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In this paper, we present a new framework for three-dimensional (3D) reconstruction of multiple rigid
objects from dynamic scenes. Conventional 3D reconstruction from multiple views is applicable to static
scenes, in which the configuration of objects is fixed while the images are taken. In our framework, we
aim to reconstruct the 3D models of multiple objects in a more general setting where the configuration
of the objects varies among views. We solve this problem by object-centered decomposition of the
dynamic scenes using unsupervised co-recognition approach. Unlike conventional motion segmentation
algorithms that require small motion assumption between consecutive views, co-recognition method
provides reliable accurate correspondences of a same object among unordered and wide-baseline views.
In order to segment each object region, we benefit from the 3D sparse points obtained from the structure-
from-motion. These points are reliable and serve as automatic seed points for a seeded-segmentation
algorithm. Experiments on various real challenging image sequences demonstrate the effectiveness of
our approach, especially in the presence of abrupt independent motions of objects.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Multiple view geometry is an important research area in com-
puter vision. Traditionally, multiple view-based three-dimensional
(3D) reconstruction systems are restricted to static scenes, in
which the scene configuration is unchanged as the images are ta-
ken in different views. In this paper, we aim to develop a recon-
struction system that is capable of building 3D models of
multiple rigid objects in dynamic scenes where each object and
camera are moving freely.

Suppose there are multiple target objects appearing simulta-
neously in the input images, and they are settled in different con-
figurations in each scene. For example, several independent objects
are captured in the multiple images, and the position and pose of
these objects vary from image to image. In such settings, the recon-
struction problem from the dynamic scene raises various chal-
lenges. Since there are arbitrary motions of multiple target
objects in the scene, the multi-view constraint of the whole scene
is not satisfied. Given that the 3D reconstruction applied to the
whole images is not established due to the lack of global geometric
consistency, the geometric conflict among the target objects has to
be resolved prior to reconstruction. Thus, a natural way is to sepa-
rate each object from the others and reconstruct each one indepen-
dently. Once identifying and segmenting corresponding regions of
same object among images and establishing feature correspon-
dences among the regions, the multi-body problem can be easily
resolved by finding relative camera poses for each object region
individually.

To solve the multi-body problem, we approach from the object
recognition viewpoint. If we recognize each independently moving
object in the image sequences, the solution gives us answers to the
following concerns: the number of the objects, the membership of
the objects, and their correspondences. These data serve as clues in
reconstructing the structure of individual objects in the dynamic
scene environment [1]. In the present work, we apply object recog-
nition technique to decompose the dynamic scene into coherent
regions that correspond to separated objects distinguished by color
or texture characteristics.

The key contributions of our approach are summarized as
follows:

1. We designed a 3D reconstruction system for multiple objects in
dynamic scenes. It is the first solution to the 3D reconstruction
problem of dynamic abrupt scenes with arbitrary view points.
The solution to such problem has never been proposed in previ-
ous works. Our method is general in that it does not have any
restriction on the number of objects or the ordering of
sequences, yet yielding compelling results.

2. Extended co-recognition technique has been utilized for identi-
fying objects in multiple images. Co-recognition avoids feature
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tracking issues, one of the most troublesome problems in this
area, when motion segmentation is applied to real images.
Without feature tracking, our method can handle the general
settings of objects between images.

3. We have refined the patch-level object boundary obtained from
object recognition algorithm up to the pixel-level precision. We
applied an interactive image segmentation method in a non-
interactive way by providing seed points automatically. The
3D structure of the target object is utilized to get reliable object
segment.

The structure of this paper is as follows: in Section 2, we start
with a brief review of related works; Section 3 describes our ap-
proach and the detail of the proposed system; we present the
experimental results on various data in Section 4; and the paper
concludes in Section 5.

2. Related work

Only few studies have focused directly on this subject, and the
works of Rothganger et al. [2] and Ozden et al. [3] are the closest
ones to our system. Rothganger et al. presented a 3D structure rep-
resentation using a collection of small planar patches combined
with their normalized local appearance description. They seg-
mented a scene into rigid components and constructed 3D models
of the components up to the local affine patch level. The major ob-
jects are distinguished one after another using the RANSAC (RAN-
dom SAmple Consensus) procedure on the feature tracks [4]. They
applied their representation in detecting moving objects in video
sequences. The work of Ozden et al. [3], meanwhile, is an online
method to cope with motion segmentation and reconstruction
simultaneously. They attempted to estimate the number of moving
objects by splitting and merging feature tracks. They focused on
practical considerations to build a reconstruction system, and their
method can handle more realistic scenes.

Both [2,3] rely heavily on the feature tracker. Since Lucas and Ka-
nade have introduced the KLT tracker based on optical flow [5], it has
been used as a popular element for approaches to motion segmenta-
tion including methods for non-rigid object motions [6,7]. In gen-
eral, however, the feature tracker is prone to failure when the
inter-frame motion is large. Given that the tracker assumes strong
continuity between frames, one missing track can lead feature tra-
jectories to drift away and make their return very difficult. More-
over, if the input data is given as an unordered set of images we
cannot apply tracking-based methods to match the images.

