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ABSTRACT

Re-ranking, originating from Information Retrieval (IR), has become a critical
technique for filtering retrieved documents in Retrieval-Augmented Generation
(RAG). Current RAG systems often directly apply re-rankers from traditional IR,
which were originally designed to provide relevant and diverse documents to hu-
man users. However, this adoption overlooks a fundamental gap: unlike humans
can use selective attention to filter noise and focus on key evidence, LLMs lack
this ability. This gap causes traditional re-rankers to fail in covering essential ev-
idence and minimizing noise for LLMs, significantly hurting RAG performance,
especially in complex question-answering tasks. To address this, we argue that
RAG re-rankers should serve a distinct objective: not only ensuring the coverage
of key information but also minimizing noise in the selected document set. To
achieve this objective, we propose PureCover, a document selection framework
tailored for RAG. Instead of relying on traditional Top-K re-ranking, we refor-
mulate the document selection process as a multi-objective optimization problem
and solve it by exploiting LLM attention patterns during goal-oriented reasoning.
To improve efficiency, we distill the selection capability into an LLM selector
via a set-wise strategy. Experiments on four multi-hop QA benchmarks demon-
strate that PureCover consistently outperforms state-of-the-art baselines, achiev-
ing a better balance between coverage and noise for RAG.

1 INTRODUCTION

Originating in Information Retrieval (IR), re-ranking has become a core technique for filtering re-
trieved documents in Retrieval-Augmented Generation (RAG) (Gao et al.| 2023} Zhao et al., [2023).
In traditional IR systems (e.g., search engines), re-rankers aim to present relevant and diverse docu-
ments to users, allowing them to integrate information from useful documents (Carbonell & Gold-
stein, [1998; [Wu et al.| 2024)). This design primarily relies on humans’ selective attention mechanism,
which enables them to actively focus on key information while ignoring query-irrelevant ones during
information-seeking tasks (Miiller & Krummenacher, 2006) (see Figure|l|(a) for an example).

With the rise of Large Language Models (LLMs), these re-rankers are increasingly used to select
documents for LLMs in RAG systems rather than human users (Zhao et al., 2023} |Gao et al., [2023)).
This shift exposes a critical gap: unlike human beings, who can focus on key information actively,
LLMs do not exhibit such selective attention, making them struggle to focus on key information and
more vulnerable to irrelevant documents (Shi et al., 2023 |Cuconasu et al.,|2024). Nevertheless, most
RAG systems directly adopt traditional IR re-rankers (Q1 et al., [2020; |Glass et al.| 2022} L1 et al.}
2024), whether relevance-oriented (Xiao et al., 2024} Zhang et al.|[2025) or coverage-oriented (San-
tos et al., 2010; |Carbonell & Goldstein, |1998)), without addressing this gap.

Our empirical study finds that directly applying traditional IR re-rankers into RAG systems often
leads to significant performance degradation, especially on complex question answering (QA) tasks
(e.g., multi-hop QA). As shown in Figure 1| (b), relevance-oriented re-rankers (Xiao et al., [2024)),
which prioritize query-document relevance, often yield insufficient coverage of the essential in-
formation required to answer complex queries (Lee et al. 2025). Conversely, coverage-oriented
re-rankers promote diversity across subtopics but inevitably introduce noisy documents that distract
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Figure 1: (a) Traditional IR re-rankers rely on humans’ selective attention: users can naturally
extract key information from a diversified ranking list. For example, a user searching for “Apple”
with the intent “apple nutrition facts” can naturally ignore results about “Apple Inc.” or “Apple
Records” and focus on information about the fruit. (b) LLMs, however, lack this mechanism and
are vulnerable to noise, making it challenging to apply traditional IR re-rankers to RAG directly. (c)
This gap points to a distinct objective for RAG: unlike in IR, a re-ranker for RAG should not only
ensure coverage of key information but also minimize noise in the re-ranked list.

the generator and amplify hallucinations (Chen et al., 2023)) (Cossio, |2025). Experiments on Hot-
potQA (Yang et al.| 2018) (Figure[I|c)) confirm that both strategies failed to balance the trade-off
between coverage and noise, causing significant performance drops in RAG.

Based on this insight, we argue that re-ranking in RAG should adopt a distinct objective: jointly
maximizing the coverage of key evidence while minimizing irrelevant noise for LLM generators.
This objective fundamentally differs from the diversity-oriented coverage in traditional IR (Wu et al.,
2024), motivating a new formulation. Building on this, we recast the traditional Top-K re-ranking
strategy (Zehlike et al., |2017) as a multi-objective optimization problem (Deb et al.l 2016) and
redefine coverage and noise in the context of RAG, emphasizing the capture of essential information
requirements while filtering out unhelpful documents. To address this optimization problem, we
propose a novel training framework, PureCover, which leverages LLM attention patterns during
reasoning to achieve an effective and efficient balance between coverage and noise.

Solving this multi-objective optimization problem faces two key challenges: (1) uncovering the
underlying information requirements of complex queries, and (2) selecting documents that achieve
broad coverage of these requirements with minimal noise. To address these challenges, we first infer
the query’s information requirements through Chain-of-Thought (CoT) reasoning and estimate the
associated quantities from reasoning attention patterns. By recast the objective as a binary optimiza-
tion problem , we propose a greedy algorithm that efficiently maximizes coverage while minimizing
noise. To improve efficiency, we further introduce a set-wise distillation method that transfers the
document selection capability into an LLM selector for efficient inference. We evaluate our method
on four multi-hop QA benchmarks, and the experimental results demonstrate that PureCover con-
sistently achieves significant improvement over state-of-the-art baselines.

In summary, our contributions are as follows. (1) We emphasize a fundamental gap between the re-
ranking objectives in traditional IR and RAG, which arises from the selective attention mechanism
of human users. (2) To address this gap, we introduce PureCover, a novel document selection
framework, which formulates document selection in RAG as a multi-objective optimization problem
and leverages LLM reasoning attention patterns to effectively address this problem. (3) Extensive
experiments on four multi-hop QA datasets demonstrate the effectiveness of PureCover.

2 FORMULATION

2.1 RETRIEVAL-AUGMENTED GENERATION

RAG systems aim to tackle a knowledge-intensive task (e.g., multi-hop QA), where the dataset
consists of multiple query—answer pairs. Each instance consists of a raw query ¢ paired with its
corresponding ground-truth answer y. A RAG system f(-) takes a query ¢ as input and returns
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an answer §, = f(g). Specifically, for each query ¢, the RAG process begins with a retriever
Riewieve that first retrieves a candidate set of documents Dyeyieve = {d1,do, . . ., dx, } with size K.
To eliminate contextually irrelevant noise and cover critical information to address the query, the
initially retrieved documents Dieyieve Will be further filtered by the reranker R erank into a smaller set
Drerank € Dretrieve- Due to the generator’s input limit, the re-ranker output is constrained by a budget
|Drerank| < K. Finally, the filtered documents Diepank, along with the original query ¢, will be fed
into the LLM generator as contextual information to help generate the final response g.

2.2 RE-RANKER IN TRADITIONAL IR

Relevance-oriented re-ranking. The traditional relevance-oriented re-rankers, e.g., cross-
encoders (X1ao et al., 2024) or LLM-based (Sun et al., 2023; | Xiao et al., 2024; Zhang et al., |2025)),
assign an independent relevance score Rel(g, d) to each document d using a relevance estimation
function Rel(-), and select the top-K documents based on these scores:

Drerank = {dj|d] € TOP'K (Rel (qa d))} (1)

Coverage-oriented re-ranking. To reduce topical redundancy and address query ambiguity, tradi-
tional IR (Carbonell & Goldstein, [1998) introduces a coverage objective Cover'(-) alongside rele-
vance Rel() in re-ranking. These methods aim to select the top-K documents that jointly optimize
relevance and coverage in the re-ranked list, ultimately enhancing user interactions.

