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ABSTRACT

Machine learning holds great promise for advancing clinical decision support,
yet multimodal models remain difficult to translate due to missing modalities
and fairness concerns. We present CareBench, a comprehensive benchmark for
evaluating accuracy, robustness, and fairness in multimodal fusion of Electronic
Health Records (EHR) and chest X-rays (CXR), built on standardized cohorts from
MIMIC-IV and MIMIC-CXR. CareBench provides an open-source data pipeline, a
unified modeling framework spanning unimodal and multimodal methods, and a
rigorous evaluation protocol that extends beyond predictive accuracy. Our analyses
reveal several important findings: multimodal fusion improves accuracy when
modalities are complete, but benefits shrink under realistic missingness unless
architectures are explicitly designed to handle partial inputs; performance varies
across tasks, metrics, and architectures, with robustness emerging as a design-
dependent property; and multimodality can exacerbate fairness disparities, particu-
larly across admission types and age groups. By establishing the first benchmark
that jointly evaluates accuracy, robustness, and fairness for clinical multimodal
learning, CareBench lays the foundation for developing methods that are not only
accurate but also reliable and equitable in real-world healthcare settings.

1 INTRODUCTION

Machine learning is increasingly transforming clinical decision-making, with models capable of
forecasting disease onset (Venugopalan et al., 2021; El-Sappagh et al., 2020), stratifying patient
risk (Boehm et al., 2022), and personalizing treatment pathways (Esteva et al., 2022). A key frontier
in this domain is multimodal learning (Elsharief et al., 2025), which aims to create a holistic patient
view by integrating heterogeneous data sources such as Electronic Health Records (EHR) and Chest
X-rays (CXR). The fusion of rich longitudinal EHR data with critical diagnostic CXR imaging has
shown great potential for improved accuracy in many downstream prediction tasks (Hayat et al.,
2022; Yao et al., 2024).

However, the transition from algorithmic potential to real-world clinical utility is fraught with
challenges stemming from the imperfect nature of clinical data (Zhang et al., 2022). Two fundamental
barriers, in particular, hinder the responsible deployment of multimodal models. The first is missing
modality. In routine clinical practice, not all data types are collected for every patient; for example, a
CXR may not be ordered for every ICU admission. This is not an edge case but a prevalent condition:
in our cohort derived from the MIMIC databases, we find that nearly 75% of ICU stays lack a relevant
CXR. The second critical challenge is algorithmic fairness. Clinical datasets often contain historical
biases, and models trained on them can learn to exhibit performance disparities across demographic
subgroups defined by attributes such as sex or race. For any multimodal learning methods to be
trusted and adopted, they must be not only accurate but also fair, ensuring they do not perpetuate or
amplify existing health disparities.

Recently, benchmarking efforts have made valuable contributions in understanding the state of the art,
such as YAIB (Water et al., 2024) for reproducible unimodal EHR analysis and MedMod (Elsharief
et al., 2025) for multimodal tasks on paired clinical data. However, there are critical gaps that remain
to be filled. First, existing multimodal benchmarks primarily focus on complete-case scenarios,
largely overlooking the pervasive issue of modality absence. Second, while fairness has been
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Table 1: Comparison of CareBench and existing benchmarks.

Benchmark Modalities Multimodal?  # of Models Accuracy? Robustness? Fairness?
Purushotham et al. (2018) EHR X 18 4 X X
Harutyunyan et al. (2019) EHR X 7 4 X X

Barbieri et al. (2020) EHR X 13 v X X
MIMIC-Extract (Wang et al., 2020) EHR X 5 4 X X
Sheikhalishahi et al. (2020) EHR X 4 v X X
FIDDLE (Tang et al., 2020) EHR X 4 4 X X
Clairvoyance (Jarrett et al., 2021) EHR X 7 4 4 X
RadFusion (Zhou et al., 2021) EHR & CT v 1 v X v
EHR-TS-PT (McDermott et al., 2021) EHR X 1 v X X
HiRID-ICU (Yeche et al., 2022) EHR X 6 4 v X
EHRSHOT (Wornow et al., 2023) EHR X 2 4 X X
PyHealth (Yang et al., 2023) EHR & Waveforms & Text & CXR v 25 X X X
MC-BEC (Chen et al., 2023) EHR & Text & Waveforms v 1 4 v v
INSPECT (Huang et al., 2023) EHR & CT & Text v 1 4 X X
MEDFAIR (Zong et al., 2023) Imaging X 11 4 X 4
YAIB (Water et al., 2024) EHR X 8 4 X X
MedMod (Elsharief et al., 2025) EHR & CXR v 11 4 X X
CareBench (ours) EHR & CXR v 15 v v v

benchmarked for unimodal medical imaging (Zong et al., 2023), it remains critically underexplored in
the multimodal EHR-CXR fusion context. The complex interplay between missing data and subgroup
biases is not well understood, and the field lacks standardized benchmarks that allow for direct and
fair comparison of methods under these realistic and challenging conditions.

To address these limitations, we present CareBench, a comprehensive benchmark for accuracy,
robustness, and fairness in multimodal fusion of EHR and chest X-rays. Our work provides three
core components to the research community: (i) an open-source and reproducible data extraction
pipeline for MIMIC-IV and MIMIC-CXR to establish a standard cohort for evaluation; (ii) a unified,
open-source modeling framework implementing a wide array of models, from unimodal baselines
to state-of-the-art fusion architectures, to facilitate fair comparison and future extensions; and (iii) a
rigorous evaluation protocol that moves beyond standard predictive performance. Critically, our
benchmark introduces extensive analyses of model robustness against varying ratios of missing
modalities and algorithmic fairness across different patient subgroups. While fairness has been
benchmarked for medical imaging in isolation (Zong et al., 2023), these crucial assessments for
clinical translation have not been integrated into a multimodal EHR-CXR fusion context.

Through this benchmark, we revealed several key scientific insights, including: 1. Multimodal fusion
improves accuracy with complete data but often fails under high missingness unless architectures are
explicitly designed to handle incomplete inputs. 2. Model performance varies across tasks, metrics,
and architectures. Robustness emerges as a design-dependent property. 3. Systematic fairness
disparities exist across admission types and age groups, and multimodality can amplify these gaps,
underscoring the need for subgroup-aware and fairness-aware approaches in clinical deployment.

2 RELATED WORK

The goal of this work is to establish a unified and extensible benchmark that spans unimodal and
multimodal fusion algorithms while jointly evaluating accuracy, robustness, and fairness. Table 1
situates CareBench among prior benchmarks, showing that existing efforts are either unimodal or
limited in multimodal scope. CareBench advances the field as the first EHR-CXR benchmark with a
transparent data pipeline, diverse fusion models, and a tri-dimensional evaluation protocol.

EHR Benchmarks in Healthcare The widespread adoption of electronic health records (EHRs)
has enabled the creation of large-scale datasets, spurring the development of numerous benchmarks
for clinical prediction tasks. Purushotham et al. (2018) and Harutyunyan et al. (2019) introduced early
EHR benchmarks on MIMIC-III, demonstrating the utility of deep learning models in clinical outcome
prediction. Barbieri et al. (2020) extended this line by evaluating neural ODEs and attention-based
models for readmission and patient risk stratification. Sheikhalishahi et al. (2020) compared machine
learning models on the multi-center eICU dataset, highlighting generalization across healthcare
systems. To address data accessibility, MIMIC-Extract (Wang et al., 2020) and FIDDLE (Tang
et al., 2020) provided standardized preprocessing pipelines, while Clairvoyance (Jarrett et al., 2021)
offered an end-to-end AutoML-friendly framework for medical time-series. More recent efforts
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include EHR-TS-PT (McDermott et al., 2021) and EHRSHOT (Wornow et al., 2023), which explored
pre-training and few-shot learning for EHR time series, as well as HIRID-ICU (Yeche et al., 2022),
which benchmarked machine learning models on high-resolution ICU data. Finally, YAIB (Water
et al., 2024) proposed a modular, multi-dataset EHR framework emphasizing extensibility. Despite
their contributions, all these efforts focus exclusively on the EHR modality, whereas real-world
clinical decision-making is inherently multimodal.

Multimodal Benchmarks for Clinical Prediction Recognizing the benefits of integrating multi-
modal data for clinical tasks, recent years have seen a growing number of multimodal benchmarks.
INSPECT (Huang et al., 2023) and RadFusion (Zhou et al., 2021) established multimodal benchmarks
for pulmonary embolism diagnosis and prognosis using CT and EHR data, though both adopted only
late-fusion strategies. MC-BEC (Chen et al., 2023) introduced a multimodal benchmark for emer-
gency care with EHR, notes, and waveforms, and uniquely assessed robustness to missing data and
fairness. However, its fusion approach was limited to a simple late-fusion scheme, leaving advanced
and adaptive fusion strategies unexplored. PyHealth (Yang et al., 2023) provided a comprehensive
deep learning toolkit covering EHR, waveforms, text, and imaging; however, it does not provide stan-
dardized performance comparisons across models. Most relevant to our work, MedMod (Elsharief
et al., 2025) introduced the first EHR-CXR benchmark, comparing early, joint, and late fusion
paradigms. Yet, MedMod did not systematically evaluate robustness to missing modalities or fairness
across subgroups. In parallel, MEDFAIR (Zong et al., 2023) focused on fairness benchmarking in
imaging, but was limited to unimodal settings. Together, these works underscore the need for a more
comprehensive benchmark.