Another issue of multiple object reconstruction is the relative
scale between objects. If each object is treated separately, each
3D model may have a different scale factor because reconstruction
is determined up to the unknown scale. This subtle problem is
known as relative scale ambiguity problem, and has no exact solu-
tion; however a previous work [8] has introduced an estimation
method based on generic motion constraints. In this method, the
objects are re-arranged by their determined scale to create a whole
3D scene configuration.

Apart from the above, the topic of motion segmentation has to
be addressed when dealing with the multi-body problem. Model
selection and subspace separation are common concepts in this
area. Wang and Adelson [9] presented the idea of assigning pixels
to overlapping layers, where each layer’s motion is described by a
smooth flow field. This has been referred to as a layered approach,
which explains pixel motions as a parametric motion model featur-
ing several layers. Such representation has been adopted by a num-
ber of algorithms. They have often used expectation–maximization
(EM) [10,11] or graph cuts [12,13] to minimize energy functions.

Some works [14–16] approached the multiple motion segmen-
tation problem as mathematical multi-body factorization. They are
based on the subspace constraints that the trajectories of points on
the independent rigid objects are from independent subspaces. The
factorization method is primarily focused on the algebraic explana-
tion to the problem; the authors assumed that the feature-tracking
issue has been solved, in fact, this is an unrealistic assumption.
Most studies on motion segmentation tend to concentrate on the-
oretic aspects and have derived solutions from simple data with re-
stricted environments.

In response to the large disparity discrete motion problem,
Wills et al. [12] presented a method that combined the layer-based
approach concept and feature-based motion estimation. First, the
initial correspondences matched by comparing the descriptor vec-
tors of interest points are computed. Established initial matches
are perturbed to check correctness and boost the inlier matches.
They then used a RANSAC-based procedure to detect and partition
the motion fields of the frames. Finally, an approximate graph cut
method is applied to assign pixels densely to each motion field.
Their proposed approach demonstrated the ability to handle large
inter-frame motion, which is the limitation of the optical flow-
based feature tracking methods. The work of Wills et al. is similar
to our method in that it can handle large abrupt motions and boost
true inlier interest point matches. However, their work was based
on a strong assumption that objects are matched by a single planar
homography between images. This assumption does not hold for
most general 3D objects, particularly when images are taken under
a wide baseline setting.

Despite previous attempts to attain feature-level motion seg-
mentation based on tracking method or theoretic factorization,
the dynamic multi-object reconstruction problem has never been
directly investigated. As a consequence, there is no practically
available solution to this challenging problem. Thus, we emphasize
that our work has made a substantial contribution in the form of a
novel integrated system based on the object-centered approach
(see Fig. 1).
3. Proposed method

In this section, we introduce our reconstruction system, which
uses an object recognition-based matching and segmentation.
The main goal of a dynamic scene reconstruction system is to
search for all major independent objects in multiple images and
build 3D models of each object by gathering all visual information
extracted from the images. Our approach stands on a number of
existing techniques to achieve this goal. The proposed method con-
sists of four major stages. The starting point of our algorithm is the
automatic recognition of common objects among multiple images
using a co-recognition technique, in which the recognized objects
with the same identity across images are clustered together. Each
cluster is a collection of the same object regions, roughly seg-
mented in all images with matched feature correspondences. Fol-
lowing the recognition and the clustering steps, we applied
structure from motion (SfM) to each object to calibrate the virtual
camera. The SfM yields sparse 3D points on the object surface as
well as the corresponding camera matrices through the bundle
adjustment optimization. Then, the roughly segmented result of
co-recognition and sparse 3D points projected on the images are
used as seeds for the RWR (Random Walk with Restart) segmenta-
tion algorithm. Finally, we used patch based multi-view recon-
struction algorithm to build the 3D models of each object. An
overview of our system is illustrated in Fig. 2.
3.1. Recognition

The first step of our algorithm is object recognition across
images. Given that we have no object-level prior knowledge of



Fig. 1. An example of multiple object reconstruction from a dynamic scene. Despite the arbitrary positions and poses of the objects in the images, each object is separated and
reconstructed to the individual 3D model.

Fig. 2. Overview of the proposed system.
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the scene, we start by determining the number and locations of the
objects in images. Given a set of images, as shown in Fig. 4, multi-
ple objects appear simultaneously in a view, while their poses and
arrangements vary in every view. To reconstruct multiple objects
in the dynamic scene, each object should be segregated individu-
ally. By segmenting each object regions and finding the association
among those in multiple images with feature correspondences, we
can apply SfM algorithm on each separated object to construct its
3D model.
3.1.1. Co-recognition
The object recognition problem for multiple object reconstruc-

tion is different from the exemplar-test object recognition frame-
work. In our problem, there is no explicit distinction between
exemplar and test images. Instead, we only have input images con-
taining multiple dynamic objects. Therefore, the problem is to find
and localize common objects in the images. The essence of our ob-
ject recognition routine is based on co-recognition [17]. Co-recog-
nition is an image matching method, which establishes
correspondence among multiple common objects in image pairs
without prior knowledge of the objects.

