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Abstract
Large Language Models (LLMs) excel in gen-001
eral language tasks, motivating their adaptation002
to specialized domains such as healthcare. Ef-003
fective domain adaptation typically involves004
supervised fine-tuning (SFT) on carefully se-005
lected instruction-tuning data. Current data006
selection methods adopt a data-centric ap-007
proach, relying on external annotations and008
heuristics to identify external defined high-009
quality and challenging data. Our exploratory010
experiments highlight this approach fails to011
improve model’s domain performance, due to012
misalignment between selected data and the013
model’s knowledge distribution. To tackle this,014
we propose Decomposed Difficulty-based Data015
Selection (3DS), a two-stage model-centric016
data selection framework that aligns data se-017
lection with the model’s distribution. 3DS em-018
ploys a Prompt-Driven Data Selection to filter019
out noisy data based on the model’s knowledge020
via explicit alignment in Stage#1, then adopts021
a Decomposed Difficulty-based Data Selection022
to guide selection via three novel data difficulty023
metrics, including Instruction Understanding,024
Response Confidence, and Response Correct-025
ness in Stage#2. These metrics are enhanced by026
an attention-based importance weighting mech-027
anism for accurate calibration. Extensive exper-028
iments in the healthcare domain show 3DS out-029
performs existing methods by over 2.97% ac-030
curacy, with additional validation in the law do-031
main confirming its generalization ability. Our032
dataset and code are open-sourced at https:033
//anonymous.4open.science/r/3DS-E67F.034

1 Introduction035

Large Language Models (LLMs) such as proprietary036
GPT-4 (OpenAI, 2023), open-sourced LLaMA (Tou-037
vron et al., 2023) and Qwen (Bai et al., 2023), have038
demonstrated remarkable capabilities in language un-039
derstanding and generation. Encouraged by their suc-040
cesses, there is growing interest in leveraging LLMs041
in specialized domains like healthcare, where domain-042
specific abilities are required (Sanaei et al., 2023; Harris,043
2023; Waisberg et al., 2023) for essential tasks like di-044
agnosis (Panagoulias et al., 2024; Ullah et al., 2024)045
and treatment recommendations (Wilhelm et al., 2023;046
Nwachukwu et al., 2024). To address this, many exist-047
ing works (Wang et al., 2023a; Zhang et al., 2023; Yang048
et al., 2023b; Zhu et al., 2023a; Pal and Sankarasubbu,049

2023) have tried to adapt LLMs to the medical domain 050
by training on large-scale healthcare-specific datasets. 051

An essential step in adapting general LLMs to special- 052
ized domains is Supervised Fine-Tuning (SFT) on do- 053
main instruction-tuning datasets. However, large-scale, 054
unfiltered domain datasets aggregated from multiple 055
sources often include noise. Directly utilizing such data 056
can disrupt learning (Wang et al., 2023d, 2024a), hin- 057
der the identification of knowledge gaps (Havrilla and 058
Iyer, 2024), and increase the risk of overfitting (Budach 059
et al., 2022; Wang et al., 2024b), yielding poor perfor- 060
mance. Recent findings (Zhou et al., 2024) suggest that 061
a small but carefully selected high-quality dataset can 062
effectively enhance model’s alignment with human in- 063
structions and elicit its abilities in the desired direction, 064
highlighting the necessity of rigorous data selection for 065
domain adaptation fine-tuning. This presents a critical 066
challenge in fine-tuning general LLMs to specialized 067
domains: 068

How to identify and select domain instruction-tuning 069
data that is most suitable for the target LLM to optimally 070
elicit its domain-specific abilities? 071

Previous data selection methods predominantly adopt 072
a data-centric perspective, typically focusing on two 073
dimensions: quality and difficulty. For quality, existing 074
methods rely on powerful external models or manual 075
rules to identify “high-quality” samples (Liu et al., 2023; 076
Ji et al., 2023; Song et al., 2024). They treat quality as 077
a model-agnostic, intrinsic data property, assuming the 078
assessments are universally applicable. However, LLMs 079
differ substantially in architectures and training corpora, 080
which shape their distinct internal knowledge distribu- 081
tions. External “high-quality” data may still introduce 082
redundancy or conflicting information that impede learn- 083
ing. For difficulty, methods typically prioritize the most 084
challenging samples based on heuristic metrics (Li et al., 085
2024b,a). However, recent studies (Gekhman et al., 086
2024; Ren et al., 2024) have revealed that fine-tuning 087
LLMs on data beyond their pre-trained knowledge dis- 088
tribution, particularly unfamiliar content, can lead to 089
severe hallucinations, which underscores the potential 090
risk of selecting hardest samples. A common limitation 091
of these methods is their lack of consideration for model- 092
specific compatibility, both external “high-quality” data 093
or most challenging data could be misaligned with the 094
model’s distribution and lead to suboptimal results. 095

Motivated by this gap, we propose a new hypothesis: 096
data selection should be model-centric, tailored to align 097
with the model’s knowledge distribution. 098

To validate this hypothesis, we conduct a pilot study 099
guided by two research questions: RQ#1. Is model- 100
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centric quality selection more effective than external101
quality scoring? RQ#2. Is model-centric difficulty102
selection more effective than prioritizing the hardest103
samples? The results demonstrate that model-centric104
data selection, which relies on the target model’s own105
assessment of data quality and selection of appropriately106
difficult data, consistently outperforms selection guided107
by external criteria.108

While these findings highlight the importance of109
model-centric data selection, its practical application110
still faces substantial challenges:111

❶ Challenge#1. How to identify high-quality data112
based on the model’s knowledge distribution? Redun-113
dant knowledge that the model already possesses and114
conflicting information that goes against the model’s115
knowledge hinders learning (Ren et al., 2024; Gekhman116
et al., 2024). Selecting high-quality data based on the117
model’s knowledge distribution is thus necessary, but in-118
herently challenging due to the complexity and opacity119
of LLMs120

❷ Challenge#2. How to properly balance the selected121
data difficulty with the model’s learning capacity?122
Overly simplistic data wastes training resources and123
may cause overfitting, while excessively complex data124
can overwhelm the model, impeding effective learn-125
ing (Kang et al., 2024; Lin et al.). Accurately assessing126
difficulty based on the model’s distribution to guide se-127
lection is thus crucial. However, there isn’t a effective128
metric to comprehensively measure the model’s knowl-129
edge state and its ability to handle complex data.130

To tackle these challenges, we propose Decomposed131
Difficulty-based Data Selection (3DS), a two-stage132
model-centric data selection framework which aligns133
data selection with the model’s distribution to opti-134
mize domain fine-tuning. For Challenge#1, we pro-135
pose Prompt-Driven Data Selection via Explicit Align-136
ment, leveraging the target model’s own evaluations137
to explicitly select high-quality data, ensuring that the138
remaining data lies within the model’s knowledge dis-139
tribution. For Challenge#2, inspired by the general hu-140
man problem-solving process (Polya and Pólya, 2014;141
OECD, 2014)—understanding the problem, building142
confidence, and producing a solution, we propose novel143
Decomposed Difficulty-based Data Selection via Im-144
plicit Alignment, extending traditional perplexity (PPL)145
measures with three difficulty metrics: Instruction Un-146
derstanding Difficulty, Response Confidence Difficulty,147
and Response Correctness Difficulty. Furthermore, an148
attention-based importance weighting mechanism cap-149
tures token-level importance and calibrates difficulty150
calculations. In summary, our contributions are:151

• We introduce 3DS, a two-stage model-centric data152
selection framework, aligning training data with the153
model’s knowledge distribution, optimizing domain154
adaptation fine-tuning.155

• We propose a novel difficulty decomposition strategy,156
employing fine-grained metrics: Instruction Under-157
standing, Response Confidence, and Response Cor-158

rectness, for accurate data difficulty quantification 159
tailored to domain-specific fine-tuning. 160

• Comprehensive experiments on Chinese medical 161
datasets demonstrate that 3DS outperforms existing 162
methods, significantly boosting LLMs performance. 163
Additional experiments on law domain also showcase 164
3DS’s generalization ability. 165

• We have open-sourced a carefully curated Chinese 166
medical dataset, including medical dialogues and 167
domain-specific instructions, to support further re- 168
search in healthcare-oriented LLM. 169

2 Importance of Model-Centric Selection 170

In this section, we empirically investigate the impor- 171
tance of model-centric data selection by studying the 172
following two research questions: 173

• RQ#1. Is model-centric quality selection more effec- 174
tive than external quality scoring? 175

• RQ#2. Is model-centric difficulty selection more effec- 176
tive than prioritizing the objectively hardest samples? 177

2.1 Experimental Setup 178

In both investigations, we utilized two models: 179
DeepSeek-R1 (Guo et al., 2025), an external model 180
regarded as strong and capable, which is expected to 181
provide reliable data evaluation, and LLaMA-3-8B- 182
Instruct (Grattafiori et al., 2024), the target model in- 183
tended for domain fine-tuning. We utilized a large-scale 184
Chinese medical instruction-tuning dataset and designed 185
tailored prompts to assess data quality and difficulty (see 186
Appendix J.1 and J.2). 187

2.2 Model-Centric vs. External Quality Selection 188

To answer RQ#1, we prompted both the external model 189
and the target model to assess data quality based on 190
their knowledge. From data scored above a predefined 191
threshold by each model, we randomly selected 5K 192
samples and fine-tuned LLaMA-3-8B-Instruct on each 193
subset. Performance evaluated on two Chinese medi- 194
cal multiple-choice question benchmarks (Zeng, 2023; 195
Wang et al., 2023c) is shown in Table 1. 196
Surprisingly, fine-tuning on high-quality data selected 197
by the strong DeepSeek-R1 led to performance degra- 198
dation of LLaMA-3-8B-Instruct, while data selected 199
by LLaMA-3-8B-Instruct itself significantly improved 200
its performance. This discrepancy likely stems from a 201
misalignment between the external quality assessment 202
and the target model’s inherent knowledge distribution. 203
Based on this, we derive our first key observation: 204

Observation I: Model-centric quality selection yields 205
better performance than external quality scoring. 206

2.3 Model-Centric vs. External Difficulty Selection 207

To answer RQ#2, we evaluated the commonly held 208
assumption that training on the most challenging data 209
improves model abilities. Similar to the previous inves- 210
tigation, we prompted DeepSeek-R1 and LLaMA-3-8B- 211
Instruct to score data difficulty based on their knowl- 212
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edge. The dataset was partitioned into Easy, Medium,213
and Hard subsets, according to difficulty scores from214
each model. We then fine-tuned LLaMA-3-8B-Instruct215
on randomly selected 5k samples from each subset,216
and compared their performance across medical bench-217
marks, with results shown in Table 2.218
Across all experiments, fine-tuning on Easy and Medium219
subsets consistently outperformed training on Hard sub-220
set, with Medium subset yielding more stable improve-221
ments, indicating that overly difficult data, likely ex-222
ceeding model’s knowledge, adversely impacts learning,223
while overly simple data also fails to sufficiently benefit224
fine-tuning. Additionally, difficulty assessments from225
LLaMA-3-8B-Instruct itself consistently led to better re-226
sults compared to external evaluations by DeepSeek-R1,227
which validates the necessity of model-centric difficulty228
evaluation and selection. This motivates our second and229
third key observations:230

Observation II: Difficulty scoring based on the target231
model yields more reliable performance than scores232
provided by an external model.233

Observation III: Moderately difficult data leads to234
more stable and effective performance improvements.235

Data Annotator CMB-Exam MMCU-Med
Original N/A 41.72 46.47

High-quality DeepSeek-R1 39.70 42.46
LLaMA3-8B 43.71 47.57

Table 1: High-quality Data Selection Results (%). Im-
provements over the original model are in bold.

Data Annotator CMB-Exam MMCU-Med
Original N/A 41.72 46.47

Easy DeepSeek-R1 41.03 45.76
LLaMA3-8B 41.53 48.00

Medium DeepSeek-R1 41.76 45.26
LLaMA3-8B 41.75 46.72

Hard DeepSeek-R1 40.50 44.06
LLaMA3-8B 40.62 45.23

Table 2: Difficult Data Selection Results (%).

