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Abstract

Diffusion models have attained prominence for their ability to synthesize a probabil-
ity distribution for a given dataset via a diffusion process, enabling the generation
of new data points with high fidelity. However, diffusion processes are prone to
generating samples that reflect biases in a training dataset. To address this issue,
we develop constrained diffusion models by imposing diffusion constraints based
on desired distributions that are informed by requirements. Specifically, we cast
the training of diffusion models under requirements as a constrained distribution
optimization problem that aims to reduce the distribution difference between origi-
nal and generated data while obeying constraints on the distribution of generated
data. We show that our constrained diffusion models generate new data from
a mixture data distribution that achieves the optimal trade-off among objective
and constraints. To train constrained diffusion models, we develop a dual train-
ing algorithm and characterize the optimality of the trained constrained diffusion
model. We empirically demonstrate the effectiveness of our constrained models
in two constrained generation tasks: (i) we consider a dataset with one or more
underrepresented classes where we train the model with constraints to ensure fairly
sampling from all classes during inference; (ii) we fine-tune a pre-trained diffusion
model to sample from a new dataset while avoiding overfitting.

1 Introduction

Diffusion models have become a driving force of modern generative modeling, achieving ground-
breaking performance in tasks ranging from image/video/audio generation [64, 6, 43] to molecular
design for drug discovery [75, 74]. Diffusion models learn diffusion processes that produce a
probability distribution for a given dataset (e.g., images) from which we can generate new data (e.g.,
classic models [66, 34, 68, 78]). As diffusion models are used to generate data with societal impacts,
e.g., art generation and content creation for media, they must comply with requirements from specific
domains, e.g., social fairness in image generation [54, 57], aesthetic properties of images [12, 13],
bioactivity in molecule generation [39], and more [40, 81, 8, 19, 79, 14].

Classic diffusion models [66, 34, 68] have been extended to generate data under different requirements
through either first-principle methods or fine-tuning. In image generation with fairness, for instance,
first principle methods directly mitigate biases towards social/ethical identities by revising the training
loss functions per biased/unbiased data [49, 41]; while fine-tuning methods align biased diffusion
models with desired data distributions by optimizing the associated metrics [24, 72, 71, 70]. Although
these methods allow us to equip diffusion models with specific requirements, they are often designed
for particular generation tasks and do not provide transparency on how these requirements are satisfied.
Since diffusion models are trained by minimizing the loss functions of diffusion processes, it is natural
to incorporate requirements into diffusion models by imposing constraints on these optimization
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problems. Therefore, it is imperative to develop diffusion models under constraints by generalizing
constrained learning methods and theory (e.g., [9, 10, 22, 36]) for diffusion models.

In this work, we formulate the training of diffusion models under requirements as a constrained
distribution optimization problem in which the objective function measures a training loss induced
by the original data distribution, and the constraints require other training losses induced by some
desirable data distributions to be small. This constrained formulation can be instantiated for several
critical requirements. For instance, to promote fairness for unrepresented groups, the constraints
can encode the closeness of the model to the distributions of underrepresented data. Compared with
the typical importance re-weighting method [41], our constrained formulation provides an optimal
trade-off between matching given data distribution and following reference distribution. Not limited
to constraints with other desirable data distributions, our constrained formulation captures more
general requirements. For instance, when adapting a pretrained diffusion model to new data, the
constraints require the model to be close to the pretrained model, not degrading the original generation
ability. Specifically, our main contribution is three-fold.

(i) We propose and analyze constrained diffusion models from the perspective of constrained
optimization in an infinite-dimensional distribution space, where the constraints require
KL divergences between the model and our desired data distributions to be under some
thresholds. We exploit the strong duality in convex optimization to show that our constrained
diffusion models generate new data from a mixture data distribution that achieves the optimal
trade-off among objective and constraints.

(ii) To train constrained diffusion models, we introduce parametrized constrained diffusion
models and develop a Lagrangian-based dual training algorithm. We exploit the relation
between un/parametrized problems to show that constrained diffusion models generate new
data from the optimal mixture distribution, up to some optimization/parametrization errors.

(iii) We empirically demonstrate the merit of our constrained diffusion models in two afore-
mentioned requirements. In the fair generation task, we show that our constrained model
promotes sampling more from the minority classes compared to unconstrained models, lead-
ing to fair sampling across all classes. In the adaptation task, we show that our fine-tuned
constrained model learns to generate new data without significantly degrading the original
generation ability, compared to the unconstrained model which tends to overfit to new data.

Related work. As a first-principle method, our constrained diffusion approach is more relevant to
diffusion models that incorporate requirements in distribution space [20, 35, 49, 21, 60, 28], rather
than those applied in sample space [37, 53, 29, 27, 26, 17, 48, 25]. In comparison with conditional
diffusion models that restrict generation through conditional information [20, 35, 1], our constrained
diffusion models impose distribution constraints within the constrained optimization framework.
Compared to compositional generation [49, 21, 60] and fair diffusion [28], our work provides a
constrained learning approach to balance different distribution models using Lagrangian multipliers,
which is different from equal weights [49, 21], hyperparameter [60] or fair guidance [28]. Our
constrained approach is also relevant to the importance re-weighting method for diffusion models [41]
and GANs [16], which reduces bias in a dataset by re-weighting it with a pre-trained debiased density
ratio. In contrast, we design our diffusion models to mitigate the bias in a dataset by imposing
distribution constraints without pre-training. In addition to being distinct from existing methods, we
provide a systematic study of our constrained diffusion models, covering duality analysis, dual-based
algorithm design, and convergence analysis, which is absent in the diffusion model literature.

Our work is also pertinent to recently surging fine-tuning and alignment methods that aim to improve
pre-trained diffusion models by optimizing their downstream performance, e.g., aesthetic scores of
images. In reward-guided fine-tuning methods, such as supervised learning [45, 80, 76], control-based
feedback learning [77, 65, 71, 70, 18], and reinforcement learning [23, 32, 24, 72, 5, 82], reward
functions have to be pre-trained from an authentic evaluation dataset, and the trade-off for reward
functions in pre-trained diffusion models is often regulated heuristically. In contrast, our constrained
approach directly minimizes the gap between a fine-tuning model and a high-quality dataset with the
desired properties, while ensuring the generated outputs being close to that of pre-trained models.

Compared to other generative models under requirements (e.g., VAEs [61], GANs [16]), and classical
sampling methods (e.g., Langevin dynamics and Stein variational gradient descent [50]), our work is
different because we focus on diffusion-based generative models.
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2 Preliminaries

We overview diffusion models from the perspective of variational inference [55] by presenting
forward/backward processes in Section 2.1, and the evidence lower bound in Section 2.2.

2.1 Forward and backward processes

The forward process begins with a true data sample x0 ∈ Rd, and generates latent variables {xt}Tt=1
from t = 1 to T by adding white noise recursively. The joint distribution of latent variables
results from conditional probabilities q(x1:T |x0) =

∏T
t=1 q(xt |xt−1), where the distribution

of latent variable xt conditioned on the previous latent xt−1 is given by a Gaussian distribution
q(xt |xt−1) = N (xt;µt, σ

2
q (t)I), where µt =

√
αt xt−1 and σ2

q (t) = 1 − αt. Since the forward
process is a linear Gaussian model with pre-selected mean and variance, it is solely determined by
the data distribution q(x0). We often refer to q(x0) as a forward process.

The backward process begins with the latent xT sampled from the standard Gaussian p(xT ) =
N (xT ; 0, I), and decodes latent variables from t = T to t = 0 with a joint distribution

p(x0:T ) = p(xT )

T∏
t=1

p(xt−1 |xt). (1)

Here, p is our distribution model that can be used to generate new samples. We denote by P the set
of all joint distributions over x0:T in form of (1), where p(xt−1 |xt) is a conditional Gaussian with a
fixed variance (see Appendix A). Throughout the paper, we work in the convergent regimes of the
backward process (e.g., [15, 11, 2]). Without loss of generality, we adopt the convergent regime in [47]
by taking the scheduling parameter α1 = 1 − 1/T c0 and αt = 1 − cT min ((1− α1)(1 + cT )

t, 1)
for t > 1, and the variance as σ2

p(t) = 1/αt − 1, where cT := c1 log(T )/T and c0, c1 are some
constants. Hence, ᾱT ≈ 0 implies q(xT ) ≃ N (xT ; 0, I). Thus, q(x0:T ) ∈ P . Also, ᾱ1 ≈ 1 implies
q(x1) ≃ q(x0). It is ready to generalize our results to other diffusion processes (e.g., [46, 38, 3]).

2.2 The evidence lower bound (ELBO)

Denote the KL divergence of distribution q from distribution p by DKL(q ∥ p) := Ex∼q(x) log(
q(x)
p(x) ).

Generative diffusion modeling aims to generate samples whose distribution is close to that of an
observed dataset of samples. Formally, we express this objective as maximizing the log-likelihood of
an observation generated by the diffusion model: maximizep∈P Eq(x0)[ log p(x0) ], where

Eq(x0) [ log p(x0) ] = E(p; q) + Eq(x0) [DKL (q(x1:T |x0) ∥ p(x1:T |x0)) ] (2)

and E(p; q) := Eq(x0)Eq(x1:T | x0) log
p(x0:T )

q(x1:T | x0)
is known as ELBO in variational inference [7, 55].

Alternatively, we aim to minimize the KL divergence between the forward/backward processes,

DKL (q(x0:T ) ∥ p(x0:T )) = −E(p; q) + Eq(x0) [ log q(x0) ] . (3)

Thus, we connect the log-likelihood maximization to the KL divergence minimization via ELBO.

Lemma 1 (Equivalent formulations). The ELBO maximization and the KL divergence minimization
are equivalent over the distribution space P , and the unique solution of these two problems is a
solution for the log-likelihood maximization problem, i.e.,

maximize
p∈P

E(p; q) ⇔ minimize
p∈P

DKL (q(x0:T ) ∥ p(x0:T )) ⇒ maximize
p∈P

Eq(x0)[ log p(x0) ]

See Appendix B.1 for proof. Lemma 1 states that improving the ELBO score increases the likelihood
of a backward process that generates the data, together with the fit of a backward process to the forward
process. Hence, finding the best backward process becomes optimizing one of three equivalent
objectives. In practice, ELBO serves as a loss function approximated by

E(p; q) ≈ −
T∑

t=2

Eq(x0)Eq(xt | x0) [DKL (q(xt−1 |xt, x0) ∥ p(xt−1 |xt)) ] . (4)
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With the variance schedule described in Section 2.1, it is known that this approximation is almost exact
(see Appendix A and also [42]), which is our focal setting. Using standard diffusion derivations [55],
the ELBO maximization can be shown to equal to a quadratic loss minimization,

minimize
ŝ∈S

Ex0, t, xt

[
∥ŝ(xt, t)−∇ log q(xt)∥2

]
(5)

where Ex0,t,xt
is an expectation over the data distribution q(x0), a discrete distribution pω(t) from

2 to T , and the forward process q(xt |x0) at time t given the data sample x0; see Appendix A for
details. The minimization is done to find a function ŝ ∈ S that can best predict the gradient of the
forward process over data ∇ log q(xt), commonly called the (Stein) score function, where S is a
set of valid score functions mapping from Rd × N to Rd. In practice, however, we parametrize the
estimator ŝ(xt, t) as ŝθ(xt, t) with parameter θ, which gives our focal objective of generative mod-
eling: minimizeθ∈Θ Ex0, t, xt

[
∥ŝθ(xt, t)−∇ log q(xt)∥2

]
. A parametrized form of p(xt−1 |xt)

associated with ŝθ(xt, t) is denoted by pθ(xt−1 |xt) and the backward process has a parametrized
joint distribution pθ(x0:T ). We remark that the prediction problem (5) can be also be formulated as
data or noise prediction instead [55], with our results directly transferable to these formulations.

