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Abstract

Large Language Models (LLMs) excel in gen-
eral language tasks, motivating their adaptation
to specialized domains such as healthcare. Ef-
fective domain adaptation typically involves
supervised fine-tuning (SFT) on carefully se-
lected instruction-tuning data. Current data
selection methods adopt a data-centric ap-
proach, relying on external annotations and
heuristics to identify external defined high-
quality and challenging data. Our exploratory
experiments highlight this approach fails to
improve model’s domain performance, due to
misalignment between selected data and the
model’s knowledge distribution. To tackle this,
we propose Decomposed Difficulty-based Data
Selection (3DS), a two-stage model-centric
data selection framework that aligns data se-
lection with the model’s distribution. 3DS em-
ploys a Prompt-Driven Data Selection to filter
out noisy data based on the model’s knowledge
via explicit alignment in Stage#1, then adopts
a Decomposed Difficulty-based Data Selection
to guide selection via three novel data difficulty
metrics, including Instruction Understanding,
Response Confidence, and Response Correct-
ness in Stage#2. These metrics are enhanced by
an attention-based importance weighting mech-
anism for accurate calibration. Extensive exper-
iments in the healthcare domain show 3DS out-
performs existing methods by over 2.97% ac-
curacy, with additional validation in the law do-
main confirming its generalization ability. Our
dataset and code are open-sourced at https:
//anonymous. 4open.science/r/3DS-E67F.

1 Introduction

Large Language Models (LLMs) such as proprietary
GPT-4 (OpenAl, 2023), open-sourced LLaMA (Tou-
vron et al., 2023) and Qwen (Bai et al., 2023), have
demonstrated remarkable capabilities in language un-
derstanding and generation. Encouraged by their suc-
cesses, there is growing interest in leveraging LLMs
in specialized domains like healthcare, where domain-
specific abilities are required (Sanaei et al., 2023; Harris,
2023; Waisberg et al., 2023) for essential tasks like di-
agnosis (Panagoulias et al., 2024; Ullah et al., 2024)
and treatment recommendations (Wilhelm et al., 2023;
Nwachukwu et al., 2024). To address this, many exist-
ing works (Wang et al., 2023a; Zhang et al., 2023; Yang
et al., 2023b; Zhu et al., 2023a; Pal and Sankarasubbu,

2023) have tried to adapt LLMs to the medical domain
by training on large-scale healthcare-specific datasets.

An essential step in adapting general LLMs to special-
ized domains is Supervised Fine-Tuning (SFT) on do-
main instruction-tuning datasets. However, large-scale,
unfiltered domain datasets aggregated from multiple
sources often include noise. Directly utilizing such data
can disrupt learning (Wang et al., 2023d, 2024a), hin-
der the identification of knowledge gaps (Havrilla and
Iyer, 2024), and increase the risk of overfitting (Budach
et al., 2022; Wang et al., 2024b), yielding poor perfor-
mance. Recent findings (Zhou et al., 2024) suggest that
a small but carefully selected high-quality dataset can
effectively enhance model’s alignment with human in-
structions and elicit its abilities in the desired direction,
highlighting the necessity of rigorous data selection for
domain adaptation fine-tuning. This presents a critical
challenge in fine-tuning general LLMs to specialized
domains:

How to identify and select domain instruction-tuning
data that is most suitable for the target LLM to optimally
elicit its domain-specific abilities?

Previous data selection methods predominantly adopt
a data-centric perspective, typically focusing on two
dimensions: quality and difficulty. For quality, existing
methods rely on powerful external models or manual
rules to identify “high-quality” samples (Liu et al., 2023;
Jietal., 2023; Song et al., 2024). They treat quality as
a model-agnostic, intrinsic data property, assuming the
assessments are universally applicable. However, LLMs
differ substantially in architectures and training corpora,
which shape their distinct internal knowledge distribu-
tions. External “high-quality” data may still introduce
redundancy or conflicting information that impede learn-
ing. For difficulty, methods typically prioritize the most
challenging samples based on heuristic metrics (Li et al.,
2024b,a). However, recent studies (Gekhman et al.,
2024; Ren et al., 2024) have revealed that fine-tuning
LLMs on data beyond their pre-trained knowledge dis-
tribution, particularly unfamiliar content, can lead to
severe hallucinations, which underscores the potential
risk of selecting hardest samples. A common limitation
of these methods is their lack of consideration for model-
specific compatibility, both external “high-quality” data
or most challenging data could be misaligned with the
model’s distribution and lead to suboptimal results.

Motivated by this gap, we propose a new hypothesis:
data selection should be model-centric, tailored to align
with the model’s knowledge distribution.

To validate this hypothesis, we conduct a pilot study
guided by two research questions: RQ#1. Is model-
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centric quality selection more effective than external
quality scoring? RQ#2. Is model-centric difficulty
selection more effective than prioritizing the hardest
samples? The results demonstrate that model-centric
data selection, which relies on the target model’s own
assessment of data quality and selection of appropriately
difficult data, consistently outperforms selection guided
by external criteria.

While these findings highlight the importance of
model-centric data selection, its practical application
still faces substantial challenges:

@ Challenge#1. How to identify high-quality data
based on the model’s knowledge distribution? Redun-
dant knowledge that the model already possesses and
conflicting information that goes against the model’s
knowledge hinders learning (Ren et al., 2024; Gekhman
et al., 2024). Selecting high-quality data based on the
model’s knowledge distribution is thus necessary, but in-
herently challenging due to the complexity and opacity
of LLMs

® Challenge#2. How to properly balance the selected
data difficulty with the model’s learning capacity?
Overly simplistic data wastes training resources and
may cause overfitting, while excessively complex data
can overwhelm the model, impeding effective learn-
ing (Kang et al., 2024; Lin et al.). Accurately assessing
difficulty based on the model’s distribution to guide se-
lection is thus crucial. However, there isn’t a effective
metric to comprehensively measure the model’s knowl-
edge state and its ability to handle complex data.

To tackle these challenges, we propose Decomposed
Difficulty-based Data Selection (3DS), a two-stage
model-centric data selection framework which aligns
data selection with the model’s distribution to opti-
mize domain fine-tuning. For Challenge#1, we pro-
pose Prompt-Driven Data Selection via Explicit Align-
ment, leveraging the target model’s own evaluations
to explicitly select high-quality data, ensuring that the
remaining data lies within the model’s knowledge dis-
tribution. For Challenge#2, inspired by the general hu-
man problem-solving process (Polya and Pélya, 2014;
OECD, 2014)—understanding the problem, building
confidence, and producing a solution, we propose novel
Decomposed Difficulty-based Data Selection via Im-
plicit Alignment, extending traditional perplexity (PPL)
measures with three difficulty metrics: Instruction Un-
derstanding Difficulty, Response Confidence Difficulty,
and Response Correctness Difficulty. Furthermore, an
attention-based importance weighting mechanism cap-
tures token-level importance and calibrates difficulty
calculations. In summary, our contributions are:

* We introduce 3DS, a two-stage model-centric data
selection framework, aligning training data with the
model’s knowledge distribution, optimizing domain
adaptation fine-tuning.

* We propose a novel difficulty decomposition strategy,
employing fine-grained metrics: Instruction Under-
standing, Response Confidence, and Response Cor-

rectness, for accurate data difficulty quantification
tailored to domain-specific fine-tuning.

* Comprehensive experiments on Chinese medical
datasets demonstrate that 3DS outperforms existing
methods, significantly boosting LLMs performance.
Additional experiments on law domain also showcase
3DS’s generalization ability.

* We have open-sourced a carefully curated Chinese
medical dataset, including medical dialogues and
domain-specific instructions, to support further re-
search in healthcare-oriented LLM.

2 Importance of Model-Centric Selection

In this section, we empirically investigate the impor-
tance of model-centric data selection by studying the
following two research questions:

e RQ#1. Is model-centric quality selection more effec-
tive than external quality scoring?

o RQ#2. Is model-centric difficulty selection more effec-
tive than prioritizing the objectively hardest samples?

2.1 Experimental Setup

In both investigations, we utilized two models:
DeepSeek-R1 (Guo et al., 2025), an external model
regarded as strong and capable, which is expected to
provide reliable data evaluation, and LLaMA-3-8B-
Instruct (Grattafiori et al., 2024), the target model in-
tended for domain fine-tuning. We utilized a large-scale
Chinese medical instruction-tuning dataset and designed
tailored prompts to assess data quality and difficulty (see
Appendix J.1 and J.2).

2.2 Model-Centric vs. External Quality Selection

To answer RQ#1, we prompted both the external model
and the target model to assess data quality based on
their knowledge. From data scored above a predefined
threshold by each model, we randomly selected 5K
samples and fine-tuned LLaMA-3-8B-Instruct on each
subset. Performance evaluated on two Chinese medi-
cal multiple-choice question benchmarks (Zeng, 2023;
Wang et al., 2023c) is shown in Table 1.