The building block of co-recognition is pair-wise image match-
ing. Thus, we divided the matching problem of multiple images
into sub-problems. Suppose we are given a set of N images, then
we have a total of N(N � 1)/2 image pair combinations. We solve
each pair-wise sub-problem and get the final solution by integrat-
ing the results of those sub-problems.

Generative model:
We proceed by describing the generative model formulation.

Given the image pair (Ii, Ij), the co-recognition problem can be mod-
eled as a maximum a posteriori (MAP) estimation of the parameter
h on the basis of the image pair observation. According to the
Bayesian formulation, the solution is found by maximizing poster-
ior probability that is decomposed into likelihood and prior terms
as follows.

h� ¼ arg maxh pðhjIi; IjÞ ¼ arg maxh pðIi; IjjhÞpðhÞ: ð1Þ

We define h as a set of K matching clusters l between an image
pair expressed as:

h ¼ fl1;l2; . . . ;lKg: ð2Þ

Each matching cluster is a set of local patch matches between
images given by:

lk ¼ fkk;1; kk;2; . . . ; kk;Lk
g; ð3Þ

where Lk denotes the number of local region matches in lk. Thus, h
is a set of local correspondences grouped into the object-level
matching.

The prior p(h) represents the geometric properties that true
common object matches should obey. It constrains the position
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of the matched local patches in the image pair. The relative posi-
tion of the local patches in each cluster must have similar arrange-
ment in both images. We penalized the position discrepancy
between corresponding patches in the image pair. The geometric
discrepancy error of cluster lk is the sum of local deformation cost
of each local match, formulated as

EgðlkÞ ¼
XLk

i¼1

dgðkk;iÞ: ð4Þ

The local deformation cost dg(kk;i) is the average geometric dis-
tances between the center position of neighboring patches of kk;i

and their matches in the other image. The neighbor relation is
determined by the Delaunay triangulation of the patch centers,
and the distance is measured in the normalized domain, in which
the elliptical patch is transformed to the unit circle shape.

It also encodes the preference for larger clusters because reli-
able common objects are expected to have strong support from
many local patches,

EmðhÞ ¼
XK

k¼1

ð�Lk � jDkjÞ; ð5Þ

where jDkj denotes the number of Delaunay triangles of the cluster
lk.

The likelihood p(Ii, Ijjh) reflects the photometric similarity be-
tween matched patches in images. The normalized cross-correla-
tion (NCC) values of the matched image patches are accumulated
to measure the photometric error,

EpðlkÞ ¼
XLk

i¼1

ð1� NCCðkk;iÞÞ2: ð6Þ

To sum up, we finally get the posterior probability from the
prior and the likelihood with balancing parameter bp = 3 as

pðhjIi; IjÞ / exp �
XK

k¼1

EgðlkÞ � EmðhÞ � bp

XK

k¼1

EpðlkÞ
 !

: ð7Þ

Inference:
The first step of co-recognition is establishing initial feature-le-

vel matches between extracted local feature points. The feature
Fig. 3. Expansion and merge moves. The concept of local patches and their corresponde
connecting them. (a) In expansion move, current established local matches propagate an
from the nearby match. After local search to refine the propagated region, the new matc
(depicted in dark blue and orange colors, respectively) merge into one cluster. This figu
detectors [18,19] extract affine invariant regions from the images.
Features with a distance of less than 0.45 in the SIFT descriptor
space are considered to be matched. Usually, there are many false
matches among initial matches.

After the initialization step, each feature match forms an initial
cluster and grows to a larger cluster. Each initial cluster has its own
expansion layer consisting of a set of overlapping circular grid,
which covers the image. The overlapping circular grid on the image
is the basic unit of growth. Then, we begin to run two iterative
moves (expansion/merge) to grow the initial clusters.

In an expansion move, propagation and refinement operations
are performed. The algorithm makes a proposal to propagate one
of the current established matches to one of the unoccupied re-
gions of the expansion layer. Then the new match is refined by lo-
cal search around the proposed region to find the best matching
region. In a merge move, two large clusters are selected and
merged into one. Also their expansion layers are combined. Fig. 3
shows conceptual illustrations explaining the notion of expansion
and merge moves. Expansion and merge proposals are accepted
when the proposed state yields improved posterior p(hjIi, Ij). Expan-
sion moves encourage merge moves to find congruous clusters by
enlarging them. Likewise, merge moves help plausible expansion
moves to have more expansion opportunities through gradual inte-
gration of compatible clusters. Utilizing cooperative expansion/
merge moves, our greedy algorithm explores the solution space
iteratively. Iterative growing is then performed until the conver-
gence of posterior probability p(hjIi, Ij). After convergence, we elim-
inate unreliable clusters from h⁄. We measure the reliability of the
cluster as the expanded area of the region, because larger clusters
are more likely to originate from reliable seed matches.