3 Variational constrained diffusion models

We introduce constrained diffusion models by considering the unparametrized set of joint distributions
in Section 3.1, and illustrating constraints via two examples in Section 3.2.

3.1 KL divergence-constrained diffusion model: unparametrized case

The standard diffusion model specifies a single data distribution, denoted by q in Lemma 1. To
account for other generation requirements, we introduce m additional data distributions {qi}mi=1 that
represent m desired properties on generated data. To incorporate new properties into the diffusion
model, we formulate an unparametrized KL divergence-constrained optimization problem,

minimize
p∈P

DKL (q(x0:T ) ∥ p(x0:T ))

subject to DKL
(
qi(x0:T ) ∥ p(x0:T )

)
≤ bi for i = 1, . . . ,m.

(U-KL)

Let an optimal solution to Problem (U-KL) be p⋆. Then the optimal value of the objective function is
F ⋆ := DKL(q ∥ p⋆). Problem (U-KL) aims to find a model p⋆ that generates data from the original
distribution q while staying close to m distributions {qi}mi=1 that encode our desired properties, e.g.,
unbiasedness towards minorities. Let the Lagrangian for Problem (U-KL) be

L(p, λ) = DKL (q(x0:T ) ∥ p(x0:T )) +

m∑
i=1

λi

(
DKL

(
qi(x0:T ) ∥ p(x0:T )

)
− bi

)
(6)

for λ ≥ 0. The dual function g(λ) is given by g(λ) := minp∈P L(p, λ), which is always concave.

To make Problem (U-KL) meaningful, we assume the constraints are strictly satisfied by some model.

Assumption 1 (Strict feasibility). There exists a model p ∈ P and ζ > 0 such that
DKL(q

i(x0:T ) ∥ p(x0:T )) ≤ bi − ζ for all i = 1, . . . ,m.

Let an optimal dual variable of Problem (U-KL) be λ⋆ ∈ argmaxλ≥ 0 g(λ), and the optimal value
of the dual function be D⋆ := g(λ⋆). From weak duality, the duality gap is non-negative, i.e.,
F ⋆ − D⋆ ≥ 0. Moreover, due to the convexity of KL divergence, Problem (U-KL) is a convex
optimization problem, and thus it satisfies strong duality; see Appendix B.2 for proof.

Lemma 2 (Strong duality). Let Assumption 1 hold. Then, Problem (U-KL) has zero duality gap, i.e.,
F ⋆ = D⋆. Moreover, (p⋆, λ⋆) is an optimal primal-dual pair of Problem (U-KL).

Let a mixture data distribution be q
(λ)
mix :=

(
q +

∑m
i=1 λ

iqi
)
/(1 + λ⊤1) for λ ≥ 0. We denote by

q
(λ)
mix(x0:T ) a joint distribution of the forward process with data distribution q

(λ)
mix . Leveraging strong

duality, we show that an optimal model can be obtained by solving an equivalent unconstrained
problem in Theorem 1 and its proof is deferred to Appendix B.3.
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Theorem 1 (Optimal constrained model). Let Assumption 1 hold. Then, Problem (U-KL) equals

minimize
p∈P

DKL

(
q
(λ⋆)
mix (x0:T ) ∥ p(x0:T )

)
(U-MIX)

where q
(λ⋆)
mix (x0:T ) is the joint distribution of the forward process at an optimal dual variable λ⋆.

Theorem 1 states that the KL divergence-constrained problem reduces to an unconstrained KL diver-
gence minimization problem. We notice that the KL divergence is zero if and only if two probability
distributions match each other. Hence, q(λ

⋆)
mix (x0:T ) is the optimal solution to Problem (U-MIX).

Corollary 1. Let Assumption 1 hold. Then, the solution of Problem (U-MIX), i.e., p⋆(x0:T ) =

q
(λ⋆)
mix (x0:T ), is the solution of Problem (U-KL).

Let b̄i := bi − Eqi(x0)[ log q
i(x0) ]. Application of Equality (3) to Problem (U-KL) yields an ELBO-

based constrained optimization problem,

minimize
p∈P

−E(p; q)

subject to −E(p; qi) ≤ b̄i for i = 1, . . . ,m.
(U-ELBO)

Recall the model representation in Section 2.2, we can characterize each joint distribution p ∈ P
with a function ŝ ∈ S . Moreover, ELBO reduces to the denoising matching term that has a simplified
quadratic form given in Section 2.2. With this reformulation in mind, we cast Problem (U-ELBO)
into a convex optimization problem over the function space S,

minimize
ŝ∈S

Eq(x0), t, xt

[
∥ŝ(xt, t)−∇ log q(xt)∥2

]
subject to Eqi(x0), t, xt

[ ∥∥ŝ(xt, t)−∇ log qi(xt)
∥∥2 ] ≤ b̃i for i = 1, . . . ,m

(U-LOSS)

where b̃i := (b̄i − v)/ω̄. Here, the notation v is a constant shift due to the variance mismatch term;
see it in Appendix A. We note that scaling or shifting objective and constraints from both sides
with some constants doesn’t alter the solution to a constrained optimization problem. Thus, the key
difference between Problems (U-KL) and (U-LOSS) is the optimization variable (respectively, p and
ŝ). Let the Lagrangian Ls(ŝ, λ) for Problem (U-LOSS) be

Eq(x0), t, xt

[
∥ŝ(xt, t)−∇ log q(xt)∥2

]
+

m∑
i=1

λi

(
Eqi(x0), t, xt

[∥∥ŝ(xt, t)−∇ log qi(xt)
∥∥2]− b̃i

)
.

Let the associated dual function be gs(λ) := minŝ∈S Ls(ŝ, λ) for λ ≥ 0. Hence, g(λ) and gs(λ)
have the same maximizer λ⋆, and the partial minimizer ŝ⋆ = argminŝ∈S Ls(ŝ, λ

⋆) is the solution
to Problem (U-LOSS). Hence, an optimal primal-dual pair (ŝ⋆, λ⋆) to Problem (U-LOSS) gives
an optimal primal-dual pair (p⋆, λ⋆) for Problem (U-KL), where p⋆ is a joint distribution of the
backward process induced by ŝ⋆. By this dual property, we take a dual perspective to train constrained
diffusion models: we maximize the dual function gs(λ) to obtain the optimal dual variable λ⋆, and
then recover the solution ŝ⋆ by minimizing the Lagrangian Ls(ŝ, λ

⋆).

3.2 Examples of KL divergence constraints

To illustrate our KL-divergence constraints, we provide two generation tasks of exemplary.

(i) Fairness to underrepresented classes. We consider a fair image generation task in which
some classes are underrepresented in the available training dataset. An example of this would
be the Celeb-A dataset [51] which contains pictures of celebrity faces with those labeled as
male being underrepresented (42% Male vs 58% Female). To promote representation of the
under-represented classes, we can pose it as an instance of Problem (U-KL), where each qi

denotes the distribution of an under-represented subset or minority class of q.
(ii) Adapting pretrained model to new data. Given a pretrained diffusion model over some

original dataset that is no longer accessible, we aim to fine-tune the pretrained model for
generating data from a new data distribution. Similarly, we can pose this as an instance of
Problem (U-KL), where q1 denotes the distribution of the new data and q is the distribution
of samples generated by the pre-trained model.
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Let hi := −Eqi(x0)

[
log qi(x0)

]
be the differential entropy of data distribution qi. We relate the KL

divergence constraints with the optimal dual variable through entropy in Theorem 2.

Theorem 2. Let Assumption 1 hold, and the supports of data distributions q and {qi}mi=1 be disjoint.
Then, the optimal dual variables λ⋆ to Problem (U-ELBO) are given by

λ⋆
i

1 + (λ⋆)T1
= ehi − b̄i for i = 1, . . . ,m.

See Appendix B.4 for proof. Theorem 2 characterizes the mixture weights in the target distribution
q
(λ⋆)
mix : (i) the tighter a constraint is (i.e., smaller threshold b̄i), the more the model will sample from

the associated distribution; (ii) for the same constraint thresholds, the model will sample more often
from the associated distributions that have higher entropy hi. Assumption 1 can be relaxed to a
feasibility condition for Problem (U-KL); see Lemma 6 in Appendix B.4.

4 Parametrization and dual training algorithm

Having introduced unparametrized models, we move to parametrization for constrained diffusion
models in Section 4.1, provide optimality analysis of a Lagrangian-based dual method in Section 4.2,
and present a practical dual training algorithm in Section 4.3.

4.1 KL divergence-constrained diffusion model: parametrized case

With the parametrized model pθ for θ ∈ Θ, we present a parameterized constrained problem,

minimize
θ∈Θ

DKL (q(x0:T ) ∥ pθ(x0:T ))

subject to DKL
(
qi(x0:T ) ∥ pθ(x0:T )

)
≤ bi for i = 1, . . . ,m.

(P-KL)

Let the Lagrangian for Problem (P-KL) be L̄(θ, λ) := L(pθ, λ). The associated dual function ḡ(λ)
is given by ḡ(λ) := minθ∈Θ L̄(θ, λ). Let an optimal solution to Problem (P-KL) be θ⋆. We denote
p̄ := pθ and p̄⋆ := pθ⋆ , and the optimal objective by F̄ ⋆ := DKL(q ∥ p̄⋆). Let an optimal dual variable
be λ̄⋆ ∈ argmaxλ≥ 0 ḡ(λ) and the optimal value of the dual function be D̄⋆ := ḡ(λ̄⋆).

Problem (P-KL) is non-convex in parameter space, and strong duality does not hold any more.
Thus, unparametrized results in Section 3.1 don’t directly apply to Problem (P-KL). For in-
stance, it’s invalid to find an optimal solution via an unconstrained problem as in Theorem 1,
i.e., p̄⋆(λ̄⋆) ∈ argminθ∈Θ L̄(θ, λ̄⋆) doesn’t equal p̄⋆. The effect of parametrization has to be
characterized. However, regardless of parametrization, weak duality always holds, i.e., F̄ ⋆ − D̄⋆ ≥ 0.

To quantify the optimality of p̄⋆(λ̄⋆) (closeness of it to q⋆mix), we study a practical representation of
model pθ as a parametrized function ŝθ ∈ Sθ, where Sθ is the set of all parametrized score functions.
Problem (U-LOSS) is in a parametrized form of

minimize
θ

Eq(x0), t, xt

[
∥ŝθ(xt, t)−∇ log q(xt)∥2

]
subject to Eqi(x0), t, xt

[ ∥∥ŝθ(xt, t)−∇ log qi(xt)
∥∥2 ] ≤ b̃i for i = 1, . . . ,m.

(P-LOSS)

where b̃i := (b̄i − v)/ω̄. We note that Problem (P-LOSS) is equivalent to Problem (P-KL).
Thus, we let the Lagrangian of Problem (P-LOSS) be L̄s(θ, λ) := Ls(ŝθ, λ), and the dual
function ḡs(λ) := minimizeθ∈Θ L̄(θ, λ). Since ḡ(λ) and ḡs(λ) have the same maximizer λ̄⋆,
θ̄⋆ ∈ argminθ∈Θ L̄s(θ, λ̄

⋆), which naturally gives a dual training algorithm in Algorithm 1.

Denote s̄⋆ := ŝθ̄⋆ . Thus, s̄⋆-induced diffusion model is given by p̄⋆(λ̄⋆). Algorithm 1 works as a dual
ascent method with two natural steps: (i) find a diffusion model with fixed dual variable λ(h); and
(ii) update the dual variable using the (sub)gradient of the Lagrangian Ls(ŝθ(h), λ). It is known that
Algorithm 1 converges to λ̄⋆ since the dual function ḡs(λ) is concave. However, such convergence
in the dual domain doesn’t provide optimality guarantee on the primal solution p̄⋆(λ̄⋆) due to the
non-convexity in parameter space. We next exploit the optimization properties of unparametrized
diffusion models in Section 3.1 to characterize the optimality of the dual training algorithm.
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Algorithm 1 Constrained Diffusion Models via Dual Training

1: Input: total diffusion steps T , diffusion parameter αt, total iterations H , stepsize η.
2: Initialize: λ(1) = 0.
3: for h = 1, · · · , H do
4: Compute model ŝθ(h) ∈ argmin

θ∈Θ
Ls(ŝθ, λ(h)).