Multimodal Fusion for Clinical Prediction A growing body of work has explored multimodal
fusion methods to address key challenges in clinical prediction, such as heterogeneous data distribu-
tions, irregular sampling, and missing modalities. Simple late fusion remains a widely used baseline,
while more advanced approaches, including DAFT (Polsterl et al., 2021), MMTM (Joze et al., 2020),
and UTDE (Zhang et al., 2023), enable tighter cross-modal interactions under complete-modality
settings. To cope with missing data, models such as HEALNet (Hemker et al., 2024), Flex-MoE (Yun
et al., 2024), DrFuse (Yao et al., 2024), UMSE (Lee et al., 2023), and M3Care (Zhang et al., 2022)
introduce mechanisms for flexible modality integration, disentangling shared and specific features,
or imputing task-relevant latent representations. Collectively, these methods underscore the central
importance of robust and adaptive fusion in clinical machine learning, motivating our systematic
evaluation of state-of-the-art models within CareBench.

3 DATASET EXTRACTION

We constructed our benchmark using large-scale real-world ICU databases, specifically MIMIC-
IV (Johnson et al., 2023) and MIMIC-CXR (Johnson et al., 2019). The former contains de-identified
records of adult patients admitted to either intensive care units or the emergency department of Beth
Israel Deaconess Medical Center (BIDMC) between 2008 and 2019, and the latter is a publicly
available dataset of chest radiographs collected from BIDMC, where a subset of patients can be
matched with those in MIMIC-IV.

3.1 COHORT CONSTRUCTION

We construct two cohorts of ICU stays from the MIMIC-IV database: a base cohort containing all
ICU episodes that satisfy clinical and temporal consistency requirements, and a matched subset
further restricted to encounters with paired chest radiographs. The detailed exclusion criteria used to
construct the data cohorts can be found in Fig. 5.

The Base Cohort Starting from the 73,181 ICU stays available from the MIMIC-IV database, we
remove stays lacking essential clinical documentation (e.g., missing discharge notes or diagnostic
codes) and episodes with implausible temporal records, such as hospital admission times occurring
after ICU admission or discharge. To focus on clinically meaningful acute episodes, we further
excluded ICU stays of less than 6 hours, and admissions labeled as non-urgent or elective, repeated
ICU episodes within the same hospitalization. Since short ICU stays often represent observational
or step-down care, and usually have insufficient longitudinal information for robust prediction, we
further exclude ICU stays shorter than 48 hours to construct the base cohort, which eventually
contains 26,947 ICU stays.

The Matched Subset To establish a multimodal benchmark, we require the availability of at least
one chest radiograph within a window spanning 24 hours before to 48 hours after ICU admission.
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Figure 1: Overview of CareBench pipeline.

This yields a matched subset of 7,149 ICU stays, representing patients for whom both structured
EHR data and chest radiographs are available.

3.2 FEATURE EXTRACTION

EHR Feature Extraction We extracted a comprehensive set of structured electronic health record
(EHR) features from the MIMIC-IV v2.2 database. Our extraction pipeline was designed to capture
clinically relevant variables across multiple physiological domains, including vital signs, neurological
status (Glasgow Coma Scale), cardiac rhythm, respiratory support parameters (O flow, FiOs), fluid
balance (urine output), and body weight. All features were retrieved using structured SQL queries
executed on a locally deployed PostgreSQL instance of MIMIC-IV v2.2, with the Python toolkit
sqlalchemy (Bayer, 2012) for database interaction. To ensure temporal alignment within each ICU
stay, we joined relevant source tables, including chartevents, labevents, procedureevents, as well as
derived modules such as gcs, kdigo_uo, ventilator_setting, blood_differential, weight_durations, and
enzyme, using stay_id and timestamp synchronization. We initially explored 25 distinct categories
of measurements. However, features with a missingness rate greater than 90% were empirically
excluded. Furthermore, treatment-related variables, such as continuous renal replacement therapy
(CRRT), invasive line placement, and mechanical ventilation settings, were removed to avoid potential
label leakage. The final set of features used in CareBench is summarized in Table 4, with each variable
annotated by category, source table, summary statistics, and missing rate.

EHR Preprocessing To maintain compatibility with most baseline models, and following prior
MIMIC benchmarks (Harutyunyan et al., 2019; Elsharief et al., 2025), we resampled the EHR data at
an hourly resolution. Missing values were imputed using forward filling and median imputation strate-
gies, while binary cardiac rhythm indicators were directly imputed with 0. To preserve information
on data availability, we additionally retained binary mask columns indicating the presence or absence
of each measurement, as missingness itself can be informative in clinical settings (Morid et al., 2023).
For continuous variables, we applied robust normalization using the median and interquartile range
(IQR) to mitigate the influence of outliers.

CXR Selection Criteria To ensure temporal and clinical alignment between imaging and EHR
data, we restricted the chest X-ray (CXR) cohort to scans acquired during the patient’s current ICU
stay. Only frontal-view images with an Anterior-Posterior (AP) projection were included, as this is
the standard acquisition protocol for bedside radiography in critical care settings. Among all eligible
AP views, we selected the most recent CXR prior to the prediction timepoint to best reflect the
patient’s latest cardiopulmonary status.

4 BENCHMARK DESIGN
4.1 MODELS

We benchmark a broad set of models for multimodal fusion of EHR and chest X-rays, spanning
unimodal baselines, simple fusion strategies, and recent state-of-the-art multimodal algorithms that
can be adapted to clinical settings. Detailed description of these baselines can be found in Section B.1.

Uni-modal Baselines We include uni-modal models as baselines to establish reference performance
for each modality. For EHR, we include the classic Long Short-Term Memory network (LSTM) and
the Transformer model. They are widely used architectures for capturing temporal dependencies in
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sequential EHR data. For CXR, we adopt the ResNet-50 model, which is pretrained on ImageNet.
These baselines quantify the stand-alone predictive value of each modality.

Complete-Modality Multimodal Fusion Methods This group of models assumes that all modali-
ties are present at both training and inference, including: UTDE (Zhang et al., 2023), DAFT (Polsterl
etal., 2021), MMTM (Joze et al., 2020), and Late Fusion.

Missing-Modality Multimodal Fusion Methods We implement a broad set of multimodal fusion
methods that could handle missing modalities, covering both models developed specifically for
clinical data and models originally proposed in other domains (e.g., video—audio classification)
that can be naturally adapted to clinical EHR—CXR fusion. This collection spans diverse design
paradigms, including: HEALNet (Hemker et al., 2024), Flex-MoE (Yun et al., 2024), DrFuse (Yao
et al., 2024), UMSE (Lee et al., 2023), ShaSpec (Wang et al., 2023), M3Care (Zhang et al., 2022),
MedFuse (Hayat et al., 2022), and SMIL (Ma et al., 2021).

4.2 DOWNSTREAM TASKS AND EVALUATIONS

We evaluate models on three downstream tasks that are highly relevant to clinical decision support:
phenotyping classification, mortality prediction, and length-of-stay (LoS) prediction. All tasks use
patient data observed within a fixed prediction window, and are evaluated on both the base cohort
(realistic setting with missing modalities) and the matched subset (complete modalities). To ensure
comparability, we adopt patient-level train/validation/test splits and report established metrics tailored
to each task.

Phenotyping Classification The goal of phenotyping is to predict the set of acute and chronic
conditions present during an ICU stay. Following prior benchmarks, we construct 25 phenotypes
derived from ICD-9 and ICD-10 diagnosis codes, spanning common comorbidities and critical
conditions. The task is formulated as multi-label classification, requiring models to output a binary
prediction for each phenotype simultaneously. To comprehensively evaluate model performance,
we employ a suite of metrics including Area Under the Receiver Operating Characteristic Curve
(AUROC), Area Under the Precision-Recall Curve (AUPRC), F1 score, precision, recall, specificity,
and accuracy (ACC).

Mortality Prediction This task focuses on predicting in-hospital mortality within the first 48 hours
of ICU admission, formulated as a binary classification problem. The objective is to determine
whether a patient will survive or die during hospitalization, enabling early identification of critically
ill patients at high risk of deterioration. Labels are derived directly from hospital discharge status,
with positive cases defined as patients who died during their hospital stay and negative cases as
those who were discharged alive. To ensure clinically realistic evaluation, the prediction window
is restricted to the initial 48 hours of an ICU stay, using only information available within that
period. Model performance is assessed using a comprehensive set of metrics, including AUROC and
AUPRC to capture threshold-independent discrimination ability, as well as F1-score, accuracy (ACC),
precision, recall, and specificity.

LoS Prediction Accurate estimation of ICU LoS is important for clinical planning and resource
allocation. In this task, we use the first 48 hours of EHR and CXR data to predict the remaining
hospital stay (RLOS). The RLOS is discretized into clinically meaningful intervals: 2-3 days, 3—4
days, 4-5 days, 5-6 days, 67 days, 7-14 days, and 14+ days, resulting in a multi-class classification
problem with ordinal structure. Performance is evaluated using the ACC, F1 score, and Cohen’s
Kappa weighted quadratic, with additional metrics such as precision, recall, and specificity reported
for completeness.

4.3 IMPLEMENTATION DETAILS

We implement all models in Python 3.12.2 using PyTorch 2.5.1 and PyTorch Lightning 2.2, running
with CUDA 12.1 and cuDNN 9.1.0. Experiments are conducted on servers equipped with AMD
EPYC 7763 64-Core CPUs, 512 GB RAM, and 4xNVIDIA RTX 4090 GPUs (24 GB memory each).
To ensure fair comparison, we adopt consistent training settings across tasks and perform Bayesian
hyperparameter optimization to tune model-specific configurations.

Hyperparameter tuning We employ Bayesian optimization with a Gaussian process surrogate
(gp-minimize from scikit-optimize) and the gp-hedge acquisition strategy, which adaptively balances
exploitation and exploration by combining multiple acquisition functions (LCB, EI, PI). Each search
runs for 20 iterations, starting from 5 random initial configurations. For each candidate configuration,
the framework launches full training runs on the specified search folds (here fold = 1), with three
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Table 2: Predictive Performance over the matched subset.

