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ABSTRACT

Understanding multi-agent movement is critical across various fields. The con-
ventional approaches typically focus on separate tasks such as trajectory predic-
tion, imputation, or spatial-temporal recovery. Considering the unique formu-
lation and constraint of each task, most existing methods are tailored for only
one, limiting the ability to handle multiple tasks simultaneously, which is a com-
mon requirement in real-world scenarios. Another limitation is that widely used
public datasets mainly focus on pedestrian movements with casual, loosely con-
nected patterns, where interactions between individuals are not always present,
especially at a long distance, making them less representative of more structured
environments. To overcome these limitations, we propose a Unified Trajectory
Generation model, UniTraj, that processes arbitrary trajectories as masked inputs,
adaptable to diverse scenarios in the domain of sports games. Specifically, we in-
troduce a Ghost Spatial Masking (GSM) module, embedded within a Transformer
encoder, for spatial feature extraction. We further extend recent State Space Mod-
els (SSMs), known as the Mamba model, into a Bidirectional Temporal Mamba
(BTM) to better capture temporal dependencies. Additionally, we incorporate a
Bidirectional Temporal Scaled (BTS) module to thoroughly scan trajectories while
preserving temporal missing relationships. Furthermore, we curate and bench-
mark three practical sports datasets, Basketball-U, Football-U, and Soccer-U, for
evaluation. Extensive experiments demonstrate the superior performance of our
model. We hope that our work can advance the understanding of human move-
ment in real-world applications, particularly in sports. Our datasets, code, and
model weights are available at link.

1 INTRODUCTION

Understanding multi-agent movement patterns is invaluable across various domains, including au-
tonomous driving (Codevilla et al., 2019; Hazard et al., 2022), video surveillance (Cristani et al.,
2013; Coşar et al., 2016), and sports analytics (Tuyls et al., 2021; Wang et al., 2024b). To decipher
agent movement, these applications rely on tasks such as multi-object tracking (Luo et al., 2021),
person re-identification (Ye et al., 2021), trajectory modeling (Nagin, 2010), and action recogni-
tion (Zhang et al., 2022; Chi et al., 2023). Among these tasks, trajectory modeling is particularly
straightforward and effective for understanding the movements of agents. Despite its inherent chal-
lenges, such as the complexity of dynamic environments and the subtle agent interactions, significant
advancements have been made recently. These advancements are concentrated in three main areas:
trajectory prediction, imputation, and spatial-temporal recovery.

Significant developments have been made recently in modeling trajectories, however, most ap-
proaches are specialized for a single task. For example, numerous studies (Xu et al., 2020; 2021;
Rowe et al., 2023; Mao et al., 2023; Jiang et al., 2023; Chen et al., 2023a; Zhou et al., 2023;
Gu et al., 2023; Aydemir et al., 2023; Bae et al., 2023; Shi et al., 2023; Chen et al., 2023b; Seff
et al., 2023; Park et al., 2023; 2024) have focused on pedestrian trajectory prediction, driven by
the growing interest in autonomous driving, achieving promising results on public datasets. How-
ever, these approaches often struggle to generalize to other trajectory-related tasks, such as trajec-
tory imputation and spatial-temporal recovery. These tasks require exploiting both forward and
backward spatial-temporal dependencies, which are not typically addressed in prediction-focused
models. Moreover, early datasets like ETH-UCY (Pellegrini et al., 2009; Lerner et al., 2007) and
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Figure 1: Demonstration of three trajectory modeling tasks,
trajectory prediction, imputation, and spatial-temporal (ST)
recovery, for multi-agent movement analysis during an of-
fensive possession in a basketball game, where each task
takes different inputs.

SDD (Robicquet et al., 2016) primar-
ily focus on pedestrian trajectories in
real-world scenarios, such as univer-
sity campuses and sidewalks. In these
settings, pedestrians typically move
casually, with limited sparse inter-
actions between individuals, particu-
larly those at longer distances. The
most common social interactions ob-
served are group walking or collision
avoidance. While some studies (Liu
et al., 2019; Zhao et al., 2022) have
tackled the multi-agent trajectory im-
putation problem, they often over-
look the future trajectories of agents.
This omission limits their practical
utility in complete movement under-
standing, where predicting future tra-
jectories is crucial for downstream
planning rather than merely recon-
structing historical trajectories. Al-
though some recent efforts (Xu et al., 2023; Qin et al., 2023) have attempted to integrate imputation
and prediction, they both rely on a multi-task framework, and the masking strategies fall short in
handling diverse missing patterns. Given that any situation might happen in real practice, it is cru-
cial to develop a general method that can accommodate various scenarios as shown in Figure 1.
This raises two pivotal questions: (1) How can we unify these disparate but relevant tasks into a
general framework that accommodates different settings? (2) How can we effectively model these
trajectories with varying input formulations?

Prompted by these questions, we revisit these tasks and introduce the Unified Trajectory Generation
model (UniTraj), which integrates these tasks into a general scheme. Specifically, we merge differ-
ent input types into a single unified formulation: an arbitrary incomplete trajectory with a mask
that indicates the visibility of each agent at each time step. We uniformly process the inputs of
each task as masked trajectories, aiming to generate complete trajectories based on the incomplete
ones. To model spatial-temporal dependencies across various trajectory formulations, we introduce
a Ghost Spatial Masking (GSM) module embedded within a Transformer-based encoder for spatial
feature extraction. Leveraging the notable capability of recent popular State Space Models (SSMs),
namely the Mamba model, we adapt and enhance it into a Bidirectional Temporal Mamba encoder
for long-term multi-agent trajectory generation. Furthermore, we propose a simple yet effective
Bidirectional Temporal Scaled (BTS) module that comprehensively scans trajectories while preserv-
ing the integrity of temporal relationships within the sequence. Due to the lack of densely structured
trajectory datasets, we benchmark and release three sports datasets: Basketball-U, Football-U, and
Soccer-U, to facilitate evaluation. In summary, the contributions of our work are as follows:

• We propose UniTraj, a unified trajectory generation model capable of addressing diverse
trajectory-related tasks such as trajectory prediction, imputation, and spatial-temporal re-
covery while handling various input formulations, setting constraints, and task require-
ments.