5: Update the dual variable

λi(h+1) =
[
λi(h) + η

(
Ex0 ∼ qi,t,xt

[ ∥∥ŝθ(h)(xt, t)−∇ log qi(xt)
∥∥2 ] − b̃i

)]
+

for all i.

6: end for

4.2 Optimality analysis of dual training algorithm

We analyze the optimality of p̄⋆(λ̄⋆) as measured by its distance to q⋆mix, i.e., TV(q⋆mix, p̄⋆(λ̄⋆)),
where we denote the total variation distance between two probability distributions p and q by
TV(q, p) := 1

2

∫
|p(x)− q(x)|dx. We first exploit the convergence analysis of diffusion models, and

then characterize the additional error induced by parametrization.

Let us begin with the difference between p̄⋆(λ̄⋆) and q
(λ̄⋆)
mix at λ̄⋆. Denote a partial minimizer of the

Lagrangian by p̄⋆(λ) ∈ argminθ∈Θ L̄s(θ, λ) for λ ≥ 0. Noting that minimizeθ∈Θ L̄s(θ, λ) is an
unconstrained diffusion problem, we are ready to quantify the difference between p̄⋆(λ) and q

(λ)
mix for

any λ ≥ 0 using the convergence theory of diffusion models. To do so, we assume the boundedness
of samples from a mixed data distribution q

(λ)
mix for λ ≥ 0, and a small score estimation error.

Assumption 2 (Boundedness of data). The data samples generated from q
(λ)
mix are bounded, i.e.,

P
(
∥x0∥ ≤ T c |x0 ∼ q

(λ)
mix

)
= 1 for any λ ≥ 0 and some large constant c > 0.

Assumption 3 (Boundedness of score estimation error). The score estimator ŝθ(xt, t) estimates the
data samples from q

(λ)
mix with bounded score matching error εscore,

E
q
(λ)
mix (x0), t, xt

[
∥ŝθ(xt, t)−∇ log q(xt)∥2

]
≤ ε2score

for any λ ≥ 0, where E
q
(λ)
mix (x0), t, xt

is an expectation over the mixed data distribution q
(λ)
mix(x0), a

uniform distribution over t from 2 to T , and a forward process q(xt |x0) given the data sample x0.

Since data samples are bounded, Assumption 2 is mild in practice. Assumption 3 is the typical score
matching error that is near zero if the function class Sθ is sufficiently rich.

With Assumptions 2 and 3, below we bound the TV distance between q
(λ)
mix and p̄⋆(λ) using the

convergence theory of diffusion models from [47]; see Appendix B.5 for proof.
Lemma 3 (Convergence of diffusion model). Let Assumptions 2 and 3 hold. Then, the TV distance
from p̄⋆(λ) to q

(λ)
mix is bounded by

TV
(
q
(λ)
mix , p̄

⋆(λ)
)

≤
√

1

2
DKL

(
q
(λ)
mix ∥ p̄⋆(λ)

)
≲

d2 log3 T√
T

+
√
d
(
log2 T

)
εscore. (7)

Lemma 3 states that the TV distance between q
(λ)
mix and p̄⋆(λ) decays to zero with a sublinear rate

O( 1√
T
), up to a score matching error O(εscore). When the diffusion time T is large, the TV distance

between q
(λ)
mix and p̄⋆(λ) is dominated by the score matching error. Substitution of λ = λ̄⋆ into (7)

yields an upper bound on TV(q
(λ̄⋆)
mix , p̄⋆(λ̄⋆)), which is the second term of the inequality

TV
(
q⋆mix, p̄

⋆(λ̄⋆)
)

≤ TV
(
q⋆mix, q

(λ̄⋆)
mix

)
+ TV

(
q
(λ̄⋆)
mix , p̄⋆(λ̄⋆)

)
. (8)

Next, we quantify the gap between λ̄⋆ and λ⋆, which lets us bound the first term on the RHS of (8)
and complete the optimality analysis. To analyze the parametrized optimal dual variable λ̄⋆, we
introduce the richness of the parametrized class Sθ and redundancy of constraints at ŝ⋆ below.

7



Assumption 4 (Richness of parametrization). For any function ŝ ∈ S , there exists parameter θ ∈ Θ
such that ∥ŝθ − ŝ∥L2 ≤ ν, where ∥·∥L2

is with respect to the forward process.

Assumption 5 (Redundancy of constraints). There exists σ > 0 such that

inf
∥λ∥=1

∥∥∥∥∥
m∑

i=1

λi ∇ŝ Eqi(x0), t, xt
[ ŝ⋆(xt, t)−∇ log q(xt) ]

∥∥∥∥∥
L2

≥ σ (9)

where ∇ŝ is the Fréchet derivative over the function ŝ and ŝ⋆ is a solution to Problem (U-LOSS).

Assumption 4 is mild since the gap is small for expressive neural networks [56, 31]. Assumption 5
captures the linear independence of constraints, which is similarly used in optimization [4].

Due to Assumption 2, we set the function class S to be bounded ∥ ŝ ∥L2
≤ T c := R. Using

Problem (U-LOSS), we prove that the unparametrized dual function gs(λ) is differentiable, and
strongly-concave over H with parameter µ, where H := {γλ⋆ + (1 − γ)λ̄⋆, γ ∈ [0, 1]} and
µ :=

(
σ/
(
1 + max

(
∥λ⋆∥1 ,

∥∥λ̄⋆
∥∥
1

)))2
,which leads to Lemma 4; see Appendix B.6 for their proofs.

Lemma 4. Let Assumptions 4 and 5 hold. Then,
∥∥λ̄⋆ − λ⋆

∥∥2 ≤ 8
µR
(
1 +

∥∥λ̄⋆
∥∥
1

)
ν.

Since TV
(
q⋆mix, q

(λ̄⋆)
mix

)
is bounded by

∥∥λ̄⋆ − λ⋆
∥∥
1

(see Appendix B.6), application of Lemma 3 and
Lemma 4 to (8) leads to Theorem 3; see Appendix B.7 for proof.

Theorem 3 (Optimality of constrained diffusion model). Let Assumptions 1–5 hold. Then, the total
variation distance between p̄⋆(λ̄⋆) and q⋆mix is upper bounded by

TV
(
q⋆mix, p̄

⋆(λ̄⋆)
)

≲
d2 log3 T√

T
+

√
8

µ
mR

(
1 +

∥∥λ̄⋆
∥∥
1

)
ν +

√
d
(
log2 T

)
εscore.

Theorem 3 states that the TV distance between p̄⋆(λ̄⋆) and q⋆mix decays to zero with a sublinear rate
O( 1√

T
), up to a parametrization gap O(

√
ν) and a prediction error O(εscore). When the parametriza-

tion is rich enough, the parametrization gap ν and the prediction error O(εscore) are nearly zero. In
this case, if the diffusion time T is large, then p̄⋆(λ̄⋆) is close to q⋆mix in TV distance, which recovers
the ideal optimal constrained model in the unparametrized case in Section 3.1.

4.3 Practical dual training algorithm

Having established the optimality of our dual training method, we futher turn Algorithm 1 into
a practical algorithm. First, we relax the computation of a diffusion model ŝθ(h) in line 4 of
Algorithm 1 to be approximate: Ls(ŝθ(h), λ(h)) ≤ min

θ∈Θ
Ls(ŝθ, λ(h)) + ε2approx, where ε2approx is

an approximation error of training a diffusion model given λ(h). Second, we replace the gradi-
ent in line 5 of Algorithm 1 by a stochastic gradient Êx0 ∼ qi, t, xt

[
∥ŝθ(xt, t)−∇ log q(xt)∥2

]
,

which enables Algorithm 1 to be a stochastic algorithm, where Êx0 ∼ qi, t, xt
is an unbiased es-

timate of Ex0 ∼ qi, t, xt
. To analyze this approximate and stochastic variant of Algorithm 1,

it is useful to introduce the maximum parametrized dual function in history up to step h by
ḡbest(h) := maxh′ ≤h ḡs(λ(h

′)), and an upper bound of the second-order moment of stochastic
gradient S2 :=

∑m
i=1 E

[ (
Êx0 ∼ qi, t, xt

[
∥ŝθ(h)(xt, t)−∇q(xt)∥2

]
− b̃i

)2 |λ(h) ].
Denote the dual variable that achieves ḡbest(h) by λbest. To bound the TV distance between p̄⋆(λ̄best)

and q⋆mix, we check the TV distance between q
(λ̄best)
mix and p̄⋆(λ̄best) using Lemma 3. The rest is to

analyze the convergence of λ̄best to λ⋆ via application of martingale convergence. We defer their
proofs to Appendix B.8 and present the optimality of p̄⋆(λ̄best) in Theorem 4.

Theorem 4 (Optimality of approximate constrained diffusion model). Let Assumptions 1–5 hold.
Then, the total variation distance between p̄⋆(λ̄best) and q⋆mix is upper bounded by

TV
(
q⋆mix, p̄

⋆(λ̄best)
)

≲
d2 log3 T√

T
+

8R
(
1 +

∥∥λ̄best
∥∥
1

)
µ

ν+
√
d
(
log2 T

)
εscore +

2

µ
ε2approx +

η S2

µ
.
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Theorem 4 states that the TV distance between p̄⋆(λ̄best) and q⋆mix decays to zero with a sublinear rate
O( 1√

T
), up to a parametrization gap O(ν), a score matching error O(εscore), an approximation error

O(εapprox), and stepsize O(η). When the parametrization is rich enough, the parametrization gap ν
and the score matching error O(εscore) are near zero. Thus, if the diffusion time T is large, then the
closeness of p̄⋆(λ̄best) to q⋆mix in TV distance is governed by the appproximation error and stepsize.

5 Computational experiments

We demonstrate the effectiveness of constrained diffusion models trained by our dual training
algorithm in two constrained settings in Section 3.2; see Appendix C for experimental details.

Fairness to underrepresented classes. We train constrained diffusion models over three datasets:
MNIST digits [44], Celeb-A faces [51], and Image-Net1 [63]. For MNIST and Image-Net, we create
a dataset for the distribution q in (P-LOSS) by taking a subset of the dataset with equal number of
samples from each class. Then we make some classes under-represented by removing their samples.
For each distribution qi, we use samples from the associated underrepresented class. For Celeb-A,
our approach is similar to MNIST except we don’t remove any samples due to the existence of class
imbalance in the dataset (58% female vs 42% male). For Image-Net, since the images are of high
resolution, we employ the latent diffusion scheme [62] by imposing distribution constraints in latent
space. Figures 1–3 show that our constrained model samples more often from the underrepresented
classes (MNIST: 4, 5, 7; Celeb-A: male; Image-Net: ‘Cassette player’, ‘French horn’, and ‘Golf
ball’), leading to a more uniform sampling over all classes. This reflects our theoretical insights on
promoting fairness for minority classes (see Section 3.2). Quantitatively, we observe fairly lower
FID scores when training over the same dataset but with constraints (see Appendix C for further
discussion on FID scores). Furthermore, our Image-Net experiment shows that our approach extends
to the state-of-the-art diffusion models in latent space.
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Figure 1: Generation performance comparison of constrained and unconstrained models that are
trained on MNIST with three minorities: 4, 5, 7. ( Left ) Frequencies of ten digits that are generated
by an unconstrained model ( ) and our constrained model ( ); ( Middle ) Generated digits from
unconstrained model ( FID 15.9 ); ( Right ) Generated digits from our constrained model ( FID 13.4 ).