Phenotyping Mortality Length of Stay

Models AUPRC AUROC Fl1 AUPRC AUROC Fl1 ACC  Kappa F1

LSTM 0.4520  0.7153 03279 0.4509 0.8032 03192 0.3973 0.1925 0.1864
Transformer 0.4718 0.7244 0.3395 0.4474 0.8208 0.2131 0.3921 0.1870 0.1923
ResNet 0.3997  0.6679 0.2693 02252  0.6879 0.0495 0.3463 0.1151 0.1333
UTDE 0.4920  0.7402 03029 04510 0.8228 0.2791 0.3945 0.1946 0.1930
DAFT 0.4799  0.7307 02750 0.4354  0.8342 0.0078 0.3937 0.1800 0.1604
MMTM 0.4723  0.7269 0.3808 03571  0.8007 0.3201 0.2607 0.0907 0.1648

LateFusion 0.4890  0.7381 0.2977 0.4328 0.8233  0.2871 0.3940 0.1910 0.1886

HEALNet 04714  0.7261 0.2104 0.4507 0.8356 0.1752 0.4036 0.1948 0.1866
Flex-MoE 04876  0.7355 0.2968 04734  0.8401 0.2664 0.3980 0.1946 0.1870

DrFuse 0.4928 0.7387 0.3762 0.4813  0.8378 0.3375 0.4060 0.1947 0.1847
UMSE 04462  0.7106 0.1916 0.3949  0.8014 0.0039 0.3912 0.1826 0.1602
ShaSpec 04813  0.7342  0.3414 04527 0.8331 0.2204 0.3980 0.1978 0.1936
M3Care 0.4881  0.7388 0.2750 0.4447  0.8277 0.2410 0.4003 0.1854 0.1602
MedFuse 04777  0.7317 0.2556 04717  0.8509 0.1569 0.4031 0.1942 0.1672
SMIL 04517  0.7130 0.3081 0.4532 0.8372 0.2641 0.3989 0.1791 0.1460

Table 3: Predictive Performance over the base cohort.

Phenotyping Mortality Length of Stay

Models AUPRC AUROC Fl1 AUPRC AUROC Fl1 ACC  Kappa Fl1

LSTM 0.4684  0.7547 03336 04797 0.8608 0.3668 0.4120 0.1966 0.1781
Transformer 0.4787  0.7591 0.3618 0.5042  0.8674 0.4024 0.4171 0.2040 0.1976
ResNet 0.2801  0.5650 0.1149 0.1339  0.5655 0.0013 0.3542 0.0408 0.1059
UTDE 04853  0.7636  0.2787 0.5029  0.8683 0.2864 0.4162 0.2071 0.2013
DAFT 0.4755  0.7565 02351 0.4952  0.8698 0.2297 0.4179 0.2080 0.1977
MMTM 04705  0.7553 0.3390 04749 0.8649 0.3720 0.4039 0.1714 0.1615

LateFusion 0.4847  0.7625 0.2891 0.4995 0.8672 0.3386 0.4161 0.2101 0.2001

HEALNet 04752  0.7578 02196 04914 0.8729 0.2911 0.4182 0.1998 0.1906
Flex-MoE 0.4835 0.7619 03162 05065 0.8684 0.3054 0.4137 0.2059 0.1879

DrFuse 04845  0.7639 03613 04999 0.8736 0.3561 0.4190 0.1965 0.1906
UMSE 0.4564  0.7482 0.1733 0.4337 0.8455 0.1507 0.4054 0.1842 0.1814
ShaSpec 0.4848  0.7626  0.3473 0.5000  0.8690 0.3882 0.4208 0.2088 0.1912
M3Care 0.4883  0.7637 02713 0.4994  0.8691 0.2928 0.4195 0.2044 0.1879
MedFuse 04686  0.7556  0.2204 0.5079  0.8741 0.3158 0.4177 0.2127 0.2035
SMIL 0.4474  0.7420 0.2964 04782  0.8596 0.3073 0.4171 0.1921 0.1570

random seeds (42, 123, 1234) to account for variance. Results from all seeds are aggregated by
computing the mean and standard deviation of multiple metrics (ACC, AUPRC, AUROC, F1, etc.),
and the task-specific selection criterion is applied: we maximize AUPRC for phenotyping and
mortality, and ACC for LoS prediction.

Hyperparameter search space To ensure fair comparison, we standardize the core training setup
across all models (learning rate, batch size, epochs, early stopping, etc.) and restrict hyperparameter
search to model-specific components. For several baselines, these fixed settings fully determine the
configuration, leaving no tunable components. Consequently, hyperparameter search is only applied
to models with explicit model-specific parameters, namely DrFuse, FlexMoE, HEALNet, M3Care,
ShaSpec, and SMIL. An overview of their searched parameters and ranges is provided in Table 5,
while full task-wise configurations and best hyperparameters obtained from Bayesian optimization
are reported in the Appendix B.2.
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5 RESULTS AND DISCUSSIONS

5.1 OVERALL PREDICTIVE PERFORMANCE

We first benchmark the predictive performance of all models on three distinct clinical tasks: pheno-
typing, mortality prediction, and length of stay (LoS) prediction. Our experiments, conducted on
both an ideal-case matched subset with complete data and a realistic base cohort with significant
modality absence, reveal several key findings regarding the efficacy and limitations of multimodal
fusion. We analyze the comparative efficacy of different modeling paradigms under varying data
availability, with full results presented in Table 2 and Table 3. See Section C for complete results.

Insight 1: Multimodal fusion outperforms unimodal models on complete data. On the matched
subset, where all modalities are present for every patient (Table 2), the advantages of multimodal
fusion are evident. For the phenotyping task, top-performing fusion models such as DrFuse (0.4928
AUPRC) and UTDE (0.7402 AUROC) demonstrate a significant improvement over the strongest
unimodal baseline, the EHR Transformer (0.4718 AUPRC, 0.7402 AUROC). A similar trend holds
for mortality prediction, where MedFuse achieves an AUROC of 0.8509, substantially outperforming
the Transformer’s 0.8208. For LoS prediction, multimodal models also show a modest benefit,
with ShaSpec attaining the highest Kappa score (0.1978) compared to the best unimodal baseline
(LSTM, 0.1925). These results confirm that when modalities are complete, CXR images provide
complementary information to structured EHR data, which can be effectively leveraged to improve
predictive accuracy. The success of diverse architectures indicates that their integration yields a richer
patient representation that translates to superior clinical prediction.

Insight 2: Specialized architectures are essential for leveraging incomplete multimodal data.
Evaluating models on the base cohort (Table 3), where nearly 73.5% of patients lack a CXR, highlights
the critical and practical challenge of missing modality. The EHR-only Transformer establishes
a strong benchmark that many multimodal models fail to surpass: the highest mortality F1-score
(0.4024), and a LoS Kappa score (0.2040), outperforming several fusion methods designed for
complete data, such as MMTM (0.3720 and 0.1714, respectively). This reveals a critical lesson:
naively applying models designed for complete-case scenarios (e.g., DAFT, MMTM) does not
guarantee a benefit and often fails once missingness is introduced. However, our results provide
compelling evidence that architectures specifically designed to handle modality absence are essential
to make full use of the multimodal data. The models explicitly tailored for this challenge, such
as MedFuse, M3Care, and HEALNet, consistently outperform both the unimodal baseline and the
complete-case fusion methods. For mortality prediction , MedFuse attains the highest AUROC
(0.8741) and AUPRC (0.5079). In LoS prediction, MedFuse also leads with the best Kappa (0.2127)
and F1-score (0.2035), finally surpassing the strong EHR Transformer. A similar advantage is seen
in LoS prediction. This distinction is critical: only through purpose-built architectures can the
theoretical benefits of fusion be reliably realized in the presence of missing data.

Insight 3: There is no single best model across all tasks and metrics. Our comprehensive
benchmark shows that no single model is universally superior. The optimal choice depends on
both the task and the evaluation metric. For example, in mortality prediction on the base cohort,
MedFuse excels at AUROC and AUPRC, while the unimodal Transformer is the best for F1-score. In
phenotyping, DrFuse offers the best AUROC, whereas M3Care leads on AUPRC, and for the LoS
task, MedFuse tops Kappa and F1, while ShaSpec attains the highest accuracy. This heterogeneity
highlights a key conclusion: the importance of moving beyond single-metric leaderboards. A robust
evaluation framework must consider a suite of metrics that reflect diverse clinical priorities. Our
findings advocate for a nuanced, context-aware approach to model selection and demonstrate the
necessity of comprehensive benchmarking to accurately assess the state of the art.

5.2 ROBUSTNESS TO MODALITY MISSINGNESS

To further assess model robustness, we evaluate performance under varying degrees of a missing
modality. To rule out the effect of sample size, we simulate this by starting with the complete,
matched subset (0% missingness) and progressively increasing the ratio of missing CXRs up to 80%.
The results are visualized in Fig. 2. For visual clarity, we only present the top six performing models
for each task in the main text. The results reveal key insights into model behavior under data scarcity.

Insight 4: The impact of missing modality is task-dependent. The effect of a missing modality is
highly contingent on the clinical task. For phenotyping classification, AUPRC consistently degrades
as the CXR missingness ratio increases. This trend, coupled with widening standard deviations at
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Figure 2: Robustness of the top six performing methods for each task under varying ratios of modality
missingness. The shaded areas represent standard deviations.

higher missingness levels for most models, indicates that visual features are highly informative for
this task, and their absence not only compromises predictive power but also reduces model stability.
In contrast, performance on mortality prediction and LoS prediction is more stable in terms of mean
performance, exhibiting relatively flat trend lines. However, for mortality prediction, the variance
bands widen noticeably with increased missingness, suggesting that model predictions become less
consistent even as the average performance is maintained. This suggests that the mortality and LoS
prediction tasks are predominantly reliant on the rich temporal data of the EHR.