2.4 Conclusion and Motivation236

Both investigations lead to a key conclusion: effective237
data selection for domain adaptation fine-tuning requires238
alignment with the target model’s knowledge distribu-239
tion. External assessed high-quality data may not suit240
the target model, and excessively difficult data may in-241
troduce unfamiliar, out-of-distribution content, causing242
suboptimal outcomes.243

Motivated by these observations, we propose to shift244
from conventional data-centric selection strategies to-245
ward a model-centric approach. Specifically, data246
selection should be guided by the target model, en-247
suring that the selected data are considered as high-248
quality(addressing Observation I) and appropriately249
challenging by the target model(addressing Observa-250
tion II and III), thus achieving close alignment with251

its knowledge distribution and learning capacity. Build- 252
ing on this insight, we propose our novel model-centric 253
framework 3DS in the following sections. 254

3 Methodology 255

Task Formulation We formally define the Data Se- 256
lection for Domain Adaptation Fine-tuning task. Let: 257

• Mθ denotes the target model to be fine-tuned, which 258
is a pre-trained and generally fine-tuned LLM (e.g., 259
LLaMA-chat) parameterized by θ. 260

• X = {x(i)}Ni=1 denotes the full domain-specific 261
dataset where each sample x(i) =< Q(i), A(i) > con- 262

sists of instruction Q(i) = {q(i)1 , q
(i)
2 , . . . , q

(i)
m }, and 263

response A(i) = {a(i)1 , a
(i)
2 , . . . , a

(i)
n }. Here q

(i)
m , a

(i)
n 264

denote individual tokens within the instruction and 265
response sets, respectively. 266

• k ∈ N+ denotes a fixed data budget, where k ≪ |X |. 267

The task is to identify an optimal subset S∗ ⊆ X that 268
maximizes the target domain performance of the fine- 269
tuned model M ′

θ, formally: 270

S∗ = argmax
S⊆X ,|S|=k

E(x,y)∼Dtest [P(Mθ′(x;S), y)] , (1) 271

where Dtest is the target domain test distribution con- 272
taining diverse multiple domain tasks; P : Y × Y −→ 273
[0, 1] is the performance metric (e.g., accuracy, BLEU, 274
ROUGE), and Mθ′ is Mθ fine-tuned on S, i.e., θ′ = 275
θ − η∇θ

∑
x∈S L(Mθ(x), x), with learning rate η and 276

loss function L. 277

3.1 Stage#1: Prompt-Driven Data Selection via 278
Explicit Alignment 279

The first stage of 3DS is to identify high-quality data 280
based on the model’s knowledge. As illustrated in Fig- 281
ure 1, a quality-rating prompt, detailed in Appendix J.1, 282
is used to instruct Mθ to score data quality based on its 283
inner knowledge to explicitly align data, filtering out 284
noise from the original large-scale dataset to avoid con- 285
flicting information. After obtaining model-generated 286
scores, samples with scores exceeding a predefined 287
threshold δ are retained for the next selection. 288

3.2 Stage#2: Decomposed Difficulty-based Data 289
Selection via Implicit Alignment 290

The second stage of 3DS is to analyze data difficulty via 291
implicit distribution modeling of Mθ, thereby balancing 292
the selected data difficulty with the model’s learning 293
capacity. To achieve this, we employ a fine-grained 294
evaluation for data difficulty. 295

Inspired by the general problem-solving pro- 296
cess (Polya and Pólya, 2014; OECD, 2014)—under- 297
standing the problem, building confidence, and pro- 298
ducing a solution—we decompose data difficulty into 299
three key components to reflect the model’s understand- 300
ing: (1) Instruction Understanding Difficulty measures 301
whether the model comprehends the instruction. (2) 302
Response Confidence Difficulty measures the model’s 303
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Figure 1: 3DS framework. Stage#1: Prompt-Driven Data Selection select high-quality data via explicit alignment.
Stage#2: Decomposed Difficulty-based Data Selection decomposes data difficulty via modeling LLM’s implicit
distribution and filters data. Attention-based importance weighting calibrates difficulty calculation.

confidence in its response. (3) Response Correctness304
Difficulty measures whether the model can generate a305
response that accurately matches the reference answer.306
To enhance the precision of difficulty calculations, we307
incorporate an attention-based importance weighting308
mechanism that calibrates difficulty by accounting for309
the varying semantic significance of output tokens. We310
now detail the quantification of these decomposed diffi-311
culties and the corresponding selection strategy.312

(1) Instruction Understanding Difficulty. Challeng-313
ing data often comes with complex instructions. In314
specialized domains like healthcare, instructions may315
contain intricate terminologies, making instruction com-316
prehension a key factor of data difficulty. To capture317
this, we introduce Instruction Understanding Difficulty.318
Previous research (Gonen et al., 2023) shows that lower319
model perplexity over a prompt correlates with better320
understanding and performance. Building on this in-321
sight, we further recognize that perplexity inherently322
captures the predictive uncertainty from model’s distri-323
bution. Consequently, we employ model perplexity as a324
measure to quantify data difficulty from the model’s per-325
spective. Formally, for a model Mθ, given a data sample326
x =< Q,A > with instruction Q = {q1, q2, . . . qm},327
its Instruction Understanding Difficulty is defined as:328

D1θ(x) = PPLθ(Q)

= exp

(
− 1

m

m∑
i=1

logPθ(qi|q1, q2, . . . , qi−1)

)
,

(2)329

where Pθ(qi|q1, q2, . . . , qi−1) represents the probability330
Mθ generates the i-th token in instruction Q given the331
preceding tokens. Higher perplexity indicates greater332
difficulty for the model to comprehend the instruction.333

(2) Response Confidence Difficulty. When encoun-334
tering challenging data, models often struggle to provide335

a confident response. This uncertainty arises from its 336
inability to handle the task and determine the most ap- 337
propriate response, similar to human learners (Preheim 338
et al., 2023), which indicates high data difficulty. To 339
quantify this difficulty, we introduce Response Confi- 340
dence Difficulty, measured by the model’s conditional 341
perplexity when generating a response given the instruc- 342
tion. Formally, for a model Mθ, given a data sam- 343
ple x =< Q,A > with instruction Q is and model- 344
generated response A′ = {a′1, a′2 . . . , a′n′} based on Q, 345
its Response Confidence Difficulty is defined as: 346

D2θ(x) = PPLθ(A
′|Q)

= exp

− 1

n′

n′∑
j=1

logPθ(a
′
j |a′

1, a
′
2, . . . , a

′
j−1, Q)

 .
(3) 347

Higher conditional perplexity indicates greater uncer- 348
tainty in the model’s distribution and greater difficulty 349
for the model to provide a confident answer. 350

(3) Response Correctness Difficulty. For instruction- 351
tuning data with reference answers, it is essential to 352
assess the model’s ability to generate correct responses 353
to assess data difficulty. We introduce Response Cor- 354
rectness Difficulty, measured by the model’s condi- 355
tional perplexity when generating the reference answer 356
A = {a1, a2 . . . , an} given instruction Q. 357

D3θ(x) = PPLθ(A|Q)

= exp

(
− 1

n

n∑
j=1

logPθ(aj |a1, a2, . . . , aj−1, Q)

)
.

(4) 358

Higher conditional perplexity indicates greater difficulty 359
in producing the correct response, suggesting the sample 360
poses more challenge for the model. 361

4



Attention-based importance weighting mechanism.362
Response Confidence and Response Correctness Dif-363
ficulties rely on evaluating the uncertainty inherent in364
the model’s generation process. While conditional per-365
plexity serves as an effective proxy, it treats all tokens366
equally, disregarding their varying semantic importance.367
While key tokens significantly influence the meaning368
and correctness of a response, trivial tokens like con-369
junctions may exhibit high uncertainty without substan-370
tially influencing semantics. This can lead to inaccurate371
data difficulty assessments. To address this, inspired372
by Su et al. (2024), we introduce an attention-based373
importance weighting mechanism that adjusts token’s374
uncertainty contributions by weighting based on their375
semantic importance. We argue that critical tokens are376
those playing a pivotal role in guiding subsequent gen-377
erations. Therefore, we derive importance scores from378
the model’s internal attention mechanism. Specifically,379
for a token sequence s = {t1, t2, . . . , ti, . . . , tn}, when380
a transformer-based LLM generates token tj(i < j), it381
computes the attention weight Aji by applying a soft-382
max function to the dot product of the query vector qj383
and the key vector ki:384

Aji = (qj · ki)/
√
dk, (5)385

where dk is the dimension of ki. Aji represents the386
attention the model pays to token ti when generating387
token tj , reflecting the importance of ti. We define the388
importance score of token ti as the aggregated attention389
weight it receives from all subsequent tokens:390

I(ti) = Aggregate
j>i

(Aji). (6)391

We use mean aggregation to compute token importance392
scores. Using these scores, Response Confidence and393
Response Correctness Difficulties are refined as:394

Atten-D2θ(x) = weightedPPLθ(A
′|Q)

= exp

(
−
∑n′

j=1 I(tj) · ϕ∑n′

j=1 I(tj)

)
,

ϕ = logPθ(a
′
j |a′

1, a
′
2, . . . , a

′
j−1, Q),

(7)395

Atten-D3θ(x) = weightedPPLθ(A|Q)

= exp

(
−
∑n

j=1 I(tj) · ϕ′∑n
j=1 I(tj)

)
,

ϕ′ = logPθ(aj |a1, a2, . . . , aj−1, Q).

(8)396

By integrating attention-based importance weights,397
this mechanism prioritizes tokens crucial for semantic398
correctness and clarity, offering a more accurate estima-399
tion of model uncertainty and data difficulty.400

Selection Strategy based on Decomposed Difficulty.401
Based on the decomposed data difficulties, 3DS identi-402
fies samples whose difficulty metrics fall within a pre-403
defined middle range, discarding either trivially easy or404

overly complex data, focusing on moderately challeng- 405
ing samples that match the model’s learning capacity. 406
K-Center sampling (introduced in Appendix C) based 407
on instruction embeddings is then applied on this subset 408
to enhance data diversity, reducing the risk of overfitting 409
on highly similar samples. 410

3.3 Model-Centric Data Selection Framework 411

The overall architecture of our model-centric data selec- 412
tion framework is illustrated in Figure 1. Pseudo codes 413
of the process are shown in Appendix A. 414

4 Main Experiments 415

4.1 Experimental Setup 416

Training dataset. For medical domain adaptation 417
fine-tuning, we construct a comprehensive medical 418
instruction-tuning dataset of diversity and abundance. 419
The dataset comprises over 1.9 M samples, with its 420
statistics provided in Table 7 and data construction de- 421
tails introduced in Appendix B. We have released this 422
complete training dataset to support further research. 423

Evaluation datasets. We assess fine-tuned models on 424
diverse medical test datasets: two multi-task, multiple- 425
choice datasets, MMCU-Med (Zeng, 2023) and CMB- 426
Exam (Wang et al., 2023c), and an open Q&A dataset, 427
CMB-Clin (Wang et al., 2023c). Data statistics are 428
provided in Table 8. MMCU-Medical and CMB- 429
Exam, consisting of medical exam questions, assess 430
the model’s reasoning and medical knowledge applica- 431
tion abilities with accuracy as the metric. CMB-clin, 432
comprising of patient record analysis tasks, assesses the 433
model’s complex medical analysis ability, with BLEU- 434
1, BLEU-4 and ROUGE as the metric (detailed in Ap- 435
pendix F). Together, these datasets provide a comprehen- 436
sive evaluation of the model’s proficiency in the medical 437
domain. 438

Models. Experiments are conducted on instruct mod- 439
els of varying architectures and parameter sizes: 440
Baichuan2-13B-Chat (Yang et al., 2023a), Qwen1.5- 441
7B-Instruct, Qwen2.5-7B-Instruct (Bai et al., 2023) and 442
LLaMA3-8B-Instruct (Touvron et al., 2023). 443

Baselines. We compare 3DS with a series of LLM 444
fine-tuning data selection strategies. (1) Base di- 445
rectly tests instruct models without further fine-tuning. 446
(2) Full-Sft fine-tunes models on the full training 447
dataset. (3) Random Selection randomly selects data. 448
(4) Alpagasus (Chen et al., 2023a) utilizes GPT-4 to 449
identify high-quality data. (5) DEITA (Liu et al., 2023) 450
trains quality and complexity scorers and selects data ac- 451
cording to their judgments (6) MoDS (Du et al., 2023) 452
filters high-quality data via a reward model, and se- 453
lects data necessary for model learning through training 454
and inference processes. (7) IFD (Li et al., 2024a,b) 455
designs instruction following difficulty metric based 456
on the ground truth output loss with or without inputs. 457
(8) LESS (Xia et al., 2024) searches for training data 458
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Method LLM Turbo Baichuan2-13B-Chat Qwen1.5-7B-Instruct Qwen2.5-7B-Instruct LLaMA3-8B-Instruct Avg.
Dataset CMB-Exam MMCU-Med CMB-Exam MMCU-Med CMB-Exam MMCU-Med CMB-Exam MMCU-Med

Baselines

Base 46.67 47.11 59.80 64.24 78.28 83.43 41.72 46.47 58.47
Full-Sft 40.38 37.90 48.05 47.53 71.04 75.49 40.85 46.72 51.00
Random 44.07 47.61 61.81 65.10 75.92 82.41 41.54 45.23 57.96

Alpagasus 42.24 43.56 55.67 58.74 69.90 78.08 41.60 45.26 54.38
DEITA 46.78 49.88 45.33 44.09 74.07 81.59 41.31 45.80 53.60
MoDS 47.25 50.37 61.09 64.67 76.31 82.23 39.25 42.53 57.96

IFD 46.44 50.08 62.06 65.37 78.17 84.57 38.25 40.48 58.18
LESS 45.79 51.01 60.74 64.85 78.83 83.20 41.80 44.63 58.86

Ours 3DS 47.37 51.08 61.96 66.09 79.06 85.70 43.95 49.70 60.61
*Performance Gain ↑ 0.70 3.97 2.16 1.85 0.78 2.27 2.23 3.23 2.14

Table 3: Performance comparison (%) on CMB-Exam, MMCU-Medical of EM score. The best performance is
highlighted in bold. Performance gains are measured against the base model.