Adapting pretrained model to new data. Given a pretrained diffusion model over some original
dataset Dpretrain, we fine-tune the pretrained model for generating data that resemble Dnew. To cast
this problem into (P-KL), we let the data distribution be Dnew, i.e., q(x0:T ) = qnew(x0:T ) and the
constrained distribution be the pre-trained model, i.e., qi(x0:T ) = pθpre(x0:T ). In our experiments,
we pretrain a diffusion model on a subset of MNIST digits excluding a class of digits (MNIST: 9),
and fine-tune this model using samples of the excluded digit. Figure 4 shows that our constrained
fine-tuned model samples from the new class as well as all previous classes, whereas the model
fine-tuned without the constraint quickly overfits to the new dataset (see Appendix C for details). Our
constrained model generates much better high-quality samples than the unconstrained model.

6 Conclusion

We have presented a constrained optimization framework for training diffusion models under distri-
bution constraints. We have developed a Lagrangian-based dual algorithm to train such constrained

1We use a subset of ten classes from Image-Net: ‘Tench Fish’, ‘English Springer Dog’, ‘Cassette Player’,
‘Chain saw’, ‘Church’, ‘French Horn’, ‘Garbage Truck’, ‘Gas Pump’, ‘Golf Ball’, ‘Parachute.’
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Figure 2: Generation performance comparison of constrained and unconstrained models that are
trained on Celeb-A with male minority. ( Left ) Frequencies of two genders that are generated by
an unconstrained model ( ) and our constrained model ( ); ( Middle ) Generated faces from
unconstrained model ( FID 19.6 ); ( Right ) Generated faces from our constrained model ( FID 11.6 ).
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Figure 3: Generation performance comparison of constrained and unconstrained models that are
trained on Image-Net with minority classes: ‘Cassette player’ (2), ‘French horn’ (5), and ‘Golf ball’
(8). ( Left ) Frequencies of ten classes that are generated by an unconstrained model ( ) and our
constrained model ( ); ( Middle ) Generated images from unconstrained model ( FID 36.0 ); (Right)
Generated images from our constrained model ( FID 27.3 ).
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Figure 4: Fine-tuning performance comparison of constrained and unconstrained models that are
trained on MNIST. ( Left ) Frequencies of ten digits that are generated by a pre-trained model
without digit 9 ( ) and our fine-tuned constrained model ( ); ( Middle ) Generated digits from
unconstrained model ( FID 45.9 ); ( Right ) Generated digits from our constrained model ( FID 25.2 ).

diffusion models. Our theoretical analysis shows that our constrained diffusion model generates new
data from an optimal mixture data distribution that satisfies the constraints, and we have demonstrated
the effectiveness of our distribution constraints in reducing bias across three widely-used datasets.

This work directly stimulates several research directions: (i) extend our distribution constraints to
other domain constraints, e.g., mirror diffusion [48]; (ii) incorporate conditional generations, e.g.,
text-to-image generation [28, 65], into our constrained diffusion models; (iii) conduct experiments
with text-to-image datasets to identify and address biases; (iv) improve the convergence theory using
more advanced diffusion processes.
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A Details on ELBO

Recall the evidence lower bound (ELBO),

E(p; q) := Eq(x0)Eq(x1:T | x0) log
p(x0:T )

q(x1:T |x0)
,

we can utilize conditionals to expand it into

E(p; q) = Eq(x0)Eq(x1 | x0) [ log p(x0 |x1) ]︸ ︷︷ ︸
reconstruction likelihood

− Eq(x0) [DKL(q(xT |x0) ∥ p(xT )) ]︸ ︷︷ ︸
final latent mismatch

−
T∑

t=2

Eq(x0)Eq(xt | x0) [DKL (q(xt−1 |xt, x0) ∥ p(xt−1 |xt)) ]︸ ︷︷ ︸
denoising matching term

where the first term is the reconstruction likelihood of the original data given the first latent x1, the
second term is the mismatch between the final latent distribution and the Guassian prior, and the
last summation measures the mismatch between the denoising transitions from forward/backward
processes. With the variance schedule described in Section 2.1, it is known that the reconstruction
likelihood and final latent mismatch are negligible, and thus the approximation in (4) is almost exact,
which is our focal setting of this paper.

We next focus on one summand of the denoising matching term,

Eq(x0)Eq(xt | x0) [DKL (q(xt−1 |xt, x0) ∥ p(xt−1 |xt)) ] .

Application of the reparametrization trick leads to xt =
√
αtxt−1 +

√
1− αtϵt−1, where ϵt−1 ∼

N (0, I) is a white noise sample. Using Bayes rule, we can express q(xt−1 |xt, x0) as a Guassian
distribution

N (xt−1;µq(xt), σq(t)I)

where µq(xt) =
1√
αt
xt +

1−αt√
αt

∇ log q(xt) is the mean and σ2
q (t) =

(1−αt)(1−ᾱt−1)
1−ᾱt

is the variance.

To stay close to the ground-truth backward conditional q(xt−1 |xt, x0) as much as possible, we take
p(xt−1 |xt) to be the same as q(xt−1 |xt, x0) except replacing ∇ log p(xt) by ŝ(xt, t) and σ2

q (t) by
σ2
p(t),

N (xt−1; µ̂(xt), σp(t)I)

where µ̂(xt) =
1√
αt
xt +

1−αt√
αt

ŝ(xt, t). Thus,

DKL (q(xt−1 |xt, x0) ∥ p(xt−1 |xt))

= DKL(N (xt−1;µq(xt), σq(t)I) ∥N (xt−1; µ̂(xt), σp(t)I))

=
1

2

(
d log

σ2
p(t)

σ2
q (t)

− d+ d
σ2
p(t)

σ2
q (t)

+
1

σ2
q (t)

∥µq(xt, x0)− µ̂(xt, x0)∥2
)

=
1

2

(
d log

σ2
p(t)

σ2
q (t)

− d+ d
σ2
p(t)

σ2
q (t)

)
︸ ︷︷ ︸

variance mismatch

+
1

2σ2
q (t)

(1− αt)
2

αt
∥ŝ(xt, t)−∇ log q(xt)∥2︸ ︷︷ ︸

prediction loss

where the second equality is due to the KL Divergence between two Gaussians. Since σ2
p(t)

and σ2
q (t) are constants, the variance mismatch term is irrelevant to optimization. Denote

ωt :=
(1−αt)

2

2σ2
q(t)αt

and ω̄ :=
∑T

t=2 ωt. We can define a discrete distribution over the set {2, . . . , T} as
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pω(t) :=
ωt

ω̄ . Also denote v :=
∑T

t=2
1
2

(
d log

σ2
p(t)

σ2
q(t)

− d+ d
σ2
p(t)

σ2
q(t)

)
. Hence, the ELBO maximiza-

tion: maximizep E(p; q), is equivalent to the quadratic loss minimization,

minimize
ŝ

v + ω̄ Ex0, t, xt

[
∥ŝ(xt, t)−∇ log q(xt)∥2

]
where Ex0, t, xt

is an expectation over the data distribution q(x0), the discrete distribution pω(t)
from 2 to T , and a forward process q(xt |x0) given the data sample x0. Since shifting an objective
function by a constant and scaling an objective function by a constant don’t change the solution of an
optimization problem, we omit constants v and ω̄ for brevity, and only emphasize them whenever it
is necessary. Hence, the ELBO maximization equals the quadratic loss minimization,

minimize
ŝ

Ex0, t, xt

[
∥ŝ(xt, t)−∇ log q(xt)∥2

]
up to some scaling and shifting constants, where Ex0,t,xt

is an expectation over the data distribution
q(x0), the discrete distribution pω(t) from 2 to T , and a forward process q(xt |x0) given the data
sample x0. In practice, however, we have to parametrize the estimator ŝ(xt, t) as ŝθ(xt, t) with
parameter θ ∈ Θ,

minimize
θ∈Θ

Ex0, t, xt

[
∥ŝθ(xt, t)−∇ log q(xt)∥2

]
which is our focal objective of generative modeling. A parametrized representation of p(xt−1 |xt)
associated with ŝθ(xt, t) is denoted by pθ(xt−1 |xt) and the backward process has a parametrized
joint distribution pθ(x0:T ). We remark that the above prediction problem can be reformulated as data
or noise predictions [55], with our results directly transferrable to these formulations.

B Proofs

We provide proofs of all lemmas and theorems in the main paper.

B.1 Proof of Lemma 1

Proof. The ELBO maximization has the same optimal solution with the KL divergence minimization
because of the equality (3). This directly proves the second equivalence. Next, we relate these two
problems to the likelihood maximization problem.

We note that the KL divergence is non-negative and is zero if and only if two distributions are the
same. Since q(x0:T ) ∈ P for large T , the solution of the ELBO maximization and KL divergence
minimization is given by p⋆ = q. For the KL divergence minimization, the optimal value is zero. For
the optimal value of the ELBO maximization, from (3) it follows that:

E(p⋆; q) = Eq(x0)[ log q(x0) ]−DKL(q(x0:T ) ∥ p⋆(x0:T )) = Eq(x0)[ log q(x0) ]. (10)

It is clear that the likelihood maximization problem maximizep Eq(x0)[ log p(x0) ] is equivalent
to minimizep DKL(q(x0) ∥ p(x0)). Therefore, any distribution p⋆(x0:T ) whose marginal satisfies
p⋆(x0) = q(x0), will be a solution of the likelihood maximization problem. This includes the solution
of the KL divergence minimization and ELBO maximization which is p⋆ = q. Therefore,

maximize
p∈P

E(p; q) ⇒ maximize
p∈P

Eq(x0)[ log p(x0) ] (11)

which concludes the proof.

B.2 Proof of Lemma 2

Proof. It is straightforward to check the zero duality gap in convex optimization; see e.g., [4,
Proposition 5.3.2]. Furthermore, for a convex optimization problem, an optimal dual variable λ⋆ that
maximizes the dual function is a geometric multiplier. Hence, (p⋆, λ⋆) is an optimal primal-dual pair
of the convex optimization problem.
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B.3 Proof of Theorem 1

Proof. From the strong duality in Lemma 2, it is known from [4, Proposition 5.1.4] that λ⋆ is also a
geometric multiplier. Thus, Problem (U-KL) reduces to an unconstrained problem,

minimize
p∈P

L(p, λ⋆) (12)

where the objective function results from plugging an optimal dual variable λ⋆ into Lagrangian
L(p, λ).
By the definition of Lagrangian,

L(p, λ) = DKL(q(x0:T ) ∥ p(x0:T )) +

m∑
i=1

λi

(
DKL

(
qi(x0:T ) ∥ p(x0:T )

)
− bi

)
= −E(p; q)−

m∑
i=1

λi E(p; qi)

+Eq(x0) [log q(x0)] +

m∑
i=1

λi

(
Eq(x0)

[
log qi(x0)

]
− bi

)
By taking λ = λ⋆, Problem (12) is equivalent to

maximize
p∈P

E(p; q) +

m∑
i=1

λ⋆
i E(p; qi). (13)

From the definition of ELBO, we know that

E(p; q) +

m∑
i=1

λ⋆
iE(p; qi) =

(
Eq(x0) +

m∑
i=1

λ⋆
iEqi(x0)

)
Eq(x1:T | x0) log

p(x0:T )

q(x1:T |x0)

where we use the fact that the forward processes have the same marginal distribution given any
initial data samples. Normalization of initial data distributions leads to q

(λ⋆)
mix . Thus, Problem (13) is

equivalent to

maximize
p∈P

E(p; q
(λ⋆)
mix )

which, together with Lemma 1, completes the proof.

B.4 Proof of Theorem 2 and Feasibility Criterion

We start with the proof of Theorem 2.

