we train a Q-network
such that Q(st, at) = r + γQ(st+1, a

∗) where the optimal action a∗ is computed using the accrued
reward and scalarisation function f ,

a∗ = argmax
a∈A

f
(
vacc
t+1 + γQ (st+1, a)

)
. (3)

Policy gradient. We extend A2C [Mnih et al., 2016] and PPO [Schulman et al., 2017] to optimise
J(π) = f(vπ), where f is a scalarisation function and π a parameterised policy with parameters θ.
For differentiable f , the policy gradient becomes ∇θJ(π) = f ′(vπ) · ∇θv

π(s0) [Reymond et al.,
2023]. To ensure deterministic policies, we take actions according to argmaxa∈A π(a|s) during
policy evaluation. Although this potentially changes the policy, effectively employing a policy that
differs from the one initially learned, empirical observations suggest that these algorithms typically
converge toward deterministic policies in practice.

Generalisation using an extended network. Rather than making separate calls to one of the previous
reinforcement learning methods for each oracle evaluation, we employ extended networks [Abels
et al., 2019] to improve sample efficiency. Concretely, we extend our actor and critic networks to
take a referent as additional input, enabling their reuse across IPRO iterations. Furthermore, we
introduce a pre-training routine that trains a policy on randomly sampled referents for a fixed number
of episodes. To take full advantage of this pre-training, we perform additional off-policy updates for
referents not used in data collection. While this does not impact DQN, the policy gradient algorithms
expect the behaviour and target policy to be the same. For A2C, we resolve this using importance
sampling and for PPO by implementing an off-policy variant [Meng et al., 2023].

7 Experiments

To test the performance of IPRO, we combine it with the modified versions of DQN, A2C, and
PPO proposed in Section 6 as approximate Pareto oracles that optimise the augmented Chebyshev
scalarisation function in Equation (2). All experiments are repeated over five seeds and additional
details are presented in Appendix D.

Baselines. Since IPRO is the first general-purpose MORL method capable of learning a Pareto
front of deterministic policies, we can only evaluate it against baselines that – while state-of-the-art –
require additional domain knowledge. In particular, we select PCN [Reymond et al., 2022] which is
specifically designed to learn Pareto fronts in deterministic environments and GPI-LS [Alegre et al.,
2023] and Envelope Q-learning (EQL) [Yang et al., 2019] that both assume a convex Pareto front. We
extend all baselines to accumulate their empirical Pareto front across evaluation steps. This ensures
that their Pareto front approximations are monotonically improving, a property that IPRO possesses
out of the box.

Evaluation. Following Hayes et al. [2022], we evaluate all algorithms with utility-based metrics.
Concretely, for a solution set Vt at timestep t we compute the maximum utility loss (MUL) compared
to the true Pareto front V∗ as MUL(Vt) = maxu

[
maxv∈V∗ u(v)−maxv∈Vt u(v)

]
by sampling

utility functions u. To demonstrate the value of Pareto optimal solutions in concave regions, we bias
the distribution over utility functions towards risk-aversity. Additionally, we compute the additive
ε metric for the final Pareto front as min {ε ≥ 0 | ∀v ∈ V∗,∃v′ ∈ V : ∥v − v′∥∞ ≤ ε} which is
the minimum addition necessary to obtain any Pareto optimal value in V∗ starting from V . The ε
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Figure 3: The mean MUL with 95-percentile interval over time on a log-log scale. Stars indicate
when each algorithm finishes. The pretraining phase of IPRO is not shown.

metric corresponds to the MUL for Lipschitz-continuous utility functions [Zintgraf et al., 2015]. For
additional details see Appendix D.3.

Deep Sea Treasure (d = 2). Deep Sea Treasure (DST) is a deterministic environment where a
submarine seeks treasure while minimising fuel consumption. DST has a Pareto front with solutions
in concave regions [Vamplew et al., 2011], making it impossible for GPI-LS and Envelope to recover
all Pareto optimal solutions. In Figure 3a, we find that IPRO and PCN obtain low or zero MUL.
Compared to PCN, IPRO requires more samples, which we attribute to the fact that IPRO learns only
one Pareto optimal solution per iteration, while PCN learns different policies concurrently. However,
for PCN, this comes at the cost of not having any theoretical guarantees. When comparing the ε
metric (Table 1), we see that IPRO learns good approximations and consistently learns the complete
Pareto front when paired with DQN. The convex hull methods naturally have poorer approximations.

Table 1: The minimum ε shift necessary to obtain
any undiscovered Pareto optimal solution.

ENV ALGORITHM ε

IPRO (PPO) 0.0± 0.0
IPRO (A2C) 0.2± 0.4

DST IPRO (DQN) 0.0± 0.0
PCN 0.0± 0.0
GPI-LS 5.2± 2.71
ENVELOPE 28.6± 46.77

IPRO (PPO) 0.66± 0.07
IPRO (A2C) 0.54± 0.11

MINECART IPRO (DQN) 1.11± 0.01
PCN 0.67± 0.2
GPI-LS 0.42± 0.0
ENVELOPE 0.42± 0.01

IPRO (PPO) 5.75± 1.22
IPRO (A2C) 2.84± 0.39

MO-REACHER IPRO (DQN) 15.02± 1.42
PCN 18.95± 1.76
GPI-LS 8.5± 0.12
ENVELOPE 11.41± 0.62

Minecart (d = 3). Minecart is a stochastic envi-
ronment where the agent collects two ore types
while minimising fuel consumption and has a
convex Pareto front [Abels et al., 2019]. In Fig-
ure 3b, we observe that IPRO coupled with the
policy gradient oracles achieves a lower utility
loss than all baselines and does so already after
106 steps. Furthermore, the anytime property of
IPRO is clear here since its Pareto front keeps
improving until 107 steps. In Table 1 we see that
the ε distance of the policy gradient methods is
competitive.

MO-Reacher (d = 4). MO-Reacher is a de-
terministic environment where four balls are ar-
ranged in a circle and the goal is to minimise
the distance to each ball. Since it is both deter-
ministic and has a mostly convex Pareto front, it
suits all baselines. Moreover, it is generally chal-
lenging for MORL algorithms due to its high
dimensionality. In Figure 3c, we find that IPRO
obtains a maximum utility loss competitive to
the baselines. Additionally, the policy gradient
oracles result in the best approximations to the Pareto front according to the ε metric in Table 1. Due
to IPRO’s iterative mechanism, this comes at the price of increased sample complexity, while the
baselines benefit from learning multiple policies concurrently.

These results demonstrate IPRO’s competitiveness to the baselines in all environments, an impressive
feat given that all baselines perform significantly worse in one of the environments. Moreover, IPRO
stands out without requiring domain knowledge for proper application, unlike its competitors.