Insight 5: Model robustness is architecture-dependent. The trajectories in Fig. 2 demonstrate
that multimodal fusion architectures differ substantially in their resilience to different ratios of
CXR-missingness. While performance degradation is inevitable as missing ratio increases, some
models show smoother declines. For example, SMIL remains relatively stable in mortality and LoS
prediction, likely due to its feature reconstruction and regularization mechanisms. In contrast, models
such as DrFuse, ShaSpec, and Flex-MoE exhibit sharp drops under severe missingness (from 60% to
80%) in phenotype classification, reflecting the fragility of approaches that rely heavily on a shared
latent representation as proxy for absent modalities. These findings suggest that robustness is not an
inherent benefit of multimodality, but rather an outcome of architectural choices. Moreover, Fig. 2
reports only the top six performing methods, most of which already incorporate mechanisms for
missingness, reinforcing that clinically deployable multimodal systems should explicitly support
partial-modality inputs to enhance robustness under realistic patterns of missingness.

5.3 FAIRNESS

To assess fairness, we stratify model performance across four clinically relevant attributes: ICU
admission type, gender, race, and age. We use AUPRC as the primary metric and quantify disparities
with the AUPRC gap (difference between the best- and worst-performing subgroups), reporting
results on both the matched subset and the base cohort. We include the detailed subgroup result on
ICU admission type in Fig. 3 and performance gap distribution in Fig. 4 on phenotype classification.
For mortality and LoS prediction, see Section C.3.

Insight 6: Admission-type disparities reflect both clinical characteristics and subgroup preva-
lence. Fig. 3 shows systematic performance gaps across admission types in phenotyping, with
substantial implications once subgroup prevalence is considered. On the matched subset, Direct
Emergency patients (3.65% of admissions) and Urgent patients (16.15%) achieve AUPRC above 0.50,
while Observation Admits (10.95%) remain below 0.45. This gap reflects both the richer multimodal
signals available for acute admissions and the sparse, lower-acuity data associated with observation
cases. In the base cohort, where around 75% of patients lack CXR, Urgent and EW Emergency
patients (together representing over 80% of admissions) maintain relatively strong AUPRC due
to robust EHR signals, while Observation Admits remain the lowest-performing subgroup. These
findings highlight a dual source of disparity: multimodal models are biased toward high-resource,
high-prevalence admission types, while systematically underserving smaller but clinically meaningful
groups such as Observation Admits and Direct Emergencies. Fairness evaluation should account for
both subgroup gaps and prevalence, and multimodal models should adopt subgroup-aware training or
reweighting to ensure equitable performance across admission types.
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Figure 3: The AUPRC score for phenotype classification across different ICU admission types (with
test set sub-group size) on the matched subset (upper row) and the base cohort (lower row).
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Figure 4: Algorithmic fairness analysis of the AUPRC Gap distributions of unimodal methods and
multimodal methods on the matched subset and base cohort.

Insight 7: Multimodality can exacerbate fairness disparities. We group the unimodal and
multimodal performances in Fig. 4 to analyze the effect of multimodality on fairness. It shows that
multimodal methods tend to widen subgroup AUPRC gaps compared to unimodal baselines across
age groups and admission types. Multimodal gaps are higher than unimodal gaps for age groups,
both on matched subset and base cohort. Similarly, for admission type, multimodal gaps extend up to
0.10, exceeding the 0.06-0.07 range of unimodal methods on matched subset. In contrast, gender
disparities remain relatively small across all methods (<0.01), suggesting that fairness degradation
is not uniform across attributes. These results indicate that multimodality, while improving overall
predictive performance, can amplify disparities between subgroups, especially when data availability
or modality completeness is uneven. This underscores the need for fairness-aware multimodal
learning strategies that explicitly account for subgroup imbalance and differential modality access.

6 CONCLUSION

We introduced CareBench, the first benchmark to evaluate multimodal clinical learners across accu-
racy, robustness, and fairness using MIMIC-IV and MIMIC-CXR. Our results show that multimodal
fusion improves performance when modalities are complete but often fails under high missingness,
where unimodal EHR models remain strong baselines. Robustness is highly architecture-dependent,
and no single model is optimal across all tasks and metrics. Finally, multimodality can exacerbate
fairness disparities, particularly across admission types and age groups, highlighting the need for
subgroup-aware and fairness-aware designs in future clinical multimodal systems.
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We ensure reproducibility of our work by releasing the full source code, data preprocessing scripts,
and experiment configurations in a public repository (link will be provided upon publication).
The repository includes detailed instructions on environment setup, hyperparameter configurations,
and data extraction queries to facilitate end-to-end replication of our results. In addition, model
checkpoints will be made available upon request to further support reproducibility and enable
researchers to validate our reported performance.
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A  DATA EXCLUSION CRITERIA AND DATA STATISTICS
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Figure 5: Data exclusion criteria to construct the base cohort and the matched subset.

Fig. 5 summarizes our exclusion criteria in constructing the data cohorts.

We summarize our extracted features in Table 4.
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Table 4: Summary of extracted features from MIMIC-IV derived. Continuous variables are reported
as mean=std [25%,75%]; categorical variables as median [25%,75%].

Category Feature MIMIC-IV Source Summary Stats Missing %
Categorical Features
Eye Opening ges.ges_eyes 4[3.4] 70.98
Verbal Response ges.ges_verbal 51[0,5] 71.00
Glasgow Coma Scale Motor Response ges.ges_motor 61[6.,0] 71.04
Total Score ges.ges_total 15 [15,15] 70.93
Absence of Ectopy mimiciv_icu.chartevents binary presence 30.77
Ectopy type: PVCs mimiciv_icu.chartevents binary presence 89.76
Cardiac Rhythm Atrial Fibrillation (AF) mimiciv_icu.chartevents binary presence 89.91
Sinus Rhythm (SR) mimiciv_icu.chartevents binary presence 43.89
Sinus Tachycardia (ST) mimiciv_icu.chartevents binary presence 85.73
Continuous Features
Urine Output urine_output.urineoutput 106.44+88.17 [40.00,150.00] 47.81
Urine Output rate 6h kdigo_uo.uo_rt_6hr 0.93+0.60 [0.48,1.27] 58.25
Urine Output rate 12h kdigo_uo.uo_rt_12hr 0.9240.56 [0.50,1.25] 65.69
Urine Output (KDIGO)  Urine Output rate 24h kdigo_uo.uo_rt_24hr 0.93+0.52 [0.53,1.25] 80.18
Observation time 6h kdigo_uo.uo_tm_6hr 6.95+0.17 [7.00,7.00] 47.81
Observation time 12h kdigo_uo.uo_tm_12hr 11.68+3.10 [11.00,13.00] 47.81
Observation time 24h kdigo_uo.uo_tm_24hr 16.77+8.69 [9.00,25.00] 47.81
Oxygen Delivery O, Flow oxygen_delivery.o2_flow 3.08+1.43 [2.00,4.00] 89.48
Ventilator Setting Fraction of Inspired Oxygen (FiO2)  ventilator_setting.fio2 46.931+11.86 [40.00,50.00] 89.67
Heart Rate vitalsign.heart_rate 84.29+17.34 [72.00,96.00] 5.19
Respiratory Rate vitalsign.resp_rate 19.124+4.85 [16.00,22.00] 597
Systolic Blood Pressure vitalsign.sbp 118.40+20.21 [103.00,132.00] 9.04
Vital Siens Diastolic Blood Pressure vitalsign.dbp 62.78+13.61 [53.00,72.00] 9.06
g Mean Blood Pressure vitalsign.mbp 77.7613.71 [68.00,87.00] 8.94
Oxygen Saturation (SpO2) vitalsign.spo2 96.82+2.54 [95.00,99.00] 7.29
Temperature vitalsign.temperature 36.87+0.48 [36.56,37.17] 71.89
Glucose vitalsign.glucose 138.361-44.83 [106.00,163.00] 79.45
Weight Weight weight_durations.weight_daily =~ 81.75+20.28 [66.80,95.00] 83.78

B IMPLEMENTATION DETAILS

B.1 BENCHMARK MODELS

We benchmark a broad set of models for multimodal fusion of EHR and chest X-rays, spanning
unimodal baselines, simple fusion strategies, and recent state-of-the-art multimodal algorithms that
can be adapted to clinical settings.

Uni-modal Baselines We include uni-modal models as baselines to establish reference performance
for each modality. For EHR, we include the classic Long Short-Term Memory network (LSTM) and
the Transformer model. They are widely used architectures for capturing temporal dependencies in
sequential EHR data. For CXR, we adopt the ResNet-50 model, which is pretrained on ImageNet.
These baselines quantify the stand-alone predictive value of each modality.

Complete-Modality Multimodal Fusion Methods This group of models assumes that all modali-
ties are present at both training and inference, including:

* Unified Temporal Discretization Embedding (UTDE) (Zhang et al., 2023) is originally designed
to handle the irregularity of time series and clinical notes in EHR data. It unifies complementary
temporal discretization methods by integrating imputation-based and attention-based interpolation
embeddings through a gating mechanism, yielding robust representations of irregular time series.
For clinical notes, UTDE casts text embeddings with their note-taking times as irregular sequences
and applies a time attention module to capture temporal dynamics. The fusion of time series and
notes is then achieved via interleaved self- and cross-attention layers that integrate irregularity
across modalities.