Method LLM Turbo Baichuan2-13B-Chat Qwen1.5-7B-Instruct Qwen2.5-7B-Instruct LLaMA3-8B-Instruct Avg.
Metric BLEU-1 BLEU-4 ROUGE BLEU-1 BLEU-4 ROUGE BLEU-1 BLEU-4 ROUGE BLEU-1 BLEU-4 ROUGE

Baselines

Base 11.15 21.02 14.08 16.17 32.03 16.31 21.87 64.11 36.74 5.06 35.09 10.40 23.67
Full-Sft 7.19 16.33 11.70 6.68 16.61 9.62 16.72 36.52 19.84 2.80 6.87 6.58 13.12
Random 12.14 25.95 14.75 16.09 34.45 16.19 16.49 33.68 17.89 9.01 25.49 12.14 19.52

Alpagasus 10.16 20.42 12.58 14.48 31.63 14.77 16.85 35.74 18.77 8.66 22.51 12.36 18.24
DEITA 19.42 42.07 19.32 18.92 42.93 20.32 21.71 49.33 23.40 9.91 23.33 13.86 25.38
MoDS 22.43 51.02 22.85 17.61 39.19 19.93 18.83 41.31 21.45 12.38 29.74 15.33 26.01

IFD 21.44 51.73 24.94 19.24 43.10 21.08 18.07 39.16 20.28 10.59 29.32 14.83 26.15
LESS 13.27 29.20 16.40 17.48 38.88 17.58 19.08 45.20 22.42 11.82 31.98 15.55 23.24

Ours 3DS 24.15 63.51 31.50 24.40 60.32 28.07 22.05 64.95 37.11 12.52 36.88 17.09 35.21
*Performance Gain ↑ 13.00 42.49 17.42 9.45 29.49 11.92 0.18 0.84 0.37 7.46 1.79 6.69 11.54

Table 4: Performance comparison (%) on CMB-Clin.

similar to target task examples through low-rank gra-459
dient similarity. The implementation details are intro-460
duced in Appendix D.461

Implementations. The selection data budget is 5K462
samples. In 3DS, the Prompt-Driven Data Selection463
stage retains samples with a quality score ≥ 90. In the464
subsequent Decomposed Difficulty-based Data Selec-465
tion stage, difficulty thresholds are determined via exper-466
iments on the CMB hold-out validation set. Specifically,467
for Baichuan2-13B-Chat, the thresholds are set to 15%468
and 65%; for Qwen1.5-7B-Chat and Qwen2.5-7B-Chat,469
25% and 75%; and 40% and 90% for LLaMA3-8B-470
Instruct. More implementation details are introduced in471
Appendix E.472

4.2 Main Results473

Experiment results are shown in Table 3 and Table 4.474
We summarize our findings below.475

Data selection is necessary for LLM domain adapta-476
tion fine-tuning. We observe that fine-tuning LLMs477
on the full 1.9 million dataset (Full-SFT) leads to drastic478
performance drops across three benchmarks. This sug-479
gests that domain datasets directly collected from public480
resources contain significant noise that hinders model481
learning, highlighting the necessity of data selection.482

3DS effectively enhances LLM’s diverse domain483
abilities, significantly outperforming baselines. As484
shown in Table 3 and Table 4, across various bench-485
marks and LLM backbones, 3DS generally achieves486
the highest accuracy, outperforming the backbones and487
strong data selection baselines. On medical exam488

datasets, it improves base model performance by up 489
to 8.43% (on MMCU-Med for Baichuan2-13B-Chat), 490
and exceeds the best baseline an average of 2.97%, 491
greatly enhancing the model’s medical knowledge ap- 492
plication abilities. On the open Q&A CMB-clin, mod- 493
els fine-tuned with 3DS significantly outperforms all 494
baselines by a large margin, exhibiting superior medi- 495
cal analysis ability. To more comprehensively analyze 496
model’s domain performance, for CMB-Clin, we also 497
conduct a pair-wise comparison using GPT-4o as the 498
judge, detailed in Appendix G.1. Both the quantitative 499
and qualitative evidence demonstrate that 3DS boosts 500
the model’s multi-faceted domain abilities. 501

In contrast, methods relying on external, model- 502
agnostic data evaluations, such as Alpagasus and 503
DEITA, often lead to performance declines, especially 504
on Qwen models. This further validates our previous 505
conclusion that misalignment between selected data and 506
the model hinders learning. Baselines MoDS and IFD 507
show relatively strong results due to their considera- 508
tions of model distribution and data difficulty. However, 509
their selection on the most challenging data also proves 510
inefficient, as they only bring marginal improvements 511
across tasks and even underperform the backbone and 512
random selection on LLaMA3-8B-Instruct. Baseline 513
LESS, which aims to enhance performance on one spe- 514
cific downstream task, fails to generalize to domain 515
adaptation fine-tuning where diverse abilities need to 516
be improved, leading to performance degradation on 517
MMCU-Medical for Baichuan2-13B-Chat. 518

3DS exhibits strong generalization ability. 3DS’s 519
consistent performance gains across backbones and 520
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benchmarks highlight its generalization ability to adapt521
to different models and domain tasks. To further validate522
the practicality of 3DS, we compare models fine-tuned523
using 3DS-with existing medical LLMs, with results524
shown in Appendix G.2.525

4.3 Ablation Studies526

3DS is composed of two stages, and in Stage#2, three527
difficulty metrics are proposed. To validate the effec-528
tiveness of each component, we conduct comprehen-529
sive ablation studies. Without loss of generality, experi-530
ments are done on Baichuan2-13B-Chat and Qwen1.5-531
7B-Instruct. Main results are shown in Table 5, and532
additional metrics are in Appendix G.3.533

Ablation on stages. To evaluate the contributions of534
each stage in 3DS, we compare: (1) removing Stage#1,535
where 70K samples are randomly sampled from the com-536
plete training dataset for subsequent difficulty-based537
selection, and (2) removing Stage#2, where K-Center538
sampling is directly applied to the high-quality samples539
identified in stage#1. Additionally, to validate the ne-540
cessity of decomposed difficulty calculation based on541
model perplexity, we investigate (3) collapsing Stage#2542
into Stage#1, where the model is prompted to verbalize543
its assessments of the three data difficulties (correspond-544
ing prompts are shown in Appendix J.3), bypassing the545
original difficulty calculation.546

The results show a consistent pattern: each modifica-547
tion leads to a decrease in performance compared to548
the original method, emphasizing the necessity of qual-549
ity controls and selecting appropriately difficult data.550
When Stage#2 is collapsed into Stage#1 via difficulty551
evaluation prompts, performance also degrades. During552
experiments, we observe that LLMs struggle to provide553
fine-grained assessments of data difficulty, often gen-554
erating coarse-grained scores such as 0.5, 0.8, and 1.555
This lack of granularity makes it challenging to identify556
nuanced differences in data difficulty and select targeted557
data with desired moderate difficulties.558

While results on multiple-choice benchmarks do not559
indicate which stage is more important, the analysis560
performance on CMB-Clin reveals a clearer trend: re-561
moving Stage#1 leads to the poorest performance, fol-562
lowed by removing Stage#2 and collapsing Stage#2563
into Stage#1. This pattern highlights the crucial role of564
quality control for the model to provide coherent and565
high-quality answers. Difficulty-based selection is also566
essential, as even coarser-grained difficulty measure-567
ments by model verbalization yield better results than568
ignoring difficulty at all. This progressive improvement569
further reinforces the two-stage design of 3DS.570

Ablation on difficulty metrics. We remove each of571
the three metrics—Instruction Understanding, Response572
Confidence, and Response Correctness Difficulties and573
run 3DS without any other modifications. The results in574
Table 5 demonstrate that, in general, removing any sin-575
gle component results in noticeable performance drops,576
indicating a decline in certain aspects of the model’s577

medical abilities. These observations validate the neces- 578
sity of each difficulty metric in identifying beneficial 579
data samples for enhancing LLM’s domain abilities. 580
Plus, removing the attention-based importance weight- 581
ing mechanism also brings performance declines, which 582
validates its effectiveness. 583

Additional ablation studies on data budgets are intro- 584
duced in Appendix G.4. 585

4.4 Impact of Difficulty Thresholds 586

30 35 40 45 50 55
Sample Center (%)

0.46

0.48

0.50

0.52

A
C

C

Baichuan2-13b-3ds Baichuan2-13b

(a) Baichuan2-13b-chat

30 35 40 45 50 55
Sample Center (%)

0.61

0.62

0.63

0.64

0.65

0.66

0.67

A
C

C

Qwen-1.5-7b-3ds Qwen-1.5-7b

(b) Qwen-1.5-7b-chat

Figure 2: Impact of Difficulty Thresholds on Model
Performance. This figure illustrates how varying diffi-
culty thresholds affect the accuracy (ACC) of the models
Baichuan2-13b-chat and Qwen-1.5-7b-chat across dif-
ferent difficulty sample centers (%).

We conduct sliding-window experiments, varying the 587
selection difficulty ranges (σ±25%), to investigate how 588
training data difficulty affects the model’s medical do- 589
main fine-tuning. As shown in Figure 2, the model’s 590
performance improves as difficulties increase, reach- 591
ing a peak before declining. This pattern further high- 592
lights the importance of selecting data that best suits the 593
model’s learning capacity. Training on overly simple 594
data limits improvements, while training on excessively 595
difficult data impedes effective learning. 596

5 Generalization on Law Domain 597

While our pilot study and main experiments focus on 598
adapting LLMs to the medical domain using Chinese- 599
language data, we note that our 3DS is intrinsically 600
domain-agnostic. To validate its generalization ability, 601
we conduct additional experiments on the law domain 602
using an English-language dataset CaseHOLD (Zheng 603
et al., 2021). Details of experiment setups are intro- 604
duced in Appendix I. We compare 3DS with random 605
selection and a strong baseline IFD. The results in Ta- 606
ble 6 demonstrate that 3DS consistently outperforms 607
baselines in terms of accuracy, achieving an average 608
accuracy of 76.13% with low variance. These results 609
suggest that our model-centric data selection 3DS is 610
adaptable to other specialized domains, supporting its 611
applicability beyond the medical setting. 612

6 Related Work 613

Data Selection for LLM Training Data selection 614
for LLM training has been explored by various works. 615
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LLM Turbo Baichuan2-13B-Chat Qwen1.5-7B-Instruct Avg.Benchmark CMB-Exam MMCU-Med CMB-Clin CMB-Exam MMCU-Med CMB-Clin
w/o Stage#1 44.64 48.06 16.19 60.37 64.03 15.88 41.53
w/o Stage#2 47.09 50.83 21.83 61.59 65.91 21.55 44.80

Stage#2 Collapsed into Stage#1 47.28 51.01 22.69 60.56 63.99 23.41 44.82
w/o D1 47.35 50.59 23.99 61.47 65.80 24.68 45.65
w/o D2 47.34 47.18 23.54 62.00 66.05 23.84 44.99
w/o D3 47.07 50.59 23.08 61.64 65.73 23.83 45.32

w/o Atten 47.10 50.19 29.58 61.79 65.84 27.69 47.03
3DS 47.37 51.08 31.50 61.96 66.09 28.07 47.68

Table 5: Performance comparisons (%) on CMB-Exam, MMCU-Medical and CMB-Clin of ablation studies on
stages and difficulty metrics of 3DS. For CMB-Clin, the ROUGE score is reported.