• We introduce a novel Ghost Spatial Masking (GSM) module and extend the Mamba model
with our innovative Bidirectional Temporal Scaled (BTS) module to extract comprehensive
spatial-temporal features from different incomplete trajectory inputs.

• We curate and benchmark three sports datasets, Basketball-U, Football-U, and Soccer-U,
and establish strong baselines for this integrated challenge.

• Extensive experiments validate the consistent and exceptional performance of our method.
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2 RELATED WORK

Trajectory Prediction. Trajectory prediction aims to predict the future movements of agents con-
ditioned on their historical observations. The biggest challenge is modeling the social interactions
among agents, which has driven the development of various methods. A classic approach, Social-
LSTM (Alahi et al., 2016), introduced a pooling layer to enable information sharing. Subsequent
methods (Vemula et al., 2018; Zhang et al., 2019; Hu et al., 2020; Xu et al., 2021) have employed
similar designs to extract comprehensive interaction features. More recent studies (Kosaraju et al.,
2019; Sun et al., 2020; Mohamed et al., 2020; Shi et al., 2021; Xu et al., 2022a; Li et al., 2022; Bae
et al., 2022) have utilized Graph Neural Networks (GNNs), treating agents as nodes to model social
interactions. The inherent uncertainty and diversity of future trajectories have also led to the adop-
tion of generative models, including Generative Adversarial Networks (GANs) (Gupta et al., 2018;
Sadeghian et al., 2019; Li et al., 2019; Amirian et al., 2019), Conditional Variational Autoencoders
(CVAEs) (Mangalam et al., 2020; Xu et al., 2022b; Ivanovic & Pavone, 2019; Salzmann et al., 2020;
Xu et al., 2022c), and Diffusion models (Gu et al., 2022; Mao et al., 2023; Jiang et al., 2023).

While these models have shown promising results, most assume that observations are complete,
overlooking potential missing observations. Recent works (Qi et al., 2020; Xu et al., 2023; Lange
et al., 2023) have highlighted the issue of missing observations, incorporating both imputation and
prediction tasks into a multi-task framework. However, these efforts primarily address visible gaps
in historical trajectory data, without considering the more complex scenarios of missing data that
occur in practice. Moreover, prediction may not always be the ultimate objective in applications such
as similarity analysis or action localization. Our work aims to tackle a broader range of challenges
within trajectory modeling and introduces a new benchmark to better address these complexities.

Trajectory Imputation and Spatial-Temporal Recovery. Imputation is a classic and extensively
explored task, with time-series imputation receiving the most attention. Traditional statistical tech-
niques include replacing missing values with the mean or median value (Acuna & Rodriguez, 2004),
as well as methods like linear regression (Ansley & Kohn, 1984), k-nearest neighbors (Troyan-
skaya et al., 2001; Beretta & Santaniello, 2016), and the expectation-maximization (EM) algo-
rithm (Ghahramani & Jordan, 1993; Nelwamondo et al., 2007). These methods often suffer from
limited generalization ability due to their reliance on rigid priors. In response, more flexible frame-
works have emerged, employing deep learning techniques for sequential data imputation, such as
autoregressive imputation using RNNs (Yoon et al., 2018b; Cao et al., 2018), or the use of GANs,
VAEs, and Diffusion models (Yoon et al., 2018a; Luo et al., 2018; 2019; Qi et al., 2020; Miao
et al., 2021; Tashiro et al., 2021; Wen et al., 2024; Chen et al., 2024; Yuan & Qiao, 2024) to gen-
erate reconstructed sequences. However, only a few studies have specifically addressed trajectory
imputation for multi-agent movements. For instance, AOMI (Liu et al., 2019) introduces a non-
autoregressive imputation method, while GMAT (Zhan et al., 2018) develops a hierarchical model
to generate macro-intent labels for sequence generation. Additionally, Graph Imputer (Omidshafiei
et al., 2021) has utilized forward and backward information to model the distribution of imputed
trajectories in soccer games.

The task of trajectory spatial-temporal recovery, while similar to trajectory imputation in its focus
on incomplete trajectories, differs in its broader goal of reconstructing complete spatial-temporal
sequences. This task requires not only filling gaps but also mining the intrinsic relations between
different agents’ trajectories, which is crucial for real-world applications like arrival time estima-
tion (Derrow-Pinion et al., 2021; Chen et al., 2022) and trajectory similarity computation (Han
et al., 2021). A major benchmark involves recovering trajectory data from GPS points (Chen et al.,
2011; Wei et al., 2012; 2024; Chen et al., 2023c), while few studies focus on multi-agent contexts.

Recent research has integrated trajectory imputation and prediction tasks. For instance, INAM (Qi
et al., 2020) introduces an imitation learning paradigm that handles both tasks asynchronously, while
GC-VRNN (Xu et al., 2023) proposes a multi-task framework using three different GCN layers and
a variational RNN to conduct trajectory imputation and prediction simultaneously. Nevertheless,
these studies primarily aim to forecast trajectories based on missing observations, whereas our work
aims for a more general goal that is not restricted to specific input formats or tasks. Another closely
related work is Traj-MAE (Chen et al., 2023b), which introduces a continual framework to pre-train
trajectory and map encoders for vehicle trajectory prediction. However, Traj-MAE focuses primarily
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on vehicle trajectories, which are more closely tied to maps, whereas our approach targets player
trajectories in sports games, where denser social interactions occur.

State Space Models. The core concept of state space sequence models (SSMs) (Gu et al., 2021a;b)
is to link input and output sequences through a latent state. Recently, a promising variant of SSMs,
Mamba architecture (Gu & Dao, 2023), which integrates time-varying parameters, has been intro-
duced to enhance the efficiency. This architecture has inspired various recent studies in different
computer vision tasks. For instance, in works (Liu et al., 2024; Pei et al., 2024; Wang et al., 2024a;
Behrouz et al., 2024; Zhu et al., 2024), Mamba has been applied to effectively process image patches,
learn visual representations, and achieve impressive performance in downstream tasks, proving it as
an effective backbone.