Surprisingly, fine-tuning on high-quality data selected
by the strong DeepSeek-R1 led to performance degra-
dation of LLaMA-3-8B-Instruct, while data selected
by LLaMA-3-8B-Instruct itself significantly improved
its performance. This discrepancy likely stems from a
misalignment between the external quality assessment
and the target model’s inherent knowledge distribution.
Based on this, we derive our first key observation:

Observation I: Model-centric quality selection yields
better performance than external quality scoring.

2.3 Model-Centric vs. External Difficulty Selection

To answer RQ#2, we evaluated the commonly held
assumption that training on the most challenging data
improves model abilities. Similar to the previous inves-
tigation, we prompted DeepSeek-R1 and LLaMA-3-8B-
Instruct to score data difficulty based on their knowl-



edge. The dataset was partitioned into Easy, Medium,
and Hard subsets, according to difficulty scores from
each model. We then fine-tuned LLaMA-3-8B-Instruct
on randomly selected 5k samples from each subset,
and compared their performance across medical bench-
marks, with results shown in Table 2.

Across all experiments, fine-tuning on Easy and Medium
subsets consistently outperformed training on Hard sub-
set, with Medium subset yielding more stable improve-
ments, indicating that overly difficult data, likely ex-
ceeding model’s knowledge, adversely impacts learning,
while overly simple data also fails to sufficiently benefit
fine-tuning. Additionally, difficulty assessments from
LLaMA-3-8B-Instruct itself consistently led to better re-
sults compared to external evaluations by DeepSeek-R1,
which validates the necessity of model-centric difficulty
evaluation and selection. This motivates our second and
third key observations:

Observation I1: Difficulty scoring based on the target
model yields more reliable performance than scores
provided by an external model.

Observation III: Moderately difficult data leads to
more stable and effective performance improvements.

Data Annotator CMB-Exam MMCU-Med

Original N/A 41.72 46.47

Hich it DeepSeek-R1 39.70 42.46
1gh-quality 11 aMA3-8B 4371 47.57

Table 1: High-quality Data Selection Results (%). Im-
provements over the original model are in bold.

Data Annotator CMB-Exam MMCU-Med
Original N/A 41.72 46.47
Eas DeepSeek-R1 41.03 45.76
asy LLaMA3-8B 41.53 48.00
Medi DeepSeek-R1 41.76 45.26
edim 17 aMA3-8B 41.75 46.72
Hard DeepSeek-R1 40.50 44.06
LLaMA3-8B 40.62 45.23

Table 2: Difficult Data Selection Results (%).

2.4 Conclusion and Motivation

Both investigations lead to a key conclusion: effective
data selection for domain adaptation fine-tuning requires
alignment with the target model’s knowledge distribu-
tion. External assessed high-quality data may not suit
the target model, and excessively difficult data may in-
troduce unfamiliar, out-of-distribution content, causing
suboptimal outcomes.

Motivated by these observations, we propose to shift
from conventional data-centric selection strategies to-
ward a model-centric approach. Specifically, data
selection should be guided by the target model, en-
suring that the selected data are considered as high-
quality(addressing Observation I) and appropriately
challenging by the target model(addressing Observa-
tion II and III), thus achieving close alignment with

its knowledge distribution and learning capacity. Build-
ing on this insight, we propose our novel model-centric
framework 3DS in the following sections.

3 Methodology

Task Formulation We formally define the Data Se-
lection for Domain Adaptation Fine-tuning task. Let:

* My denotes the target model to be fine-tuned, which
is a pre-trained and generally fine-tuned LLM (e.g.,
LLaMA-chat) parameterized by 6.

o« X = {z®W}N | denotes the full domain-specific
dataset where each sample z() =< Q9 A®) > con-
sists of instruction Q¥ = {qii), qéi)7 . ,qﬁ,il)}, and
response A(*) = {a(li), agi), o asf)}. Here ¢%), a'?
denote individual tokens within the instruction and
response sets, respectively.

 k € NT denotes a fixed data budget, where k < |.X].

The task is to identify an optimal subset S* C X that
maximizes the target domain performance of the fine-
tuned model M}, formally:

S§* = argmax E, )p., [P(Mo(;S5),y)], (1
SCXx,|S|=k

where Dy is the target domain test distribution con-
taining diverse multiple domain tasks; P : Y x YV —
[0, 1] is the performance metric (e.g., accuracy, BLEU,
ROUGE), and My is My fine-tuned on S, i.e., 8/ =
0 —nVo > ,cg L(My(x),x), with learning rate 1 and
loss function L.

3.1 Stage#1: Prompt-Driven Data Selection via
Explicit Alignment

The first stage of 3DS is to identify high-quality data
based on the model’s knowledge. As illustrated in Fig-
ure 1, a quality-rating prompt, detailed in Appendix J.1,
is used to instruct My to score data quality based on its
inner knowledge to explicitly align data, filtering out
noise from the original large-scale dataset to avoid con-
flicting information. After obtaining model-generated
scores, samples with scores exceeding a predefined
threshold ¢ are retained for the next selection.

3.2 Stage#2: Decomposed Difficulty-based Data
Selection via Implicit Alignment

The second stage of 3DS is to analyze data difficulty via
implicit distribution modeling of Mpy, thereby balancing
the selected data difficulty with the model’s learning
capacity. To achieve this, we employ a fine-grained
evaluation for data difficulty.

Inspired by the general problem-solving pro-
cess (Polya and Pdlya, 2014; OECD, 2014)—under-
standing the problem, building confidence, and pro-
ducing a solution—we decompose data difficulty into
three key components to reflect the model’s understand-
ing: (1) Instruction Understanding Difficulty measures
whether the model comprehends the instruction. (2)
Response Confidence Difficulty measures the model’s
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Figure 1: 3DS framework. Stage#1: Prompt-Driven Data Selection select high-quality data via explicit alignment.
Stage#2: Decomposed Difficulty-based Data Selection decomposes data difficulty via modeling LLM’s implicit
distribution and filters data. Attention-based importance weighting calibrates difficulty calculation.

confidence in its response. (3) Response Correctness
Difficulty measures whether the model can generate a
response that accurately matches the reference answer.
To enhance the precision of difficulty calculations, we
incorporate an attention-based importance weighting
mechanism that calibrates difficulty by accounting for
the varying semantic significance of output tokens. We
now detail the quantification of these decomposed diffi-
culties and the corresponding selection strategy.

(1) Instruction Understanding Difficulty. Challeng-
ing data often comes with complex instructions. In
specialized domains like healthcare, instructions may
contain intricate terminologies, making instruction com-
prehension a key factor of data difficulty. To capture
this, we introduce Instruction Understanding Difficulty.
Previous research (Gonen et al., 2023) shows that lower
model perplexity over a prompt correlates with better
understanding and performance. Building on this in-
sight, we further recognize that perplexity inherently
captures the predictive uncertainty from model’s distri-
bution. Consequently, we employ model perplexity as a
measure to quantify data difficulty from the model’s per-
spective. Formally, for a model My, given a data sample
x =< @, A > with instruction @ = {q1,¢2,..-qm}
its Instruction Understanding Difficulty is defined as:

Dly(x) = PPLy(Q)
> @)
2 qi-1) |,

= exp (

where Py(qi|q1, 42, - - -, qi—1) represents the probability
My generates the i-th token in instruction () given the
preceding tokens. Higher perplexity indicates greater

difficulty for the model to comprehend the instruction.

1 m
- E log Py (qilq1, g2, - - -
m

i=1

(2) Response Confidence Difficulty. When encoun-
tering challenging data, models often struggle to provide

a confident response. This uncertainty arises from its
inability to handle the task and determine the most ap-
propriate response, similar to human learners (Preheim
et al., 2023), which indicates high data difficulty. To
quantify this difficulty, we introduce Response Confi-
dence Difficulty, measured by the model’s conditional
perplexity when generating a response given the instruc-
tion. Formally, for a model Mpy, given a data sam-
ple x =< @, A > with instruction ) is and model-
generated response A’ = {a}, a5 ...,al,} based on Q,
its Response Confidence Difficulty is defined as:

D24(z) = PPLy(A'|Q)

’

1 n
= exp 7?Zlogpe(a‘“a,lzaé?'"7a;—17Q)

=1

©))

Higher conditional perplexity indicates greater uncer-
tainty in the model’s distribution and greater difficulty
for the model to provide a confident answer.

(3) Response Correctness Difficulty. For instruction-
tuning data with reference answers, it is essential to
assess the model’s ability to generate correct responses
to assess data difficulty. We introduce Response Cor-
rectness Difficulty, measured by the model’s condi-
tional perplexity when generating the reference answer
A ={ay,az...,a,} given instruction Q.

D3y () = PPLo(A|Q)

:exp<

Higher conditional perplexity indicates greater difficulty
in producing the correct response, suggesting the sample
poses more challenge for the model.

1 n
- Zlong(aj\ahag, ..

