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Abstract

We investigate online learning in finite-horizon episodic Constrained Markov Decision Pro-
cesses (CMDPs) under the most demanding setting: adversarial losses and constraints, ban-
dit feedback, and unknown transitions. The most popular approaches, such as primal-dual
or linear programming, either rely on Slater’s condition (which can yield vacuous bounds) or
require solving a complex optimization problem at each round. Inspired by the groundbreak-
ing work of [Sinha & Vaze| (2024)) in Constrained Online Convex Optimization (COCO), we
map the CMDP instances to a corresponding COCO problem

m y Our algorithm
first attains O(v/T) regret and O(y/T) hard cumulative constraint violation for adversar-
ial losses and constraints, unknown transition dynamics, bandit feedback, without Slater’s
condition and also without access to a strictly feasible policy. We achieve O(\/T ) regret
and 6(\/T ) hard violation for known transitions. Additionally, we study the remaining
three permutations of known-unknown transitions and full-bandit feedback, again achiev-
ing optimal regret and hard violation bounds in each case. Besides closing several gaps in
the literature, our simple construction of biased estimators for the sub-gradient could be of
independent interest for didactic purposes. Finally, we conducted rigorous experiments on
several CMDP instances to verify our theoretical results from a practical perspective.

1 Introduction

The arrival of AlphaGo (Silver et all [2017)) ignited an unprecedented curiosity about the capabilities of
Reinforcement Learning (RL) (Sutton & Bartol 2018) among researchers. Numerous works highlight that
RL is remarkably effective across multiple domains, including games (Jaderberg et al., [2019; Mathieu et al.,
2023)), robotic locomotion (Smith et al., 2024)), control (Hegde et all 2024; |Du et al.| 2023)), and Large
Language Models (LLMs) such as GPT-4 (OpenAl et al. 2024) and DeepSeek-V3 (DeepSeek-Al et al.
2024). Quite naturally, a comprehensive understanding of Markov Decision Processes (MDPs) (Puterman)
2014) is essential, as they lie at the core of any RL problem. In other words, RL seeks to address a sequential
decision-making problem by learning an optimal policy; thus, MDPs are used to model any RL task. The
ultimate goal in vanilla RL is to discover a policy that maximizes the expected cumulative reward. However,
in many real-world scenarios, such as self-driving cars and recommender systems, the agent is often required
to satisfy both safety and budget constraints in addition to maximizing reward. For instance, autonomous
vehicles should not meet with an accident or crash (Wen et al., [2020)), and bidding parties in an auction
cannot exceed a budget (He et al., [2021). To address such scenarios, the Constrained Markov Decision
Process (CMDP) (Altman) [1999) serves as an excellent tool, as it naturally incorporates constraints within
the classical MDP framework. In contrast to MDPs, the objective in CMDPs is to learn a policy that
maximizes the expected cumulative reward, subject to satisfying the constraints.

Online learning in finite-horizon episodic CMDPs, a topic that has long piqued the community’s interest (Wei
et al., 2018 |Efroni et al., [2020; [Miiller et al., 2024), is the central theme of our work. This setting necessitates
that the learner’s objective be to minimize both the regret and the cumulative constraint violation (also
referred to as wiolation for brevity). The regret quantifies the difference between the learner’s cumulative
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loss and the optimal policy’s cumulative loss. To be specific, the optimal policy is the best-in-hindsight
policy that satisfies the constraints during the learning process. On the other hand, the cumulative constraint
violation tracks the total sum of constraint violations across all episodes. Both the regret and the cumulative
violation should ideally be sublinear in 7', i.e., the total number of episodes. We mention specific directions
from the vast literature of online learning in CMDPs (see Section [2| for detailed related works) that have
been instrumental in motivating this paper:

1. Hard/Soft Violations: Many works on CMDPs are bothered with soft constraint violations (Efroni
et al., 2020; |Qiu et al.,|2020)), in which the effect of the positive violations is nullified (or diminished)
by the negative ones across the whole learning process (Ghosh et al., |2022; |Wei et al 2023). Such
nullifications are absolutely impractical in real-world environments. On the contrary, hard constraint
violations (Stradi et al.l [2025b)) are a significantly stronger and practical constraint violation condi-
tion that solely cares about the positive violations. An example: let a CMDP model a clinical trial
for a newly discovered drug, where each episode represents treating a patient. The aim is to mini-
mize disease symptoms, and the constraint is to keep the probability of causing a severity below 1%.
Say, in the first episode, the drug causes a hemorrhage to the patient, incurring a massive constraint
violation of +0.99 above the threshold. In the second episode, imagine the drug works safely on the
patient and receives a negative violation of —0.01. The cumulative soft violation across these two
episodes is 0.99 + (—0.01) =0.98, which seems to be lower than in the first episode. However, the
hemorrhage caused in the first episode is irreversible and catastrophic. In contrast, a hard violation
would have counted only the positive violations: 0.99 + 0 = 0.99. Thus, correctly identifying that
the drug was unsafe for the patient, and the harm caused in an episode can never be compensated
for by good performance in subsequent episodes.

2. Adversarial/Stochastic Loss and Constraints: A critical aspect of online learning in CMDPs is the
factor of how the losses (or rewards) and constraints are chosen in each episode — stochastically or
adversarially? If the choice is made stochastically, then the losses and/or constraints are selected by
sampling from an unknown and stationary probability distribution. In the adversarial case, there
is no statistical assumption on the selection, and the adversary has complete freedom. Hence, it is
widely acknowledged that CMDPs with adversarial losses and constraints are much more complex
to solve than their stochastic counterparts. There exists a plethora of seminal works in the literature
that deal with stochastic losses and constraints (Zheng & Ratliff, |2020; [Efroni et al., |2020), adver-
sarial losses and stochastic constraints (Wei et al., |2018} |Qiu et al., [2020). The works of |Germano
et al| (2023) and |Stradi et al.| (2024b|) were among the first ones to provide regret and violation
bounds for adversarial constraints, but with a dependence on the Slater condition.

3. Bandit/Full Feedback: The feedback received at the end of an episode for the losses and constraints is
another crucial component for online learning in CMDPs. In the full feedback case (Wei et al., 2018;
Qiu et al.l |2020)), the loss and constraint costs for all the possible state-action pairs are revealed to
the learner when an episode ends. While in bandit feedback (Miller et al., |2023; [Miiller et al., 2024]),
the loss and constraint costs for only those state-action pairs are given that the learner had visited
on that specific episode. It is naturally understood that working with bandit feedback is significantly
more challenging than working with full feedback. Moreover, such settings can naturally capture
the whole essence of numerous real-life problems, e.g., recommender systems and budget depletion
in online bidding.

Based on the above points and |3 we highlight some gaps that are omnipresent in the literature on online
learning in CMDPs. We discuss them one-by-one: (G1) Several approaches have been employed to bound
the regret and violation for online learning in CMDPs, e.g., linear programming (Efroni et al., [2020), upper
confidence (Zheng & Ratliff, |2020), and primal-dual (Stradi et all 2024ajb; |2025a; [Miller et al. 2024).
Primal-dual-based algorithms have arguably gained the most prominence over the years. However, these
methods rely on Slater’s condition, which assumes the existence of a policy satisfying all constraints with at
least £ > 0 slackness (Stradi et al., [2025b; |Germano et al.l 2023). The guarantees of such algorithms scale
with %, leading to vacuous bounds (i.e., huge sub-optimal bounds), if £ is very small. Moreover, assuming
Slater’s condition is highly impractical because it requires prior knowledge of a strictly feasible policy or its
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Table 1: Comparing our theoretical results with the state-of-the-art methods. The symbol 1 marks those
works that consider the easier setup of stochastic losses (or rewards) and constraints. T denotes the work
with adversarial losses and stochastic constraints. |Zhu et al.| (2025) is marked by I to denote that it deals
with bandit feedback for stochastic losses and full feedback for adversarial constraints. All the works reported
in the table deal with hard violations. “F/B” is a shorthand for “Full/Bandit”.

State-of-the-art Transition | Feedback Regret Violation With Slater
Kitamura ot al] (2024) |—20¥2 F/B _X/X _ XX NA
Unknown F/B O(T%/ ™)+ /x O(T%/ ™) /x v
Miiller ot al] (2024) Known E/B IL L NA
Unknown F/B X/O(T093)+ X/O(T0-93)+ v
7 ot al] (2025) Known F/B 5/)( _ X/X NA
Unknown F/B X/O(NT)* OWT) /X X
Stradi et al.| (2025al) Known E/B ~X/X ~X/X NA
Unknown F/B X/OKT)* X/O(T)* v
Stradi et al] (2025D) Known F/B X/X X/X NA
Unknown F/B X/OWT)" X/ O(T)T v
This Work Known F/B (g(ﬁ)/(g(ﬁ) ?(\FT)/(B(\/T) X
Unknown F/B O(VT)/OWT) | OT)/ONWT) X

slackness parameter, an information that is rarely available in real-world problems; (G2) A large portion of
the works focus on stochastic loss and/or constraints (Efroni et al., [2020; [Bai et al., [2023} Liu et al.| |2021}
Stradi et al.l 2025a)), while the ones for adversarial losses/constraints (Stradi et al.l 2025a; |Germano et al.),
2023)) are relatively less. The reason for this trend is the inherent difficulty of adversarial cases. (G3) Notably,
the most challenging and non-trivial setup remains scarcely addressed in the literature: online learning in
CMDPs with an unknown transition function and adversarial losses and constraints.

Sinha & Vaze| (2024) obtained O(v/T) regret and O(v/T) cumulative constraint violation (hard) in the
domain of Constrained Online Convex Optimization (COCO) for the first time. The proposed first-order
algorithm was efficient and straightforward, requiring only one projection per round. Most recently, |Zhu
et al.|(2025)) gave the Optimistic Mirror Descent Primal-Dual (OMDPD) algorithm, achieving the optimal
(5(\/T ) regret and (5(\/T ) hard violation for online learning in finite-horizon episodic CMDPs. Employing
some tools from [Sinha & Vaze| (2024)) and optimizing dual variables, OMDPD was the first algorithm of its kind
to derive optimal regret and violation bounds with adversarial constraints, without any need for Slater’s
condition. However, we elaborate on two critical gaps in OMDPD (Zhu et al 2025): (G4) The losses were
stochastic, i.e., sampled from a distribution, for all episodes; (G5) Full feedback was assumed (instead of the
more realistic bandit feedback) while considering adversarial constraints.

Our Contributions: To the best of our knowledge, this work is the first to pose and tackle the following
question for online learning in finite-horizon episodic CMDPs: (CQ) “With no reliance on Slater’s condition,
with no access to a strictly feasible policy, for adversarial losses and constraints, with unknown transition
function and bandit feedback, can an algorithm be designed with O(/T) regret and O(NT) hard cumulative
constraint violation?”. We formally describe our contributions below:

o Although OMDPD borrowed elements from |Sinha & Vaze| (2024)), they did not capitalize on the poten-
tial of using COCO to solve the setting described in (CQ). However, our work achieves this by map-
ping the CMDP problem to a corresponding COCO instance and employing techniques from [Sinha,
& Vaze, (2024) to frame an elegant analysis for deriving optimal regret and hard violation bounds.

e QOur proposed algorithms are also efficient, because only one Euclidean projection onto a simple
polytope is performed per episode. Unlike primal-dual and linear-programming-based approaches,
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our algorithms are easy to understand. The simplicity and elegance of our framework make it a
valuable didactic resource, especially for those interested in the connection between online learning
in CMDPs and COCO.

o Considering adversarial losses and constraints, we solve four cases: (1) known transition function and
full feedback; (2) known transition function and bandit feedback; (3) unknown transition function
and full feedback; (4) unknown transition function and bandit feedback (the solution to CQ). Thus,
we not only answer CQ in the resounding affirmative but also solve all possible combinations that
could occur with adversarial losses and constraints with known/unknown transitions. To the best
of our knowledge, an exhaustive case analysis of this nature is not present in the literature, nor does
it rely on or assume Slater’s condition.

+ We derive optimal regret and cumulative constraint violation (hard) bounds in each case, i.e., O(v/T)
regret and O(y/T)) violation for (1) and (2), and O(v/T) regret and O(v/T) violation for (3) and (4).
Also, we construct biased estimators for the sub-gradient while solving (2) and (4), which might be
of independent interest for didactic uses. In addition to the earlier points, responding positively to
(CQ) automatically resolves the gaps G1, G2, G3, G4, and G5. Table [I| compares our theoretical
results with numerous state-of-the-art methods.

o Unlike [Miller et al.| (2023)), we do not require access to a strictly feasible policy. We assume, as
standard, that at least one feasible policy exists, but none of our algorithms need to know which
one. This particular feasibility assumption is almost ubiquitous in the COCO literature (Yi et al.,
2021} 2023).

The rest of this paper is structured as follows: In Section [2] we survey related work on online learning for
MDPs, CMDPs, and constrained online optimization, highlighting both classical results and recent advances.
Section [3] provides the necessary background, including the formal setup of CMDPs, occupancy measures,
and COCO. Section [d] develops our algorithms and theoretical guarantees under known transition dynamics,
analyzing both full and bandit feedback settings. Then, in Section [5] we extend to the more challenging
regime of unknown transitions, again addressing full and bandit feedback. Section [f] presents the results of
experiments we conducted on several toy CMDP instances to empirically validate the derived theoretical
bounds. A brief yet insightful discussion on the optimality of our derived bounds is in Section[7] Finally, in
Section [§] we state the concluding remarks.