Model Accuracy Std. Dev.

Original 57.77 0.25

+Random 73.40 0.80
+IFD 60.30 2.62
+3DS 76.13 0.80

Table 6: Accuracy (%) comparison on law domain.

Some works (Das and Khetan, 2023) focus on diver-616
sity via statistical clustering or core-set selection, but617
often overlook data quality, potentially incorporating618
noisy samples that hinder training. To address qual-619
ity concerns, some works employ external models like620
proprietary LLMs (Chen et al., 2023a; Liu et al., 2023;621
Wettig et al., 2024) or reward models (Du et al., 2023)622
to evaluate and select high-quality data. However, due623
to distributional gaps between external evaluators and624
the model to be trained, data labeled as high-quality625
may still contain redundant or conflicting information626
for the target model, limiting its effectiveness. Another627
line of work leverages internal signals from the target628
model, such as perplexity (Marion et al., 2023), gra-629
dients (Xia et al., 2024), or derived metrics like data630
learnability (Zhou et al., 2023) and instruction follow-631
ing difficulty (Li et al., 2024b,a). While these signals632
provide more direct insights into the model’s understand-633
ing of data, they typically offer only coarse estimates634
of data difficulty, failing to capture different aspects of635
data complexity or account for the model’s generation636
behavior. Their selection of the most difficult data also637
risks overwhelming the model. Though related to ac-638
tive learning (Yoo and Kweon, 2019; Karamcheti et al.,639
2021; Mindermann et al., 2022) in challenges and in-640
sights, the purpose and workflow of LLM data selection641
are distinct. In this work, we focus exclusively on data642
selection tailored for training LLMs. We note that exist-643
ing data selection methods for LLMs mainly focus on644
pre-training, general instruction-tuning (transforming645
a base model into a chat model), or task-specific fine-646
tuning. In contrast, data selection for domain adaptation647
fine-tuning remains underexplored, where unique chal-648
lenges lie in selecting data that best elicit the model’s649
diverse domain abilities. To bridge this gap and over-650
come the limitations of current methods, we introduce651
a novel model-centric data selection framework and652
provide fine-grained analysis of data difficulty, enabling653
better aligned data selection for LLM domain adaptation654

fine-tuning. 655

Data Learnability in LLM SFT LLMs encounter 656
significant challenges when learning unfamiliar or com- 657
plex knowledge during supervised fine-tuning, particu- 658
larly when the data was not encountered during pre- 659
training, which can impede domain adaptation fine- 660
tuning. Gekhman et al. (2024) found that models ac- 661
quire new factual knowledge slowly during SFT, espe- 662
cially when the information diverges from their pre- 663
existing understanding, leading to a higher risk of 664
hallucinations. Ren et al. (2024) further shows that 665
when the knowledge introduced during Instruction Fine- 666
tuning significantly differs from what was learned in 667
pre-training, the model struggles to integrate it, causing 668
performance degradation. This highlights the difficulty 669
models face in using pre-training knowledge to under- 670
stand new concepts. Kang et al. (2024) also emphasizes 671
that unfamiliar examples during fine-tuning increase 672
the likelihood of hallucinations, suggesting that high- 673
difficulty data can destabilize the model and negatively 674
impact its ability to adapt to new domains. Together, 675
these findings underscore the risks associated with fine- 676
tuning on excessively difficult data, which can under- 677
mine model performance in domain-specific tasks. 678

7 Conclusion 679

In this paper, we highlight the importance of selecting 680
data aligned with the model’s distribution for LLM do- 681
main adaptation fine-tuning through a pilot study. To 682
this end, we propose a two-stage model-centric data 683
selection framework 3DS. The Stage#1 explicitly aligns 684
data with the LLM’s knowledge through prompt-driven 685
selection. The Stage#2 implicitly aligns data via dif- 686
ficulty decomposition. Leveraging Instruction Under- 687
standing, Response Confidence, and Response Correct- 688
ness difficulties calibrated by attention-based impor- 689
tance weighting, 3DS effectively models the LLM’s 690
implicit distribution and selects data well-matched to its 691
learning capacity. Extensive experiments on multiple 692
medical and legal tasks show significant performance 693
gains, demonstrating 3DS ’s effectiveness and gener- 694
alization ability. Overall, we offer a path toward more 695
efficient LLM domain adaptation fine-tuning. Future 696
work will explore extending the framework to more do- 697
mains and refining training strategies based on difficulty 698
metrics for broader applications. 699
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Limitations700

Due to time and resource constraints, we have only vali-701
dated our method in the medical and legal domains. The702
results show that 3DS is domain-agnostic and adaptable703
to other fields. However, further experiments may still704
be needed to fully verify its generalization. 3DS re-705
quires the model to rate the entire training set and per-706
form inference on the selected subset. Although in707
experiments, we utilize VLLM to accelerate the process,708
it still involves certain computational costs. 3DS per-709
forms data selection prior to fine-tuning. Considering710
that the model’s evaluation of data difficulty may evolve711
during training, future research should explore dynamic712
selection that adapts to the model’s changing state. Ad-713
ditionally, data filtered out is currently discarded. Future714
work should consider integrating mechanisms such as715
human-in-the-loop validation or strategies to recover po-716
tentially relevant and valuable data from the discarded717
pool. Finally, considerations for social bias and fairness718
issues are discussed in Appendix K.719

References720

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,721
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei722
Huang, et al. 2023. Qwen technical report. arXiv723
preprint arXiv:2309.16609.724

Lukas Budach, Moritz Feuerpfeil, Nina Ihde, Andrea725
Nathansen, Nele Noack, Hendrik Patzlaff, Felix Nau-726
mann, and Hazar Harmouch. 2022. The effects of727
data quality on machine learning performance. arXiv728
preprint arXiv:2207.14529.729

Minh Duc Bui and Katharina Von Der Wense. 2024.730
The trade-off between performance, efficiency, and731
fairness in adapter modules for text classification. In732
Proceedings of the 4th Workshop on Trustworthy Nat-733
ural Language Processing (TrustNLP 2024), pages734
40–50, Mexico City, Mexico. Association for Com-735
putational Linguistics.736

Junying Chen, Xidong Wang, Ke Ji, Anningzhe Gao,737
Feng Jiang, Shunian Chen, Hongbo Zhang, Dingjie738
Song, Wenya Xie, Chuyi Kong, Jianquan Li, Xi-739
ang Wan, Haizhou Li, and Benyou Wang. 2024.740
Huatuogpt-ii, one-stage training for medical adaption741
of llms. Preprint, arXiv:2311.09774.742

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa743
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-744
vasan, Tianyi Zhou, Heng Huang, et al. 2023a. Alpa-745
gasus: Training a better alpaca with fewer data. arXiv746
preprint arXiv:2307.08701.747

Zeming Chen, Alejandro Hernández Cano, Angelika748
Romanou, Antoine Bonnet, Kyle Matoba, Francesco749
Salvi, Matteo Pagliardini, Simin Fan, Andreas750
Köpf, Amirkeivan Mohtashami, Alexandre Sallinen,751
Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk,752
Deniz Bayazit, Axel Marmet, Syrielle Montariol,753
Mary-Anne Hartley, Martin Jaggi, and Antoine754

Bosselut. 2023b. Meditron-70b: Scaling medical 755
pretraining for large language models. Preprint, 756
arXiv:2311.16079. 757

Devleena Das and Vivek Khetan. 2023. Deft: Data 758
efficient fine-tuning for large language models via 759
unsupervised core-set selection. arXiv preprint 760
arXiv:2310.16776. 761

Qianlong Du, Chengqing Zong, and Jiajun Zhang. 2023. 762
Mods: Model-oriented data selection for instruction 763
tuning. arXiv preprint arXiv:2311.15653. 764

Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal, 765
Amir Feder, Roi Reichart, and Jonathan Herzig. 2024. 766
Does fine-tuning llms on new knowledge encourage 767
hallucinations? arXiv preprint arXiv:2405.05904. 768

Hila Gonen, Srini Iyer, Terra Blevins, Noah Smith, and 769
Luke Zettlemoyer. 2023. Demystifying prompts in 770
language models via perplexity estimation. In Find- 771
ings of the Association for Computational Linguistics: 772
EMNLP 2023, pages 10136–10148, Singapore. Asso- 773
ciation for Computational Linguistics. 774

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 775
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, 776
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex 777
Vaughan, et al. 2024. The llama 3 herd of models. 778
arXiv preprint arXiv:2407.21783. 779

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 780
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 781
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 782
centivizing reasoning capability in llms via reinforce- 783
ment learning. arXiv preprint arXiv:2501.12948. 784

Emily Harris. 2023. Large language models answer 785
medical questions accurately, but can’t match clini- 786
cians’ knowledge. JAMA. 787

Alex Havrilla and Maia Iyer. 2024. Understanding the 788
effect of noise in llm training data with algorithmic 789
chains of thought. arXiv preprint arXiv:2402.04004. 790

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan 791
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea 792
Madotto, and Pascale Fung. 2023. Survey of hal- 793
lucination in natural language generation. ACM Com- 794
puting Surveys, 55(12):1–38. 795

Xinke Jiang, Ruizhe Zhang, Yongxin Xu, Rihong Qiu, 796
Yue Fang, Zhiyuan Wang, Jinyi Tang, Hongxin Ding, 797
Xu Chu, Junfeng Zhao, and Yasha Wang. 2024. 798
Hykge: A hypothesis knowledge graph enhanced 799
framework for accurate and reliable medical llms re- 800
sponses. Preprint, arXiv:2312.15883. 801

Katie Kang, Eric Wallace, Claire Tomlin, Aviral Ku- 802
mar, and Sergey Levine. 2024. Unfamiliar finetuning 803
examples control how language models hallucinate. 804
arXiv preprint arXiv:2403.05612. 805

Siddharth Karamcheti, Ranjay Krishna, Li Fei-Fei, and 806
Christopher D Manning. 2021. Mind your outliers! 807
investigating the negative impact of outliers on active 808
learning for visual question answering. In Proceed- 809
ings of the 59th Annual Meeting of the Association for 810

9

https://doi.org/10.18653/v1/2024.trustnlp-1.4
https://doi.org/10.18653/v1/2024.trustnlp-1.4
https://doi.org/10.18653/v1/2024.trustnlp-1.4
https://arxiv.org/abs/2311.09774
https://arxiv.org/abs/2311.09774
https://arxiv.org/abs/2311.09774
https://arxiv.org/abs/2311.16079
https://arxiv.org/abs/2311.16079
https://arxiv.org/abs/2311.16079
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://arxiv.org/abs/2312.15883
https://arxiv.org/abs/2312.15883
https://arxiv.org/abs/2312.15883
https://arxiv.org/abs/2312.15883
https://arxiv.org/abs/2312.15883


Computational Linguistics and the 11th International811
Joint Conference on Natural Language Processing812
(Volume 1: Long Papers), pages 7265–7281.813

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick814
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,815
and Wen tau Yih. 2020. Dense passage retrieval816
for open-domain question answering. Preprint,817
arXiv:2004.04906.818

Jianquan Li, Xidong Wang, Xiangbo Wu, Zhiyi Zhang,819
Xiaolong Xu, Jie Fu, Prayag Tiwari, Xiang Wan, and820
Benyou Wang. 2023. Huatuo-26m, a large-scale chi-821
nese medical qa dataset. Preprint, arXiv:2305.01526.822

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu823
Zhao, Jianzong Wang, Ning Cheng, and Tianyi Zhou.824
2024a. Superfiltering: Weak-to-strong data filtering825
for fast instruction-tuning. In Proceedings of the826
62nd Annual Meeting of the Association for Compu-827
tational Linguistics (Volume 1: Long Papers), pages828
14255–14273, Bangkok, Thailand. Association for829
Computational Linguistics.830

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang831
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and832
Jing Xiao. 2024b. From quantity to quality: Boost-833
ing llm performance with self-guided data selection834
for instruction tuning. In Proceedings of the 2024835
Conference of the North American Chapter of the836
Association for Computational Linguistics: Human837
Language Technologies (Volume 1: Long Papers),838
pages 7595–7628.839

Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wenhan840
Xiong, Jimmy Lin, Wen-tau Yih, and Xilun Chen.841
Flame: Factuality-aware alignment for large language842
models. In The Thirty-eighth Annual Conference on843
Neural Information Processing Systems.844

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.845
TruthfulQA: Measuring how models mimic human846
falsehoods. In Proceedings of the 60th Annual Meet-847
ing of the Association for Computational Linguistics848
(Volume 1: Long Papers), pages 3214–3252, Dublin,849
Ireland. Association for Computational Linguistics.850