* Dynamic Affine Feature Map Transform (DAFT) (Polsterl et al., 2021) is a general-purpose
fusion module designed to integrate high-dimensional images with complementary low-dimensional
tabular data. DAFT dynamically rescales and shifts convolutional feature maps conditional on
tabular inputs, enabling fine-grained interaction between modalities beyond simple concatenation.
This mechanism allows clinical variables to modulate intermediate image representations, thereby
supporting tighter cross-modal exchange.
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* Multimodal Transfer Module (MMTM) (Joze et al., 2020) introduces a lightweight plug-in
module for CNN-based intermediate fusion. It performs slow fusion by inserting squeeze-and-
excitation units into intermediate levels of unimodal backbones, learning a joint representation that
adaptively recalibrates channel-wise features across modalities.

* Late Fusion is a naive multimodal fusion strategy that concatenates unimodal embeddings followed
by a classifier. The EHR and CXR are encoded by a Transformer and a ResNet-50, respectively,
with encoders and classifier trained jointly. Despite its simplicity, such late fusion strategies remain
widely used in clinical machine learning and serve as strong baselines for comparison against more
sophisticated designs.

Missing-Modality Multimodal Fusion Methods We implement a broad set of multimodal fusion
methods that could handle missing modalities, covering both models developed specifically for
clinical data and models originally proposed in other domains (e.g., video—audio classification)
that can be naturally adapted to clinical EHR—CXR fusion. This collection spans diverse design
paradigms, including:

* Hybrid Early-fusion Attention Learning Network (HEALNet) (Hemker et al., 2024) introduces
a multimodal fusion architecture that combines shared and modality-specific parameter spaces
within an iterative attention framework. A shared latent bottleneck array is propagated and updated
across layers to capture cross-modal interactions and shared information. In parallel, modality-
specific attention weights are learned and reused across layers, enabling the model to preserve
structural information unique to each modality while maintaining efficient fusion through shared
parameters.

* Flexible Mixture-of-Experts (Flex-MoE) (Yun et al., 2024) is designed to support arbitrary
combinations of input modalities without retraining. It constructs a shared latent space where
modality-specific encoders map their features, and employs a mixture-of-experts (MoE) fusion
layer that dynamically activates experts depending on the available modalities. This enables the
model to flexibly integrate any subset of modalities during inference to enhance robustness to
missing data and scalability to new modality combinations.

* DrFuse (Yao et al., 2024) is a clinical multimodal fusion method proposed for EHR and chest X-ray
images. It tackles two key challenges, namely the missing modalities and modal inconsistency. It
disentangles shared information (common across EHR and CXR) from modality-specific features
and aligns the shared representations via distribution matching. This allows robust inference
even when one modality is absent. To further handle patient- and disease-specific variability,
DrFuse introduces a disease-aware attention fusion module that adaptively weights each modality.
Following its original settings, we adopt Transformer and ResNet-50 as the encoders for EHR and
CXR, respectively.

* Unified Multi-modal Set Embedding (UMSE) (Lee et al., 2023) addresses the irregular sampling
and missing modalities in multimodal EHR learning. It encodes values, time, and feature types
across all modalities within a shared embedding framework. By sharing the time and feature
embeddings, UMSE preserves temporal relationships between heterogeneous modalities without
relying on carry-forward or imputation. To tackle the missing modalities, a Skip Bottleneck (SB) is
introduced to enable the Multimodal Bottleneck Transformer to process data with missing modality.

* Shared-Specific Feature Modelling (ShaSpec) (Wang et al., 2023) is a multimodal learning
framework that decomposes each modality into shared features that are modality-robust and
specific features that capture modality-unique information. These components are combined
through a residual fusion mechanism. To enforce disentanglement, ShaSpec applies distribution
alignment on shared features and a domain classification objective on modality-specific features.

* M3Care (Zhang et al., 2022) addresses the challenge of missing modalities in multimodal health-
care data. Instead of generating raw missing data, it imputes task-relevant latent representations by
leveraging auxiliary information from clinically similar patients. Specifically, M3Care employs
task-guided modality-adaptive kernels to construct patient similarity graphs, aggregates information
from these neighbors, and adaptively fuses it with available modalities.

* MedFuse (Hayat et al., 2022) is a multimodal fusion method tailored for EHR and chest X-ray
images, particularly focusing on missing modalities. After obtaining representations of each
modality, MedFuse treats the modality-specific representations (EHR and CXR) as a sequence and
aggregates them with an LSTM-based fusion module. This recurrent design enables the model to
naturally handle missing modalities by processing variable-length input sequences. Compared to
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conventional early or joint fusion, MedFuse improves performance on EHR-CXR prediction tasks

while maintaining robustness under partial modality availability.

* SMIL (Ma et al., 2021) addresses multimodal learning when a large fraction of training and testing
samples lack one or more modalities. It introduces a Bayesian meta-learning framework that
contains three components: (i) a feature reconstruction network that approximates missing modality
features conditioned on observed ones, (ii) a feature regularization network that perturbs latent
embeddings to mitigate bias from incomplete data, and (iii) a main prediction network. This unified
design aims to handle different missing-modality patterns during both training and inference, and

to train efficiently when most samples are incomplete.

B.2 FULL MODEL CONFIGURATIONS

Table 5: Overview of model-specific hyperparameter search spaces.

General training parameters

(learning rate, batch size, epochs, early stopping) are fixed across models.

Model Parameters searched Search space
Adi le_shared Adi le_ehr Adi le_cxr [001, 20]
DRFus shared, ety -
use Apred,ehry Apl‘ed,cxr, Apl‘ed,sha.nedy )\aun,aux [001, 20]

FlexMoE  num_experts, num_routers, top-k, Agae

{4, 8, 16}, {1, 2}, {2, 4, 8},
[0.001, 0.1]

HealNet  fusion depth, frequency bands, maximum frequency

{1,2,3},{1,2,4}, {5.0, 10.0}

M3Care Astah,reg

[0.001, 2.0]

ShaSpec  « (consistency loss), S (domain loss)

[0.01, 0.1], [0.005, 0.2]

SMIL inner loop iters, MC size, inner LR, « (feat distill), 8 (EHR distill),

temperature

{1,2,3},{10,20,30}, [le-4, le-
3], [0.05, 0.2], [0.05, 0.2], [1.0,
3.0]

Table 6: Full configuration of DRFuse with best hyperparameters from Bayesian optimization

acrosstasks and cohorts.

Category Parameter Value / Best value
General (fixed) Learning rate 0.0001
Batch size 16
Epochs 50
Patience 10
Seeds {42, 123, 1234}
Encoder (fixed) EHR encoder Transformer
EHR heads 4
EHR layers (distinct/feat/shared) 1/1/1
EHR hidden size 256
CXR encoder ResNet-50
Fusion (fixed) Fusion method concatenate
Logit average true
Attention fusion mid
Disentangle loss jsd
Phenotype (Base cohort) Adisentangle_shared 0.01
Adisentangle_chr 0.762665332785317
disentangle_cxr 2.0
>\pred_ehr 2.0
pred_cxr 2.0
)\pred_shared 2.0
attn_aux 1.8578434779578803
Phenotype (Matched subset)  Agisentangle_shared 0.47960999030042206
Adisentangle_ehr 0.5195759622950348
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Category Parameter Value / Best value
Adisentangle_cxr 0.09046284318147839
>\pred7ehr 1.424219150474717
pred_cxr 0.2306727334155444
)\pred_shared 0.8842796387128827
Aattn_aux 0.41142121264743853
Mortality (Base cohort) Adisentangle_shared 0.01
Adisentang]eﬁehr 081 12696531851612
Adisentangle_cxr 0.8074771820470718
)\pred_ehr 2.0
pred_cxr 1.5418644474046177
/\predfshared 1.0930962608329169
Aattn_aux 0.016489820579929662

Mortality (Matched subset)

/\disentan gle_shared
disentangle_ehr
Adisentangleﬁcxr
/\prediehr
pred_cxr
Apredfshared

attn_aux

1.854051142929651

1.4572712717542777
0.6598161299236125
1.145183509066745

1.0464601774513893
1.9227323284552051
1.6906223588695217

LoS (Base cohort)

Adisentangleﬁshared
disentangle_ehr
disentangle_cxr

>\pred7ehr

/\predfcxr

)\pred_shared

attn_aux

0.011549744023618514
1.9845010029895234
1.238788204159156
1.2271897893716792
0.02406194738723764
0.05589422583241736
1.0543015739141945

LoS (Matched subset)

)\disentangle_shared
Adisentangleﬁehr
disentangle_cxr
)\pred_ehr
Apredfcxr
/\pred_shared

attn_aux

1.854051142929651

1.4572712717542777
0.6598161299236125
1.145183509066745

1.0464601774513893
1.9227323284552051
1.6906223588695217

Table 7: Full configuration of HealNet with best hyperparameters from Bayesian optimization across

tasks and cohorts.

Category Parameter Value / Best value
General (fixed) Learning rate 0.0001

Batch size 16

Epochs 50

Patience 10

Dropout 0.2

Seeds {42, 123, 1234}
Encoder (fixed) N_modalities 2 (EHR + CXR)

Latent channels

Latent dimension
Cross-attention heads
Latent attention heads
Cross head dimension
Latent head dimension
Self per cross attention
Weight tie layers

256
256
4

4
64
64
1
true
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Category Parameter Value / Best value
Self-normalizing nets  true
Fourier encoding true
Final classifier head true
Attention dropout 0.2
Feed-forward dropout 0.2
Phenotype (Base cohort) Fusion depth 1
Num frequency bands 4
Max frequency 10
Phenotype (Matched subset) Fusion depth 1
Num frequency bands 4
Max frequency 5
Mortality (Base cohort) Fusion depth 1
Num frequency bands 4
Max frequency 5
Mortality (Matched subset)  Fusion depth 3
Num frequency bands 2
Max frequency 5
LoS (Base cohort) Fusion depth 3
Num frequency bands 1
Max frequency 10
LoS (Matched subset) Fusion depth 2
Num frequency bands 2
Max frequency 5

Table 8: Full configuration of FlexMoE with best hyperparameters from Bayesian optimization across
tasks and cohorts.