Jj=1

7%1,Q)> oW



Attention-based importance weighting mechanism.
Response Confidence and Response Correctness Dif-
ficulties rely on evaluating the uncertainty inherent in
the model’s generation process. While conditional per-
plexity serves as an effective proxy, it treats all tokens
equally, disregarding their varying semantic importance.
While key tokens significantly influence the meaning
and correctness of a response, trivial tokens like con-
junctions may exhibit high uncertainty without substan-
tially influencing semantics. This can lead to inaccurate
data difficulty assessments. To address this, inspired
by Su et al. (2024), we introduce an attention-based
importance weighting mechanism that adjusts token’s
uncertainty contributions by weighting based on their
semantic importance. We argue that critical tokens are
those playing a pivotal role in guiding subsequent gen-
erations. Therefore, we derive importance scores from
the model’s internal attention mechanism. Specifically,
for a token sequence s = {t1,t2,...,t;,...,t,}, when
a transformer-based LLM generates token ¢;(i < j), it
computes the attention weight A;; by applying a soft-
max function to the dot product of the query vector g;
and the key vector k;:

Aji = (g5 - ki) /\/dx, (5)

where dj, is the dimension of k;. Aj; represents the
attention the model pays to token ¢; when generating
token t;, reflecting the importance of ;. We define the
importance score of token ¢; as the aggregated attention
weight it receives from all subsequent tokens:

I(t;) = Aggregate (Aj;). (6)
71>
We use mean aggregation to compute token importance

scores. Using these scores, Response Confidence and
Response Correctness Difficulties are refined as:

Atten-D2y(z) = weightedPPL,(A'|Q)

S ) - ¢>
=exp | =L — | @)
ep( ()

7‘2’7’*17@)1

¢ = log Py(aj|al,ay, . ..

Atten-D3g(z) = weightedPPLy(A|Q)

?:1 I(tj) : <75/
- (‘ ST 1) ) ®

¢/ = logpe(a]‘al’a27 tt '7aj717Q)'

By integrating attention-based importance weights,
this mechanism prioritizes tokens crucial for semantic
correctness and clarity, offering a more accurate estima-
tion of model uncertainty and data difficulty.

Selection Strategy based on Decomposed Difficulty.
Based on the decomposed data difficulties, 3DS identi-
fies samples whose difficulty metrics fall within a pre-
defined middle range, discarding either trivially easy or

overly complex data, focusing on moderately challeng-
ing samples that match the model’s learning capacity.
K-Center sampling (introduced in Appendix C) based
on instruction embeddings is then applied on this subset
to enhance data diversity, reducing the risk of overfitting
on highly similar samples.

3.3 Model-Centric Data Selection Framework

The overall architecture of our model-centric data selec-
tion framework is illustrated in Figure 1. Pseudo codes
of the process are shown in Appendix A.

4 Main Experiments

4.1 Experimental Setup

Training dataset. For medical domain adaptation
fine-tuning, we construct a comprehensive medical
instruction-tuning dataset of diversity and abundance.
The dataset comprises over 1.9 M samples, with its
statistics provided in Table 7 and data construction de-
tails introduced in Appendix B. We have released this
complete training dataset to support further research.

Evaluation datasets. We assess fine-tuned models on
diverse medical test datasets: two multi-task, multiple-
choice datasets, MMCU-Med (Zeng, 2023) and CMB-
Exam (Wang et al., 2023c), and an open Q&A dataset,
CMB-Clin (Wang et al., 2023c). Data statistics are
provided in Table 8. MMCU-Medical and CMB-
Exam, consisting of medical exam questions, assess
the model’s reasoning and medical knowledge applica-
tion abilities with accuracy as the metric. CMB-clin,
comprising of patient record analysis tasks, assesses the
model’s complex medical analysis ability, with BLEU-
1, BLEU-4 and ROUGE as the metric (detailed in Ap-
pendix F). Together, these datasets provide a comprehen-
sive evaluation of the model’s proficiency in the medical
domain.

Models. Experiments are conducted on instruct mod-
els of varying architectures and parameter sizes:
Baichuan2-13B-Chat (Yang et al., 2023a), Qwenl.5-
7B-Instruct, Qwen2.5-7B-Instruct (Bai et al., 2023) and
LLaMA3-8B-Instruct (Touvron et al., 2023).

Baselines. We compare 3DS with a series of LLM
fine-tuning data selection strategies. (1) Base di-
rectly tests instruct models without further fine-tuning.
(2) Full-Sft fine-tunes models on the full training
dataset. (3) Random Selection randomly selects data.
(4) Alpagasus (Chen et al., 2023a) utilizes GPT-4 to
identify high-quality data. (5) DEITA (Liu et al., 2023)
trains quality and complexity scorers and selects data ac-
cording to their judgments (6) MoDS (Du et al., 2023)
filters high-quality data via a reward model, and se-
lects data necessary for model learning through training
and inference processes. (7) IFD (Li et al., 2024a,b)
designs instruction following difficulty metric based
on the ground truth output loss with or without inputs.
(8) LESS (Xia et al., 2024) searches for training data



Method LLM Turbo Baichuan2-13B-Chat Qwenl.5-7B-Instruct Qwen2.5-7B-Instruct LLaMAS3-8B-Instruct Ave.
Dataset CMB-Exam MMCU-Med | CMB-Exam MMCU-Med | CMB-Exam MMCU-Med | CMB-Exam MMCU-Med

Base 46.67 47.11 59.80 64.24 78.28 83.43 41.72 46.47 58.47

Full-Sft 40.38 37.90 48.05 47.53 71.04 75.49 40.85 46.72 51.00

Random 44.07 47.61 61.81 65.10 75.92 82.41 41.54 45.23 57.96

Baselines Alpagasus 42.24 43.56 55.67 58.74 69.90 78.08 41.60 45.26 54.38

DEITA 46.78 49.88 45.33 44.09 74.07 81.59 41.31 45.80 53.60

MoDS 47.25 50.37 61.09 64.67 76.31 82.23 39.25 42.53 57.96

IFD 46.44 50.08 62.06 65.37 78.17 84.57 38.25 40.48 58.18

LESS 45.79 51.01 60.74 64.85 78.83 83.20 41.80 44.63 58.86

Ours 3DS 47.37 51.08 61.96 66.09 79.06 85.70 43.95 49.70 60.61

*Performance Gain 1 0.70 3.97 2.16 1.85 0.78 2.27 223 3.23 2.14

Table 3: Performance comparison (%) on CMB-Exam, MMCU-Medical of EM score.

The best performance is

highlighted in bold. Performance gains are measured against the base model.

Method LLM Turbo Baichuan2-13B-Chat Qwenl.5-7B-Instruct Qwen2.5-7B-Instruct LLaMA3-8B-Instruct Ave.
Metric BLEU-1 BLEU-4 ROUGE | BLEU-1 BLEU-4 ROUGE | BLEU-1 BLEU-4 ROUGE | BLEU-1 BLEU-4 ROUGE

Base 11.15 21.02 14.08 16.17 32.03 16.31 21.87 64.11 36.74 5.06 35.09 10.40 | 23.67

Full-Sft 7.19 16.33 11.70 6.68 16.61 9.62 16.72 36.52 19.84 2.80 6.87 6.58 13.12

Random 12.14 25.95 14.75 16.09 34.45 16.19 16.49 33.68 17.89 9.01 25.49 12.14 | 19.52

Baselines Alpagasus 10.16 20.42 12.58 14.48 31.63 14.77 16.85 35.74 18.77 8.66 22.51 12.36 | 18.24

DEITA 19.42 42.07 19.32 18.92 42.93 20.32 21.71 49.33 23.40 9.91 23.33 13.86 | 25.38

MoDS 2243 51.02 22.85 17.61 39.19 19.93 18.83 41.31 21.45 12.38 29.74 15.33 | 26.01

IFD 21.44 51.73 24.94 19.24 43.10 21.08 18.07 39.16 20.28 10.59 29.32 14.83 | 26.15

LESS 13.27 29.20 16.40 17.48 38.88 17.58 19.08 45.20 22.42 11.82 31.98 15.55 | 23.24

Ours 3DS 24.15 63.51 31.50 24.40 60.32 28.07 22.05 64.95 37.11 12.52 36.88 17.09 | 35.21

*Performance Gain 1 13.00 42.49 17.42 9.45 29.49 11.92 0.18 0.84 0.37 7.46 1.79 6.69 11.54

Table 4: Performance comparison (%) on CMB-Clin.

similar to target task examples through low-rank gra-
dient similarity. The implementation details are intro-
duced in Appendix D.

Implementations. The selection data budget is 5K
samples. In 3DS, the Prompt-Driven Data Selection
stage retains samples with a quality score > 90. In the
subsequent Decomposed Difficulty-based Data Selec-
tion stage, difficulty thresholds are determined via exper-
iments on the CMB hold-out validation set. Specifically,
for Baichuan2-13B-Chat, the thresholds are set to 15%
and 65%; for Qwen1.5-7B-Chat and Qwen2.5-7B-Chat,
25% and 75%; and 40% and 90% for LLaMA3-8B-
Instruct. More implementation details are introduced in
Appendix E.

4.2 Main Results

Experiment results are shown in Table 3 and Table 4.
We summarize our findings below.

Data selection is necessary for LLM domain adapta-
tion fine-tuning. We observe that fine-tuning LLMs
on the full 1.9 million dataset (Full-SFT) leads to drastic
performance drops across three benchmarks. This sug-
gests that domain datasets directly collected from public
resources contain significant noise that hinders model
learning, highlighting the necessity of data selection.