Clearly, co-recognition has advantages over the feature track-
ing-based methods in terms of object identification. First, unlike
the feature tracker, co-recognition-based approach can handle sud-
den object viewpoint changes between images efficiently. Given
that inference starts from initial local feature matching, objects
appearing at arbitrary position of images are recognized regardless
of motion continuity. Although [2,3] can also reconstruct 3D model
of multiple objects, they require smoothly captured video data,
since they are based on the feature tracker. Besides, there are some
prior works [20–23] that perform reconstruction from unordered
nces between image pair (Ii, Ij) are expressed in elliptical regions and dashed lines
unoccupied region (dotted region) by transferring the transformation information

h is established and added to the cluster. (b) In merge move, two different clusters
re is best viewed in color.
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images; however, they require the scenes to be static. Thus, we ar-
gue that we solved more challenging and generalized problem to
deal with unordered set of images containing multiple dynamic
objects. Second, due to expansion procedures of co-recognition,
new matches are augmented from initial matches to cover object
region. Therefore, the detected object regions are not restricted
to the output of local feature detectors. Third, refinement presents
flexibility to the expansion procedure and non-planar 3D objects
are successfully recognized. It can be explained by the ability to
overcome deformation coming from viewpoint variation.

3.1.2. Integration of the sub-results
As mentioned earlier, we divided the co-recognition problem on

multiple images into sub-problems. The result of each sub-prob-
lem is a set of commonly appearing object regions matched in im-
age pair. As depicted in Fig. 4, each object in one image can have
several matching regions produced from pair-wise matches with
different images in the dataset. Since each pair-wise matching is
performed independently, there is no inter-connection of object
identity between the results. Therefore, we combined the results
of sub-problems into one integrated result. The integrated result
has object-level correspondence network information.

The hierarchical agglomerative clustering [24] is used to unite
pair-wise results. In the present work, we define the similarity
measure of two object-level correspondences as the ratio of over-
lapping areas to the smaller region. Assuming that two matching
clusters lp and lq, have a common sharing image, we let Rp and
Rq be the region occupied by lp and lq on the common image,
respectively. The distance between lp and lq is expressed as
follows:

distðlp;lqÞ ¼
minðAreaðRpÞ;AreaðRqÞÞ

AreaðRp \ RqÞ

� �
: ð8Þ
Fig. 4. Pair-wise co-recognition and integrated result are illustrated on the Gourd data
correspondences are established between the instances of same object. (c) The pair-wise
different colors. (d) The identity of each object is distinguished by integrating the result
The distance is set to infinity when there is no common image
between the matching clusters. The object correspondences are
joined by single-linkage hierarchical clustering until the distance
is larger than 1.25. Object correspondences with distance closer
than 1.25 are gradually agglomerated in the bottom-up manner.
Therefore, the integrated result consists of detected object regions
categorized into set of identical objects in the images.

As explained in Section 3.1.1, the basic unit of multi-layer grow-
ing is based on [17]. Although [17] detects identical objects within
and across the images, we made a variation on it from a practical
application aspect. Our algorithm applies different matching
scheme according to each different type of data. The matches are
allowed to be established in one of three ways: across the images,
within the images, or across the temporal order. This modification
increases efficiency and makes the algorithm applicable to various
input data. The modification detail according to the input data type
is described in Section 4.
3.2. Camera calibration

The next stage in our system is camera calibration. After the
recognition stage, all objects in the images were detected and clus-
tered to the object correspondence network. Each set of object re-
gion segments across images satisfies the scene geometric
consistency. They are equivalent to images of underlying object
only taken by cameras in various positions and viewing angles,
in which other distracting objects do not appear. Fig. 4(b) shows
a typical example of object-centered segmented images. We per-
form camera calibration on each separated set of object regions de-
picted as blue and red outlines.

In this step, we compute the camera projection matrices of each
individual object using the SfM technique. The point correspon-
dences are optimized by the bundle adjustment optimization and
set. (a) Input images have two objects in four different backgrounds. (b) The local
object-level matching and their resulting regions are superimposed on the images in
s of pair-wise object-level matching. Each color (red/blue) identities each object.
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the SfM yields both sparsely reconstructed set of 3D point coordi-
nates X with camera matrices P. Assuming we are given K objects
in N images, we can have following set of camera matrices and
points:

fPnk; n ¼ 1; . . . ;N; k ¼ 1; . . . ;Kg ð9Þ
fXk; k ¼ 1; . . . ;Kg: ð10Þ

Note that not all objects have to be visible in all images; thus, if
an object is missing in some images, the corresponding camera
matrices and 3D points are not available.