2 Related Works

We categorize the prior works into three groups. First, we survey some of the interesting works that have
applied online learning to traditional MDPs over the years. Secondly, we discuss related work on online
learning in CMDPs. Lastly, we briefly examined some critical works in the classical online learning prob-
lem (Cesa-Bianchi & Lugosi, [2006|) with constraints.

Online Learning in MDPs: The UCRL2 algorithm (Jaksch et al. |2010) is one of the seminal works
in this domain that proved O(v/T) regret for undiscounted MDPs. Neu et al.| (2010) showed a O(T2/3)
bound on the regret for undiscounted MDPs where an oblivious adversary chose the loss function. The
work of [Rosenberg & Mansour (2019b) used entropic regularization to establish O(v/T) regret of episodic
MDPs with unknown transitions, adversarial losses, and full feedbagk. An identical setting with bandit
feedback has been dealt with by [Rosenberg & Mansour| (2019a)) with O(T%/4) regret. The elegant UOB-REPS
algorithm (Jin et al., [2020) was the first to achieve 5(\/T ) regret upper bound in the same problem setup
as of Rosenberg & Mansour (2019a)). [Lee et al., (2020) obtained data-dependent high probability O(v/T)
regret bounds with an adaptive adversary and bandit feedback. It used standard unbiased estimators and
a simple learning rate schedule. Furthermore, works like Bacchiocchi et al.| (2024]) provided off-policy regret
bounds for adversarial MDPs while [Maran et al.| (2024) studied online configuration of MDPs with stochastic
losses, bandit feedback, and continuous decision spaces. Apart from the bandit feedback, there also exists the
notion of aggregate bandit feedback. In such feedback, the learner observes only the total loss across the entire
episode, rather than the individual losses at each state-action pair. [Lancewicki & Mansour| (2025) were the
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Figure 1: A brief taxonomy of online learning in CMDPs as discussed in Section [2]

p
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LEGEND: KT = Known Transition; UT = Unknown Transition; FF = Full Feedback; BF = Bandit Feedback;
AL = Adversarial Loss; AC = Adversarial Constraint; SL. = Stochastic Loss; SC = Stochastic Constraint;
Slater = Using Slater’s condition; SFP = Access to a strictly feasible policy; MF = Model Free; MB = Model Based;

first to develop policy optimization algorithms for finite-horizon MDPs with adversarial losses and aggregate
bandit-feedback. The case of known and unknown transitions was handled, improving earlier results. The
work of provided the first best-of-both-worlds algorithm under the finite-horizon MDP setting
with aggregate bandit feedback. For known transitions, the algorithms in attained O(log T
regret with stochastic losses and O(v/T') regret with adversarial losses. For unknown transitions,
employed confidence-based techniques to obtain @(v/T) bounds.

Online Learning in CMDPs: Many works in this area emphasized stochastic losses and constraints. In
the presence of bandit feedback, stochastic losses and constraints, and unknown transitions, [Efroni et al.
employed linear programming and primal-dual methods to tackle exploration-exploitation in episodic
CMDPs. Sublinear regret and cumulative constraints violation were assured. [Zheng & Ratliff] (2020) concen-
trated on fully-stochastic episodic CMDPs, under bandit feedback and known transitions, achieving O(T3/4)
regret. At the same time, its violation was shown to be below a threshold with a given probability. The
seminal work of provided sublinear regret in the presence of peak stochastic constraints,
unknown transitions, and deterministic rewards.

Focusing only on stochastic losses, numerous works (Liu et al., 2021} Miiller et al.l 2024} |Stradi et al., [2025a))
obtain sublinear bounds for hard violations of stochastic constraints. Various model-free (Ghosh et al.,
12022; |Wei et al., 2023) and model-based (Ding et al., [2021}; |Chen et al. |2022) works have also studied soft
violation in CMDPs. Also, the work of |Stradi et al.| (2024b) gave bounds for soft constraint violations, but
the losses were adversarial. With a reliance on the Slater’s slackness parameter, Stradi et al.| (2025a) dealt
with hard constraint violation for the stochastic loss and constraints. The best-of-both-worlds regret and
violation were established in |Germano et al.| (2023), where the loss and constraints could be both stochastic
and adversarial. Although the results of Ding & Lavaei| (2023)); [Wei et al. (2023), and [Stradi et al.| (2024c) do
not work for adversarial losses, they establish regret and violation guarantees by considering non-stationary
losses and constraints. Additionally, these works assume bounds on the loss and constraint variances. Very
recently, the OMDPD algorithm tackled adversarial constraints and obtained O(\/T ) regret
and 6(\/T ) violation without Slater’s condition. Given access to a strictly feasible policy and stochastic
losses and constraints, Miiller et al.| (2023) utilized an augmented Lagrangian approach to obtain an optimal
hard violation. Figure [I] contains a schematic categorization of the works as mentioned above.

Online Learning with Constraints: |[Liakopoulos et al.| (2019)) examined adversarially chosen long-term
budget constraints. However, their regret was defined with respect to a comparator satisfying the budget over
a fixed window. |Castiglioni et al.| (2022a)) and |Castiglioni et al|(2022b) supplied the first best-of-both-worlds
algorithm with long-term constraints. Hard constraint violations have also been studied in simple stochastic
settings (Pacchiano et al. 2021} Bernasconi et al.,[2022)), in Online Convex Optimization (OCO) (Guo et al.
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Algorithm 1 Interaction between the learner and the CMDP
fort=1,...,T do
The learner chooses a policy m; : S x A — [0, 1].
The adversary decides the loss and constraint vectors, i.e., £; and ¢;.
The learner starts from the fixed initial state sg.
for h=0,...,H—1do
The learner plays the action aj, ~ m(- | sp).
A new state sp41 ~ P(- | Sn, an) is reached.
The learner observes the new state sp41.
end for
The adversary reveals £; and ¢; to the learner in full or bandit feedback.
end for

2022Db)), and in Constrained OCO (COCO) (Sinha & Vaze, 2024)). Also, Sinha & Vaze| (2024)) first showed
that it is possible to design an online policy in COCO without extra assumptions that achieves O(v/T)
regret and 6(\/T ) violation. The recent work of [Lekeufack & Jordanl (2024) considered a setup in which
the loss predictions and the constraints are accessible. By utilizing the tools from [Sinha & Vaze| (2024),
they (Lekeufack & Jordan| 2024) slightly improved upon the O(v/T) regret and O(y/T) violation bounds.

3 Preliminaries

For any n € Ny and z € R, we define the notations [n] = {1,2,...,n}, [n]7 ={0,1,...,n — 1}, and (2)*
(or 2*) = max(0, z). We use the notation ||-|| to denote the L2-norm throughout the document. Also, unless
mentioned otherwise, we denote by Vr the sub-gradient of an arbitrary convex function r.

3.1 Constrained Markov Decision Process

A finite episodic Constrained Markov Decision Process (CMDP) (Altmanl [1999), is defined as the tuple
M = (T,H,S, A, P, {&,;},,{e:}X,), where: T is the total number of episodes; H is the length of each
episode; S and A are a finite state and action space with |[S| = S and A = 4; P: S x A xS — [0,]1]
is a transition probability function; {€;}]_; and {c;}{_; are the sequence of loss and constraint vectors
respectively. For a fixed ¢ and for all h € [H]™!, the vector £ € [0,1]9*4*H constitutes of the loss
lip : S x A —[0,1], suffered by the learner for playing action a € A in state s € S at the h-th step in the
t-th episode. Similarly, for a fixed ¢ and for all h € [H]™!, the components ¢; , : S x A — [—1, 1] of the vector
¢; € [—1,1]5%A%H "encode the cost of the constraint incurred by the learner on taking action a € A in state
s € §. Note that for each state-action pair, multiple constraints can be replaced by a single constraint, which
is the point-wise maximum of the given constraints. Therefore, in this work, we assume that the learner is
presented with only one constraint.

Without loss of generality, we consider M to be loop-free, i.e., we assume
that S is partitioned into H + 1 layers Sy, ...,Sy, such that Sop = {so} and Sy = {sy}. Here, sg and sy
are the initial and terminal states, respectively. For all s ¢ Sy, when playing action a in state s, P(- | s,a)
is the distribution of the next state. We assume that P(s’ | s,a) # 0 only when s € Sp, and s’ € Sp41 for
some h < H.

Online learning in CMDPs with adversarial losses and constraints is conducted over T episodes, each con-
sisting of H steps. In each episode t € [T, the learner chooses a stochastic policy m; : S x A — [0, 1], where

1
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m¢(a | s) is the probability of selecting the action a € A in the state s € S. The adversary also selects the loss
vector £; and the constraint vector ¢; at the beginning of an episode t € [T]. Starting from sg, the learner

executes m; for H steps and observes the trajectory {(sh, ans Lo n(Shyan), cen(sn, ah))}::ol (where the action
ap ~ (- | sp), and the next state sp41 ~ P(- | sp,ap)) before reaching sg. It is only when the ¢-th episode
ends that the adversary reveals £; and ¢; to the learner, either in full or bandit feedback. The loss and
constraint costs for every state-action pair are disclosed to the learner in the full feedback case. In contrast,
for bandit feedback, the loss and constraint costs for only the observed state-action pairs (in a trajectory)
are revealed to the learner. We consider an episodic setting in which the policy remains fixed within each

episode and is updated only at the end. Algorithm [I] formally describes how the learner communicates with
the CMDP.

For an episode t € [T], a policy ;, and a loss vector £; € [0, 1]5*AxH

total loss of the learner in that episode. It is defined as:

, we call the episodic loss the expected

H-1

Z L n(sh,an)

h=0

V7Tt (sg;€:) = E

ap ~ (- | sn), She1 ~ P(- ] Shyah)]v (1)

where the learner starts from the initial state sy and follows 7; subsequently. It is clear from the definition
above that V™ (sp;£;) = 0. The episodic loss can be generalized to start from any state s, with an arbitrary
loss vector £, and following 7 afterwards as: V7 (s;€) == Eqor(.|s) [Q”(s,a;@)}, where Q7 (s,a;€) = {(s,a) +
Togsy Egnp(]s,a) [V” (s’;é)] (where £(s,a) is a component of the vector £) is the Bellman equation denoting
the expected loss starting from s, taking action a, and following 7 afterward. Similar to the episodic loss
V™ (s0;£¢), we define V™ (sq;¢;) for computing the expected violation of the constraints in an episode as:

H-1

> cunlsn, an)

h=0

V™ (so;er) =E

ap, ~ (- | 8h), She1 ~ P(+ | sh,ah)]. (2)

We term V™ (sg; ¢;) as the episodic constraint violation which can also be generalized to start from any state
s, with an arbitrary constraint vector ¢, and following 7 afterwards as: V7 (s;¢) = Equr(.|s) [Q’T(s,a;c)],
where the Bellman equation Q™ (s, a;¢) = c(s,a) + Lsgs, Egp(.s,a) [V’T(s’; c)} (where ¢(s, a) is a component
of the vector ¢) denotes the expected constraint violations starting from s, taking action a, and following
m afterward. For a known transition function P, the expectations in Eqn. [I] and Eqn. [2| will only be taken
on the randomness in sampling the actions. One could simply write V™ (€;) and V™ (¢;) when the starting
state is clear from the context.

Let us assume 7* € argmin, .y Zthl V7™ (s0;£;) to be an optimal policy in hindsight that satisfies the
constraints over the episodes, i.e., Zthl(V”* (so;e:))T = 0. We have II as the class of all stochastic policies.

The final objective of the learner is to learn a policy that jointly minimizes the expected regret and the
expected cumulative constraint violation over all the episodes:

T

ZV” so,Zt] ZV (s0;€:), and (3)
t=1

T

Z “(s0;¢1) *]. (4)

E[Rr] =E

T
E[Zr] =E lz max (0, V™ (so;¢;))

t=1

In the bandit feedback setting, the expectations in the above equations are taken with respect to the ran-
domness in choosing m; at the beginning of each episode. In the full feedback case, there is no stochasticity
in the policy, so expectations do not appear in Eqn. [3]and Eqn. [4
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3.2 Occupancy Measures

It is well known that any policy 7 and a transition probability function P induce an occupancy measure
o™ S x A — [0,1] (Altman, [1999; Rosenberg & Mansour, 2019b), where p”"™(s,a) is the probability of
visiting the state-action pair (s,a) when the learner starts from the initial state and acts according to .
Consider the following definition, which formalizes the notion of occupancy measures.

Definition 1 (Occupancy Measure). For every s € S and a € A the occupancy measure p© ™ : S x A — [0,1]
induced by a policy m and a transition function P is the probability of visiting the pair (s,a) when the agent
begins from so and then follows m in an episode. Therefore, the probability of visiting a state s € S in an
episode will be:

PP(s) = 3 o7 (s, ). (5)

acA

From now on, we omit writing P in p”™ for simplicity (unless absolutely required). Let Q = {p™ | m € II}
be the set of all valid occupancy measures. From the work of [Luo et al.| (2021)), we have an alternative
characterization for 2 that is widely used in the literature, and it is elucidated in the following definition.