More relevant to our work, several Mamba-based methods have been developed to solve the prob-
lem of sequence generation. For instance, Motion Mamba (Zhang et al., 2024) employs SSMs for
efficient and long-term motion generation, incorporating multiple isolated SSM modules within a
symmetric U-Net architecture. Similarly, Traj-LLM (Lan et al., 2024) uses the Mamba model to
develop a lane-aware probabilistic learning module and integrates Large Language Models (LLMs)
for trajectory prediction in autonomous driving. Additionally, Simple-Mamba (Wang et al., 2024c)
tokenizes the time points of each variable and uses the Mamba model for time series forecasting.
However, the full potential of the Mamba model in trajectory modeling remains underexplored. In
this work, we extend the Mamba model to learn temporal dependencies from both directions and
introduce a novel Bidirectional Temporal Scaled (BTS) module for a comprehensive scan.

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

Binary Mask Complete Trajectory

Encoder𝒙𝒙 Encoder𝒚𝒚

⊕

MLP

⊕ Decoder

𝑭𝑭𝒛𝒛,𝒙𝒙 𝑭𝑭𝒛𝒛,𝒚𝒚

𝑭𝑭𝒛𝒛,𝒙𝒙

Generated Trajectory

Loss

𝒁𝒁𝓝𝓝(𝝁𝝁𝒒𝒒,𝝈𝝈𝒒𝒒𝟐𝟐)~

⊕ - Concatenation - Training only~ - Sampling

Figure 2: Overall architecture of our UniTraj
model. The encoders extract agent features
and derive latent variables, while the decoder
generates the complete trajectory using the
sampled latent variables and agent features.

To handle various input conditions within a single
framework, we introduce a unified trajectory genera-
tive model that treats any arbitrary input as a masked
trajectory sequence. The trajectory’s visible regions
are used as constraints or input conditions, whereas
the missing regions are the targets for our generative
task. We provide the following problem definitions.

Consider a complete trajectory X ∈ RN×T×D,
where N is the number of agents, T represents the
trajectory length, and D is the dimension of the
agents’ states. We denote the position of agent i at
time t as xt

i ∈ RD. Typically, we set D = 2, corre-
sponding to the 2D coordinates. We also utilize a bi-
nary masking matrix M ∈ RN×T , valued in {0, 1},
to indicate missing locations. The variable mt

i is set
to 1 if the location of agent i is known at time t and 0
otherwise. In our work, if an agent is missing, both
coordinates are missing. The trajectory is therefore
divided by the mask into two segments: the visible
region defined as Xv = X ⊙M and the missing re-
gion defined as Xm = X ⊙ (1−M). Our task aims
to generate a complete trajectory Ŷ = {X̂v, X̂m},
where X̂v is the reconstructed trajectory and X̂m

is the newly generated trajectory. For consistency,
we refer to the original trajectory as the ground truth
Y = X = {Xv, Xm}. More formally, our goal is to
train a generative model f(·) with parameters θ that outputs a complete trajectory Ŷ . A common
approach to estimate model parameter θ involves factorizing the joint trajectory distribution and

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

N

T

GSM Module

Binary Mask +PE

T
ransform

er E
ncoder

BTS Module

Input Process

Agent embeddings

T

N

⊙

B
idirectional T

em
poral 

M
am

ba B
lock

× L

Final agent embeddingsSpatial agent embeddings

N - Number of agents
T - Trajectory length
L - Number of blocks
PE - Positional embedding
⊙ - Element-wise multiplication

MLP

Complete Trajectory

N

T

Figure 3: Detailed architecture of the encoding process, which consists of two main components:
a Transformer encoder equipped with the GSM model, and a Mamba-based encoder featuring the
BTS module. These components are designed to capture comprehensive spatial-temporal features
and enable the model to learn missing patterns, thus generalizing to various missing situations.

maximizing the log-likelihood, as follows:

θ∗ = argmax
θ

∑
x≤T∈Ω

log pθ(x
≤T ) = argmax

θ

∑
x≤T∈Ω

T∑
t=1

log pθ(x
t|x<t), (1)

where Ω = {1, 2, ..., N} is the set of agents, and x≤T represents the agent sequential trajectory.

3.2 UNIFIED TRAJECTORY GENERATION MODEL

Overall Architecture. The overall high-level architecture of our UniTraj is shown in Figure 2,
which illustrates the data flow during the training and testing phases. More specifically, the detailed
architecture of the encoder is presented in Figure 3. This encoder incorporates a Transformer en-
coder equipped with a Ghost Spatial Masking (GSM) module and a Mamba encoder enhanced by a
Bidirectional Temporal Scaled (BTS) module.

We employ the Conditional Variational Autoencoder (CVAE) framework to model the stochastic
behavior of each agent. To learn the model parameters θ, we train our model by maximizing the
sequential evidence lower-bound (ELBO), defined as follows:

Eqϕ(z≤T |x≤T )

[
T∑

t=1

log pθ(x
t|z≤t,x<t)− KL

(
qϕ(z

t|x≤t, z<t)∥pθ(zt|x<t, z<t)
)]

, (2)

where z represents the latent variables for all agents. pθ(z
t|x<t, z<t) is the conditional prior

of z, which is set as a Gaussian distribution. The encoding process is implemented through
qϕ(z

t|x≤t, z<t), and the decoding process through pθ(x
t|z≤t,x<t). Note that Equation 2 is a

lower bound of the log-likelihood described in Equation 1 and is calculated by summing the CVAE
ELBO across each time step.