8 Conclusion

We introduce IPRO to provably learn a Pareto front in MOMDPs. IPRO iteratively proposes referents
to a Pareto oracle and uses the returned solution to trim sections from the search space. We formally
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define Pareto oracles and derive principled implementations. We show that IPRO converges to a
Pareto front and comes with strong guarantees with respect to the approximation error. Our empirical
analysis finds that IPRO learns high-quality Pareto fronts while requiring less domain knowledge
than baselines. For future work, we aim to extend IPRO to learn multiple policies concurrently and
explore alternative Pareto oracle implementations.
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A Additional discussion of IPRO

We offer a more in-depth analysis of our algorithm, Iterated Pareto Referent Optimisation (IPRO). This
extended discussion includes additional pseudocode for IPRO and a breakdown of its implementation.
Furthermore, we consider how to select referents from the set of lower bounds and examine alterations
to the theoretical algorithm that improve IPRO’s practical performance when paired with imprecise
Pareto oracles.

A.1 Implementation of IPRO

IPRO follows an inner-outer loop structure. As discussed in Section 4, IPRO tracks the current Pareto
front and excluded sections and iteratively proposes referents to a Pareto oracle. We now consider
these phases in more detail.

Tracking the dominated and infeasible set. Recall that all points in the dominated set D are Pareto
dominated by a point in the current approximation to the Pareto front V . Moreover, all points in the
infeasible set I are guaranteed to be infeasible as determined by the Pareto oracle. Since these sets
contain points excluded from further consideration, it is essential to track them. Instead of explicitly
monitoring these sets, we maintain the points on the Pareto front V and the completed set C. Through
these sets, we can compute the hypervolume covered by D and I , providing an estimate of the overall
coverage achieved by IPRO.

Tracking the lower and upper bounds. An important concept in IPRO is the notion of lower and
upper bounds. For the set of lower bounds L, we demonstrate in Appendix C that every remaining
Pareto optimal solution must strictly dominate at least one l ∈ L. Furthermore, for all remaining
Pareto optimal solutions v∗ the set of upper bounds U contains an upper bound u such that u ⪰ v∗.
Visually, as shown in Figure 1, the set of lower bounds contains the inner corners of the dominated
set, while the set of upper bounds contains the inner corners of the infeasible set.

The lower and upper bounds play a crucial role in deriving both our convergence guarantee and
runtime guarantee on the largest distance to remaining Pareto optimal solutions. Consequently,
tracking these sets is of paramount importance. When initialising the bounding box B, the only lower
bound is the nadir vn and the only upper bound is the ideal vi. Upon introducing a new point v∗ to
the Pareto front, we examine the lower set to identify points that have become strictly dominated by
it. If l is such a dominated point, it is replicated d times, each time adjusting one dimension of the
vector to align with the boundary of the newly added point v∗. Since this approach may generate
points within the dominated set D, we perform a pruning step to eliminate points not on the boundary.
Pseudocode for updating the lower bounds is provided in Algorithm 2 and updating the upper bounds
is analogous.

Algorithm 2 Computing the lower set.

Input: A bounding box B, previous lower set Lt−1 and Pareto optimal solution v∗

Output: The updated lower set Lt

1: Lt ← {}
2: for l ∈ Lt−1 do
3: if v∗ > l then
4: for j ∈ [d] do
5: l′ ← l
6: l′j ← v∗j
7: Lt ← Lt ∪ {l′}
8: end for
9: else

10: Lt ← Lt ∪ {l}
11: end if
12: end for
13: Lt ← PRUNE(Lt)

Postprocessing. While IPRO inherently requires no postprocessing, there exists a possibility that
weakly Pareto optimal points added during IPRO’s execution have become dominated by subsequent
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additions to the Pareto front. While this does not impact the quality of the final Pareto front, it could
pose a challenge for decision-makers in selecting their preferred solution. To streamline the set
presented to decision-makers, we enhance the obtained Pareto front by eliminating dominated points.
In our implementation, we further include in the approximate Pareto front all solutions rejected by
IPRO before the pruning step. While these solutions should in theory never be Pareto optimal, this
step may, in practice, reveal additional Pareto optimal solutions.

A.2 Referent selection

The iterative process constructed in IPRO involves proposing referents to a Pareto oracle. Naturally, a
crucial question arises: how should these referents be chosen? While our theoretical outcomes are
not contingent on a particular method for selecting referents, we propose the use of the hypervolume
improvement heuristic. This heuristic suggests referents that, when incorporated into the infeasible
set, would yield the greatest increase in hypervolume. Intuitively, referents with a high hypervolume
improvement indicate a large unexplored region that dominates it, suggesting that new Pareto optimal
solutions may be found there. We define this formally in Definition A.1

Definition A.1 (Hypervolume Improvement). Let r ∈ Rd be a reference point and HV (S, r) be
the hypervolume of a set S with respect to the reference point. The hypervolume improvement
HV I of a point v ∈ Rd is defined as the contribution of v to the hypervolume when added to S, i.e.
HV I(v, S, r) = HV (S ∪ {v}, r)−HV (S, r).

It is worth noting that computing the hypervolume improvement for a large number of points can
become prohibitively expensive, as it necessitates a new hypervolume computation for each point.
This computational cost is one of the main reasons why the dedicated 2D variant of IPRO is more
efficient. Concretely, in the two-dimensional case, all remaining area is made up of isolated rectangles
described by one lower and upper bound. For these rectangles, we can efficiently compute the area
and keep a priority queue of rectangles based on the L∞ distance between their lower and upper
bound. Selecting the next referent can be done by taking the first rectangle from the priority queue
and using its lower bound as the referent.

Finally, we highlight that depending on prior knowledge regarding the Pareto front’s shape or specific
regions of interest, the referent selection method can be readily adapted and alternative metrics for
assessing improvement could be incorporated into the process.

A.3 IPRO-2D: A version for bi-objective problems

While IPRO is applicable to problems with d ≥ 2 objectives, updating the lower and upper bounds
as well as selecting a new referent may be costly. We introduce a dedicated variant for bi-objective
problems (d = 2), IPRO-2D, where substantial simplifications are possible.

As shown in Figure 1, all remaining sections within the bounding box manifest as isolated rectangles,
with each lower and upper bound precisely defining one such rectangle. When a new Pareto optimal
solution is found, updating L and U can be done by adding at most two new points for both sets,
each on one side of the adjusted boundary. Moreover, calculating the area of each rectangle is
straightforward, making it possible to construct a priority queue that prioritises the processing of
larger rectangles to ensure a rapid decrease in the upper bound of the error. The maximum error can
be computed by taking the rectangle with the maximum distance between its lower and upper bound,
rather than performing the full max-min operation in Equation (1).