Definition 2 (Valid Occupancy Measures). We have the following equivalent definition of Q:

Q= {p € [0, 1]9xAxH ‘ p(s0) = 1;p(s') = Z Z p(s,a)P(s' | s,a),Vs" € Sp1 and Vh € [H]_l}. (6)

s€Sp a€A

Any p € Q corresponds to the occupancy measure induced by the policy 7 with 7°(a | s) = £ ;‘ES),

m(a | s) x p(s,a). It is evident from Eqn. and Eqn. that V™ (s0;£;) and V™ (sg;¢;) are non-convex in .
It is important to note that p™, £;, and ¢; are vectors of dimension S x A x H. Thus, being equipped with
Definition [1} the episodic loss V7 (sg;£€;) and the episodic constraint violation V™ (sg;¢;) can be re-written
as (p™,€;) and (p™, ¢;) respectively, thereby, making V7™ (sg;£;) and V™ (sp;¢;) linear in the occupancy
measure p™t. Consequently, the expected regret in Eqn. |3| and the expected cumulative constraint violation
in Eqn. [d] can be equivalently expressed as:

ie.,

E[Rr] :=E Z(p’” — p”*,£t>], and (7)
E[Zr] =E Zmax(o, (p™,e)) | =E Z(p”‘,ctﬁ]. (8)

As before, the expectations in Eqn. [7] and Eqn. [8] will not be present in the full feedback case. From now
on, we will employ the shorthand p; and p* instead of p™ and p”™ respectively. Also, note that Eqn.
and Eqn. [ naturally encapsulate the notion of hard constraint violation.

3.3 Constrained Online Convex Optimization

Online Convex Optimization (OCO) (Hazan) 2016; |Orabonal [2025) provides a valuable arsenal for tackling
online decision-making problems. The framework of Constrained Online Convex Optimization (COCO) (Guo
et al.| 2022a; Sinha & Vaze, |2024)) generalizes OCO by modeling a round-based game between an online policy
and an adversary. At each round ¢ € [T, the online policy selects an action x; € X, where X is called the
admissible set. Then, a convex cost function p; : X — R and a convex constraint function v; : X — R are
chosen by the adversary. To be specific, on playing the action z;, the online policy suffers a cost u:(z;) and
a constraint violation

Let X* be the set of all admissible actions satisfying the constraint on every round, i.e., X* = {z € X |
ve(x) < 0,¥t > 1}. The set X* is called the feasible set in the standard COCO literature. The end goal
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Figure 2: Schematic to illustrate the CMDP-COCO reduction. Each CMDP episode ¢ corresponds to one
COCO round. The occupancy measure p; maps to the decision variable x; in the admissible set X, which
equals €. The vectors £; and ¢; help to define the linear cost function p; and constraint function v in COCO.