Input Process. Consider an agent i at time step t with position xt
i. We first compute the relative

velocity vt
i by subtracting the coordinates of adjacent time steps. For missing locations, we fill in

the values using (0, 0) by element-wise multiplication with the mask. Additionally, we define a one-
hot category vector cti ∈ R3 to represent three agent categories: ball, offensive player, or defensive
player. This categorization is crucial in sports games where players may adopt specific offensive
or defensive strategies. The agent features are projected to a high-dimensional feature vector f t

i,x.
During training, we compute the feature vector f t

i,y for the ground truth trajectory using similar
steps but without the multiplication with the mask. Note that f t

i,y is not computed during testing.
The input feature vectors are calculated as follows:

f t
i,x =φx

(
(xt

i ⊙mt
i)⊕ (vt

i ⊙mt
i)⊕mt

i ⊕ cti;Wx

)
f t
i,y =φy

(
xt
i ⊕ vt

i ⊕ 1⊕ cti;Wy

) , (3)

where φx(·) and φy(·) are projection functions with weights Wx ∈ R8×D and Wy ∈ R8×D, ⊙
represents element-wise multiplication, and ⊕ indicates concatenation. We implemented φx(·) and
φy(·) using MLPs. This approach allows us to incorporate location, velocity, visibility, and category
information for extracting spatial features for subsequent analyses.
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Transformer Encoder with Ghost Spatial Masking Module. Unlike other sequential modeling
tasks, it is crucial to consider dense social interactions, especially in sports games. Existing stud-
ies on human interactions predominantly use attention mechanisms like cross-attention and graph
attention to capture these dynamics. However, given that we are addressing a unified problem with
arbitrary incomplete inputs, it is essential for our model to learn the spatial-temporal missing pat-
terns. While some studies (Zhao et al., 2022; Xu et al., 2023) utilize edge graphs with attached
labels to extract missing features, this approach is resource-intensive and requires the construction
of an additional graph layer. In contrast, we propose a novel and efficient Ghost Spatial Masking
(GSM) module to abstract and summarize the spatial structures of missing data. This module can be
smoothly integrated into the Transformer without complicating the model structure.

The Transformer (Vaswani et al., 2017) was originally proposed to model the temporal dependencies
for sequential data, and we adopt the multi-head self-attention design along the spatial dimension.
At each time step, we treat each agent’s embedding as a token and input N agent tokens into the
Transformer encoder to capture the attentive relationships among the agents’ features. In this way,
agent-agent interactions are computed through the multi-head self-attention mechanism. However,
it is important to note that at each time step, the missing patterns vary, with some players considered
absent. A straightforward approach is to encode these missing features at each time step as well.
Given the current mask vector mt ∈ RN×1 of N agents at time step t, our goal is to generate a
masking embedding based on this mask. We propose a simple yet effective method to generate the
so-called ghost masking embedding as follows:

f t
gho =

N
max
i=1

(
MLP

(
repeat(mt, D)[i, :]

))
, (4)

where the repeat(·) function expands the mask vector into a N ×D matrix by repeating it D times,
MLP is a linear layer used to project the mask matrix, and max-pooling is applied across rows to
derive the ghost masking embedding f t

gho ∈ R1×D. We also explore alternative operations, such as
mean or sum pooling, as described in Section 4.3, which also perform effectively in our model.

Once we obtain the ghost masking embedding, we place it at the forefront of the agent embeddings
and treat it as an additional head token. This approach is designed to extract order-invariant spatial
features of the agents, accommodating any possible arrangement of agent order that might occur in
practice. Consequently, we opt to omit the sinusoidal positional embeddings and instead use fully
learnable positional embeddings F t

pos ∈ R(N+1)×D. The Transformer encoder is defined as follows:

F t
agent = f t

gho ⊕ f t
1 ⊕ f t

2, ...,⊕f t
N

Qt,Kt, V t = MLP(F t
agent + F t

pos)

F t
s = FFN

(
MultiHeadAttn(Qt,Kt, V t)

), (5)

where MultiHeadAttn(·, ·, ·) represents the multi-head attention layer, and FFN(·) is a feed-forward
network consisting of two linear layers and a non-linear activation function. For simplicity, we omit
the subscript x or y from the features in Equation 5 since the same model structure is used.

Ultimately, the Transformer encoder outputs the spatial features F t
s,x and F t

s,y for all agents at
each time step t. We then remove the first token embedding and concatenate these features along
the time dimension to obtain the spatial features Fs,x = {⊕F t

s,x|t ∈ 1, 2, ...T} ∈ RN×T×D and
Fs,y = {⊕F t

s,y|t ∈ 1, 2, ...T} ∈ RN×T×D for the entire trajectory.

Bidirectional Temporal Mamba with Bidirectional Temporal Scaled Module. Considering the
Mamba model’s ability to capture long-term temporal dependencies, we have adapted it to integrate
into our framework. However, adapting the Mamba model to our unified trajectory generation task
is challenging, primarily due to the lack of an architecture specifically tailored to model trajecto-
ries. Effective trajectory modeling requires a thorough capture of spatial-temporal features, which
is complicated by the incomplete nature of the trajectories in our task.

To enhance the temporal features extraction while reserving missing relationships, we introduce
a Bidirectional Temporal Mamba. This adaptation incorporates multiple residual Mamba blocks
paired with an innovative Bidirectional Temporal Scaled (BTS) module. The insight behind this
design is that the Mamba blocks are used to extract temporal features, but it is also essential to learn
the missing patterns of each trajectory, as these patterns vary across different players. The BTS

6
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module is specifically designed to capture these temporal missing patterns, embedding them within
the Mamba blocks to ensure more accurate temporal modeling.

Initially, we process the mask M for the entire trajectory by reversing it along the time dimension
to produce

←−
M , which facilitates the model’s learning of temporal missing relationships by utilizing

both the original and flipped masks within our BTS module. This process generates the scaling
matrix

−→
S and its corresponding reversed version

←−
S . Specifically, for agent i at time step t, sti is

computed as follows:

sti =


1 + st−1

i if t > 1 and mt
i = 0

1 if t > 1 and mt
i = 1

0 if t = 1

, (6)

where the flip scaling matrix takes the same calculation. Then, we project the scaling matrix
−→
S and

flipped scaling matrix
←−
S to the feature matrix as follows:

−→
F bts = 1/ exp

(
φs(
−→
S ;Ws)

)
←−
F bts = 1/ exp

(
φs(
←−
S ;Ws)

), (7)

where φs(·) are projection functions with weights Ws. We implement φs(·) using MLPs with the
ReLU activation function.