Category Parameter Value / Best value
General (fixed) Learning rate 0.0001

Batch size 16

Epochs 50

Patience 10

Dropout 0.2

Seeds {42, 123, 1234}
Encoder (fixed) EHR encoder Transformer

CXR encoder ResNet-50
Architecture (fixed) Hidden dimension 256

Num patches 16

Num layers 1

Num prediction layers 1

Num heads 4
EHR Transformer (fixed) Attention heads 4

Layers 1
Phenotype (Base cohort) Num experts 8

Num routers 2

Top-k 4

Gate loss weight 0.1
Phenotype (Matched subset) Num experts 8

Num routers 2

Top-k 4
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Category Parameter Value / Best value

Gate loss weight 0.01
Mortality (Base cohort) Num experts 16

Num routers 1

Top-k 2

Gate loss weight 0.001
Mortality (Matched subset) = Num experts 16

Num routers 1

Top-k 8

Gate loss weight 0.059157941793120575
LoS (Base cohort) Num experts 8

Num routers 2

Top-k 2

Gate loss weight 0.09949248941642917
LoS (Matched subset) Num experts 4

Num routers 2

Top-k 2

Gate loss weight 0.001

Table 9: Full configuration of M3Care with best hyperparameters from Bayesian optimization across
tasks and cohorts.

Category Parameter Value / Best value
General (fixed) Learning rate 0.0001

Batch size 16

Epochs 50

Patience 10

Dropout 0.2

Seeds {42, 123, 1234}
Encoder (fixed) EHR encoder Transformer

CXR encoder ResNet-50
Architecture (fixed) Hidden dimension 256

EHR attention heads 4

EHR layers 1

Max sequence length 500

LSTM bidirectional true

LSTM layers 1
Search (M3Care-specific) Astab_reg [0.001, 2.0]
Phenotype (Base cohort) Astab_reg 0.001
Phenotype (Matched subset)  Agap_reg 0.001
Mortality (Base cohort) Astab_reg 0.001
Mortality (Matched subset) — Agap_reg 1.5932894307336058
LoS (Base cohort) Astab_reg 0.1865396435927205
LoS (Matched subset) Astab_reg 0.7189374969280278

Table 10: Full configuration of ShaSpec with best hyperparameters from Bayesian optimization
across tasks and cohorts.

Category

Parameter

Value / Best value

General (fixed)

Learning rate

0.0001
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Category Parameter Value / Best value

Batch size 16

Epochs 50

Patience 10

Dropout 0.2

Seeds {42, 123, 1234}
Encoder (fixed) EHR encoder Transformer

CXR encoder ResNet-50
Architecture (fixed) Hidden dimension 256

Weight standardization true

EHR attention heads 4

EHR layers 1

Shared transformer heads 4
Shared transformer layers 1

Max sequence length 500
Phenotype (Base cohort) « 0.01

B 0.16088171387061506
Phenotype (Matched subset) « 0.01

I5] 0.02179517168618064
Mortality (Base cohort) o 0.02616340058300993

B 0.028307339627612397
Mortality (Matched subset)  « 0.05309286239046574

I6] 0.05759057147063285
LoS (Base cohort) « 0.0539365721371763

Io] 0.02400870516077973
LoS (Matched subset) o 0.08168886881742098

B 0.040769784023901946

Table 11: Full configuration of SMIL with best hyperparameters from Bayesian optimization across
tasks and cohorts.

Category Parameter Value / Best value
General (fixed) Learning rate 0.0001

Batch size 16

Epochs 50

Patience 10

Dropout 0.2

Seeds {42, 123, 1234}
Encoder (fixed) EHR encoder Transformer

CXR encoder ResNet-50
Architecture (fixed) Hidden dimension 256

EHR attention heads 4

EHR layers 1

Max sequence length 500

Number of clusters 10
Phenotype (Base cohort) Inner loop iterations 2

Monte Carlo size 20

Inner learning rate 0.0007631400164186543

« 0.05

B8 0.08821668183456577

Temperature 3.0
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Category

Parameter

Value / Best value

Phenotype (Matched subset)

Inner loop iterations

1

Monte Carlo size 20

Inner learning rate 0.000812341589273

o 0.052

B 0.091

Temperature 2.647382910384756
Mortality (Base cohort) Inner loop iterations 2

Monte Carlo size 10

Inner learning rate 0.0005106366481617694

«

0.1460970829212307

B 0.1829896904844842

Temperature 2.1659838411477903
Mortality (Matched subset)  Inner loop iterations 2

Monte Carlo size 20

Inner learning rate 0.000498272163782

o 0.141

B8 0.176

Temperature 2.223746192837465
LoS (Base cohort) Inner loop iterations 3

Monte Carlo size 20

Inner learning rate 0.00025110824439271776

o 0.05699984948204232

B

Temperature

0.19606332782621894
1.4655426808606085

LoS (Matched subset)

Inner loop iterations
Monte Carlo size
Inner learning rate
o

B

Temperature

3

10
0.00048099463193341493
0.10998628646125844
0.17555899317323298
1.0842555683358894

Table 12: Full configuration of DAFT. No hyperparameter search was performed as all parameters
are fixed.

Category Parameter Value
General (fixed) Learning rate 0.0001
Batch size 16
Epochs 50
Patience 10
Seeds {42, 123, 1234}
Dropout 0.2
Encoder (fixed) EHR encoder Transformer
CXR encoder ResNet-50
EHR attention heads 4
EHR layers 1
DAFT fusion (fixed) Layer after -1 (all layers)
Activation linear
Architecture (fixed)  Hidden dimension 256
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Table 13: Full configuration of LateFusion. No hyperparameter search was performed as all parame-

ters are fixed.

Category Parameter Value
General (fixed) Learning rate 0.0001

Batch size 16

Epochs 50

Patience 10

Dropout 0.2

Seeds {42, 123, 1234}
Encoder (fixed) EHR encoder Transformer

CXR encoder ResNet-50
Architecture (fixed) Hidden size 256

EHR layers 1

EHR attention heads 4

EHR dropout

0.2

Table 14: Full configuration of the LSTM. No hyperparameter search was performed as all parameters

are fixed.

Category Parameter Value

General (fixed) Learning rate  0.0001
Batch size 16
Epochs 50
Patience 10
Dropout 0.2
Seeds {42, 123, 1234}

Architecture (fixed) Hidden size 256
Num layers 1
Bidirectional  true
Dropout 0.2

Table 15: Full configuration of MedFuse. No hyperparameter search was performed as all parameters

are fixed.

Category Parameter Value
General (fixed) Learning rate 0.0001
Batch size 16
Epochs 50
Patience 10
Dropout 0.2
Seeds {42, 123, 1234}
Encoder (fixed) EHR encoder LSTM
CXR encoder ResNet-50
EHR LSTM bidirectional  true
Architecture (fixed) Hidden dimension 256
LSTM layers 1
Fusion type LSTM
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Table 16: Full configuration of MMTM. No hyperparameter search was performed as all parameters
are fixed.

Category Parameter Value
General (fixed) Learning rate 0.0001

Batch size 16

Epochs 50

Patience 10

Dropout 0.2

Seeds {42, 123, 1234}
Encoder (fixed) EHR encoder Transformer

CXR encoder ResNet-50
Architecture (fixed) Hidden dimension 256

EHR attention heads 4

EHR layers 1
MMTM Fusion (fixed) Compression ratio 4

Layer after -1 (all layers)

Table 17: Full configuration of the ResNet. No hyperparameter search was performed as all parameters
are fixed.

Category Parameter Value
General (fixed) Learning rate  0.0001
Batch size 16
Epochs 50
Patience 10
Dropout 0.2
Seeds {42, 123, 1234}

Architecture (fixed) Hidden size 256

Table 18: Full configuration of UMSE. No hyperparameter search was performed as all parameters
are fixed.

Category Parameter Value
General (fixed) Learning rate 0.0001

Batch size 16

Epochs 50

Patience 10

Dropout 0.2

Seeds {42,123, 1234}
Architecture (fixed) Model dimension 256

Transformer layers 1
Attention heads 4

Bottlenecks (MBT) 1

Fusion (fixed)
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Table 19: Full configuration of UTDE. No hyperparameter search was performed as all parameters

are fixed.

Table 20: Full configuration of the Transformer baseline. No hyperparameter search was performed

Category Parameter Value
General (fixed) Learning rate 0.0001

Batch size 16

Epochs 50

Patience 10

Dropout 0.2

Seeds {42, 123, 1234}
Encoder (fixed) EHR encoder Transformer

CXR encoder ResNet-50
Architecture (fixed) Embedding dimension 256

EHR num layers 1

EHR attention heads 4

Time embedding dimension 64
Transformer attention heads 4

Cross-modal layers

1

Max EHR sequence length 500

as all parameters are fixed.

Category Parameter Value
General (fixed) Learning rate 0.0001
Batch size 16
Epochs 50
Patience 10
Dropout 0.2
Seeds {42, 123, 1234}

Architecture (fixed)

Model dimension
Transformer layers
Attention heads

256
1
4
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C COMPLETE EXPERIMENT RESULTS

C.1 OVERVIEW RESULTS

We provide the complete experiment results in the tables below.

Table 21: Complete results of phenotype classification task on the matched subset.