A.4 Broader impact of IPRO

By developing IPRO, our goal is to advance the field of multi-objective decision-making and in par-
ticular multi-objective reinforcement learning (MORL). We believe that MORL empowers decision-
makers as it informs them of the relevant trade-offs for their objectives. Furthermore, presenting
a set of solutions, from which the decision-maker can choose the policy that fits their preferences
best, allows for enhanced agency, additional transparency and removes the need to engineer a custom
scalar reward function. As such, we anticipate that IPRO will have a positive societal impact.
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B Theoretical results for IPRO

In this section, we provide the omitted proofs for IPRO from Section 4. These results establish both
the upper bound on the true approximation error as well as convergence guarantees to the true Pareto
front in the limit or to an approximate Pareto front in a finite number of iterations.

B.1 Definitions

Before presenting the proofs for IPRO, it is necessary to define the sets that are tracked in IPRO.
Let B =

∏d
j=1[v

n
j , v

i
j ] be the bounding box defined by a strict lower bound of the true nadir vn and

the ideal vi. The set Vt contains the obtained Pareto front at timestep t while the completed set Ct
contains the referents for which the Pareto oracle evaluation was unsuccessful. We then define the
dominated set D and infeasible set I as follows.

Definition B.1. The dominated set Dt at timestep t contains all points in the bounding box that are
dominated by or equal to a point in the current Pareto front, i.e. Dt = {v ∈ B | ∃v′ ∈ Vt,v′ ⪰ v}.
Definition B.2. The infeasible set It at timestep t contains all points in the bounding box that
dominate or are equal to a point in the union of the current Pareto front and completed referents, i.e.
It = {v ∈ B | ∃v′ ∈ Vt ∪ Ct,v ⪰ v′}.

Note that in the definition of the infeasible set, we consider not only those points dominated by
the current Pareto front but also the points dominated by the referents that failed to result in new
solutions.

During the execution of IPRO, it is necessary to recognise the remaining unexplored sections. For this,
we define the boundaries, interiors and reachable boundaries of the dominated and infeasible set. Let
S be the closure of a subset S in some topological space and ∂S be its boundary. By a slight abuse of
notation, we say that ∂Dt = (B \ Dt) ∩ Dt is the boundary of Dt in B and int Dt = Dt \ ∂Dt is the
interior of Dt in B. We define the boundary and interior of the infeasible set analogously. Finally, we
define the reachable boundaries of these sets which together delineate the remaining available search
space and illustrate all defined subsets in Figure 4 for the two-dimensional case.

Definition B.3. The reachable boundary of Dt, denoted ∂rDt at timestep t is defined as ∂rDt =
∂Dt \ It.
Definition B.4. The reachable boundary of It, denoted ∂rIt at timestep t is defined as ∂rIt =
∂It \ Dt.

(a) (b)

Figure 4: (a) The reachable boundaries of Dt (green) and It (blue) indicated with solid lines and
their interiors (shaded) when no section is completed. (b) When completing the section at l2, parts of
the reachable boundary at timestep t become unreachable at timestep t+ 1.

For the reachable boundaries of the dominated and infeasible sets, we define two important subsets
containing the respective lower and upper bounds of the remaining solutions on the Pareto front. The
set of lower bounds L contains the points on the reachable boundary of the dominated set such that
no other point on the reachable boundary exists which is dominated by it. Similarly, the set of upper
bounds U contains the points on the reachable boundary of the infeasible set such that no other point
exists on the reachable boundary that dominates it. Conceptually, these points are the inner corners of
their respective boundary as observed in Figure 4.
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Definition B.5 (Lower Bounds). The set of lower bounds at timestep t is defined as Lt =
{l ∈ ∂rDt | ∄v ∈ ∂rDt, l ≻ v}.
Definition B.6 (Upper Bounds). The set of upper bounds at timestep t is defined as Ut =
{u ∈ ∂rIt | ∄v ∈ ∂rIt,v ≻ u}.

B.2 Assumptions

We explicitly state and motivate the assumptions underpinning our theoretical results. We emphasise
that all assumptions are either on an implementation level, efficiently verifiable or guaranteed to hold
for significant domains of interest.

First, we assume that the problem is not trivial and there exist unexplored regions in the bounding box
B after finding the first d weakly Pareto optimal solutions. This assumption is not hindering, since
after the initialisation phase we can run a pruning algorithm such as PPRUNE [Roijers and Whiteson,
2017], which takes as input a set of vectors and outputs only the Pareto optimal ones, and terminate
IPRO if this is the case.

Assumption B.7. For any MOMDP M with d-dimensional reward function, we assume that for the
initial Pareto front V0 = {v1, . . . ,vd} it is guaranteed that |PPRUNE(V0)| > 1.

In addition, we provide assumptions necessary for weak Pareto oracles to ensure their convergence to
the true Pareto front in the limit. Intuitively, we first assume that the referent selection mechanism is
not antagonistic and we select in some iterations a referent that may reduce the error estimate. Note
that this can be readily implemented using a randomised method which assigns a strictly positive
probability to each lower bound in L. Alternatively, we can explicitly construct the set of lower
bounds that are expected to reduce the error and select from this set rather than the entire set of lower
bounds.

Assumption B.8. Let εt = maxu∈Ut
minv∈Vt

∥u− v∥∞ be the upper bound on the true error ε∗t at
timestep t. We define Uε

t ⊆ Ut to be the subset of upper bounds for which the error is equal to εt and
Lε
t ⊆ Lt to be the subset of lower bounds such that for all l ∈ Lε

t there is an u ∈ Uε
t : u > l. As

t→∞, an l ∈ Lε
t is almost surely selected as a referent.

The next assumption ensures that the oracle is not antagonistic and that it is capable of yielding any
Pareto optimal solution. In other words, no solution is excluded by the Pareto oracle a priori. While
this may be challenging to verify, in practice this can be satisfied by implementing a robust oracle.

Assumption B.9. Let Ωτ be a weak Pareto oracle with tolerance τ = 0. For all undiscovered Pareto
optimal solutions v∗ ∈ V∗ \ Vt there exists some lower bound l such that Ωτ (l) = v∗ and as t→∞,
l is almost surely added to Lt.

The final assumption that is necessary is on the shape of the Pareto front. Concretely, we assume that
every segment of the Pareto front contains its endpoints. This is necessary to ensure that we may close
all gaps between segments eventually, as otherwise we are never able to reduce the error estimate of
IPRO below that of the largest gap. Importantly, Assumption B.10 holds when considering stochastic
policies in finite MOMDPs, since the set of occupancy measures is a closed convex polytope [Altman,
1999].

Assumption B.10. The Pareto front is the union of a finite number of paths (i.e. a continuous function
f : [0, 1]→ Rd).

B.3 Supporting lemmas

We provide supporting lemmas that formalise the contents of the sets defined in Appendix B.1 and
their relation to the remaining feasible solutions. Concretely, we first demonstrate that the interior of
the infeasible set contains only infeasible points or points within the acceptable tolerance, which is a
consequence of having a strictly positive distance to the boundary. Combined with the dominated
set, which inherently contains only dominated solutions, we can then significantly reduce the search
space that is left to explore.

