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Abstract

Time reversibility of stochastic processes is a primary cornerstone of the score-
based generative models through stochastic differential equations (SDEs). While
a broader class of Markov processes is reversible, previous continuous-time ap-
proaches restrict the range of noise processes to Brownian motion (BM) since the
closed form of the time reversal formula is only known for diffusion processes.
In this paper, we propose a class of score-based probabilistic generative models,
Lévy-Itō Model (LIM), which utilizes d-dimensional α-stable distribution with
independent components for noise injection. To this end, we derive an exact time re-
versal formula for the SDEs with Lévy processes that can allow discontinuous pure
jump motion. Consequently, we advance the score-based generative models with
a broad range of non-Gaussian Markov processes. Empirical results on MNIST,
CIFAR-10, CelebA, and CelebA-HQ show that our approach is valid.

1 Introduction

The recent successes of score-based generative models [26, 28, 11] and their applications [20, 14,
6] draw huge attention from machine learning communities. Score-based generative models via
stochastic differential equations (SDEs) [28] rely on the time reversal theory of diffusion processes,
Anderson theorem [1], which shows that the time reversal of the diffusion process belongs to the
class of diffusion processes again. One can interpret this result as solving a martingale problem which
induces a weak solution to the reverse SDEs [9, 4]. Due to the advances in the SDE theory with
jump Markov processes [13, 24, 5], one can desire a positive expectation for applying a class of
non-Gaussian noise distribution to score-based generative models. However, since the closed form of
the time reversal formula is only known for diffusion processes, whether a score-based method is
feasible for a non-Gaussian Markov process other than a Brownian motion has been an open question
in this field. To tackle the challenging problem, we propose an exact formula for the time reversal of
SDEs with Lévy processes and a novel score-based generative method, Lévy-Itō Model (LIM), which
utilizes d-dimensional α-stable Lévy motion with independent components as noise injection. We
apply the proposed method to MNIST, CIFAR-10, CelebA, CelebA-HQ. Our approach and empirical
results establish the bridge between probability theory and generative models.

2 Score-Based Generative Models with Lévy Processes

2.1 Background

1-Dimensional Symmetric α-stable distribution Let α ∈ (0, 2] be a characteristic exponent
which determines the decay rate at which the tails of the distribution, and γ be a scale parameter.
1-dimensional symmetric α-stable distributions SαS(γ) have the heavy-tail properties P (X > x) ∼
x−α and densities with unknown closed-form expressions, except for α = 1 or α = 2. 2.

∗Corresponding Author
2When α = 2, it holds SαS(γ) = N (0,

√
2γ).
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Figure 1: (a) PDF of Gaussian and α-stable distributions. The α-stable distributions have heavier
tails as alpha decreases. (b) Trajectories of Brownian motion and the α-stable Lévy processes with
different α. Lévy processes can have infinitely many discontinuous jumps, unlike Brownian motion.

Lévy process and α-stable Lévy motion Rd-valued stochastic process Lt = (Lt)t≥0 with L0 = 0
is called Lévy process if (i) Lt has independent increments, (ii) Lt has stationary increments, (iii) Lt

is stochastically continuous. If each components of the difference, [(Lt − Ls)]i and [Lt−s]i have the
same distribution following SαS((t−s)1/α) for s < t, then the Lévy process is called d-dimensional
α-stable Lévy motion Lα

t . Due to the stochastic continuity (iii), Lévy processes have a countable
number of discontinuous points (i.e. jumps) [33]. Notably, Lα

t is a prototypical pure jump process.
The heavy-tail properties of α-stable distribution imply that the frequency of large jumps of Lα

t
increases as α gets smaller (see Figure 1).

2.2 Lévy-Itō Model: Time-Reversal of SDEs driven by Lévy Processes

Due to Lévy-Ito decomposition [2, 16], we consider a family of SDEs in Rd driven by a Lévy process
consisting of continuous Brownian motion part Bt and pure jump part Lα

t as follows:

d
→
Xt = b(t,

→
Xt)dt+ σB(t)dBt + σL(t)dL

α
t , t ∈ [0, 1]. (1)

The following exact time-reversal formula is our main result.
Theorem 2.1 (Time-reversal formula of SDEs with Lévy Processes). The reverse SDE of (1) is

d
←
Xt =

(
b(t,

←
Xt)− σ2

B(t)∂x log pt(
←
Xt)− α · σα

L(t)
∂α−2
|x| ∇xpt(

→
Xt)

pt(
→
Xt)

)
dt+ σB(t)dB̄t + σL(t)dL̄

α
t .

(2)

where ∂α−2
|x| (f1(x), . . . , fd(x)) = (∂α−2

|x1| f1(x), . . . , ∂
α−2
|xd| fd(x)) is the partial fractional Riesz po-

tential of order α − 2 with 1 < α < 2 [19] [24] such that F [∂α
|xi|f ](k) = |ki|αF [f ](k) for each

i ∈ {1, . . . , d}, x = (x1, . . . , xd), k = (k1, . . . , kd), and F is the Fourier transformation. B̄t and L̄t

is a backward Brownian motion and backward d-dimensional α-stable Lévy motion, respectively.

See Theorem A.10 for more details. We also remark that (2) recovers the result of [1] if α → 2.
To shed light on the probabilistic approach with the jump Markov process, we propose Lévy-Itō
Model (LIM), a novel score-based generative model through SDE driven by d-dimensional α-stable
Lévy motion only (σB(t) ≡ 0 in (2)). Considering a beta-scheduling version of LIM, we obtain

d
→
Xt = −β(t)

α

→
Xt + (β(t))1/αdLα

t . Then the solution becomes
→
Xt

d
= a(t)

→
X0 + γ(t)ϵ, where d

=

means equality in distribution, [ϵ]i ∼ SαS(1) for each i ∈ {1, . . . , d}, a(t) is exp(−
∫ t

0
β(s)
α ds) and

the scale parameter γ(t) is (1− a(t))1/α (see Lemma C.3). Due to the Euler-Maruyama method, we
can induce a stochastic sampling of LIM (see Corollary C.4.1).

The Probability ODE We can also derive the probability ODE of (1):

d
→
Xt

d
=

b(t,→Xt)−
1

2
σ2
B(t)∇x log pt(

→
Xt)− σα

L(t)
∂α−2
|x| ∇xpt(

→
Xt)

pt(
→
Xt)

 dt. (3)
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Figure 2: Comparison between (a) Lévy score and (b) ReELS. (c) and (d) the synthetic data sampled
by the SDE with (2) (α = 1.5) trained with Lévy score and ReELS, respectively. There are divergent
points as indicated in the red circle since the value of Lévy score decreases for large noise.

The proof of (3) can be found in Theorem B.4. Deterministic ODE sampling of LIM can be deduced
from (3) by using the Euler-Maruyama method (see Theorem C.5).

2.3 Score function for Lévy-Itō Model

Let qα(x) be the product qα(x1) · · · qα(xn) of density functions qα(xi) of SαS(1) for x =

(x1, . . . , xd). Recall the solution of beta-scheduling version of (2) is
→
Xt

d
= a(t)

→
X0 + γ(t)ϵ with the

transition density function pt(xt|x0). The score function of pt(xt|x0) satisfies ∇xt
log pt(xt|x0) =

∇ϵ log qα(ϵ)/γ(t) (See Lemma D.1). We denote Sα(x) = ∇x log qα(x). Figure 2.(a) shows that
the score function of Brownian motion is linearly decreasing, while the Lévy score functions are
not monotonic. Hence, if we train the score model to target the Lévy score, it is difficult to denoise
the divergent large noise generated at the heavy tail (Figure 2.(b)). These phenomena worsen as α
decreases.

Rectified Enhanced Lévy Score (ReELS) To denoise the large noise at the heavy tail without
losing the nature of the Lévy score function, we propose Rectified Enhanced Lévy Score (ReELS) as
follows:

ReELSα(x) =

{
Sα(x) : x ∈ Iα

−sgn(x)ĉ|x|β̂ : otherwise
, β̂(α) ∈ (0, 1). (4)

Here we set the range Iα as the interval between two local optimum points of the given Lévy score.
We find parameters ĉ, β̂ in ReELS by fitting −sgn(x)ĉ|x|β̂ to the Lévy score inside Iα (see Figure
2.(b)). This procedure is equivalent to the fitting score function of a generalized Gaussian distribution
to the Lévy score [17]. We remark that utilizing the BM score does not outperform ReELS for
Lévy-driven SDEs because generalized Gaussian distributions have a score function more similar to
the Lévy score function (see Table D.1, D.2, and D.3). The experiments on synthetic data (Mixture of
Gaussian, Two-Moon, Swiss-Roll) demonstrate that LIM trained by ReELS converges to the true
data distribution and performs better than using BM score for Lévy-driven SDEs.