Co-recognition produces object boundary segmentations up to
the overlapping circular grid. Some extra parts outside the objects
are included in the object regions due to the expanding nature of
co-recognition. However, these small noises hardly affect the per-
formance of SfM. The SfM multi-view constraint easily prunes
these noises.
3.3. Object boundary refinement

By virtue of object co-recognition, we perform object-centered
camera calibration with segmented object images. Although the
object boundary provided by co-recognition is useful in calibrating
camera parameters, it is still rough and inappropriate for accurate
3D reconstruction of an object shape. It is clear that better object
masks enhance 3D reconstruction results by preventing unneces-
sary background parts from being processed. In this section, we ap-
ply the image segmentation method to obtain a detailed object
segmentation boundary. We adopt the seeded segmentation meth-
od proposed by Kim et al. [25]. It is a generative image segmenta-
tion algorithm based on the Random Walks with Restart (RWR),
and can efficiently solve the weak boundary problem and texture
problem.

First, we construct a weighted graph in an image. The graph
consists of pixel nodes and the edges connecting the neighborhood
Fig. 5. Object boundary refinement by RWR segmentation. (a) The object boundary pro
projected on the image. White box is scaled for display. (c) Blue mask represents object
object recognition. (d) Refined object region after proposed non-interactive RWR segme
pixels. The edge weights encode image color similarity between
connected nodes. Then, the random walkers traverse the graph
with the probability proportional to the weights on the edges.
We compute the steady-state probability for every pixel that a ran-
dom walker starting at a seed point stays at the pixel. Finally, the
most probable label is assigned to each pixel.

The RWR algorithm requires initial seed points for segmenta-
tion, and for this, the user provides scribbles as starting pixels of
each label’s random walker on the weighted graph. For binary
labeling between object and background, seeds on the target object
and background are required. Unlike interactive segmentation
method [25], we aim to generate seed points automatically using
RWR as a non-interactive segmentation method.

The key idea behind providing reliable seed points is utilizing
an object’s geometric information. Although discontinuity of visual
pattern is typically observed at the object boundary, sometimes it
is ambiguous to decide whether a pixel is on the object or not by
the photometric observation only. As explained in Section 3.2,
the sparse 3D points as well as the camera matrices are extracted
by SfM under the consideration of 3D geometry. This implies that
projected locations of sparse 3D points on an image plane are most
likely to lie on the object’s surface. The sparse 3D points Xk of ob-
ject k are projected on the image n by the projection matrix Pnk as
follows:
fxnk ¼ PnkXk; n ¼ 1; . . . ;N; k ¼ 1; . . . ;Kg: ð11Þ

In addition to the projected points xnk, we apply 2D alpha
shapes [26] to them to obtain more stable seeds for segmentation.
The alpha shape is a polygon derived from the point set with
parameter a controlling the desired level of detail. The alpha shape
generated from xnk fills the empty space between the projected
points. The seed is now given as a polygon area instead of each pro-
jected point. We empirically determined the optimal a value to
adapt to the scale and texture density of the objects by following
vided by co-recognition is marked in blue line. (b) Blue crosses deNote 3D points
seeds produced by alpha shape, and green mask denotes background seeds given by
ntation.
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procedure. We select the 6 nearest neighbors of every points and
calculate the average distance from the selected points. The a value
is set to twice the average distance.

For the background seeds, we simply mark all the points outside
the object boundary obtained from co-recognition. Fig. 5 shows the
segmentation process with the automatically generated seeds. The
object boundaries are determined to pixel-level precision through
the RWR segmentation stage.

3.4. 3D reconstruction

The final stage of our system aims to reconstruct a 3D model for
each object. Given object segmentation masks and dense corre-
spondences with camera projection matrices, the condition for
running 3D reconstruction algorithm is satisfied. One can use any
reconstruction method to obtain 3D models of objects and back-
ground. In the paper, we adopt the publicly available multi-view
stereo software PMVS [27], considered as the state-of-the-art
algorithm.

4. Experiments and results

In this section, we demonstrate the experimental results of our
approach for multiple object reconstruction in dynamic scenes. We
demonstrated the performance of our algorithm on several test im-
age sets containing objects that exhibited varying geometric con-
figuration across frames, on both different and same
backgrounds. For the experiments on video data, video sequences
captured from movies and video clips downloaded from the Inter-
net are used, as well as the video taken in the Lab. Comparisons are
drawn with some prior works that have similar goals with our ap-
proach. We also performed quantitative evaluations of pixel-wise
segmentation accuracy and 3D reconstruction correctness. To
show the process and result of our approach more effectively, we
uploaded the supplementary video material on our web site:
http://cv.snu.ac.kr/research/MORDS/video_MORDS.wmv.

4.1. Qualitative results

Dynamic scenes with different backgrounds: We first per-
formed experiments on the sets of images, which capture multiple
Fig. 6. Reconstruction results of t
target objects on different backgrounds in each shot. We took the
Gourd and Tea dataset which are comprised of 4 images as shown
in Figs. 4 and 7(a), respectively. Our goal is to reconstruct the com-
mon objects which appear in all images. The scene continuity be-
tween consecutive frames is a crucial assumption that the
tracking-based methods rely on. However, in this setting of exper-
iment, every image has its unique configuration of scenes. Any per-
mutation of input images will yield abrupt change of object poses
and positions. The target objects are shown in various poses and
positions in the scenes. Given that they have no consistent back-
ground, our algorithm utilized visual information from the fore-
ground objects only. Figs. 6 and 7(b) show the reconstruction
results of Gourd and Tea, respectively. Considering that the target
objects occupy a small part of the images and only 4 images are
used to reconstruct the 3D models, the effectiveness of our system
is quite convincing.