Drerank = _argmax [ Y Rel(d,q) + 8- Cover' (D | q) ], )
DCDretiieves |D|=K deD

where Cover’ (D | q) measures how well the re-ranked document set D covers the underlying query
intents or subtopics of ¢ (e.g., the query “Apple” may contain intents such as “Apple Inc.” or “Apple
Records”), and 3 is a hyper-parameter that controls the trade-off between relevance and coverage.

Challenges. Both relevance-oriented and coverage-oriented re-ranking strategies rely on humans’
selective attention mechanism (Miiller & Krummenacher,|[2006), which enables human users to con-
centrate on key evidence while disregarding noise. LLMs, however, lack this mechanism. Therefore,
re-ranking in RAG requires a new objective that explicitly balances covering essential information
and suppressing irrelevant content for complex QA.

3 OUR APPROACH: PURECOVER

To enhance RAG performance, we optimize document selection by balancing coverage and noise,
framing it as a multi-objective optimization problem (Section [3.I). We then introduce PureCover,
a three-step training framework (Section [3.2): (1) prompting the LLM to reason over retrieved
documents and estimate key quantities from attention signals; (2) reformulating the optimization
as a binary problem and solving it efficiently with a greedy algorithm; and (3) applying set-wise
distillation to transfer the selection capability into a LLM-based re-ranker. The overall workflow is
illustrated in Figure[2]

3.1 OPTIMIZATION OBJECTIVE CONSTRUCTION

In this section, we construct the objective of our re-ranker to optimize the coverage and noise in the
selected document set. Formally, given the initially retrieved documents Dieqieve, the selection can
be expressed as the following multi-objective optimization problem:

Drierank =  arg max (Cover(D | q), —Noise(D | q)) 3)
DCDretrieves |DI<K

where Cover(D|q) measures how well the selected documents collectively cover all the information
requirements to answer the query ¢, and Noise(D|q) measures the document noise in the selected
document set. Next, we formally define coverage and noise in the context of complex QA tasks.

For a complex or compositional user query g, there are typically multiple underlying information
requirements that must be satisfied to correctly answer the query (Lee et al.,[2025)). We denote these
requirements as &, = {e1, e, ..., e}, obtained via an information need identification mechanism.
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Figure 2: The overall workflow of PureCover consists of three stages: (1) We conduct a reasoning
process to identify the information requirement, and extract the attention pattern; (2) We leverage the
attention pattern to solve the multi-objective optimization problem; (3) To enable efficient inference,
we distill the optimized result into a student model using a set-wise distillation.

Each requirement e € &, is associated with a weight P(e|q), such that

senting its relative importance in addressing the query.
Information coverage. We define the information coverage of a selected subset D as the weighted
expected probability that each information requirement e is addressed by at least one document:

Cover(D | q) = 3 P(e|q) - B(Ep..), where P(Ep,) = [1 ~T[(-r@] e))} )
ec&y deD

cce, P(e|q) = 1, repre-

where Ep . denotes the event that information requirement e is satisfied by at least one document
in D, P(d|e) is the likelihood that document d provides relevant content to satisfy the information
requirement e, reflecting the document’s utility for that specific need. This definition reflects the
intuitive notion that the selected document set provides high coverage if it collectively addresses all
information requirements for answering the query.

Document noise. Including documents that are not helpful to answer the query can substantially
distract the generator and degrade the performance of RAG systems (Shi et al., [2023} |[Niu et al.
2025). To capture this, we define the noise of the selected set D as the overall disutility (i.e.,
unhelpfulness) within the set:

Noise(D | q) = Y _ DisUtil(d | q), where DisUtil(d | ¢) =1 —P(d | ef) P(e] | q),  (5)
deD

where €} = arg max.c¢, P(d|e)P(e|q) denotes the information requirement that document d most
significantly helps satisfy for answering the query. The disutility is high if this document poorly
addresses the requirement or if the requirement itself is unlikely to be helpful to the query.

3.2 OBIECTIVE LEARNING AND OPTIMIZATION

To solve the optimization problem in Equation [3] we leverage the attention pattern of LLMs to
effectively estimate the necessary variables required in the objective. Building on this estimation,
we further propose a greedy algorithm to efficiently solve the problem, and distill the results into a
lightweight selector for efficient inference.

3.2.1 LEARNING VARIABLES VIA REASONING ATTENTION

In the optimization objective (Equation [3), two key quantities are required: the information require-
ment P(e|q) and the degree to which each document supports it P(d|e). While prior studies have
shown that LLMs’ attention patterns can highlight relevant information within long contexts (Bense-
mann et al.| 2022} Kozlova et al., [2024; (Chen et al., 2024), we extend this insight by leveraging
reasoning attention patterns to explicitly estimate these two quantities. This enables us to extract the
underlying information requirements of a query and evaluate document support in a way tailored
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for RAG. Specifically, given a training query ¢ and its retrieved documents Dieyrieve, W€ prompt the
LLM to perform goal-oriented reasoning over these documents until producing the final answer a:
(Cq,a) = LLM[P(q, Dretrieve)] Where Cq = {c1,ca,...,cn} is the reasoning sequence, with each
step ¢; corresponding to an information requirement e;. Prompt details P in Appendix [F

Attention extraction. We leverage the token-level attention weights A recorded during the rea-
soning process as a crucial signal for downstream document selection. (See Appendix D] for
computational details of A). Specifically, the token-level attention weight A;; quantifies how
much token ¢ attends to token j. To aggregate this information at the CoT step and docu-
ment level, we define the attention from each reasoning step ¢ € C, to each retrieved document
di, € Dreieve as the average token-level attention between the tokens in the step and the tokens

in the document:Attn(c, dy) = m > ice 2jed, Aij, where |c| and |dy| denote the number of

tokens in CoT step c and document dj, respectively.

Calibration. Raw attention weights are known to be susceptible to position biases in long con-
texts (Wu et al., 20255 'Wan et al., [2025)), such as the lost-in-the-middle effect (Liu et al.,|2023)). Us-
ing uncalibrated attention directly can therefore lead to inaccurate estimation of CoT-to-document
scores. To address this, we adopt a calibration procedure following prior work (Liu et al., [2023)) to
remove the influence of position bias. Concretely, we define a precomputed position bias using fixed
dummy CoT steps C and dummy documents dj and employ it to calibrate the raw attention weight
assigned from CoT step ¢ to document dj, located at position k:

CalAtin(c, dy,) = Atin(c, d;,) — Bias(k), where Bias(k) = — Y Atin(c,dy),  (6)

1
|C‘ ceC
where CalAttn(c, dy) is the position-calibrated attention from CoT step ¢ to document dy,. Since C

and dj, are fixed, Bias(k) can be precomputed once and reused for all queries, efficiently removing
position-dependent distortions.

Estimation. After calibration, we leverage the attention signal to estimate the two key variables (i.e.,
P(e;|q) and P(d|e;)). We define the attention-based likelihood as the normalized attention weight
from answer a to each CoT step c¢; (corresponding to e;) and CoT step to each document d:

exp (Attn(a, c;) /T
IEI)a.ttn(e’i | Q) = 78 p( ( >/ 1) ) Ci € Cq;
> m1 exp (Attn(a, ¢;) /1)

exp (CalAttn(c, d)/72)
Y e Do, XD (CalAttn(c,d’)/72)’

where 71 and 79 is the temperature coefficient that controls the sharpness of the distribution by
emphasizing documents and information requirements with higher attention weights.