3DS effectively enhances LLM’s diverse domain
abilities, significantly outperforming baselines. As
shown in Table 3 and Table 4, across various bench-
marks and LLM backbones, 3DS generally achieves
the highest accuracy, outperforming the backbones and
strong data selection baselines. On medical exam

datasets, it improves base model performance by up
to 8.43% (on MMCU-Med for Baichuan2-13B-Chat),
and exceeds the best baseline an average of 2.97%,
greatly enhancing the model’s medical knowledge ap-
plication abilities. On the open Q&A CMB-clin, mod-
els fine-tuned with 3DS significantly outperforms all
baselines by a large margin, exhibiting superior medi-
cal analysis ability. To more comprehensively analyze
model’s domain performance, for CMB-Clin, we also
conduct a pair-wise comparison using GPT-40 as the
judge, detailed in Appendix G.1. Both the quantitative
and qualitative evidence demonstrate that 3DS boosts
the model’s multi-faceted domain abilities.

In contrast, methods relying on external, model-
agnostic data evaluations, such as Alpagasus and
DEITA, often lead to performance declines, especially
on Qwen models. This further validates our previous
conclusion that misalignment between selected data and
the model hinders learning. Baselines MoDS and IFD
show relatively strong results due to their considera-
tions of model distribution and data difficulty. However,
their selection on the most challenging data also proves
inefficient, as they only bring marginal improvements
across tasks and even underperform the backbone and
random selection on LLaMA3-8B-Instruct. Baseline
LESS, which aims to enhance performance on one spe-
cific downstream task, fails to generalize to domain
adaptation fine-tuning where diverse abilities need to
be improved, leading to performance degradation on
MMCU-Medical for Baichuan2-13B-Chat.

3DS exhibits strong generalization ability. 3DS’s
consistent performance gains across backbones and



benchmarks highlight its generalization ability to adapt
to different models and domain tasks. To further validate
the practicality of 3DS, we compare models fine-tuned
using 3DS-with existing medical LLMs, with results
shown in Appendix G.2.

4.3 Ablation Studies

3DS is composed of two stages, and in Stage#2, three
difficulty metrics are proposed. To validate the effec-
tiveness of each component, we conduct comprehen-
sive ablation studies. Without loss of generality, experi-
ments are done on Baichuan2-13B-Chat and Qwenl.5-
7B-Instruct. Main results are shown in Table 5, and
additional metrics are in Appendix G.3.

Ablation on stages. To evaluate the contributions of
each stage in 3DS, we compare: (1) removing Stage#1,
where 70K samples are randomly sampled from the com-
plete training dataset for subsequent difficulty-based
selection, and (2) removing Stage#2, where K-Center
sampling is directly applied to the high-quality samples
identified in stage#1. Additionally, to validate the ne-
cessity of decomposed difficulty calculation based on
model perplexity, we investigate (3) collapsing Stage#2
into Stage#1, where the model is prompted to verbalize
its assessments of the three data difficulties (correspond-
ing prompts are shown in Appendix J.3), bypassing the
original difficulty calculation.

The results show a consistent pattern: each modifica-
tion leads to a decrease in performance compared to
the original method, emphasizing the necessity of qual-
ity controls and selecting appropriately difficult data.
When Stage#2 is collapsed into Stage#1 via difficulty
evaluation prompts, performance also degrades. During
experiments, we observe that LLMs struggle to provide
fine-grained assessments of data difficulty, often gen-
erating coarse-grained scores such as 0.5, 0.8, and 1.
This lack of granularity makes it challenging to identify
nuanced differences in data difficulty and select targeted
data with desired moderate difficulties.

While results on multiple-choice benchmarks do not
indicate which stage is more important, the analysis
performance on CMB-Clin reveals a clearer trend: re-
moving Stage#1 leads to the poorest performance, fol-
lowed by removing Stage#2 and collapsing Stage#2
into Stage#1. This pattern highlights the crucial role of
quality control for the model to provide coherent and
high-quality answers. Difficulty-based selection is also
essential, as even coarser-grained difficulty measure-
ments by model verbalization yield better results than
ignoring difficulty at all. This progressive improvement
further reinforces the two-stage design of 3DS.

Ablation on difficulty metrics. We remove each of
the three metrics—Instruction Understanding, Response
Confidence, and Response Correctness Difficulties and
run 3DS without any other modifications. The results in
Table 5 demonstrate that, in general, removing any sin-
gle component results in noticeable performance drops,
indicating a decline in certain aspects of the model’s

medical abilities. These observations validate the neces-
sity of each difficulty metric in identifying beneficial
data samples for enhancing LLM’s domain abilities.
Plus, removing the attention-based importance weight-
ing mechanism also brings performance declines, which
validates its effectiveness.

Additional ablation studies on data budgets are intro-
duced in Appendix G.4.

4.4 Impact of Difficulty Thresholds
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Figure 2: Impact of Difficulty Thresholds on Model
Performance. This figure illustrates how varying diffi-
culty thresholds affect the accuracy (ACC) of the models
Baichuan2-13b-chat and Qwen-1.5-7b-chat across dif-
ferent difficulty sample centers (%).

We conduct sliding-window experiments, varying the
selection difficulty ranges (o £ 25%), to investigate how
training data difficulty affects the model’s medical do-
main fine-tuning. As shown in Figure 2, the model’s
performance improves as difficulties increase, reach-
ing a peak before declining. This pattern further high-
lights the importance of selecting data that best suits the
model’s learning capacity. Training on overly simple
data limits improvements, while training on excessively
difficult data impedes effective learning.

5 Generalization on Law Domain

While our pilot study and main experiments focus on
adapting LLMs to the medical domain using Chinese-
language data, we note that our 3DS is intrinsically
domain-agnostic. To validate its generalization ability,
we conduct additional experiments on the law domain
using an English-language dataset CaseHOLD (Zheng
et al., 2021). Details of experiment setups are intro-
duced in Appendix I. We compare 3DS with random
selection and a strong baseline IFD. The results in Ta-
ble 6 demonstrate that 3DS consistently outperforms
baselines in terms of accuracy, achieving an average
accuracy of 76.13% with low variance. These results
suggest that our model-centric data selection 3DS is
adaptable to other specialized domains, supporting its
applicability beyond the medical setting.

6 Related Work

Data Selection for LLM Training Data selection
for LLM training has been explored by various works.



LLM Turbo Baichuan2-13B-Chat Qwen1.5-7B-Instruct Ave
Benchmark CMB-Exam MMCU-Med CMB-Clin | CMB-Exam MMCU-Med CMB-Clin i
w/o Stage#1 44.64 48.06 16.19 60.37 64.03 15.88 |41.53
w/o Stage#2 47.09 50.83 21.83 61.59 65.91 21.55 |44.80
Stage#2 Collapsed into Stage#1 47.28 51.01 22.69 60.56 63.99 23.41 44.82
w/o D1 47.35 50.59 23.99 61.47 65.80 24.68 | 45.65
w/o D2 47.34 47.18 23.54 62.00 66.05 2384 |44.99
w/o D3 47.07 50.59 23.08 61.64 65.73 2383 |45.32
w/o Atten 47.10 50.19 29.58 61.79 65.84 27.69 |47.03
3DS 47.37 51.08 31.50 61.96 66.09 28.07 |47.68

Table 5: Performance comparisons (%) on CMB-Exam, MMCU-Medical and CMB-Clin of ablation studies on
stages and difficulty metrics of 3DS. For CMB-Clin, the ROUGE score is reported.

Model Accuracy Std. Dev.
Original 57.77 0.25
+Random 73.40 0.80
+IFD 60.30 2.62
+3DS 76.13 0.80

Table 6: Accuracy (%) comparison on law domain.

Some works (Das and Khetan, 2023) focus on diver-
sity via statistical clustering or core-set selection, but
often overlook data quality, potentially incorporating
noisy samples that hinder training. To address qual-
ity concerns, some works employ external models like
proprietary LLMs (Chen et al., 2023a; Liu et al., 2023;
Wettig et al., 2024) or reward models (Du et al., 2023)
to evaluate and select high-quality data. However, due
to distributional gaps between external evaluators and
the model to be trained, data labeled as high-quality
may still contain redundant or conflicting information
for the target model, limiting its effectiveness. Another
line of work leverages internal signals from the target
model, such as perplexity (Marion et al., 2023), gra-
dients (Xia et al., 2024), or derived metrics like data
learnability (Zhou et al., 2023) and instruction follow-
ing difficulty (Li et al., 2024b,a). While these signals
provide more direct insights into the model’s understand-
ing of data, they typically offer only coarse estimates
of data difficulty, failing to capture different aspects of
data complexity or account for the model’s generation
behavior. Their selection of the most difficult data also
risks overwhelming the model. Though related to ac-
tive learning (Yoo and Kweon, 2019; Karamcheti et al.,
2021; Mindermann et al., 2022) in challenges and in-
sights, the purpose and workflow of LLM data selection
are distinct. In this work, we focus exclusively on data
selection tailored for training LLMs. We note that exist-
ing data selection methods for LLMs mainly focus on
pre-training, general instruction-tuning (transforming
a base model into a chat model), or task-specific fine-
tuning. In contrast, data selection for domain adaptation
fine-tuning remains underexplored, where unique chal-
lenges lie in selecting data that best elicit the model’s
diverse domain abilities. To bridge this gap and over-
come the limitations of current methods, we introduce
a novel model-centric data selection framework and
provide fine-grained analysis of data difficulty, enabling
better aligned data selection for LLM domain adaptation

fine-tuning.