Equation 6 is designed to calculate the distance from the last observation to the current time step,
which helps in quantifying the influence of temporal gaps, particularly when dealing with complex
missing patterns. The insight is that the influence of a variable that has been missing for a period
decreases over time. Therefore, we utilize a negative exponential function and the ReLU to ensure
that the influence decays monotonically within a reasonable range between 0 and 1. In this way, the
transformation function in the Mamba model (Gu & Dao, 2023) can be revised for our purposes as
follows:

Fz,x = (
−→
F s,x ⊙

−→
F bts) ∗Kforw,x + Flip

(
(
←−
F s,x ⊙

←−
F bts) ∗Kback,x

)
Fz,y =

−→
F s,y ∗Kforw,y + Flip

(←−
F s,y ∗Kback,y

) , (8)

where Kforw,x and Kback,x are convolution kernels in the forward and backward directional
Mamba blocks for masked inputs, while Kforw,y and Kback,y are the corresponding convolution
kernels for ground truth trajectory features that only calculated in the training phase. The Flip(·)
operation reverses the output features to ensure proper alignment and aggregation.

Posterior. The encoding process described above is designed to determine the parameters of the
Gaussian distribution for the approximate posterior. Specifically, the mean µq and standard devia-
tion σq of the posterior Gaussian distribution are calculated as follows:

[µq,σq] = φq(Fz,x ⊕ Fz,y), (9)

where φq is implemented using MLPs. We sample latent variables Z ∼ N (µq,Diag(σ2
q )) for

trajectory generation. During testing, we sample Z from the prior Gaussian distribution N (0, I).

Decoder. To improve the model’s ability to generate plausible trajectories, we concatenate the
feature Fz,x with the latent variable Z before feeding it into the decoder. The trajectory generation
process is then calculated as follows:

Ŷ = φdec(Fz,x ⊕Z), (10)

where φdec is the decoder function implemented using MLPs.

Loss Function. Given an arbitrary incomplete trajectory, our model will generate a complete tra-
jectory. In addition to the ELBO loss defined in Equation 2, we compute the reconstruction loss for

7
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the visible regions and include a Winner-Take-All (WTA) loss among a total K generated trajecto-
ries to promote generation diversity. These losses are defined as follows:

Lelbo = ∥X̂m −Xm∥22 + λ1KL
(
N (µq,Diag(σ2

q ))∥N (0, I)
)

Lrec = ∥X̂v −Xv∥22 Lwta = min
K
∥Ŷ (k) − Y ∥22

L = Lelbo + λ2Lrec + λ3Lwta

, (11)

where λ1, λ2, and λ3 are hyperparameters used to balance different loss terms. For the WTA loss,
we generate multiple trajectories, and Ŷ (k) denotes the kth generated trajectory.

4 EXPERIMENTS

4.1 BENCHMARKS AND SETUP

Datasets. We curate and benchmark three sports game datasets for this integrated challenging
trajectory generation task, Basketball-U, Football-U, and Soccer-U. (1) Basketball-U: We build
Basketball-U from NBA dataset (Zhan et al., 2018), with 93,490 training sequences and 11,543
testing sequences. Each sequence consists of trajectories for 1 ball, 5 offensive players, and 5
defensive players. (2) Football-U: Football-U is created from NFL Football Dataset 1, with 10,762
training sequences and 2,624 testing sequences. Each sequence consists of trajectories for 1 ball,
11 offensive players, and 11 defensive players. (3) Soccer-U: SoccerTrack 2 (Scott et al., 2022)
dataset is used as the base to build Soccer-U. The top-view scenarios are used to extract 9,882
training sequences and 2,448 testing sequences. Each sequence consists of trajectories for 1 ball, 11
offensive players, and 11 defensive players. To cover various input situations, we design different 5
masking strategies. In our datasets, we set the trajectory length to T = 50, and the number of agents
N includes all the players and the ball. Details can be found in Appendix C.

Baselines. We use the following three categories of methods for comparison. Although some of
these models were not originally designed for our trajectory generation task, we have adapted them
to fit our needs. (1) Statistical approach: This includes basic methods such as Mean, Median,
and Linear Fit, (2) Vanilla models: These are fundamental networks such as LSTM (Hochreiter &
Schmidhuber, 1997) and Transformer (Vaswani et al., 2017), (3) Advanced baselines: Advanced
deep learning models such as MAT (Zhan et al., 2018), Naomi (Liu et al., 2019), INAM (Qi et al.,
2020), SSSD (Alcaraz & Strodthoff, 2022), and GC-VRNN (Xu et al., 2023).

Evaluation Protocol. We generate a total of K = 20 trajectories based on the masked trajectory
input and use the minADE20 as one of the evaluation metrics. Furthermore, we include four addi-
tional metrics (Zhan et al., 2018; Qi et al., 2020) to comprehensively assess the generation quality.
(1) minADE20: Calculate the minimum average displacement error between the generated tra-
jectories and the ground truth across the 20 generated trajectories, (2) Out-of-Boundary (OOB):
Measure the percentage of generated locations that fall outside the predefined court boundaries, (3)
Step: Calculate the average change in step size across the generated trajectories, (4) Path-L: Cal-
culate the average length of the trajectories for each agent, (5) Path-D: Calculate the maximum
difference in trajectory lengths among the agents. Note that except for the metrics minADE20 and
OOB, where lower values are better, other metrics typically perform better the closer they are to the
ground truth. Implementation details are provided in Appendix D.

4.2 MAIN RESULTS

Evaluation results using five metrics across three datasets are presented in Table 1 for Basketball-U
and Football-U, and in Table 2 for Soccer-U. Across all datasets, our UniTraj model achieves the
lowest values on the minADE20 metric, confirming its ability to generate trajectories that are closest
to the ground truth. Specifically, UniTraj outperforms GC-VRNN by 17.9% on the minADE20

metric for the Basketball-U dataset, 28.3% for Football-U, and 10.7% for Soccer-U. Regarding the
1https://github.com/nfl-football-ops/Big-Data-Bowl
2https://github.com/AtomScott/SportsLabKit
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Table 1: We compare our UniTraj with baseline methods and report five metrics on the Basketball-U
and Football-U datasets. The best results are highlighted and the second best results are underlined.