(7
IP)attn(d | 67;) =

de Dretrievev ci € qu

3.2.2 COVERAGE-NOISE JOINT OPTIMIZATION

After estimating the unknown variables in the objective function, we aim to efficiently solve the
optimization problem in Equation [3] To achieve this, we formulate the objective as a 0-1 integer
optimization problem in Theorem[l]

Theorem 1 (Document selection as 0-1 integer optimization). By defining the coverage function
and noise function in Equations[d|and 5} the denoised coverage-aware document task in Equation 3]
can be formulated as a 0-1 integer (binary) multi-objective optimization problem:

€] Ky Ky
max Zei 1-— H (1—Waixq) —)\Z (1 —max(W; ©e))x;
i=1 d=1 j=1
8
Coverage Noise ( )

sty x <K, x€{0,1} Vie[l,2,--, Ky,

where X is the binary decision vector that determines each retrieved document d; € Dyerrieve IS Se-
lected or not, i.e., x; = 1 if it is added to the re-ranking set D,erank, otherwise x; = 0. The constraint
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requires that the number of selected documents does not exceed the budget K. e; = Py,(e;|q) and
W denotes the document—requirement adjacency matrix, with entries W, ; = Py, (d;]e;). max(-)
returns the largest entry in the input vector.

Proposition 1. The objective function defined in Equation[8]is monotone and submodular. There-
fore, the corresponding maximization problem is NP-hard.

The proofs of Theorem [T] and Proposition [T] are provided in Appendix [E| Based on Proposition [T}
this optimization problem is NP-hard. Motivated by the classical result of Nemhauser et al.|(1978),
which guarantees that a greedy algorithm achieves a (1—1/¢) approximation for monotone submod-
ular maximization under a cardinality constraint, we design a greedy re-ranking algorithm tailored
to our coverage-noise objective. At each iteration, the algorithm selects the document that yields
the largest marginal gain in the objective function (Equation [8) and adds it to the re-ranked set, as
detailed in Algorithm|[I]

3.2.3 SET-WISE DISTILLATION

Direct LLM reasoning is often computationally prohibitive and slow for real-world re-ranking ap-
plications. To overcome this efficiency barrier, we introduce a set-wise distillation, which transfers
the complex, optimized document selection objective into a more efficient LLM-based selector for
fast inference. For a query ¢ and its retrieved documents Dieyieve, We leverage teacher attention (via
Equation [8[and Algorithm 1)) to obtain an optimized subset Drerank = {d1, . .., dm }. Let ¢; denote
the identifier of d; and s; the first-token logit from the student model. The selector (student model)
is trained using a composite loss that captures this set-valued selection:

® Permutation-invariant language modeling loss Ly y: Since the target is a set, the loss is minimized
over all possible valid sequences ), which contains all permutations of the target document identi-
fier sequence y: L1 = —ming ey 10gpo (¥ | ¢, Dretrieve)

e Contractive learning loss Lcp: This loss enforces a clear distinction between the selected docu-
ments (d; € Drerank) and the rejected ones (d; € Dretrieve \ Drerank) by maximizing the score difference
(logit difference s; — s;) for positive pairs P: Lcp = fl%‘ Z(i,j)eP log o(s; — s;), where P is the
set of positive and negative document pairs: P = {(7, j)|d; € Drerank; dj € Dretrieve \ Drerank }- The
document selector is trained with the final objective Lgina = LcL + A Loum.

Inference. At inference, candidate documents in Dieyieve are efficiently selected based on the first-
token logits s, retaining only those with high logit value, i.e., Drerank = {dj € Dretrieve | 55 > T3}
This strategy leverages the learned attention patterns to prioritize high-utility documents, eliminates
the need for a fixed top-K selection, and effectively filters out redundant or misleading content,
thereby reducing unnecessary token consumption.

4 EXPERIMENT

4.1 EXPERIMENT SETUPS

Dataset & metrics. We evaluate our method on four widely used multi-hop QA datasets, including
HotpotQA (Yang et al.| |2018)), 2WikiMultiHopQA (Ho et al., 2020) and MusiQue (Trivedi et al.,
2022) and StrategyQA (Geva et al.,[2021). Following standard RAG evaluation protocols (Yu et al.,
2024])), we use Exact Match (EM), F1 score (F1), and Accuracy (Acc) as our evaluation metrics.

Baselines. We compare PureCover with a broad range of baselines, including dense retriever e5-
base-v2 (Wang et al.,[2024), relevance-oriented re-rankers: bge-reranker-large (Xiao et al.,|2024),
Qwen3-Reranker-8B (Zhang et al.,|2025)), RankLLlama (Ma et al.,2024), RankVicuna (Pradeep et al.,
2023al), RankZephyr (Pradeep et al., [2023b)), FIRST (Reddy et al.l 2024), RankGPT (Sun et al.,
2023)), coverage-oriented re-rankers: IA-Select (Agrawal et al., 2009), MMR (Carbonell & Gold-
steinl [1998), xQuAD (Santos et al.l [2010), and re-rankers for RAG: RADIO (Jia et al., [2024),
SETR (Lee et al.,|2025)). More baseline details are provided in Appendix @

Implementation details. We build PureCover on Qwen2.5-32B (Team, 2024) as the teacher and
Qwen2.5-7B as the student model. For evaluation, we fix the retriever (e5-base-v2(Wang et al.,
2024)) and generator (Qwen2.5-7B-Instruct). For a fair comparison, retrieval-only baselines retrieve
the top-5 documents, while re-ranking methods operate under a re-ranking budget of 5, selecting
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HotpotQA 2Wiki MusiQue StrategyQA
Retrieval Method Model EM F1 EM F1 EM F1 EM Acc

RETRIEVAL ONLY

- 31.60 41.68 28.20 35.14 10.20 18.22 66.40 67.60
CROSS-ENCODER RE-RANKER

bge-reranker-large 36.60 48.02 30.60 37.97 12.80 21.88 69.80 71.60
RADIO 34.60 46.01 28.80 36.96 10.20 20.36 67.00 69.60
LLM-BASED RE-RANKER

Qwen3-Reranker-8B 36.60 47.45 29.00 36.23 13.20 21.91 69.60 71.40

RankVicuna 36.60 46.88 28.60 35.86 13.00 21.95 70.00 71.60
e5-base-v2 RankLlama 35.20 45.57 29.80 38.87 12.40 21.14 69.20 70.20
RankZephyr 32.80 43.18 29.20 36.84 14.20 22.99 68.80 71.00
FIRST 35.80 47.40 29.00 36.54 12.80 21.86 68.60 70.40
ICR 35.40 46.59 28.60 35.59 13.00 20.81 67.80 69.80

RankGPT(gpt-40) 36:80 48.05 32.80 41.03 13.80 22.86 69.40 71.20
COVERAGE-AWARE RE-RANKER

TA-Select 34.00 43.66 28.20 35.60 8.80 18.13 69.80 70.80
MMR 35.60 47.34 30.60 37.99 13.00 22.00 68.20 70.80
xQuAD 37.00 48.01 31.80 39.55 12.60 20.52 68.20 70.20
SETR 34.60 45.62 31.00 38.22 14.60 22.61 70.20 72.00
OURS

PureCover 38.00 48.64 33.40 40.80 14.80 23.79 70.60 72.20

Table 1: End-to-end question answering results across various re-ranking models. Each model
applies re-ranking or selection over the top-20 documents retrieved using e5-base-v2. The bold and
underlined indicate the best and second-best performances respectively.