Lemma B.11. Given an oracle Ωτ with tolerance τ , then at all timesteps t and for all i ∈ It, i is
infeasible or within the tolerance τ of a point on the current estimate of the Pareto front Vt.
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Proof. Recall that the interior of the infeasible set is defined as follows,

int It = It \ ∂It. (4)

Let v ∈ int It be a point in the interior of the infeasible set. Then there exists an open ball centred
around v with a strictly positive radius r such that Br(v) ⊆ int It. Let v′ ∈ Br(v) be a point in
the ball such that v > v′ which can be obtained by taking v and subtracting a value δ ∈ (0, r).
Since v′ ∈ int It, the definition of the infeasible set (Definition B.2) ensures that there exists a point
v̄ ∈ Vt ∪ Ct such that v′ ⪰ v̄. By the transitivity of Pareto dominance, we then have that v > v̄.

Let us now consider the two cases for v̄. Assume first that v̄ ∈ Vt. If v is a feasible solution and
knowing that v > v̄ implies that v̄ is not weakly Pareto optimal. Therefore, v̄ would not have been
returned by a weak or approximate Pareto oracle. As such, v must be infeasible.

When v̄ ∈ Ct it was added after the oracle evaluation at v̄ was unsuccessful. For a weak Pareto
oracle Ωτ with tolerance τ = 0, this again guarantees that v is infeasible since v > v̄. For an
approximate Pareto oracle Ωτ with tolerance τ > 0, we distinguish between two cases. If v ⪰ v̄ + τ ,
v is infeasible since Ωτ would otherwise have returned it. Finally, by the construction of the set of
lower bounds L, there must exist a point v∗ on the current Pareto front Vt such that v∗ + τ ⪰ v and
therefore v was within the tolerance.

Given the result for the infeasible solutions, we now focus instead on the remaining feasible solutions.
Here, we demonstrate that all feasible solutions are strictly lower bounded by L and upper bounded
by U .

Lemma B.12. At any timestep t, the set of lower bounds Lt contains a strict lower bound for all
remaining feasible solutions, i.e.,

v ∈ B \ (int It ∪ Dt) =⇒ ∃l ∈ Lt,v > l. (5)

Proof. Let v be a remaining feasible solution. Then it cannot be in the dominated set, as this implies
it is dominated by a point on the current Pareto front, nor can it be in the interior of It as this was
guaranteed to be infeasible or within the tolerance following Lemma B.11. However, v can still be
on the reachable boundary of the infeasible set when using a weak Pareto oracle. As such, we may
indeed write in Equation (5) that v ∈ B \ (int It ∪ Dt).

Recall that in IPRO, the nadir vn of the bounding box B is initialised to a guaranteed strict lower
bound of the true nadir. Therefore, for all v ∈ B \ (int It ∪ Dt) we can connect a strictly decreasing
line segment between v and vn. Moreover, either vn ∈ ∂Dt or this line must intersect ∂Dt at some
point v̄ for which it is subsequently guaranteed that v > v̄.

Let v ∈ B \ (int It ∪ Dt) be a feasible solution and v̄ ∈ ∂Dt be a point on the boundary of Dt such
that v > v̄. Suppose, however, that v̄ is not on the reachable boundary. Then, the definition of the
reachable boundary implies that v̄ ∈ It (see Definition B.3). However, as v > v̄ this implies that v
is in the interior of It which was guaranteed to be infeasible or within the tolerance by Lemma B.11.
Therefore, v̄ must be on the reachable boundary of Dt. By definition of the lower set, this further
implies there exists a lower point l ∈ Lt for which v̄ ⪰ l, finally guaranteeing that v > l.

We provide an analogous result for the upper set where we demonstrate that it contains an upper
bound for all remaining feasible solutions.

Lemma B.13. During IPRO’s execution, the upper set contains an upper bound for all remaining
feasible solutions, i.e.,

v ∈ B \ (int It ∪ Dt) =⇒ ∃u ∈ Ut,u ⪰ v. (6)

Proof. As the ideal vi is initialised to the true ideal, we may apply the same proof as for Lemma B.12
using Pareto dominance rather than strict Pareto dominance. In contrast to Lemma B.12 however, v
may be on the reachable boundary of the infeasible set ∂rIt. In this case, the definition of the set of
upper bounds U guarantees the existence of an upper bound u ∈ Ut,u ⪰ v.
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B.4 Proof of Theorem 4.1

We now prove Theorem 4.1 which guarantees an upper bound on the true approximation error at
any timestep. In fact, this upper bound follows almost immediately from the supporting lemmas
shown in Appendix B.3. Utilising the fact that the set of upper bounds contains a guaranteed upper
bound for all remaining feasible solutions, we can compute the point that maximises the distance to
its closest point on the current approximation of the Pareto front. Recall that at timestep t the true
approximation error ε∗t is defined as supv∗∈V∗\Vt

minv∈Vt
∥v∗ − v∥∞.

Theorem 4.1. Let V∗ be the true Pareto front, Vt the approximate Pareto front obtained by IPRO
and ε∗t the true approximation error at timestep t. Then the following inequality holds,

ε∗t ≤ max
u∈Ut

min
v∈Vt

∥u− v∥∞. (7)

Proof. Observe that all remaining Pareto optimal solutions must be feasible and we can therefore
derive from Lemmas B.11 and B.13 that

∀t ∈ N,∀v∗ ∈ V∗ \ Vt,∃u ∈ Ut : u ⪰ v∗. (8)

From Equation (8) we can then conclude the following upper bound,

ε∗t = sup
v∗∈V∗\Vt

min
v∈Vt

∥v∗ − v∥∞ ≤ max
u∈Ut

min
v∈Vt

∥u− v∥∞. (9)

Note that this holds as the maximum over the upper points is guaranteed to be at least as high as the
maximum over all remaining points on the Pareto front.

A useful corollary of Theorem 4.1 is that the sequence of errors is monotonically decreasing. This
follows immediately since the upper bounds are only adjusted downwards.
Corollary B.14. The sequence of errors (εt)t∈N is monotonically decreasing.

Proof. Observe that since IPRO only adds points to the Pareto front, it is guaranteed that Vt ⊆ Vt+1.
Furthermore, from the definition of the set of upper bounds, it is guaranteed that all remaining feasible
solutions are upper bounded by a point in this set. Therefore, for all points in the updated set of
upper bounds u ∈ Ut+1 there must exist an old upper bound ū ∈ Ut such that ū ⪰ u. As such, we
conclude that

max
u∈Ut+1

min
v∈Vt+1

∥u− v∥∞ ≤ max
u∈Ut

min
v∈Vt

∥u− v∥∞ (10)

and thus ∀t ∈ N : εt+1 ≤ εt.