2.4 Loss function

We use the U-net architecture [21] as in DDPM [11] and apply L2-loss to train the model Sθ(xt, t)
using ReELSα(ϵ) as a label through the Denoising Score Matching (DSM) [27] . For [ϵ]i ∼ SαS(1)
for each i ∈ {1, . . . , d} and x0 ∼ pdata, we let xt = a(t)x0 + γ(t)ϵ where β(t) = β0 + (β1 − β0)t,
a(t) = exp(− (β1−β0)

2α t2− β0

α t), and γ(t) = (1−a(t)α)1/α. Let U(0, 1) denote a uniform distribution.
Then the loss with the relative weight γ(t) is defined as

L(θ; γ(t)) := Et∼U(0,1)Ex0∼pdataEϵ∼SαS∥γ(t)Sθ(xt, t)− ReELSα(ϵ)∥22 (5)

3 Experiment

3



Figure 3: Generated MNIST images (a) by DM (Brownian motion, [28]) and LIM (α-stable Lévy
motion for α = 1.8, 1.5, 1.2), and corresponding plots (b) of FID score(↓) and bits per dimension (↓)
for different NFEs with various α. LIM shows a faster generation speed than DM.

Figure 4: (a) SDE sampling results and
(b) deterministic ODE sampling results
with different NFEs. ODE shows a faster
sampling speed than that of SDE.

We empirically validate the proposed score-based gener-
ative model on image data including MNIST (Figure E.1),
CIFAR10 (Figure E.2), CelebA (Figure E.4, E.5), and
CelebA-HQ (Figure E.6). We adjust the model size of each
dataset for training efficiency. For α ∈ {1.8, 1.5, 1.2}, we
train our model on MNIST for 1000 epochs with β0 = 0.1,
β1 = 5.0 and use the noise clamping to control the large-
scale noise to improve the sample quality. See Section E.1
to find the other configurations in different datasets. Figure
3.(a) shows that LIM with ReELS converges faster than
DM (Diffusion Models [28], α = 2.0). See Figure 3.(b) to
compare FID scores [10] and bits per dimension (bits/dim)
on the MNIST dataset for each number of function eval-
uations (NFE) with different α. To evaluate bits/dim, we
use a uniformly dequantized test dataset with 5 iterations
and compute log-likelihood by using an ODE solver (See
Section E.2.2). LIM achieves competitive sample quality
compared to DM at α = 1.5, 1.8, and tends to converge
quickly as lower α. Figure 4 shows ReELS can be adaptive to the probability ODE, which enables fast
sampling than stochastic sampling. Although the large jump of the reverse process can be controlled
in the reverse SDE sampling, it is challenging to control the jump size in the deterministic ODE
sampling. Hence, the image quality may degrade due to the effect of uncontrolled large noise, which
leads to the higher bits per dimension in LIM 3.17 (α = 1.8) > 1.67 (α = 2.0).

4 Conclusion

In this paper, we broaden the range of noise distribution used in score-based generative models by
inducing an approximate time reversal formula for SDEs with Lévy processes and by proposing a
novel score-based generative model, Lévy-Itō Model (LIM) with Rectified Enhanced Lévy Score
(ReELS). Empirical results validate that the proposed approach works well with different ranges of
d-dimensional α-stable Lévy motions in synthetic datasets and various image data. Consequently,
our study presents a feasible solution and demonstrates the potential for applying a broader class of
non-Gaussian Markov processes to score-based generative models.
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Appendix

First, we will explain the core idea of the proof and then describe the necessary theorems. Detailed
definitions are introduced later.

Ω is a probability space and b(t, x), σB(t, x), σL(t, x) is a scalar function from Ω to R a under some

smooth condition. If a Rd-valued stochastic process
→
Xt is a solution of a Stochastic Differential

Equations(SDE) driven by Lévy process, d
→
Xt = b(t,

→
Xt)Idt + σL(t,

→
Xt)IdBt + σL(t,

→
Xt)IdL

α
L,

the generator Lt satisfies

Ltu(x) = b(t, x)∇u(x)+
σ2
B(t, x)

2
∆u(x)+

∫
[u(x+σL(t, x)y)−u(x)−∇u(x) ·σL(t, x)y]ν(dy)

(6)
where ν is a symmetric Lévy measure of Lα

t . If for all (t, x), σL(t, x) > 0, then

Ltu(x) = b(t, x)∇u(x) +
σ2
B(t, x)

2
∆u(x) (7)

+

∫
[u(x+ y)− u(x)−∇u(x) · y] 1

σd
L(t, s)

ν
( dy

σL(t, s)

)
(8)

If σL(t, s) = 0, we know the exact time reversal formula [4]. So, our interest is when σB(t, s) = 0
and σL(t, s) = σL(t) > 0 such that

Ltu(x) = b(t, x)∇u(x) +

∫
[u(x+ y − u(x)−∇u(x) · y] 1

σd
L(t)

ν
( dy

σL(t)

)
(9)

We know the form of generator Lt of the given SDE solution
→
Xt. Therefore we can get the time-

reversal formula of the operator Lt [5] such that

←
Ltu(x) =

←
b (t, x)·∇u(x)+

∫
Rn

∫
[u(y+x)−u(x)−∇u(x)·y] 1

σd
L(t)

pt(x+ y)

pt(x)
ν
( dy

σL(t, s)

)
(10)

where pt(dy) is a marginal distribution of (
→
Xt)t∈[0,1] and the backward drift

←
b (t, x) is given by

b(t, x) +
←
b (t, x)(t, x) =

∫
Rn

y
(
1 +

pt(x+ y)

pt(x)

) 1

σd
L(t)

ν
( dy

σL(t, s)

)
pt − a.e. (11)

According to this [29], it can be seen that the reversal of Levy-driven SDE also appears as Levy-
driven SDE. Therefore, it can be derived that 10is a generator of a solution of some SDE driven by

Lévy process. But exactly what SDE does this generator follow? And
←
b (t, x) appears as an integral

equation, can the exact form be calculated? We will answer this question in Appendix A. The proof is
divided into two parts. The first is to find the SDE representation of an operator Lt of the form 10

and the second is to derive the exact form of
←
b (t, x).

A Time-reversal of SDE

In this chapter, given the generator of the general Markov process with jump kernel, we show that the
reverse form can be deduced into an exact formula under certain conditions. Finally, we introduce
the stochastic sampling and the deterministic ODE sampling of LIM. Let us outline some necessary
lemmas before we move on to the proof. A homogeneous Markov process that corresponds to an

inhomogeneous Markov process
→
Xt always exists according to Lemma A.1. The existence of an

SDE representation of a homogeneous Markov process with a particular generator is given in Lemma
A.5. Lemma A.6 introduces the general reverse-time formula. Through the transformation of time-
inhomogeneous Markov processes and an SDE representation of given a specific generator, we find
the SDE representation that corresponds to the generator of the time-reverse process. From these
lemmas, we deduce a reverse SDE representation, on which we also get a stochastic sampling and a
deterministic ODE sampling based on probability ODE if a Markov process is provided as a solution
to (1).
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A.1 Time-Reversal of General Markov process with jump kernel

Let
→
Xt be an Rd-valued continuous time inhomogeneous Markov process on an probability space

(Ω,A,P). The evolution system is defined as

T (s, t)u(x) = E(u(
→
Xt)|

→
Xs = x) for s ≤ t, s, t ∈ [0, 1]. (12)

and this operator is well-defined on the set of Borel measurable function u on Rd, denoted by B(Rd).
The operator is linear and positive preserving with T (s, t)1 = 1 and T (s, t) = T (s, r)T (r, t) for
s ≤ r ≤ t. This operator is also strongly continuous such that for each v, w ∈ R, v ≤ w and s ≤ t
lim(s,t)→(v,w) ||U(s, t)u−U(v, w)u||∞ = 0 where ||·||∞ is the supreme norm. For all u ∈ C∞(Rd),
the set of a continuous function with vanishing at ∞, the generators of the evolution system is given
by

Lsu = lim
h→0

T (s, s+ h)u− u

h
for each s ∈ R. (13)

A family of linear operators T (s, t) on C∞ is a Feller evolution system if it is a strongly continuous,
positive, contraction semigroup on C∞.