t-th Episode of CMDP t-th Round of COCO
v
@ mi(als) o< pi(s, a) xX=0Q 5
Ct - __ ___——7 Mt
~~~~~~~ e T )
t Pty (o N " mme_ [ 1 -7 = (l?tv t
f(l"t) = Zrrc,) -y L, _-——mt; pts ut(irﬂ

LEGEND: Solid arrows := CMDP/COCO internal relations; Dashed arrows := Reduction mapping
Q := Valid Occupancy Measures; X := COCO Admissible Set

of any COCO problem is to build an online policy that jointly minimizes regret and cumulative constraint
violation, which are defined as:

Regret, :== ) — su x*), and 9

grety Zﬂt t) I GIZ(ZM (9)
T T

CCVyp = Zmax O ve( a:t Zyt . (10)
t=1 t=1

We state three standard assumptions prevalent in the COCO literature (Yi et al., 2021;|Guo et al., 2022a;
. The first one, i.e., Assumption is on the convexity of the admissible set X', while Assumptio
describes the Lipschitz continuity of {u}_; and {v;}]_;. The direct implication of this assumption is that
the L?-norm of {Vy;}L_; and {V14}L_, is uniformly upper bounded by the Lipschitz constant. Assumption
states that the feasible set X'* is non-empty.

Assumption 1 (Convexity). The admissible set X C R? is closed and conver and has a finite Euclidean
diameter of D. For all t € [T, the cost functions {j;}1_, and the constraint functions {v;}1_, are conver.

Assumption 2 (Lipschitzness). All the costs {j;}1_, and constraints {v;}]_, are L-Lipschitz. Thus, for
all a,b € X and for every t € [T, we have:

lne(a) = pe(D)] < L-fla = b, [vi(a) = ve(b)] < L - [la —b] . (11)

Assumption 3 (Feasibility). The feasible set is non-empty, i.e., X* # (), as there always exists an x* € X
for which v (z*) <0, for allt € [T].

It is essential to recognize that the objective in COCO and in online learning in CMDPs is the same:
minimizing regret and cumulative constraint violation. This fact enables solving CMDPs using COCO
algorithms after appropriate reductions. Inspired by [Sinha & Vaze| (2024)), we utilize a Lyapunov potential
function to regulate the growth of violations and construct a surrogate loss by linearly combining an upper
bound on the change of the Lyapunov function with the cost function.

3.4 Reduction from CMDP to COCO - a simple toy example

We provide a toy example to illustrate the reduction that is central in the upcoming sections. Let us consider
aCMDP G = (T, H,S, A, P, {€;}_,, {c;}_|) with |S| = S, |A| = A, and with horizon length of two, i.e., let
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H = 2. Assume that the transition function P is known. Since G is loop-free, the finite state space S can be
written as: S = Ui:o S =8 US1US: and S, S; = 0 for k # I. By the definition given in Section
the first and last layer only contain the fixed initial and terminal state respectively, i.e., Sy = {so} and
Sz = {s2}. Let the intermediate state layer be §; = {z,y} and the finite action space be A = {0,1}. In this
case, the occupancy vector is:

p = [po(50,0), po(s0, 1), p1(2,0), p1(, 1), p1(y,0), p1(y, 1)] - (12)
Moreover, the valid set  will contain any p € [0, 1]5*4*H satisfying the following constraints:
1. For h = 0: po(so0,0) + po(so,1) = 1.
2. For h = 1: Vs’ € {z,y}, p1(s',0) + p1(s',1) = > c 4 po(50,a)P(s" | 50, a).

pr(s,a)

o pn(s,a’)’
> Pr(s,a") > 0. For episode t € [T], with losses ¢, ,(s,a) and constraints c; ;(s,a), we have the following
definitions for the cost function p; and the constraint function vy:

Any p satisfying the above constraints is realizable by the policy: w,(a | s) = whenever

pe(p) = Y puls,a)-Lin(s,a), and (13)
(s,a,h)

w@)= 3 ou(s,0) - con(s,a), (14
(s,a,h)

which are linear (and hence convex) in p. Thus, one CMDP episode is equivalent to one round in the COCO
problem with the decision p; € Q. Figure 2] depicts the general mapping of the CMDP’s elements to their
counterparts in a COCO round. The left side shows a CMDP episode with policy m;, occupancy measure
pt, loss vector £;, and constraint vector ¢;. The right side shows a COCO round with decision variable
x¢, admissible set X', cost function pu;, and constraint function v;. The set of valid occupancy measures €2
in CMDP exactly corresponds to the COCO admissible set X', while the loss and constraint functions are
linearly defined by £; and ¢;. The solid arrows indicate internal relationships within each framework, while
the dashed arrows indicate the mapping. The violet-dashed arrows show that the CMDP’s linearity in p;
directly corresponds to COCQO’s pu; and v.

4 Known Transition Function

When the transition function P is known for the CMDP M, there is no model uncertainty regarding P, but
there will be randomness linked with the next-state s,41 in an episode ¢ € [T]. Throughout this section,
we will use Eqn. and Eqn. as the definition of the episodic loss and episodic constraint violation,
respectively, as written below:

H-1

V7™ (505 r) = E[Z Con(snyan) | an ~m (| sn), 50~ P -*‘/7-(’/[)], and (15)
h=0
H-1

V™ (s05¢¢) = E[Z cen(Snyan) | an ~ me(- | sn), 50010~ P '*'h-”h)‘|' (16)
h=0

4.1 Full Feedback and Known Transition

In addition to the transition function being known, the entire loss vector £; and the constraint vector ¢; are
revealed to the learner at the end of an episode. Consequently, the regret Ry and the cumulative constraint

10
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Algorithm 2 Full AdaGrad with Known Transition (FAG-K)

Require: L, D, Euclidean projection operator Ig(-) on .
Set the parameters w = 575, 6 = ﬁ, and choose ((;) = exp(6¢;) — 1, V¢ > 1.

Intialize p; € Q arbitrarily (e.g., uniformly) and set (o = 0.
fort=1,...,7T do
Extract the policy m such that 7 (a | s) x p(s,a), V(s,a) € S x A.
The adversary decides £; and ¢;.
for h=0,....H—1do
The learner plays ap, ~ m:(- | sp).
The learner reaches new state sp11 ~ P(- | sp,an) and observes sj,41.
end for
The adversary reveals £; and ¢; in full feedback.
Define pi(pr) = (pe,€:), and vi(pr) = (pe, ).
Compute fi; < wig, and 7y < w(v)T.
Compute ¢ = ¢+ 1(pr) and i (pe) = Fir(pe) + & ()7 (pr).
According to Eqn. compute the sub-gradient Vi = Vi (py).
V2D

Update pii1 = Ho(pr — m:Vy), where g = —=——.
2/ V.2

end for
return pr and 7.

violation Zr to be minimized in this scenario are given as:

T

Ry = Z(pt —p*, &), and (17)
t=1
T

ZT = Z(pt7ct>+. (18)
t=1

Owing to the above definitions, our optimization problem involves searching for an occupancy measure in
the space of all valid occupancy measures, i.e., p; € Q for all ¢ € [T]. We will jointly minimize Eqn. [17] and
Eqn. |18 by mapping our problem to a corresponding instance of the COCO problem. As already described
in Section [3:3] COCO proceeds as a game of T' rounds between an online policy and an adversary. Quite
clearly, one round in COCO corresponds to one episode of length H in the CMDP. For every ¢ € [T], we
define the cost function p; : 2 — R and constraint function vy : Q — R as:

H-1

pelpe) = Y pelsn,an) - on(sn, an) = (pr, ), and (19)
i

ve(p) = Z pe(Sh,an) - Ct,h(shaah) = (pt,¢t). (20)
h=0

It is clear from Eqn. and Eqn. that p; and v are linear in p; (thus, convex). Hence, y; and v; are
indeed Lipschitz continuous with respect to p;. The gradients of p:(p:) and v;(p;) are: Vu(pr) = £ and
Vvi(pt) = ¢;. It is easy to see that the maximum L2-norm of ¢; and ¢; are ||€;|| = ||e¢|| < V'SHA. Therefore,
the upper bound on the value of the Lipschitz constant L for Eqn. [19]and Eqn. [20| directly follows from the
gradient norms, i.e., L < v SHA.

Definition [2 necessitates that {2 should be a simple polytope with O(S)-many linear constraints, implying
is closed and convex. Since Q C [0,1]3*4*H  the largest possible Euclidean distance between any two points
0T, p5 € Q is the diagonal distance of the hypercube [0, 1]5*4*# which is simply equal to v/S x A x H.
Therefore, we have the Euclidean diameter of  as: D = sup,r ,rcq lloT — P3| = VS x Ax H=+/SHA.
At this juncture, we can now define the regret and the cumulative constraint violation of the corresponding

11
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COCO problem as follows:

T T
Regret, = Z,ut(pt) - Zut(p*), and (21)
t=1 t=1
T
CCVr = Zut(pt)"'. (22)
t=1

In each episode t € [T], we perform the scaling: [i; < wpy, s < w(vy)T, where w > 0. The scaled cost
function f1; and the scaled constraint function 7; are both wL-Lipschitz for all £ > 1. Let ¢ : RT — R be
any non-decreasing, differentiable, and convex Lyapunov function such that ¢(0) = 0. Also, let (; be the
cumulative constraint violation for the scaled constraint function till the t-th episode, where ¢; = (;—1+7:(pt),
t > 1 (with (o = 0). It follows from the convexity of ¢(-):

(1) = @(C) + ' (C)(Gem1 = ¢) = @(G) < o(Ge—1) + @' (C) (& — Gi-1)
= 0(¢) — (G—1) < &' (C)(pr). (23)

It is important to note that the scaling factor w = ﬁ is introduced to normalize the Lipschitz constants
and the diameter of the decision set ). Specifically, L is the Lipschitz constant of u; and 14, and D is the
Euclidean diameter of 2. Scaling by w ensures that the gradients of i, and v, have norm at most wlL < 5,
which simplifies the regret analysis. From the stochastic drift-plus-penalty framework of (2010), we
define the surrogate loss as (taking the penalty to be 1):

fe(pe) = fu(pe) + @' (&)oe(pr), VE > 1. (24)

The surrogate loss combines the scaled cost ji; with a penalty term ¢'(¢;)7;. The term ¢'({;) acts as an
adaptive weight on the constraint violation: if cumulative violations (; are large, ¢'(¢;) increases, thereby pe-
nalizing violations more heavily in the surrogate loss. This mechanism helps control the growth of constraint
violations over time. By minimizing the surrogate loss fi;, the algorithm implicitly balances minimizing cost
and satisfying constraints, leading to simultaneous sublinear regret and sublinear hard constraint violation.

The subgradient of i; is computed as follows:

Vi = Viie(pe) = Vie(pe) + V' (G (p) = Vipe, wle) + ' (C)V(pr,we)

v, = (JJEt + w’(Ct)wct, lf <pt,wct> > 0, (25)
wly, if (p,we) < 0.

We can upper bound ||V;]| as:

IVell = Wz (o) | = IV Ze (o) | + ' (Co) IV T (o) || < wL(1+¢'(C))- (26)

By the feasibility condition, we have v, (p*) <0 (for all 7 > 1), which implies that 7. (p*) = 0. Consequently,
the following observation is easily made:

fir(p*) = Fir (p*) + &' (C) 7 (p7)
— (") = Fir ), ¥ > 1. (27)
For any 7 > 1, using Eqn. 27| and Eqn. 24] in Eqn. 23] we have:

90( ) (p(CT 1) (pl(C‘r)D'r(p‘r)
12

1)< ©'(¢r)
= () = 0(Gr-1) < Bir(pr) — i (pr)
= o(¢r) = 0(Gr-1) = 1 (p*) < iz (pr) — Bir(pr) — Hr(p7)
= @(G) = o(Gr-1) + fir(pr) = Hr(p*) < T (pr) — 1 (p%)-

12
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Algorithm 3 Online AdaGrad policy with adaptive step-sizes

Require: A closed convex set ) with Euclidean diameter D, positive step sizes {n; }7_;, convex cost functions
{ue}E |, projection operator Py ().
Set y; € Y arbitrarily.
fort=1,...,7 do
Execute y; and observe ;.
Suffer a cost of p(yz).
Compute sub-gradient Vi = Vi (yy).
Update yi11 = Py(ys — 1:Ve).
end for

Summing the above inequality for 1 < 7 < ¢ and using ¢(0) = 0, we get:

Z () — (1) + Zﬁ‘r(pf) — i (p") < Zﬁf(p‘r) — (")
= ¢(() + Regret, (p*) < Regret (p*), (28)

where Regret, on the LHS and Regret; on the RHS of Eqn. 28| refer to the regret for learning the pre-processed
cost functions {fi;},>1 and the surrogate loss functions {fi;}+>1 respectively.

We utilize the online AdaGrad policy (Zinkevich, 2003) with adaptive step sizes (Duchi et al.,|2011)) as a sub-
routine, described in Algorithm [3| to minimize the surrogate regret Regret;(p*). Let us recall an important
theorem below (given as Theorem [I]) from |Orabonal (2025) and [Duchi et al| (2011) that gives the adaptive
regret bound attained by the online AdaGrad policy.

Theorem 1. Given a sequence of conver cost functions {j;}1_,, the adaptive step size schedule for allt > 1:

n = ——2D (D is the diameter of ¥), and ||V¢|. Hence, the regret of Algorithm |3 is given by:
20/ VL2

T
Regret; < V2D Z V7. (29)

We name our algorithm in this scenario as Full AdaGrad with Known Transition (FAG-K), and it is formally
presented in Algorithm [2| Using Eqn. [29| from Theorem |1}, we can upper bound the surrogate regret as (see
Appendix for the detailed calculation):

Regret}(p*) < 2DwIVt (1+ ¢/ (¢)). (30)
Putting w = 2LD, choosing ¢(¢;) = exp(6¢;) — 1, Vt > 1, and substituting Eqn. |30 into the regret decompo-
sition inequality of Eqn. 28] we have:

*

©(Gt) + Regret, (p*) < Regret;(p")

— exp(0G,) — 1+ Regret, (5") < 2DwLVE (1 + 0exp(66:))

—> Regret,(p*) < 2DwLVt (1 + 0exp(0¢)) + 1 — exp(6¢,)
(") <
(") <

*) < Vi+0vEexp(6G) + 1 — exp(6G:)
exp(6¢;) (9\/E — 1) +ViE+ 1. (31)

— Regret,

*

—> Regret,

Setting any 0 < —= for all ¢t > 1, the term exp(6¢;) (9\/5 — 1) in the above inequality, becomes non-positive
for any t € [T]. Therefore we obtain the following upper bound on Regret, (p*) for all ¢ € [T7:

Regret, (p*) < vVt + 1. (32)

13
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Owing to the functions {f;};>1 being 55-Lipschitz, it is easy to realize that Regret,(p*) = S e (pr) —
fir(p*) > —%. Forany t € [T] and 0 < —=, we write this lower bound along with Eqn. 31| to get:

exp(0¢) (9\/2 - 1) +VE+1> 7%

— exp(0G) (1-0vE) < Vit 1+

<2\/E+2+2t
- 2
2Vt + 2+ 2t
— exp(0(;) < ————
p(ct)—Q(l_e\/i)
1. 2vVt+2+2t
:><t<,1n\[+7+

T 2(1-6vY)
— (r <2T (2VT +2+2T), (33)

— exp(0C,) (1 - eﬁ)

where the last line is obtained by setting 6 = ﬁ By multiplying % to Eqn. and Eqn. we get the
bounds for Eqn. 21] and Eqn. 2] It is straightforward to realize that minimizing Eqn. 21] and Eqn. 22] is
equivalent to minimizing Eqn. [I7] and Eqn. [I8 Therefore, we formally state the bounds on Eqn. [I7] and

Eqn. [1§in the theorem below.
Theorem 2. Having w = ﬁ, L<+VSHA,D=+vSHA, o((r) =exp(0(r)—1, 0 = ﬁ, with adversarial

loss and constraints, under full feedback, and known transition, the regret and cumulative constraint violation
(hard) of FAG-K (in Algorithm[3) is bounded, Vt € [T] as:

R, < 25HA (\/i n 1) and Zr < 4SHAVT In (2\/T Y24 QT) . (34)

For all the upcoming sections and subsections and for all £ > 1, the definitions of the cost function p;, the
constraint function v, and the surrogate function ji; will be the same as those of Eqn. Eqn. and
Eqn. 24 respectively. As a result, the regret decomposition inequality in Eqn. [28] will remain unchanged for
all cases and will come in handy in every situation. The online AdaGrad policy (as in Algorithm [3) with
suitably tailored sub-gradient vectors is used to minimize the surrogate regret in the subsequent cases.

4.2 Bandit Feedback and Known Transition

Here, in this subsection, the loss and constraint costs for only the observed state-action pairs (i.e., only the
corresponding entries of £; and ¢;) are revealed to the learner at the end of an episode. The expected regret
E[Rr] and the expected cumulative constraint violation E[Z7] to be minimized in this case are:

T
E[Rr] :=E lz {pr — p*,ZQ] , and (35)

t=1
E[Z7] =E lz <pt7ct>+] - (36)
t=1

The learner only observes the values for H state-action pairs for the vectors £; and ¢;. We employ the widely
popular technique of implicit exploration (Kocak et al.l [2014; |[Neu, |2015)), i.e., a small value is added to the
importance weight, to construct biased estimators V¢ € [T] and Vh € [H]~%:

lip(s,a)
pe(s,a) + Ay

cen(s,a)

un(s,0) = _anls,a)
) o)+ A

]-t(sa a)7 and /C\t,h(sﬂ a’) = ]-t(s7 a)? (37)

where A; > 0 is an appropriately chosen parameter (to be fixed later) and 1;(s,a) is 1 if (s,a) is visited
during episode ¢t and 0 otherwise. The estimated loss and constraint-cost vectors are respectively defined as

£, and ¢, having entries of the form @h and ¢ p, for all t € [T] and h € [H]7L.

14



Under review as submission to TMLR

Clearly, Zt and ¢; both have at most H non-zero entries. The term A; enforces a minimal exploration in the
learner, induces a small bias, and ensures that the variance of the estimator remains bounded (Kocak et al.|
2014; Neul, |2015). This trick is essential for keeping the regret and the violation terms under control. We
state two useful lemmas below.

Lemma 1. The estimators defined in Eqn. satisfy ]Et[@h(s,a)] = %pt(s,a), Eien(s,a)] =

ce,n(s,a)

ritsar i Pe(s:@), Bellen(s a)’] < Sy, and BalGun(s, o)) < Sryrs -

Proof. See Appendix O
Lemma 2. Show that 0 < ¢, ,(s,a) — Et[lz’h(s,a)] < %{Z’)‘l) and 0 < ¢y (s, a) — By[G p(s,a)] < %(Z)a)
Proof. See Appendix [A73] O

Again, for this subsection, the regret and the cumulative constraint violation (hard) of the equivalent COCO
problem can be naturally defined as in Eqn. and Eqn. It is not possible to compute the exact
subgradient of the surrogate loss under bandit feedback, unlike in the full feedback case. However, we can
define a biased estimate of the true sub-gradient V; (as given in Eqn. of the surrogate loss as follows:
o, _ {wgt ¢ (G, HC> 0, (38)
wly, if C; <0,

where C; = Zf;ol ct,n(Sn,an) is the observed constraint violation in the ¢-th episode. Let b, denote the bias
vector for V; given as: by = E;[V] — V. We can upper bound the L2 -norm of b; as: ||b| < wL+we’(() (L—I—
VH/ At) (see Appendix ? for detailed calculations). Additionally, it is easy to see that the upper bound

on the L?-norm of @t is: @t < % (1 + go’((t)). By the triangle inequality for norms:

BV < el + V2l < W+ (G (E + VE/A) +wL(1+¢()). (39)

Our proposed algorithm for this section, Bandit AdaGrad with Known Transition (BAG-K), is described in
Algorithm 4 We will use \A (as given by Eqn. in the online AdaGrad policy (described in Algorithm D
for minimizing the surrogate regret Regret;(p*). By the convexity of ji,, (for all 7 > 1), the surrogate regret
Regret; (p*) could be decomposed as:

t

Regret}(p*) = Y _ fir(p7) — i (p*)

T=1
t
< Z(pr P, Vr)
=1
t t
= Z<p~r p" B [Ve]) + Z<P‘r p*,Vr —E-[V;])
=1 =1
t R t
= Z<p7 —p"E Vo)) + Z<p7 —p", —=bs)
T=1 T=1

Il
Pj -
»®
<,
[
D
o

|
M -

</0‘r - p*ab'r>a (40)

where T3 is simply the regret from Eqn. with HET [%T}
term. The computations for upper bounding T} and T, are to Appendix

being used instead of ||V, ||, and T is the bias

15
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Algorithm 4 Bandit AdaGrad with Known Transition (BAG-K)
Require: L, D, Euclidean projection operator Ig(-) on .

Set the parameters w = ﬁ, 0= ?n/f)(l%D)Q’ + = wVH, and choose ¢(¢;) = exp(A¢;) — 1, Vt > 1.

Intialize p; € Q arbitrarily (e.g., uniformly) and set (o = 0.
fort=1,...,7 do
Extract the policy 7 such that m(a | ) o pi(s,a), V(s,a) € S x A.
The adversary decides £; and ¢;.
Set Ct ~—0
for h=0,....,H—1do
The learner plays ap, ~ m(- | sp).
The learner reaches new state sp+1 ~ P(- | sp,an) and observes sj,41.
end for
The adversary reveals £; and ¢; in bandit feedback.
Compute C; = ZhH:_OI ct,h(Sh, an) for the observed state-action pairs.
Define fu1(pt) = (pt,€r), and vi(pe) = (pr, 1)
Compute fiy < wpg, and 7y < w(v) ™.
Construct estimators @7h(s, a) and ¢ (s, a) according to Eqn.
Compute ¢ = (-1 + ﬁpt) and fi¢(ps) = pe(pt) + @' (Ce) Ve (pr)-
Compute V; by Eqn.
Update prr1 = Ha(pr — Vi), where n, =

V2D .
2/ llv-
end for
return pr and 7.

Setting Ay = wv/H for all t > 1, and from Eqn. [75|and Eqn. [76{ of Appendix we have:

Regret; () < VI3 /(60 + 2 + Y22 pyiai ()

; —S -2 Q) =D @) (1)

Choosing ¢(¢;) = exp(0¢) — 1, Vt > 1, and putting Eqn. into the regret decomposition inequality of
Eqn. 28] we observe:

©(¢:) 4 Regret, (p*) < Regret;(p*)

— exp(0¢;) — 1+ Regret, (p*) < V12t - G exp(6¢;) + Q F + DV12t - f exp(6¢;)
_ % _ 5-eexp( ) — Dt - 6‘exp(9§t)
— Regret,(p*) < V12t - 0 exp(0¢,) + DV12t - O exp(0¢;) — % O exp(0¢)
Dt exp(6¢,) — exp(8¢) + 1+ L2 f Q - %
— Regret, (p*) < exp(6¢;) <9\/ﬁ +6DV12t — % — 6Dt — 1)
+1+ g ‘/? (42)

Let k(t) = V12t + Dy/12t — £ — Dt be a function for any ¢ > 1. The maximum of k(t) occurs at t* = ?E(lef))j
2

and the maximum value is k(t*) = M We express Eqn. 4 as: Regret, (p*) < exp(0(:) (0k(t) — 1) +1+
@ ‘/ﬁ With 6§ = for all ¢t > 1, the term 0k(t) — 1 < 0, so: exp(6¢;) (0k(t) — 1) < 0. Therefore,

1+D)2

16
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by choosing any 6 < m, we can bound the regret as:

V12t
Regret, (p*) <1+ £ + — vt € [T). (43)
For any t € [T], any 6 < TD)W and utilizing the fact that Regret,(p*) > —% along with Eqn. 42| we obtain

an upper bound on (;:

Vet V12t t t
exp(@Ct)(Q()—1)+1+T 5 9<%
6t 12t
= exp(0¢) (1 —0k(t)) <1+ g + 5
1 + L + Q
— 0¢) <
exp( Ct) = 6k( )
(< 11 14 VB 4 VI
—
0 1—evI +9D\/12 —% _gpt
6VT(1+ D)2 1+ YT 4 —V?T
- CT < 2D 1 In 1 ) (44)
n 1- L
where the last line is obtained by setting 6 = 3 \/3;;2 D)2 . We multiply L to Eqn and Eqn. |44 to obtain
the bounds for Eqn. 21] and Eqn. In this scenario, minimizing Eqn. 2I] and Eqn. [22] leads to an upper

bound of Eqn. and Eqn. and we formalize the final bounds in the following theorem.
Theorem 3. Having w = 535, L < VSHA, D = VSHA, ¢((r) = exp(0(r) — 1, § = %, with
adversarial loss and constraints, under bandit feedback, and known transition, the expected regret and expected

cumulative constraint violation (hard) of BAG-K (in Algorithm[])) is bounded, Vt € [T] as

E[R:] < 2SHA (1 + £ + ﬂ) ,and E[Z7] <

2
12VTSHA (1+ VSHA) | 6T | yiT
i

In 2

2VSHA+1 1_ﬁ

5 Unknown Transition Function

An unknown transition function for the CMDP M presents two significant challenges. Firstly, there would
be a randomness linked with the next-state sp41 in an episode t € [T]. Therefore, the episodic loss in Eqn.
and episodic constraint violation in Eqn. |2 would be applicable throughout this section. We re-mention them
below for the sake of convenience:

H-1
> len(sn, an)
h=0
H-1

> con(sn,an)

h=0

VT (sg;4:) =E

ap ~ (- | 51n), Sh1 ~ P(- | Shaah)]a and

V7™ (sp;¢r) =E

ap ~ (- | 8n), 8h41 ~ P(- | Shaah)‘|'

Secondly, the decision space €2 is not known in advance owing to the unknown P. The occupancy measure of
Ty, i.e., pt, is also unknown. We denote by Qp, C Q the set of occupancy measures whose induced transition
function belongs to a set of transition functions P;.

To tackle both the aforementioned challenges, we resort to maintaining a confidence set for the unknown
transition function P (Burnetas & Katehakis, [1997) and an epoch-doubling strategy (Jin et al., |2020)).
Let X;(s,a) and Y;(s’ | s,a) denote the total number of visits made by the algorithm to the pair (s,a)
and the triplet (s,a,s’) before the epoch i > 1. For any i and any h € [H|™!, if we have X;(sp,ap) >

17
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max{1,2X;_1(sp,an)}, then we increment the epoch index i by 1. We define the empirical transition function
for the i-th epoch as:
5 Yi(s' | s,
Pi(s'" | s,a) = ("] 5,a) :
max{1, X;(s,a)}

(46)
For any d§ € (0,1), let €;(s’ | s,a) be given by (Jin et al.| [2020):

/ [P’ | s,a)In (541) 141n (241)
s 5a0) = 2\/max{1,Xi(s,a) —6 1} * Smax{l,Xi(j, a) =1} o

Similarly to Jin et al| (2020), for each triple (s,a,s’), we build a confidence set containing all transitions
with €;(s’ | s,a) distance from P;(s’ | s,a) as given below:

P = {73 ‘73(3' | s,a) — Pi(s" | s,a)‘ <¢€(s']s,a),V(s,a,8) €S, x AxSpy1,h=0,...,H — 1}. (48)

It is naturally understood that, for ¢ = 1, P; is the set of all transitions such that Qp, = Q. In any episode

t € [T], we maintain an occupancy measure p; and execute the induced policy 7 = 7*, because p; is
unknown. Again, from |[Jin et al. (2020)), we have: The true transition function P is present in the confidence
set Py, i.e., P € P;, Vi, with probability at least 1 — 44.

5.1 Full Feedback and Unknown Transition

Because of full feedback, we get to know every component of the vectors £; and ¢; at the end of an episode.
The regret Ry and the hard violation Z7 to be minimized are respectively given by Eqn. [I7] and Eqn. [I§
However, since p; is unknown, we cannot compute V; (as in Eqn. like we did in the full feedback case of
Section We slightly tweak V; from Eqn. [25|to obtain an estimated sub-gradient of ji;(p;) as:

(49)

v, — wly + (pl(Ct)th, if (ﬁt,wct> > 0,
T wey, if (py, wer) < 0.

Instead of p;, we here use p; for sign determination, which is perfectly doable. The norm of V; (as given
in Eqn. has the same upper bound as given in Eqn. ie., Vil < wL(1+ ¢'(¢)). The algorithm
we propose for this section, named Full AdaGrad with Unknown Transition (FAG-U), is fully described in
Algorithm

In Lemma |3} we recall a vital lemma from |Jin et al.| (2020)) regarding how the size of the confidence set P;
gets smaller with time. This lemma plays a pivotal role in bounding a key term in the decomposition of the
surrogate regret.

Lemma 3. Given a collection of transition functions {P;}scs such that P§ € P;,. Here, we use i, to denote

the index of the epoch to which episode t belongs. Let ny = {(Sh,ah,ftyh(sh,ah),cth(sh,ah))}fz_ol be the
observation of the learner in episode t, and F; be the o-algebra generated by the observations (nq,...,ni_1).
Then, with probability at least 1 — 60, the following holds:

T

s AT

> s - psa)| =0 (Hs AT'In (%)) ,
t=1 se€S,acA

where P;, and py are both Fi-measurable.

Again, by the convexity of i, (for all 7 > 1), we could decompose the surrogate regret Regret;(p*) as:

Reg Error

t t t

Regret, (p*) = Z fir(pr) = Br(p") < Zg)\f —p5 Vo) + Z(p‘r — Pry Vo), (50)

T=1 T=1 T=1
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Algorithm 5 Full AdaGrad with Unknown Transition (FAG-U)
Require: L, D, Euclidean projection operator Ilg,, () on the decision set Qp,, 6 € (0,1).

Set the parameters w = 575, 6 = ﬁ, and choose ¢((¢) = exp(6¢) — 1, Vt > 1.
Initialize epoch index ¢ = 1 and set (o = 0.
Initialize P; to be the set of all transition functions.
for h=0,...,H —1and VY(s,a,s") € S, Xx A X Sp41 do
Initialize counters: Xo(s,a) = X1(s,a) = Yo(s' | s,a) =Y1(s' | s,a) = 0.
Initialize occupancy measure pi(s,a) = m.
end for R
Initialize policy m = 7f?.
fort=1,...,T do
The adversary decides £; and ¢;.
for h=0,....,H—1do
The learner plays aj, ~ m(- | sp).
The learner reaches new state sp+1 ~ P(- | sp,ap) and observes sp41.
Xi(sn,an) + X;i(sp,an) + 1.
Yi(sh+1 | Shyan) < Yi(snht1 | snan) + 1.
if X;(sp,apn) > max{1,2X;_1(sp,an)} then
141+ 1.
Initialize new counters V(s,a,s’) : X;(s,a) = X;_1(s,a),Y;(s' | s,a) =Y;_1(s' | s,a).