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and851
Junxian He. 2023. What makes good data for852
alignment? a comprehensive study of automatic853
data selection in instruction tuning. arXiv preprint854
arXiv:2312.15685.855

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex856
Wang, Marzieh Fadaee, and Sara Hooker. 2023.857
When less is more: Investigating data pruning858
for pretraining llms at scale. arXiv preprint859
arXiv:2309.04564.860

Sören Mindermann, Jan M Brauner, Muhammed T Raz-861
zak, Mrinank Sharma, Andreas Kirsch, Winnie Xu,862
Benedikt Höltgen, Aidan N Gomez, Adrien Morisot,863
Sebastian Farquhar, et al. 2022. Prioritized training864
on points that are learnable, worth learning, and not865
yet learnt. In International Conference on Machine866
Learning, pages 15630–15649. PMLR.867

Benedict U Nwachukwu, Nathan H Varady, Answorth A 868
Allen, Joshua S Dines, David W Altchek, Riley J 869
Williams III, and Kyle N Kunze. 2024. Currently 870
available large language models do not provide mus- 871
culoskeletal treatment recommendations that are con- 872
cordant with evidence-based clinical practice guide- 873
lines. Arthroscopy: The Journal of Arthroscopic & 874
Related Surgery. 875

OECD. 2014. PISA 2012 Results: Creative Problem 876
Solving (Volume V). 877

OpenAI. 2023. Gpt-4 technical report. ArXiv, 878
abs/2303.08774. 879

Ankit Pal and Malaikannan Sankarasubbu. 2023. Gem- 880
ini goes to med school: Exploring the capabilities of 881
multimodal large language models on medical chal- 882
lenge problems and hallucinations. 883

Dimitrios P Panagoulias, Maria Virvou, and George A 884
Tsihrintzis. 2024. Evaluating llm–generated multi- 885
modal diagnosis from medical images and symptom 886
analysis. arXiv preprint arXiv:2402.01730. 887

George Polya and George Pólya. 2014. How to solve 888
it: A new aspect of mathematical method, volume 34. 889
Princeton university press. 890

Michael Preheim, Josef Dorfmeister, and Ethan Snow. 891
2023. Assessing confidence and certainty of students 892
in an undergraduate linear algebra course. Journal 893
for STEM Education Research, 6(1):159–180. 894

Mengjie Ren, Boxi Cao, Hongyu Lin, Liu Cao, Xi- 895
anpei Han, Ke Zeng, Guanglu Wan, Xunliang Cai, 896
and Le Sun. 2024. Learning or self-aligning? re- 897
thinking instruction fine-tuning. arXiv preprint 898
arXiv:2402.18243. 899

Mohammad-Javad Sanaei, Mehrnaz Sadat Ravari, and 900
Hassan Abolghasemi. 2023. Chatgpt in medicine: 901
Opportunity and challenges. Iranian Journal of 902
Blood and Cancer, 15(3):60–67. 903

Inhwa Song, Sachin R. Pendse, Neha Kumar, and Mun- 904
mun De Choudhury. 2024. The typing cure: Experi- 905
ences with large language model chatbots for mental 906
health support. Preprint, arXiv:2401.14362. 907

Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, 908
and Yiqun Liu. 2024. Dragin: Dynamic retrieval aug- 909
mented generation based on the real-time informa- 910
tion needs of large language models. arXiv preprint 911
arXiv:2403.10081. 912

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, 913
Amjad Almahairi, Yasmine Babaei, Nikolay Bash- 914
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos- 915
ale, et al. 2023. Llama 2: Open foundation and fine- 916
tuned chat models. arXiv preprint arXiv:2307.09288. 917

Ehsan Ullah, Anil Parwani, Mirza Mansoor Baig, and 918
Rajendra Singh. 2024. Challenges and barriers of 919
using large language models (llm) such as chat- 920
gpt for diagnostic medicine with a focus on digi- 921
tal pathology–a recent scoping review. Diagnostic 922
pathology, 19(1):43. 923

10

https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2305.01526
https://arxiv.org/abs/2305.01526
https://arxiv.org/abs/2305.01526
https://aclanthology.org/2024.acl-long.769
https://aclanthology.org/2024.acl-long.769
https://aclanthology.org/2024.acl-long.769
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/https://doi.org/10.1787/9789264208070-en
https://doi.org/https://doi.org/10.1787/9789264208070-en
https://doi.org/https://doi.org/10.1787/9789264208070-en
https://arxiv.org/abs/2401.14362
https://arxiv.org/abs/2401.14362
https://arxiv.org/abs/2401.14362
https://arxiv.org/abs/2401.14362
https://arxiv.org/abs/2401.14362


Ethan Waisberg, Joshua Ong, Mouayad Masalkhi, Nasif924
Zaman, Prithul Sarker, Andrew G Lee, and Alireza925
Tavakkoli. 2023. Gpt-4 and medical image analysis:926
Strengths, weaknesses and future directions. Journal927
of Medical Artificial Intelligence, 6.928

Bin Wang, Chengwei Wei, Zhengyuan Liu, Geyu Lin,929
and Nancy F Chen. 2024a. Resilience of large lan-930
guage models for noisy instructions. arXiv preprint931
arXiv:2404.09754.932

Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang,933
Sendong Zhao, Bing Qin, and Ting Liu. 2023a. Hu-934
atuo: Tuning llama model with chinese medical935
knowledge.936

Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang,937
and Dianhui Chu. 2024b. A survey on data se-938
lection for llm instruction tuning. arXiv preprint939
arXiv:2402.05123.940

Jun Wang, Changyu Hou, Pengyong Li, Jingjing941
Gong, Chen Song, Qi Shen, and Guotong942
Xie. 2023b. Awesome dataset for medical943
llm: A curated list of popular datasets, mod-944
els and papers for llms in medical/healthcare.945
https://github.com/onejune2018/946
Awesome-Medical-Healthcare-Dataset-For-LLM.947

Xidong Wang, Guiming Hardy Chen, Dingjie Song,948
Zhiyi Zhang, Zhihong Chen, Qingying Xiao, Feng949
Jiang, Jianquan Li, Xiang Wan, Benyou Wang, et al.950
2023c. Cmb: A comprehensive medical benchmark951
in chinese. arXiv preprint arXiv:2308.08833.952

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack953
Hessel, Tushar Khot, Khyathi Chandu, David Wad-954
den, Kelsey MacMillan, Noah A Smith, Iz Beltagy,955
et al. 2023d. How far can camels go? exploring the956
state of instruction tuning on open resources. Ad-957
vances in Neural Information Processing Systems,958
36:74764–74786.959

Alexander Wettig, Aatmik Gupta, Saumya Malik, and960
Danqi Chen. 2024. Qurating: Selecting high-quality961
data for training lanugage models. In ICLR 2024962
Workshop on Navigating and Addressing Data Prob-963
lems for Foundation Models.964

Theresa Isabelle Wilhelm, Jonas Roos, and Robert Kacz-965
marczyk. 2023. Large language models for therapy966
recommendations across 3 clinical specialties: com-967
parative study. Journal of medical Internet research,968
25:e49324.969

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,970
Sanjeev Arora, and Danqi Chen. 2024. LESS: Se-971
lecting influential data for targeted instruction tuning.972
In International Conference on Machine Learning973
(ICML).974

Zhichao Xu. 2023. Context-aware decoding reduces hal-975
lucination in query-focused summarization. Preprint,976
arXiv:2312.14335.977

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,978
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,979

Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng 980
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao, 981
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Ji- 982
aming Ji, Jian Xie, JunTao Dai, Kun Fang, Lei Su, 983
Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang 984
Wang, Mickel Liu, MingAn Lin, Nuolan Nie, Peidong 985
Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li, Tianyu 986
Li, Wei Cheng, Weipeng Chen, Xiangrong Zeng, Xi- 987
aochuan Wang, Xiaoxi Chen, Xin Men, Xin Yu, Xue- 988
hai Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin 989
Jiang, Yuchen Gao, Yupeng Zhang, Zenan Zhou, and 990
Zhiying Wu. 2023a. Baichuan 2: Open large-scale 991
language models. Preprint, arXiv:2309.10305. 992

Songhua Yang, Hanjia Zhao, Senbin Zhu, Guangyu 993
Zhou, Hongfei Xu, Yuxiang Jia, and Hongying Zan. 994
2023b. Zhongjing: Enhancing the chinese medical 995
capabilities of large language model through expert 996
feedback and real-world multi-turn dialogue. 997

Donggeun Yoo and In So Kweon. 2019. Learning loss 998
for active learning. In Proceedings of the IEEE/CVF 999
conference on computer vision and pattern recogni- 1000
tion, pages 93–102. 1001

Hui Zeng. 2023. Measuring massive multitask chinese 1002
understanding. arXiv preprint arXiv:2304.12986. 1003

Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhi- 1004
hong Chen, Jianquan Li, Guiming Chen, Xiangbo 1005
Wu, Zhiyi Zhang, Qingying Xiao, Xiang Wan, and 1006
Benyou Wang. 2023. Huatuogpt, towards taming 1007
language model to be a doctor. 1008

Ningyu Zhang, Mosha Chen, Zhen Bi, Xiaozhuan Liang, 1009
Lei Li, Xin Shang, Kangping Yin, Chuanqi Tan, Jian 1010
Xu, Fei Huang, Luo Si, Yuan Ni, Guotong Xie, Zhi- 1011
fang Sui, Baobao Chang, Hui Zong, Zheng Yuan, 1012
Linfeng Li, Jun Yan, Hongying Zan, Kunli Zhang, 1013
Buzhou Tang, and Qingcai Chen. 2022. CBLUE: A 1014
Chinese biomedical language understanding evalua- 1015
tion benchmark. In Proceedings of the 60th Annual 1016
Meeting of the Association for Computational Lin- 1017
guistics (Volume 1: Long Papers), pages 7888–7915, 1018
Dublin, Ireland. Association for Computational Lin- 1019
guistics. 1020

S. Zhang, X. Zhang, H. Wang, L. Guo, and S. Liu. 2018. 1021
Multi-scale attentive interaction networks for chinese 1022
medical question answer selection. IEEE Access, 1023
6:74061–74071. 1024

Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun, 1025
Yongkang Huang, Chong Long, Xiao Liu, Xuanyu 1026
Lei, Jie Tang, and Minlie Huang. 2024. SafetyBench: 1027
Evaluating the safety of large language models. In 1028
Proceedings of the 62nd Annual Meeting of the As- 1029
sociation for Computational Linguistics (Volume 1: 1030
Long Papers), pages 15537–15553, Bangkok, Thai- 1031
land. Association for Computational Linguistics. 1032

Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter 1033
Henderson, and Daniel E. Ho. 2021. When does pre- 1034
training help? assessing self-supervised learning for 1035
law and the casehold dataset of 53,000+ legal hold- 1036
ings. In Proceedings of the Eighteenth International 1037

11

https://github.com/onejune2018/Awesome-Medical-Healthcare-Dataset-For-LLM
https://github.com/onejune2018/Awesome-Medical-Healthcare-Dataset-For-LLM
https://github.com/onejune2018/Awesome-Medical-Healthcare-Dataset-For-LLM
https://arxiv.org/abs/2312.14335
https://arxiv.org/abs/2312.14335
https://arxiv.org/abs/2312.14335
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305
https://doi.org/10.18653/v1/2022.acl-long.544
https://doi.org/10.18653/v1/2022.acl-long.544
https://doi.org/10.18653/v1/2022.acl-long.544
https://doi.org/10.18653/v1/2022.acl-long.544
https://doi.org/10.18653/v1/2022.acl-long.544
https://doi.org/10.1109/ACCESS.2018.2883637
https://doi.org/10.1109/ACCESS.2018.2883637
https://doi.org/10.1109/ACCESS.2018.2883637
https://doi.org/10.18653/v1/2024.acl-long.830
https://doi.org/10.18653/v1/2024.acl-long.830
https://doi.org/10.18653/v1/2024.acl-long.830
https://doi.org/10.1145/3462757.3466088
https://doi.org/10.1145/3462757.3466088
https://doi.org/10.1145/3462757.3466088
https://doi.org/10.1145/3462757.3466088
https://doi.org/10.1145/3462757.3466088
https://doi.org/10.1145/3462757.3466088
https://doi.org/10.1145/3462757.3466088


Conference on Artificial Intelligence and Law, ICAIL1038
’21, page 159–168, New York, NY, USA. Association1039
for Computing Machinery.1040