Definition A.1 (Space-time process). Let B be a Borel algebra in Rd and an a state space (R+×Rd, B̃)
with x̃ ∈ R+ × Rd and σ-algebra B̃ = {B ∈ R+ × Rd|Bs ∈ B} , and a new sample space (Ω̃, Ã)

with w̃ = (s, w)∈ R+ × Ω = Ω̃ and Ã = {A ⊂ R+ × Ω|As ∈ A,∀s ∈ R+}. A space-time process
(X̃t) is defined by

X̃t(w̃) = (s+ t,
→
Xs+t(w)). (14)

with the probability measure for A ∈ Ã and x̃ ∈ R+ × Rd such that P̃x̃(A) = P̃ (A|X̃0 = (s, x))
.
=

P (As|
→
Xs = x) and the transition probabilities are given by P̃ (X̃t ∈ B|X̃0 = x̃) = P̃ (X̃t ∈

B|X̃0 = (s, x)) = P (
→
Xs+t ∈ Bs+t|

→
Xs = x) where B ∈ B̃, x̃ ∈ R+ × Rd. The transition function

is defined by P̃ (t, x̃, B) = P (s, x; s+ t, Bs+t).

Lemma A.1. Given a inhomogeneous Markov process (Xt), the space-time process (X̃t) on
(Ω̃, Ã, P̃ ) is a homogeneous Markov process.

Proof. See Transformation 3.1 in [3].

Lemma A.2. Let (
→
Xt) be the stochastic process with Feller evolution system U(s, t) and the

generator of (
→
Xt) be Ls. Let X̃t be its space-time process with associated semigroup T (t) by

Ttu(x̃) = Ẽ(u(X̃t)|X̃0 = x̃) for x̃ ∈ R+ ×Rd and u ∈ Bb(R+ ×Rd). Then the extended generator
L̃ of Tt is given for all u ∈ C∞

(
[0, 1]× Rd

)
satisfying some conditions,

L̃u(x̃) = ∂

∂s
u(s, x) + Lsus(x) where x̃ = (s, x) and us(x) = u(s, x). (15)

Proof. See Theorem 3.2 in [3].

A Markov process typically has a generator that takes the form

Lu(x) = 1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
u(x) + b(x) · ∇u(x) (16)

+

∫
Rd

(u(x+ y)− u(x)− 1B1
(y)y · ∇u(x)) η(x, dy). (17)

where b(x) is a locally bounded Rd-valued function and (aij) is a locally bounded and d × m
matrix-valued function, B1 is the ball with a radius of one and a center of zero and η satisfies∫

1 ∧
∣∣y2∣∣ η(x, dy) < ∞. (18)
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Suppose there exist λ : Rd×S → [0, 1], γ̂ : Rd×S → Rd, and a σ-finite measure v on a measurable
space (S,S) such that

η(x,Γ) =

∫
S

λ(x, y)1Γ(γ̂(x, y))ν(dy).

We decompose S into S1 ∪ S2 such that 1S1 = 1B1(γ̂((s, x), y)) and 1S2 = 1Bc
1
(γ̂((s, x), y)). We

can rewrite the form of the generator is

Lu(x) = 1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
u(x)

+ b(x) · ∇u(x) +

∫
S

λ(x, y)u(x, γ̂(x, y))− u(x)− 1S1
(y)γ̂(x, y) · ∇u(x))ν(dy).

Lemma A.3. Let the generator L be the form of (16). Let ξ be a Poisson random measure on
[0, 1] × S × [0,∞) with mean measure m × ν ×m, and let ξ̃(A) = ξ(A) −m × ν ×m(A). Let
(S0,S0) be a measurable space, µ a σB-finite measure on (S0,S0) where σB : Rd × S0 → Rd

satisfies
∫
S0

|σB(x, u)|2µ(du) < ∞ and

a(x) =

∫
S0

σB(x, u)σ
T
B(x, u)µ(du). (19)

Assume that for each compact K ⊂ Rd,

sup
x∈K

(
|b(x)|+

∫
S0

|σB(x, u)|2µ(du) +
∫
S1

λ(x, u)|γ̂(x, u)|2ν(du) (20)

+

∫
S2

λ(x, u)|γ̂(x, u)| ∧ 1ν(du)
)
< ∞. (21)

Then
→
X satisfies a stochastic differential equation of the form

→
Xt =

→
X0+

∫ t

0

∫
S0

σB(
→
Xs, u)W (du× ds) +

∫ t

0

b(
→
Xs)ds (22)

+

∫ s=t

s=0

∫
u∈S1

∫ v=λ(
→
Xs,u)

v=0

γ̂(
→
Xs, u)ξ̃(dv × du× ds) (23)

+

∫ s=t

s=0

∫
u∈S2

∫ v=λ(
→
Xs,u)

v=0

γ̂(
→
Xs, u)ξ(dv × du× ds), (24)

Proof. See Theorem 2.3 in [15].

Lemma A.4. Let λ((s, x), y) = ps(x+y)
ps(x)

σα
L(s) for σL(s) ≥ 0 and γ̂((s, x), y) be (0, y) and ν(dy) be

a Lévy measure such that it is a Borel measure on Rd and ν({0}) = 0 and
∫
Rd(|x|2 ∧ 1)ν(dx) < ∞.

If (
→
Xt) has the corresponding generator Lt

Ltu(x) = b(x) · ∇u(x) +

∫
Rd

[u(x+ y)− u(x)− y · ∇u(x)1S1
(y)]

pt(x+ y)

pt(x)
σα
L(t)ν(dy). (25)

where u ∈ Bb(Rd). Then the corresponding generator L̃ of the space-time process X̃t is

L̃u(s, x) = (1, b(x)) · ∇u(s, x) (26)

+

∫
Rd

[u((s, x) + γ̂((s, x), y))− u(s, x)− γ((s, x), y) · ∇u(s, x)1S1(y)]λ((s, x), y)ν(dy).

(27)

where u ∈ C∞([0, 1]× Rd).
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Proof.

L̃u(s, x) = ∂

∂s
u(s, x) + Lsus(x) for us(x) = u(s, x)

=
∂

∂s
u(s, x) + b(x) · ∇xus(x) +

∫
[us(x+ y)− us(x)

− y · ∇xus(x)1S1
(y)]

pt(x+ y)

pt(x)
σα
L(t)ν(dy)

= (1, b(x)) · ∇u(s, x) +

∫
[u(s, x+ y)− u(s, x)− (0, y) · ∇u(x)1S1(y)]

pt(x+ y)

pt(x)
σα
L(t)ν(dy)

= (1, b(x)) · ∇u(s, x) +

∫
[u((s, x) + (0, y))− u(s, x)

− (0, y) · ∇u(x)1S1(y)]
pt(x+ y)

pt(x)
σα
L(t)ν(dy).

Theorem A.5. A generator Lt has a jump kernel driven by the 1-dimensional symmetric α-Levy
process represented by (25). ξ be a Poisson random measure on R+×Rd× [0,∞) with mean measure
m× ν ×m such that E[ξ(dv× dy× ds)] = dm× ν(dy)× dm and ξ̃(A) = ξ(A)−m× ν ×m(A).
Then the SDE representation of the generator L̃ satisfies

→
Xt =

→
X0 +

∫ t

0

b(s,
→
Xs)ds+

∫ s=t

s=0

∫
|y|<1

∫ v=
ps(y+

→
Xt)

ps(
→
Xs)

σα
L(s)

v=0

y · ξ̃(dv × dy × ds) (28)

+

∫ s=t

s=0

∫
|y|>1

∫ v=
ps(y+

→
Xs)

ps(
→
Xs)

σα
L(s)

v=0

y · ξ(dv × dy × ds) (29)

=
→
X0 +

∫ t

0

b(s,
→
Xs)ds+

∫ t

0

σL(s)dL
α
s . (30)

Proof. λ((s, x), y) is ps(x+y)
ps(x)

σα
L(s) for σL(s) ≥ 0 and γ̂((s, x), y) is (0, y) with S1 = {|y| < 1}

and S2 = {|y| > 1}. We know λ satisfies∫
R
λ((s, x), y)1S1

(y)|r((s, x), y))|2 + 1S2
(y)ν(dy) (31)

=

∫
|y|<1

[
ps(x+ y)

ps(x)
σα
L(s)|y|2ν(dy)

]
dy +

∫
|y|>1

ps(x+ y)

ps(x)
σα
L(s)ν(dy) < ∞. (32)

because
∫
S1

|y|2ν(dy) < ∞ and
∫
S2

ν(dy) < ∞ with supx,y,s
ps(x+y)
ps(y)