Dynamic scenes with constant background: The second
experiment is designed for reconstructing the foreground objects
and background parts. For this purpose, we captured Houses data-
set. Fig. 8(a) shows some sample images from the Houses dataset.
Houses is a sequence of 25 images. Two objects have independent
abrupt motions with a consistent background, while the camera
moves left and right. Since the images contain consistent back-
ground, our algorithm separates the foreground and background
by detecting them as distinct objects. The 3D model of the back-
ground part is also reconstructed as well as the foreground objects.
Fig. 8(b) and (c) shows the reconstructed background and full 3D
shape of each object, respectively. The explicit segregation of the
object and background has enabled reconstruction of occluded
background. Due to the occluding objects, some part of the back-
ground is not seen from the camera’s view, however, images taken
from other viewpoints compensate for the missing part. Note that
this is different from the crowded scene reconstruction presented
previously [27,28], which treat occluding objects as obstacles that
have to be filtered out.

Identical objects in one image: Interestingly, the proposed
method is applicable to the reconstruction from a single image if
the single image contains multiple shots of identical objects.
Fig. 9 shows our example of Milk. The repeated visual pattern in-
duced by the multiple instances of identical object is frequently
observable in the real world. Each object region in the image is
wo objects of Gourd dataset.

http://cv.snu.ac.kr/research/MORDS/video_MORDS.wmv


Fig. 7. Tea dataset and the reconstruction results.
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equivalent to each shot of same object taken from different view-
point. The relative camera position varies as the objects have dif-
ferent poses seen by the single camera.

Here, we decompose each instances of the object in the recog-
nition stage, and they are treated as multiple shots of same object.
In such a case, the image matching is done only within the single
image itself. To perform the single image reconstruction, we carry
out a little modification to the initialization step of co-recognition.
We allow the local features to find initial correspondences from the
feature points extracted from the same image. The self-matched
regions grow to all of the identical object regions. As shown in
the reconstruction result in Fig. 9, our method provides good
reconstruction result from a single image.

Dynamic scene in video clips: In the fourth experiment, we
performed experiments on the Racing and Dolls video. We captured
the Racing video from YouTube, and the Dolls was taken in our Lab.

In the Racing video clip, the camera is fixed and the viewpoint
does not change. Instead, two cars appear and disappear in the se-
quence as they move across the circuit. This video scene contains
consistent background, but it does not have relative camera mo-
tion. Although our system runs without image ordering, we exploit
the ordering information of video frames to increase efficiency and
overcome the high computational complexity of matching all pos-
sible pairs from the combinations. The frame at time t is matched
with the frame at time t + 3 and t + 6 sequentially. A total of 36
frames were used in the experiment. The reconstruction result is
shown in Fig. 10. Despite the blurry low texture of the body and
window glass, the two cars are separated and modeled to 3D
shapes successfully.

In the Dolls video clip, two dolls revolve around each other in
the background. This scene is captured by a moving camera. The
two objects occlude each other when one is located between the
other and the background, then the occluded object reappears as
the revolution continues. We observe partial/full occlusions of
the target objects in the video. This video raises several challenging
issues such as scale change, treatment of consistent but occluded
background, mutual occlusion of objects, and re-identification of
disappeared object. We apply the same strategy used in Racing vi-
deo to match the sequences. A total of 160 frames are used in the
experiment. Fig. 11 shows the reconstruction results of two doll



Fig. 8. Houses dataset and reconstruction result of two objects and background.

Fig. 9. Reconstruction of identical object from a single image.
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Fig. 10. Race video clip and the reconstruction results of two cars. Note that the consistent background part is not reconstructed since the camera is fixed.
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objects and the background. The results reveal that proposed
method successfully overcomes the aforementioned challenges,
which are known to be difficult issues of conventional methods.

Comparison with [2]: We performed an experiment on the
same video in [2]. A scene where a van moves on the road as the
camera pans right was extracted from the movie Groundhog day.
A total of 30 frames were used in our experiment. Rothganger
et al. [2] modeled the object as a set of affine covariant surface
patches extracted from the feature detectors. As their algorithm
runs only on the given patches, the reconstruction result is limited
to the sparsely and unevenly distributed interest regions induced
by the detectors. However, our algorithm explores new regions,
which were not included in the initial output of detectors, through
the expansion process. The results of our method and [2] are dis-
played in Fig. 12 for comparison.