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan1041
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.1042
2024. Llamafactory: Unified efficient fine-tuning1043
of 100+ language models. In Proceedings of the1044
62nd Annual Meeting of the Association for Compu-1045
tational Linguistics (Volume 3: System Demonstra-1046
tions), Bangkok, Thailand. Association for Computa-1047
tional Linguistics.1048

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,1049
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping1050
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-1051
ment. Advances in Neural Information Processing1052
Systems, 36.1053

Haotian Zhou, Tingkai Liu, Qianli Ma, Jianbo Yuan,1054
Pengfei Liu, Yang You, and Hongxia Yang. 2023.1055
Lobass: Gauging learnability in supervised fine-1056
tuning data. arXiv preprint arXiv:2310.13008.1057

Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming1058
Zheng, Soujanya Poria, and Tat-Seng Chua. 2021.1059
Retrieving and reading: A comprehensive survey1060
on open-domain question answering. Preprint,1061
arXiv:2101.00774.1062

He Zhu, Ren Togo, Takahiro Ogawa, and Miki1063
Haseyama. 2023a. A medical domain visual question1064
generation model via large language model.1065

Wei Zhu, Xiaoling Wang, Huanran Zheng, Mosha Chen,1066
and Buzhou Tang. 2023b. Promptcblue: a chinese1067
prompt tuning benchmark for the medical domain.1068
arXiv preprint arXiv:2310.14151.1069

A Pseudo Codes of 3DS 1070

We provide the pseudo codes of 3DS in Algorithm 1. 1071

Algorithm 1: Model-Centric Data Selection
Framework

Input: Full dataset X , model M , scoring
threshold θ, difficulty calculation
functions D1,D2,D3, percentage
thresholds p1, p2, p3, sampling budget k

Output: Selected data subset S
Stage#1: Prompt-Driven Data Selection
Initialize X1 ← ∅
foreach x ∈ X do

Get score sx ←M(prompt, x)
if sx ≥ θ then

Add x to X1

end
end
Stage#2: Decomposed Difficulty-based Data

Selection
Initialize S ← ∅
Compute D1(x),D2(x),D3(x) for all x ∈ X1

Set τ1, τ2, τ3 based on percentiles p1, p2, p3 of
D1,D2,D3

foreach x ∈ X1 do
if τ low

1 ≤ D1(x) ≤ τ high
1 and

τ low
2 ≤ D2(x) ≤ τ high

2 and
τ low
3 ≤ D3(x) ≤ τ high

3 then
Add x to intermediate set Smid

end
end
Apply K-Center sampling on Smid to select k

diverse data points
Return final selected subset S

B Datasheet for Medical Domain 1072

Adaptation Fine-Tuning Dataset 1073

Data statistics 1074
The statistics of the training dataset and the test 1075

dataset are shown below. The use of the test datasets 1076
complies with their respective licenses. 1077

What is the primary purpose of creating this 1078
dataset? 1079

This dataset was created to construct a large- 1080
scale medical domain instruction-following fine-tuning 1081
dataset. The primary purpose is to support the adapta- 1082
tion of large language models (LLMs) to the medical do- 1083
main by providing diverse and comprehensive training 1084
instances. By integrating heterogeneous data sources, 1085
including doctor-patient dialogues, medical knowledge 1086
bases, and various medical tasks formulated into the 1087
instruction-output format, the dataset aims to enhance 1088
the ability of LLMs to perform effectively across a wide 1089
range of real-world medical scenarios. It is designed to 1090
address the unique challenges of the medical domain, 1091
such as specialized terminology, complex reasoning, 1092
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Dataset Size (K)
medtalk_singleround 177
medknowledge_KG 796
medknowledge_webqa 360
medtask_promptcblue 82
qa_website 490
Total 1905

Table 7: Training Dataset Statistics

Dataset Type Size
CMB-Exam multiple-choice 11200
MMCU-medical multiple-choice 2819
CMB-Clin open Q&A 208

Table 8: Test Dataset Statistics

and context-sensitive responses, thereby enabling LLMs1093
to better meet the demands of healthcare applications.1094

What are the specific components of the dataset,1095
and how were they constructed or sourced?1096

Our dataset integrates multiple open-sourced medical1097
instruction fine-tuning datasets from diverse sources,1098
along with doctor-patient dialogue data extracted from1099
medical consultation websites and a variety of medical1100
tasks reformulated into the instruction-output format, as1101
detailed in Table 7. Medtalk_singleround originates1102
from open-sourced doctor-patient question-and-answer1103
datasets, including CMedQA2 (Zhang et al., 2018)1104
and Health-Care-Magic1. Medknowledge_KG is built1105
from the Online Medical Knowledge-Based Data in Hu-1106
atuo26M (Li et al., 2023), which is derived from the ex-1107
tensive medical literature data provided by the Chinese1108
Medical Association. Medknowledge_webqa includes1109
knowledge-driven, open-ended question-and-answer1110
pairs in the medical domain, sourced from (Wang1111
et al., 2023b). Medtask_promptcblue combines the1112
promptCBLUE dataset (Zhu et al., 2023b) with addi-1113
tional data converted into the instruction-output for-1114
mat from the CBLUE benchmark (Zhang et al., 2022).1115
QA_website contains authentic doctor-patient dialogue1116
data collected from the online platform of a collaborat-1117
ing hospital. Examples from these datasets are shown1118
in Table 9.1119

Are the data sources legal? How are privacy and1120
ethical considerations addressed?1121

The dataset is derived from carefully selected sources,1122
including publicly available datasets and data crawled1123
from the website of a collaborating hospital. Explicit1124
permission was obtained from the collaborating hospital1125
for the use of the crawled data, and all data have been1126
anonymized to ensure that no personal information is1127
exposed. Additionally, the hospital’s website provides1128
open-access data, complying with relevant legal and eth-1129
ical standards. This ensures the legality and security of1130

1https://www.kaggle.com/datasets/gunman02/
health-care-magic

the data while addressing privacy and ethical concerns. 1131
What are the potential risks and limitations of this 1132

dataset? 1133
The dataset has certain inherent risks and limitations 1134

that should be acknowledged. First, as the data is col- 1135
lected from diverse sources, it may contain noise or 1136
inconsistencies, which could affect the quality and relia- 1137
bility of downstream applications. Additionally, since 1138
the dataset is derived from Chinese text corpora, includ- 1139
ing medical advice and Q&A exchanges, its content 1140
may be culturally and regionally specific, making it 1141
more suitable for East Asian populations. As a result, 1142
the medical recommendations and insights in the dataset 1143
may not generalize well to other demographic or cul- 1144
tural contexts. 1145

To address these issues, users should carefully eval- 1146
uate the dataset’s suitability for their intended applica- 1147
tions and, if necessary, consider adapting the data to 1148
align with broader use cases. Moreover, noise reduction 1149
and validation techniques can be employed to improve 1150
data quality and reliability in specific tasks. 1151

What is the usage case for this dataset? 1152
This dataset is primarily intended for instruction fine- 1153

tuning of large language models (LLMs), as already 1154
utilized in this study. Practitioners can use it to fine- 1155
tune LLMs to adapt to the medical domain, as well as 1156
to enhance its medical abilities in general fine-tuning. 1157
Additionally, the dataset may be useful for more specific 1158
tasks, such as fine-tuning for sub-tasks in the dataset. 1159

What is the distribution method and maintenance 1160
plan for this dataset? 1161

The dataset is distributed as an open-source resource 1162
at https://drive.google.com/drive/folders/ 1163
1SfrwQkDrQJ8i_EIqfc2Di0Xa5Y5pzY9H, allowing 1164
researchers and developers to access and utilize it freely 1165
under the specified license. We are committed to the 1166
ongoing maintenance of the dataset. If any errors or 1167
inaccuracies are identified, particularly those related 1168
to medical knowledge, we will promptly update the 1169
dataset to correct such issues, removing erroneous 1170
data as necessary. Additionally, we will continue to 1171
provide updated documentation to ensure the dataset’s 1172
effective use. While the dataset is stable at present, 1173
users are encouraged to provide feedback or suggest 1174
improvements, and we will consider updates based on 1175
user input or evolving needs in the field. This ensures 1176
that the dataset remains reliable and beneficial for the 1177
community. 1178

C K-Center Sampling Algorithm 1179

In our data selection framework, K-Center sampling is 1180
employed to ensure diversity within the selected instruc- 1181
tion fine-tuning data. After filtering based on difficulty 1182
levels, we obtain an intermediate set Smid, composed 1183
of data points within a moderate difficulty range. The 1184
K-Center sampling is then applied on Smid. Specifically, 1185
the process works as follows: 1186

1. Embedding Generation: For each data sample, 1187

13

https://www.kaggle.com/datasets/gunman02/health-care-magic
https://www.kaggle.com/datasets/gunman02/health-care-magic
https://drive.google.com/drive/folders/1SfrwQkDrQJ8i_EIqfc2Di0Xa5Y5pzY9H
https://drive.google.com/drive/folders/1SfrwQkDrQJ8i_EIqfc2Di0Xa5Y5pzY9H
https://drive.google.com/drive/folders/1SfrwQkDrQJ8i_EIqfc2Di0Xa5Y5pzY9H


the instruction part is encoded into an embedding us-1188
ing the LLM. We extract the last hidden states of the1189
LLM and compute the average across all tokens in the1190
sequence to form a fixed-size embedding vector. These1191
embeddings represent the semantic content of the in-1192
struction.1193

2. K-Center Sampling: Using these embeddings,1194
the K-Center sampling algorithm selects k data points1195
in a greedy manner. The goal is to maximize the mini-1196
mum distance between any pair of selected data points,1197
ensuring that the sampled data points are as distinct as1198
possible. This promotes diversity in the selected dataset1199
and minimizes the risk of overfitting to similar data1200
points.1201

The pseudo codes of this greedy K-Center sampling1202
process are shown in Algorithm 2:1203

Algorithm 2: Greedy K-Center Sampling
Input: Intermediate set

Smid = {s1, s2, . . . , sn}, model M , data
budget k

Output: Final selected set S
Step 1: Encode data in Smid using model M ;
foreach si ∈ Smid do

Encode s using M to obtain the embedding
es ;

end
Step 2: Run K-Center greedy algorithm;
Initialize S ← ∅ ;
Initialize min_distances←∞ ;
for i = 1 to k do

if S = ∅ then
Select sj ∈ Smid randomly and add it to
S ;

else
min_distancesj = minsi∈S ∥esj −
esi∥2, ∀sj ∈ Smid \ S;

Select s∗ =
argmaxsj∈Smid\S min_distancesj ;

Add s∗ to S;
end

end
return S

D Baseline Implementations1204

Due to differences in task settings and datasets, we1205
re-implement the baselines using their publicly avail-1206
able codes. We adapt their data selection strategies1207
to our domain adaptation fine-tuning task on the med-1208
ical instruction fine-tuning dataset and models. The1209
re-implementation details are as follows and our use1210
of the code repositories complies with their respective1211
licenses:1212

(1) Alpagasus: (Chen et al., 2023a) We adopt the1213
open-sourced implementation2, officially verified by the1214

2https://github.com/gpt4life/alpagasus

original authors. Given the scale of our full training 1215
dataset, applying GPT-4 annotation to the entire set 1216
would incur substantial financial cost due to API usage. 1217
Constrained by our budget, we randomly sample 70K 1218
training samples and assess their quality using the pro- 1219
vided prompt with GPT-4o. From data scoring above 1220
the default threshold of 4.5, we randomly select 5K 1221
samples. 1222

(2) DEITA: (Liu et al., 2023) We utilize the official 1223
implementation from the public GitHub repository3 1224
and directly download their trained data quality and 1225
complexity scorer models from HuggingFace45 with- 1226
out modification. The scorers are applied to randomly 1227
sampled 70K training data. We then select the top 5K 1228
samples with the highest scores in both quality and com- 1229
plexity. 1230

(3) IFD: (Li et al., 2024a,b) The Instruction Follow- 1231
ing Difficulty (IFD) method begins by calculating the 1232
instruction-following difficulty scores for each data 1233
point through model forward propagation. Given that 1234
our full domain dataset consists of over 1.9 million sam- 1235
ples, performing this step on the entire dataset would be 1236
computationally prohibitive. Therefore, we randomly 1237
sample 60K samples from the training set, an amount 1238
comparable to the dataset size used in our 3DS after 1239
Stage#1. We compute IFD scores for this subset, and, 1240
following the recommendations in the original paper, 1241
select the samples with highest scores. The data budget 1242
is constrained to 5k samples, ensuring consistent with 1243
our main experimental setup. 1244