Data Learnability in LLM SFT LLMs encounter
significant challenges when learning unfamiliar or com-
plex knowledge during supervised fine-tuning, particu-
larly when the data was not encountered during pre-
training, which can impede domain adaptation fine-
tuning. Gekhman et al. (2024) found that models ac-
quire new factual knowledge slowly during SFT, espe-
cially when the information diverges from their pre-
existing understanding, leading to a higher risk of
hallucinations. Ren et al. (2024) further shows that
when the knowledge introduced during Instruction Fine-
tuning significantly differs from what was learned in
pre-training, the model struggles to integrate it, causing
performance degradation. This highlights the difficulty
models face in using pre-training knowledge to under-
stand new concepts. Kang et al. (2024) also emphasizes
that unfamiliar examples during fine-tuning increase
the likelihood of hallucinations, suggesting that high-
difficulty data can destabilize the model and negatively
impact its ability to adapt to new domains. Together,
these findings underscore the risks associated with fine-
tuning on excessively difficult data, which can under-
mine model performance in domain-specific tasks.

7 Conclusion

In this paper, we highlight the importance of selecting
data aligned with the model’s distribution for LLM do-
main adaptation fine-tuning through a pilot study. To
this end, we propose a two-stage model-centric data
selection framework 3DS. The Stage#1 explicitly aligns
data with the LLM’s knowledge through prompt-driven
selection. The Stage#2 implicitly aligns data via dif-
ficulty decomposition. Leveraging Instruction Under-
standing, Response Confidence, and Response Correct-
ness difficulties calibrated by attention-based impor-
tance weighting, 3DS effectively models the LLM’s
implicit distribution and selects data well-matched to its
learning capacity. Extensive experiments on multiple
medical and legal tasks show significant performance
gains, demonstrating 3DS ’s effectiveness and gener-
alization ability. Overall, we offer a path toward more
efficient LLM domain adaptation fine-tuning. Future
work will explore extending the framework to more do-
mains and refining training strategies based on difficulty
metrics for broader applications.



Limitations

Due to time and resource constraints, we have only vali-
dated our method in the medical and legal domains. The
results show that 3DS is domain-agnostic and adaptable
to other fields. However, further experiments may still
be needed to fully verify its generalization. 3DS re-
quires the model to rate the entire training set and per-
form inference on the selected subset. Although in
experiments, we utilize VLLM to accelerate the process,
it still involves certain computational costs. 3DS per-
forms data selection prior to fine-tuning. Considering
that the model’s evaluation of data difficulty may evolve
during training, future research should explore dynamic
selection that adapts to the model’s changing state. Ad-
ditionally, data filtered out is currently discarded. Future
work should consider integrating mechanisms such as
human-in-the-loop validation or strategies to recover po-
tentially relevant and valuable data from the discarded
pool. Finally, considerations for social bias and fairness
issues are discussed in Appendix K.
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A Pseudo Codes of 3DS
We provide the pseudo codes of 3DS in Algorithm 1.

Algorithm 1: Model-Centric Data Selection
Framework
Input: Full dataset X', model M, scoring
threshold 6, difficulty calculation
functions D1, D2, D3, percentage
thresholds p1, p2, p3, sampling budget k
Output: Selected data subset S
Stage#1: Prompt-Driven Data Selection
Initialize X} < 0
foreach xr € X do
Get score s, « M (prompt, x)
if s, > 6 then
| Addxto X
end
end
Stage#2: Decomposed Difficulty-based Data
Selection
Initialize S < 0
Compute D1(x),D2(z),D3(x) forall x € X;
Set 71, T2, T3 based on percentiles p1, ps2, p3 of
D1,D2,D3
foreach x € X do
if 7l < DI(z) < 7" and
riow < D2(x) < Tgigh and
rlow < p3(x) < Tg[gh then
| Add z to intermediate set Spiq
end
end
Apply K-Center sampling on Spyq to select k&
diverse data points
Return final selected subset S

B Datasheet for Medical Domain
Adaptation Fine-Tuning Dataset

Data statistics

The statistics of the training dataset and the test
dataset are shown below. The use of the test datasets
complies with their respective licenses.

What is the primary purpose of creating this
dataset?

This dataset was created to construct a large-
scale medical domain instruction-following fine-tuning
dataset. The primary purpose is to support the adapta-
tion of large language models (LLMs) to the medical do-
main by providing diverse and comprehensive training
instances. By integrating heterogeneous data sources,
including doctor-patient dialogues, medical knowledge
bases, and various medical tasks formulated into the
instruction-output format, the dataset aims to enhance
the ability of LLMs to perform effectively across a wide
range of real-world medical scenarios. It is designed to
address the unique challenges of the medical domain,
such as specialized terminology, complex reasoning,
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Dataset Size (K)
medtalk_singleround 177
medknowledge_KG 796
medknowledge_webqga 360
medtask_promptcblue 82
qa_website 490
Total 1905

Table 7: Training Dataset Statistics

Dataset Type Size
CMB-Exam multiple-choice 11200
MMCU-medical multiple-choice 2819
CMB-Clin open Q&A 208

Table 8: Test Dataset Statistics

and context-sensitive responses, thereby enabling LLMs
to better meet the demands of healthcare applications.

What are the specific components of the dataset,
and how were they constructed or sourced?

Our dataset integrates multiple open-sourced medical
instruction fine-tuning datasets from diverse sources,
along with doctor-patient dialogue data extracted from
medical consultation websites and a variety of medical
tasks reformulated into the instruction-output format, as
detailed in Table 7. Medtalk_singleround originates
from open-sourced doctor-patient question-and-answer
datasets, including CMedQA2 (Zhang et al., 2018)
and Health-Care-Magic'. Medknowledge_KG is built
from the Online Medical Knowledge-Based Data in Hu-
atuo26M (Li et al., 2023), which is derived from the ex-
tensive medical literature data provided by the Chinese
Medical Association. Medknowledge_webqa includes
knowledge-driven, open-ended question-and-answer
pairs in the medical domain, sourced from (Wang
et al., 2023b). Medtask_promptcblue combines the
promptCBLUE dataset (Zhu et al., 2023b) with addi-
tional data converted into the instruction-output for-
mat from the CBLUE benchmark (Zhang et al., 2022).
QA_website contains authentic doctor-patient dialogue
data collected from the online platform of a collaborat-
ing hospital. Examples from these datasets are shown
in Table 9.

Are the data sources legal? How are privacy and
ethical considerations addressed?

The dataset is derived from carefully selected sources,
including publicly available datasets and data crawled
from the website of a collaborating hospital. Explicit
permission was obtained from the collaborating hospital
for the use of the crawled data, and all data have been
anonymized to ensure that no personal information is
exposed. Additionally, the hospital’s website provides
open-access data, complying with relevant legal and eth-
ical standards. This ensures the legality and security of

1https://www.kaggle.com/datasets/gunman@Z/
health-care-magic
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the data while addressing privacy and ethical concerns.

What are the potential risks and limitations of this
dataset?

The dataset has certain inherent risks and limitations
that should be acknowledged. First, as the data is col-
lected from diverse sources, it may contain noise or
inconsistencies, which could affect the quality and relia-
bility of downstream applications. Additionally, since
the dataset is derived from Chinese text corpora, includ-
ing medical advice and Q&A exchanges, its content
may be culturally and regionally specific, making it
more suitable for East Asian populations. As a result,
the medical recommendations and insights in the dataset
may not generalize well to other demographic or cul-
tural contexts.

To address these issues, users should carefully eval-
uate the dataset’s suitability for their intended applica-
tions and, if necessary, consider adapting the data to
align with broader use cases. Moreover, noise reduction
and validation techniques can be employed to improve
data quality and reliability in specific tasks.

What is the usage case for this dataset?

This dataset is primarily intended for instruction fine-
tuning of large language models (LLMs), as already
utilized in this study. Practitioners can use it to fine-
tune LLMs to adapt to the medical domain, as well as
to enhance its medical abilities in general fine-tuning.
Additionally, the dataset may be useful for more specific
tasks, such as fine-tuning for sub-tasks in the dataset.

What is the distribution method and maintenance
plan for this dataset?

The dataset is distributed as an open-source resource
at https://drive.google.com/drive/folders/
1SfrwQkDrQJ8i_EIqfc2DioXa5Y5pzY9H, allowing
researchers and developers to access and utilize it freely
under the specified license. We are committed to the
ongoing maintenance of the dataset. If any errors or
inaccuracies are identified, particularly those related
to medical knowledge, we will promptly update the
dataset to correct such issues, removing erroneous
data as necessary. Additionally, we will continue to
provide updated documentation to ensure the dataset’s
effective use. While the dataset is stable at present,
users are encouraged to provide feedback or suggest
improvements, and we will consider updates based on
user input or evolving needs in the field. This ensures
that the dataset remains reliable and beneficial for the
community.