Proof. Similar to the proof of Theorem 1, we begin with the Lagrangian of Problem (U-ELBO),

L(p, λ) = −E(p; q) −
m∑

i=1

λi

(
E(p; qi) + b̄i

)

= λT1

(
−

m∑
i=1

λi

λT1
E(p; qi)

)
− λT b̄ (14)

= λT1

(
−

m∑
i=1

λi

λT1
Eqi(x0)Eq(x1:T | x0) log

p(x0:T )

q(x1:T |x0)

)
− λT b̄

= λT1

(
−Eq(λ)(x0)Eq(x1:T | x0) log

p(x0:T )

q(x1:T |x0)

)
− λT b̄

= − (λT1)E(p; q(λ)) − λT b̄
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where from (14) onwards we use notation: λ0 = 1, b̄0 = 0, λ = [λ0, . . . , λm]
T
, b̄ =

[
b̄0, . . . , b̄m

]T
,

and use q0 to represent q, which will be used in the rest of proof. To formulate the dual problem, we
check the minimum of the Lagrangian,

g(λ) := minimize
p∈P

L(p, λ)

= minimize
p∈P

− (λT1)E(p; q(λ))− λT b̄

= −λT b̄ + (λT1) minimize
p∈P

−E(p; q(λ)) (15)

where the only term that depends on p is the ELBO. Recall that:

DKL(q(x0:T ) ∥ p(x0:T )) = −E(p; q) + Eq(x0) [ log q(x0) ] .

Since the minimum value of the KL divergence is zero (attained when p = q), the minimum of
−E(p; q) is likewise attained when p = q. Thus, it is straightforward that the minimum is equal
to the entropy of the distribution q, denoted by h(q) := −Eq(x0) [ log q(x0) ]. With this in mind,
from (15) we have

g(λ) = −λT b̄ + (λT1) h(q(λ)).

Thus, the dual problem reads

maximize
λ≥ 0

g(λ) := −λT b̄ + (λT1) h(q(λ)).

We first reformulate the entropy of the mixture distribution q(λ),

h(q(λ)) = −Eq(λ)(x0)

[
log q(λ)(x0)

]
= −

∫ m∑
i=0

λi

λT1
qi(x0) log

(
m∑

i=1

λi

λT1
qi(x0)

)
dx0 (16)

= −
∫ m∑

i=0

λi

λT1
qi(x0) log

(
λi

λT1
qi(x0)

)
dx0 (17)

= −
m∑

i=0

λi

λT1

∫
qi(x0) log

(
qi(x0)

)
dx0︸ ︷︷ ︸

:=−hi

−
m∑

i=0

λi

λT1
log

(
λi

λT1

)

=

m∑
i=0

λi

λT1
hi −

m∑
i=0

λi

λT1
log

(
λi

λT1

)

=

m∑
i=0

λi

λT1
hi −

m∑
i=0

λi

λT1
log(λi) + log(λT1)

where going from (16) to (17) we utilize the assumption that the distributions {qi}mi=0 have disjoint
supports; see Remark 1 on when this is the case.

Now, we can compute the gradient of the dual function over λi, i = 1, . . . ,m,

∂

∂λi

(
−λT b̄ + (λT1) h(q(λ))

)
=

∂

∂λi

−λT b̄+

m∑
j =0

λjhj −
m∑

j =0

λj log λj + (λT1) log(λT1)


= hi − b̄i − log

(
λi

λT1

)
.

Setting the gradient be zeros allows us to find the optimal dual variables λ⋆,

hi − b̄i − log

(
λ⋆
i

(λ⋆)T1

)
= 0 for i = 1, . . . ,m.

19



Hence,
λ⋆
i

(λ⋆)T1
= ehi − b̄i for i = 1, . . . ,m. (18)

We clarify that in (18), λ⋆ = [λ⋆
0, . . . , λ

⋆
m]

T with its first element being λ⋆
0 = 1. Finally, if we return

back to notation λ⋆ = [λ⋆
1, . . . , λ

⋆
m]

T , then,

λ⋆
i

1 + (λ⋆)T1
= ehi − b̄i for i = 1, . . . ,m

which completes the proof.

Remark 1. We remark on the assumption of the distributions {qi}mi=0 having disjoint supports. In
the setting of adapting model to new data in Section 3.2, this is a reasonable assumption. Since we
often finetune a pre-trained diffusion model on new data not seen in the original pre-training dataset,
the new data distribution and the pre-training data distribution have mostly disjoint supports. In
the minority class setting in Section 3.2, the constrained distributions {qi}mi=1 and the objective
distribution q0 usually are not disjoint. However, since the distributions {qi}mi=1 often are often
restrictions of q0 to subsets of the support of q0, i.e., the minority classes, the derivation of optimal
dual variables is similar to what we have provided in this section, so we omit the repeated details.
Extending these results to cases where the distributions are neither disjoint nor restrictions of the
objective distributions, is challenging and has been left to future work.

To prove a feasibility criterion, we first show that the dual function is finite in Lemma 5.
Lemma 5 (Boundedness of the optimal dual function). Let the differential entropy hi of each
distribution qi be finite. Then, the optimal value of the dual function D⋆ := maxλ≥ 0 g(λ) is finite if
and only if

m∑
i=1

ehi − b̄i < 1.

Proof. (⇐) From
∑m

i=1 e
hi−b̄i < 1, the otpimal dual variable λ⋆ given by (18) is finite. Thus, the

optimal value of the dual function g(λ⋆) becomes

g(λ⋆) = − (λ⋆)T b̄ +

m∑
i=0

λ⋆
i hi −

m∑
i=0

λ⋆
i log λ

⋆
i + ((λ⋆)T1) log((λ⋆)T1)

and λ⋆
i = ehi−b̄i > 0, and also {hi}mi=1 are all finite. Therefore, D⋆ is finite.

(⇒) We prove it by contradiction. Assume
∑m

i=1 e
hi−b̄i = eδ ≥ 1 for some δ ≥ 0. For any λ ≥ 0,

there exists a direction in which g(λ) increases, i.e.,

∂g

∂λi
= hi − b̄i − log

(
λi

λT1

)
> δ ∃ i. (19)

To see (19) by contradiction, we check that

hi − b̄i − log

(
λi

λT1

)
≤ δ for i = 1, . . . ,m

=⇒ ehi − b̄i − δ ≤ λi

λT1
for i = 1, . . . ,m

=⇒

(
m∑

i=1

ehi − b̄i

)
e−δ ≤

∑m
i=1 λi

λT1
=

∑m
i=1 λi

1 +
∑m

i=1 λi
< 1

=⇒
m∑

i=1

ehi − b̄i < eδ

which contradicts our assumption that
∑m

i=1 e
hi − b̄i = eδ . By contradiction, we have (19). Further-

more, (19) implies that g(λ) is unbounded above, which contradicts the finiteness of D⋆. Therefore,
we must have that

∑m
i=1 e

hi − b̄i < 1.
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Lemma 6 (Feasibility criterion). Let the differential entropy hi of each distribution qi be finite.
Suppose that there exists a feasible solution to Problem (U-ELBO) such that its objective function is
bounded from below. Then, Problem (U-ELBO) is feasible if and only if

m∑
i=1

ehi − b̄i < 1.

Proof. (⇒) Since the primal problem is feasible, the optimal objective function F ⋆ is bounded from
below and it is attained at a feasible point. For the sake of contradiction, we assume

∑m
i=1 e

hi − b̄i ≥
1, which is equivalent to D⋆ = ∞ according to Lemma 5. However, this violates weak duality, i.e.,
D⋆ ≤ F ⋆. By contradiction, we must have

∑m
i=1 e

hi − b̄i < 1.

(⇐) We consider a set A,

A :=
{
(u1, . . . , um, t) | − E(p, qi)− b̄i ≤ ui for i = 1, . . . ,m and − E(p, q0) ≤ t for p ∈ P

}
.

The set A is convex since it is the intersection of m + 1 epigraphs of convex functions. We also
introduce another convex set B,

B := {(0, . . . , 0, t) | t ∈ R} .

We utilise proof by contradiction. Assume that the primal problem is infeasible. Then there doesn’t
exist any p ∈ P such that −E(p, qi)− b̄i ≤ 0 for all i = 1, . . . ,m. Hence, A and B are two disjoint
convex sets. From the separating hyperplane theorem, there exists a hyperplane that separates them,
i.e., ∃v ∈ Rm+1 and c ∈ R,

xT v ≥ c for all x ∈ A (20)

yT v ≤ c for all y ∈ B. (21)

Let v = [λ1, . . . λm, γ ]
T . Then, (21) reduces to

yT v = λTu + γt = γt ≤ c for all (u, t) ∈ B ⇒ γ = 0.

This is because γt ≤ c for any t ∈ R. Note that γ = 0 means the separating hyperplane is vertical,
i.e., being parallel to the t-axis. Furthermore, from (20) we can write

xT v = λTu + γt = λTu ≥ c for all (u, t) ∈ A ⇒ λ ≥ 0.

The above is true because the set of values that each ui can take in A is unbounded above. Thus,
since λTu ≥ c, necessarily every λi has to be non-negative. Now, we consider

g(λ) = inf
(u,t)∈A

t + λTu

=⇒ g(αλ) = inf
(u,t)∈A

t + αλTu for α ∈ R+

=⇒ lim
α→∞

g(αλ) = lim
α→∞

inf
(u,t)∈A

t + αλTu

= lim
α→∞

α

(
inf

(u,t)∈A
λTu

)
≥ lim

α→∞
αc

= ∞

which shows that D∗ = ∞. This contradicts D⋆ being finite (D⋆ is finite due to
∑m

i=1 e
hi−b̄i < 1

and Lemma 5). Because of the contradiction, the primal problem has to be feasible.

B.5 Proof of Lemma 3

Proof. The proof is an application of the convergence theory of DDPM [47, Theorem 3]. We next
check all assumptions of [47, Theorem 3]. It is easy to see that we can cast q(λ)mix as a target distribution
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of a diffusion model. By the definition,

L̄(θ, λ) = DKL (q(x0:T ) ∥ pθ(x0:T )) +

m∑
i=1

λi

(
DKL

(
qi(x0:T ) ∥ pθ(x0:T )

)
− bi

)
= −E(pθ; q) + Eq(x0)[ log q(x0) ] +

m∑
i=1

λi

(
−E(pθ; q

i)− b̄i
)
.

Thus, the partial minimization of L̄(θ, λ) over θ is equivalent to a weighted EBLO minimization,

minimize
θ∈Θ

−E(pθ; q) −
m∑

i=1

λi E(pθ; q
i)

or, equivalently,
minimize

θ∈Θ
−E(pθ; q

(λ)
mix) (22)

where we normalize the weighted ELBO objective by introducing a mixed data distribution q
(λ)
mix . We

note that p̄⋆(λ) is also a minimizer of Problem (22).

On the other hand, using Problem (P-LOSS), we can rewrite Problem (22) as

minimize
θ∈Θ

E
q
(λ)
mix (x0), t, xt

[
∥ŝθ(xt, t)−∇ log q(xt)∥2

]
which is equivalent to the score matching objective in DDPM. Therefore, the score matching as-
sumption in [47, Assumption 1] is satisfied with the error bound ε2score from Assumption 3. Viewing
Assumption 2, and using appropriate stepsize and variance, all assumptions in [47, Theorem 3] are
satisfied. Therefore, application of [47, Theorem 3] completes the proof.

B.6 Proof of Lemma 4

Lemma 7. The TV distance between two mixture data distributions q(λ)mix , q(λ
⋆)

mix is bounded by

TV
(
q
(λ)
mix , q

(λ⋆)
mix

)
≤ ∥λ− λ⋆∥1 .