Method Basketball-U (In Feet) Football-U (In Yards)

minADE20 ↓ OOB ↓ Step Path-L Path-D minADE20 ↓ OOB ↓ Step Path-L Path-D

Mean 14.58 0 0.99 52.39 737.58 14.18 0 0.52 25.06 606.07
Medium 14.56 0 0.98 51.80 743.36 14.23 0 0.52 24.96 600.22
Linear Fit 13.54 4.47e-03 0.56 42.86 453.38 12.66 1.49e-04 0.17 15.83 207.57
LSTM (1997) 7.10 9.02e-04 0.76 58.48 449.58 7.20 2.24e-04 0.43 34.06 228.13
Transformer (2017) 6.71 2.38e-03 0.79 59.34 517.54 6.84 5.68e-04 0.42 33.01 202.10
MAT (2018) 6.68 1.36e-03 0.88 58.83 483.46 6.36 4.57e-04 0.40 31.32 186.11
Naomi (2019) 6.52 2.02e-03 0.81 69.10 450.66 6.77 7.66e-04 0.67 42.74 259.11
INAM (2020) 6.53 3.16e-03 0.70 58.54 439.87 5.80 8.30e-04 0.39 32.10 177.04
SSSD (2022) 6.18 1.82e-03 0.47 46.87 393.12 5.08 6.81e-04 0.39 23.10 122.42
GC-VRNN (2023) 5.81 9.28e-04 0.37 28.08 235.99 4.95 7.12e-04 0.29 32.48 149.87

Ground Truth 0 0 0.17 37.61 269.49 0 0 0.03 12.56 76.68

UniTraj (Ours) 4.77 6.12e-04 0.27 34.25 240.83 3.55 1.12e-04 0.23 19.26 114.58

Table 2: We compare UniTraj with baseline methods and
report five metrics on the Soccer-U dataset. The best results
are highlighted and the second best results are underlined.

Method Soccer-U (In Pixels)

minADE20 ↓ OOB ↓ Step Path-L Path-D

Mean 417.68 0 4.32 213.05 8022.51
Medium 418.06 0 4.39 214.55 8041.98
Linear Fit 398.34 0 0.70 112.34 2047.19
LSTM (1997) 186.93 4.74e-05 7.50 652.98 4542.78
Transformer (2017) 170.94 6.59e-05 6.66 566.14 4269.08
MAT (2018) 170.46 7.56e-05 6.45 562.44 3953.34
Naomi (2019) 145.20 8.78e-05 7.47 649.62 4414.99
INAM (2020) 134.86 4.04e-05 6.37 547.02 4102.37
SSSD (2022) 118.71 4.51e-05 5.11 425.98 3252.66
GC-VRNN (2023) 105.87 1.29e-05 4.92 506.32 3463.26

Ground Truth 0 0 0.52 112.92 951.00

UniTraj (Ours) 94.59 3.31e-06 4.52 349.73 2805.79

OOB metric, the Mean and Median
methods fill missing positions with
mean and median values respectively,
naturally avoiding generating out-of-
bound locations. Except for these two
methods, ours can achieve lower rates
across all three datasets, indicating its
effectiveness in generating trajecto-
ries that remain within the court.

An interesting observation is that the
Linear Fit method yields results very
close to the ground truth for met-
rics such as Step, Path-L, and Path-D,
comparable to our UniTraj and other
deep-learning methods. This is be-
cause these metrics do not assess the
quality of the locations but rather the length information of the trajectory. For instance, the Step met-
ric measures the second-order information of each step size, where the ground truth is very small,
making Linear Fit a suitable method. In comparison, our UniTraj consistently outperforms other
deep-learning methods by a large margin, proving its effectiveness. These findings verify the robust
performance of UniTraj.

4.3 ABLATION STUDY

Ablation of Each Component. We start by analyzing the contribution of each component in our
UniTraj. Table 3 presents the results of the ablation study for each component. The “w/o GSM”
variant omits the Ghost Spatial Masking (GSM) module, feeding only the agent embedding into the
Transformer. The “w/o BTS” excludes the Bidirectional Temporal Scaled (BTS) module, relying
solely on the bidirectional temporal mamba encoder. The “uni w/ BTS” and ‘uni w/o BTS” variants
use the forward unidirectional mamba encoder, with and without the BTS module.

Comparing our full model with the “w/o GSM” variant, we see that our proposed GSM module
enhances the learning of the masking pattern to boost spatial features. The comparison between the
“w/o BTS” variant and the “uni w/ BTS” versus “uni w/o BTS” variants demonstrates the effective-
ness of the BTS module in capturing temporal missing patterns, regardless of whether the approach
is bidirectional or unidirectional. Additionally, removing the backward mamba block leads to a
decrease in performance, validating the effectiveness of our bidirectional design in capturing more
comprehensive temporal dependencies. An interesting observation is that the contributions of certain
components are different across three datasets. A potential reason is the differences in the number of
players and the court sizes in these sports, which may cause the importance of spatial and temporal
features to shift accordingly.
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Table 3: Ablation study results on three datasets.

Variants minADE20 ↓
Basketball-U Football-U Soccer-U

w/o GSM 4.86 3.92 119.43
w/o BTS 4.86 3.60 105.47
uni w/ BTS 5.86 4.09 106.22
uni w/o BTS 5.86 4.10 113.49

whole (ours) 4.77 3.55 94.59

Table 4: Results for different model designs.

Variants minADE20 ↓
Basketball-U Football-U Soccer-U

w/ global 4.86 3.74 106.77
w/ learnable 4.92 3.63 107.50

w/ mean 4.80 3.64 100.84
w/ sum 4.79 3.56 102.99
w/ max (ours) 4.77 3.55 94.59

Ghost Masking Embedding. We explore various strategies for generating a ghost masking em-
bedding. Table 4 presents the results of our UniTraj using different head embeddings. In the “w/
global” variant, we repeat the mask and directly element-wise multiply with the agent embedding
to create a hyper embedding that captures global feature information. The “w/ learnable” variant
involves replacing our ghost embedding with a fully learnable one. The “w/ mean” and “w/ sum”
variants apply mean-pooling and sum-pooling in Equation 4, respectively.

Comparison with the first two variants reveals that directly mapping the mask in UniTraj yields
lower ADE across all datasets, underscoring the effectiveness of our GSM module. Results from the
pooling variants are comparable, with max-pooling showing a slight advantage. This indicates that
any permutation-invariant operation is effective within our module.

Table 5: Results on Basketball-U with different depths.