Update the confidence set P; based on Eqn.
end if
end for
The adversary reveals £; and ¢; in full feedback.
Define pu¢(pt) = (pe,£e), and ve(pe) = (pe, ).
Compute jiy < wpy, and vy < w(vy) ™.
Compute ¢ = (;—1 + ve(pt) and fig(ps) = f1e(pe) + @' (Ce)Ve(pt)-
According to Eqn. [49] compute the subgradient V.
Update pyi1 = Mo, (pr — m: V), where n; = V2D

20/ Iv-)?

Update policy w41 = TP
end for
return pr and 7.

where the first term “Reg” is bounded by the regret of AdaGrad used with V; (as given in Eqn. , and the
second term “Error” quantifies the error of using p; to approximate p;. The detailed derivation of the upper
bound on “Error” is in Appendix We can upper bound Regret;(p*) as (see Appendix for details):

Regret;(p*) < (1+¢'(()) <2DwL\/i+ wLHS [ Atln (%y)) . (51)

Choosing ¢((;) = exp(6¢;) — 1, putting w = ﬁ, D=+vSHA, L <+vSHA, and substituting Eqn. |51|into
the regret decomposition inequality of Eqn. 28 we get:

exp(6¢) — 1+ Regrety (p*) < (1+ 0 exp(6C,)) <2DWL\/£+ wLHS,|Atin (S5At>>

= Regret,(p*) < (1+ Oexp(6¢;)) (\/ZJr % In <S:5%)> + 1 —exp(6¢)

= Regret,(p*) < 1+ k(t) +exp(0¢) (Ok(t) — 1), (52)
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where k(t) = vt + (/22 In (241). For upper bounding Regret,(p*) in Eqn. we need to choose 6 such
that the co-efficient of exp(6(;) is non-positive. In other words, we require 6k(t) —1 <0 = 6 < k(t)

Therefore, for any 6 less than or equal to ﬁ, we can bound the regret as:

Regret, (p*) < 14Vt + Sftln<5§1t) vt € [T). (53)

Choosing any 0 < ﬁ, and combining Regret, (p*) > —% with Eqn. for any t € [T], we obtain:

1+ k(t) + exp(66,) (0k(t) — 1) > 7%

= exp(¢) (1 —0k(t)) <1+ k() +
= exp(0¢) < m

L 1+k(t)+i
gl 1 — 0k(t)

= (r < <2ﬁ+2\/SHT1 (S?T»
x1n<2+2T+\FT+\/SHT1 <S‘;1T)> (54)

The last line is obtained by selecting 6 = 5~ L On multiplying w=? to Eqnﬁ and

t
2
L
2

= <

2k(T) 2f+2\/SHT In SAT)
Eqn. [54] we get the bounds for Eqn. T and Eqn [22] In this scenario, minimizing Eqn. 21 and Eqn. 22[leads
to an upper bound of Eqn. [I7] and Eqn. [I8] and we formalize the final bounds of FAG-U in the following
theorem.

Theorem 4. Set the parameters w = ﬁ, L <+SHA, D =+SHA, 0 = %, and choose p(Cr) =

exp(0¢r) — 1. Also, we have k(T) = VT + /4T In (S‘g%T). Under adversarial loss and constraints, with full

feedback, and unknown transition, the regret R and cumulative hard violation Zp of FAG-U (in Algorithm@
are bounded, ¥Vt € [T], with probability at least 1 — 0 as:

Rt<25HA<1+\f+ - (S?t>>,and

Zp <2SHA (2\/:7+2\/SZT1 (*SY?TD In (2+2T+\/T+ \/SZTl <S?T)> : (55)

5.2 Bandit Feedback and Unknown Transition

In this case, the expected regret E[Rr| and the expected hard cumulative constraint violation E[Z7] to
be minimized are respectively given by Eqn. [35] and Eqn. [36] Due to the unknown occupancy measure py,
estimators cannot be constructed using Eqn. Inspired by |Jin et al.| (2020), we replace p;(s,a) with an
upper occupancy bound given by:
w(s,a) = max p” ™ (s, a). (56)
PeP;

Thus, we can now have the following estimators:

lip(s,a)
ue(s,a) + A¢

cn(s,a)

fralee) = wls,) + A

1,(s,a), and ¢ n(s,a) = 1,(s,a), (57)
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Algorithm 6 Bandit AdaGrad with Unknown Transition (BAG-U)
Require: L, D, Euclidean projection operator Ilo, (-) on the decision set Qp,, § € (0,1).
Set the parameters w = ﬁ, 0= ﬁ(T)’ A; = wvH, and choose p((;) = exp(6¢;) — 1, ¥Vt > 1.
Initialize epoch index ¢ = 1 and set (o = 0.
Initialize P; to be the set of all transition functions.
for h=0,...,H—1and ¥(s,a,s") € Sp, x A X Sp11 do
Initialize counters: Xo(s,a) = X1(s,a) = Yo(s' | s,a) =Y1(s' | s,a) = 0.
1

Initialize occupancy measure pi(s,a) = GBTARS o]

end for R
Initialize policy m = 7.
fort=1,...,7T do
The adversary decides £; and ¢;.
Set Ct ~—0
for h=0,....,H—1do
The learner plays ap, ~ m:(- | sp).
The learner reaches new state sp11 ~ P(- | sp,an) and observes sj,41.
Xl-(sh, ah) — Xl-(sh, ah) + 1.
Yi(sht1 | sn,an) < Yi(Shg1 | snyan) + 1.
Compute us(sp, ap) = COMP-UOB(7¢, Sp, an, P;)-
if X;(sp,an) > max{1,2X;_1(sp,ap)} then
141+ 1.
Initialize new counters V(s,a,s’) : X;(s,a) = X;_1(s,a),Y;(s' | s,a) =Y;_1(s' | s,a).
Update the confidence set P; based on Eqn.
end if
end for
The adversary reveals £; and ¢; in bandit feedback.
Compute C; = Zf;ol ct.n(sh,an) for the observed state-action pairs.
Define fi1(pt) = (pt, €r), and vi(pt) = (pr, 1)
Compute fi; < wp, and 7y < w(vy) ™.
Construct estimators Zt’h(s, a) and ¢ p(s,a) according to Eqn.
Compute Gt = Gi—1+ Zﬁﬂt) and i (pe) = fie(pe) + @' (C) Ve (pr).
Compute V; by Eqn.
Update prr1 = Mo, (pr — ntﬁt), where n; = %.
R 2 Z;—:l HVT ||
Update policy mypq = mwPi+t.
end for
return pr and 7.

where Ay > 0 is an appropriately chosen parameter (to be fixed later) and 1,(s,a) is 1 if (s,a) is visited
§uring episode t and 0 otherwise. The estimated loss and constraint-cost vectors are resEectively defined as
£; and ¢;, having entries of the form Zt,h and ¢ j, for all t € [T] and h € [H]~!. Clearly, £, and ¢; both have
at most H non-zero entries. Unlike Eqn. 9] we cannot fully compute the sub-gradient. Hence, we resort to
a biased estimate as follows:

v, = {Wgt +¢'(G)wer, if Cp >0, 58)

w[h if Ct S O7

where C; = Zth_Ol c.n(Sn,an) is the observed constraint violation in the ¢-th episode. Let b, denote the bias
vector of V; which is given by: by = E;[V;] — V;. Performing similar calculations as in Appendix it can
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be shown for b; and @t (as given in Eqn. that,

- wVH
bl < wE +w¢' () (L + VE/AL), and [V < 5= (14 ¢/(6)).
t
Thus, implying by the triangle inequality for norms:
[E2a]| < 1oull + 190
<wL 4wy (G) (L + VH/A) +wL(1+¢'(G)). (59)

We chalked the Bandit AdaGrad with Unknown Transition (BAG-U) algorithm for this section. It is formally
depicted in Algorithm @, and the COMP-UOB method is as given in Algorithm 3 of |Jin et al| (2020). By the
convexity of Ji,, (for all 7 > 1), the surrogate regret Regret;(p*) could be decomposed into four terms as:

t
Regreti(p*) = Y fir(pr) — - (p")

=1
t t
< </p\T_p*7VT>+Z<pT_b\T7V >
=1 =1
Reg Error Biasl Bias2
t t t t
S Z<PT—P*7§T>+Z<PT—ﬁT7V >+Z<ﬁ‘rav §T>+Z<p*767_v‘r>7 (60)
=1 =1 =1 =1

where “Reg” is simply bounded by the regret of AdaGrad used with @t (as presented in Eqn. , “Error”
is the error of using p; to approximate p;, “Biasl” measures how much V, underestimates V. weighted by
pr, and “Bias2” measures the error of V. relative to V, when weighted by p*.

With probability 1 — § and with A; = wvH, we have the following upper bound on Regret}(p*) (see
Appendix for detailed calculations):

Regret;(p*) < 2DVt (1 + ¢'(()) + wLHS [ Atln (S(SAt> (14 ¢'(¢)

W\/W LWl —wLt- G (G) — (G

+wH ln% +we' () -Hln% —wt - ' (()- (61)

+

Substituting Eqn. [61]into the regret decomposition inequality of Eqn. and choosing ¢(¢;) = exp(6¢;) — 1,
we have:

exp(6¢;) — 1 + Regret, (p*) < 2DVt (14 0 exp(0¢;)) + wLHS [ Atln <55At) (14 0exp(6¢))

N 2(1 + 96\/%p(9€t)) \/m —wL —wLt - 0 exp(0¢;)

—t-0exp(6¢;) + len% +wlexp(6¢;) - Hln % — wt - Gexp(0¢;).
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Grouping all the terms involving exp(6(;) into one side in the above expression,

20

VA /o)

Regret, (p*) < exp(0(:) (92D\[ +0wLHS,[Atln (SAt>

H A
—Gth—Gt—i—Olena—Hwt—l) + 2DVt +wLHS, | Atln (55t>

2 H
+ —=+/2tIn(2/9) —wL—&-len? +1

vVH
SAt 2 H
— Regret,(p*) < 2DVt +wLHS, | Atln \F\/Qtln (2/0) — wL—i—leng +1
+ exp(6G,) (92Df +OWLHS, [ Atln (S At) jﬂ 51T (2/9)
+ O0wH ln% - 1). (62)

Let m(t) = 2D/t + wLHS |/ Atln (22%) + %\/Qtln (2/6) + wHIn 2 for all ¢ € [T]. We can rewrite the
regret in Eqn. |62(as: Regret,(p*) < 2DVt +wLHS/AtIn (22%) 4 ﬁ\/% In(2/6) —wL +wHIn & +1+

exp(6¢;) (Am(t) — 1). Thus, having any 0 < m(lT), we can ensure that the regret is nicely bounded with
probability at least 1 — d, as given below:

A 2 H
Regret,(p*) < 2DVt +wLHS, [ Atln (S t) f\/2tln(2/6)—wL+lenF+1 Vte [T]. (63)

Selecting any 6 < m(T), and combining Regret, (p*) > f% with Eqn. we obtain an upper bound on (,
for any ¢ € [T], with probability at least 1 — ¢ as follows:

N |+

2DVt +wLHS, | Atln (SAt> }\/Qtln@/é)—wL+wH1n%+l+exp(0Ct)( m(t) —1) > —

— exp(0¢;) (1 —Om(t)) <1+2DVt+wLHS[Atln (SAt) 2 \/2tln(2/6)—wL+len£+f

VH 5 2
142DVt +wLHS/Atln (22%) + 2\ /2tIn (2/0) —wL +wHIn &4 4 £
s exp(80) < (5) VH 5 2
1 —6m(t)
1 1+42DVt+wLHS\/Atln (22) + 2 ,/2¢In (2/6) — wL + wH In £
= G<gh 1—5/5()

— (7 <4DVT + 2wLHS| AT In (S‘;T> + %«/2T1n(2/6) + 2len§

x In <2 +4DVT + 2wLHS | AT In (*S?T> + \;%\/QT In(2/6) — 2wL + 2wH1n% + T) , (64)
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where the last line is obtained by choosing 6 = ﬁ(T) Putting w = ﬁ, L <+/SHA,and D = +/SHA into
Eqn. [63| we have V¢t € [T]:

S At 2 1 H H
<2 — Htl 2tIn (2 In—+1
Regret,(p*) <2V S + S tn( ) 7E tln (2/6) — 2\/m+25HA n-—+

= Regret,(p*) <O (\/ SHAt+ /SHtIn (5?%) +4/ “nl(;/é)) . (65)

Putting w = ﬁ, L <+SHA, and D = +vSHA into Eqn. we obtain:

¢r < 4VSHAT + \/SHTln (SAT> b AT )8 + H

8 VH SA
SATY 4 . L x
Xln<2+4m+\/SHT1“<a>+ﬁ 2T1n<2/6>—m+&41n6w>
S CT§O<\/W+\/SHT1D(S?T>+ T1n132/5)
n<m+\/SHTln(S?T> + Tlr}SQ/(S)JrT)). (66)

Scaling back Eqn. and Eqn. by a factor of % respectively attains an upper bound for Eqn. and
Eqn. We formally state the final bounds in the theorem below.

Theorem 5. We set the parameters 6 € (0,1), 6 = ﬁ(T)’ w= ﬁ, L<+SHA, D=+SHA, and choose
¢((r) = exp(0¢r) — 1. Also, we have m(T) = 2DVT +wLHS /AT In (24%) + \/Q—H\/2Tln (2/8) +wHIn 2.
Having adversarial loss and constraints, under bandit feedback, and unknown transition, the expected regret

and the expected cumulative constraint violation (hard) of BAG-U (in Algorithm[6) are bounded, vt € [T},
with probability at least 1 — § as:

E[R] <O ((SHA)SﬁJr SHA|SHtn (i‘“) + SHA\/“H(;/(S)> , and (67)

Tn (2/3)
H

x In <(SHA)3JT+ SHA\/SHTln (5?T> +SHA % + T) ) (68)

3
E[Zr] <O ((SHA)zx/T + SHA\/SHT In (S?T) +SHA

All of our proposed algorithms, i.e., FAG-K, BAG-K, FAG-U, and BAG-U, perform only one Euclidean projection
onto € per episode. Since 2 is a simple polytope (as given in Definition , the projection amounts to
solving a sparse quadratic program with linear flow constraints. In contrast, primal-dual methods (Stradi
et al.l 2024azb 2025a; [Miller et al., |2024) must maintain dual variables and update them at each step,
which requires two expensive coupled updates (e.g., adding regularizers and using approximations to the
Lagrangian). Hence, the computational cost of our updates is lower: one first-order gradient step followed
by a single projection, without dependence on Slater-type conditions or instance-dependent feasible policies.

6 Experimental Evaluations

We evaluate the performance of FAG-K, BAG-K, FAG-U, and BAG-U in solving CMDP instances. The experi-
ments have been designed as follows: First, a loop-free, finite-horizon (i.e., each episode has length H), and
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Figure 3: Comparing the empirical regret and empirical violation of BAG-U with its corresponding theoretical
values on an adversarial CMDP instance with S = 4, A = 3, H = 4. The empirical regret and violation
curves have been plotted by averaging over five independent runs (with different seeds) and a 95% confidence
interval. The solid red line represents the worst-case theoretical regret and hard violation values, while the
dashed blue line is for the empirical ones.
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Figure 4: Theoretical regret (and violation) vs empirical regret (and violation) of BAG-U on a CMDP with
S =5, A=4, H=>5. The empirical curves are averaged over five runs with a 95% confidence interval.

episodic CMDP is created by exactly following the setup described in Section Second, each algorithm is
implemented to solve the CMDP, tracking the cumulative regret and cumulative hard constraint violation
in the process. We term them empirical regret and empirical violation, i.e., the actual cumulative regret and
actual cumulative hard violation obtained by the learning algorithm while solving a CMDP. On the other

hand, theoretical regret and theoretical violation refer to the worst-case bounds of the algorithms as provided
in Theorem 2H5l

All the algorithms have been run for T" = 50000 episodes in every experiment. The adversarial losses and
constraints are generated via an Online Gradient Descent (OGD) algorithm (Orabonal, [2025)), which takes as
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Figure 5: Theoretical regret (and violation) vs empirical regret (and violation) of BAG-U on a CMDP with
S =8, A=6, H=06. The empirical curves are averaged over five runs with a 95% confidence interval.

a gradient a vector that contains a fixed initial vector of losses (or constraints) and the negative product of
the policy played at that round for each state. Each algorithm has been executed five times independently
with different seeds, and we report the average over these runs together with 95% confidence intervals. The
confidence parameter § is set to 0.01 for all experiments. Moreover, all the algorithms have been tested on