HotpotQA 2WikiMultiHopQA MusiQue StrategyQA
EM Fl EM F1 EM F1 EM Acc

PureCover (ours) 38.00 48.64 33.40 40.80 14.80 23.79 70.60 72.20
ABALTION MODELS

w/o Attention 35.40 46.60 25.40 33.62 10.40 18.90 70.00 71.00
w/o CoT weighting 35.80 47.03 31.00 38.23 13.40 22.07 69.60 70.40
w/o Position Bias Calibration 33.80 44.51 31.40 38.93 11.60 22.46 69.80 71.20
w/o Optimization (Avg) 36.00 46.87 31.60 39.80 14.60 23.66 68.80 69.80
w/o Optimization (Max) 34.60 45.80 32.80 40.78 14.20 23.03 69.60 71.20

Table 2: Ablation study of the proposed method, PureCover. The bold and underlined indicate the
best and second-best performances, respectively.

these from the top-20 retrieved results. Additional details are in Appendix [B| Our code is available
athttps://anonymous.4open.science/r/PureCover—2723.

4.2 EXPERIMENTAL RESULTS

We present our experimental results in Table[I] For coverage-oriented methods, we tune the trade-
off coefficient A and report the best results. Based on these results, we have the following observa-
tions: our method consistently outperforms both relevance-oriented and coverage-aware baselines.
Relevance-oriented re-rankers (e.g., LLM-based re-rankers) emphasize document-level relevance
but overlook coverage, often failing to provide sufficient evidence for complex QA tasks. Although
traditional coverage-aware methods improve list-level coverage, their diversity-oriented coverage
often introduces unhelpful noise and leads to suboptimal performance. While coverage-oriented
LLM re-rankers rely on the model’s ability to select documents, they exhibit unstable performance
on HotpotQA and 2Wiki. In contrast, our method explicitly balances coverage and noise via opti-
mization, delivering substantial RAG improvements on complex queries.

4.3 FURTHER ANALYSIS

Ablation study. To assess the effectiveness of each component in PureCover, we conduct ablation
studies on four multi-hop datasets (Table[2). We test the following variants: (1) w/o Attention: in-
stead of using reasoning-attention signals to estimate P(d|e) (see Equation , we compute it based
on the similarity between each CoT step and the document using BGE (Xiao et al., 2024); (2) w/o
CoT Weighting: treat all information requirements as equally important, i.e., P(e|q) = 1; (3) w/o
Position Bias Calibration: use raw document—CoT attention weights without calibration; (4) w/o
Optimization: replace the proposed greedy solver with simple heuristics—Top-K by average atten-
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Figure 3: Performance of methods under different re-ranking budgets K on HotpotQA dataset. The
Information Coverage and Information Purity metrics measure the extent of coverage and noiseless-
ness in the re-ranked set, with detailed formulas provided in Appendix B
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Figure 4: (a) Performance changes with different trade-off coefficients (\); (b) Case study of atten-
tion patterns in identifying key evidence documents; (c) Inference and token efficiency.

tion (Avg) or by maximum single-step weight (Max). Results show that removing any component
consistently harms performance: ignoring position bias calibration misestimates document impor-
tance, while dropping the solver yields incomplete evidence coverage and degrades RAG accuracy.

Can PureCover balance coverage and noise under varying re-ranking budget X ? Beyond EM
and F1 scores, we introduce Information Coverage and Information Purity metrics to measure the
presence of key evidence and the noise in the document set, respectively. As shown in Figure 3]
our method PureCover achieves high coverage of key information even with small K (e.g., K = 3),
while effectively suppressing unhelpful noise even with large K (e.g., K = 15). Traditional top-
K re-rankers show a significant increase in noise (decrease in information purity) as the budget
increases, which compromises RAG performance (EM) despite high coverage. In contrast, while
SETR can select a relatively clean (unnoisy) set under large budgets, its low information coverage
limits the generator’s ability to answer complex questions, resulting in suboptimal RAG perfor-
mance. Our method effectively balances these two critical factors.

Influence of trade-off coefficient \. A sensitivity analysis of the noise—coverage coefficient A com-
pares our method with traditional coverage-aware re-ranker (i.e., MMR and xQuAD) on HotpotQA.
A smaller X prioritizes coverage, while a larger A emphasizes relevance (noiselessness). Figure|§| (a)
illustrates that traditional baselines perform poorly at low A (high coverage), as their diversity-based
coverage introduces excessive noise that hurts accuracy. In contrast, our method is more robust and
stable, effectively balancing coverage and noise and maintaining strong performance across various
A settings. We can also observe the impact of noise on our method: prioritizing either full coverage
(A=0, EM=0.362) or full noiselessness (A=1, EM=0.372) does not yield optimal results. Instead,
balancing these two objectives gives our method its best performance (A=0.3, EM=0.38, F1=0.490),
demonstrating its ability to balance noise and coverage.

Effectiveness of attention pattern during reasoning. To validate the effectiveness of our method,
which uses attention from goal-oriented reasoning steps, we visualize its attention heatmap and
compare it to a query-based attention baseline (i.e, ICR). As shown in Figure [(b), the baseline
method shows poor coverage of key documents, often getting distracted by noise (e.g., Documents
11 and 18). This limited focus hinders its ability to adequately cover all relevant information for
complex queries. In contrast, our method aggregates attention across different CoT reasoning steps,
successfully focusing on key documents. This significantly improves the coverage of the re-ranked
list, ensuring all necessary information is considered to answer the query effectively.



Under review as a conference paper at ICLR 2026

Inference time and token efficiency. We conducted experiments to evaluate the superiority of our
method’s inference efficiency and LLM generator token costs. As shown in Figure ] (c), point-wise
methods like RankZephyr exhibit a significant increase in inference time and token costs as the re-
ranking length budget K grows from 1 to 15. In contrast, our method not only maintains comparable
inference efficiency to traditional IR methods (i.e., xQuAD) but also achieves substantial savings in
input token costs for the RAG generator component.

Other experimental analysis. Due to space constraints, more experiments of alternative retrieval
methods, teacher models, re-ranking budget K, and case studies are deferred to Appendix

5 RELATED WORK

RAG. RAG has become a crucial technique for mitigating hallucinations and improving factual
accuracy in LLMs. Most studies focused on optimizing the integration of LLMs with retrieval mod-
ules (Gao et al.| 2023 |Zhao et al., 2023)). For example, some work has explored dynamic retrieval
to determine if and when retrieval is needed (Jeong et al., |2024). Others have tackled complex
questions by iteratively decomposing them (Kim et al.| |2023}; [Sarthi et al.,[2024). Another line of
research focused on developing IR models better suited for RAG, such as using PPO (Schulman
et al.l [2017) to train a document selector (Ke et al.l [2024)) or building a cross-encoder re-ranker to
find documents aligned with the query’s rationale (Jia et al., |2024). Despite these advances, most
of these methods prioritize relevance over a crucial list-level coverage (Xie et al., 2024; |Es et al.
2024), which significantly limits their effectiveness in answering complex, multi-hop queries.

Coverage-aware Re-ranking. Coverage-aware re-ranking, a well-established area in traditional
IR, aims to ensure ranked results span diverse subtopics or intents (Wu et al., [2024; (Clarke et al.,
2008). Heuristic methods like MMR (Carbonell & Goldstein,|1998)) and xQuAD (Santos et al., 2010)
greedily select documents that are complementary to those already chosen. While non-heuristic
learning-to-rank approaches can directly optimize coverage metrics (Yan et al.l|2021), they are often
limited by the high cost of human annotations. A few recent works highlight the importance of
coverage in RAG (Es et al.| 2024} [Xie et al.| 2024} [Lee et al, [2025). For example, SETR (Lee
et al., 2025) directly distilled the coverage ability from teacher models. However, previous studies
have emphasized that increasing coverage inevitably introduces noise (Chen et al., [2023). Existing
methods overlook this factor, preventing them from maintaining strong RAG performance under
large re-ranking budgets.