Depth Basketball-U (In Feet)

minADE20 ↓ OOB ↓ Step Path-L Path-D Params

L = 1 5.14 4.38e-03 0.38 39.36 281.40 0.55M
L = 2 4.93 1.68e-04 0.30 35.09 141.12 0.96M
L = 3 4.85 2.95e-03 0.31 35.38 155.73 1.36M
L = 4 4.77 6.14e-04 0.27 34.25 240.83 1.77M
L = 5 4.81 1.02e-03 0.29 35.23 172.05 2.18M

GT 0 0 0.17 37.61 269.49 −

Mamba Block Depth. We explore
how different depths of temporal
mamba block affect performance. Ta-
ble 5 presents the results for the
Basketball-U dataset. We observe that
with L = 4, it achieves the best
performance in minADE20 and Step
while maintaining competitive results
on other metrics. Results for other
datasets are detailed in Appendix E,
where similar trends are observed. Considering the balance between the number of parameters
and overall performance, we set L to 4 across all three datasets.

5 CONCLUSION

In this work, we focus on the domain of sports and address the problem of modeling multi-agent
trajectories by considering various situations in real practice, emphasizing the need for a general
approach. To accommodate diverse real-world scenarios, we introduce a unified trajectory gen-
eration task that simultaneously handles multiple input situations. Essentially, we treat different
inputs, regardless of format, as masked trajectories to generate a complete trajectory. To address
various missing data scenarios, we propose a simple yet effective Ghost Spatial Masking module
that integrates within the Transformer encoder and a novel Bidirectional Temporal Scaled Module
embedded within the extended Bidirectional Temporal Mamba encoder. We have also curated and
benchmarked three sports game datasets, Basketball-U, Football-U, and Soccer-U, to evaluate our
model and establish robust baselines for future research. Extensive experiments confirm the superior
performance of our approach.

Limitations and Social Impacts One limitation of our approach is the use of simple MLPs for
decoding the trajectory. There is potential for improvement by developing a more powerful decoder.
In addition, our sports datasets have a fixed number of agents. How to accommodate datasets with
varying numbers of agents remains an area for future exploration. We have not observed any neg-
ative societal impacts from UniTraj. Instead, we hope to advance the field by building datasets and
establishing strong baselines that encourage further study of the unified trajectory generation task in
the sports domain.

10
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A APPENDIX

B DATASETS, CODE, AND MODELS

We provide anonymous links in the abstract to our datasets, codes, and trained checkpoints. The
README.md file contains detailed instructions to download the datasets and run the codes.

C DATASETS DETAILS

Table 6: Number of sequences for five masking strategies applied across all sequences. The average
masking rate is also included for three datasets.

Dataset / Masking Type 1 2 3 4 5 Total Num Masking Rate

Basketball-U Train 18,718 18,767 18,769 18,694 18,542 93,490 52.61%
Test 2,400 2,257 2,317 2,281 2,288 11,543 52.65%

Football-U Train 2,202 2,195 2,086 2,093 2,186 10,762 45.99%
Test 532 557 511 534 490 2,624 46.19%

Soccer-U Train 1,978 2,040 1,951 1,974 1,939 9,882 46.17%
Test 487 461 476 498 526 2,448 46.41%

Basketball-U. The base dataset is available from Stats Perform 3, which is used by recent
works (Zhan et al., 2018; Liu et al., 2019; Zhan et al., 2020; Xu et al., 2023). The original dataset
contains 104,003 training sequences and 13,464 testing sequences. Each sequence includes xy-
coordinates (in feet) of the ball and 10 players (5 offensive and 5 defensive) for 8 seconds, sampled
at a frequency of 6.25 Hz, resulting in sequences of length 50. The coordinates are unnormalized,
with (0, 0) positioned at the bottom-left corner of the court. The court measures 94 feet in length and
50 feet in width. We first clean the dataset, removing sequences that fall outside the court bound-
aries. After cleaning, it consists of 93,490 training and 11,543 testing sequences. We then applied
five masking strategies to generate the masks.

Football-U. The base dataset is sourced from Next Gen Stats 4, which includes tracking files from
the first six weeks of the 2017 season, and each file records one football game. The dataset includes
91 games, of which 73 are used for training and 18 for testing in our work. Each file provides
trajectory sequences with xy-coordinates (in yards). These coordinates are unnormalized, with (0,
0) at the bottom-left corner of the field, which measures 120 yards in length and 53.3 yards in width.
After cleaning the dataset, we have 9,882 training sequences and 2,448 testing sequences. Each
sequence details the trajectories of 1 ball, 11 offensive players, and 11 defensive players.

Soccer-U. We use the top-view scenarios from SoccerTrack dataset 5 (Scott et al., 2022). The
dataset contains 60 tracking files, from which we use 48 for training and 12 for testing. By applying
a sliding window of size 4, we extract 9,882 training sequences and 2,448 testing sequences. As
the data are provided in pixel coordinates, we use the original coordinates, with the soccer field di-
mensions set at 3,840 by 2,160 pixels. Each sequence consists of trajectories for 1 ball, 11 offensive
players, and 11 defensive players.

Making Strategies. We have designed five masking strategies to cover various input conditions,
which are detailed in our “generatedataset.py” script:

1. “Prediction Mask”: Generates a mask from one point to the end of the sequence for the predic-
tion task, splitting the sequence into observation and prediction parts. We randomly select one of
the following time points for splitting each agent’s sequence: 25, 30, 35, or 40.

3https://www.statsperform.com/artificial-intelligence-in-sport/
4https://nextgenstats.nfl.com/
5https://github.com/AtomScott/SportsLabKit
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Table 7: Results on Football-U and Soccer-U with different depths.
Depth Football-U (In Yards) Soccer-U (In Pixels)

minADE20 ↓ OOB ↓ Step Path-L Path-D Params minADE20 ↓ OOB ↓ Step Path-L Path-D Params

L = 1 3.68 1.99e-04 0.34 25.33 281.83 0.55M 105.33 2.91e-04 7.28 531.20 18784.14 0.55M
L = 2 3.57 9.73e-05 0.23 19.26 124.01 0.96M 101.16 8.28e-06 4.21 328.51 2100.98 0.96M
L = 3 3.59 7.70e-05 0.25 20.30 156.98 1.37M 95.36 3.58e-05 4.42 343.45 2091.21 1.37M
L = 4 3.55 1.12e-04 0.23 19.26 114.58 1.77M 94.59 3.31e-06 4.52 349.73 2805.79 1.77M
L = 5 3.59 1.76e-04 0.25 20.27 144.20 2.18M 99.77 3.78e-05 4.51 345.13 2070.30 2.18M

GT 0 0 0.03 12.56 76.68 − 0 0 0.52 112.92 951.00 −

2. “Random Consecutive Mask”: Generates a random consecutive hole for each agent, with the
number of holes ranging from 1 to 5 and each hole length randomly set to 3, 4, or 5.