three CMDP instances, i.e., S=4, A=3,H=4;5S=5 A=4, H=>5;and S =8, A= 06, H= 6. However,
we only present the evaluation results of BAG-U in this section (as it is the solution to CQ), while the results
for FAG-K, BAG-K, and FAG-U have been deferred to Appendix [A.9] Appendix [A10] and Appendix [A11}

Figure [3] compares the theoretical regret and violation with the empirical regret and violation of the BAG-U
algorithm that solved the adversarial CMDP with S =4, A =3, H = 4. The solid red line represents the
worst-case theoretical regret and hard-violation values of BAG-U, while the dashed blue line represents the
empirical ones. The x-axis captures the number of episodes, and the y-axis represents the cumulative regret
R: and the cumulative violation Z;. Similarly, the plots in Figure [f] and Figure [5] compare the theoretical
and empirical performance of BAG-U in respectively solving the adversarial CMDP with S =5, A=4, H =5
and S =8, A=6, H=06.

The plots in Figure [3] Figure |4l and Figure [5| show that the empirical regret (blue) grows sublinearly and
stays consistently below the theoretical envelope (red). It confirms that the actual regret incurred by BAG-U
is not only sublinear but also significantly lower than the worst-case bound provided in Theorem Bl The
observed O(\/T ) trend validates the theoretical regret guarantee even under the most challenging conditions:
adversarial losses and constraints, bandit feedback, and unknown transitions. Similarly, the empirical cumu-
lative hard violation (blue) remains sublinear and well below the theoretical curve (red). As the empirical
violation is consistently much less than the theoretical upper bound, BAG-U effectively controls constraint
violations in practice, even without access to a strictly feasible policy or Slater’s condition. The plots in
Appendix [A79] Appendix [A710] and Appendix [ATT] clearly indicate that the observed behavior is consis-
tent: each algorithm achieves sublinear empirical regret and sublinear empirical violation that are orders of
magnitude smaller than their corresponding theoretical bounds.

Visual interpretation of sublinear growth: Note that the empirical curves in Figure [3] Figure [} and
Figure p| might appear to rise in an approximately straight line over the plotted range. This is expected
because a /T function (which is sublinear) can look nearly linear on a standard scale, especially over a
sufficient number of episodes, i.e., T = 50,000. The critical observation is that the empirical curves remain
consistently below the theoretical O( ﬂ) limit. Since the red curve itself represents a sublinear upper bound,
the empirical performance is necessarily sublinear as well. For clarity, one could plot the same data on a
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Table 2: Listing the regret and hard violation bounds of all four algorithms. We use the classic (5() notation,
which ignores all the logarithmic factors.

Transition | Feedback | Regret Bound | Hard Violation Bound
FAG-K Known Full O(SHAVT) O(SHAVT)
BAG-K Known Bandit (’)(SHA\/T) 6(SHA\/T)
FAG-U Unknown Full O(SHAVT) O(SHAVT)
BAG-U Unknown Bandit O(S2H2 A3 T) O(S2H2 A T)

7 Optimality of the bounds

Minimax Optimality: It is stated in|Jin et al.| (2018) and |Jin et al.| (2020)) that the regret of any algorithm
for solving episodic unconstrained adversarial MDPs with full feedback should be at least Q(vV H2SAT).
To the best of our knowledge, no regret and violation lower bounds are known for episodic adversarial
CMDPs. For COCO with adversarial constraints, a lower bound of Q(v/T) exists for both regret and
hard constraint violation (Sinha & Vaze, [2024). Owing to all the aforementioned results from different
settings, we believe that the O(v/T) regret and violation bounds in our adversarial CMDPs (O(v/T) regret
for known transitions) are tight and cannot be improved in the minimax sense. This optimality holds across
all four feedback /transition settings we address, making ours the first comprehensive set of minimax-optimal
algorithms for adversarial CMDPs with hard cumulative constraint violation, without Slater’s condition,
and without access to a strictly feasible policy.

Constant Factors: Like any other well-known algorithm in the vast expanse of online learning in finite-
horizon episodic CMDPs, the effect of the constants (i.e., every variable apart from T) can matter in practice.
In Table[2] we re-state all our derived bounds as given in Theorem [2] Theorem [3] Theorem [d] and Theorem [5
The results of |(Germano et al.[(2023]) and [Stradi et al.| (2024b) are not directly comparable with ours because,
although they consider adversarial loss and constraints, their (5(\/T ) bounds are reliant on the slackness
parameter of Slater’s condition. However, for the sake of a loose comparison, we mention that both works
have a SH2A factor in their bounds. As stated in Theorem 5.1 of |Zhu et al| (2025), constant factors of
S2AH® and H3+/SA are present both in the regret and violation bounds. Given our challenging problem
setup, the gaps we close, and the optimal bounds we derive without assumptions, we argue that the constants
of SHA and S2H3 A% in our attained results might not be optimal, but are not too bad either. In the light
of this statement, we leave an intriguing open problem as a future work: improving the SHA and S H3 A3
dependence, respectively, for known and unknown transitions in fully adversarial CMDPs.

8 Conclusion

Without access to any strictly feasible policy and Slater’s condition, this is the first work to tackle and
solve the hallowed problem of online learning in finite-horizon episodic CMDPs under adversarial losses and
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constraints, bandit feedback, and unknown transition dynamics. Our bounds ensure the learner achieves
near-optimal loss (i.e., O(v/T) regret) while keeping total hard violations bounded by O(v/T). In practice,
this means safe exploration in adversarial environments, unlike soft violation, which allows compensatory
negatives. By leveraging a reduction to COCO and building on the techniques introduced by the seminal work
of Sinha & Vaze| (2024)), we developed simple and efficient algorithms that require only a single Euclidean
projection per episode. Our approach achieves optimal regret and hard cumulative constraint violation
bounds across all four combinations of known-unknown transitions and full-bandit feedback settings — without
relying on Slater’s condition or any knowledge of a strictly feasible policy. In other words, we make no
additional assumptions except for the standard assumptions in the COCO literature.

Our results not only close several theoretical gaps in the literature but also provide a unified, pedagogically
valuable framework for understanding the connections between online learning in CMDPs and COCO. The
construction of biased estimators for bandit feedback settings may also be of independent interest for future
research and educational purposes. Moreover, we validate our theoretical results with rigorously conducted
experiments. This work lays the foundation for more practical and robust constrained reinforcement learn-
ing systems, opening new avenues for exploring the interplay among online learning, constrained convex
optimization, and adversarial CMDPs.

9 Future Directions

One can view our work in the tabular setting, and an interesting idea is extending our guarantees to large
state-action spaces, a typical characteristic of deep RL. Recent frameworks for uncertainty propagation in
model-free RL, such as Wasserstein Actor-Critic (Likmeta et al. 2023]) and others (Metelli et al.| 2019 [Roy]|
, demonstrate that posterior estimations can be effectively scaled into large state-action spaces.
Integrating such uncertainty-propagation mechanisms into our algorithms could bridge the gap between
theoretical safety guarantees and practical high-dimensional applications.

Many interesting works couple function approximation with MDPs and CMDPs. For example, in adversarial
MDPs with linear function approximation , refined regret bounds have been derived that
align with our 6(\/T ) rates, enabling linear projections over feature spaces instead of full tabular represen-
tations. For more general function approximation, safe representation learning in CMDPs has been explored
(Ding & Lavaeli [2023), showing how embeddings can be learned to satisfy constraints episodically. All these
strategies could augment our algorithms in deep RL settings, such as Soft Actor-Critic (SAC) (Haarnoja
, by embedding adversarial robustness into the critic network.

It is worth noting that “hard constraint” is sometimes interpreted more stringently as requiring trajectory-
level or per-episode safety guarantees. For instance, ensuring that with high probability, each individual
trajectory avoids catastrophic events (e.g., a self-driving car never collides). Our notion of cumulative hard
violation, while still much stronger than soft violation, is an aggregate measure over the entire learning
process. Although our algorithms do not provide high-probability per-trajectory safety, they constitute a
foundational advance in the most challenging adversarial setting without additional assumptions such as
Slater’s condition. Obtaining trajectory-wise guarantees under adversarial losses and constraints remains an
interesting and important direction for future work.

As already mentioned, for both known and unknown transitions in fully adversarial CMDPs, improving our
polynomial dependencies on S, H, and A is an appealing future research. While we handle one constraint,
handling multiple constraints per episode with possibly conflicting requirements is an important practical
challenge and is also an attractive extension. Lastly, developing model-free variants of our algorithms that
do not require maintaining a confidence set for the transitions would be valuable.

Broader Impact Statement

We propose efficient algorithms for constrained online learning in CMDPs that achieve optimal regret and
hard violation bounds in adversarial environments. Thus, this strengthens the theoretical foundations of
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safe decision-making in CMDPs. One can apply our algorithms to domains such as healthcare, autonomous
driving, and resource allocation, where respecting safety and budget constraints is critical.

Like any progress in adversarial learning, these methods could be misused in settings such as manipulative
recommendation systems or exploitative bidding strategies. The contributions of this work are primarily
theoretical and not intended for direct deployment in safety-critical systems without multiple layers of safe-
guards. Responsible application requires rigorous testing, domain-specific validation, and ethical oversight.
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A Appendix

Firstly, we present all omitted proofs, calculations, and algorithmic descriptions in the same order as they
appear in the main paper. We frequently make use of some algebraic inequalities throughout the section:
(1) (a +b)? < 2(a® +b?), Ya,b € R; (2) Va+b < a+ Vb, Ya,b >0, (3) (a+ b+ c)? < 3(a® + b + c2),
Va,b,c € R; and (4) Va+ b+ ¢ < /a+ Vb + /¢, Va,b,c > 0.

From the definition of ¢(), we observe that ¢'(+) is non-decreasing. Additionally, we have 7, > 0 due to
the clipping and scaling of the constraints, which implies (; < (o < -+ < (4, for any ¢ > 1. Therefore,
we obtain two relations, which we also use throughout this section: 1) S>°_ ¢/(¢;) < t-¢'(¢); and 2)
S (G2 < t-¢'(¢)?. Lastly, we present the experimental results of FAG-K, BAG-K, and FAG-U.

A.1 Upper bound of the surrogate regret in Section [4.1]

We make use of Eqn. 26] and also of Eqn. 29] from Theorem [I]

t

Regret](p*) < V2D, | 3 IV |
T=1

t

<v2D, | > (WL)? (1+¢'(¢r))

T=1

2

t

= V2DwL, | Y (1 +¢(()°

T=1

t

<V2DwL 2(1+¢'(¢r)?)

T=1

t
< 2DwLVE+2DwL, | Y ¢/ ((r)?

T=1

< 2DWIVE(1+ ¢ (&) -

A.2 Proof of Lemma[]in Section

The random variable 1,(s, a) is Bernoulli with success probability p:(s,a). We show via direct calculations,

lip(s,a)
t (s, a) + Ay
_ L (s, a)
pe(s,a) + Ay
lip(s,a)
= S,a).
pt(s,a)—f—Atpt( )

E¢[ls 1 (s,a)] = E 1,(s, a)

E; [1:(s,a)]
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Also, we can show that

Uy n(s,a)?
(pe(s,a) + A¢)?
pt(57a)
(pe(s,a) + Ag)?

pi(s,a) + A¢
= (pels,a) + Ay)?
1
= @)t A

Ee[ln(s,0)?] = B 1,(s,a)

Similarly, we can easily prove that Ey[¢, (s, a)] = -89 5 (5 ) and Ey[Gn(s, a)?]

1
pi(s,a)+Aq Pt < pe(s,a)+As "

A.3 Proof of Lemma [2]in Section

By direct calculations, we have:

Et’h(s, a) - Et [Zt,h(& a’)]

lp(s,a)
pt(s7 a) + Apt<87 a’)

= lyp(s,0) (1 _ Pt(sva))

=l n(s,a) —

pt (Sa a) + A
Al (s, a)
B pt(sv a) +A
which is always non-negative and £, (s, a) — E, [Zt,h(s,a)] < %(Z’)a). Proceeding similarly, we also have:
0 < crn(s,a) — By[Gyn(s, a)] < el