LLM as Re-ranker. LLMs exhibit strong zero-shot ranking abilities due to their vast world knowl-
edge, leading to the development of various ranking methods: point-wise (Zhang et al., 2025; [Ma
et al.l 2024} Sun et al. 2023} [Pradeep et al.| 2023a), pair-wise (Qin et al.l |2023), and list-wise
(Reddy et al. 2024} (Chen et al., 2024). Recent works have introduced faster decoding strategies
(Reddy et al., 2024) or used calibrated attention for ranking (Chen et al., 2024). However, all of
these LLM-based re-rankers follow the traditional IR Top-K re-ranking paradigm, aiming to rank
the most query-relevant documents at the top. This approach overlooks crucial factors like coverage
and noise, makes them difficult to apply effectively in RAG scenarios.

6 CONCLUSION

This work identifies and addresses a key limitation of existing RAG systems: the direct application
of re-ranking methods designed for human users to LLMs. We highlight that this direct adoption
overlooks a crucial gap: unlike humans, LLMs lack robust selective attention to filter noise and focus
on key evidence. To bridge this gap, we introduce PureCover, a novel document selection frame-
work tailored for RAG. Moving beyond the limitations of traditional Top-K re-ranking, PureCover
formulates document selection as a multi-objective optimization problem, dynamically balancing in-
formation coverage and noise minimization. Our approach uniquely leverages the internal attention
patterns of LLMs during goal-oriented reasoning to precisely identify and select key evidence. For
practical deployment, we developed an efficient set-wise distillation strategy to transfer this sophis-
ticated selection capability to compact LLM selectors. Extensive experiments on four multi-hop QA
benchmarks reveals that PureCover consistently outperforms state-of-the-art baselines, demonstrat-
ing its ability to achieve a superior balance of coverage and noise, thereby significantly enhancing
RAG performance on complex tasks.
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APPENDIX

A  GREEDY ALGORITHM

Algorithm 1: Greedy Algorithm

Input: Document-CoT overage matrix W € [0, 1]V <51 CoT importance vector e € [0, 1]V,
re-ranking list length budget K, coverage-relevance trade-off weight A, truncation threshold 7.
Output: Selected document set S.
1: Initialize selected document set S = &, remaining document set R = Dierieve, €Vidence
coverage vector p = 051,

2: while |S| < K> and g* > 7 do

3 gf=—-00,d*=0

4: for d € Rdo

5: p=e0[l1-(1-p)©(1—-Wy)]//Compute Coverage Vector
6: Ag=3(p"—p)

7 g=Ag—X-[1-—max(W,;®e)] //Compute Noise Vector

8: if g > g* then

9: d* <« d,g* <~ g, p* < p

10: end if

11:  end for
122 S+ Su{d},R<+ R\ {d"} //Update Selection Set
13: p<+ p*
14: end while
15: return S

13


https://doi.org/10.1145/3626772.3657878
https://doi.org/10.1145/3626772.3657878

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 IMPLEMTATION DETAILS.

We implemented all baseline methods using the FlashRAG (Jin et al.,|2024) and Rankify (Abdallah
et al} |2025) library. Following previous works (Sun et al.,[2025), we randomly select 500 samples
from the test sets of each dataset as our final test set for all baselines and our method. We set the
training epochs to 10 with a learning rate of 1e-5. For the temperature coefficients 7; and 72, we set
then both to be 4e-5. All experiments are conducted on four NVIDIA RTX A6000 48G GPUs.

B.2 METRICS

In addition to evaluating the performance of our document selector based on the answer quality of
the downstream LLM generator using metrics like EM and F1, we further define new metrics based
on recall and precision to assess how well the selector balances coverage and noise under different
re-ranking list budget K. Before presenting the formal definitions, we first explain how we handle
the re-ranking list length budget K. After the document selector (re-ranker) outputs the selected
documents Dierank, the RAG system typically constrains the set to size K to comply with the input

token limitations of the LLM generator (Lee et al.,[2025)). Specifically, Dr(f;?lk refers to the subset of
documents selected under budget K (i.e., the top-K documents from D,k ), which can be formally
defined as:
(K) _
rerank ~

Dreranka if |Drerank| S K )
9)

TOP'K(Drerank)a if |Drerank| > K7
where Top- K (Drerank) denotes the top K documents in Dyenk ranked by their re-rannking scores.

Information Coverage measures how well the selected document set under a budget K covers the
necessary ground-truth evidence. Formally, it is defined as the fraction of gold documents (i.e.,
documents that contain the golden answer) that appear in the top- K re-ranked list.

K
| Dr(eraik N Dgold |
‘ Dgold |

where D,q is the set of all documents that contain the golden answer. This metric effectively
measures whether the selected documents cover all the information required to answer the question.
A higher value indicates that the selected documents achieve greater coverage.

Information CoverageQK = (10)

Information Purity evaluates the proportion of useful documents within the selected set under a
budget K. Specifically, it is defined as the fraction of gold documents among the top- K re-ranked
documents.

D4 N Dgoid] (11
(K)

Information PurityQK =

| rerank
where Dyq is the set of all documents that contain the golden answer. This metric effectively
measures the amount of irrelevant noise present in the selected documents. A higher value indicates

that the selected documents contain less noise.

Since many RAG datasets do not provide annotations for gold documents (Jin et al.l 2024} [Yang
et al.,[2018; Ho et al., 2020), we follow prior work and use ﬁgold to approximate Dy1q. Specifically,
ﬁgold = {d; € D | d; contains agq}, i.e., the set of documents that include the gold answer.
Previous studies (Jin et al.,|2024) have shown that this approach provides a reasonable estimate of a

re-ranker’s performance.

B.3 DATASETS

The experiments were conducted on the following four benchmark datasets:

e HotpotQA (Yang et al| 2018) is a large-scale multi-hop QA dataset containing 113k ques-
tion—answer pairs derived from Wikipedia. Each question requires reasoning across multiple doc-
uments, with sentence-level supporting facts annotated. The dataset features diverse query types,
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including comparison questions, and emphasizes compositional reasoning and explainability, mak-
ing it a widely used benchmark for multi-hop retrieval and reasoning systems.

o 2WikiMultiHopQA (Ho et al.}[2020) is a multi-hop QA dataset that integrates Wikipedia text with
Wikidata triples to assess step-by-step reasoning. Each question is paired with an explicit reason-
ing path connecting entities across documents. The dataset evaluates compositional reasoning and
requires models to leverage both unstructured text and structured knowledge for accurate answers.

o MusiQue (Trivedi et al., 2022) is a multi-hop QA benchmark that prevents reasoning shortcuts
by requiring genuine multi-step reasoning. It contains about 25k questions constructed from linked
single-hop queries, each involving 2—4 reasoning steps. The dataset emphasizes strong logical de-
pendencies between steps and includes unanswerable variants to test robustness, making it more
challenging than earlier benchmarks and highlighting a larger performance gap between humans
and models.

o StrategyQA (Geva et al.,|2021) is a multi-hop QA benchmark designed to evaluate implicit rea-
soning. Each question is a yes/no query requiring models to infer a series of hidden reasoning steps,
with supporting evidence drawn from relevant Wikipedia paragraphs. The dataset contains 2,780
examples covering a wide range of topics and reasoning strategies, emphasizing compositional rea-
soning and strategy inference. Compared to humans, current models still show a substantial perfor-
mance gap, highlighting the challenge of implicit multi-step reasoning.