3. “Random Discrete Mask”: Creates a discrete mask where each location has a 50% to 80%
probability of being masked.

4. “Center Consecutive Mask”: Generates a random consecutive hole centrally placed with a
length randomly chosen between 25 to 40.

5. “Random Agent Mask”: Masks 5 players randomly in each sequence.

These hyperparameters are set to achieve an approximate masking rate of 50%. Adjusting these
parameters or combining some of them can further increase the masking rate and the generation
difficulty. Each masking strategy has an equal chance of being selected for any given sequence. The
statistics for the three datasets are presented in Table 6.

D IMPLEMENTATION DETAILS AND CONFIGURATIONS

The implementation details for different mapping functions φ(·) are provided at their first mention
in the main paper. We set λ1 = λ2 = λ3 = 1 to balance the losses as described in Equation 11. To
ensure reproducibility, we fix the random seed at 2024 across our model during training. We project
the input to a dimension of 64 as in Equation 3. In our Transformer encoder, the model dimension
is set to 64 and the number of heads to 8. The dimension of the latent variable Z is set to 128. In
our Mamba block, the state dimension is 64, the convolution kernel size is 4, the expansion value is
2, and the depth L is 4. The experiments are conducted using PyTorch (Paszke et al., 2019) on an
NVIDIA A100 GPU. The model is trained over 100 epochs with a batch size of 128. We use the
Adam optimizer (Diederik & Jimmy, 2015) with an initial learning rate of 0.001, which is decayed
by 0.9 every 20 epochs.

For the baseline methods Vanilla LSTM and Transformer, we adopt the same input processing as in
our UniTraj. The hidden state size for LSTM and the agent embedding dimension are both set to 64.
In the Transformer model, the number of heads is 8, which is the same in our UniTraj. For the MAT
method (Zhan et al., 2018), we use the official code available at 6. For Naomi (Liu et al., 2019),
the code can be found at 7. For INAM (Qi et al., 2020), we have tried our best to reproduce their
methods as described in their paper, since the authors have not released the code. For SSSD (Alcaraz
& Strodthoff, 2022), the code is available at 8. For GC-VRNN (Xu et al., 2023), we obtained the
code directly from the authors, as mentioned at 9.

E ADDITIONAL EXPERIMENTS

Mamba Block Depth. We provide complete results from our study on the impact of Mamba block
depths in the Football-U and Soccer-U datasets. The results are presented in Table 7. A similar trend
is observed in these datasets as with Basketball-U. Based on these findings, we have set L = 4 across
all three datasets in our work.

6https://github.com/ezhan94/multiagent-programmatic-supervision
7https://github.com/felixykliu/NAOMI?tab=readme-ov-file
8https://github.com/AI4HealthUOL/SSSD
9https://github.com/colorfulfuture/GC-VRNN
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Table 8: Study on depth l.

Depth Basketball-U (In Feet)

minADE20 ↓ Params

l = 1 4.77 1.77M
l = 2 4.77 2.06M
l = 3 4.82 2.35M
l = 4 4.89 2.75M

Transformer Depth. We also study the impact of the num-
ber of stacked Transformer layers l. Table 8 presents the results
on Basketball-U dataset. We observe that a single Transformer
layer achieves the best results in minADE20, while also hav-
ing the fewest model parameters. One possible reason is that
our Transformer encoder is applied along the agent dimension,
which is smaller than the sequence length, making one layer
sufficient to extract spatial features effectively. Consequently,
we set l = 1 for all three datasets to maintain simplicity.

Table 9: Results with different temporal architecture.

Variants Basketball-U (In Feet)

minADE20 ↓
w/ LSTM 5.32
w/ VRNN 5.29
w/ Transformer 4.99
w/ Mamba w/o BTS 4.86
w/ Mamba 4.77

Different Temporal Architecture. To
further validate the effectiveness of the
Mamba encoder, we replaced it with
LSTM, VRNN, and Transformer models
to determine if comparable results could
be achieved. The results on the Basketball-
U dataset are presented in Table 9. Since
these architectures are not specifically de-
signed for missing patterns, we also in-
cluded a variant of ours without the BTS
module. It is observed that the Mamba en-
coder, even without the BTS module, can achieve the lowest minADE20. This proves the effective-
ness of the Mamba encoder in modeling temporal dependencies.

Qualitative Examples We present two visualization examples from the Basketball-U dataset, as
shown in Figures 4 and 5, to highlight the effectiveness of our proposed UniTraj method. The trajec-
tories generated by our method are noticeably closer to the ground truth. For the missing locations
indicated by red scatter points, our method provides more accurate predictions. Furthermore, the
trajectories produced by our method are significantly smoother compared to the other baselines.
Additionally, both figures illustrate that some baseline methods generate trajectories with portions
outside the basketball court boundary, whereas our trajectories remain well-contained within the
court.
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(a) GT w/ Mask (b) GT

(e) INAM (f) SSSD (g) GC-VRNN (h) UniTraj (Ours)

(c) MAT (d) Naomi

Figure 4: Qualitative comparison between advanced baselines and our method. The ball’s trajectory
is shown in purple, offensive players are in green, and defensive players are in blue. Red “x” marks
indicate masked locations and the starting points of the trajectories are highlighted with yellow stars.

(a) GT w/ Mask (b) GT

(e) INAM (f) SSSD (g) GC-VRNN (h) UniTraj (Ours)

(c) MAT (d) Naomi

Figure 5: Qualitative comparison between advanced baselines and our method. The ball’s trajectory
is shown in purple, offensive players are in green, and defensive players are in blue. Red “x” marks
indicate masked locations and the starting points of the trajectories are highlighted with yellow stars.
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