A.4 Bounding the norm of the bias of the gradient estimate in Section [4.2]

Recall that Zt and ¢; are biased estimators of £; and ¢;. It is clear from Eqn. and Eqn. that the bias
vector b; should be given by:

by = E[V¢] -V
= WEy[€;] + @' (C)wEe[C: - 1ie,>01] — wli — @' (C)wer - Li(p, we,)>0}
= w(Ee[le] — &) + w' () (Eel€r - Lic,>03] — €t - 1{(p, wer)>0})-

where 1ic,50p and 1y, we,)>0p are equal to 1 if C; > 0 and (p;,wey) > 0 respectively (0 otherwise). By the
triangle inequality for norms, we have:

[B2.e]

—_—~
lbell < HW(E‘EW —4) H + [|wid! (G) (Beler - Lie, >0 — € Ligprweny>01) | -

[1B¢.cll
= [lbe]| < [[br.ell + [lbr.cll - (69)
) ~ 2 ~ 2
Observe that [|b,¢||” = Hw(Et[lt] —Zt)H = w? H]Et[lft] —ftH . Since the squared norm is the sum of the

squared differences over all the (s,a, h) components, we get from Lemma

|2 -] = X @)~ b))’ = (A?wt,h(s,a)?

(o) () pe(s,a) + Ay)
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Note that the losses are bounded, i.e., ¢; ,(s,a) € [0,1], for all ¢t € [T] and for all h € [H]~!. Also, in the
earlier expression, the denominator is at least A?, since p;(s,a) > 0. Therefore, we have:

—~ 2 A2 12
[EAZEA IS So= X 1ssHA
(s,a,h) (s,a,h)
— |lbrel| < wVSHA. (70)

We will now upper bound the term ||b; ¢|| in Eqn. Decomposing b; . without the norm as follows:

bt7c = LU(p/(C )(Et[ 1{C >0}] ’ 1{(Pt,wct>>0})
= wy'(G) (Beler - Lie, 03] — €t - L{(p, wey>0r + Eel€r - Ly weny>03] — Eel€ - 1((p, weny>01])

— W' (Q) ((Et[a] ) Lo won0) + Edr - (Liio0) 1{<pt,wct>>0}>]).

Applying the triangle inequality on the norm of b; ,

bzl < we'(Cr) (H(Et (€] — ) - 1{(p,weny>or || + ||Ee€r - (Lic,>00 = Li(ppwer)>0}) H)
We separately bound each term inside the parentheses. For the first term, we have
[(Eeled] —er) - 1, weny>03 || < NEefée] = eell - 1o, wey>0 < [Eeféd] — el -
Again from Lemma [2{ and using the fact that c; p(s,a) € [—1,1], for all ¢ € [T] and for all h € [H]™!,

B, [e] — e
= Z (Et[8t7h(s,a)] - ct,h(s,a))Q

(s,a,h)
-y Aden(sa)
(s,a,h) (Pt(S, CL) + At)2
A
<Y =3 1<5H4
(s,a,h) t (s,a,h)
= ||Eifer] — e < VSHA. (71)

On applying Jensen’s inequality to the second term, we obtain:
[ (eor = Lol < Be| [ (Leisor = Ligomenson)]

<E, [natn (Lgersoy 1{<pt,wct>>0}>} <E, [nal].

Bounding the square L2-norm of the sparse vector ¢; (i.e., having only H non-zero entries),

H—-1 c S(Z 2
e ( e ) 14(s,a)

P (s,a) + A¢
B = h(s,a)?
= (pe(s,a) + Ay)?
YA Y
2477 T N A
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The final bound on the second term of the parentheses is

|Eelé: - (1gc,>0p —

Using Eqn. [71] and Eqn. [72] we arrive at

1 prawensop)l]| < Eo [@n] < vH (72)
[becll < we'(¢) (V SHA + \/H> . (73)

Putting Eqn. [70land Eqn. [73]in Eqn. we have the final upper bound on the L?-norm of the bias as

[bt]] < wVSHA+we (Ct)(v A+ f) < wL + we'(¢) <L+ ﬁ)

A, (74)

A.5 Upper bounding the component terms in Eqn. [40] of Section [4.2]

We will use the Cauchy-Schwarz inequality,

which is stated as: for all vectors p,q € R, [(p,q)| < |p|| |lql|-

Setting A, = wV/H, for all 7 > 1, and from

T, < V2D

Eqn. we have:

> <wL +w! (Gr) (L

A

+ ﬁ) +wL(1+ w’(g})))

>3 <w2L2 + (W’(CT) (L

+ F)) +w2L?(1+ so’(CT))2>

R I

NGl
A

)) w22 (14 ¢'((r))”

< DwIV6t + V6D

M~

Il
_

T

(WL () + ¢'(¢))? + DwLV6

t

S (1+¢(¢)”

T=1

t

< DwIN6t + V6D Z wLy' (¢

+

t

S+ ()

T=1

#'(¢:))* + DwLV6

< DwIV6t + WDJ Zw2L2

t
< DwIV6t + DwLV12, | Y ¢'(¢r)?
T=1

)2+ ¢/ ()% + DwLv/12 Zl—i—g& (¢r)?

t t
+DV12,| Y ¢'(G)? + DwIv12t + DwIv12, | > ¢'((r)?
T=1 T=1
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On putting w = = 5 and employing the non-decreasing property of ¢'(-),

7LD
£ n Q ¢ (G) + DVI2t- ' (&) + \/ﬁ F ¥ (Gr)
=12t Q' (G) + £ + Q + DV12t - ¢/ (&). (75)

By the Cauchy-Schwarz inequality, [(p- — p*,b:)| < |lpr — p*|| - [|b-]] < D||b;||. Therefore, we have the
following upper bound on 75:

Ty =Y (pr — p*,br)
T=1

t

<D bl
T=1
t

< DZwL +w¢'(¢r) (L + \//Xﬁ>
T=1 T

¢'(

<Dth+DwLZ§0 ¢r) +Dw\FZ

T=1

< DwIt + DwL Z @)+ D Z ¢'(¢r)

©'(Gt) + Dt - ' (Cr)- (76)

IN
N | =+

+

N+

A.6 Bounding the term “Error” in Eqn. [50| of Section [5.]

From Eqn. we have:

t

Error = Z(pT — Py Vo).

=1

Since || V|| < wL(1 +¢'(¢;)), and by the Cauchy-Schwarz inequality,

t
Error < Z lor = oIl - V-l

T=1
t
< WLZ ”p'r - ﬁ'r” : (1 + (P/(C‘r))'
T=1

Since p, is obtained from a transition function in the confidence set P,  (where i, is the epoch index for
episode 7), Lemma [3[ implies that with probability at least 1 — 64:

S At
S s — 70l < S, Atin ( ‘ )
=1

where ||-||; is the L'-norm. Owing to the fact that ||p, — p-|| < ||pr — pr||;, We get:

SAt
Sl 7l = Sl el < 15y e (521,
=1 T=1

Combining all the above results, we have the final bound on “Error” as:

Error < wLHS,|Atln <S:§%) 1+ ¢'(&))- (77)
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A.7 Upper bound of the surrogate regret in Section [5.1]
From Eqn. [50[ and Eqn. we see:

Reg Error

t t

Regret; (p*) < Z<ﬁ'f —p5 Vs Z<p —pr, Vi)

T=1

p* V) +
< V2D, va 12 +wLHs,/At1 ) (1+¢'(¢)

t
\IZ (1+¢'(¢) +wLHS Atln(sglt> (1+¢' (&)
T=1

= 2DwIVt 4 2DwL, ng )2 +wLHS, | Atln (55 1+ ¢'(¢)
, S At ,
< 2DwIVt + 2DwINt - ¢/ (¢;) + wLHS | Atln — (T4 ¢'(G)

= (1+¢(¢) <2DwL\/{t +wLHS,[Atln <55At>> . (78)

A.8 Bounding the components of Eqn. [60]in Section [5.2]

We set Ay = wy/H for all t € [T, to bound each component of Eqn. First, we bound the term “Reg”:

t

Reg = Y (pr —p*.V,) < V2D

T=1

T=1

_ V2HDw i
> +¢(G)

H T=1

t
> (1+¢'(¢)

T=1

é
S

t

< DV2 2(1+¢'(¢)?)

T=1

<2DVE+2D, | ¢'(¢r)?
T=1

< 2DVE+2DVE- ¢ ()
=2DVE(1+¢'(¢r)) - (79)

40



Under review as submission to TMLR

We have the bound on “Error” from Eqn. [77] as,

t

~ S At
Error = Z(pT —pry Vo) <wLHS | Atln (5) (14 ¢(C)) (80)
T=1
From Section we know that ||b:| = HEt V] — VtH < wL+w¢'(() (L + VH/At). Now, we upper bound
the term “Biasl”,
¢
Biasl = Z(f)T, VvV, — §T>
T=1
¢

t
= Z<ﬁ7’7vr Z PT, ‘r 7— VT>
T=1
pT; T T

—

=
t

= Z(Z)\T,ET[ Z

~V,). (81)

T T>

It is easily seen that Tp = Zi:1<ﬁT,]ET V.]-V,) = Zi:1<ﬁ7,b7>. By the Cauchy-Schwarz inequality:
¢
T=1
t
<> o]
=1

<wL+w(L+VH/A)Y ¢(¢)

nM~

—~ =

<wL+wt(L+VH/A)g!
Finally, we have on putting A, = wv/H for all t € [T] that:
Ty <wL+wLt-¢'(G) +t-¢'(G)-

Gt)-

We define a random variable X, = (p,,E.[V,] — V) for all 7 € [t]. Here, p, is F,_i-measurable and
E.[] = E[ | Fr_1] is the conditional expectation. By construction, E,[X,] = 0, so {X,}!_; is a martingale
difference sequence adapted to the filtration {F, }. For each 7, we have | X ;| < n,, where n, = i—“: (1+g0’(CT)).

Considering € = \/ 21n (2/6) - ZT . n2, where 6 € (0,1), and applying the Azuma-Hoeffding inequality, we

2w(1+<p ()] )
Ay

get: T7 < 2t1n (2/4). Therefore, we have the following upper bound on “Biasl”:

2(1+¢'(G))
Biasl < ————>"%4/2tIn(2/4) — wL — wLt -’ —t- ' (). 82
< E /o) PG~ (<) (52
Before proceeding to bound the term “Bias2”, we state and prove the following lemma, which is a slightly
different form of Lemma 1 from [Neu| (2015). The proof draws inspiration from the techniques given in the
proof of Lemma 1 of |Neu| (2015).
Lemma 4. For allt € [T] and for all h € [H]™Y, let {ay 5} be a sequence such that each ayp, € [0,2A,]5*A
is F¢-measurable. Then, with probability at least 1 — §, we get:

H
Z Z an(s,a (ct n(s,a) — pi(s, a)ct’h(s,a)> <Hln—, and
p 1(sah) uy(s,a) d

Z > auntod) (Bas.o) = 250 0 0)) < Hn

t=1 (s,a,h) ut(&a)
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Proof. Recall <In(1+ x) for all x > 0. For any pair (s,a) and let A = 2A;, we get:

1+*
—~ Ct h(sa CL)
— e E 4
Cn(s,0) us(s,a) + Ay (s, a)
ceh(s,a)

1,(s,a)

T w(s,a) + Ay (s, a)
1t(s,a) 2Act n(s,a)

u(s,a)

A 1+Acthsa)

ue(s,a)

1 . Acy (s, a)1i(s,a)

IN

For all h € [H]™!, let us have

Jt,h = Z O‘t,h(saa)/c\tﬁ(s’a)? and

(s,a,h)
s,a
Jen = Z g p(s,a) zii&a; cen(s, a).
(s,a,h)
By Eqn. we have:
~ A 1
E; [GXP(Jt,h)] < E; |exp Z L’hf’a) In (1 + Ct,hfj,(j)@t(&@)
L (s,a,h) AN
<E, H (1 N at7h(s,a)ct7h(s,a)lt(s,a))
ui(s, a)
_(s,a,h)
_E, |14 Z apn(s,a)en(s, a)li(s,a)
(s,a,h) e h(s a)

=1+ Jt,h S eXP(Jt,h)-

The second inequality is because aln(1 + b) < In(1 + ab) for all b > —1 and a € [0, 1], and we apply it with
a= O"hT(sa) which is in [0, 1] by the condition ay (s, a) € [0,2A;]. The first arises since 1,(s,a)1,(s’,a’) =0
for any s # s’ or a # a/. On using Markov’s inequality, we get:

T o 5 r T
ZJth*Jth >1H<6>] SEE exp <Z(Jt,h<]t,h)>‘|
=1 L =1
5 r -1 R
i -E |exp < (Jen — Jt,h)) Er {GXP (JT,h - JT,h)]]
L =1
5 r -1
< Vi -E |exp < (Jen — Jt,h))]
L =1
1
< < = 4
<<t N

On applying the union bound over all h € [H]~!, we have the following holds with probability at least 1 —,

T puls, ) H-1 T I
> > aalsa) (a<s,a> - Mct,h<s7a>) =2 D (Jon=Jun) < Hln .
t=1 (s,a,h) RS2 h=0 t=1

Similarly, we can also show that Zthl > (s.am) Q. (S, @) (Zt,h(s, a) — Z:E‘z Z%K n(s, )) <HhZ O
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Recall the definitions of %t and V; from Section and Section

% . wzt —+ QOI(Ct)OJ/C\t, if Ct > 0, d Vv, — wﬂt =+ <p’(§t)wct, if (ﬁt,wct> > 0,
¢ wét, if Ct < 0, ¢ wﬁt, if <ﬁt,wct> < 0.
We perform the decomposition below for “Bias2”:

t

Bias2 = Z(p*7 V,—V.)

T=1

_ZP Wl + ¢ (G s - L 50y —wle =@ (Cwer - 1y o)

=1

Ly

t

(", l —£;) +Wz:1<p (& )(p*ser - lic,>0y — 1{<a’wct>>0}>' (85)

||
Mﬁ

3
I
=

Lo
Note that p*(s,a) € [0,1] C [0 2A;] for A; > 1/2. Since % < 1 and £, ;(s,a) € [0,1], the term
2 (s, P (5,0 (Z’Ei‘; 1) ) < 0. Thus,

Wty < Y s (z%(s a) - pf(s’a)@h(s,a)).

(e ur(s,a)

Using Lemma 4] with o 5 (s,a) = p*(s,a), we have with probability at least 1 — ¢:

L, = wZ(p*,?T —¢,)< wz Z p*(s,a) <l2,h(s7a) _ prls,a) éT,h(&a)) < len%. (86)

ur(s,a)

We split Ly = w Zj—:l ©' (¢ )(p* € - 1ie,>0p —Cr - Lo wct>>0}> into two components as:

t
Ly =w <Z<P ) (p*, —cr)- 1{Ct>0}> - ZSD/(CTMP*,CT : (1{(?¢,wct)>0} - 1{Ct>0})>> . (87)

T=1

First Term of Ly: Again, as pT% : g <1, so:

e e = Y ) (@ - 2000 0).

& ur(s,a)

With probability at least 1 — §, on using Lemma |4l we have:
t t

D PGt e —c Z
T=1 T=1

Second Term of Lo: Let F = =15 wens0y — Hes0}- Note that |F.| < 1 for all 7. Additionally, since p*
is a probability distribution and each component of ¢, lies in [—1,1], we have |[(p*,e;)| < 1. Therefore,

S e (15 om0y — s )| € Eht @G - o) [Fr < X0 @/(6) <t ¢'(G).

Hence, we have an upper bound on Lo as

Z *(s,a) (ET,h(s,a) - pr(s,0) cnh(s,a)) < ¢ (&) -Hln%. (88)

eyt ur(s,a)

H
Ly Swy'(G)-Hln 5wt @' (Ce)- (89)
Combining Eqn. [86] and Eqn. [89] we obtain an upper bound on “Bias2”:
. H / H /
Bias2 < wH In 5 +we'(¢) - Hin 5 wt - ' (Cr)- (90)
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A.9 Results of FAG-K
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Figure 6: Theoretical regret (and violation) vs empirical regret (and violation) of FAG-K on a CMDP with
S =4, A= 3, H=4. The empirical curves are averaged over five runs with a 95% confidence interval.
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Figure 7: Theoretical regret (and violation) vs empirical regret (and violation) of FAG-K on a CMDP with
S =5, A=4, H=>5. The empirical curves are averaged over five runs with a 95% confidence interval.
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Figure 8: Theoretical regret (and violation) vs empirical regret (and violation) of FAG-K on a CMDP with
S =8, A=6, H=06. The empirical curves are averaged over five runs with a 95% confidence interval.
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A.10 Results of BAG-K
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Figure 9: Theoretical regret (and violation) vs empirical regret (and violation) of BAG-K on a CMDP with
S =4, A= 3, H=4. The empirical curves are averaged over five runs with a 95% confidence interval.
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Figure 10: Theoretical regret (and violation) vs empirical regret (and violation) of BAG-K on a CMDP with
S =5, A=4, H=>5. The empirical curves are averaged over five runs with a 95% confidence interval.
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Figure 11: Theoretical regret (and violation) vs empirical regret (and violation) of BAG-K on a CMDP with
S =8, A=6, H=06. The empirical curves are averaged over five runs with a 95% confidence interval.
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A.11 Results of FAG-U
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Figure 12: Theoretical regret (and violation) vs empirical regret (and violation) of FAG-U on a CMDP with
S =4, A= 3, H=4. The empirical curves are averaged over five runs with a 95% confidence interval.
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Figure 13: Theoretical regret (and violation) vs empirical regret (and violation) of FAG-U on a CMDP with
S =5, A=4, H=>5. The empirical curves are averaged over five runs with a 95% confidence interval.
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Figure 14: Theoretical regret (and violation) vs empirical regret (and violation) of FAG-U on a CMDP with
S =8, A=6, H=06. The empirical curves are averaged over five runs with a 95% confidence interval.
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