B.4 BASELINES

We consider the following re-ranking models as baselines. They include relevance-oriented
cross-encoder and LLM-based re-rankers, traditional coverage-oriented models, and a LLM-based
coverage-aware re-ranker.

o bge-reranker-large (Xiao et al., 2024) is a lightweight cross-encoder from BAAI that scores
query—passage pairs using full cross-attention, providing more accurate relevance judgments than
embedding-based models. Fine-tuned on large-scale data, it is widely used to rescore top-k retrieval
results. As a strong open-source baseline, it represents state-of-the-art conventional re-ranking fo-
cused on individual document relevance.

e Qwen3-Reranker (Zhang et al.|,[2025) is part of the Qwen3 Embedding series, built on the Qwen3
foundation models. The re-ranker is point-wise: it scores each document independently using the
yes/no logits given a query, rather than comparing pairs or lists. It is supervised fine-tuned (SFT) on
high-quality labeled data to optimize relevance ranking performance. The Qwen3-Reranker models
come in different sizes (0.6B, 4B, 8B parameters) to trade off efficiency and accuracy, and have
shown strong results across multilingual and retrieval benchmarks. In this paper, we use Qwen3-
Reranker-8B as the baseline for comparison[ﬂ

o RankLlama (Ma et al.| [2024) is a pointwise re-ranker built on the LLaMA-2-7B model. Given
a query and a candidate passage, it produces a relevance score to reorder retrieved documents. It
achieves strong performance in both in-domain and zero-shot settings, serving as a competitive
open-source baseline for document re-ranking.

e RankVicuna(Pradeep et al., 2023a)) is a 7B open-source listwise re-ranker built on the Vicuna-
7B model. It takes a query and a list of passages as input and outputs a ranked list of passage
indices. Trained with GPT-generated supervision, it achieves performance comparable to GPT-3.5
on benchmarks such as TREC DL, offering a transparent alternative to proprietary re-rankers.

o RankZephyr (Pradeep et al., [2023b)) is a zero-shot list-wise re-ranker built on the Zephyr-7B
model. Fine-tuned with GPT-4-generated rankings, it produces ordered lists of passage indices
given a query and candidate passages. It achieves performance comparable to GPT-4, surpassing
it on some benchmarks. Its open-source and reproducible design makes it a robust baseline for
evaluating listwise re-ranking methods.

o FIRST(Reddy et al.|[2024) is a zero-shot listwise re-ranker that frames ranking as a single-token
decoding task, enabling fast and efficient passage selection. Despite its simplicity, it achieves com-

'"https://huggingface.co/Qwen/Qwen3-Reranker—8B
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petitive performance and serves as a strong open-source baseline for evaluating the raw rankin
ability of instruction-tuned LLMs. In this paper, we use the Zephyr-7B—based open-source versiorﬁ

o ICR (Chen et al., 2024) is a zero-shot re-ranker that leverages the attention patterns of large lan-
guage models to estimate document relevance without generation. Given a query and candidate
passages, it extracts attention-based scores to rank documents efficiently. ICR achieves competi-
tive performance with minimal computation, providing a fast, open-source alternative for zero-shot
document re-ranking.

e RankGPT (Sun et al., [2023)) is a GPT-4-based re-ranker accessed via OpenAl’s API, operating
in a zero-shot setting to rank passages given a query. It achieves state-of-the-art performance but
is closed-source, non-reproducible, and costly. RankGPT4 serves as an upper-bound baseline for
evaluating the effectiveness of our approach against the strongest proprietary re-ranker. We use
gpt—4o[|from OpenAl to run RankGPT.

The following are the coverage-aware baselines. Since labeled or pre-collected query subtopics are
often unavailable in RAG datasets, we use GPT-4o to identify the information requirements within
each query and treat them as subtopics.

o TA-Select (Agrawal et al., 2009) is one of the most widely used coverage-aware algorithms that
attempts to maximize the probability that a user finds at least one useful result within & results. Given
a set of candidate documents and a set of subtopics or intents, IA-Select greedily selects documents
that provide the highest expected coverage over these subtopics.

e xQuAD (Santos et al., [2010) is a widely used coverage-aware re-ranking algorithm that extends
IA-Select by explicitly balancing relevance and coverage. It iteratively selects documents to maxi-
mize coverage over multiple query aspects or subtopics while also considering individual document
relevance.

e Maximize Marginal Relevance (MMR) (Carbonell & Goldstein, [1998) is a widely used
coverage-aware re-ranking algorithm that balances relevance and novelty in document retrieval. It
iteratively selects documents to maximize relevance to the query while minimizing redundancy with
already selected documents. This approach ensures that the final set of documents provides compre-
hensive coverage of the query’s information needs without unnecessary repetition.

o SETR (Lee et al.} [2025) is a set-wise re-ranker for RAG that models coverage by decomposing a
query into information requirements using Chain-of-Thought reasoning and selecting a set of docu-
ments that collectively satisfy them. Different from the traditional Top- K re-ranking strategy, SETR
distills the ability and knowledge from a powerful GPT-40 teacher into a smaller student model.
Following the authors’ implementation, we utilize GPT-4o as the teacher model and Qwen2.5-7B as
the student model, which is the same as our method, PureCover.

¢ RADIO (Jia et al.,[2024) is a cross-encoder-based re-ranker for bridging the gap between retrievers
and generators in RAG systems. It addresses the mismatch where retrievers select documents that
may not fully support the reasoning needs of LLMs. RADIO extracts reasoning rationales from
LLM outputs and uses them to guide re-ranking and retriever fine-tuning, aligning retrieval with
generation needs. We utilize bge-reranker-large (Xiao et al., [2024) as the re-ranking model for
RADIO.

C ADDITIONAL EXPERIMENT

C.1 EXPERIMENT ON OTHER RETRIEVAL MODEL

We further evaluate our method with BM25 as the retrieval backbone to test its robustness under
different retrieved document distributions. Table |3| reports the results. Across all multi-hop QA
datasets, our approach consistently achieves the best performance compared to baselines, except on
StrategyQA, where it performs comparably to SETR. Notably, traditional coverage-aware methods
degrade significantly on more complex datasets such as MuSiQue and StrategyQA, indicating their
limited ability to handle challenging reasoning scenarios. While the LLM-based selector SETR

Zhttps://huggingface.co/rryisthebest/First_Model
3gpt—4o in this paper refers to gpt-40-2024-11-20 from OpenAl
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HotpotQA 2Wiki MusiQue StrategyQA
Retrieval Method Model EM F1 EM F1 EM F1 EM Acc

RETRIEVAL ONLY

- 30.80 40.63 28.40 34.08 7.40 16.12 62.20 65.40
CROSS-ENCODER RE-RANKER

Bge-Reranker-Large 36.60 47.22 32.60 39.52 10.20 18.93 65.00 66.00
RADIO 34.60 46.01 28.80 36.96 10.20 20.39 67.00 69.60
LLM-BASED RE-RANKER

Qwen3-Reranker-8B 34.40 46.19 29.60 36.18 9.80 18.75 65.40 67.20

RankVicuna 34.00 44.69 27.40 33.82 9.40 18.27 64.60 66.60
BM?25 RankLlama 34.40 46.06 28.40 34.97 9.80 18.74 64.60 66.80
RankZephyr 33.20 44.93 30.80 37.28 11.20 19.77 64.00 65.80
FIRST 33.40 45.08 30.40 37.26 11.00 19.34 64.20 67.40
ICR 35.20 46.22 31.00 37.45 8.80 17.15 62.40 65.00

RankGPT (gpt-40) 35.00 46.49 33.20 39.89 10.80 19.04 64.60 66.80
COVERAGE-AWARE RE-RANKER

TA-Select 34.00 43.66 28.20 35.62 8.60 17.92 60.40 63.80
MMR 34.60 45.75 31.00 37.52 11.00 19.69 62.20 64.20
xQuAD 34.20 45.07 28.60 34.96 8.40 17.45 62.20 64.40
SETR 36.80 47.36 31.20 38.36 13.80 22.65 70.00 71.80
OURS

PureCover 37.80 47.74 34.00 40.30 15.20 23.39 69.60 68.00

Table 3: End-to-end question answering results across various ranking models. Each model applies
re-ranking or selection over the top-20 documents retrieved using BM25. The bold and underlined
indicate the best and second-best performances respectively.

surpasses relevance-oriented baselines on several datasets, its gains are unstable and it performs
poorly on 2WikiMultiHopQA. In contrast, our method demonstrates stable and superior improve-
ments across all datasets.