C K-Center Sampling Algorithm

In our data selection framework, K-Center sampling is
employed to ensure diversity within the selected instruc-
tion fine-tuning data. After filtering based on difficulty
levels, we obtain an intermediate set Sy,;,4, composed
of data points within a moderate difficulty range. The
K-Center sampling is then applied on Spq. Specifically,
the process works as follows:

1. Embedding Generation: For each data sample,
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the instruction part is encoded into an embedding us-
ing the LLM. We extract the last hidden states of the
LLM and compute the average across all tokens in the
sequence to form a fixed-size embedding vector. These
embeddings represent the semantic content of the in-
struction.

2. K-Center Sampling: Using these embeddings,
the K-Center sampling algorithm selects k data points
in a greedy manner. The goal is to maximize the mini-
mum distance between any pair of selected data points,
ensuring that the sampled data points are as distinct as
possible. This promotes diversity in the selected dataset
and minimizes the risk of overfitting to similar data
points.

The pseudo codes of this greedy K-Center sampling
process are shown in Algorithm 2:

Algorithm 2: Greedy K-Center Sampling

Input: Intermediate set
Smid = {51, 52,
budget &

Output: Final selected set S

Step 1: Encode data in S,,,;; using model M ;

foreach s; € S,,;q do
Encode s using M to obtain the embedding

€s;

., Sn}, model M, data

end

Step 2: Run K-Center greedy algorithm;

Initialize S < 0 ;

Initialize min_distances < oo ;

fori=1to k do

if S = () then

Select s; € Syiq randomly and add it to
S

else

min_distances; = min,,cs |es; —

851”2; vsj S Smid\s;
Select s* =
argmaxs es,,.,\s min_distances;;
Add s* to S;
end
end
return S

D Baseline Implementations

Due to differences in task settings and datasets, we
re-implement the baselines using their publicly avail-
able codes. We adapt their data selection strategies
to our domain adaptation fine-tuning task on the med-
ical instruction fine-tuning dataset and models. The
re-implementation details are as follows and our use
of the code repositories complies with their respective
licenses:

(1) Alpagasus: (Chen et al., 2023a) We adopt the
open-sourced implementation?, officially verified by the

*https://github.com/gptdlife/alpagasus
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original authors. Given the scale of our full training
dataset, applying GPT-4 annotation to the entire set
would incur substantial financial cost due to API usage.
Constrained by our budget, we randomly sample 70K
training samples and assess their quality using the pro-
vided prompt with GPT-40. From data scoring above
the default threshold of 4.5, we randomly select SK
samples.

(2) DEITA: (Liu et al., 2023) We utilize the official
implementation from the public GitHub repository?
and directly download their trained data quality and
complexity scorer models from HuggingFace*> with-
out modification. The scorers are applied to randomly
sampled 70K training data. We then select the top SK
samples with the highest scores in both quality and com-
plexity.

(3) IFD: (Lietal., 2024a,b) The Instruction Follow-
ing Difficulty (IFD) method begins by calculating the
instruction-following difficulty scores for each data
point through model forward propagation. Given that
our full domain dataset consists of over 1.9 million sam-
ples, performing this step on the entire dataset would be
computationally prohibitive. Therefore, we randomly
sample 60K samples from the training set, an amount
comparable to the dataset size used in our 3DS after
Stage#1. We compute IFD scores for this subset, and,
following the recommendations in the original paper,
select the samples with highest scores. The data budget
is constrained to Sk samples, ensuring consistent with
our main experimental setup.

4) MoDS: (Du et al., 2023) For the MoDS
baseline, We follow the original paper’s
implementations, using the reward model
reward-model-deberta-v3-large-v2® to score
the full dataset. We then obtain samples with scores
above 0.5, yielding a subset of 120k high-quality data
samples. From this subset, we apply K-Center sampling
to select 2k seed samples for model warm-up training.
Subsequently, the trained model perform inference on
the 120k high-quality subset, and these predictions are
rescored using the same reward model. Data samples
where model’s generated answers score below 0 are
deemed necessary and are combined with the seed
samples. From this merged set, we randomly select 5k
samples as the final training data, and train models from
scratch on this final data.

(5) LESS: (Xia et al., 2024) The LESS method in-
volves constructing a gradient library based on the orig-
inal data, which incurs significant computational costs,
particularly for the large dataset like ours. Similarly,

3https://github.com/hkust-nlp/deita

*https://huggingface.co/hkust-nlp/deita-quality-scorer

Shttps://huggingface.co/hkust-nlp/deita-complexity-
scorer

®https://huggingface.co/OpenAssistant/reward-model-
deberta-v3-large-v2



we sample 60k data points to compute the gradients.
Unlike the original LESS method that targets specific
downstream tasks and uses samples from the target-
ing dataset to construct a validation set, our domain
adaptation fine-tuning scenario does not involve fixed
downstream tasks. Therefore, we randomly selected an
additional 100 samples from the training set as the vali-
dation set. Then we run the provided codes and select
5k training samples.

E Implementation Details

The difficulty thresholds in our experiments are deter-
mined based on model performance on a hold-out CMB-
validation set composed of 280 samples provided in the
CMB benchmark (Wang et al., 2023c). All experiments
are conducted using the PyTorch 2.4.0 in Python 3.9, on
8 NVIDIA H100 GPUs and an Intel(R) Xeon(R) CPU,
with both training and inference performed using half-
precision FP16 for efficiency. We employ the LoRA
fine-tuning method, targeting all linear modules within
the model, with a learning rate of 5 X 1075, a batch
size of 64, and a single epoch of training. The learn-
ing rate is scheduled using a cosine decay scheduler
with a warmup ratio of 0.1. The LoRA rank is set to §,
and the input sequence length is cut off at 1024 tokens.
DeepSpeed Zero-3 is used to optimize distributed train-
ing. For instruction scoring, response generation, and
training, we use templates corresponding to each model,
implemented through the llamafactory project (Zheng
et al., 2024).

Due to the high computational cost of training and
testing LLLMs, most existing instruction data selection
studies conduct experiments with a single run for ef-
ficiency (Li et al., 2024b; Du et al., 2023). We adopt
this approach as well. However, to assess the relia-
bility of our results, we perform the random selection
experiment three times. The results show consistent per-
formance with low variance (MMCU: 0.07; CMB 0.01
for Qwen1.5-7B-Chat) and narrow error bars (£0.26
and £0.08 for Qwen1.5-7B-Chat), demonstrating that
our findings are statistically stable and reliable.

F Evaluation Metrics

To evaluate the performance of LLMs on multi-task
medical choice questions, we instruct the models to
provide only the correct answer and adopt the widely-
used metric, Exact Match (EM), as recommended by
prior work (Zhu et al., 2021; Karpukhin et al., 2020).
An answer is deemed correct under the EM metric if its
form exactly matches all the correct answers listed in
the ground truth. The EM score is computed as follows:

M — Number of Correctly Matched Answers

Total Number of Answers

For open-domain medical Q&A tasks, we employ
ROUGE-R (Xu, 2023; Jiang et al., 2024) and Bilingual
Evaluation Understudy (BLEU) to assess the quality
of the LLMs’ responses.

x100%.
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BLEU-N Specifically, BLEU-1 is used to measure
answer precision, and BLEU-4 evaluates answer fluency
by considering higher-order n-gram consistency. BLEU
evaluates the similarity of generated responses to the
ground truth using the following formula:

N
1
BLEU-N = BP - exp (N nz::l log pn> ,

where p,, is the precision of n-grams, B P is the Brevity
Penalty, calculated as:

1, ife>r
exp(l—g), ife<r’

Here c is the length of the generated response, and r is
the length of the reference response.

ROUGE-R quantifies the recall of retrieved knowl-
edge in the LLMs’ responses, emphasizing their ability
to comprehensively cover the information relevant to
the query. For a generated response R and a reference
G, ROUGE-R is computed as:

BP

IRNG|
G|

ROUGE-R =

where |R N G| denotes the number of overlapping n-
grams between the generated response and the reference,
and |G| is the total number of n-grams in the reference.

During implementation, We use the 'rouge’ package
to calculate ROUGE scores and the ’nltk’ module to
compute BLEU scores (from BLEU-1 to BLEU-4), uti-
lizing the smoothing function for BLEU and the default
settings for ROUGE.