B.5 Proof of Theorem 4.2

To conclude the theoretical contributions for IPRO, we show that it is guaranteed to converge to
a τ -Pareto front when using an approximate Pareto oracle with tolerance τ > 0. Moreover, when
using a weak Pareto oracle, the τ may be set to 0 and the true Pareto front is obtained in the limit.
For practical purposes, however, setting τ > 0 ensures that IPRO converges after a finite number of
iterations.
Theorem B.15. Given an approximate Pareto oracle Ωτ with tolerance τ > 0, IPRO converges to a
τ -Pareto front in a finite number of iterations.

Proof. From Corollary B.14, we know that the sequence of errors produced by IPRO is monotonically
decreasing. We show that this sequence converges to zero when ignoring the tolerance parameter τ .
When incorporating the tolerance τ again, IPRO stops when the approximation error is at most τ , as
guaranteed by Theorem 4.1, therefore resulting in a τ -Pareto front.

Let us first show that the sequence of errors (εt)t∈N converges to zero. From Definition 5.2, for an
approximate Pareto oracle with tolerance τ and inherent tolerance τ̄ we know that τ > τ̄ . Let Lt

be the lower bounds in timestep t and select l from it as the referent. When the oracle evaluation is
unsuccessful, l is removed from the set of lower bounds as well as any upper bound that is not on the
reachable boundary anymore. When the oracle evaluation is successful, a finite number of new lower
and upper bounds are added. Importantly, each lower bound is a τ − τ̄ improvement in one dimension
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and Lemma B.13 guarantees that each new upper bound is dominated by the old bound. Repeating
this process across multiple iterations, we can consider the sequence of lower bounds spawned from
the root lower bound as a tree where eventually each branch will be closed when at the leaf l we have
that l+ τ is in the infeasible set or out of the bounding box.

Recall that the set of lower bounds at timestep t is defined as Lt = {l ∈ ∂rDt | ∄v ∈ ∂rDt, l ≻ v}
and the set of upper bounds as Ut = {u ∈ ∂rIt | ∄v ∈ ∂rIt,v ≻ u}. Observe that this implies that
when the set of lower bounds is empty, this implies that ∂rD = ∂rI = ∅ and therefore the set of
upper bounds must be empty as well. As such, IPRO with an approximate Pareto oracle removes all
upper bounds and the sequence of errors (εt)t∈N converges to zero. Furthermore, this must occur
at some timestep t < ∞, since there is a minimal improvement at each timestep of τ − τ̄ . Using
Theorem 4.1, we have that the true approximation error is upper bounded by εt. As IPRO terminates
when this upper bound is at most equal to the tolerance τ , it is guaranteed to converge to a τ -Pareto
front.

Finally, we provide an analogous result for weak Pareto oracles and show that they almost surely
converge to the exact Pareto front in the limit. The probabilistic nature of this result is necessary to
handle stochastic referent selection as well as oracle evaluations.

Theorem B.16. Given a weak Pareto oracle Ωτ with tolerance τ = 0, IPRO converges almost surely
to the Pareto front when t→∞.

Proof. We first show that the sequence of errors (εt)t∈N has its infimum at zero with probability 1.
By contradiction, assume that this is not the case and it has its infimum instead at some β > 0. As a
consequence of Theorem B.15, for any 0 < ε < β there must be some finite set Vε of Pareto optimal
points such that maxu∈U minv∈Vε ∥u − v∥∞ ≤ ε. From Assumption B.9, we know that there is
some lower bound l for every v∗ ∈ Vε such that Ωτ (l) = v∗ and that as t → ∞ the probability
that l is added to Lt is 1. Furthermore, from Assumption B.8 we have that the probability that l
gets selected as the lower bound is 1. As such, ∀v∗ ∈ Vε : limt→∞ P (v∗ ∈ Vt) = 1 which implies
limt→∞ P (Vε ⊆ Vt) = 1 and therefore there is no lower bound β > 0 of (εt)t∈N with probability 1.
Since we have P (inft{εt} = 0}) = 1, using Corollary B.14 and the monotone convergence theorem
we get, P (limt→∞{εt} = 0) = 1, thereby showing that IPRO converges almost surely to the Pareto
front.

C Theoretical results for Pareto oracles

We present formal proofs for the theoretical results in Section 5. These results develop the concept of
a Pareto oracle and relate it to achievement scalarising functions. While we utilise Pareto oracles as a
subroutine in IPRO to provably obtain a Pareto front, they may also be of independent interest in other
settings. We further contribute alternative implementations of a Pareto oracle, thus demonstrating
their applicability beyond the ASFs considered in this work.

C.1 Pareto oracles from achievement scalarising functions

In Section 5 we defined Pareto oracles and subsequently related them to achievement scalarising
functions. Here, we provide formal proof of the established connections. To establish the notation, let
X be the set of feasible solutions and define a mapping f : X → Rd which maps a solution to its d-
dimensional return. Let us further define the Euclidean distance function between a point v ∈ Rd and
a set Y ⊆ Rd as dist(v,Y) = infy∈Y ∥v − y∥. Finally, let Rd

δ = {v ∈ Rd | dist(v,Rd
≥0) ≤ δ∥v∥},

where δ is a fixed scalar in [0, 1). Using this notation, we define both order representing and order
approximating ASFs following the formalisation by Miettinen [1998].

Definition C.1. We say an ASF sr : Rd → R is order representing when ∀r ∈ Rd,∀x, y ∈ X with
f(x) = x and f(y) = y, sr is strictly increasing such that x > y =⇒ sr(x) > sr(y). In addition,
sr(r) = 0 and

{v ∈ Rd | sr(v) ≥ 0} = r + Rd
≥0. (11)

Definition C.2. We say an ASF sr : Rd → R is order approximating when ∀r ∈ Rd,∀x, y ∈ X
with f(x) = x and f(y) = y, sr is strongly increasing such that x ≻ y =⇒ sr(x) > sr(y). In
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addition, sr(r) = 0 and with δ > δ̄ ≥ 0

r + Rd
δ̄ ⊂ {v ∈ Rd | sr(v) ≥ 0} ⊂ r + Rd

δ . (12)

These definitions can be applied to the reinforcement learning setting where the set of feasible
solutions is a policy class Π and the quality of a policy π ∈ Π is determined by its expected return
vπ . Using these definitions, we provide a formal proof for Theorem 5.3 which we first restate below.
Theorem 5.3. Let sr be an order representing ASF. Then Ωτ (r) = argmaxπ∈Π sr(v

π) with
tolerance τ = 0 is a valid weak Pareto oracle.