Comparison with [12]: To contrast robustness with abrupt
motion, we compared the object detection performance of our
method with the work of Wills et al. [12]. Their method was in-
tended to overcome the large inter-frame motion disparity, which
was the biggest problem of tracking-based motion segmentation
algorithms. We selected an image pair from Tea and applied both
methods on the same image pair.1 The object boundary deter-
mined by our method is displayed in Fig. 7(b) and (a) reports the
failure of [12]. We got similar results from any combination of im-
age pair. Although the method in [12] has been developed to handle
large abrupt motions, their approach is weak in terms of scale
change and rotational transformation. They have not explicitly
modeled local affine transformation between the true inlier
matches. Moreover, their assumption of planar motion is not appro-
priate for 3D objects. When a 3D object has out-of-plane rotation,
each of its local region undergoes different movement. Our algo-
rithm adapts to the deformation of surfaces as well as arbitrary
positioning of objects.
1 We used the code provided by the authors (http://joshwills.com/projects/
www_code.html).
4.2. Quantitative results

4.2.1. Evaluation of segmentation accuracy
As a matter of quantitative evaluation, we measured the seg-

mentation accuracy of target objects after each step of co-segmen-
tation, RWR, and 3D reconstruction. For co-recognition and RWR,
detected regions of the objects were compared with ground truth.
For 3D reconstruction step, we then re-projected 3D models on 2D
image planes to obtain the segment.

To measure segmentation performance, we manually labeled
the target object region’s ground truth pixels. We measured the
segmentation accuracy by three criteria. The hit ratio was calcu-
lated as the ratio of truly detected pixels to the ground truth pixels,
HitRatio = jResult \ GTj/jGTj. The background ratio refers to the ratio
of false positive pixels to result pixels, BkgRatio = jResult � GTj/
jResultj. The overlap ratio measures the degree of overall correct-
ness of segmentation, as the ratio between intersection and union
of the result and ground truth, OverlapRatio = jResult \ GTj/
jResult [ GTj. The higher hit, overlap ratio and lower background
ratio means we have obtained better segmentation results.

We took the measurements of the Gourd, Tea, and Milk dataset,
which consist of image shots. Their results are shown in Tables 1–
3, respectively. As shown in the Tables, the RWR segmentation step
has significantly increased the segmentation accuracy. The ten-
dency has shown that co-recognition detects relatively larger re-
gions than the target object. This result explains that co-
recognition detects each object region as a cluster of overlapping
circular grid, which has expanding properties, while RWR finds
pixel-level object boundary segmentation. The expanding nature
of co-recognition yields high hit ratio, but also increases back-
ground ratio. The RWR mostly refined the object boundary by fil-
tering out the background part. The RWR segmentation
decreased the background ratio with little degradation of the hit
ratio. Interestingly, the 3D reconstruction step sometimes shows
slight decrease in the measured segmentation accuracy in terms
of intersection ratio: 0.94–0.93 for Gourd and, 0.97–0.95 for Milk.
The reason for this is that 3D reconstruction uses relatively conser-
vative criteria to model objects. For the reliability of 3D model, part

http://joshwills.com/projects/www_code.html
http://joshwills.com/projects/www_code.html


Fig. 11. Dolls video clip and reconstruction results.

Y.M. Shin et al. / Computer Vision and Image Understanding 117 (2013) 1575–1588 1585
of an object is reconstructed when it can be seen at least three dif-
ferent views. The small degradation of re-projected 3D recon-
structed model is easily explained by the fact that ground truth
segmentation is made solely along the object boundary observed
in each view.

4.2.2. Evaluation of reconstruction accuracy
It is difficult to evaluate the reconstruction accuracy without

the absolute, dense ground truth of the 3D object surface. How-
ever, some knowledge on the target scene’s geometric relation-
ships can be used to measure the accuracy of the built 3D model
indirectly [3] (see Fig. 13).

In our experiment, we used the measured angle between two
perpendicular planes of an object as the reconstruction accuracy
measure. As shown in Fig. 14, we took two different sides of the
Milk object and fitted a plane on each of its surfaces in a total least
square sense. The principle component analysis (PCA) was used to
fit the plane models to the 3D coordinates of the points on each
reconstructed planes. Assuming that the points constitute a plane,
the coefficients of the 3rd principle component define the normal
vector of the plane by the underlying theory of the PCA. The devi-
ation of the angle between the normal vectors of the two recon-
structed planes shown in Fig. 14 from 90� was measured as
4.92�. This shows fair accuracy in spite of each object instance’s
small occupancy in the single image and limited viewpoints.

4.3. Analysis

Occlusion: A feature of the proposed algorithm is robustness
against object occlusion. Conventional approaches [2,3] are based
on the feature tracking method where the algorithm requires ex-
plicit treatment of occluded objects. Given that the tracked fea-
tures show discontinuity at the occlusion boundary, the
disconnected features have to be saved and restored to deal with
the occlusion. However, our system recognized the object identi-
ties instead of following them. Thus, occlusion handling does not
require additional explicit process. Furthermore, our recognize-
integrate scheme enables us to deal with scenes containing full
occlusion or missing object. Disappeared objects can maintain
the same identities only if they keep similar appearance.