G Supplementary Experiments

G.1 Win Rates Evaluation

When evaluating model performance on the open Q&A
dataset CMB-Clin, in addition to traditional metrics
such as BLEU1, BLEU4 and Rouge scores, we conduct
a pair-wise comparison to more thoroughly compare the
fine-tuned models’ medical analysis ability. In this ex-
periment, we randomly sample 100 answers from each
model and employ GPT-40, a highly capable LLM, as
the judge to determine which model generates a better
answer. Below, we present the prompt used to instruct
GPT-40 to compare answers from two models in this
qualitative evaluation. To ensure a fair comparison and
eliminate any possible positional bias in GPT-04, we
randomly assign the answers from each model as "Stu-
dent 1" or "Student 2" throughout the experiment.
Results shown in Figure 3 demonstrate that 3DS ex-
hibits substantially higher win rates compared to all
other baselines. Notably, the larger and stronger mod-
els Baichuan2-13B-Chat, Qwen1.5-7B-Instruct and
Qwen2.5-7B-Instruct generally show higher win
rates compared to LLaMA3-8B-Instruct, which indi-
cates that 3DS also exhibits scalability. This evaluation



provides qualitative evidence that 3DS effectively en-
hances the model to deliver more clinically accurate
outputs.

CMB-Clin Evaluation Prompt

You are now a medical expert guiding students
in analyzing medical cases. You have two
students, Student 1 and Student 2. You assess
them through real medical case questions and
choose the one with the best answer to become
your assistant.

[High-Quality Answer Criteria]
1. The answer should address the question
directly and solve the problem posed.

2. The description of symptoms should
be comprehensive and accurate, and the diag-
nosis should be the most reasonable inference
based on all relevant factors and possibilities.

3. The treatment recommendation should be
effective and reliable, considering the severity
or stage of the condition.

4. The prescription should consider indi-
cations, contraindications, and dosages, being
both effective and reliable.

[Judgment Instructions]

Please compare the answers of Student 1
and Student 2. You need to tell me whether
Student 1 is [better], [worse], or [equal] to
Student 2. Compare their answers, refer to the
question and the correct answer, and determine
which one meets the given requirements more
closely. Please only output one of the following:
[Student 1 is better than Student 2], [Student
1 is worse than Student 2], or [Student 1 and
Student 2 are equal]. Do not output any other
words.

[Case Example]
Here is the [Question]:
<Insert medical question here>

Here is the [Standard Answer]:
<Insert standard answer here>

Here is [Student 1]’s answer:
<Insert Student 1’s answer here>

Here is [Student 2]’s answer:

<Insert Student 2’s answer here>

Please compare the two answers and give your
judgment.
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G.2 Comparison with Existing Medical LL.Ms

Model CMB-Exam MMCU-Med
Baichuan2-13B-3DS 47.37 51.08
Qwenl.5-7B-3DS 61.96 66.09
Qwen2.5-7B-3DS 79.06 85.70
Meditron-7B 11.20 12.16
Huatuo-II-7B 27.69 47.18
Huatuo-11-34B 59.54 66.10

Table 10: Performance comparisons with existing medi-
cal LLMs.

To further validate the practical utility of 3DS, we con-
duct comparisons with existing medical LLMs. We
compare 3DS fine-tuned models to established medical
LLMs, including open-source models MediTron (Chen
et al., 2023b) (7B version due to its similar size to Qwen
models), and state-of-the-art Chinese medical LLMs
HuatuoGPT-II-7B, and HuatuoGPT-11-34B (Chen et al.,
2024), to see whether our framework can benefit the
construction of medical LLMs. The results presented in
Table 10 show that, MediTron-7B, as an English-based
LLM, demonstrates limited performance on Chinese
medical benchmarks. Huatuo-II-7B also falls short on
to similar-sized Qwen models. Huatuo-II-34B, with
nearly five times the size of Qwen1.5-7B and Qwen2.5-
7B, achieves only comparable performance.

It is worth noting that the performance of fine-tuned
models is closely tied to the capability of the base model,
so relative improvements achieved through domain-
specific fine-tuning are more important than absolute
performance. Still, the strong performance of models
fine-tuned with 3DS validates its practical utility and ef-
ficiency for developing medical domain LLMs, paving
ways for more building more powerful and advanced
models in the future.

G.3 More Results for Ablation on 3DS

In the ablation studies in 4.3, for CMB-Clin benchmark,
we only report the ROUGE score. We provide BLEU-
1, BLEU-4 scores and win-rates of the experiments
in Table 11 and Table 12. Results are consistent with
previous observations that the original 3DS significantly
outperforms ablation variants, supporting the validity
of our designed two-stage framework and three data
difficulty metrics.



LLM Turbo Baichuan2-13B-Chat | Qwen-1.5-7B-Instruct
Metric BLEU-1 BLEU-4 |BLEU-1 BLEU-4
w/o Stage#1 14.13 29.60 15.50 31.94
w/o Stage#2 20.56 46.86 21.55 47.39
Stage#2 into Stage#1| 21.48 50.16 21.73 52.27
w/o D1 22.55 51.75 24.14 55.12
w/o D2 2222 52.06 20.48 49.59
w/o D3 20.86 49.40 22.27 50.18
3DS 24.15 63.51 24.40 60.32

Table 11: Performance (BLEU-1, BLEU-4) on CMB-
Clin for ablation experiments. The best performance is
highlighted in bold.

LLM Turbo Baichuan2-13B-Chat | Qwen-1.5-7B-Instruct
Metric Win Tie Lose Win Tie Lose
vs w/o Stage#1 66.5 9.0 24.5 70.5 3.0 26.5
vs w/o Stage#2 66.0 15.5 28.5 66.0 5.5 28.5
vs Stage#2 into Stage#1|63.5 18.0 18.5 545 25 43.0

Table 12: Win-rates (%) of GPT-40 judgment on CMB-
Clin, comparing 3DS with stage ablation variants.

G.4 Ablation on Data Budgets

We conduct ablation experiments varying the selection
data budgets. Results in Table 13 show that increasing
the training data size initially boosts performance as the
model learns to align with domain-specific knowledge.
However, beyond a certain point (5K), performance
degradation arise due to potential data redundancy and
reduced diversity.

H Parameter Selection Guidelines

In 3DS’s Stage#2 Decomposed Difficulty-based Data
Selection, data within a moderate difficulty range are
selected. How to determine the optimal difficulty range
is thus essential. We provide selection guidelines based
on our experiments. We identify that the 25%-75%
difficulty range is a robust choice. For model-specific
optimization, we recommend this implementation pro-
cedure:

* Model Capability Profiling: Conduct pre-fine-
tuning validation to benchmark the model’s base-
line performance. Strong domain task performance
suggests higher difficulty thresholds, while weaker
models benefit from more conservative ranges.

* Hyperparameter Search: Implement search over
potential ranges and select the values that yield the
best performance on the validation set. This allows
for adapting the difficulty range to the model’s
specific strengths and weaknesses.

I Law Domain Experiment Details

To assess the generalization ability of our model-centric
data selection framework beyond the medical domain,
we conduct experiments on the law domain, utilizing
CaseHOLD dataset (Zheng et al., 2021). This dataset
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consists of over 53,000 multiple-choice questions de-
rived from U.S. court decisions. Each instance presents
a case citation context along with five candidate legal
holdings, of which only one is correct. The task simu-
lates legal reasoning by requiring models to identify the
option that best matches the cited precedent.

We follow a standard instruction-tuning setup by con-
verting CaseHOLD into an Alpaca-style format. The
instruction is fixed to a law domain-specific prompt:

CaseHOLD Instruction

As a law expert, please select the option that
best matches the legal holding cited in the case.
Answer with the option letter only (A/B/C/D/E).

The input contains the case citation context and five
formatted candidate holdings:

CaseHOLD Input

Case Citation Context: [citing_context]
Options: A. [holding_0] B. [holding_1] ...E.
[holding_4]

We fine-tune LLaMA3-8B-Instruct on 5K training
samples selected from the CaseHOLD training set us-
ing three different strategies: (1) Random Selection,
(2) IFD (Li et al., 2024b), a strong instruction filtering
baseline, and (3) our proposed model-centric selection
framework 3DS. All models are trained under the same
hyperparameters, and each experiment is repeated three
times with different random seeds. We report the mean
accuracy and standard deviation on a selected 1K sam-
ples from the CaseHOLD test set.

J Data Evaluation Prompts

J.1 Data Quality Evaluation Prompt

In the pilot study and the first stage of 3DS, we utilize a
prompt to instruct models to evaluate data quality on its
internal knowledge. Inspired by existing works (Chen
et al., 2024; Wang et al., 2023c; Liu et al., 2023), the
model is asked to assess data quality across five dimen-
sions: Instruction Complexity, Response Relevance, Re-
sponse Thoroughness, Response Logic and Knowledge
Richness. We provide the model with detailed scoring
guidelines. The specific prompt used in this process is
shown below.

Quality Evaluation Prompt

You are an Al assistant with medical expertise.
Your task is to objectively assess the quality
of the medical dialogue between the user and
assistant based on your knowledge, and provide
a score. The data may consist of single or
multi-turn dialogues. You should evaluate based
on the complexity of the question, relevance of




the response, thoroughness, logical coherence,
and knowledge richness, and provide an overall
score. Focus on medical-specific characteristics
to ensure accuracy.

[Evaluation Criteria]

1. Question Complexity: Evaluate the
complexity of the user’s question. If the ques-
tion requires deep understanding, reasoning, or
medical knowledge, score above 80.