Proof. Let sr be an order representing achievement scalarising function and define a Pareto oracle
O : Rd → Π such that, O(r) = argmaxπ∈Π sr(v

π) = π∗. Denote the expected return of π∗ as
v∗. We first consider the case when v∗ ⪰̸ r. By Equation (11) this implies that sr(v∗) < 0. This
guarantees that no feasible weakly Pareto optimal policy π′ exists with expected return v′ such
that v′ ⪰ r, as otherwise sr(v

′) ≥ 0 > sr(v
∗) and thus π∗ would not have been returned as the

maximum.

We now consider the case when v∗ ⪰ r. Then π∗ is guaranteed to be weakly Pareto optimal.
By contradiction, if π∗ is not weakly Pareto optimal, another policy π′ exists such that v′ > v∗.
However, this would imply that sr(v′) > sr(v

∗) and thus π∗ would not have been returned as the
maximum.

We provide a similar result using order approximating ASFs instead. While such ASFs enable the
Pareto oracle to return Pareto optimal solutions rather than only weakly optimal solutions, the quality
of the oracle with respect to the target region becomes dependent on the approximation parameter δ
of the ASF. The core idea in the proof of Theorem 5.4 is that we can define a lower bound on the
shift necessary to ensure only feasible solutions in the target region have a non-negative value. When
feasible solutions exist in the shifted target region, we can then conclude by the strongly increasing
property of the ASF that the maximum is Pareto optimal.
Theorem 5.4. Let sr be an order approximating ASF and let l ∈ Rd be a lower bound such that
only referents r are selected when r ⪰ l. Then sr has an inherent oracle tolerance τ̄ > 0 and for
any user-provided tolerance τ > τ̄ , Ωτ (r) = argmaxπ∈Π sr+τ (v

π) is a valid approximate Pareto
oracle.

Proof. Let l be the lower bound for all referents r. We define τ̄ to be the minimal shift such that all
feasible solutions with non-negative values for an order approximating ASF sl+τ̄ with the shifted
referent l+ τ̄ are inside the box B(l,vi) defined by the lower bound and ideal. The lower bound on
τ̄ is clearly zero which implies that no shift is necessary. We now define an upper bound for this shift
which ensures that no feasible solution has a non-negative value except potentially l itself.

Recall the definition of Rd
δ = {v ∈ Rd | dist(v,Rd

≥0) ≤ δ∥v∥}, where δ is a fixed scalar in [0, 1).
We refer to l+ Rd

δ as the extended target region. Suppose there exists a point in this extended target
region v ∈ l+ Rd

δ such that l ≻ v. This implies we can write v = l+ x, where x is a non-positive
vector. However, this then further implies that, dist(x,Rd

≥0) = infs∈Rd
≥0
∥x − s∥ = ∥x∥ as 0 is

the closest point in Rd
≥0 for a non-positive vector. However, for δ ∈ [0, 1) it cannot be true that

∥x∥ ≤ δ∥x∥. Therefore, there exists no point in l+Rd
δ that is dominated by l. As such, for all points

v in the extended target region that are not equal to l, there must be a dimension j ∈ {1, . . . , d} such
that vj > lj . Consider now the shift imposed by the L∞ distance between the lower point l and ideal
vi. This ensures that all points in the extended target region except l are strictly above the ideal in at
least one dimension, further implying that they are infeasible by the definition of the ideal. As such,
∥vi − l∥∞ is an upper bound for τ̄ .

Let us now formally define τ̄ for an order approximating ASF with approximation constant δ,

τ̄ = inf
{
0 < τ ≤ ∥vi − l∥∞ |

(
l+ τ + Rd

δ

)
∩ {v ∈ Rd | vi ⪰ v} ⊆ B(l,vi)

}
. (13)

In Figure 5 we illustrate that this shift ensures all feasible solutions with non-negative values are
inside the box. Observe, however, that by the nature of this shift, it can also ensure that some feasible
solutions in the bounding box are excluded from the non-negative set.
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(a) (b)

Figure 5: (a) A possible non-negative set (shaded) for an order approximating ASF with referent l.
(b) Shifting l by τ̄ ensures that all feasible solutions with non-negative values are in the box B(l,vi).

Let us now show that the Pareto oracle Ωτ (r) = argmaxπ∈Π sr+τ (v
π) with τ > τ̄ functions as

required for the referent l. Assume there exists a Pareto optimal optimal π′ with expected return v′

such that v′ ⪰ l+ τ . Then sl+τ (v
′) ≥ 0 and therefore the maximisation will return a non-negative

solution π∗ with expected returns v∗. By the definition of τ̄ we know that all feasible solutions π with
non-negative value sl+τ (v

π) satisfy the condition vπ ⪰ l+ (τ − τ̄) and therefore v∗ ⪰ l+ (τ − τ̄).
Moreover, as the ASF is guaranteed to be strongly increasing, there exists no policy π such that
vπ ≻ v∗ and therefore π∗ is Pareto optimal.

Given the lower bound l, for all referents r such that r ⪰ l and with τ > τ̄ , the Pareto oracle remains
valid. To see this, observe that r = l+ x where x is now a non-negative vector. Then,(

l+ τ + Rd
δ

)
∩ {v ∈ Rd | vi ⪰ v} ⊆ B(l,vi)

=⇒
(
l+ τ + Rd

δ

)
∩ {v ∈ Rd | vi − x ⪰ v} ⊆ B(l,vi − x).

(14)

This implication can be shown by contradiction. Assume that,

∃v ∈
(
l+ τ + Rd

δ

)
∩ {v ∈ Rd | vi − x ⪰ v} and v /∈ B(l,vi − x). (15)

However, by definition of v, vi − x ⪰ v and

v ∈
(
l+ τ + Rd

δ

)
∩ {v ∈ Rd | vi − x ⪰ v}

=⇒ v ∈
(
l+ τ + Rd

δ

)
∩ {v ∈ Rd | vi ⪰ v}

=⇒ v ∈ B(l,vi)

=⇒ v ⪰ l.

As v ⪰ l and vi − x ⪰ v this implies v ∈ B(l,vi − x), which is a contradiction. Therefore(
l+ τ + Rd

δ

)
∩ {v ∈ Rd | vi−x ⪰ v} ⊆ B(l,vi−x). By a rigid transformation and recalling that

r = l+ x, we obtain, (
r + τ + Rd

δ

)
∩ {v ∈ Rd | vi ⪰ v} ⊆ B(r,vi). (16)

We can subsequently apply the same reasoning to establish the validity of the Pareto oracle for the
lower bound l to all dominating referents r.

C.2 Alternative Pareto oracles

To conclude the theoretical results for Pareto oracles, we demonstrate that both convex MDPs and
constrained MDPs may be leveraged to implement them.