σα
L(s) < ∞. We set

a(s, x) = 0, so that σB((s, x), y) is 0. Therefore, for any compact set K ⊂ R2,

sup
(s,x)∈K

(
|b(x)|+

∫
S1

λ((s, x), y)|r((s, x), y)|2ν(du)

+

∫
S2

∫
λ((s, x), y)|r((s, x), y)| ∧ ν(du)

)
< ∞.

since
∫
S1

λ((s, x), y)|γ̂((s, x), y)|2ν(du) +
∫
S2

∫
λ((s, x), y)|γ̂((s, x), y)| ∧ ν(du)) is well-defined

and continuous with respect to (s, x) and b(s, x) is locally bounded R-valuded function. We can
apply Lemma A.2 to the transformed homogeneous generator L̃ of the inhomogeneous genera-

tor Lt from Lemma A.4. Now, we define Yt =
∫ s=t

s=0

∫
|y|<1

∫ s=
ps(y+

→
Xs)

ps(
→
Xs)

σα
L(s)

s=0 y · ξ̃(dv × dy ×

11



ds) +
∫ s=t

s=0

∫
|y|>1

∫ v=
ps(y+

→
Xs)

ps(
→
Xs)

σα
L(s)

v=0 y · ξ(dv × dy × ds) and Zt =
∫ t

0
σL(s)dL

α
s . If we show

E[exp(i(u, Yt)) = E[exp(i(u, Zt)), then we can conclude dXt = b(t,X(t))dt+ σα
L(t)dL

α
t .

E[exp(i(u, Yt))] = E
[
exp(i(u,

∫ s=t

s=0

∫
|y|<1

∫ v=
ps(y+

→
Xs)

ps(
→
Xs)

σα
L(s)

v=0

y · ξ̃(dv × dy × ds)

+

∫ s=t

s=0

∫
|y|>1

∫ v=
pt(y+

→
Xt)

pt(
→
Xt)

σα
L(t)

v=0

y · ξ(dv × dy × ds))
]
.

Since jumps y occur countably many,

ps(y +
→
Xs)

ps(
→
Xs)

σα
L(s) =

ps(∆Yt +
→
Xs)

ps(
→
Xs)

σα
L(s) = σα

L(s). (a.e) (33)

for each t ∈ [0, 1]. Thus,

E[exp(i(u, Yt))] = E
[
exp(i(u,

∫ s=t

s=0

∫
|y|<1

∫ v=σα
L(s)

v=0

y · ξ̃(dv × dy × ds)

+

∫ s=t

s=0

∫
|y|>1

∫ v=σα
L(s)

v=0

y · ξ(dv × dy × ds))
]

= exp
(∫ t

0

∫
R

∫ σα
L(s)

0

(ei⟨u,y⟩ − 1− i⟨u, v⟩ · 1|y|<1(y))dm(v)× dν(y)× dm(s)
)

= exp
(∫ t

0

∫
R
σα
L(s)(e

i⟨u,y⟩ − 1− i⟨u, v⟩ · 1|y|<1(y))dm(s)× dν(y)
)

= exp(−|u|α ·
∫ t

0

σα
L(s)ds)

= E[exp(i(u, Zt))].

Since the characteristic function uniquely determines the probability distribution, we conclude
Yt = Zt for almost everywhere (a.e). If Lα

t is a d-dimensional α-stable Lévy motion, then we can
apply A.5on the each component [Lα

t ]i of Lα
t for i ∈ {1, . . . , d}.

So far, we have proven that SDE representations can be found for inhomogeneous Markov processes
that satisfy certain conditions. Afterward, we will examine how the time reversal of a generator
appears when a homogeneous Markov process is given. Then Lemma A.5 is used to obtain the
score-based reverse formula of Lévy-driven SDE. We use the reversal formula of Theorem 5.7 in [5]
to propose a new class of generative model, LIM.

Lemma A.6. Consider a Markov process (
→
Xt)t∈[0,1] with generator Lt defined for any function u

in set of continuous functions with compact support C1
c (Rd) such that Ltu(x) = b(t, x) · ∇u(x) +∫

Rn [u(y)− u(x)−∇u(x) · [y − x]δ]
→
J t,x(dy), (t, x) ∈ [0, T ]× Rn for some δ > 0, where b(t, x)

is a vector field, and the jump kernel is
→
J t,x(dy) . Let [x]δ .

= 1|x|≤δx Then, under some hypotheses,

the Markov generator
←
Lt of the time-reversed process is

←
Ltu(x) =

←
b (t, x) · ∇u(x) +

∫
Rn

∫
[u(y)− u(x)−∇u(x) · [y − x]δ

←
J t,x(dy). (34)

where pt(dy) is a marginal distribution of (
→
Xt)t∈[0,1] such that it satisfies pt(dy)

←
J t,x(dx) =

pt(dx)
→
J t,x(dy) for almost every t and the backward drift

←
b (t, x) is given by

b(t, x) +
←
b (t, x) =

∫
Rn

[y − x]δ(
→
J t,x +

←
J t,x)(dy) pt − a.e. (35)
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Proof. See Theorem 5.7 in [5].

If we assume the marginal distribution has the density function pt(x) such that pt(dx) = pt(x)dx and
→
J t,x(dy) is a symmetric kernel with

→
J t,x(dy) = vt(y − x)dy for some symmetric Lévy measure vt

that is a Borel measure such that vt({0}) = 0 and
∫
1∧|y|2vt(dy) < ∞ for each t. Then

←
J t,x(dy) =

pt(y)
pt(x)

vt(y− x)dy. Therefore (35) satisfies b(t, x) +
←
b (t, x)(t, x) =

∫
|y|≤δ y ·

pt(y+x)
pt(x)

vt(y)dy. Since
vt is symmetric, δ can be ∞ such that

←
Ltu(x) =

←
b (t, x) · ∇u(x) +

∫
Rn

∫
[u(y + x)− u(x)−∇u(x) · [y]δ]νt(dy)

=
←
b (t, x) · ∇u(x) +

∫
Rn

∫
[u(y + x)− u(x)−∇u(x) · y]νt(dy).

Thus, if the jump kernel has the symmetric Lévy measure vt then

b(t, x) +
←
b (t, x)(t, x) =

∫
Rn

y · pt(y + x)

pt(x)
νt(y)dy pt − a.e. (36)

Now, we will deal with 1-dimensional symmetric α-stable Lévy motion for simplicity. 1-dimensional
α-stable Lévy motion have the symmetric Lévy measure ν of the symmetric α-stable distribution in
R such that ν(dy) = C

|y|1+α dy with C = Γ(α+1) sin(απ/2)
π . So, we can use 36 to estimate the reverse

drift term
←
b (t, x).

Since d-dimensional Lévy motion consists of independent components of 1-dimensional symmetric
α-stable Lévy motions, we can easily extend 1-dimensional results for any d-dimensional cases.
Thus we first show our main results for the 1-dimensional cases and then extend the results for
d-dimensional cases by applying the results component wisely.

Lemma A.7. If a R-valued stochastic process (
→
Xt) is a solution to d

→
Xt = −β(t)

α

→
Xt+(β(t))1/αdLα

t

then the jump kernel of
→
Xt is
→
J t(x, dy) =

Γ(α+ 1) sin(απ/2)

π

σα
L(t)dy

|y − x|α+1
. (37)

Proof. See Lemma in [22].

By Lemma A.7, the reverse drift term of the R-valued solution (
→
Xt) to d

→
Xt = −β(t)

α

→
Xt +

(β(t))1/αdLα
t satisfies

b(t, x) +
←
b (t, x)(t, x) =

Γ(α+ 1) sin(απ/2)σα
L(t)

π

∫
Rn

y · pt(y + x)

pt(x)

1

|y|1+α
dy pt − a.e. (38)

Therefore, the Markov generator
←
Lt of (

←
Xt) is the form of (25). So, we can use Theorem A.5 to

←
Lt

such that the reverse SDE of
←
Xt is d

←
Xt = −

←
b (t, x)dt+ σα

L(t)dL
α
t . Now, we will calculate the exact

form of
←
b (t, x) represented by the integral. For that, we derive a useful equation.

Lemma A.8.
∫∞
0

sin x
xα dx = cos(πα2 ) · Γ(1− α).

Lemma A.9.
∫∞
−∞

y
|y|α+1 e

−i(u,y)dy = −2 · iu|u|α−2 cos(πα/2)Γ(1− α).

Proof. Let uy = k. If u > 0,∫ ∞
−∞

y

|y|α+1
e−i(u,y)dy = |u|α−1

∫ ∞
−∞

k

|k|α+1
eikdk.