(4) MoDS: (Du et al., 2023) For the MoDS 1245
baseline, We follow the original paper’s 1246
implementations, using the reward model 1247
reward-model-deberta-v3-large-v26 to score 1248
the full dataset. We then obtain samples with scores 1249
above 0.5, yielding a subset of 120k high-quality data 1250
samples. From this subset, we apply K-Center sampling 1251
to select 2k seed samples for model warm-up training. 1252
Subsequently, the trained model perform inference on 1253
the 120k high-quality subset, and these predictions are 1254
rescored using the same reward model. Data samples 1255
where model’s generated answers score below 0 are 1256
deemed necessary and are combined with the seed 1257
samples. From this merged set, we randomly select 5k 1258
samples as the final training data, and train models from 1259
scratch on this final data. 1260

(5) LESS: (Xia et al., 2024) The LESS method in- 1261
volves constructing a gradient library based on the orig- 1262
inal data, which incurs significant computational costs, 1263
particularly for the large dataset like ours. Similarly, 1264

3https://github.com/hkust-nlp/deita
4https://huggingface.co/hkust-nlp/deita-quality-scorer
5https://huggingface.co/hkust-nlp/deita-complexity-

scorer
6https://huggingface.co/OpenAssistant/reward-model-

deberta-v3-large-v2
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we sample 60k data points to compute the gradients.1265
Unlike the original LESS method that targets specific1266
downstream tasks and uses samples from the target-1267
ing dataset to construct a validation set, our domain1268
adaptation fine-tuning scenario does not involve fixed1269
downstream tasks. Therefore, we randomly selected an1270
additional 100 samples from the training set as the vali-1271
dation set. Then we run the provided codes and select1272
5k training samples.1273

E Implementation Details1274

The difficulty thresholds in our experiments are deter-1275
mined based on model performance on a hold-out CMB-1276
validation set composed of 280 samples provided in the1277
CMB benchmark (Wang et al., 2023c). All experiments1278
are conducted using the PyTorch 2.4.0 in Python 3.9, on1279
8 NVIDIA H100 GPUs and an Intel(R) Xeon(R) CPU,1280
with both training and inference performed using half-1281
precision FP16 for efficiency. We employ the LoRA1282
fine-tuning method, targeting all linear modules within1283
the model, with a learning rate of 5 × 10−5, a batch1284
size of 64, and a single epoch of training. The learn-1285
ing rate is scheduled using a cosine decay scheduler1286
with a warmup ratio of 0.1. The LoRA rank is set to 8,1287
and the input sequence length is cut off at 1024 tokens.1288
DeepSpeed Zero-3 is used to optimize distributed train-1289
ing. For instruction scoring, response generation, and1290
training, we use templates corresponding to each model,1291
implemented through the llamafactory project (Zheng1292
et al., 2024).1293

Due to the high computational cost of training and1294
testing LLMs, most existing instruction data selection1295
studies conduct experiments with a single run for ef-1296
ficiency (Li et al., 2024b; Du et al., 2023). We adopt1297
this approach as well. However, to assess the relia-1298
bility of our results, we perform the random selection1299
experiment three times. The results show consistent per-1300
formance with low variance (MMCU: 0.07; CMB 0.011301
for Qwen1.5-7B-Chat) and narrow error bars (±0.261302
and ±0.08 for Qwen1.5-7B-Chat), demonstrating that1303
our findings are statistically stable and reliable.1304

F Evaluation Metrics1305

To evaluate the performance of LLMs on multi-task1306
medical choice questions, we instruct the models to1307
provide only the correct answer and adopt the widely-1308
used metric, Exact Match (EM), as recommended by1309
prior work (Zhu et al., 2021; Karpukhin et al., 2020).1310
An answer is deemed correct under the EM metric if its1311
form exactly matches all the correct answers listed in1312
the ground truth. The EM score is computed as follows:1313

EM =
Number of Correctly Matched Answers

Total Number of Answers
×100%.1314

For open-domain medical Q&A tasks, we employ1315
ROUGE-R (Xu, 2023; Jiang et al., 2024) and Bilingual1316
Evaluation Understudy (BLEU) to assess the quality1317
of the LLMs’ responses.1318

BLEU-N Specifically, BLEU-1 is used to measure 1319
answer precision, and BLEU-4 evaluates answer fluency 1320
by considering higher-order n-gram consistency. BLEU 1321
evaluates the similarity of generated responses to the 1322
ground truth using the following formula: 1323

BLEU-N = BP · exp

(
1

N

N∑
n=1

log pn

)
, 1324

where pn is the precision of n-grams, BP is the Brevity 1325
Penalty, calculated as: 1326

BP =

{
1, if c > r

exp
(
1− r

c

)
, if c ≤ r

. 1327

Here c is the length of the generated response, and r is 1328
the length of the reference response. 1329

ROUGE-R quantifies the recall of retrieved knowl- 1330
edge in the LLMs’ responses, emphasizing their ability 1331
to comprehensively cover the information relevant to 1332
the query. For a generated response R and a reference 1333
G, ROUGE-R is computed as: 1334

ROUGE-R =
|R ∩G|
|G|

, 1335

where |R ∩ G| denotes the number of overlapping n- 1336
grams between the generated response and the reference, 1337
and |G| is the total number of n-grams in the reference. 1338

During implementation, We use the ’rouge’ package 1339
to calculate ROUGE scores and the ’nltk’ module to 1340
compute BLEU scores (from BLEU-1 to BLEU-4), uti- 1341
lizing the smoothing function for BLEU and the default 1342
settings for ROUGE. 1343

G Supplementary Experiments 1344

G.1 Win Rates Evaluation 1345

When evaluating model performance on the open Q&A 1346
dataset CMB-Clin, in addition to traditional metrics 1347
such as BLEU1, BLEU4 and Rouge scores, we conduct 1348
a pair-wise comparison to more thoroughly compare the 1349
fine-tuned models’ medical analysis ability. In this ex- 1350
periment, we randomly sample 100 answers from each 1351
model and employ GPT-4o, a highly capable LLM, as 1352
the judge to determine which model generates a better 1353
answer. Below, we present the prompt used to instruct 1354
GPT-4o to compare answers from two models in this 1355
qualitative evaluation. To ensure a fair comparison and 1356
eliminate any possible positional bias in GPT-o4, we 1357
randomly assign the answers from each model as "Stu- 1358
dent 1" or "Student 2" throughout the experiment. 1359

Results shown in Figure 3 demonstrate that 3DS ex- 1360
hibits substantially higher win rates compared to all 1361
other baselines. Notably, the larger and stronger mod- 1362
els Baichuan2-13B-Chat, Qwen1.5-7B-Instruct and 1363
Qwen2.5-7B-Instruct generally show higher win 1364
rates compared to LLaMA3-8B-Instruct, which indi- 1365
cates that 3DS also exhibits scalability. This evaluation 1366
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provides qualitative evidence that 3DS effectively en-1367
hances the model to deliver more clinically accurate1368
outputs.1369

CMB-Clin Evaluation Prompt

You are now a medical expert guiding students
in analyzing medical cases. You have two
students, Student 1 and Student 2. You assess
them through real medical case questions and
choose the one with the best answer to become
your assistant.

[High-Quality Answer Criteria]
1. The answer should address the question
directly and solve the problem posed.

2. The description of symptoms should
be comprehensive and accurate, and the diag-
nosis should be the most reasonable inference
based on all relevant factors and possibilities.

3. The treatment recommendation should be
effective and reliable, considering the severity
or stage of the condition.

4. The prescription should consider indi-
cations, contraindications, and dosages, being
both effective and reliable.

[Judgment Instructions]
Please compare the answers of Student 1
and Student 2. You need to tell me whether
Student 1 is [better], [worse], or [equal] to
Student 2. Compare their answers, refer to the
question and the correct answer, and determine
which one meets the given requirements more
closely. Please only output one of the following:
[Student 1 is better than Student 2], [Student
1 is worse than Student 2], or [Student 1 and
Student 2 are equal]. Do not output any other
words.

[Case Example]
Here is the [Question]:
<Insert medical question here>

Here is the [Standard Answer]:
<Insert standard answer here>

Here is [Student 1]’s answer:
<Insert Student 1’s answer here>

Here is [Student 2]’s answer:
<Insert Student 2’s answer here>
Please compare the two answers and give your
judgment.

1370

G.2 Comparison with Existing Medical LLMs 1371

Model CMB-Exam MMCU-Med
Baichuan2-13B-3DS 47.37 51.08

Qwen1.5-7B-3DS 61.96 66.09
Qwen2.5-7B-3DS 79.06 85.70

Meditron-7B 11.20 12.16
Huatuo-II-7B 27.69 47.18

Huatuo-II-34B 59.54 66.10

Table 10: Performance comparisons with existing medi-
cal LLMs.

To further validate the practical utility of 3DS, we con- 1372
duct comparisons with existing medical LLMs. We 1373
compare 3DS fine-tuned models to established medical 1374
LLMs, including open-source models MediTron (Chen 1375
et al., 2023b) (7B version due to its similar size to Qwen 1376
models), and state-of-the-art Chinese medical LLMs 1377
HuatuoGPT-II-7B, and HuatuoGPT-II-34B (Chen et al., 1378
2024), to see whether our framework can benefit the 1379
construction of medical LLMs. The results presented in 1380
Table 10 show that, MediTron-7B, as an English-based 1381
LLM, demonstrates limited performance on Chinese 1382
medical benchmarks. Huatuo-II-7B also falls short on 1383
to similar-sized Qwen models. Huatuo-II-34B, with 1384
nearly five times the size of Qwen1.5-7B and Qwen2.5- 1385
7B, achieves only comparable performance. 1386

It is worth noting that the performance of fine-tuned 1387
models is closely tied to the capability of the base model, 1388
so relative improvements achieved through domain- 1389
specific fine-tuning are more important than absolute 1390
performance. Still, the strong performance of models 1391
fine-tuned with 3DS validates its practical utility and ef- 1392
ficiency for developing medical domain LLMs, paving 1393
ways for more building more powerful and advanced 1394
models in the future. 1395

G.3 More Results for Ablation on 3DS 1396

In the ablation studies in 4.3, for CMB-Clin benchmark, 1397
we only report the ROUGE score. We provide BLEU- 1398
1, BLEU-4 scores and win-rates of the experiments 1399
in Table 11 and Table 12. Results are consistent with 1400
previous observations that the original 3DS significantly 1401
outperforms ablation variants, supporting the validity 1402
of our designed two-stage framework and three data 1403
difficulty metrics. 1404
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LLM Turbo Baichuan2-13B-Chat Qwen-1.5-7B-Instruct
Metric BLEU-1 BLEU-4 BLEU-1 BLEU-4

w/o Stage#1 14.13 29.60 15.50 31.94
w/o Stage#2 20.56 46.86 21.55 47.39

Stage#2 into Stage#1 21.48 50.16 21.73 52.27
w/o D1 22.55 51.75 24.14 55.12
w/o D2 22.22 52.06 20.48 49.59
w/o D3 20.86 49.40 22.27 50.18
3DS 24.15 63.51 24.40 60.32

Table 11: Performance (BLEU-1, BLEU-4) on CMB-
Clin for ablation experiments. The best performance is
highlighted in bold.

LLM Turbo Baichuan2-13B-Chat Qwen-1.5-7B-Instruct
Metric Win Tie Lose Win Tie Lose

vs w/o Stage#1 66.5 9.0 24.5 70.5 3.0 26.5
vs w/o Stage#2 66.0 15.5 28.5 66.0 5.5 28.5

vs Stage#2 into Stage#1 63.5 18.0 18.5 54.5 2.5 43.0

Table 12: Win-rates (%) of GPT-4o judgment on CMB-
Clin, comparing 3DS with stage ablation variants.