2. Response Relevance: Assess if the as-
sistant’s response is directly aligned with the
question. Score above 80 for responses tightly
related to the question.

3. Response Thoroughness: Check if the
response thoroughly addresses the question
with sufficient detail. A score above 80 reflects
comprehensive answers.

4. Response Logic: Ensure the response
follows clear reasoning and logic. A score
above 80 reflects well-structured reasoning.

5. Knowledge Richness: Determine whether the
response demonstrates rich, specialized medical
knowledge. A score above 80 indicates depth
and accuracy.

[Scoring Guidelines]

[80-100]:  Excellent. High complexity,
thoroughness, relevance, logic, and knowledge
richness, meeting medical standards.

[60-79]: Good. Strong performance but
with minor deficiencies in logic or knowledge.

[40-59]: Fair. Noticeable issues such as
unclear logic or insufficient depth.

[20-39]: Poor. Fails to properly address
the medical issue or lacks substance.

[0-19]: Very Poor. Lacks relevance, logic, or
medical knowledge.

[Start Conversation]

Refer to the guidelines and score the following
dialogue data based on the criteria. Follow the
output format strictly:

{score:}
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Dialogue:
<ga_pairs>
Output:

J.2 Data Difficulty Evaluation Prompt

In the second empirical study, we prompt models to rate
overall data difficulty according to its knowledge. The
specific prompt used in this process is shown below.

Overall Difficulty Evaluation Prompt

You are a medical expert. I will provide you
with an instruction related to the medical field.
Based on your knowledge, please evaluate the
difficulty of this instruction.

1. Medical Knowledge Complexity: Does
this instruction involve complex medical
knowledge?

2.  Reasoning Complexity: Does answer-
ing this instruction require multi-step reasoning,
integration of multiple sources of information,
or handling clinical uncertainty?

3. Overall Challenge: Considering the
above factors, what is the overall difficulty of
this instruction?

Based on these considerations, please provide a
comprehensive difficulty rating from 1 (very
easy) to 5 (very difficult). Only output the
score; do not provide any explanation.
Instruction to evaluate:

{instruction}

Please return an integer between 1 and 5,
representing the overall difficulty of the
instruction for you. Only output the score and
nothing else.

\. J

J.3 Decomposed Difficulty Prompts

In the ablation study where we collapse Stage#2 in
3DS into Stage#l, using prompts to instruct model
to score the three decomposed data difficulties. The
prompts utilized are listed below.

Instruction Following Difficulty Prompt

Based on your existing knowledge, evaluate
the difficulty of understanding the following
instruction. The higher the complexity and
ambiguity of the instruction, the more difficult
it is for the model to understand. Please provide
a score between 0 and 1, where a higher score
indicates that the instruction is more difficult
for you to understand.




Instruction to be evaluated: {instruction}

Please return a real number between 0
and 1, representing the difficulty of understand-
ing the instruction. Only output the score, and
do not output anything else.

\. J

Response Confidence Difficulty Prompt

Based on your existing knowledge, evaluate
the difficulty of confidently and definitively
providing the following evaluated response
to the instruction. The more difficult it is to
confidently provide this response, the higher
the difficulty. Please provide a score between 0
and 1, where a higher score indicates greater
difficulty in answering confidently.

Instruction: {instruction}
Response to be evaluated:
output}

{generated

Please return a real number between 0
and 1, representing the difficulty of confidently
providing the response to the instruction. Only
output the score, and do not output anything
else.

\. J

Response Correctness Difficulty Prompt

Based on the following instruction and the
standard answer, evaluate the difficulty of
providing the correct standard answer. If the
instruction is complex or the answer requires
high expertise, making it difficult to provide
the correct answer, the difficulty will be higher.
Please provide a score between 0 and 1, where
a higher score indicates greater difficulty in
providing the correct answer.

Instruction: {instruction?}
Standard Answer: {output}

Please return a real number between 0
and 1, representing the difficulty of providing
the correct answer. Only output the score, and
do not output anything else.

K Bias and Fairness Considerations

Fairness and bias are critical considerations, particu-
larly in sensitive domains like healthcare. While our
approach demonstrates promising results in fine-tuning
LLMs for medical tasks, it is essential to acknowledge
its limitations and potential implications concerning fair-
ness and bias. Our method employs the LLM to evaluate
data quality and calculate data difficulty. Although the
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evaluation prompts and difficulty calculation metrics are
designed to be neutral, the inherent biases in the base
model may still influence the selection results. And the
LoRA fine-tuning’s impact on LLM fairness also needs
further investigations (Bui and Von Der Wense, 2024).
Another source of potential bias arises from the compo-
sition of our training data, which predominantly consists
of Chinese medical texts. While this dataset effectively
reflects the health conditions and medical practices of
East Asian populations, it may limit the generalizabil-
ity to other regions or demographics. Current LLM
data selection methods generally prioritize factors such
as difficulty, quality, or diversity, without addressing
fairness or examine what data is included or excluded.
They focus on improving model performance on stan-
dard benchmarks, while the impact of these methods
on fairness, safety, and truthfulness benchmarks, such
as SafetyBench (Zhang et al., 2024) and Truthful QA
(Lin et al., 2022), remains underexplored. Therefore,
we recognize that these issues are valuable directions
for future research. Investigating how data selection and
fine-tuning methods impact LLM fairness and safety
will be essential for developing more equitable and reli-
able LLMs.



Medtalk_singleround

English translation

Question

Answer

AR A AR BER S T HOT &R
ENET 40 ZHiEE BITIRZERS
NEXRZ T HREACHBMEEE
EAEHORE?

FIT5REHE —EMRA, BEAZ
xR, ANEHEL . EUCFR
HZHNE, FEGREREA
i A A B AR A R - A
JiUkR - EARE, BEREET)TE -

Q: Doctor, can hyperthyroidism during preg-
nancy be inherited by the baby? Mine recurred
during pregnancy, but I didn’t take medication.
Will my baby be affected?

A: Hyperthyroidism has some genetic links but
is not always inherited. Don’t worry. Maintain
a balanced diet rich in calories, protein, and
vitamins, but low in iodine. Stay relaxed, rest
adequately, and avoid strenuous activities.

Medknowledge_KG

English translation

Question

Answer

PR R ) F ARG T LT 40

ERES =Yg % N =R 2
1, BERED TR E: &R
BRI RS AE -

Q: What surgical treatments are available for
facial depression?

A: Autologous micro-fat grafting, autolo-
gous fat transplantation, autologous stem cell-
enriched fat grafting, and autologous fat parti-
cle transplantation.

Medknowledge_webqa

English translation

Question

Answer

TR A AR ERTT 1A -

AIH K& LR T, ARYE Bk H
FH AR 25 - AR R T
FEREBN, W4T IFITIA,
BN LRI R K B AT SR
.

Q: Please describe the treatment methods for
parasitic diseases.

A: The primary goal is to eliminate the para-
sites by using the most effective antiparasitic
drugs based on the specific type of parasite.
In cases of severe infection where the host
is weakened, supportive therapy may be pro-
vided. Surgical intervention should be per-
formed promptly if complications arise.

Medtask_promptcblue

English translation

Question

Answer

AN 8 B S AR TR A
BET, WELHE AR, S~
FLXAEK? . BARZY4
ﬁ,Eﬁﬁﬁ,Eiﬁﬁﬁﬁ,ﬁ
IR o

bR a) 7 AR SRR R SRR SR
& E, %K.

Q: Entity extraction in diagnostic dialogues:
"Caught a cold two weeks ago, still have a bit
of a cough now—could it be related?" Options:
specific medication names, medical procedures,
medical tests and examinations, symptoms.

A: The entities in the above sentence include:
Symptom entities: cold, cough.

QA _website

English translation

Question

Answer

BRNRE=T/tC, A
B, HEEER, BT, Z A8, 8
BE SIS R RE?

PROX AR ELSE I IR LR, A
R, —BOoRUE, 37 _LIE
AR, FrLLRIRIX D IRE S
MR AN RF AR, AREZ AT LL
B THEERERENTHE, &
=, BRI A

Q: Low-grade fever of 36-37°C every after-
noon, occasional chest tightness, no cough,
night sweats, or fatigue—could this indicate
a possibility of tuberculosis?

A: From a clinical perspective, this temperature
doesn’t qualify as a low-grade fever—typically,
temperatures above 37.2°C are considered low-
grade. Therefore, its connection to tuberculosis
is unlikely. However, you might want to check
for the possibility of a viral infection or con-
sider whether it could be related to COVID-19.

Table 9: Examples For various type dataset
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Figure 3: GPT-40 judgement of CMB-Clin.
Model Dataset 3k 4k Sk 6k 7k
CMB-Exam |46.87 47.30 47.37 46.95 46.98
Baichuan2-13B-Chat
alchuan Chat  MCU-Medical | 48.67 49.91 51.08 50.16 50.27
CMB-Exam |60.47 60.45 61.96 60.78 60.53
1.5-7B-I
QwenL.5-7B-Instruct \\\\ U-Medical | 63.64 63.92 66.09 64.49 64.10

Table 13: Performance comparison of models trained on different data budgets.
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