If u < 0, ∫ ∞
−∞

y

|y|α+1
e−i(u,y)dy = −|u|α−1

∫ ∞
−∞

k

|k|α+1
eikdk.
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Therefore, ∫
y

|y|α+1
e−i(u,y)dy = −sgn(u)|u|α−1

∫ ∞
−∞

k

|k|α+1
eikdk

= −2iu|u|α−2
∫ ∞
0

sin k

kα
dk = −2 · iu|u|α−2 cos(πα

2
)Γ(1− α).

Theorem A.10. If d
→
Xt = b(t,

→
Xt)dt+ σL(t)dL

α
t then the reverse SDE with respect to backward

integral is d
←
Xt = −

←
b (t,

←
Xt)dt

3 + σ(t)dL̄α
t with

←
b satisfying

b(t, x) +
←
b (t, x) = σα

L(t) · α ·
∂α−2
|x| ∂xpt(x)

pt(x)
. (39)

Proof.

∂α−2
|x| ∂xpt(x) = −

∫
iu|u|(α−2)e−i(u,x)p̂t(u)du

=
1

2 · cos(πα/2)Γ(1− α)

∫ ∫
y

|y|α−2
e−i(u,y+x)p̂t(u)dudy

=
1

2 · cos(πα/2)Γ(1− α)

∫
pt(x+ y)

y

|y|α+1
dy

=
π

2 · cos(πα/2) sin(πα/2)Γ(α+ 1)Γ(1− α)

∫ ∫
y

|y|α−2
e−i(u,y+x)p̂t(u)dudy

=
1

α

∫
C · pt(x+ y)

y

|y|α+1
dy for C =

sin(πα/2)Γ(α+ 1)

π
.

since Γ(1−α)Γ(α) = π
sinπα and Γ(α+1)

Γ(α) = α. Thus, b(t, x)+
←
b (t, x)(t, x) = σα

L(t)·α ·
∂α−2
|x| ∂xpt(x)

pt(x)
.

If a path measure Q on a measure space Ω is given, we denote qt as a marginal distribution of Q.
Then its forward carré du champ is the forward-adapted process defined by

→
Γt(u, v) = Lt(uv)− uLtv − uLu

t . (40)

where dom
→
Γt = {(u, v);u, v, uv ∈ dom Lt}. And the IbP of the Carré du champ is that if u ∈

dom
←
L and

←
Lu ∈ L1(q̄), then for almose every t∫

Rn

{
(Ltu+

←
Ltu)v +

←
Γt(u, v)

}
dqt = 0. (41)

By equation 41, the proof of the time reversal formula relies on the integration by parts(IbP) formula
for the carré du champ. Thus the reverse formula depends on the form of the Carré du champ.

If the forward generator Lt can be decomposed into Lt = L1
t + L2

t , then its Carré de champ also

can be decomposed into
→
Γt(u, v) =

→
Γ

1

t (u, v) +
→
Γ

2

t (u, v) such that
→
Γ

1

t (u, v) is the Carré du champ

of L1
t and

→
Γt(u, v) is the Carré du champ of L2

t . Since Carreé du champ
→
Γt is only determined by

operator Lt, and if it satisfies
→
Γt(u, v) =

→
Γ

1

t (u, v) +
→
Γ

2

t (u, v) then∫
Rn

←
(Ltu)v =

∫
Rn

(Ltu)v +
←
Γt(u, v)dqt (42)

=

∫
Rn

(Ltu)v +

∫
Rn

→
Γ

1

t (u, v) +

∫
Rn

→
Γ

2

t (u, v)dqt. (43)

3If the time flow is in the forward direction, we need to put a minus sign in front of the drift term. The minus
sign is not needed if the time flow is in backward direction.
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Additional drift term and others are derived from
∫
Rn

→
Γ

1

t (u, v)dqt and
∫
Rn

→
Γ

2

t (u, v)dqt and if we

know each term of
∫
Rn

→
Γ

1

t (u, v)dqt and
∫
Rn

→
Γ

2

t (u, v)dqt respectively, we can get the time-reversal
formula of Lt. From this conclusion, we can induce the time-reversal formula of jump-diffusion
processes.

Corollary A.10.1 (The general reversal of SDE). The reverse SDE of d
→
Xt = b(t, x)dt+σB(t)dBt+

σL(t)dL
α
t is

d
←
Xt =

(
b(t,

←
Xt)− σ2

B(t)∇x log pt(
←
Xt)− σα

L(t) · α ·
∂α−2
|x| ∇xpt(

←
Xt)

pt(
←
Xt)

)
dt+ σB(t)dB̄t + σL(t)dL̄

α
t .

(44)

where B̄t, L̄
α
t is a corresponding backward Brownian motion and backward d-dimensional α-stable

Lévy motion, respectively.

B Probability ODE

This chapter introduces the fractional Fokker-Planck equation, which is an extended version of the
Fokker-Planck equation in diffusion models into a symmetric α-stable distribution and obtains the
existence of probability ODEs from the equation. By deriving the probability ODE with the fractional
derivative, the computational formula is obtained by using first-order approximation. In order to
prove the existence of probability ODE, we first define fractional calculus.

B.1 Fractional Calculus

Fractional calculus is a concept that extends the existing differentiation and has the characteristic that
it satisfies (46) when Fourier transformation is performed.

Definition B.1 (Partial fractional Riesz potential). For α > −1 and x = (x1, . . . , xd) ∈ Rd, we
define the partial fractional Riesz potential ∂|x|(f1(x), . . . , fd(x)) as follows [19] [24]:

∂α
|x|(f1(x), . . . , fd(x)) = (∂α

|x1|f1(x), . . . , ∂
α
|xd|fd(x)). (45)

such that
F [∂α

|xi|f ](k) = |ki|αF [f ](k1, . . . , kd) for k = (k1, . . . , kd). (46)

where F denotes the Fourier transform.

Lemma B.1. ∂α
|xi|f(x) = −∂2

xi
∂α−2
|xi| f(x) = −∂xi

∂α−2
|xi| ∂xi

f(x).

Proof.

F [∂α
|xi|f ](k) = |ki|αF [f ](k) = |ki|2|ki|α−2F [f ](k) = F [−∂xi

∂α−2
|xi| ∂xi

f ](k). (47)

B.2 Stochastic Calculus for Lévy-driven Stochastic Differential Equations

Lemma B.2 (Fractional Fokker-Planck equation). Given a Lévy-driven SDE, d
→
Xt = b(t,

→
Xt)dt+

σ(t)dLα
t for dLα

t = (dLα
t,1, . . . , dL

α
t,d) with set of independent symmetric α-stable Lévy motions

(Lα
t,i)

d
i=1. Then the marginal distribution pt(x) satisfies fractional Fokker-Planck equation

∂pt(x)

∂t
= −∇ · [b(t, x)pt(x)]− σL(t)

α
d∑

i=1

∂α
|xt|pt(x). (48)

Proof. See Proposition 1 in [30]
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Corollary B.2.1 (General Fractional Fokker-Planck equation). Given a Lévy-driven SDE and,
→
Xt ∈ Rd which satisfies

d
→
Xt = b(t,

→
Xt)dt+ σB(t)dBt + σL(t)dL

α
t . (49)

where dBt = (dBt,1, . . . , dBt,d) with set of independent Brownian motions (Bt,i)
d
i=1, and

dLα
t,1, . . . , dL

α
t,d) with set of independent symmetric α-stable Lévy motions (Lα

t,i)
d
i=1. Then the

marginal distribution pt(x) satisfies General fractional-Fokker-Planck equation,

∂pt(x)

∂t
= −∇ · [b(t, x)pt(x)] +

σ2
B(t)

2

d∑
i=1

∂2pt(x)

∂xi
2

− σα
L(t)

d∑
i=1

∂α
|xi|pt(x). (50)

Theorem B.3 (Existence of Probability ΨDE). If pt(x) satisfies Fractional Fokker-Planck equation
then pt(x) satisfies

∂pt(x)

∂t
= −∇ · [(b(t, x)− σα

L(t)F (t, x))pt(x)]. (51)

such that Fi(t, x) =
∂α−2
|xi|

∂xi
pt(x)

pt(x)
. So Xt satisfies the ODE,

d
→
Xt = (b(t, x)− σα

L(t)F (t, x))dt. (52)

Proof.