Convex MDPs. A convex Markov decision process is a generalisation of an MDP, where an
agent seeks to minimise a convex function (or equivalently maximise a concave function) over a
convex set of admissible occupancy measures. Let Kγ be the set of discounted state occupancy
measures for some discount factor γ. The expected return vπ of some policy π can be written as
a linear function of the occupancy measure of the policy dπ and the reward function of the MDP,
vπ =

∑
s,a R(s, a)dπ(s, a). Corollary C.3 then follows immediately.
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Corollary C.3. Let M = ⟨S,A,P,R, µ, γ⟩ be a MOMDP with d objectives. For a given oracle
tolerance τ ≥ 0 and referent r, we define a convex MDPMconv with the same states, actions, transi-
tion function, discount factor and initial state distribution as M. For sr defined in Equation (2) and
Π the set of stochastic policies, Ωτ (r) = argmaxdπ∈Kγ

sr+τ (v
π) is a valid weak or approximate

Pareto oracle.

Proof. Since Equation (2) is concave for any referent r and the composition of a linear function and
concave function preserves concavity, the problem is concave. Furthermore, Kγ is by definition a
convex polytope for the set of stochastic policies. As such,Mconv is a convex MDP and since sr
can be constructed as both an order representing and order approximating achievement scalarising
function, Theorem 5.3 and Theorem 5.4 can be applied.

This reformulation enables the use of techniques with strong theoretical guarantees. For instance,
Zhang et al. [2020] propose a policy gradient method that converges to the global optimum, and
Zahavy et al. [2021] introduce a meta-algorithm using standard RL algorithms that converges to the
optimal solution with any tolerance, assuming reasonably low-regret algorithms. Additionally, it has
been demonstrated that for any convex MDP, a mean-field game can be constructed, for which any
Nash equilibrium in the game corresponds to an optimum in the convex MDP [Geist et al., 2022].

Constrained MDPs. A constrained Markov decision processMconst is an MDP, augmented with a
set of m auxiliary cost functions Cj : S ×A× S → R and related limit cj . Let JCj

(π) denote the
expected discounted return of policy π for the auxiliary cost function Cj . The feasible policies from
a given class of policies Π is then ΠC = {π ∈ Π | ∀i, JCj

(π) ≥ cj}. Finally, the reinforcement
learning problem in a CMDP is as follows,

π∗ = argmax
π∈ΠC

vπ. (17)

We demonstrate that an approximate Pareto oracle can be implemented by solving an auxiliary
constrained MDP, where the constraints ensure that the target region is respected and the scalar
reward function is designed such that only Pareto optimal policies are returned as the optimal solution.
Importantly, since constrained MDPs have no inherent tolerance, the user is free to select any tolerance
τ > 0.

Corollary C.4. Let M = ⟨S,A,P,R, µ, γ⟩ be a MOMDP with d objectives. For a given oracle
tolerance τ > 0 and referent r, we define a constrained MDPMconst with the same states, actions,
transition function, discount factor and initial state distribution as M.Mconst has d cost functions
corresponding to the original d reward function with limits r + τ and the scalar reward function is
the sum of the original reward vector. Then Ωτ (r) = argmaxπ∈ΠC

vπ is a valid approximate Pareto
oracle.

Proof. Assume the construction outlined in the theorem and that there exists a Pareto optimal policy
π such that vπ ⪰ r + τ . Then ΠC is non-empty and the Pareto oracle Oτ (r) = argmaxπ∈ΠC

vπ

returns a Pareto optimal policy π∗ with expected return v∗ such that v∗ ⪰ r + τ . If π∗ is not Pareto
optimal, there exists a policy π′ with expected return v′ such that v′ ≻ v∗. This then implies that,∑

j∈{1,...,d}

v′j >
∑

j∈{1,...,d}

v∗j (18)

which leads to a contradiction.

D Experiment details

In this section, we provide details concerning the experimental evaluation presented in Section 7.
Concretely, we discuss the selection of baselines and environments, provide the concrete evaluation
setup used in our experiments and show complete results including Envelope Q-learning which was
omitted from the main text. All experiments were run on a single CPU core with access to at most
4GB of RAM and were allowed a maximum of three days wallclock time.
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D.1 Baselines

Since IPRO is the first general-purpose method capable of learning a Pareto front of arbitrary policies
in general MOMDPs, we select baselines that specialise for a subset of environments that we evaluate
on. We now discuss these baselines and highlight their intended use case.

Convex hull algorithms. We consider two state-of-the-art convex hull algorithms, Generalised
Policy Improvement - Linear Support (GPI-LS) [Alegre et al., 2023] and Envelope Q-Learning (EQL)
[Yang et al., 2019]. GPI-LS decomposes the task of learning the convex hull into learning a set of
policies at the vertices of the convex hull. EQL on the other hand proposes a new optimality operator
for vectorial Q-values, called the envelope optimality operator, and uses this to learn deep vectorial
Q-networks. To ensure a fair comparison between IPRO and the convex hull algorithms, we retain
all Pareto optimal policies generated by them during evaluation rather than only the policies in the
convex hull. Moreover, in both Minecart and MO-Reacher the Pareto front is mostly convex, further
supporting this comparison.

Pareto front algorithm. As a direct comparison to IPRO, we select Pareto Conditioned Networks
(PCN) which is specifically designed to learn a Pareto front of deterministic policies in deterministic
MOMDPs [Reymond et al., 2022]. PCN trains a single neural network on a range of desired trade-offs,
to generalise over the full set of Pareto optimal policies. This is achieved by learning to predict
the “return-to-go” from any state and selecting the action that most closely reaches the returns of
the chosen trade-off. We note that, while Deep Sea Treasure and MO-Reacher are deterministic
environments, Minecart is not, which may explain PCN’s worse performance in this environment.

D.2 Environments

To focus solely on IPRO’s performance, we initialise each experiment with predefined minimal and
maximal points to establish the bounding box of the environment. It is important to emphasise that
these points can be obtained using conventional reinforcement learning algorithms without requiring
any modifications, justifying their omission from our evaluation process.

Deep Sea Treasure (DST). We initialise IPRO with (124,−50) and (1,−1) as the maximal points
and give (0,−50) as the only minimal point. We set the discount factor to 1, signifying no discounting,
and maintain a fixed time horizon of 50 timesteps for each episode. We note that we one-hot encode
the observations due to the discrete nature of the state space. Finally, a tolerance τ of 0 was set to
allow IPRO to find the complete Pareto front in this environment.

Minecart. In the Minecart environment, we set γ = 0.98 to align with related work. For
minimal points, IPRO is initialised with the nadir (−1,−1,−200) for each dimension. For
maximal points, we consider the nadir and set each dimension to its theoretical maximum:
(1.5,−1,−200), (−1, 1.5,−200), (−1,−1, 0). Our reference point is also the nadir and the time
horizon is 1000. A tolerance of 1× 10−15 was used.

MO-Reacher. In the Reacher environment, we use (−50,−50,−50,−50) in each dimension as the
minimal points, and similarly, set this vector to 40 for each dimension for the maximal points. The
discount factor γ is set to 0.99. The reference point is again set to the nadir, a time horizon of 50 was
used and tolerance was set to 1× 10−15.