The Dolls video was intended to capture the severe occlusion
situation. When an object passes behind the other object, the oc-
cluded object disappears completely from the camera’s view. How-
ever, if an object is partially occluded as much as the calibration is



Fig. 12. Experimental results on a scene of the movie Groundhog day. Our approach shows better result then [2].

Table 1
Segmentation performance (Gourd).

Object 1 Object 2 Total

Hit Bkg Overlap Hit Bkg Overlap Hit Bkg Overlap

After co-recognition .998 .309 .690 .994 .272 .727 .996 .295 .704
After RWR segmentation .966 .017 .950 .965 .025 .941 .965 .020 .946
3D model reprojection .961 .016 .946 .938 .034 .908 .952 .023 .931

Table 2
Segmentation performance (Tea).

Object 1 Object 2 Object 3 Total

Hit Bkg Overlap Hit Bkg Overlap Hit Bkg Overlap Hit Bkg Overlap

After Co-recognition 1.000 .725 .275 .998 .553 .446 .999 .460 .540 .999 .591 .409
After RWR segmentation .990 .105 .887 .962 .123 .848 .965 .100 .871 .971 .107 .870
3D model reprojection .979 .018 .962 .899 .023 .880 .900 .017 .886 .922 .019 .906

Table 3
Segmentation performance (Milk).

Object 1

Hit Bkg Overlap

After co-recognition .992 .318 .679
After RWR segmentation .997 .070 .972
3D model reprojection .972 .016 .957
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available using the observable part, we can estimate the hidden
part of the object by projecting the built object model. Fig. 11(d)
shows an examples of occlusion.

Computational complexity: We performed the experiments on
a computer with 3.3 GHz processor. The co-recognition and RWR
are implemented in Matlab, while SfM and dense 3D reconstruc-
tion are written in C++.

In our framework, the majority of computational time was
spent on the co-recognition and the dense 3D reconstruction steps.
For instance, the co-recognition step took a total of 1380 s to match
the Gourd images. The Gourd data consists of 4 images (N = 4),
yielding 6 pairs of image matching sub-problems. On average,
the running time of each pair-wise sub-problem was 230 s with
standard deviation of 23.1 s. The camera calibration step took 23
and 22 s for the first and second objects, respectively, totally 45 s
to run the SfM algorithm on both of them. The object boundary
refinement step took less than 1 s for each image, consuming the
smallest computation time in the whole pipeline. The dense 3D
reconstruction step required 143 s to build the 3D model of the
first object, 103 s to the second object.

The computation time of each co-recognition sub-problem var-
ies according to the size of the foreground objects images. The
algorithm converges relatively quickly in the case of small objects,
since only small number of iterations are needed to find the object
regions. On the other hand, larger objects require more time to be
recovered by the iterative region growing process. For the Race
dataset, more than 500 s were needed in each co-recognition
sub-problem, since the region growing expanded to the whole im-
age region. The parameters that control the reconstruction density
mainly determine the execution time of the dense 3D
reconstruction.



Fig. 13. Comparison of object detection performance with [12] reveals the superiority of our method in abrupt motion of 3D objects. Detected object boundary on an image
pair of Tea is displayed.

Fig. 14. Perpendicular planes in the object are used to measure the accuracy of the 3D reconstruction. Two sides of the Milk object are fitted on two planes and their relative
angle is calculated using normal vectors.

Y.M. Shin et al. / Computer Vision and Image Understanding 117 (2013) 1575–1588 1587
Limitations: Although our system presents a robust framework
against challenges such as occlusion (House, Racing, and Dolls), af-
fine or perspective view changes (Tea), it also has limitations.
Empirically, the structure-from-motion step is the weakest part
of the flow. Objects with planar or shallow-depth structure can
raise degeneracy to SfM. In such cases, despite the success of object
recognition step, the objects cannot be reconstructed accurately.
Next, the object recognition step requires sufficient texture on
the surface of target objects since each local patch is matched by
texture information on it. For instance, since the teapot object of
Tea images contains low-textured handle and lid, these parts can-
not be recognized successfully. The texturedness also affects the
quality of dense reconstruction. The reconstruction results in
Figs. 10 and 12 show that blurry low-textured body and window
glass are reconstructed ruggedly.

5. Conclusion

In this paper, we have presented a reconstruction framework
for multiple objects in dynamic scenes. We designed a system
based on the object recognition approach, which solves the prob-
lem of estimating object number and feature matching issues at
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once. Our object-centered approach grounds on the fact that many
of vision problems can be interpreted as correspondence problems.
Thus, unlike the conventional flow-based approaches, the pro-
posed method utilized the correspondence information acquired
from the unsupervised co-recognition method. We presented our
work as an integrated framework, which includes unsupervised
object recognition, segmentation, and 3D model reconstruction
from continuous or discontinuous dynamic scenes. Experimental
results on various data have demonstrated the effectiveness of
our approach, especially in the presence of abrupt motion of
objects.

For our future work, we shall attempt to reconstruct a variety of
scenes containing non-rigid objects with more complex motions.
We hope this will eventually lead us to a practical technique, such
as 3D conversion of old classic movies.
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