Proof. By the definition,

TV
(
q
(λ)
mix , q

(λ⋆)
mix

)
=

1

2

∫
x0

∣∣∣∣q +∑m
i=1 λ

iqi

1 + λ⊤1
−

q +
∑m

i=1 λ
i,⋆qi

1 + (λ⋆)⊤1

∣∣∣∣
=

1

2

∫
x0

∣∣∣∣ (1 + (λ⋆)⊤1)(q +
∑m

i=1 λ
iqi)− (1 + λ⊤1)(q +

∑m
i=1 λ

i,⋆qi)

(1 + λ⊤1)(1 + (λ⋆)⊤1)

∣∣∣∣
=

1

2

∫
x0

∣∣∣∣∑m
i=1 λ

iqi + (λ⋆)⊤1q −
∑m

i=1 λ
i,⋆qi − λ⊤1q

(1 + λ⊤1)(1 + (λ⋆)⊤1)

∣∣∣∣
≤ 1

2

∫
x0

∣∣∣∣∣
m∑

i=1

(λi − λi,⋆)qi + (λ⋆ − λ)⊤1q

∣∣∣∣∣
≤

m∑
i=1

|λi − λi,⋆|

= ∥λ− λ⋆∥1
where the first inequality is due to (1 + λ⊤1)(1 + (λ⋆)⊤1) ≥ 1, and we use triangle inequality in
the second inequality.

We recall the Lagrangians for Problems (U-LOSS) and (P-LOSS),

Ls(ŝ, λ) = Eq(x0), t, xt

[
∥ŝ(xt, t)−∇ log q(xt)∥2

]
+

m∑
i=1

λi

(
Eqi(x0), t, xt

[
∥ŝ(xt, t)−∇ log q(xt)∥2

]
− b̃i

)
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L̄s(ŝθ, λ) = Ls(ŝθ, λ)

and their associated dual functions,

gs(λ) = minimize
ŝ∈S

Ls(ŝ, λ) and ḡs(λ) = minimize
θ∈Θ

L̄s(ŝθ, λ).

For brevity, we use shorthand Eq and Eqi for Eq(x0), t, xt
and Eqi(x0), t, xt

, respectively.

Lemma 8 (Parametrization gap). Let Assumption 4 hold. Then, 0 ≤ ḡs(λ)−gs(λ) ≤ 4R(1+∥λ∥1)ν
for any λ ≥ 0.

Proof. Let the partial minimizer of Ls(ŝ, λ) over ŝ be ŝ⋆(λ) := argminŝ Ls(ŝ, λ) for any λ ≥ 0.
For any λ ≥ 0, there exists θ̃ ∈ Θ such that

∥∥ŝ⋆(λ)− ŝθ̃
∥∥
L2

≤ ν for any λ ≥ 0, according to
Assumption 4. Thus,

L̄s(ŝθ̃, λ)− Ls(ŝ
⋆(λ), λ) = Eq

[ ∥∥ŝθ̃(xt, t)− x0

∥∥2 ] − Eq

[
∥ŝ⋆(λ)(xt, t)− x0∥2

]
+

m∑
i=1

λi

(
Eqi

[ ∥∥ŝθ̃(xt, t)− x0

∥∥2 ]− Eqi

[
∥ŝ⋆(λ)(xt, t)− x0∥2

])
≤ 4REq

[ ∥∥ŝθ̃(xt, t)− ŝ⋆(λ)(xt, t)
∥∥ ]

+4R

m∑
i=1

λi Eqi
[ ∥∥ŝθ̃(xt, t)− ŝ⋆(λ)(xt, t)

∥∥ ]
≤ 4Rν + 4R ∥λ∥1 ν

where the first inequality is due to that the quadratic function is locally Lipschitz continuous
with parameter 4R, and the second inequality is because that there exists θ̃ ∈ Θ such that∥∥x̂⋆(λ)− x̂θ̃

∥∥
L2

≤ ν for any λ ≥ 0, according to Assumption 4.

By the definition ŝ⋆θ(λ) ∈ argminθ∈Θ L̄s(ŝθ, λ),

L̄s(ŝ
⋆
θ(λ), λ) ≤ L̄s(ŝθ̃, λ).

Therefore,

0 ≤ Ls(ŝ
⋆
θ(λ), λ)− Ls(ŝ

⋆(λ), λ) ≤ L̄s(ŝθ̃, λ)− Ls(ŝ
⋆(λ), λ) ≤ 4R(1 + ∥λ∥1)ν

which gives our desired result by the definition of dual functions.

Lemma 9 (Differentiability). The dual function gs(λ) is differentiable with gradient ∇λLs(ŝ
⋆(λ), λ).

Proof. For any λ ≥ 0, the Lagrangian Ls(ŝ, λ) is strongly convex in function ŝ ∈ S. Since S is
convex and compact, any partial minimizer ŝ⋆(λ) is unique. By Danskin’s theorem [4], gs(λ) is
differentiable and its gradient is the gradient of Ls(ŝ, λ) over λ at ŝ = ŝ⋆(λ).

Lemma 10 (Convexity). The dual function gs(λ) is µ-strongly concave in λ ∈ H, where

µ =

(
σ

1 + max
(
∥λ⋆∥1 ,

∥∥λ̄⋆
∥∥
1

))2

.

Proof. For any λ1, λ2 ∈ H, we denote ŝ⋆1 := ŝ⋆(λ1) and ŝ⋆2 := ŝ⋆(λ2), which are
unique partial minimizers of the Lagrangians Ls(ŝ, λ1) and Ls(ŝ, λ2). Denote ℓ0(ŝ) :=

Eq

[
∥ŝ(xt, t)−∇ log q(xt)∥2

]
, ℓi(ŝ) := Eqi

[
∥ŝ(xt, t)−∇ log q(xt)∥2

]
for i = 1, . . . ,m, and

ℓ(ŝ) := [ ℓ1(ŝ), . . . , ℓm(ŝ) ]⊤. By the convexity of ℓi,

ℓi(ŝ
⋆
1) ≥ ℓi(ŝ

⋆
2) + 2 ⟨∇ŝℓi(ŝ

⋆
2), ŝ

⋆
1 − ŝ⋆2⟩

ℓi(ŝ
⋆
2) ≥ ℓi(ŝ

⋆
1) + 2 ⟨∇ŝℓi(ŝ

⋆
1), ŝ

⋆
2 − ŝ⋆1⟩ .

If we multiply the first inequality above by λ2,i ≥ 0 and the second inequality above by λ1,i ≥ 0,
and add them up from both sides, then,

−⟨ℓ(ŝ2)− ℓ(ŝ1), λ2 − λ1⟩ ≥ 2
〈
λ⊤
1 ∇ŝℓ(ŝ

⋆
1)− λ⊤

2 ∇ŝℓ(ŝ
⋆
2), ŝ

⋆
2 − ŝ⋆1

〉
.
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We apply Lemma 9 to the LHS of the inequality above,

− (∇gs(λ2)−∇gs(λ1))
⊤
(λ2 − λ1) ≥ 2

〈
λ⊤
1 ∇ŝℓ(ŝ

⋆
1)− λ⊤

2 ∇ŝℓ(ŝ
⋆
2), ŝ

⋆
2 − ŝ⋆1

〉
. (23)

On the other hand, by the optimality of ŝ⋆1 and ŝ⋆2,

∇ŝℓ0(ŝ
⋆
1) + λ⊤

1 ∇ŝℓ(ŝ
⋆
1) = 0 (24a)

∇ŝℓ0(ŝ
⋆
2) + λ⊤

2 ∇ŝℓ(ŝ
⋆
2) = 0 (24b)

which allows us to simplify the right-hand side of (23) and obtain

− (∇gs(λ2)−∇gs(λ1))
⊤
(λ2 − λ1) ≥ 2 ⟨∇ŝℓ0(ŝ

⋆
2)−∇ŝℓ0(ŝ

⋆
1), ŝ

⋆
2 − ŝ⋆1⟩

≥ 2 ∥ŝ⋆1 − ŝ⋆2∥
2
L2

(25)

where the last inequality results from the strong convexity of quadratic functionals.

By the smoothness of quadratic functionals with parameter 1,

∥ŝ⋆1 − ŝ⋆2∥L2
≥ ∥∇ŝℓ0(ŝ

⋆
1)−∇ŝℓ0(ŝ

⋆
2)∥L2

=
∥∥λ⊤

1 ∇ŝℓ(ŝ
⋆
1)− λ⊤

2 ∇ŝℓ(ŝ
⋆
2)
∥∥
L2

=
∥∥(λ2 − λ1)

⊤∇ŝℓ(ŝ
⋆
2)− λ⊤

1 (∇ŝℓ(ŝ
⋆
1)−∇ŝℓ(ŝ

⋆
2))
∥∥
L2

≥
∥∥(λ2 − λ1)

⊤∇ŝℓ(ŝ
⋆
2)
∥∥
L2

−
∥∥λ⊤

1 (∇ŝℓ(ŝ
⋆
1) − ∇ŝℓ(ŝ

⋆
2))
∥∥
L2

where the equality is due to the optimality condition (24) and the last inequality is due to triangle
inequality. By Assumption 5,∥∥(λ2 − λ1)

⊤∇ŝℓ(ŝ
⋆
2)
∥∥
L2

≥ σ ∥λ2 − λ1∥ .

We also notice that∥∥λ⊤
1 (∇ŝℓ(ŝ

⋆
1)−∇ŝℓ(ŝ

⋆
2))
∥∥
L2

≤
m∑

i=1

λ1,i ∥∇ŝℓi(ŝ
⋆
1)−∇ŝℓi(ŝ

⋆
2)∥L2

≤
m∑

i=1

λ1,i ∥ŝ⋆1 − ŝ⋆2∥L2

where the first inequality is due to triangle inequality and the second inequality is due to the smooth-
ness of quadratic functionals. Hence,

∥ŝ⋆1 − ŝ⋆2∥L2
≥ σ ∥λ2 − λ1∥ − ∥λ1∥1 ∥ŝ

⋆
1 − ŝ⋆2∥L2

or, equivalently,

∥ŝ⋆1 − ŝ⋆2∥L2
≥ σ

1 + ∥λ1∥1
∥λ2 − λ1∥

Therefore, (25) becomes

− (∇gs(λ2)−∇gs(λ1))
⊤
(λ2 − λ1) ≥

(
σ

1 + ∥λ1∥1

)2

∥λ2 − λ1∥2

which completes the proof by choosing the smallest modulus over λ1 ∈ H.

Proof. By Lemmas 9 and 10, for any λ ∈ H,

gs(λ) ≤ gs(λ
⋆) + ∇gs(λ

⋆)⊤(λ− λ⋆) − µ

2
∥λ− λ⋆∥2 .

Thus, if we choose λ = λ̄⋆, then

gs(λ̄
⋆) ≤ gs(λ

⋆)+

m∑
i=1

(λ̄⋆
i−λ⋆

i )
(
Eqi

[
∥ŝ⋆(λ⋆)(xt, t)−∇ log q(xt)∥2

]
− b̃i

)
− µ

2

∥∥λ̄⋆ − λ⋆
∥∥2 .
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Optimality of (ŝ⋆(λ⋆), λ⋆) leads to the complementary slackness,
m∑

i=1

λ⋆
i

(
Eqi

[
∥ŝ⋆(λ⋆)(xt, t)−∇ log q(xt)∥2

]
− b̃i

)
= 0

and the feasibility,

Eqi

[
∥ŝ⋆(λ⋆)(xt, t)−∇ log q(xt)∥2

]
≤ b̃i.

Therefore,
gs(λ̄

⋆) ≤ gs(λ
⋆) − µ

2

∥∥λ̄⋆ − λ⋆
∥∥2 .

According to Lemma 8, ḡs(λ̄⋆)− 4R
(
1 +

∥∥λ̄⋆
∥∥
1

)
ν ≤ gs(λ̄

⋆). Hence,

ḡs(λ̄
⋆) − 4R

(
1 +

∥∥λ̄⋆
∥∥
1

)
ν ≤ gs(λ

⋆) − µ

2

∥∥λ̄⋆ − λ⋆
∥∥2 .

Thus, ∥∥λ̄⋆ − λ⋆
∥∥2 ≤ 2

µ

(
gs(λ

⋆)− ḡs(λ̄
⋆)
)
+

8

µ
R
(
1 +

∥∥λ̄⋆
∥∥
1

)
ν

≤ 8

µ
R
(
1 +

∥∥λ̄⋆
∥∥
1

)
ν

where the last inequality is due to that gs(λ) ≤ ḡs(λ) for any λ ≥ 0, and the optimality of λ̄⋆,

gs(λ
⋆) ≤ ḡs(λ

⋆) ≤ ḡs(λ̄
⋆).