C.2 EXPERIMENT ON DIFFERENT RE-RANKING BUDGET K
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Figure 5: Performance of PureCover under varying re-ranking budgets K. Information Coverage
and Information Purity are evaluated with respect to documents containing the gold answer. Subfig-
ures (a—d), (e-h), and (i-1) correspond to experiments on 2WikiMultihopQA, Musique, and Strate-
gyQA, respectively.

As shown in Figure 5] we evaluate the performance of different methods on 2WikiMultihopQA,
Musique, and StrategyQA under varying re-ranking list budgets K.
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Figure 6: Ablation study on different teacher models to isolate method-level effects. The student
model is applied using Qwen2.5-7B.

Overall, our method consistently achieves strong and stable results across all three datasets, main-
taining high end-to-end RAG performance regardless of the budget K. In contrast, traditional Top-
K re-ranking strategies (e.g., XQuAD, First, RankZephyr) tend to perform poorly when K is small
(e.g., K = 3). This is because they struggle to ensure coverage of the critical evidence (see Figures
(c), (g), and (k)). Whether based on LLMs or cross-encoders, conventional IR re-rankers suffer from
insufficient coverage under low K. As K increases, these methods gradually improve coverage by
leveraging relevance, but this improvement comes at the cost of introducing significant noise, which
ultimately limits RAG performance. By contrast, our method is able to guarantee sufficient cover-
age at small K and suppress noise growth at large K, thereby sustaining relatively high performance
across different budgets. It is also worth noting that SETR does not rely on a fixed Top-K list, which
allows it to achieve strong noise control (e.g., in Figures (d) and (h), its information purity reaches
0.270 and 0.152 at K = 15). However, due to its relatively low coverage, SETR falls short of
achieving optimal RAG performance.

C.3 FAIR COMPARISON ON SAME STUDENT MODEL

To ensure a fair comparison and verify that our multi-objective training approach offers method-
ological advantages over existing re-ranking strategies, we conduct experiments on the same student
model (Qwen2.5-7B) while varying the teacher models. Specifically, we use models of different
sizes and families, including LLaMA3-8B, Qwen2.5-3B, Qwen2.5-7B, and Qwen2.5-32B, as teach-
ers. We compare our method PureCover with two strong alternatives: (1) SETR (Lee et al., |[2025)),
which identifies query information requirements and performs document selection with the teacher
model, and (2) list-wise ranking with LLMs (Rank) (Pradeep et al., |2023b). In this setting, the
re-ranking budget K is fixed at 5.

Experimental results in Figure [6] show that the chosen baseline methods relying on teacher model
inference for document ranking are highly dependent on model capacity and size. For example, both
list-wise Rank and SETR perform poorly with smaller teachers (e.g., 3B) but significantly better with
larger ones (e.g., 30B). In contrast, our approach, by combining attention with optimization rather
than relying only on raw model capacity, compensates for the weaker reasoning abilities of smaller
models and thus achieves competitive performance even with lightweight teachers.
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Figure 7: Training efficiency analysis under different settings: (a) number of retrieved documents
K, and (b) re-ranking budget K. When varying K, we fix the re-ranking budget to K = 10; when
varying K, we fix the number of retrieved documents to K; = 100. Each experiment is repeated 20
times, and we report the mean and variance.

C.4 TRAINING EFFICIENCY ANALYSIS

We propose a greedy algorithm to efficiently solve the multi-objective document selection problem,
which greatly improves the training efficiency of our framework. To evaluate its effectiveness, we
conduct experiments under varying numbers of retrieved documents K; and different re-ranking
budgets K. Specifically, when analyzing the impact of K, we fix the re-ranking budget to K = 10;
when analyzing the impact of K, we set the number of retrieved documents to K; = 100. We use
the ECOS-BB (Domabhidi et al.,|2013)) solver the solve the original binary optimization problem in
Equation [§]

Figure[7]reports the time cost of our method with and without the greedy algorithm under these two
settings. For a fair comparison, we exclude the time for LLM reasoning and attention extraction,
and only measure the efficiency of the optimization module. The results show that the greedy algo-
rithm significantly accelerates training, especially when the number of retrieved documents K is
large. Moreover, regardless of the re-ranking budget K, our greedy-based optimizer requires nearly
zero training time, while the version without greedy optimization takes 1-2 seconds per iteration.
These results demonstrate that the proposed greedy algorithm not only improves scalability to large
retrieval sizes but also ensures consistently efficient training across different re-ranking budgets.

C.5 CASE STUDY

To further illustrate the benefits of our proposed method, we present example cases from the Hot-
potQA dataset. Figure [§] shows the Top-3 retrieved documents ranked by our method, the best-
performing coverage-aware baseline (xQuAD), and the LLM-based re-ranker (RankZephyr). The
example query is a multi-hop question that requires multiple evidence documents as input to the
generator in order to be answered correctly. For clarity, we highlight different aspects of the query
and documents in different colors. And the noisy information is highlighted using the red color.

We observe that our method successfully ranks documents by considering both coverage and noise
control. Specifically, the Top-3 results each capture a distinct aspect of the query, ensuring com-
prehensive evidence for reasoning while avoiding irrelevant content. In contrast, xQuAD achieves
diversity by selecting documents about different subtopics, but these subtopics are weakly related to
the actual CoT steps and often introduce noise that distracts the generator. RankZephyr, on the other
hand, places the most relevant documents at the top, but due to the lack of coverage awareness, it
produces a redundant list (e.g., two documents both describing NBA players), with some documents
even being noisy (the document about T.R. Dunn), which ultimately fails to support the multi-hop
reasoning process and distracting the LLM generator.
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Example Query1: What distinction is held by the former NBA player who was a member of the Charlotte Hornets during their
1992-93 season and was head coach for the WNBA team Charlotte Sting?

Document Reranked by PureCover: 1. Muggsy Bogues Tyrone Curtis "Muggsy" Bogues (born January 9, 1965) is an
American retired basketball player. The shortest player ever to play in the National Basketball Association. 2. During the season,
the Sting traded veteran Dawn Staley to the Houston Comets and named Charlotte basketball icon Muggsy Bogues as their
new head coach late in the season. 3. In the 1992 NBA draft, the Hornets selected center Alonzo Mourning out of Georgetown
with the second overall pick. With the addition of Mourning, along with second-year star Larry Johnson and Muggsy Bogues
Response Given by PureCover: shortest player ever to play in the National Basketball Association Q

Document Reranked by xQuAD: 1.

EECSANEEISSISPaKS! 2. Charlotte Sting. Michael Jordan renamed the Bobcats. Uniforms: The Charlotte Sting was one of
the eight original WNBA franchises that began play in 1997. 3. “1992-93 Charlotte Hornets season” season, Kendall Gill was
traded to the Seattle SuperSonics. Signed LaMark Baker as a free agent. Signed Lorenzo Williams as a free agent.

Response Given by xQuAD: Anne Donovan €

Document Reranked by RankZephyr: 1. Muggsy Bogues. Muggsy Bogues Tyrone Curtis "Muggsy" Bogues (born January 9,
1965) is an American retired basketball player. The shortest player ever to play in the National Basketball Association. 2. "Rl

. 3. "Charlotte Sting” to build
for the future -trading with the Sacramento Monarchs for Tangela Smith and a second-round draft pick in the 2006 draft in a
deal that saw Nicole Powell traded to Sacramento.

Response Given by RankZephyr: Muggsy Bogues (%)

Figure 8: Case study on HotpotQA. The query contains multiple information needs, highlighted with
different background colors. The red color denotes the noise information. We compare our method
against the best-performed LLM-based and coverage-aware baselines (xQuAD, RankZephyr).