∂p(t, x)

∂t
= −

d∑
i=1

∂xi(bi(t, x)p(t, x))−
d∑

i=1

σα
L(t)∂

α
|xi|p(t, x) (53)

= −
d∑

i=1

[
∂xi

bi(t, x)p(t, x) + σα
L(t)∂

α
|xi|p(t, x)

]
(54)

= −
d∑

i=1

[
∂xi

bi(t, x)p(t, x)− σα
L(t)∂xi

∂α−2
|xi| ∂xi

p(t, x)
]

(55)

= −
n∑

i=1

∂xi

([
bi(t, x)− σα

L(t)
∂α−2
|xi| ∂xi

p(t, x)

p(t, x)

]
p(t, x)

)
(56)

= −∇ · [(b(t, x)− σα
L(t)F (t, x))p(t, x)]. (57)

Theorem B.4 (The general Probability ΨDE). If pt(x) follows Fractional Fokker-Planck equation,
then the transition function pt(x) satisfies

∂pt(x)

∂t
= −∂x ·

[
(b(t, x)− σ2

B(t)

2
∂x log pt(x)− σα

L(t)F (t, x))pt(x)

]
. (58)

such that Fi(t, x) =
∂α−2
|xi|

∂xi
pt(x)

pt(x)
. Therefore,

→
Xt satisfies the ODE,

d
→
Xt

d
=

[
b(t,

→
Xt)−

σ2
B(t)

2
∇xt log pt(

→
Xt)− σα

L(t)F (t,
→
Xt)

]
dt. (59)
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Proof.

∂p(t, x)

∂t
= −

d∑
i=1

∂xi(bi(t, x)p(t, x)) +
σ2
B(t)

2

d∑
i=1

∂2p(t, x)

∂2
xi

−
d∑

i=1

σα
L(t)∂

α
|xi|p(t, x) (60)

= −
d∑

i=1

[
∂xi

bi(t, x)p(t, x)−
σ2
B(t)

2
∂2
xi
p(t, x) + σα

L(t)∂
α
|xi|p(t, x)

]
(61)

= −
d∑

i=1

[
∂xi

bi(t, x)p(t, x)−
σ2
B(t)

2
∂2
xi
p(t, xt)− σα

L(t)∂xi
∂α−2
|xi| ∂xi

p(t, x)

]
(62)

= −
n∑

i=1

∂xi

([
bi(t, x)−

σ2
B(t)

2

∂xi
p(t, x)

p(t, x)
− σα

L(t)
∂α−2
|xi| ∇xi

p(t, x)

p(t, x)

]
p(t, x)

)
(63)

= −∇ · [(b(t, x)− σ2
B(t)

2
∂xt

log p(t, x)− σα
L(t)F (t, x))p(t, x)]. □ (64)

C General OU process

Given a SDE driven by a d-dimensional α-stable Lévy motions Lα
t with [Lα

t ]i ∼ SαS(t1/α) for each
i ∈ {1, . . . , d} such that

d
→
Xt = −β

→
Xtdt+ (α · β)1/αdLα

t . (65)

the solution of the SDE is
→
Xt

d
= x0e

−βt + (α · β)1/α
∫ t

0

e−β(t−s)dLα
s . (66)

Since the each component of integral [
∫ t

0
e−β(t−s)dLα

s ]i is also a 1-dimensional symmetric α-stable
∼ SαS(γ(t)) for some γ(t) as [Lα

t ]i is a 1-dimensional symmetric α-stable Lévy motion for each
i ∈ {1, . . . , d}. We want to find the scale parameter γ(t) of

∫ t

0
e−β(t−s)dLα

s for each t.

Lemma C.1. Given α with 0 < α < 2 and f is a measurable function such that f : [0, T ] → R with∫ T

0
|f(s)|αds < ∞. Let R-valued

→
Xt =

∫ t

0
f(s)dLα

s then

→
Xt ∼ SαS

(∫ t

0

|f(s)|αds)1/α
)
. (67)

Proof. If f(t) =
∑N

i=1 aiχ(ti−1,ti] with t0 = 0, tN = t,

→
Xt

d
=

∫ t

0

N∑
i=1

aiχ(ti−1,ti](s)dL
α
s =

n∑
i=1

ai[L
α
ti − Lα

ti−1
]

d
=

N∑
i=1

aiL
α
∆ti , ∆ti = ti − ti−1. (68)

Using the above equation,

E[e(iu
→
Xt)] = E[eiu

∑N
i=1 aiL

α
∆ti ] =

N∏
i=1

E[eiuaiL
α
∆ii ] (69)

=

N∏
i=1

e−|u|
α|ai|α∆ti = e−

∑N
i=1 |ai|α∆ti|u|α = e−(

∫ t
0
|f(s)|αds)|u|α . (70)

⇒
→
Xt ∼ SαS

(∫ t

0
|f(s)|αds)1/α

)
. Let us prove that f is not a simple function. With the loss of

generality, assume f(t) ≥ 0. If not, we decompose f(t) = f+(t) − f−(t) such that f+, f− are
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non-negative functions. Then we can construct an non-decreasing sequence of simple functions
fn such that limn→∞ fn(t) = f(t) for all t ∈ [0, T ]. So, supnfn(t) ≤ f(t) for all t. Define
Xn

t ≡
∫ t

0
fn(s)dL

α
s . As

∫ T

0
|f(s)|αds < ∞, we can use dominated convergence theorem so that

limn→∞
→
X

n

t (w) =
→
Xt(w) for all w ∈ Ω, t ∈ [0, T ].

E[e(iu
→
Xt)] = lim

n→∞
E[e(iuX

n
t )] = lim

n→∞
e−(

∫ t
0
|fn(s)|αds)|u|α = e−(

∫ t
0
|f(s)|αds)|u|α . (71)

∴
→
Xt ∼ SαS

(∫ t

0
|f(s)|αds)1/α

)
when f is a measurable function. This theorem can be extended

for the solution of the SDE (65) driven by d-dimensional α-stable Lévy motions.

Theorem C.2. If a(t) = e−βt, γ(t) = (1−e−αβt)1/α = (1−(a(t))α)1/α and
→
Xt = a(t)x0+γ(t)ϵ

for some ϵ ∼ SαS then Xt is a solution to d
→
Xt = −β

→
Xtdt+ (α · β)1/αdLα

t and

→
Xt

d
= x0e

−βt + (α · β)1/α
∫ t

0

e−β(t−s)dLα
s . (72)

Proof. Use Lemma C.1.

Lemma C.3. If
→
Xt is a solution to d

→
Xt = −β(t)

α

→
Xtdt+ β(t)1/αdLα

t , then Xt can be represented
by

→
Xt

d
= e−

∫ t
0

β(s)
α ds

→
X0 +

∫ t

0

e−
∫ t
u

β(s)
α dsβ(u)1/αdLα

u . (73)

If we define a(t) = e−
∫ t
0

β(s)
α ds, then the scale parameter γ(t) of

∫ t

0
e−

∫ t
u

β(s)
α ds(β(u)1/αdLα

t

satisfies γα(t) = (1−aα(t)). If β(t) = β0+(β1−β0)t then E[Xt] = e−
(β1−β0)

2α t2− β0t
α x0 = a(t)x0,

with log a(t) = − (β1−β0)
2α t2 − β0

α t.

Proof.

d(e
∫ t
0

β(s)
α ds) = e

∫ t
0

β(s)
α ds · β(t)

α
dt+ e

∫ t
0

β(s)
α ds

(
− β(t)

α

→
Xtdt+ (β(t))1/αdLα

t

)
= e

∫ t
0

β(s)
α ds(β(t))1/αdLα

t .

→
Xt = e−

∫ t
0

β(s)
α dsX0 +

∫ t

0
e−

∫ t
u

β(s)
α dsβ(u)1/αdLα

t . If we set a(t) = e−
∫ t
0

β(s)
α ds then d

dt log a(t) =

−β(s)
α . And the scale parameter γ(t) satisfies

γα(t) =

∫ t

0

a(t)α

a(u)α
(β(u))du =

∫ t

0

aα(t)

aα(u)
(−α)

d

dt
log a(u)du = aα(t)

∫ t

0

−α

aα(u)

a′(u)

a(u)
du.

= aα(t)

∫ t

0

(−α)
a′(u)

aα+1(u)
du = aα(t)

∫ t

0

d

du
(a−α(u))du = aα(t)[a−α(t)− a−α(0)].

= (1− aα(t)).

Theorem C.4. The partial fractional Riesz potential can be approximated by

∂α−2
|xi| ∂xipt(x)

pt(x)
≈ 1

hα−2

∑
k∈Z

(−1)kΓ(α− 1)

Γ
(
α
2 − k

)
Γ
(
α
2 + k

)∂xi
log pt(x1, . . . , xi−kh, . . . , xd) [1− kh∂xi

log pt(x)]

.