B.7 Proof of Theorem 3

Proof. By the triangle inequality for TV distance,

TV
(
q⋆mix, p̄

⋆(λ̄⋆)
)

≤ TV
(
q⋆mix, q

(λ̄⋆)
mix

)
+ TV

(
q
(λ̄⋆)
mix , p̄⋆(λ̄⋆)

)
≤

∥∥λ⋆ − λ̄⋆
∥∥
1
+

d2 log3 T√
T

+
√
d
(
log2 T

)
εscore

≤
√

8

µ
mR

(
1 +

∥∥λ̄⋆
∥∥
1

)
ν +

d2 log3 T√
T

+
√
d
(
log2 T

)
εscore

where the second inequality is due to Lemma 7 and Lemma 3, and the last inequality is due to
∥λ∥1 ≤

√
m ∥λ∥ and Lemma 4.

B.8 Proof of Theorem 4

Lemma 11. For a stochastic variant of Algorithm 1 in Section 4.3, we have

E
[ ∥∥λ(h+ 1)− λ̄⋆

∥∥2 ∣∣λ(h) ] ≤
∥∥λ(h)− λ̄⋆

∥∥2 + η2S2 − 2η
(
D̄⋆ − ḡ(λ(h))− ε2approx

)
.

Proof. For brevity, we let the stochastic gradient be f̂(h) = [f̂1(h), . . . , f̂m(h)] with

f̂i(h) := Êx0 ∼ qi, t, xt

[
∥ŝθ(h)(xt, t)−∇q(xt)∥2

]
− b̃i.

By the definition of λ(h+ 1),

∥∥λ(h+ 1)− λ̄⋆
∥∥2 =

∥∥∥∥[λ(h) + ηf̂(h)
]
+
− λ̄⋆

∥∥∥∥2
≤

∥∥∥λ(h)− λ̄⋆ + ηf̂(h)
∥∥∥2

=
∥∥λ(h)− λ̄⋆

∥∥2 + η2
∥∥∥f̂(h)∥∥∥2 + 2ηf̂(h)⊤

(
λ(h)− λ̄⋆

)
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where the inequality is due to the non-expansiveness of projection. Application of the conditional
expectation over both sides of the inequality above yields,

E
[ ∥∥λ(h+ 1)− λ̄⋆

∥∥2 |λ(h)
]

≤
∥∥λ(h)− λ̄⋆

∥∥2 + η2 E
[ ∥∥∥f̂(h)∥∥∥2 |λ(h)

]
+2η E

[
f̂(h) |λ(h)

]⊤ (
λ(h)− λ̄⋆

)
which gives our desired result when we use the fact that E[f̂(h) |λ(h)] is an approximate descent
direction of the dual function ḡ,

E
[
f̂(h) |λ(h)

]⊤ (
λ(h)− λ̄⋆

)
− ε2approx ≤ ḡ(λ(h)) − ḡ(λ̄⋆).

Lemma 12. In the stochastic variant of Algorithm 1 in Section 4.3, the maximum prarametrized dual
function in history up to step h satisfies

lim
h→∞

ḡbest(h) ≥ D̄⋆ −
(
ηS2

2
+ ε2approx

)
.

Proof. The proof is based on the supermartingale convergence theorem [67, Theorem E7.4]. We
introduce two processes,

α(h) :=
∥∥λ(h)− λ̄⋆

∥∥2 1(D̄⋆ − ḡbest(h) >
ηS2

2
+ ε2approx

)

β(h) :=
(
2η
(
D̄⋆ − ḡ(λ(h))− ε2approx

)
− η2S2

)
1

(
D̄⋆ − ḡbest(h) >

ηS2

2
+ ε2approx

)
where α(h) measures the gap between λ(h) and λ̄⋆ when the optimality gap D̄⋆ − ḡbest(h) is below
the threshold, and β(h) measures the gap bewteen D̄⋆ and ḡ(λ(h)) (up to some optimization errors)
when the optimality gap D̄⋆ − ḡbest(h) is below the threshold. Clearly, α(h) is non-negative. Also,
β(h) is non-negative due to

D̄⋆ − ḡbest(h) − ηS2

2
− ε2approx ≤ D̄⋆ − ḡ(λ(h)) − ηS2

2
− ε2approx.

Let Fh be the σ-algebra generated by sequences: α(h′), β(h′), and λ(h′) for h′ ≤ h. Thus, {Fh}h≥ 1

is a natural filtration. We notice that α(h + 1) and β(h + 1) are determined by λ(h) in each step.
Hence,

E [α(h+ 1) | Fh ] = E [α(h+ 1) |λ(h) ]
= E [α(h+ 1) |λ(h), α(h) = 0 ] Pr (α(h) = 0)

+E [α(h+ 1) |λ(h), α(h) > 0 ]Pr (α(h) > 0) .

We first show that
E [α(h+ 1) | Fh ] ≤ α(h) − β(h). (26)

A simple case is when α(h) = 0,

E [α(h+ 1) | Fh ] = E [α(h+ 1) |λ(h), α(h) = 0 ] .

There are two situations for α(h) = 0. First, if D̄⋆− ḡbest(h) ≤ ηS2

2 +ε2approx, then α(h) = β(h) = 0.

Due to ḡbest(h + 1) ≥ ḡbest(h), we have β(h) = 0 and D̄⋆ − ḡbest(h + 1) ≤ ηS2

2 + ε2approx. Thus,

α(h + 1) = 0, and (26) holds. Second, if λ(h) = λ̄⋆, but D̄⋆ − ḡbest(h) > ηS2

2 + ε2approx, then
D̄⋆ = ḡ(λ(h)). Hence, β(h) < 0, which contradicts the non-negativeness of β(h). Therefore,
D̄⋆ − ḡbest(h) ≤ ηS2

2 + ε2approx has to hold, which is the first situation.
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We next show (26) when α(h) > 0.

E [α(h+ 1) | Fh ] = E [α(h+ 1) |λ(h), α(h) > 0 ]

= E

[∥∥λ(h)− λ̄⋆
∥∥2 1(D̄⋆ − ḡbest(h) >

ηS2

2
+ ε2approx

) ∣∣∣∣∣λ(h), α(h) > 0

]
≤ E

[ ∥∥λ(h)− λ̄⋆
∥∥2 ∣∣λ(h), α(h) > 0

]
≤

∥∥λ(h)− λ̄⋆
∥∥2 + η2S2 − 2η

(
D̄⋆ − ḡ(λ(h))− ε2approx

)
≤ α(h) − β(h)

where the last inequality is due to Lemma 11, and the last equality is due to D̄⋆ − ḡbest(h) >
ηS2

2 + ε2approx. Therefore, (26) holds.

Finally, application of the supermartingale convergence theorem [67, Theorem E7.4] to the processes
α(h) and β(h) for h ≥ 1 concludes that β(t) is almost surely summable,

lim inf
h→∞

β(h) = 0 almost surely.

This means that either

lim inf
t→∞

2η
(
D̄⋆ − ḡ(λ(h))− ε2approx

)
− η2S2 = 0

or D̄⋆ − ḡbest(h) ≤ ηS2

2 + ε2approx, which concludes our desired result.

Denote the step when ḡbest(h) achieves D̄⋆ −
(

ηS2

2 + ε2approx

)
by hbest, and the associated dual

variable be λ̄best = λ(hbest).

Lemma 13. For a stochastic variant of Algorithm 1 in Section 4.3, we have∥∥λ̄best − λ⋆
∥∥2 ≤ 2

µ

(
ηS2

2
+ ε2approx + 4R(1 +

∥∥λ̄best
∥∥
1
)ν

)
.

Proof. We denote the segment between λ̄best and λ⋆ by B. By Lemma 10, the dual function g(λ) is
strongly concave on B with parameter µ. Thus,∥∥λ̄best − λ⋆

∥∥2 ≤ 2

µ

(
g(λ⋆)− g(λ̄best)

)
≤ 2

µ

(
ḡ(λ⋆)− ḡ(λ̄best) + 4R(1 +

∥∥λ̄best
∥∥
1
)ν
)

≤ 2

µ

(
ηS2

2
+ ε2approx + 4R(1 +

∥∥λ̄best
∥∥
1
)ν

)
where the second inequality is due to Lemma 8. We note that ḡ(λ̄best) = ḡ(λ(hbest)) and D̄⋆ ≥
ḡ(λ̄best), and the third inequality is due to Lemma 12.

Proof. By the triangle inequality for TV distance,

TV
(
q⋆mix, p̄

⋆(λ̄best)
)

≤ TV
(
q⋆mix, q

(λ̄best)
mix

)
+ TV

(
q
(λ̄best)
mix , p̄⋆(λ̄best)

)
≤

∥∥λ⋆ − λ̄best
∥∥
1
+

d2 log3 T√
T

+
√
d
(
log2 T

)
εscore

≤ 2

µ

(
ηS2

2
+ ε2approx + 4R

(
1 +

∥∥λ̄best
∥∥
1

)
ν

)
+

d2 log3 T√
T

+
√
d
(
log2 T

)
εscore

where the second inequality is due to Lemma 7 and Lemma 3, and the last inequality is due to
∥λ∥1 ≤

√
m ∥λ∥ and Lemma 13.
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C Experimental details

We provide implementation details of our computational experiments in Section 5. The source code
is available here.2

Algorithm details: We train our constrained diffusion models by replacing the exact primal mini-
mization step in Algorithm 1 with N steps of gradient descent with the Lagrangian as a loss function.
Without loss of generality, we take the noise prediction formulation of diffusion rather than the
score-matching formulation used in our theory. Since these two formulations are equivalent, this has
no bearing on our main results. Algorithm 2 depicts our practical implementation of Algorithm 1 .

Algorithm 2 Practical Implementation of Algorithm 1

1: Input: total diffusion steps T , diffusion parameter αt, total dual iterations H , number of primal
descent steps per dual update N , dual step size ηd, primal step size ηp, initial model parameters
θ(0).

2: Initialize: λ(1) = 0.
3: for h = 1, · · · , H do
4: for n = 1, · · · , N do
5: θ1 = θ(h− 1).

6: θn+1 = θn − ηp ∇θ

(
Êx0 ∼ q, t, xt

[
∥ϵ̂θn(xt, t)− ϵ0∥2

]
+

m∑
i=1

λi Êx0 ∼ qi, t, xt

[
∥ϵ̂θn(xt, t)− ϵ0∥2

])
.

7: θ(h) = θN+1.
8: end for
9: Update the dual variable

λi(h+ 1) =
[
λi(h) + ηd

(
Êx0 ∼ qi, t, xt

[ ∥∥ϵ̂θ(h)(xt, t)− ϵ0
∥∥2 ] − b̃i

) ]
+

for all i.

10: end for

In Algorithm 2, the unbiased estimate of the noise prediction loss is evaluated via

Êx0 ∼ q, t, xt

[
∥ϵ̂θ(xt, t)− ϵ0∥2

]
=

B∑
i = 1

∥∥∥ϵ̂θ(xt(i) , t
(i))− ϵ

(i)
0

∥∥∥2
where {x(i)

0 }Bi=1 is a randomly chosen batch of samples from q, {t(i)}Bi=1 are time steps randomly
sampled from the interval [2, T ], and xt(i) is the noisy version of x(i)

0 at time step t(i). Then, the
noise ϵ0 is sampled from the standard Gaussian, and xt is derived from xt =

√
ᾱtxt +

√
1− ᾱtϵ0.