D.3 Metrics

In Section 7 we evaluate all algorithms on their maximum utility loss (MUL) which measures the
maximum difference in utility that a decision maker may expect when selecting a policy from the
Pareto front obtained by an algorithm compared to a reference set. In DST, we use the known Pareto
front as the reference set. In the other environments, we gather all Pareto optimal points collected
throughout the different runs. We subsequently evaluate the MUL at each evaluation step as follows,

MUL(Vt) = max
u

[
max
v∈V∗

u(v)−max
v∈Vt

u(v)

]
(19)

where V∗ is the reference set and the expectation over utility functions is approximated over 100
randomly generated functions. Importantly, the distribution over utility functions is crucial for
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computing the MUL and should thus be chosen carefully. We generate piecewise linear monotonically
increasing functions u : [vn,vi] → [0, 1] by sampling a grid of positive numbers and considering
these the gradients of the function. The value at some point v is then obtained by summing all
gradients leading up to it and finally rescaling the range of the function. Our grid contains six cells per
dimension and our gradients are sampled from the uniform distribution in the range [0, 5). Notably,
we found that this method generates functions that are biased towards risk aversity.

To gauge the quality of the final Pareto fronts, we compute for each algorithm the minimum ε shift
necessary to obtain any solution in a reference set. Intuitively, a lower ε signifies a smaller loss on all
objectives and therefore indicates a higher quality of the Pareto front. The reference sets used for this
metric are the same as for the MUL and the ε metric for some Pareto front V is computed as follows,

min {ε ≥ 0 | ∀v ∈ V∗,∃v′ ∈ V : ∥v − v′∥∞ ≤ ε} . (20)

D.4 Hyperparameters

In Table 2 we provide a description of all hyperparameters used in our Pareto oracles and the
algorithms for which they apply. Finally, in Tables 3 to 5 we give the hyperparameter values used in
our reported experiments.

Table 2: A description of the relevant hyperparameters.
Parameter Algorithm Description

scale DQN, A2C, PPO Scale the output of Equation (2)
ρ DQN, A2C, PPO Augmentation parameter from Equation (2)
pretrain_iters DQN, A2C, PPO The number of pretraining iterations
num_referents DQN, A2C, PPO The number of additional referents to sample for pretraining
pretraining_steps DQN, A2C, PPO Number of global steps while pretraining
online_steps DQN, A2C, PPO Number of global steps while learning online
critic_hidden DQN, A2C, PPO Number of hidden neurons per layer for the critic
lr_critic DQN, A2C, PPO The learning rate for the critic
actor_hidden A2C, PPO Number of hidden neurons per layer for the actor
lr_actor A2C, PPO Learning rate for the actor
n_steps A2C, PPO Number of environment interactions before each update
gae_lambda A2C, PPO λ parameter for generalised advantage estimation
normalise_advantage A2C, PPO Normalise the advantage
e_coef A2C, PPO Entropy loss coefficient to compute the overall loss
v_coef A2C, PPO Value loss coefficient to compute the overall loss
max_grad_norm A2C, PPO Maximum gradient norm
clip_coef PPO Clip coefficient used in the PPO surrogate objective
num_envs PPO Number of parallel environments to run in
clip_range_vf PPO Clipping range for the value function
update_epochs PPO Number of update epochs to execute
num_minibatches PPO Number of minibatches to divide a batch in
batch_size DQN Batch size for each update
buffer_size DQN Size of the replay buffer
soft_update DQN Multiplication factor for the soft update
pre_epsilon_start DQN Pretraining starting exploration probability
pre_epsilon_end DQN Pretraining final exploration probability
pre_exploration_frac DQN Pretraining exploration fraction of total timesteps
pre_learning_start DQN Pretraining start of learning
online_epsilon_start DQN Online starting exploration probability
online_epsilon_end DQN Online final exploration probability
online_exploration_frac DQN Online exploration fraction of total timesteps
online_learning_start DQN Online start of learning
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Table 3: The hyperparameters used in the DQN oracles.
Parameter DST Minecart MO-Reacher

scale 100 100 10
ρ 0.1 0.01 0.01
pretrain_iters / 50 50
num_referents / 32 16
online_steps 2.5e+04 2.0e+04 7.5e+03
pretraining_steps / 2.0e+04 7.5e+03
critic_hidden (256, 256) (256, 256, 256, 256) (256, 256, 256, 256)
lr_critic 0.0003 0.0001 0.0007
batch_size 512 32 16
buffer_size 1.0e+04 1.0e+05 1.0e+05
soft_update 0.25 0.1 0.1
pre_learning_start / 1.0e+03 1.0e+03
pre_epsilon_start / 0.75 0.5
pre_epsilon_end / 0.2 0.1
pre_exploration_frac / 0.75 0.75
online_learning_start 100 100 100
online_epsilon_start 1 0.5 0.5
online_epsilon_end 0.05 0.1 0.05
online_exploration_frac 0.75 0.25 0.5

Table 4: The hyperparameters used in the A2C oracles.
Parameter DST Minecart MO-Reacher

scale 100 100 100
ρ 0.01 0.01 0.01
pretrain_iters 75 75 75
num_referents 16 16 16
online_steps 5.0e+03 2.5e+04 5.0e+03
pretraining_steps 2.5e+03 7.5e+04 2.5e+04
critic_hidden (128,) (128, 128, 128) (64, 64)
lr_critic 0.001 0.0001 0.0007
actor_hidden (128,) (128, 128, 128) (64, 64)
lr_actor 0.0001 0.0001 0.001
n_steps 16 32 16
gae_lambda 0.95 0.95 0.95
normalise_advantage False False False
e_coef 0.01 0.1 0.1
v_coef 0.5 0.5 0.1
max_grad_norm 0.5 50 1
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Table 5: The hyperparameters used in the PPO oracles.
Parameter DST Minecart MO-Reacher

scale 100 100 100
ρ 0.1 0.01 0.01
pretrain_iters / 100 100
num_referents / 32 8
online_steps 3.0e+04 2.5e+04 7.5e+03
pretraining_steps / 2.0e+04 1.5e+04
critic_hidden (128, 128) (256, 256) (128, 128, 128)
lr_critic 0.0006 0.0001 0.001
actor_hidden (128, 128) (256, 256) (128, 128, 128)
lr_actor 0.0002 0.0001 0.0003
n_steps 16 32 64
gae_lambda 0.95 0.95 0.95
normalise_advantage False False False
e_coef 0.05 0.1 0.1
v_coef 0.5 0.1 0.1
max_grad_norm 5 50 5
clip_coef 0.2 0.1 0.2
num_envs 8 16 8
anneal_lr False False False
clip_range_vf 0.2 0.5 0.2
update_epochs 2 16 4
num_minibatches 4 4 4
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