G.4 Ablation on Data Budgets1405

We conduct ablation experiments varying the selection1406
data budgets. Results in Table 13 show that increasing1407
the training data size initially boosts performance as the1408
model learns to align with domain-specific knowledge.1409
However, beyond a certain point (5K), performance1410
degradation arise due to potential data redundancy and1411
reduced diversity.1412

H Parameter Selection Guidelines1413

In 3DS’s Stage#2 Decomposed Difficulty-based Data1414
Selection, data within a moderate difficulty range are1415
selected. How to determine the optimal difficulty range1416
is thus essential. We provide selection guidelines based1417
on our experiments. We identify that the 25%-75%1418
difficulty range is a robust choice. For model-specific1419
optimization, we recommend this implementation pro-1420
cedure:1421

• Model Capability Profiling: Conduct pre-fine-1422
tuning validation to benchmark the model’s base-1423
line performance. Strong domain task performance1424
suggests higher difficulty thresholds, while weaker1425
models benefit from more conservative ranges.1426

• Hyperparameter Search: Implement search over1427
potential ranges and select the values that yield the1428
best performance on the validation set. This allows1429
for adapting the difficulty range to the model’s1430
specific strengths and weaknesses.1431

I Law Domain Experiment Details1432

To assess the generalization ability of our model-centric1433
data selection framework beyond the medical domain,1434
we conduct experiments on the law domain, utilizing1435
CaseHOLD dataset (Zheng et al., 2021). This dataset1436

consists of over 53,000 multiple-choice questions de- 1437
rived from U.S. court decisions. Each instance presents 1438
a case citation context along with five candidate legal 1439
holdings, of which only one is correct. The task simu- 1440
lates legal reasoning by requiring models to identify the 1441
option that best matches the cited precedent. 1442

We follow a standard instruction-tuning setup by con- 1443
verting CaseHOLD into an Alpaca-style format. The 1444
instruction is fixed to a law domain-specific prompt: 1445

CaseHOLD Instruction

As a law expert, please select the option that
best matches the legal holding cited in the case.
Answer with the option letter only (A/B/C/D/E).

1446

The input contains the case citation context and five 1447
formatted candidate holdings: 1448

CaseHOLD Input

Case Citation Context: [citing_context]
Options: A. [holding_0] B. [holding_1] . . . E.
[holding_4]

1449

We fine-tune LLaMA3-8B-Instruct on 5K training 1450
samples selected from the CaseHOLD training set us- 1451
ing three different strategies: (1) Random Selection, 1452
(2) IFD (Li et al., 2024b), a strong instruction filtering 1453
baseline, and (3) our proposed model-centric selection 1454
framework 3DS. All models are trained under the same 1455
hyperparameters, and each experiment is repeated three 1456
times with different random seeds. We report the mean 1457
accuracy and standard deviation on a selected 1K sam- 1458
ples from the CaseHOLD test set. 1459

J Data Evaluation Prompts 1460

J.1 Data Quality Evaluation Prompt 1461

In the pilot study and the first stage of 3DS, we utilize a 1462
prompt to instruct models to evaluate data quality on its 1463
internal knowledge. Inspired by existing works (Chen 1464
et al., 2024; Wang et al., 2023c; Liu et al., 2023), the 1465
model is asked to assess data quality across five dimen- 1466
sions: Instruction Complexity, Response Relevance, Re- 1467
sponse Thoroughness, Response Logic and Knowledge 1468
Richness. We provide the model with detailed scoring 1469
guidelines. The specific prompt used in this process is 1470
shown below. 1471

Quality Evaluation Prompt

You are an AI assistant with medical expertise.
Your task is to objectively assess the quality
of the medical dialogue between the user and
assistant based on your knowledge, and provide
a score. The data may consist of single or
multi-turn dialogues. You should evaluate based
on the complexity of the question, relevance of

1472
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the response, thoroughness, logical coherence,
and knowledge richness, and provide an overall
score. Focus on medical-specific characteristics
to ensure accuracy.

[Evaluation Criteria]

1. Question Complexity: Evaluate the
complexity of the user’s question. If the ques-
tion requires deep understanding, reasoning, or
medical knowledge, score above 80.

2. Response Relevance: Assess if the as-
sistant’s response is directly aligned with the
question. Score above 80 for responses tightly
related to the question.

3. Response Thoroughness: Check if the
response thoroughly addresses the question
with sufficient detail. A score above 80 reflects
comprehensive answers.

4. Response Logic: Ensure the response
follows clear reasoning and logic. A score
above 80 reflects well-structured reasoning.

5. Knowledge Richness: Determine whether the
response demonstrates rich, specialized medical
knowledge. A score above 80 indicates depth
and accuracy.

[Scoring Guidelines]

[80-100]: Excellent. High complexity,
thoroughness, relevance, logic, and knowledge
richness, meeting medical standards.

[60-79]: Good. Strong performance but
with minor deficiencies in logic or knowledge.

[40-59]: Fair. Noticeable issues such as
unclear logic or insufficient depth.

[20-39]: Poor. Fails to properly address
the medical issue or lacks substance.

[0-19]: Very Poor. Lacks relevance, logic, or
medical knowledge.

[Start Conversation]
Refer to the guidelines and score the following
dialogue data based on the criteria. Follow the
output format strictly:
{score:}

1473

Dialogue:
<qa_pairs>
Output:

1474

J.2 Data Difficulty Evaluation Prompt 1475

In the second empirical study, we prompt models to rate 1476
overall data difficulty according to its knowledge. The 1477
specific prompt used in this process is shown below. 1478

Overall Difficulty Evaluation Prompt

You are a medical expert. I will provide you
with an instruction related to the medical field.
Based on your knowledge, please evaluate the
difficulty of this instruction.

1. Medical Knowledge Complexity: Does
this instruction involve complex medical
knowledge?

2. Reasoning Complexity: Does answer-
ing this instruction require multi-step reasoning,
integration of multiple sources of information,
or handling clinical uncertainty?

3. Overall Challenge: Considering the
above factors, what is the overall difficulty of
this instruction?

Based on these considerations, please provide a
comprehensive difficulty rating from 1 (very
easy) to 5 (very difficult). Only output the
score; do not provide any explanation.
Instruction to evaluate:
{instruction}

Please return an integer between 1 and 5,
representing the overall difficulty of the
instruction for you. Only output the score and
nothing else.

1479

J.3 Decomposed Difficulty Prompts 1480

In the ablation study where we collapse Stage#2 in 1481
3DS into Stage#1, using prompts to instruct model 1482
to score the three decomposed data difficulties. The 1483
prompts utilized are listed below. 1484

Instruction Following Difficulty Prompt

Based on your existing knowledge, evaluate
the difficulty of understanding the following
instruction. The higher the complexity and
ambiguity of the instruction, the more difficult
it is for the model to understand. Please provide
a score between 0 and 1, where a higher score
indicates that the instruction is more difficult
for you to understand.

1485
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Instruction to be evaluated: {instruction}

Please return a real number between 0
and 1, representing the difficulty of understand-
ing the instruction. Only output the score, and
do not output anything else.

1486

Response Confidence Difficulty Prompt

Based on your existing knowledge, evaluate
the difficulty of confidently and definitively
providing the following evaluated response
to the instruction. The more difficult it is to
confidently provide this response, the higher
the difficulty. Please provide a score between 0
and 1, where a higher score indicates greater
difficulty in answering confidently.

Instruction: {instruction}
Response to be evaluated: {generated
output}

Please return a real number between 0
and 1, representing the difficulty of confidently
providing the response to the instruction. Only
output the score, and do not output anything
else.

1487

Response Correctness Difficulty Prompt

Based on the following instruction and the
standard answer, evaluate the difficulty of
providing the correct standard answer. If the
instruction is complex or the answer requires
high expertise, making it difficult to provide
the correct answer, the difficulty will be higher.
Please provide a score between 0 and 1, where
a higher score indicates greater difficulty in
providing the correct answer.

Instruction: {instruction}
Standard Answer: {output}

Please return a real number between 0
and 1, representing the difficulty of providing
the correct answer. Only output the score, and
do not output anything else.

1488

K Bias and Fairness Considerations1489

Fairness and bias are critical considerations, particu-1490
larly in sensitive domains like healthcare. While our1491
approach demonstrates promising results in fine-tuning1492
LLMs for medical tasks, it is essential to acknowledge1493
its limitations and potential implications concerning fair-1494
ness and bias. Our method employs the LLM to evaluate1495
data quality and calculate data difficulty. Although the1496

evaluation prompts and difficulty calculation metrics are 1497
designed to be neutral, the inherent biases in the base 1498
model may still influence the selection results. And the 1499
LoRA fine-tuning’s impact on LLM fairness also needs 1500
further investigations (Bui and Von Der Wense, 2024). 1501
Another source of potential bias arises from the compo- 1502
sition of our training data, which predominantly consists 1503
of Chinese medical texts. While this dataset effectively 1504
reflects the health conditions and medical practices of 1505
East Asian populations, it may limit the generalizabil- 1506
ity to other regions or demographics. Current LLM 1507
data selection methods generally prioritize factors such 1508
as difficulty, quality, or diversity, without addressing 1509
fairness or examine what data is included or excluded. 1510
They focus on improving model performance on stan- 1511
dard benchmarks, while the impact of these methods 1512
on fairness, safety, and truthfulness benchmarks, such 1513
as SafetyBench (Zhang et al., 2024) and TruthfulQA 1514
(Lin et al., 2022), remains underexplored. Therefore, 1515
we recognize that these issues are valuable directions 1516
for future research. Investigating how data selection and 1517
fine-tuning methods impact LLM fairness and safety 1518
will be essential for developing more equitable and reli- 1519
able LLMs. 1520
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Medtalk_singleround English translation
Question 医生请问怀孕时母亲得了甲亢会遗

传个孩子么？之前得过甲亢怀孕时
又复发了但是没有吃药想知道宝宝
会不会被遗传？

Q: Doctor, can hyperthyroidism during preg-
nancy be inherited by the baby? Mine recurred
during pregnancy, but I didn’t take medication.
Will my baby be affected?

Answer 甲亢与遗传有一定的关系，但不是
都会遗传的，不要担心。建议平时
合理安排饮食，需要高热量高蛋白
质高维生素和低碘的饮食。精神要
放松。适当休息，避免重体力活。

A: Hyperthyroidism has some genetic links but
is not always inherited. Don’t worry. Maintain
a balanced diet rich in calories, protein, and
vitamins, but low in iodine. Stay relaxed, rest
adequately, and avoid strenuous activities.

Medknowledge_KG English translation
Question 颜面部凹陷的手术治疗有些什么？ Q: What surgical treatments are available for

facial depression?
Answer 自体颗粒脂肪移植；自体脂肪移

植；自体脂肪干细胞移植；自体脂
肪颗粒移植。

A: Autologous micro-fat grafting, autolo-
gous fat transplantation, autologous stem cell-
enriched fat grafting, and autologous fat parti-
cle transplantation.

Medknowledge_webqa English translation
Question 请描述寄生虫病的治疗方法。 Q: Please describe the treatment methods for

parasitic diseases.
Answer 以消灭寄生虫为主，根据虫种采用

最有效的驱虫药物。在感染较重而
寄主较衰弱时，可给予支持疗法，
有外科并发症时应及时进行外科处
理。

A: The primary goal is to eliminate the para-
sites by using the most effective antiparasitic
drugs based on the specific type of parasite.
In cases of severe infection where the host
is weakened, supportive therapy may be pro-
vided. Surgical intervention should be per-
formed promptly if complications arise.

Medtask_promptcblue English translation
Question 问诊对话的实体抽取：两个礼拜片

感冒了，现在还有点咳嗽，会不会
和这个有关？选项：具体的药物名
称，医疗操作，医学检查检验，症
状。

Q: Entity extraction in diagnostic dialogues:
"Caught a cold two weeks ago, still have a bit
of a cough now—could it be related?" Options:
specific medication names, medical procedures,
medical tests and examinations, symptoms.

Answer 上述句子中的实体包含：症状实
体：感冒，咳嗽。

A: The entities in the above sentence include:
Symptom entities: cold, cough.

QA_website English translation
Question 每天下午低烧三十六七°C，有时胸

闷，没有咳嗦，盗汗，乏力的，有
没有得肺结核的可能？

Q: Low-grade fever of 36-37°C every after-
noon, occasional chest tightness, no cough,
night sweats, or fatigue—could this indicate
a possibility of tuberculosis?

Answer 你这个体温其实从临床上来讲，不
算是低烧，一般来讲，37度二以上
才算是低热，所以说你这个跟集合
的关系不是特别大的，你倒是可以
看一下有没有病毒感染的可能，再
一个，有没有新冠的问题？

A: From a clinical perspective, this temperature
doesn’t qualify as a low-grade fever—typically,
temperatures above 37.2°C are considered low-
grade. Therefore, its connection to tuberculosis
is unlikely. However, you might want to check
for the possibility of a viral infection or con-
sider whether it could be related to COVID-19.

Table 9: Examples For various type dataset
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Figure 3: GPT-4o judgement of CMB-Clin.

Model Dataset 3k 4k 5k 6k 7k

Baichuan2-13B-Chat CMB-Exam 46.87 47.30 47.37 46.95 46.98
MMCU-Medical 48.67 49.91 51.08 50.16 50.27

Qwen1.5-7B-Instruct CMB-Exam 60.47 60.45 61.96 60.78 60.53
MMCU-Medical 63.64 63.92 66.09 64.49 64.10

Table 13: Performance comparison of models trained on different data budgets.
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