AUROC AUPRC F1 Precision Recall Specificity ACC
LSTM 0.715340.0057 0.4520+0.0036 0.3279+0.0227 0.4978+0.0065 0.2792+0.0257 0.8998+0.0113 0.7801+0.0011
Transformer 0.724440.0005 0.4718+0.0008 0.3395+0.0123 0.5097+0.0156 0.2845+0.0183 0.9037+0.0086 0.7842+0.0004
ResNet 0.6679+0.0022 0.3997+0.0014 0.2693+0.0145 0.457340.0354 0.2261+0.0200 0.9018+0.0136 0.7665+0.0019
UTDE 0.740240.0015 0.4920+0.0036 0.3029+0.0198 0.5540+40.0202 0.2262+0.0210 0.9493+0.0101 0.7858+0.0026
DAFT 0.730740.0034 0.4799+0.0034 0.2750+0.0217 0.5560+0.0073 0.2039+0.0205 0.9512+0.0072 0.7830+0.0014
MMTM 0.7269+0.0012 0.4723+0.0048 0.3808+0.0116 0.513440.0125 0.3319+0.0263 0.8891+0.0123 0.7800+0.0026
LateFusion 0.7381+0.0012 0.489040.0007 0.297740.0182 0.5612+0.0074 0.2231+0.0201 0.947640.0094 0.786040.0006
HEALNet 0.726140.0012 0.4714+0.0009 0.2104+0.0186 0.565740.0135 0.1441+0.0150 0.9671+0.0059 0.7792+40.0009
Flex-MoE  0.7355+0.0007 0.4876+0.0022 0.2968-+0.0205 0.5643+0.0301 0.221140.0184 0.9457+0.0041 0.7850+0.0025
DrFuse 0.7387+0.0008 0.4928+0.0024 0.3762+0.0196 0.5382+0.0173 0.3284+0.0269 0.8971+£0.0093 0.7884+0.0021
UMSE 0.7106+0.0018 0.4462+0.0016 0.1916+0.0026 0.4879+0.0419 0.1355+0.0016 0.9618+0.0031 0.7748+0.0004
ShaSpec 0.73424+0.0017 0.4813+0.0046 0.3414+0.0226 0.4946+0.0082 0.2858+0.0270 0.9150+0.0124 0.7883+0.0024
M3Care 0.7388+0.0014 0.4881+0.0026 0.2750+0.0251 0.5349+0.0091 0.2048+0.0246 0.9511+0.0071 0.7842+0.0018
MedFuse 0.731740.0014 0.4777+0.0030 0.255640.0191 0.497240.0272 0.1891+0.0194 0.9545+0.0059 0.78234-0.0011
SMIL 0.713040.0034 0.4517+0.0034 0.3081+0.0109 0.4906+0.0375 0.2642+0.0136 0.9050+0.0092 0.7813+0.0017

Table 22: Complete results of phenotype classification task on the base cohort.

AUROC AUPRC F1 Precision Recall Specificity ACC
LSTM 0.754740.0003 0.4684+0.0013 0.3336+0.0224 0.5506+0.0113 0.2729+0.0209 0.9250+0.0070 0.8055+0.0003
Transformer 0.7591+0.0003 0.478740.0011 0.36184-0.0041 0.5630+0.0156 0.2972+0.0043 0.92184-0.0013 0.80754-0.0007
ResNet 0.5650+0.0001 0.2801+0.0021 0.1149+0.0104 0.447440.0331 0.0700+0.0069 0.9745+0.0030 0.7791+0.0003
UTDE 0.7636+0.0004 0.4853+0.0011 0.2787+0.0105 0.61014+0.0235 0.2005+0.0101 0.9598+0.0012 0.80604-0.0005
DAFT 0.7565+0.0007 0.4755+0.0025 0.2351+0.0192 0.628440.0160 0.1594+0.0175 0.9701+0.0046 0.8017+0.0016
MMTM 0.7553+0.0003 0.4705+0.0009 0.3390+0.0145 0.5483+0.0120 0.2795+0.0186 0.9200+0.0078 0.8049+0.0007
LateFusion 0.7625+0.0017 0.4847+0.0006 0.289140.0163 0.6282+0.0244 0.2064+0.0165 0.9612+0.0059 0.805740.0005
HEALNet 0.757840.0005 0.4752+0.0008 0.2196+0.0041 0.6349+0.0211 0.1474+0.0035 0.9734+0.0006 0.8009+40.0003
Flex-MoE  0.7619+0.0016 0.4835+0.0023 0.3162-+0.0084 0.5790+0.0102 0.233540.0090 0.9521+0.0042 0.8068+0.0002
DrFuse 0.7639+0.0005 0.4845+0.0004 0.3613+0.0048 0.5683+0.0069 0.2925+0.0082 0.9266+0.0054 0.8086+-0.0004
UMSE 0.748240.0015 0.4564+0.0028 0.1733+0.0015 0.6079+0.0068 0.1119+0.0013 0.9788+0.0010 0.7952+40.0002
ShaSpec 0.7626+0.0003 0.4848+0.0009 0.3473+0.0139 0.5671+0.0101 0.2833+0.0180 0.9261+0.0072 0.8084+0.0005
M3Care 0.7637+0.0007 0.4883+£0.0006 0.2713+0.0109 0.637540.0269 0.1935+0.0084 0.9623+0.0019 0.8063+-0.0003
MedFuse 0.7556+0.0009 0.4686+0.0016 0.2204+0.0003 0.5622+40.0212 0.153440.0006 0.9692+0.0004 0.80204-0.0005

SMIL 0.742040.0007

0.447440.0004

0.2964+0.0063 0.4802+0.0108

0.2469+0.0083

0.9267+0.0038

0.803240.0006

Table 23: Complete results of mortality prediction task on the matched subset.

AUROC AUPRC F1 Precision Recall Specificity ACC
LSTM 0.8032+0.0261 0.4509+0.0243 0.3192+0.1220 0.56724+0.0942 0.2549+0.1235 0.9674+0.0200 0.8820+0.0029
Transformer 0.8208+0.0036 0.447440.0151 0.213140.0700 0.7501+0.1597 0.1333+0.0601 0.99014-0.0107 0.88744-0.0022
ResNet 0.6879+0.0090 0.2252+0.0062 0.0495+0.0479 0.2667+0.2055 0.0294+0.0300 0.9917+0.0101 0.8764+0.0053
UTDE 0.8228+0.0118 0.4510+0.0120 0.2791+0.1810 0.68414+0.2235 0.2255+0.1516 0.9728+0.0194 0.8832+0.0014
DAFT 0.8342+0.0050 0.4354+0.0131 0.0078+0.0110 0.3333+0.4714 0.0039+0.0055 1.0000+0.0000 0.88060.0007
MMTM 0.8007+0.0323 0.3571+£0.0540 0.3201+0.1181 0.3818+0.0460 0.3020+0.1430 0.9364+0.0283 0.8604+0.0110
LateFusion 0.8233+0.0039 0.4328+0.0179 0.287140.0924 0.5707+0.0738 0.2137+0.1066 0.9736+0.0207 0.8825+40.0057
HEALNet 0.8356+0.0039 0.4507+0.0074 0.175240.0400 0.755540.0227 0.1000+0.0254 0.9955+0.0015 0.888140.0017
Flex-MoE 0.8401+0.0054 0.4734+0.0230 0.2664+0.1722 0.70184+0.2205 0.2176+0.1658 0.9730+0.0271 0.8825+0.0066
DrFuse 0.8378+0.0034 0.4813+0.0091 0.3375+0.0695 0.5809+0.0853 0.2569+0.0933 0.9704+0.0191 0.8848+0.0056
UMSE 0.801440.0077 0.3949+0.0145 0.0039+0.0055 0.333340.4714 0.0020+0.0028 0.9995+0.0008 0.8799+0.0009
ShaSpec 0.8331+0.0035 0.4527+0.0006 0.2204+0.0505 0.7028+0.0491 0.1333+0.0391 0.9917+0.0043 0.8888+0.0012
M3Care 0.8277+0.0008 0.4447+0.0114 0.2410+0.0506 0.6910+0.1501 0.1530+0.0458 0.9875+0.0095 0.8874+0.0029
MedFuse 0.8509+0.0056 0.4717+0.0098 0.1569+0.0892 0.7968+0.1473 0.0922+0.0546 0.9949+0.0036 0.8867+0.0037
SMIL 0.837240.0026 0.4532+0.0200 0.2641+0.0250 0.6848+0.0413 0.1647+0.0210 0.9893+0.0031 0.8905+0.0003
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Table 25: Complete results of the length of stay prediction task on the matched subset.