We remark an important implementation detail in the fine-tuning experiment. In the fine-tuning
constraints, we have to evaluate the KL divergence

DKL(pθpre(x0:T ) ∥ pθ(x0:T )) ≤ bi (27)

where pθpre(x0:T ) is the joint distribution of the samples and latents generated by the backward
process of the pre-trained model. The KL divergence constraint in (27) further reduces to

DKL(pθpre(x0:T ) ∥ pθ(x0:T )) = Ext ∼ pθpre , t

[ ∥∥ϵ̂θpre(xt, t)− ϵ̂θ(xt, t)
∥∥2 ] + constant. (28)

To estimate the expectation in (28), we need to sample latents xt from the backward distribution
pθpre(x0:T ). In practice, this is computationally inefficient, since it requires running inference each
time one wants to sample a latent. This is why we implement this with sampling xt as random
Gaussian noise instead. This still ensures that the predictions of the new model pθ don’t differ too
much from the pre-trained distribution pθpre while making sampling batches much faster.

Resilient constrained learning. The choice of the constraint thresholds {bi}mi=1 has noticeable
effect on the training of constrained diffusion models. To avoid an exhaustive hyperparameter tuning
process, in the minority class experiment, we use the resilient constrained learning technique [36] to

2https://github.com/shervinkhal/Constrained_Diffusion_Dual_Training
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Table 1: Parameters of U-net Model used as noise predictor

# Res-Net layers per U-Net block 2

# Res-Net down/upsampling blocks 6

# Output channels for U-Net blocks (128, 128, 256, 256, 512, 512)

adjust the thresholds {bi}mi=1 during training. In essence, the resilient constrained learning adds a
constraint relaxation cost to the loss and relaxes the thresholds by updating them through gradient
descent each time we update the dual variable. It can further be shown theoretically that an equivalent
formulation of resilience is achieved by adding a quadratic regularizer of the dual variable into the
loss objective and setting the constraint thresholds to be zero, i.e., b̃i = 0. This is the approach
we used in our experiments since it has fewer hyperparameters. We note that the only difference
between Algorithm 2 and Algorithm 3 is the additional term in the dual variable update step (line 9
of Algorithm 3).

Algorithm 3 Resilient Constrained Diffusion Models via Dual Training

1: Input: total diffusion steps T , diffusion parameter αt, total dual iterations H , number of primal
descent steps per dual update N , dual step size ηd, primal step size ηp, constraint step size ηc,
initial model parameters θ(0), constraint relaxation cost γ.

2: Initialize: λ(1) = 0.
3: for h = 1, · · · , H do
4: for n = 1, · · · , N do
5: θ1 = θ(h− 1).

6: θn+1 = θn − ηp ∇θ

(
Êx0 ∼ q, t, xt

[
∥ϵ̂θn(xt, t)− ϵ0∥2

]
+

m∑
i=1

λiÊx0 ∼ qi, t, xt

[
∥ϵ̂θn(xt, t)− ϵ0∥2

])
.

7: θ(h) = θN+1.
8: end for
9: Update the dual variable

λi(h+1) =
[
λi(h) + ηd

(
Êx0 ∼ qi, t, xt

[ ∥∥ϵ̂θ(h)(xt, t)− ϵ0
∥∥2 ] − b̃i(h) − 2γλi(h)

) ]
+

for all i.

10: end for

Model architecture. We use a time-conditioned U-net model as is common in image diffusion tasks
for all three datasets. The time conditioning is done by adding a positional embedding of the time to
the input image. The parameters of the model are summarized in Table 1. The fifth downsampling
block and the corresponding upsampling block are Res-Net blocks with spatial self-attention.

Hyperparameters. We summarize the important hyperparameters in our experiments in Table 2.
In the unconstrained models that we train for comparison, we use the same hyperparameters as the
constrained version, disregarding the parameters related to the dual and relaxation updates. For
models trained on Image-Net, when training the constrained models, we initialized to the parameters
of the unconstrained model to make training times shorter.

Hyperparameter sensitivity. We remark the sensitivity of the dual training algorithm to the number
of dual iterations, primal/dual batch sizes, and primal/dual learning rates.

• Number of dual iterations: In our implementation this shows up as the number of primal
GD steps per dual update, N . Experimentally, we have observed that as long as N is greater
than 1, the results are not sensitive to this value. Additionally, the dual updates add a
negligible computational overhead. Hence, updating the dual nearly as many times as we
update model parameters doesn’t reduce training efficiency.

• Primal/dual batch sizes: We have included results of training a constrained model on an
unbalanced subset of MNIST, using different primal/dual batch sizes (See Table 3.) The
results suggest that for the minority class experiments, when the ratio between Primal and
Dual batch sizes is larger, the model performs better (lower FID and more evenly distributed
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Table 2: Hyperparameter values used in the main experiments. MC denotes Minority Class ex-
periments and FT denotes Fine-Tuning experiments. - denotes that resilience was not used for the
experiment.

MNIST MC Celeb-A MC Image-Net MC MNIST FT

#training epochs (N ×H) 250 1000 2000 500

# primal steps per dual step (N ) 2 2 2 2

Primal batch size 128 256 128 256

Dual batch size 64 128 64 256

Primal learning rate 0.0001 0.0001 5e-5 5e-6

Dual learning rate 0.1 0.1 0.05 1e5

Resilience Relaxation cost 0.09 0.005 0.025 -

main dataset size 31000 12500 2000 200

constraint dataset(s) size 5000 500 64 -

samples). This is in line with the heuristic we used in the included experiments in the paper
where we chose the batch sizes such that the ratio of primal to dual batch size is close to
size ratio of entire dataset to constraint datasets (which are much smaller). Howver for the
fine-tuning task, the batch sizes did not seem to affect the final result as much.

• Primal/dual learning rate: For the primal learning rate, we followed the best practice used
to train standard diffusion models. For the dual learning rate η , we refer to Theorem 8 in the
paper, showing a smaller error bound for smaller η while slowing convergence. In practice,
as long as η ≤ 1, we observed that the model converges to similar results reliably.

Efficiency of constrained diffusion: We note that the complexity of sampling from our constrained
diffusion model does not increase with the number of constraints, as our trained diffusion model
functions like a standard diffusion model to generate samples. Importantly, we remark that training
our constrained diffusion model has comparable efficiency to training standard diffusion models
detailed next.

The additional computational cost of our dual-based training (Algorithm 1) arises from: (i) updating
the dual variables; (ii) updating the diffusion model in the primal update.

• Cost of updating the dual variables: We note that our dual-based training has the same
number of dual variables as the number of constraints. Thus, the cost for the dual update is
linear in the number of constraints. To update each dual variable, we can directly use the
ELBO loss over the batches sampled from each constrained dataset (already computed for
the Lagrangian). Therefore, the cost of updating dual variables is negligible.

• Cost of updating the diffusion model in the primal update: We note that the primal
update trains a standard diffusion model based on the Lagrangian with updated dual variables.
In our experiments, this primal training often requires as few as 2-3 updates per dual update.
Thus, when training our constrained model, we can train for the same number of epochs
as an unconstrained model but update the dual variables after every few primal steps. As a
result, training our constrained diffusion model is almost as efficient as training standard
unconstrained models.

The only concern we encountered regarding efficiency is that batches need to be sampled from every
constrained dataset at each step to estimate the Lagrangian. This introduces a small GPU memory
overhead that increases with additional constraints. However, this is somewhat mitigated by the fact
that constrained datasets are often much smaller than the original dataset, allowing us to choose a
smaller batch size for the constrained datasets without degrading performance (see discussion on
batch sizes in hyperparameter sensitivity section).
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Table 3: Constrained model trained on MNIST with different Primal/Dual Batch sizes

(Primal batch size, Dual batch size) (64, 16) (64, 64) (128, 16) (128, 64)

FID score 16.6 20.6 16.7 20.24

FID scores. As a quantitative means of evaluating our constrained diffusion models, we use the FID
(Frechet Inception Distance) as a metric to gauge the quality of the samples generated by diffusion
models. The FID score was first introduced in [33] in form of

d2FID((m,C), (mw, Cw)) = ∥m−mw∥22 + Tr(C + Cw − 2(CCw)
1/2) (29)

where m and C represent mean and variance, respectively, of the distribution of the features of the
data samples which have been extracted by an inception model [69]. Similarly, mw and Cw represent
the mean and variance of some reference distribution that we are computing the distance to. In our
experiment, we compute the FID scores by generating 15000 samples from the diffusion model we
are evaluating and comparing them to a balanced version of the original dataset. In the experiment
with MNIST, this is the actual dataset. In the experiments with Celeb-A and Image-Net, since there is
an imbalance in the original dataset, we consider a balanced subset of each with an equal number of
samples from each class as reference. We use the clean-FID library [58] for standard computation of
the FID scores.

We note that our FID scores are somewhat larger compared to typical baselines in the literature.
This is expected as a consequence of our experimental setup. We train both the unconstrained and
constrained models, on a biased subset of the dataset wherein some of the classes have significantly
fewer samples than the rest. We then compute the FID scores for these models compared to the
actual dataset itself which is unbiased (i.e., every class has the same number of samples). These FID
scores approximate how close the learned distribution of the model trained on biased data, is to the
underlying unbiased distribution.

This setup contrasts with existing results in the literature, where the FID is computed with respect
to unbiased data, and the models are also trained on unbiased data. Therefore, it is expected that
such models will achieve better FID scores than constrained or unconstrained models trained with
biased data. Our purpose in reporting the FIDs was not to compare them to existing results (as such
a comparison would be uninformative) but to demonstrate that, when trained on biased data, the
constrained model achieves better FID scores than the unconstrained model.

Compute resources. We run all experiments on two NVIDIA RTX 3090-Ti GPUs in parallel. The
amount of GPU memory used was 16 Gigabytes per GPU. For experiments with MNIST and Celeb-A
datasets, training each model took between 2-3 hours. This increased to 7-8 hours for latent diffusion
models trained for the Image-Net experiments.

Assets and libraries. We use the PyTorch [59] and Diffusers [73] Python libraries for train-
ing our constrained diffusion models, and Adam with decoupled weight decay [52] as an op-
timizer. The accelerate library [30] is used for the parallelization of the training processes
across multiple GPUs. For classifiers used in evaluating the generated samples of the mod-
els, we use the following pretrained models accessible on the Huggingface model database: A
Vision transformer-based classifier for MNIST digits with %99.5 validation accuracy (https:
//huggingface.co/farleyknight-org-username/vit-base-mnist). A classifier for images
of male/female faces with %98.6 validation accuracy (https://huggingface.co/cledoux42/
GenderNew_v002). For classifying the image-net data, a zero-shot classifier based on a CLIP
model (https://huggingface.co/openai/clip-vit-base-patch32) was used. The Autoen-
coder for the latent diffusion model was the stable diffusion VAE with KL regularization found on
(https://huggingface.co/stabilityai/sd-vae-ft-mse).
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We summarize our constrained diffusion models in Section 3, optimality guar-
antees of unparametrized constrained diffusion models in Section 3.1, optimality guarantees
of parametrized constrained diffusion models and training algorithms in Section 4, and
experimental results in Section 5.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We mention two potential limitations of this work as several future directions
in Section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide all assumptions, lemmas, and theorems in Sections 3 and 4, and
provide proof details in Appendix B.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We summarize our experimental results in Section 5, and provide imple-
mentation details of experiments in Appendix C, together with additional experimental
results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A link to the code for replicating our main experiments has been provided
in Appendix C. The datasets are open source machine learning datasets that are accessible
online.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental details in Appendix C including the hyperparameters
used for each experiment. Our training details can be found in the code in supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
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Justification: While the histogram plots that showcase our main results do not include error
bars, we do provide Frechet Distance metrics (that are a measure of statistical distance
between sample distributions) which emphasize our results.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include compute details in Appendix C.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and fully comply with it during
the preparation of this paper.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential impacts of the work are discussed in Section 1.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We release no models and the supplemental code for training image generation
model, trains the model on MNIST and Celeb-A datasets neither of which have potential for
misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The libraries and assets used have been noted and credited in Appendix C.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
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