D COMPUTATION OF TOKEN-LEVEL ATTENTION SCORE

In the Transformer architecture (Vaswani et al., 2017), the attention mechanism operates on three
matrices: queries Q € Rm*dk keys, K € R™*%  and values V € R”*dv The attention function
is defined as:

Attention(Q, K, V) ft (QKT> \'% (12)
ention(Q, K, V) = softmax .
Vdy

Here, each element (QK T)ij = q; - k; measures the similarity between the i-th query and the j-th
key. Dividing by +/dj controls the magnitude of the dot products, preventing overly large values
that could destabilize training. The softmax function is applied row-wise, normalizing the scores
into a probability distribution whose weights sum to one. These attention weights are then used to
compute a weighted sum of the value vectors V', producing the output representation.

At the token level, the attention weight
qi kj)
A= softmax(
J /dk

represents how much token ¢ attends to token j. These weights are computed dynamically for each
input, enabling the model to capture semantic dependencies between tokens.

E PROOFS OF THEOREM [I] AND PROPOSITION]]

Proof of Theorem[I] According to previous studies of multi-objective optimization (Deb et all
2016), the problem of balancing competing objectives can be expressed in the weighted sum form:

max Cover(Dyerank) — A - Noise(Drerank ),
Drcmnk Q Drclricvc ) ‘ Drcmuk | S K

where ) is a trade-off coefficient between the two objectives.

Step 1: Coverage function. From Equation[d] the coverage of the selected set is:

€]
Cover(Drerank) = Z e; - P(e; covered by Drerank)-
i=1
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For each information requirement e;, the probability it is not covered by any selected document is:
II a-Wa).
deDrerank
Thus, the probability it is covered is:

1— J 0-Wa).

A€ Drerank

Introducing the binary selection variable x4 € {0, 1}, where x4 = 1 if document d is selected, the
above product becomes:

K1
H (1 — Wdﬂ;Xd) .
d=1
Therefore, the coverage term is:
I€] K1
Zei 1-— H (1 — Wdﬂ;xd)
i=1 d=1

Step 2: Noise function. From Equation[5] noise is defined as:

Noise(Drerank) = » , DisUtil(d]g).
A€ Drerank

Here, disutility for a document is defined as:

DisUtil(d|¢) = 1 — max Wy ;e;.

Using x4 to indicate selection, the noise term becomes:

K1
> (1 - max(W; ©e))x;,

j=1

where © denotes element-wise multiplication.

Step 3: Binary optimization formulation. Combining the coverage and noise terms, and intro-
ducing the budget constraint ) ;Xi < K, we obtain:

|€] K K,
max Zei 1- H (1—Wg,xq) —)\Z(l—max(wj@e))xj,
i=1 d=1 Jj=1

s.t. in <K, x;€{0,1}, Vi.

This exactly matches the statement in Equation [§] proving that the denoised coverage-aware docu-
ment selection problem can indeed be formulated as a 0—1 integer (binary) multi-objective optimiza-
tion problem. O

Proof of Propositionl} We prove the claim by showing each per-evidence term is monotone and sub-
modular, and then use closure properties of submodular functions. Let’s define the multi-objective
objective function in Problem 8|as ¢(S) = G(S) — X - R(9).

(1) Per-evidence term. Fix an evidence ¢;. Define

hi(S) = 1- [ -Was), ScCD.
des

21



Under review as a conference paper at ICLR 2026

Forany S C T C Dand any d € D \ T the marginal gain of adding d is
A4(S) = hi(SU{d})—hi(S) = [JA-We) - [[(1-We) A=Wai) = Wai [J(1-W4s).

tes tes tes
Similarly,
Ag(T)=Wa; JJQ - W)
teT
Since 0 <1 — W, ; <1 forall ¢, we have

[Ja-We) =[] - W),

tesS teT

and therefore Ay4(S) > Ag4(T). This is exactly the diminishing returns property, so h;(:) is sub-
modular. Moreover A4(S) = Wy i [[,cs(1 — Wy ;) > 0,50 h;(-) is monotone non-decreasing.

(2) Sum preserves submodularity and monotonicity for Coverage Objective. The coverage ob-
jective G(S) = ), e;h;(S) is a nonnegative linear combination of the functions ;. Nonnegative
linear combinations of submodular (resp. monotone) functions remain submodular (resp. mono-
tone) (Iyer, |2015). Hence G(-) is monotone and submodular.

(3) Per-document term. Fix a document d. Define its disutility score as

DisUtil(d) = 1— max P(d | e)P(e | q).
ec

Now consider the noise function over a set of documents

SCD:R(S) = ) DisUtil(d).
des

Notice that each per-document term ¢ - DisUtil(d) depends only on d and the evidence set &, but
not on the other documents in S. Hence, each term contributes additively and independently.

(4) Submodularity and monotonicity of Noise Objective. For any S C 7' C D and any document
de D\ T, the marginal gain of adding d is

A4(S) = R(SU{d}) — R(S) = DisUtil(d).

Similarly,

A4(T) = DisUtil(d).
Since the marginal contribution of d is identical regardless of the context set, the diminishing returns
property holds trivially. This means R(-) is modular (a special case of submodular) (Iyer, 2015).

Moreover, as DisUtil(d) > 0, we have Ay4(S) > 0, implying monotonicity. Therefore, the noise
objective

R = —

5)= % (1~ maxPa| oP(e o))
des

is a monotone modular function, and hence also submodular.

(3) NP-hardness. Maximizing our proposed objective g(-) under a cardinality constraint is generally
NP-hard. A cardinality constraint means that the solution set S is restricted to contain at most K
documents (i.e., |S| < K), which reflects the practical setting of re-ranking where we can only
select a limited number of documents for the generator.

This complexity includes the well-known Max-k-Cover problem as a special case. Specifically, if
each document d either fully covers a particular information requirement e;(pg4; = 1) or does not
cover it at all (pg; = 0), then the coverage function /;(.S) becomes an indicator function that equals
1 if e; is covered by at least one document in S, and O otherwise. Under this setting, maximizing
g(S) is equivalent to selecting K documents to cover as many weighted information requirements
as possible, which is exactly the Max-k-Cover problem, which is known to be NP-hard (Iyer, 2015).

Therefore, even in the more general case where p, ; takes continuous values (representing partial
coverage), maximizing ¢(-) remains NP-hard. This justifies the need for an efficient approximation
algorithm, such as our proposed greedy approach. O
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You are given a query and a set of documents.

Your goal is to reason through the documents step by step to answer the query.
Instructions:” 1. Only include reasoning steps that clearly contribute to solving the query.
2. Make sure each step is logically connected and leads to the final answer.

3. Use specific evidence from the documents in each step (e.g., facts, names, dates, relationships).
4. In each step, cite document snippets or facts that directly support your reasoning.

5. Avoid vague or redundant steps. Do not repeat the query.

6. Limit reasoning to 5 steps or fewer. Be concise and precise.

Format: Each step must start with [Step N]: followed by your reasoning.

Conclude with [Answer]: followed by the final answer (and nothing else).

Example format:

[Step 1]: ...

[Step 2]: ...

[Answer]: ...

Table 4: Input prompt for goal-oriented reasoning of PureCover

F PROMPT DETAILS

G LLM USAGE DISCLOSURE

In accordance with ICLR 2026 policy, we disclose our use of large language models (LLMs) in
preparing this manuscript. We employed GPT-5 (OpenAl) solely to aid in polishing the writing,
specifically for improving clarity, grammar, and sentence structure across sections. All technical
content, algorithmic contributions, experimental results, and scientific conclusions remain entirely
the authors’ own work, without any LLM involvement.
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