Fl1 Precision Recall Specificity ACC Kappa
LSTM 0.1864+0.0136 0.2016+0.0205 0.2336+0.0062 0.8852+0.0010 0.3973+0.0044 0.1925+0.0060
Transformer 0.1923+0.0070 0.2091+0.0098 0.2336+0.0034 0.8844+0.0015 0.3921+0.0101 0.1870+0.0106
ResNet 0.1333+0.0025 0.1296+0.0083 0.1942+4+0.0007 0.8737+0.0002 0.3463+0.0076 0.11514-0.0022
UTDE 0.1930+0.0063 0.2029+0.0126 0.2333+£0.0007 0.8857+0.0007 0.3945+0.0066 0.1946-£0.0056
DAFT 0.1604+0.0133 0.1625+0.0395 0.2224+40.0043 0.8832+0.0014 0.3937+0.0030 0.1800+-0.0087
MMTM 0.1648+0.0069 0.1825+0.0193 0.2204+0.0119 0.870440.0011 0.2607+0.0062 0.0907-0.0089
LateFusion 0.1886+0.0094 0.2659+40.0218 0.2360+0.0021 0.8849+0.0006 0.3940+0.0068 0.1910+0.0053
HEALNet  0.1866+0.0119 0.2426+0.0372 0.234840.0058 0.8853+0.0003 0.4036+0.0013 0.1948+0.0027
Flex-MoE 0.1870+0.0056 0.2160+0.0333 0.233740.0027 0.8855+0.0003 0.3980+0.0022 0.1946+0.0014
DrFuse 0.1847+0.0123 0.2253+0.0708 0.23474+0.0066 0.8850+0.0003 0.4060+0.0067 0.1947+0.0046
UMSE 0.1602+0.0142 0.1572+0.0224 0.222440.0054 0.8840+0.0009 0.3912+0.0076 0.1826+40.0075
ShaSpec 0.1936+0.0082 0.1954+0.0231 0.235440.0054 0.8861+0.0010 0.3980+0.0053 0.1978+0.0074
M3Care 0.160240.0067 0.1913+0.0448 0.2238+0.0043 0.8839+0.0010 0.4003+0.0063 0.1854+0.0077
MedFuse 0.1672+0.0078 0.1922+0.0710 0.22734+0.0022 0.8854+0.0005 0.4031+0.0013 0.1942+0.0035
SMIL 0.1460+0.0023 0.1479+0.0302 0.219140.0024 0.8830+0.0009 0.3989+0.0027 0.179140.0054

Table 26: Complete results of the length of stay prediction task on the base cohort.

F1 Precision Recall Specificity ACC Kappa
LSTM 0.178140.0043 0.191940.0199 0.23134:0.0023 0.8859+0.0005 0.41204-0.0034 0.1966+0.0034
Transformer 0.197640.0144 0.223240.0049 0.242540.0084 0.8869+0.0010 0.417140.0033 0.2040+0.0053
ResNet 0.1059+0.0008 0.14664-0.0628 0.16084-0.0008 0.8625+0.0002 0.35424-0.0005 0.0408+0.0018
UTDE 0.2013+0.0057 0.220940.0226 0.24494-0.0030 0.8874+0.0000 0.416240.0006 0.2071+0.0002
DAFT 0.1977+0.0106 0.21964-0.0373 0.243540.0041 0.887640.0005 0.41794-0.0007 0.2080+0.0031
MMTM 0.1615+0.0118 0.166940.0154 0.22054:0.0012 0.8817+0.0005 0.403940.0020 0.1714+0.0032
LateFusion 0.200120.0096 0.213440.0214 0.245140.0041 0.8880+0.0009 0.416140.0011 0.210140.0046
HEALNet 0.1906+0.0117 0.250840.0322 0.23744:0.0057 0.8861+0.0011 0.418240.0011 0.1998+0.0062
Flex-MoE 0.1879+0.0092 0.194340.0049 0.24064-0.0031 0.8875+0.0008 0.413740.0025 0.2059+0.0038
DrFuse 0.1906+0.0148 0.23764-0.0116 0.238140.0085 0.88544-0.0008 0.41904-0.0015 0.1965+0.0051
UMSE 0.1814+0.0041 0.181940.0035 0.23014:0.0035 0.8839+0.0009 0.40544-0.0027 0.1842+0.0056
ShaSpec 0.1912+0.0036 0.196140.0022 0.24134-0.0012 0.8876+0.0003 0.42084-0.0008 0.2088+0.0013
M3Care 0.1879+0.0110 0.19354:0.0020 0.2386+0.0042 0.886940.0006 0.419540.0016 0.2044+0.0031
MedFuse 0.2035+0.0085 0.218540.0190 0.246740.0045 0.8883+0.0005 0.417740.0028 0.2127+0.0028
SMIL 0.157040.0059 0.14324-0.0046 0.226940.0028 0.88494-0.0009 0.417140.0020 0.1921+0.0051
Table 24: Complete results of mortality prediction task on the base cohort.
AUROC AUPRC F1 Precision Recall Specificity ACC
LSTM 0.8608+0.0061 0.479740.0131 0.366840.0459 0.640340.0323 0.260240.0455 0.984340.0043 0.9151-0.0023
Transformer 0.8674::0.0010 0.5042::0.0059 0.4024:0.0277 0.6417+0.0469 0.2971+0.0412 0.981740.0063 0.916340.0020
ResNet 0.565540.0143 0.1339+0.0086 0.00134-0.0018 0.166740.2357 0.0006-0.0009 0.9999+0.0001 0.90454-0.0000
UTDE 0.8683+0.0015 0.502940.0048 0.286440.0605 0.773940.0355 0.178640.0454 0.994240.0023 0.91630.0024
DAFT 0.8698+0.0019 0.4952+0.0057 0.229740.0791 0.794940.0616 0.1392+0.0572 0.9955+0.0033 0.913740.0026
MMTM 0.864940.0004 0.474940.0031 0.37204:0.0425 0.627720.0503 0.2699-40.0495 0.9822-40.0066 0.9141:£0.0019
LateFusion 0.8672:+0.0023 0.4995:0.0067 0.3386+£0.0384 0.7390+0.0433 0.2220+0.0355 0.9913+0.0032 0.917840.0009
HEALNet  0.8729-+0.0018 0.4914:£0.0055 0.2911+0.0830 0.7288+0.0381 0.1890+0.0722 0.9919+0.0047 0.915240.0027
Flex-MoE 0.868440.0014 0.5065+0.0061 0.30544-0.1041 0.745140.1044 0.2071+0.0914 0.990040.0086 0.91524-0.0030
DrFuse 0.8736+0.0035 0.499940.0078 0.356140.0172 0.678440.0206 0.242140.0184 0.9878+0.0021 0.9165-:0.0005
UMSE 0.8455+0.0053 0.433740.0047 0.150740.0457 0.741340.0593 0.085440.0296 0.9964-0.0021 0.9094-:0.0009
ShaSpec 0.869040.0027 0.5000+0.0068 0.38824-0.0433 0.638340.0447 0.2841+0.0502 0.9822+0.0060 0.91554-0.0013
M3Care 0.8691+0.0011 0.499440.0061 0.29284-0.0437 0.767440.0513 0.183240.0369 0.9938+0.0027 0.9163-£0.0014
MedFuse  0.8741+0.0025 0.5079+0.0069 0.3158+0.0516 0.7366+0.0146 0.2032+0.0428 0.9922+0.0021 0.916840.0022
SMIL 0.8596+0.0089 0.4782+0.0164 0.307340.0454 0.690040.0187 0.1994+0.0368 0.9905+0.0021 0.9149+4-0.0020
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C.2 DISEASE BREAKDOWN RESULTS FOR THE PHENOTYPE CLASSIFICATION TASK

We provide the detailed disease breakdown results for the phenotype classification task in Table 27

and Table 28.

C.3 FAIRNESS BY ATTRIBUTES

We use the AUPRC gap to evaluate the fairness of models across different sensitive attributes on
phenotype prediction task (see Table 29). Besides, we plot the performance by subgroups across
different sensitive attributes on both the matched subset and the base cohort for phenotype prediction
(Fig. 6, Fig. 7); mortality prediction (Fig. 8, Fig. 9); and length-of-stay prediction (Fig. 10, Fig. 11);
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Figure 6: Performance of the phenotype classification on the matched subset grouped by different
sensitive attributes.
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Figure 7: Performance of the phenotype classification on the base cohort grouped by different
sensitive attributes.
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Figure 8: Performance of the mortality prediction on the matched subset grouped by different sensitive
attributes.
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Figure 9: Performance of the mortality prediction on the base cohort grouped by different sensitive
attributes.
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Figure 10: Performance of the length-of-stay prediction on the matched subset grouped by different
sensitive attributes.
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Figure 11: Performance of the length-of-stay prediction on the base cohort grouped by different
sensitive attributes.

34



Under review as a conference paper at ICLR 2026

Table 29: Fairness performance on phenotype prediction task measured as the PRAUC gap (best
subgroup — worst subgroup) across different sensitive attributes (the larger gap, the more unfair)

Race Gender Age Group Admission Type

Matched Full Matched Full Matched Full Matched Full

LSTM 0.0867 0.0489 0.0005 0.0067 0.0767 0.1649 0.0611  0.0576
Transformer 0.1032  0.0485 0.0102  0.0089 0.0947 0.1189 0.0687 0.0700
ResNet 0.0927 0.0437 0.0113  0.0084 0.1205 0.1308 0.0936  0.0559
UTDE 0.1174 0.0323 0.0004  0.0094 0.0986 0.1523 0.0634 0.0710
DAFT 0.1032  0.0522 0.0001 0.0101 0.1039 0.1574 0.0644 0.0650
MMTM 0.1069 0.0433 0.0028 0.0058 0.1080 0.1292 0.0908 0.0574
LateFusion 0.1238 0.0397 0.0021  0.0080 0.1131 0.1070 0.0672  0.0700
HEALNet 0.1116  0.0536 0.0098  0.0067 0.0799  0.1495 0.0890 0.0672
Flex-MoE 0.1220 0.0501 0.0004  0.0070 0.0943  0.1094 0.0724  0.0668
DrFuse 0.1211  0.0346 0.0000 0.0080 0.0978 0.1295 0.0706  0.0730
UMSE 0.1099  0.0457 0.0015 0.0019 0.0754 0.1811 0.0992 0.0712
ShaSpec 0.1181 0.0443 0.0045 0.0092 0.1141 0.1282 0.0583  0.0685
M3Care 0.1243  0.0365 0.0041 0.0054 0.1024 0.1122 0.0773  0.0735
MedFuse 0.1067 0.0421 0.0065 0.0074 0.1028 0.1571 0.0662  0.0604
SMIL 0.1072  0.0368 0.0033  0.0092 0.1198 0.0973 0.0513  0.0585
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