If we only approximate this summation on k=0, then
∂α−2
|xi|

∂xi
pt(x)

pt(x)
≈ 1

hα−2

Γ(α−1)
Γ(α

2 )2 ∇ log pt(x).

See Equation (4.1) in [18].
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Corollary C.4.1 (Stochastic sampling of LIM). When t < s, ∆t = s− t

x(t) = (1+
β(s)

α
∆t)x(s)+α ·

(
β(s)∆t

1

hα−2
Γ(α− 1)

Γ(α2 )
2

)
∇x log ps(x(s))+ (β(s)∆t)1/αϵ. (74)

where [ϵ]i ∼ SαS(1) for each i ∈ {1, . . . , d}.
Proposition C.1.

β(t) = −αγα(t)
dλ(t)

dt
. (75)

where λ(t) = log a(t)
γ(t) .

Theorem C.5 (Deterministic ODE sampling of LIM).

xt =
a(t)

a(s)
xs +

Γ(α− 1)

Γ2(α/2)

α

hα−2 γ
α−1(s)γ(t)(−1 + eht)sθ(xs, s). (76)

Proof. We apply Euler-Maruyama method to d
→
Xt = (−β(t)

α

→
Xt − Γ(α−1)

Γ2(α/2)
β(t)
hα−2∇ log pt(

→
X))dt. For

s > t, we can discretize the ODE such as

xt =
a(t)

a(s)
xs +

∫ t

s

a(t)

a(u)

Γ(α− 1)

Γ(α/2)2
1

hα−2αγ
α(u)

dλ(u)

du
Sθ(xu, u)du (77)

=
a(t)

a(s)
xs +

Γ(α− 1)

Γ2(α/2)

α

hα−2

∫ λ(t)

λ(s)

e−λγα−1Sθ(xλ, λ)dλ (78)

=
a(t)

a(s)
xs +

Γ(α− 1)

Γ2(α/2)

α

hα−2 γ
α−1(s)γ(t)(−1 + eht)Sθ(xs, s). (79)
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D Score Function for Lévy-Itō Models

Lemma D.1. Let qα be the density function of SαS and the value of Xt satisfies xt = a(t)x0+γ(t)ϵ
for given x0 and [ϵ]i ∼ SαS for each i ∈ {1, . . . , d}. Then the score function of the transition
distribution satisfies ∇ log pt(xt|x0) = ∇ log qα(ϵ)/γ(t).

Proof. Let
→
Xt and Y be defined on a probability space (Ω,A,P) where the transition density

function of
→
Xt is pt(xt|x0) =

dP(
→
Xt≤xt|

→
Xt=x0)

dxt
and the density function of Y is qα(y) =

dP(Y≤y)
dy .

Let
→
Xt = a(t)x0 + γ(t)ϵ. Then

P(
→
Xt ≤ xt|

→
X0 = x0) = P(a(t)x0 + γ(t)Y ≤ xt) since

→
Xt = a(t)x0 + γ(t)Y (80)

= P(Y ≤ xt − a(t)x0

γ(t)
) (81)

= P(Y ≤ ϵ) (82)

Then pt(xt|x0) = dP(
→
Xt≤xt|

→
X0=x0)

dxt
= dP(Y≤ϵ)

dϵ /γ(t) = qα(ϵ)/γ(t). If we take logarithm of
both sides then log p(xt|x0) = log qα(ϵ) − log γ(t). Therefore, we can get ∇xt

log p(xt|x0) =
∇ϵ log qα(ϵ)/γ(t).

Definition D.1 (Generalized Gaussian distribution). The generalized Gaussian distribution is two
families of parametric probability distributions with a continuous path on R with a shape parameter β̃
and scale parameter σ̃ such that

Gσ̃,β̃(x) =
β̃

2σ̃Γ(β̃ − 1)
exp

(
− |x|β̃

σ̃β̃

)
(83)

where Γ(·) is the Gamma function.

The score function of the Generalized Gaussian distribution is

∇x logGσ̃,β̃ = − β̃

σ̃β̃
sgn(x))|x|β̃−1 (84)

Which is the same form of
ReELSα(x) = −sgn(x)ĉ|x|β̂

when β̂ = β̃ − 1 and ĉ = β̃

σ̃β̃
.

D.1 ReELS

The principle behind the ReELS approaches to approximate the Lévy score function of the α-stable
distribution is similar to that provided [17]. Because computing the Lévy score exactly requires
higher computation complexity, score functions of generalized Gaussian distribution are employed
[17] as an approximation technique. ReLES is employed with a similar concept to conduct enough
denoising at large noise to allow data to converge while maintaining the heavy-tailed features. We
empirically observe that β̂ becomes an approximation with a value less than 1 when α is less than
2. This means that a distribution with a score similar to each Lévy score is a generalized Gaussian
distribution where β̃ is less than 2.

D.2 Stochastic sampling for synthetic data

To show that the results predicted by the theory are valid, the performance of the model trained with
the BM score and ReLES with synthetic data is compared with FID. Additionally, it is tested with
synthetic data if the synthetic data converges to the original distribution when using ReELS for LIM.
The synthetic data used as the test were two mixtures of Gaussian, Two moons, and swiss-roll. In
the case of two mixtures of Gaussian, the simplest MLP with a model depth of 3 was used, and for
Two Moon and swiss-roll, MLP with a model depth of 6 was used. Detailed experimental settings are
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described in (Table D.1, D.2, D.3). When using different score functions for each α = 1.2, 1.5, 1.8, 2,
the generation ability of LIM was compared with FID. As a result of the experiments, the mean value
and variance of FID were low for the overall α in the case of using ReELS. The stochastic sampling
according to the time step when different α is given can be seen in (Figure E.3, E.8, E.9).

FID ↓ \ α 1.2 1.5 1.8

Lévy Score 304192 ± 233 25410 ± 98 1966 ± 31
ReELS 2.01 ± 0.08 0.34 ± 0.02 0.14 ± 0.01

BM Score 2.61 ± 0.09 0.71 ± 0.03 0.20 ± 0.01

Table D.1: FID score (mean ±95% CI) of stochastic sampling on synthetic data (Mixture of Gaussian).
The mean values of the data distributions are (5,5), (-5,-5), respectively, and the covariance is 0.2I .
The training data is 5000 pieces and the test data is 5000 pieces. As a score model, an MLP model
with a depth of 3 and a channel of [3,32,2] is used. β0 is set to 0, β1 is set to 10, and the clamp is set
to 20. It can be seen that the FID is low when ReELS is used for all α = 1.2, 1.5, and 1.8.

FID ↓ \ α 1.2 1.5 1.8

Lévy Score 22258 ± 182 3145 ± 62 316 ± 26
ReELS 0.85 ± 0.013 0.21 ± 0.0053 0.11 ± 0.0032

BM Score 0.99 ± 0.023 0.34 ± 0.0083 0.16 ± 0.0038

Table D.2: FID score (mean ±95% CI) of stochastic sampling on synthetic data (Two-moon). The
noise of two-moon synthetic data was set to 0.05. The training data is 5000 pieces and the test data is
5000 pieces. As a score model, an MLP model with a depth of 6 and a channel [3,32,64,64,32,2] is
used. β0 is set to 0, β1 is set to 5, and the clamp is set to 20. It can be seen that the FID is low when
ReELS is used for all α = 1.2, 1.5, and 1.8.

FID ↓ \ α 1.2 1.5 1.8

Lévy Score 1486 ± 3.68 197.54 ± 0.73 17 ± 0.13
ReELS 1.16 ± 0.090 0.210 ± 0.0087 0.114 ± 0.0019

BM Score 0.952 ± 0.11 0.44 ± 0.017 0.210 ± 0.0087

Table D.3: FID score (mean ±95% CI) of stochastic sampling on synthetic data (Swiss-roll). The
noise of Swiss-roll synthetic data was set to 0.1. The training data is 5000 pieces and the test data is
5000 pieces. As a score model, an MLP model with a depth of 6 and a channel [3,32,64,64,32,2] is
used. β0 is set to 0, β1 is set to 5, and the clamp is set to 20. It can be seen that the FID is low when
ReELS is used for all α = 1.2, 1.5, and 1.8.

D.3 Deterministic ODE sampling for synthetic data

In this chapter, we demonstrate the validity of the probability ODE (Theorem 3) from the deterministic
ODE sampling of LIM by showing the ability to generate synthetic data. We train score models
by using three synthetic data such as Two mixtures of Gaussian, Two moons, and Swiss roll. The
deterministic ODE sampling according to the time step when different α is given can be seen in
(Figure E.10, E.11, E.12).
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FID ↓ \ α 1.2 1.5 1.8 2.0

Two mixture 30.36 ± 0.094 2.39 ± 0.0076 2.39 ± 0.0076 0.21 ± 0.0021
Two moon 35.67 ± 0.170 0.99 ± 0.028 0.99 ± 0.028 0.41 ± 0.0026
Swiss roll 30.96 ± 0.584 0.77 ± 0.0097 0.15 ± 0.0021 0.39 ± 0.0039

Table D.4: FID (mean ±95% CI) of deterministic ODE sampling on synthetic data (Two mixtures,
Two moons, Swiss-roll). The mean values of the Mixture of Gaussian distributions are (5,5), (-5,-5),
respectively, and the covariance is 0.2I . The training data is 5000 pieces and the test data is 5000
pieces. β0 is set to 0, β1 is set to 10, and the clamp is set to 20. It can be seen that the FID is low
when ReELS is used for all α = 1.2, 1.5, and 1.8.

E Dataset Experiment

E.1 Implementation Detail

Our diffusion model is U-Net[21] following DDPM[11], which replaces weight normalization[23]
with group normalization[32] for simple implementation. We set the model size suitable for the
dataset, such that MNIST (28 × 28) is [16, 32, 64], CIFAR10 (32 × 32) is [128, 256, 256, 256],
CelebA (64 × 64) is [128, 256, 256, 256, 1024], and CelebA-HQ (256 × 256) is [128, 256, 256,
256, 1024, 1024], but fix the number of residual blocks with 2 in each resolution level, and add
self-attention block only in 16× 16 resolution level. Continuous diffusion time t ∈ [0, 1) is injected
into the model through Transformer sinusoidal position embedding[31] after adding with 0.0001, and
we use swish function as the activation function.

We train our MNIST model used in experiments for 1000 epochs with batch size 128, CIFAR10 model
for 250 epochs with batch size 128, CelebA model for 140 epochs with batch size 128, and CelebA-
HQ model for 160 epochs with batch size 32. All training and experiments are conducted on NVIDIA
A100 GPU and NVIDIA GeForce RTX 3090, and we tune the batch size for sampling adjusted for
computation resources. Because the target distribution of our model is α-stable distribution, sample
quality is very sensitive to hyperparameter setting according to the α scale. So we improve sample
quality by tuning hyperparameters to be optimized for each dataset:

• Though DDPM[11] used linear noise schedule with fixed β0 = 0.1, β1 = 20, we
tuned β0, β1 for each α because variance of α-stable distribution depends on α scale.
For MNIST dataset, we fixed the β schedule as β0 = 0.1, β1 = 5 in all α values. In
CIFAR10/CelebA/CelebA-HQ, we chose β1 = 20 for α = 1.8, and β1 = 15 for α = 1.5 to
optimize convergence into sample space, and fix β0 to 0.1.

• Different from Gaussian distribution, α-stable distribution can have large-scale noise at
lower α values, which leads to sample quality degradation. To prevent this problem, we used
noise clamping as a heuristic in the training and sampling phase. It consists of 3 clamps,
clamp(training, init sample, SDE sample), and we adjusted the scale of clamps suitable for
each dataset:

– 10, 10, 10 at α = 1.8, and 100, 50, 100 at α = 1.5, 1.2 for MNIST.
– 30, 30, 30 at α = 1.8, and 100, 50, 100 at α = 1.5 for CIFAR10.
– 10, 10, 10 at α = 1.8, and 50, 50, 50 at α = 1.5 for CelebA and CelebA-HQ.
– In the case of deterministic ODE sampling, we only used clamp(training, init sample),

and set them to 10, 5.

E.2 Evaluation Metric

E.2.1 FID(Fréchet Inception Distance) score

To evaluate generated sample quality, we choose the widely used FID score metric([10]), where a
lower score means better sample quality. After computing both mean/variance of distributions in
the training dataset and generating 50k samples by using the pre-trained Inception-V3 model, we
calculate distances between two distributions as FID score.
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E.2.2 Likelihood computation

Our ReELS method is adaptive to probability ODE(Figure 4), so we can compute the exact likelihood
on any input data in the same way as [28]. By replacing the score ∇x log pt(Xt) with score model
Sθ(Xt, t), we can rewrite (3) as

d
→
Xt =

(
b(t,

→
Xt)− Sθ(

→
Xt, t)

Γ(α− 1)

Γ2(α/2)

σα
L(t)

hα−2

)
︸ ︷︷ ︸

=:f̃θ(
→
Xt,t)

dt. (85)

Then we can compute the log-likelihood of p0(X0) such that

log p0(
→
X0) = log pT (

→
XT ) +

∫ T

0

∇ · f̃θ(
→
Xt, t)dt (86)

where XT is noise mapping to X0 which can be obtained by solving the probability ODE in (85)

with ODE solver. Because of the expensive computation of ∇ · f̃θ(
→
Xt, t), we estimate it by using the

Skilling-Hutchinson trace estimator([25], [12]), which is following [8].

To solve the integral term in (85), we choose the RK45 ODE solver[7] which can be used as
solve-ivp function in scipy.integrate library. As same [8], we also set parameters atol=1e-5,
rtol=1e-5. We use a test dataset applied uniform dequantization, and take the average of the
bits/dim values over 5 repeats for exact likelihood computation. By changing initial time t0 of

integral
∫ T

t0
∇ · f̃θ(

→
Xt, t)dt after adding 0.001, we compute bits/dim with varied number of function

evaluations(NFE) like Figure 3(b).

E.3 Additional Samples

Additional sampling results on MNIST 28× 28, CIFAR10 32× 32, CelebA 64× 64, CelebA-HQ
256× 256 are reported in below figures.

Figure E.1: Samples generated by DM(Brownian motion, [28]), and LIM(α = 1.8, 1.5, 1.2) with on
MNIST(28× 28) dataset.
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Figure E.2: Samples generated by LIM at α = 1.8 on CIFAR10(32× 32) dataset.
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Figure E.3: Samples generated by LIM at α = 1.5 on CIFAR10(32× 32) dataset.
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Figure E.4: Samples generated by LIM at α = 1.8 on CelebA(64× 64) dataset.
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Figure E.5: Samples generated by LIM at α = 1.5 on CelebA(64× 64) dataset.
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Figure E.6: Samples generated by LIM(α = 1.8) with 0, 500, 750, 825, 900, 1000 number of function
evaluations(NFE) on CelebA-HQ(256× 256) dataset.
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Figure E.7: Stochastic sampling(C.4.1) of two mixtures of Gaussian using ReELS for (a) α = 1.2, (b)
α = 1.5, (c) α = 1.8, and (d) BM-driven synthetic image. The orange color represents the original
distribution of two moons.
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Figure E.8: Stochastic sampling(C.4.1) of two moons using ReELS for (a) α = 1.2, (b) α = 1.5, (c)
α = 1.8, and (d) BM-driven synthetic image. The orange color represents the original distribution of
two moons.
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Figure E.9: Stochastic sampling(C.4.1) of swiss roll using ReELS for (a) α = 1.2, (b) α = 1.5, (c)
α = 1.8, and (d) BM-driven synthetic image. The orange color represents the original distribution of
swiss roll.
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Figure E.10: Deterministic ODE sampling(C.5s) of Mixture of Gaussian synthetic data for (a) α = 1.2,
(b) α = 1.5, (c) α = 1.8, and (d) BM-driven synthetic image. Unlike stochastic sampling, there is a
small number of points that do not converge to modes. The existence of these points is presumed
to have occurred because ODE sampling cannot directly clamp the noise size in the middle of the
reverse process.
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Figure E.11: Deterministic ODE sampling(C.5s) of Two Moons synthetic data for (a) α = 1.2, (b)
α = 1.5, (c) α = 1.8, and (d) BM-driven synthetic image. Unlike stochastic sampling, there is a
small number of points that do not converge to modes. The existence of these points is presumed
to have occurred because ODE sampling cannot directly clamp the noise size in the middle of the
reverse process.
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Figure E.12: Deterministic ODE sampling(C.5s) for Swiss Roll synthetic data when (a) α = 1.2,
(b) α = 1.5, (c) α = 1.8, and (d) BM-driven synthetic image. Unlike stochastic sampling, there is a
small number of points that do not converge to modes. The existence of these points is presumed
to have occurred because ODE sampling cannot directly clamp the noise size in the middle of the
reverse process.
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